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Abstract. Anomaly detection for multivariate time series is a very com-
plex problem that requires models not only to accurately identify anoma-
lies, but also to provide explanations for the detected anomalies. How-
ever, the majority of existing models focus solely on the temporal rela-
tionships of multivariate time series, while ignoring the spatial relation-
ships among them, which leads to the decrease of detection accuracy
and the defects of anomaly interpretation. To address these limitations,
we propose a novel model, named spatio-temporal relationship anomaly
detection (STAD). This model employs a novel graph structure learn-
ing strategy to discover spatial features among multivariate time series.
Specifically, Graph Attention Networks (GAT) and graph structure are
used to integrate each time series with its neighboring series. The tempo-
ral features of multivariate time series are jointly modeled by using Trans-
formers. Furthermore, we incorporate an anomaly amplification strategy
to enhance the detection of anomalies. Experimental results on four pub-
lic datasets demonstrate the superiority of our proposed model in terms
of anomaly detection and interpretation.

Keywords: Anomaly Detection · Multivariate Time Series · GAT ·
Transformers · Spatio-Temporal Relationship · Graph Structure
Learning

1 Introduction

Anomaly detection for multivariate time series has emerged as a prominent
research topic in recent times. In the areas of production and IT systems, time
series data can directly reflect the working status and operating conditions of the
system, which is an important basis for anomaly detection. In the past, domain
experts usually utilize their expertise to establish thresholds for each indica-
tor based on empirical observations. However, with the unprecedented explosion
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in data complexity and scale due to rapid technological advancements, tradi-
tional techniques have become insufficient to effectively address the challenges
posed by anomaly detection. To tackle this problem, a lot of unsupervised meth-
ods based on classical machine learning have been developed over the previ-
ous years, including density estimation-based methods [6] and distance-based
methods [3,14]. Nevertheless, these approaches fail to capture the intricate and
high-dimensional relationships that exist among time series.

Recently, Methods based on deep learning have contributed to the enhance-
ment of anomaly detection for multivariate time series. For example, AutoEn-
coders (AE) [5], VAE [12], GAN [17], and Transformers [23] are recent popular
anomaly detection methods that employ sequence reconstruction to encode time
series data. In addition, Long Short-Term Memory (LSTM) networks [9] and
Recurrent Neural Networks (RNN) [22] have also displayed promising results for
detecting anomalies in multivariate time series. However, most of these meth-
ods fail to consider the association between various time series, moreover, they
do not offer a clear explanation of which time series are correlated with each
other, thus impeding the interpretation of detected anomalies. A complex set of
multivariate time series are often intrinsically linked to each other.

Fig. 1. Multivariate time series segments from the SWaT dataset, with anomalies
shaded in red. (Color figure online)

In Fig. 1, the time series are obtained from five sensors of the same process at
the SWaT water treatment testbed [16]. The red shaded region corresponds to an
anomaly, indicating that the LIT101 value has exceeded the threshold. In addi-
tion, the readings of FIT101, MV101, and P101 all changed during this period,
P102 changed after the anomaly has ended. Based on the fault log, we know that
LIT101 serves as the level transmitter responsible for measuring the water level
of the tank, and the anomalous segment corresponds to the overflow of the tank.
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The fundamental reason of this anomaly is because of the premature opening of
MV101 (inlet valve) in the same process. Given that the state of MV101 is limited
to only two possibilities (open and closed) and irregular, identifying abnormal
for it through the temporal features is a challenging task. Consequently, integrat-
ing spatial features become crucial to detect and explain the anomaly. Several
methods have employed graph neural networks for anomaly detection because
of its remarkable capability to leverage spatial structural information, such as
MTAD-GAT [26] and GDN [8]. However, MTAD-GAT assumes a complete graph
structure for the spatial characteristics of multivariate time series, which may
not accurately reflect their asymmetric correlations in real-world scenarios. GDN
[8] is limited to a single time point and fails to catch the detailed associations
between a time point and a whole sequence. GTA [7] combines graph structures
for spatial feature learning and Transformers for temporal modeling. However,
it utilizes Gumbel-Softmax, which is insufficient in accurately representing the
spatial relationships among multivariate time series.

This paper presents a method for anomaly detection by leveraging the spatio-
temporal relationships among multivariate time series. The proposed approach
leverages the joint optimization of Graph Attention Networks (GAT) and Trans-
formers for unsupervised anomaly detection. In order to explore complex tempo-
ral and spatial dependencies among diverse time series, a novel graph structure
learning strategy is proposed, which considers multivariate time series as sepa-
rate nodes and learns attention weights of each node to obtain a bidirectional
graph structure. The proposed method employs GAT and graph structure to
integrate information of nodes with their neighbors, while the temporal features
of time series are modeled utilizing Transformers. The utilization of Transformers
in the proposed approach is motivated by their capability to capture long-term
dependencies, compute global dependencies, and enable efficient parallel compu-
tation. To further enhance the detection performance, an anomaly amplification
strategy based on local and global differences is also introduced. In summary,
this paper makes the following major contributions:

– We propose a new method for learning the graph structure in multivariate
time series.

– We propose an novel method for multivariate time series anomaly detection,
which efficiently captures spatio-temporal information using GAT and Trans-
formers.

– Extensive experiments are conducted on four popular datasets to demonstrate
the effectiveness of our proposed method. And, ablation studies are conducted
to understand the impact of each component in our architecture.

2 Related Work

2.1 Traditional Anomaly Detection for Multivariate Time Series

Traditional methods for time series anomaly detection typically contain distance-
based methods and clustering-based methods. LOF (Local Outlier Factor) [6] is
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a density-based method, which determines the degree of anomaly by compar-
ing the local density between each data point and its surrounding neighboring
data points. KNN [3] is a distance-based outlier detection method, which detects
anomalies by calculating the distances between each data point and its K nearest
neighbors. IsolationForest [14] uses a tree structure to decompose data and quan-
tifies the distances between nodes to identify outliers. Traditional unsupervised
methods for anomaly detection are limited in their ability to identify anomalies,
as they do not take into account the spatio-temporal relationships inherent in
the data.

2.2 Deep Learning Anomaly Detection for Multivariate Time Series

Prediction-Based Models: LSTMNDT [10] leverages LSTM [9] network to
predict time series collected from spacecraft, but it ignores the spatial correla-
tions. MTAD-GAT [26] employs two GAT layers to model the spatio-temporal
relationships simultaneously, but MTAD-GAT assumes that the spatial charac-
teristics of multivariate time series are a complete graph, in most cases, time
series are typically associated in an asymmetric manner. GDN [8] uses node
embedding for graph structure learning, encodes spatial information using GAT.
However, GDN is limited to a single time point and cannot catch the detailed
associations between a time point and a whole sequence.

Reconstruction-Based Models: LSTM-VAE [19] utilizes a LSTM network
and a variational autoencoder (VAE) [12] for the reconstruction of time series.
DAGMM [27] combines a deep autoencoder with Gaussian Mixture Model. But
the Gaussian Mixture Model is not suitable for complex distributed datasets.
OmniAnomaly [22] employs a new stochastic RNN based on the LSTM-VAE
model for anomaly detection. GANS [13,17,20] uses generators for recon-
struction. Anomaly transformer [25] leverages a prior-association and series-
association and compares them to better identify anomalies. USAD [4] uses a
deep autoencoder trained with adversarial training to learn and detect anomalies
in new data. However, all the methods mentioned above only take into account
either temporal or spatial associations, without learning both associations, and
they may lack sufficient ability to accurately localize anomalies. GTA [7] com-
bines graph structures for spatial feature learning and Transformers for temporal
modeling. However, it utilizes Gumbel-Softmax, which is insufficient in accu-
rately representing the spatial relationships between multivariate time series.

3 Method

In this section, we give the details of the proposed spatio-temporal relationship
anomaly detection (STAD) for multivariate time series. At first, we present the
problem statement and the overall architecture of STAD. Next, we will elaborate
the particulars of the graph structure learning, the GAT-based spatial model,
Transformers and anomaly amplification modules.
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3.1 Problem Statement

In our study, time series is represented by {X1,X2, · · · ,Xd}. For the time series
i, Xi = [x1i, x2i, · · · , xNi], where Xi ∈ R

N denotes the observed value of time
series i. N is the length of X and d is the number of multivariate time series. Our
goal is to model multivariate time series data in order to identify any anomalous
behaviors.

3.2 Overview

The overall architecture of the model in this paper is shown in Fig. 2. It consists
of three main components:

(1) Graph Structure Learning: Learn a graph structure that represents spatial
relationships between multivariate time series.

(2) GAT-based spatial model: Fusing time series with spatial features using GAT
and graph structure.

(3) Transformers based on anomaly amplification strategy: Transformers are used
to reconstruct the spatio-temporal relationships of each time series. Anomaly
amplification strategy is used to amplify anomalies.

Fig. 2. An overview of the proposed STAD method.

3.3 Graph Structure Learning

For our model, the primary task is to reconstruct spatial and temporal relation-
ships for multivariate time series. For spatial modeling, we utilize a learnable
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graph to represent the relationships between multivariate time series. We con-
sider each time series as a node, and the relationships between the time series
are represented as edges in the graph. An adjacency matrix A ∈ R

d×d is used
to express this graph, where Aij denotes that there are edges between node i
to node j. Our proposed framework has flexibility and can automatically learn
the relationships of the graph without prior knowledge about the graph struc-
ture. In order to obtain the hidden dependencies between nodes, we designed a
framework that, unlike the GDN [8], does not use the node embedding learning
graph structure. We learn a weight matrix that assigns a weight score to each
node based on its own features and similarity to other nodes, and then use top
k to filter the most relevant sets for the graph structure:

eij = LeakyReLU
(
wT · (Xi ⊕ Xj)

)
(1)

ρij =
exp (eij)

∑d
k=1 exp (eik)

(2)

Aij = 1
{

j ∈ TopK
({

ρik : k ∈ Ci

})}
(3)

where ⊕ stands for stitching two nodes together. Xi ∈ R
N is the feature vector

of node i, w ∈ R
2N is a learnable parameter vector, LeakyReLU is a nonlinear

activation function, ρij ∈ R
d×d is the weight score between source node i and

target node j. Next, we define a GAT-based spatial model that utilizes the
learned adjacency matrix A to model the spatial features of multivariate time
series.

3.4 GAT-Based Spatial Model

We use GAT and graph structure learning to fuse the information of the nodes
with their neighbors. For the input multivariate time series X ∈ R

N×d, we
compute the aggregated representation μi of node i as follows:

μi = ReLU

⎛

⎝αi,iWXi +
∑

j∈N(i)

αi,jWXj

⎞

⎠ (4)

where, Xi ∈ R
N is the input feature of node i, N (i) = {j|Aij > 0} represents

the neighborhood set of node i and its values are obtained from matrix A, W ∈
R

N×N is the trainable weight matrix with a linear transformation for each node.
Unlike GDN [8], we connect the node features to the weight score ρ so that not
only the local spatial dependencies but also the global spatial dependencies in
the graph can be captured. The attention coefficient αi,j is computed using the
following calculation method:

Concati = ρi ⊕ WXi (5)
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πi,j = LeakyReLU
(
aT

(
Concati ⊕ Concatj

))
(6)

αi,j =
exp (πi,j)∑

k∈N(i)∪{i} exp (πi,k)
(7)

where ⊕ denotes concatenation, Concati concatenates the weight scores ρi and
WXi, the vector a represents the learnable coefficients of the attention mecha-
nism. LeakyReLU is used to calculate the attention coefficients and we employ
the Softmax function to normalize the computed coefficients. Next, we use Trans-
formers to model temporal features.

3.5 Transformers Based on Amplifying Anomalies Strategy

We supply μ ∈ R
N×d to the Transformers for reconstruction by alternately stack-

ing Multi-Mix Attention and feedforward layers. This structure better captures
the details and patterns present in time series data. Among them, the overall
equation of layer l is as follows:

Z
l

= Add&Norm
(
Multi-Mix Attention

(
μl−1

)
+ μl−1

)
(8)

μl = Add&Norm
(
Feed-Forward

(
Zl

)
+ Zl

)
(9)

where μl ∈ R
N×dmodel , l ∈ {1, 2, · · · L} represents the output of layer l, fea-

turing dmodel channels. Initial input μ0 = Embeding(μ). Zl ∈ R
N×dmodel is the

hidden representation of layer l.

Multi-mix Attention: Inspired by Anomaly Transformer [25], we propose the
Multi-Mix Attention with local associations and global associations to amplify
anomalies. Local associations are derived from a learnable Gauss function. The
Gauss function can focus on adjacent layers and amplify local associations. To
prevent the weights from decaying too rapidly or overfitting, we design the
scale parameter σ as a learnable parameter, which allows the function to better
adapt to different patterns of time series. In addition, we use Transformers’ self-
attentive scores as the global associations, which can adaptively find the most
effective global distributions. The Multi-Mix Attention of layer l is as follows:

Q,K,V, σ = μl−1Ml
Q, μl−1Ml

K, μl−1Ml
V, μl−1Ml

σ (10)

Local-Association :G
l

= Rescale
([ 1√

2πσi

exp
( − |j − i|2

2σ2
i

)]

i,j∈{1,··· ,N}

)
(11)

Global-Association :Sl = Softmax

(
QKT

√
dmodel

)

(12)
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Reconstruction :Ẑl = SlV (13)

where Q,K,V ∈ R
N×dmodel , σ ∈ R

N×1 denote query, key, self-attentive value
and learning scale respectively. Ml

Q,Ml
K,Ml

V ∈ R
dmodel×dmodel , Ml

σ ∈ R
dmodel×1

denote the parameter matrices of the Q, K, V and σ in the l-th layer respectively.
We use Gaussian kernels to calculate the association weights between each two
points, and then convert these weights into a discrete distribution through row-
wise normalization with Rescale to obtain Gl ∈ R

N×N . Sl ∈ R
N×N is the

attention map of Transformers. We found that it contains abundant information
and can be utilized as a global learning association. Ẑl ∈ R

N×dmodel is the hidden
representation after the Multi-Mix Attention in the l-th layer.

We use KL divergence to represent the difference between local and global
associations [18]. By averaging multiple layers of association differences, more
information can be fused, and the combined association differences is:

Dis (G,S) =
[ 1
L

L∑

l=1

(
KL(Gl

i,: ||Sl
i,:) + KL(Sl

i,: ||Gl
i,:)

)]

i=1,··· ,N
(14)

where, KL(· ‖ ·) corresponds to the Kullback-Leibler divergence between the
associations of Gl and Sl for each row. Dis (G,S) ∈ R

N×1 is the degree of
deviation of input time series with local-association G and global-association S.
Since the Gaussian function has local single-peakedness, so that the Gaussian
distribution will show fluctuations on both normal and anomalous data, while
normal data tends to exhibit smoother performance with the global association,
which indicates that the Dis value of the abnormal points will be smaller than
the Dis value of the normal points, so Dis has good anomaly differentiation.

3.6 Joint Optimization

Finally, we optimize the spatio-temporal model. We employ additional losses to
amplify the Dis, which can further amplify the difference. The loss functions are:

L1 = ‖μ − X‖2F (15)

L2 =
∥
∥
∥X̂ − μ

∥
∥
∥
2

F
(16)

Ltotal = β × L1 + (1 − β) × L2 − λ × ‖Dis (G,S)‖1 (17)

where X̂ represents the reconstruction of μ through the use of Transforms. ‖·‖F ,
‖·‖K represents the Frobenius and k-norms, β denotes a balance parameter that
lies within the interval [0, 1], λ represents the weighting of the loss terms. When
λ > 0, the optimization is to amplify Dis.

Note that excessively amplifying differences can compromise the accuracy of
Gaussian kernel [18], rendering the local-association devoid of meaningful inter-
pretation. To avoid this, Anomaly Transforms proposes a minimax strategy [25].
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In the minimization phase, the local association G is optimized to approximate
the sequence association S learned from the original sequence. For the maximiza-
tion stage, we optimize the global association to increase the difference. The loss
functions of the two stages are as follows:

MinimizePhase :Ltotal = β × L1 + (1 − β) × L2 + λ × ‖Dis (G,Sdetach)‖1 (18)

MaximizePhase :Ltotal = β × L1 + (1 − β) × L2 − λ × ‖Dis (Gdetach,S)‖1 (19)

where detach refers to the discontinuation of backpropagating the gradient and
λ > 0. During the minimization phase, the backpropagation of the gradient of
S is halted, enabling G to approximate S. Conversely, during the maximization
phase, the gradient backpropagation of G is stopped while S is optimized to
amplify anomalies.

Anomaly Score: By combining association differences with joint optimization,
we obtain the anomaly score:

Score = Softmax
(

− Dis (G,S)
)

�
(
β × L1 + (1 − β) × L2

)
(20)

where � is the element multiplication method. This design allows the recon-
struction error and anomaly amplification strategies to synergistically improve
the detection performance.

4 Experiments

4.1 Datasets

To evaluate our method, we carry out detailed experiments on four datasets.
The characteristics of these datasets are summarized in Table 1.

– Secure Water Treatment Testbed (SWaT): The SWaT dataset is derived from
genuine industrial control system data obtained from a water treatment plant
[16]. It contains 51 sensors.

– Water Distribution Testbed (WADI): This is an extension of the SWaT sys-
tem, but has a larger and more complex data scale compared to the SWaT
dataset [2].

– Server Machine Dataset (SMD) [22]: SMD consisting of 38-dimensional data
collected over a 5-week period from a major Internet corporation. Only a sub-
set of the dataset is used for evaluation due to Service Changes, which affected
some machines in the dataset. The subset consists of 7 entities (machines) that
did not undergo any service changes.

– Pooled Server Metrics (PSM) [1]: The PSM dataset is provided by eBay,
reflects the status of servers, 25 dimensions in total.
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Table 1. Details of the datasets.

Dataset SWaT WADI SMD PSM

Training size 396000 838857 144546 105984
Validation size 99000 209714 36135 26497
Testing size 449919 172801 180682 87841
Number of Sensors 51 123 38 25
Anomaly rate(%) 12.13 5.99 8.80 27.76

4.2 Baseline and Evaluation Metrics

We compared our STAD with several baseline approaches, including traditional
methods: Isolation Forest [14], and deep-learning-based models: USAD [4], GDN
[8], OmniAnomaly [22], LSTM-VAE [19], DAGMM [27], and Anomaly trans-
former [25]. We use Precision, Recall, and F1 scores to evaluate the performance
of our method, which are widely used in anomaly detection.

4.3 Implementation Details

Adhering to the established protocol in Anomaly Transformer [25], we use a
non-overlapping sliding window approach to obtain subsets. The fixed size of
the sliding window is uniformly set to 100. We utilized grid search to obtain
the anomaly threshold and hyperparameters that result in the highest F1 score.
The top-K values for SWaT, PSM, WADI, and SMD are 10, 5, 30, and 15
respectively. The Transformer model consists of 3 layers, we set the number
of heads to 8 and the dmodel dimension to 512. The value of λ is set to 3, β
to 0.5 and we employ the Adam optimizer [11] with the learning rate of 10−4.
Training process employs an early stopping strategy and batch size is set to 32.
All experiments were conducted using a single NVIDIA Titan RTX 12GB GPU
in PyTorch. To ensure that any timestamps during an anomaly event can be
detected, we utilized a widely adopted point adjustment strategy [21,22,24]. In
order to maintain fairness, the same point adjustment strategy was implemented
across all baseline experiments.

4.4 Result Analysis

In many real-world anomaly detections, failure to detect anomalies can result
in severe consequences. Therefore, detecting all genuine attacks or anomalies is
more crucial than achieving high accuracy. As shown in Table 2, our proposed
STAD outperforms other methods in terms of F1 performance. It is noteworthy
that while most methods perform well on datasets such as SWaT, PSM, and
SMD, as their anomalies are more easily detectable, our model still outperforms
them in F1 score. When dealing with more complex MTS datasets like WADI,
most existing methods yield poor results, while our model shows a significant
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improvement compared to others. We also observe that: (1) Compared to tradi-
tional unsupervised methods, deep learning-based techniques generally demon-
strate superior detection performance; (2) Compared to models that solely learn
a single relationship, the concurrent acquisition of temporal and spatial relation-
ships significantly amplifies the anomaly detection efficacy.

Table 2. Experimental results on four public datasets.(%)

Method SWaT WADI SMD PSM
P R F1 P R F1 P R F1 P R F1

iForest [14] 49.29 44.95 47.02 | 62.41 61.55 61.98 | 59.45 85.64 68.31 | 76.09 92.45 83.48
LSTM-VAE [19] 76.00 89.50 82.20 | 46.32 32.20 37.99 | 87.36 79.63 83.84 | 73.62 89.92 80.96
DAGMM [27] 89.92 57.84 70.40 | 22.28 19.76 20.94 | 69.13 87.25 76.67 | 93.49 70.03 80.08
OmniAnomaly [22] 81.42 84.30 82.83 | 26.52 97.99 41.74 | 96.79 94.37 96.20 | 88.39 74.46 80.83
GDN [8] 99.35 68.12 81.17 | 97.35 40.11 57.17 | 67.83 95.78 77.01 | 54.92 99.92 70.88
USAD [4] 98.70 74.02 84.60 | 64.51 32.20 42.96 | 93.46 95.65 90.24 | 56.44 92.69 70.15
Anomaly-Transformer [25] 91.55 96.73 94.07 | 79.70 93.83 85.91 | 95.86 94.71 95.15 | 96.91 98.90 97.89
Ours 93.97 99.84 96.46 | 85.57 97.98 91.34 | 95.94 96.64 96.43 | 98.45 98.42 98.32

4.5 Ablation Experiments

To investigate the efficacy of each constituent of our methodology, we conducted
ablation experiments to observe how the model performance varies on the four
datasets. Firstly, we investigated the significance of using GAT to model spa-
tial dependency relationships. We directly applied the raw data as input to the
Transformers. Secondly, we used a static graph to replace the learned graph to
prove the effectiveness of our proposed graph structure learning. Finally, to val-
idate the necessity of Multi-Mix Attention, we removed it and only use spatial
relations to reconstruct.

Table 3. Experimental results of STAD and its variants.(%)

Method SWaT WADI SMD PSM
P R F1 P R F1 P R F1 P R F1

Without-GAT 90.31 93.73 93.76 | 70.13 91.67 85.37 | 95.31 94.27 93.47 | 94.51 96.75 96.29
Without-Graph Learning 90.15 93.20 91.09 | 80.61 84.34 78.32 | 93.82 91.97 92.43 | 92.49 93.87 96.42
Without-Multi-Mix Attention 95.94 66.45 78.52 | 81.95 47.45 60.01 | 68.49 99.65 80.13 | 58.65 99.46 73.79
Ours 93.97 99.84 96.46 | 85.57 97.98 91.34 | 95.94 96.64 96.43 | 98.45 98.42 98.32

The summarized results are presented in the Table 3. Furthermore, the fol-
lowing observations are provided based on the results: (1) The difference between
the models that do not learn graph structure and our proposed model highlights
the significance of spatial features in addressing anomaly detection for multi-
variate time series data. (2) Our structure learning is more effective than using
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a static graph as the graph structure. (3) The transformer architecture with the
Multi-Mix Attention performs remarkable performance in handling time series
data. Overall, It is evident that each component of our model is effective and
indispensable, thereby endowing the framework with powerful capabilities for
detecting anomalies in multivariate time series.

4.6 Interpretability

We visualize the anomaly amplification strategy section, as seen in Fig. 3, for
real-world datasets, our model can correctly detect anomalies. For the SWaT
dataset, our approach has shown the ability to detect anomalies at an early
stage, indicating its potential for practical applications such as providing early
warning for faults.

Fig. 3. Visualization of model learning in a real-world dataset. Anomalies are marked
by red shading. (Color figure online)

Fig. 4. Visualization of graph structure learning.

Additionally, the visualization of the learned graph structure further demon-
strates the effectiveness of our proposed model. Figure 4(a) is the process diagram
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of the secure water treatment testbed [16]. It can be observed that the SWaT
system is mainly divided into 6 processes, and sensors in the same process stage
are more likely to be interdependent. Figure 4(b) displays the t-SNE [15] plot
of the sensor embeddings learned by our model on the SWaT dataset, where
most nodes belonging to the same process cluster together. This demonstrates
the effectiveness of our graph structure learning.

4.7 Case Analysis

We use the example in Fig. 1 to illustrate why our model helps with anomaly
interpretation. From the previous anomaly analysis, we know that the anomaly
is manifested as water tank overflow, but the root anomaly is caused by the
early opening of MV101. It is hard to find anomalies of MV101 with its irregular
switch status. However, through Fig. 5(a), we can see that our model successfully
detected the anomaly in MV101.

Fig. 5. Case study showing the attack in SWaT.

In addition, other sensors are expected to be correlated with MV101 when
the system is functioning normally. Figure 5 presents the weight scores between
the other sensors of the same process and MV101. As depicted in Fig. 5(b),
our model effectively learns the features associated with MV101 under normal
conditions. When anomalies occur (corresponding to the red section in Fig. 1),
the sensors weight scores are visualized in Fig. 5(c). It is evident that the sensor
under attack (MV101) is more closely associated (darker in color) with other
sensors in the same subprocess. This is reasonable, as when an anomaly occurs,
the sensors associated with the anomaly are more strongly affected.

5 Conclusion

This paper proposes a novel approach for multivariate time series anomaly detec-
tion by leveraging spatio-temporal relationships. The proposed approach utilizes
a graph attention network (GAT) and a graph structure learning strategy to
capture spatial associations among multivariate time series. Additionally, Trans-
formers are used to model temporal relationships within the time series. An
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anomaly amplification strategy is also employed to enhance the anomaly scores.
Experimental results demonstrate that the proposed method outperforms exist-
ing approaches in identifying anomalies and is effective in explaining anomalies.
Future work may involve incorporating online training techniques to better han-
dle complex real-world scenarios.
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