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Abstract. Given a Social Network how to select a small number of
influential users to maximize the influence in the network has been stud-
ied extensively in the past two decades and formally referred to as the
Influence Maximization Problem. Among most of the existing studies, it
has been implicitly assumed that there exists a single probability value
that represents the influence probability between the users. However, in
reality, the influence probability between any two users is dependent on
the context (formally referred to as tag e.g.; a sportsman can influence
his friends related to any news related to sports with high probability).
In this paper, we bridge the gap by studying the Tag-Based Influence

Maximization Problem. In this problem, we are given with a social net-
work where each edge is marked with one probability value for every tag
and the goal here is to select k influential users and r influential tags to
maximize the influence in the network. First, we define a tag-based influ-
ence function and show that this function is bi-submodular. We use the
orthent-wise maximization procedure of bi-submodular function which
gives a constant factor approximation guarantee. Subsequently, we pro-
pose a number of efficient pruning techniques that reduces the computa-
tional time significantly. We perform an extensive number of experiments
with real-world datasets to show the effectiveness and efficiency of the
proposed solution approaches.

Keywords: Social Network · Influence Maximization · Seed Set ·
Bi-Submodular Function

1 Introduction

Diffusion of information in a networked system has been studied extensively
to answer several questions in different domains such as how infectious disease
spreads in a human contact network [9], how malware, wormholes, etc. spread
in computer networks [1], how innovation, concepts, ideas, etc. spread through
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social networks and many more [6]. The diffusion of information in social net-
works has got applications in different domains such as viral marketing [13], com-
putational advertisement [10], feed ranking, etc. Hence, several diffusion models
have been proposed in the literature. Among them, one of the popular diffusion
models that have been studied extensively is the Independent Cascade Model
(abbreviated as IC Model). According to this model, information is diffused in
discrete time steps from a set of initially active nodes called as seed nodes. A
node can be any one of the following two states: ‘active’ (also called as ‘influ-
enced ’) and ‘inactive’ (also called as ‘influenced ’). Every active node at time
step t will get a single chance to activate its inactive neighbors with the success
probability as the edge weight. The diffusion process ends when no more node
activation is possible.

One important problem that has been studied in the context of information
diffusion is the problem of Influence Maximization. Given a social network and
a positive integer k the problem of influence maximization asks to choose a
subset of k nodes whose initial activation leads to maximum influence in the
network. This problem has got a significant applications in the domain of viral
marketing. Consider a commercial house developed a new product and wants to
prompt among people. They distribute a limited number of sample product (in
free of cost or in discounted price) among a group of highly influential users with
a hope that they will use the product and share information about it among their
neighbors. Some of them will be influenced and buy the product. This cascading
process will go on and at the end of diffusion process a significant number of
people will ultimately buy this product and the E-Commerce house can earn
revenue. Due to practical applications the problem of influence maximization has
been studied extensively and several solution methodologies has been proposed
in the literature.

One of the important drawback of the existing studies is that most of them
considered that there exists a single influence value between any two users of the
network. However, in practice the case is not exactly the same. The influence
probability between any two user is always dependent on the context. As an
example, a sportsman can influence related to any issue related to sports with
high probability compared to any other contexts. These contexts are formalized
as tags. In real-world situations between every pair of users there exists an
influence probability value corresponding to every tag. Now it is easy to observe
that the influence in the network will not only depends on the seed set we are
choosing, but also the tags we are choosing. In this context the problem that
arises is given a social network where each edges of the network is marked with
an influence probability value corresponding to every tag and the aim is to
choose a subset of k nodes and r tags such that the influence in the network gets
maximized. Though this problem is quite natural in many realistic situations,
however we observe that the number of studies which considers both selection
of tags and seed nodes for influence maximization is very limited.

To the best of our knowledge, Ke et al. [7] were the first to study this prob-
lem and they proposed a sketch-based solution approach for this problem. Also,
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their experiments show that their proposed methodology can process signifi-
cantly large datasets within reasonable computational time. Banerjee et al. [3,4]
studied a similar problem where they considered the users and tags have non-
uniform selection costs and a fixed amount of budget is given. The goal was to
select a subset of the nodes as seed nodes and a subset of the tags within the
budget to maximize the influence. They showed that in many keyword-based
Social Network datasets the popularity of the tags varies a lot across different
communities within the same network. Other than these two studies there are
no studies that considers the same problem. In both these studies there is no
mathematical analysis of the tag-based influence function has been done. One
key observation of this study is that this analysis leads to efficient algorithms for
optimization of this function. In particular, we make the following contributions
in this paper:

– We study the problem of selecting influential users and tags simultaneously
for which there exists limited studies in the literature.

– We do a mathematical analysis of the Tag-Based Influence Function and prove
several theoretical results.

– We propose a Coordinate-wise Solution Approach and Community-based
Solution Approach to solve the Tag-Based Influence Maximization Problem.

– We perform an extensive set of experiments with real-life datasets to show
the effectiveness and efficiency of the proposed solution approaches.

Rest of the paper is organized as follows. Section 2 describes relevant prelimi-
nary concepts and defines our problem formally. Section 3 describes the proposed
solution approaches with detailed analysis. Section 4 contains the experimental
validation of the proposed solution approaches and finally, Sect. 5 concludes this
study and gives future research directions.

2 Preliminaries and Problem Definition

In this section we describe some preliminary concepts and defines our problem
formally. Initially we start by describing social networks.

2.1 Social Network

In this study we model a social network by a weighted and directed graph
G(V,E, P ) where the vertex set V (G) = {u1, u2, . . . , un} represents the set of
users of the network. The edge set E(G) are the set of social ties among the
users; i.e., there is an edge between the users ui and uj if there exists a social
relation between ui and uj . We denote the number of vertices and edges of G by
n and m, respectively. Consider there are a set of tags T = {t1, t2, . . . , tk} which
are relevant to the users. For every edge (uiuj) ∈ E(G) and for every tag t ∈ T

there exists an influence probability denoted by Pt
ui→uj

. This can be interpreted
as as the influence probability of the edge (uv) when the tag t is used for the
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diffusion process. In the graph G, the edge weight function P maps each edge-
tag pair to the corresponding influence probability; i.e.; P : E(G) ×T −→ (0, 1].
Now, we can observe that for all the edges their tag specific probability can be
represented by a m × k matrix denoted by P. (i, j)-th entry of the matrix P;
i.e.; P[i, j] contains the influence probability of the edge ei for the tag tj . Now,
for a given subset of tags T

′ ⊆ T, how to aggregate the influence probabilities
for the tags in T

′
to obtain the influence probability of the edge. This depends

on how we are aggregating the tags. In this study we are aggregating the tags
considering they are independent to each other and this called as independent
tag aggregation which is stated in Definition 1.

Definition 1 (Independent Tag Aggregation). For an edge (uiuj) ∈ E(G)
and a subset of the tags T

′ ⊆ T the aggregated influence probability of this edge
is denoted as PT

′

ui→uj
and defined using Equation No. 1.

PT
′

ui→uj
= 1 −

∏

t∈T ′
(1 − Pt

ui→uj
) (1)

Now, it is easy to observe that for all the edges in the worst case the independent
tag aggregation can take O(k · m) time.

2.2 Influence Diffusion in Social Networks

The diffusion process in a networked system has been studied extensively due
to its applications in different domains including Epidemiology, Computer Net-
works, Social Networks, and many more. As this paper deals with social net-
works, here we discuss the diffusion of information in social networks. Due to
several application domains such as viral marketing, computational advertise-
ment, feed ranking, etc. there are extensive studies on the diffusion of infor-
mation in social networks. Several models have been proposed and studied in
the literature. Among them, two fundamental models that have been considered
extensively are the Independent Cascade Model (IC Model) and Linear Thresh-
old Model (LT Model). In this study, we consider the diffusion in the underlying
network is happening according to the rule of the IC Model which is stated in
Definition 2.

Definition 2 (Independent Cascade Model). The rules of the independent
cascade model is as follows:

– Information is diffused in discrete time steps.
– A node can be either of the two states: ‘inactive’ (also refereed to as

‘uninfluenced’) and active (also referred to as ‘ influenced’)
– An active node at time step t will get a single chance to activate its inactive

neighbors at time step (t + 1).
– A node can change its state from active to ‘inactive’, however not the vice

versa.
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Let, T
′
be the set of tags that are used for the diffusion process. Also, these

tags are aggregated as per Equation No. 6. In IC Model information is diffused in
discrete time steps. It is assumed that initially (i.e.; at time step t = 0) a subset
of the nodes S ⊆ V (G) are active and the diffusion process starts from the nodes
in S. We call these nodes as Seed Nodes. Every active node at time step t will
get a single chance to activate its inactive neighbors with success probability as
the aggregated edge probability. Now in the diffusion process, some of the nodes
will be active. I(S) denotes the set of nodes that are activated from the seed set
S. The number of nodes in I(S) is called the Influence of the Seed Set S. For
any seed set S, its influence is denoted as σ(S) which is stated in Definition 3.

Definition 3 (Influence of a Seed Set). Given a seed set S, its influence is
denoted by I(S) and defined as the number of nodes that are activated at the end
of diffusion process. Hence, σ(S) = |I(S)|. Here, σ() is the influence function
that maps each subset of the nodes to its expected influence; i.e.; σ : 2V (G) −→
R

+
0 with σ(∅) = 0.

Now it is important to observe that in our problem we are dealing with both
tags and influential users. Hence, we have to extend the influence function to
the Tag-Based Influence Function which is described in the next subsection.

2.3 Tag-Based Social Influence

For any positive integer i, [i] denotes the set {1, 2, . . . , i}. As mentioned in Defi-
nition 3 given a seed set S, the social influence function σ(.) returns its influence.
However, as in this study we are dealing with both users and tag we have to gen-
eralize the influence function that takes two arguments one is a subset of nodes
and the other one is a subset of the tags. We denote the tag-based influence
function as σT (S, T

′
) and stated in Definition 4.

Definition 4 (Tag-Based Influence Function). Given a subset of the nodes
S ⊆ V (G) and a tag set T

′ ⊆ T the tag-based influence function returns the
influence if the seed set S and the tag set T

′
is used. Hence, σT : 2V (G) ×2T −→

R
+
0 .

It is an important point to observe that for any subset of nodes S ⊆ V (G) if
no tag is selected the influence will be the cardinality of |S|; i.e.; σT (S, ∅) =
|S|. Now, based on the definition of tag-based influence function we define the
problem of tag-based influence maximization which is stated in Definition 5.

Definition 5 (Tag-Based Influence Maximization Problem). Given a
social network G(V,E, P ), a set of Tags T , and two positive integers k and r the
problem of Tag-Based Influence Maximization Problem asks to choose
k seed nodes and r tags such that the tag-based influence function σT (S, T

′
) is

maximized. Mathematically, this problem can be presented using Equation No. 2.

σT (S∗, T
′∗

) = argmax
S⊆V (G)∧|S|≤k

and

T
′ ⊆T∧|T ′ |≤r

σT (S, T
′
)

(2)
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Here, S∗ and T
′∗

denotes the optimal k size seed set and r size tag set, respec-
tively.

It has been mentioned in [8] that the problem of influence maximization is
NP-hard and hard to approximate beyond a constant factor under the both IC
and LT Mdel of diffusion.

2.4 Set Function and Its Properties

Let X = {x1, x2, . . . , xn} be a set with n elements. A function is said to be
a set function defined on the ground set X if f maps every subset of X to a
real number. In this paper, we consider that range of f is the set of positive
real numbers including 0; f : 2X −→ R

+
0 . We say that f is non-negative if

for any S ⊆ X , f(S) ≥ 0, monotone if for all S ⊆ X and for all x ∈ X \ S,
f(S ∪{x}) ≥ f(S); and submodular if for all S1 ⊆ S2 ⊆ X and for all x ∈ X \S2,
f(S1∪{x})−f(S1) ≥ f(S2∪{x})−f(S2). We say that f is normalized if f(∅) = 0.
Now, f is said to be a bi-set function if no. of arguments of f are 2. For a bi-
set function the ground set of the first and second argument may be same or
different. A bi-set function is said to be normalized if for the both the arguments
when it is ∅ then the functional value is 0; i.e.; f(∅, ∅) = 0. It can be observed
that the tag-based influence function σT (S∗, T

′∗
) is a bi-set function and the

ground set of the first argument is the set of nodes of G and the ground set of
the second argument is the set of tags T. Now we list down several properties of
bi-set functions which be used to analyze the properties of the tag-based influence
function [2,11]. Now, we state the notion of Bi-Monotonicity in Definition 7.

Definition 6 (Bi-Monotonicity). A bi-set function f where the ground sets
for the first and second arguments X and Y, respectively is said to be bi-
submodular if for all (A,B) ∈ 2X × 2Y and for all x ∈ X \ A and y ∈ Y \ B,
f(A ∪ {x},B) ≥ f(A,B) and f(A,B ∪ {y}) ≥ f(A,B).

Definition 7 (Bi-Submodularity). A bi-set function f where the ground
sets for the first and second arguments X and Y, respectively is said to be bi-
submodular if for all (A,B) ∈ 2X × 2Y , (A′

,B′
) ∈ 2X × 2Y with A ⊆ A′

and
B ⊆ B′

, x /∈ A′
and y /∈ B′

if the following two conditions holds:

f(A ∪ {x},B) − f(A,B) ≥ f(A′ ∪ {x},B′
) − f(A′

,B′
) (3)

and

f(A,B ∪ {y}) − f(A,B) ≥ f(A′
,B′ ∪ {y}) − f(A′

,B′
) (4)

3 Proposed Solution Approaches

In this section we describe the proposed solution approaches for our problem.
Initially, we start by establishing several properties of the tag-based influence
function which will be required for designing algorithms for optimizing the tag-
based influence function.
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3.1 Properties of the Tag-Based Influence Function

Lemma 1. The tag-based influence function as defined using Equation No. 2
follows bi-monotonicity property.

Proof. Consider S ⊆ V (G) and u ∈ V (G)\S. Also T
′ ⊆ T and t ∈ T\T

′
. So the

tag-based influence function σT (S, T
′
) and to show that σT (., .) is a bi-monotone

function if both he following is true: (i) σT (S ∪ {u}, T
′
) ≥ σT (S, T

′
), and (ii)

σT (S, T
′ ∪{t}) ≥ σT (S, T

′
). Case (i) can be observed very easily. Consider S ′

=
S ∪{v}. As in both right and left hand side of Case (i) the tag set remains same,
hence the aggregated influence probability will also remain the same. Now it is
a fact that under the IC Model of diffusion the influence function is monotone;
i.e.; σ(S ′

) ≥ σ(S). So the Case (i) is proved.
Now, to prove Case (ii), let us have the observation that for any two tag sets

T
′

and T
′′

with |T ′′ | > |T ′ |. Then for every edge (uv) ∈ E(G), PT
′′

u→v ≥ PT
′

u→v.
So, even if the seed set remains the same if more tags are used in the influence
maximization then the influence when more tags are used influence will be more.
This proves Case (ii) and as a whole the lemma statement.

Lemma 2. The tag-based influence function as defined using Equation No. 2
follows bi-submodularity property.

Proof. Consider S ′ ⊆ S ′′ ⊆ V (G) and u ∈ V (G) \ S ′′
. Also, T

′ ⊆ T
′′ ⊆ T and

t ∈ T \ T
′′
. Now, the tag-based influence function σT (S, T

′
) will said to be a

bi-submodular set function if both of the following are true:

– Case I: First we show that σT (S ′ ∪{u}, T
′
)−σT (S ′

, T
′
) ≥ σT (S ′′ ∪{u}, T

′
)−

σT (S ′′
, T

′
). It is easy to observe that in both the left and right hand side of

the inequalities, the tag set remains the same. That means the aggregated
influence probability for all the edges remains the same. Hence, this case boils
down to the simple influence function; i.e.; σ(S ′ ∪ {u}) − σ(S ′

) ≥ σ(S ′′ ∪
{u}) − σ(S ′′

) where S ′ ⊆ S ′′ ⊆ V (G) and u ∈ V (G) \ S ′′
. It has been shown

by Kempe et al. [7] that under the Independent Cascade Model the influence
function is submodular. Hence, Case I is proved. In other words, the tag-based
influence function σT (., .) is submodular with respect to the first orthent.

– Case II. Now, we want to show that σT (S ′
, T

′ ∪ {t}) − σT (S ′
, T

′
) ≥

σT (S ′
, T

′′ ∪ {t}) − σT (S ′
, T

′′
). In this case, we can observe that in both

sides of the inequalities, the seed set remains the same only the tag set is
changing. Now as mentioned previously, for any two tag sets T

′
and T

′′
such

that |T ′′ | > |T ′ | for any edge (u, v) ∈ E(G), PT
′′

u→v > PT
′

u→v. Now consider the
standard influence maximization problem in two different cases. In both cases,
the topology and the structure of the graph is the same, however the edge
probabilities are different. Let, GT

′
and GT

′′
are the input social network with

the aggregated edge probabilities for the tags T
′

and T
′′
, respectively. Let,

σ
GT

′ (S) and σ
GT

′′ (S) denote the influence of the seed set S on the graphs GT
′

and GT
′′
, respectively. Also, it is easy to observe that σ

GT
′′ (S) > σ

GT
′ (S).
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This proves that the tag-based influence function σT (., .) is bi-submodular.

The Bi-Submodularity property as mentioned in Lemma 2 has been exploited
in the proposed solution methodology as described in the following sub-section.

3.2 Proposed Solution Approach

In this section we describe the proposed solution methodology which is based on
the orthent-wise maximization of a bi-submodular function as described below.

Broad Idea of the Proposed Solution Approach. As mentioned in Sect. 2.3,
the problem here is to maximize the bi-submoular set function σT (S, T

′
) subject

to the constraint |S| ≤ k and |T ′ | ≤ r. Now, if we apply the coordinate wise
maximization algorithm that works in the following way:

– Step 1: First, the tag set is initialized to an empty set and find out an optimal
k-sized seed set that maximizes the tag-based influence function. Consider the
obtained seed set is S∗. So, we are solving the following optimization problem:

S∗ ←− argmax
S⊆V (G) and |S|≤k

σT (S, ∅) (5)

– Step 2: Once the optimal seed set is found, we fix the seed set in the tag-
based influence function with the optimal seed set, and we find out an optimal
r-size tag set and let it be T ∗. So, in this step, we are solving the following
optimization problem:

T ∗ ←− argmax
T ′ ⊆T and |T ′ |≤r

σT (S∗, T
′
) (6)

Intuitively, we can observe that after solving the optimization problems men-
tioned in Equations No. 5 and 6 we will obtain both the k-size seed set and r-size
tag set. However, this is not possible if we apply both steps directly. The reason
behind this is as follows. Consider the case of solving the optimization problem
mentioned in Equation No. 5. When we assign the tag set to an empty set, the
aggregated influence probability for all the edges of the network will be 0, which
is equivalent to a graph with n nodes but no edges at all. Now, on such network
we try to find an optimal k-sized seed set for the influence maximization problem
using the incremental greedy approach based on marginal influence gain then
any k-size subset of the vertex set can be returned which is not correct. So, in the
proposed solution approach we tackle this problem and describe the proposed
solution approach.

Description of the Proposed Solution Approach. We tackle the above
mentioned problem in the following way. Initially, we choose the most popular
tag and subsequently we select (r−1) many tags incrementally after selecting the
k-size seed set. So the working principle of the proposed solution approach is as
follows. First we initialize the seed set and tag set to empty set. Then we select
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the most popular tag in the network and this can be done in the following way.
Every user of the network is marked with the tags that they are associated with.
Now, for every tag we count the frequency of every tag and choose the highest
one. If there are ties that can be broken arbitrarily. This highest frequency tag is
selected, and subsequently, we are left with to select k seed nodes and (r−1)-tags.

Algorithm 1: Co-Ordinate wise Maximization Algorithm for the Tag-
Based Influence Maximization Problem
Data: The Social Network G(V, .E,P), the tag set T, Two positive

integer k and r.
Result: S ⊆ V (G) with |S| = r and T ⊆ T with |T | = r such that

σT (S, T ) is maximized
1 S ←− ∅; T ←− ∅;
2 t ←− The most popular tag; T ←− T ∪ {t};
3 for i = 1 to k do
4 u∗ ←− argmax

u∈V (G)\S
σT (S ∪ {u}, T ) − σT (S, T ); S ←− S ∪ {u∗};

5 end
6 for j = 1 to (r − 1) do
7 t∗ ←− argmax

t′ ∈T\T

σT (S, T ∪ {t′}) − σT (S, T ); T ←− T ∪ {t∗};

8 end
9 return S, T ;

Algorithm 1 describes the proposed solution approach in terms of pseu-
docode. In all the social network datasets where tags are associated every user
of the network will be marked with the tags that they are associated with. From
the frequency of tags the most frequent tag can be identified and taken into the
tag set T . Consider the number of tags in the dataset is p. Now, finding the
highest frequency tag can be obtained in O(p · n) time. Line no. 6 computes the
marginal gain and in the worst case in each iteration of the for loop of Line
No. 5, the number of marginal gains computed is of O(n). Now, to compute
the influence while computing the influence of a seed set under the independent
cascade model of diffusion is of O(n · (m + n)). The for loop of Line No. 6 will
execute for O(k) times. Hence, the time requirement to execute from Line No.
5 to 7 is of O(k · n2 · (m + n)). There is a little difference with the execution
of the for loop of Line No. 8 because in each iteration the newly selected tag
has to be aggregated for computing the marginal gain in the next iteration. As
the number of tags is of O(p), then for all the edges to aggregate the influence
probabilities will take O(p·m) time. This additional time we have to bear in each
iteration. Hence, the time requirement for executing from Line No. 8 to 10 will
be O(r · (pm + n2 · (m + n))). Hence, the total time requirement by Algorithm 1
is of O(p ·n+k ·n2 ·(m+n)+r ·(pm+n2 ·(m+n))). Now, the space requirement
will be as follows will be of O(n) in the worst case to store S, O(r) in the worst
case to store T , O(m) to store the aggregated influence probabilities, also O(n)
and O(r) to store the marginal influence gains while executing the for loop of
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Line No. 5 and 8, respectively. Hence, the total space requirement will be of
O(m + r). So, Theorem 1 holds.

Theorem 1. Time and space requirement of Algorithm 1 will be of O(p ·n+ k ·
n2 · (m + n) + r · (pm + n2 · (m + n))) and O(m + r), respectively.

Community-Based Approach. In this section, we propose a community-based
approach for solving the tag-based influence maximization problem. In this app-
roach, the input social network is divided among the communities. The budget
for both seed node and tags are divided among the communities based on the
following criteria: “If the size of the community is large then it requires more seed
nodes and tags to influence”. Let, the network is divided into � many communi-
ties and they are represented by C = {C1, C2, . . . , C�}. Let, for any community
Ci ∈ C, V (Ci) and E(Ci) denote the set of vertices and edges of the commu-
nity Ci. Also for any two communities Ci, Cj ∈ C, ECi,Cj

denotes the set of
edges between Ci and Cj ; i.e.; ECi,Cj

= {(uv) : u ∈ V (Ci) and v ∈ V (Cj)}. So,
V (G) =

⋃
Ci∈C

V (Ci) and E(G) =
⋃

Ci,Cj∈C
and Ci 	=Cj

(ECi,Cj
∪ ECi

). For any community

Ci ∈ C, we denote the number of nodes and edges of this community are denoted
by ni and mi, respectively. So, we have the following n =

∑
i∈[�]

ni. Also, for any

pair of communities Ci and Cj , let mij denotes the number of edges between
the community Ci and Cj . If the graph is undirected then mij and mji. Now,
we divide the budget for nodes and tags among the communities as follows:

– Budget Division for Seed Nodes For any Community Ci, the number of
maximum seed nodes that can be selected from this community can be given
by ( k

n · ni).
– Budget Division for Tags For any Community Ci, the maximum number

of tags that can be selected from this community can be given by ( r−1
m · mi).

It is important to observe that after the division of the budgets among the
communities, the total budgets for all the communities do not exceed the allo-
cated budget. Once the budget division is done the next step is to choose the seed
nodes and tags using any algorithm. In this approach, we use the high-frequency
tags in the community within the budget and we select the seed nodes based on
the marginal influence gain. The proposed methodology has been described in
terms of psudocode in Algorithm 2.

Now we describe the working principle of Algorithm 2. First, we initialize two
sets S and T to store the seed nodes and tags, respectively. Next, we detect the
communities of the network and for this purpose, we use the Louvian algorithm
[12]. Here, Community is an array of size n where n is the number of nodes of G.
Its i-th contains the community number to which the vertex vi belongs to. So,
Community[i] = x means the vertex vi belongs to the x-th community. Also,
it is easy to observe that the maximum value among the numbers of this list
gives the number of communities in which the network has been divided. Next,
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Algorithm 2: Community-Based Approach for the Tag-Based Influence
Maximization Problem
Data: The Social Network G(V, .E, P), the tag set T, Two positive integer k

and r.
Result: S ⊆ V (G) with |S| = r and T ⊆ T with |T | = r such that σT (S, T ) is

maximized
1 S ←− ∅; T ←− ∅;
2 Community = Community Detection(G); � ←− max(Community);
3 Seed Budget ←− array(�, 0); Tag Budget ←− array(�, 0);
4 Community Size ←− array(�, 0);
5 for i = 1 to n do
6 if Community[i] == x then
7 Community Size[x] = Community Size[x] + 1;
8 end

9 end
10 for i = 1 to � do
11 Seed Budget[i] ←− ni

n
· k; Tag Budget[i] ←− mi

m
· r;

12 end
13 for i = 1 to � do
14 Ti ←− ∅;
15 Tag Popularity ←− Calculate the Tag Popularity of the i-th Community ;
16 Sorted Tags ←− Sort the tags based on the Tag Popularity value;
17 for j = 1 to |Sorted Tags| do
18 if Sorted Tags[j] /∈ T and |Ti| < Tag Budget[i] then
19 Ti ←− Ti ∪ {Sorted Tags[j]};
20 end

21 end
22 T ←− T ∪ Ti;

23 end
24 for i = 1 to m do
25 PT

i ←− Calculate the aggregated influence probability ;
26 end
27 for i = 1 to � do
28 for j = 1 to Seed Budget[i] do
29 u∗ ←− argmax

u∈V (G)\S
σT (S ∪ {u}, T ) − σT (S, T ); S ←− S ∪ {u∗};

30 end

31 end
32 return S, T ;

we initialize two arrays Seed Budget and Tag Budget of size �, and the i-th
entry of both store the budget for seed nodes and tags for the i-th community,
respectively. As per the budget division policy described previously, the budget
for both seed nodes and tags are divided among the communities from Line No.
6 to 8. The array Community Size stores the size of each community; i.e.; x-th
entry stores the number of nodes of the x-th community. Now, we subsequently
proceed with the tag selection process in the following way. First, we initialize
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the set which will store the tag set selected from that community. Now, for each
tag, we calculate the frequency of each tag, and subsequently, we sort the tags
based on the tag popularity value. From this sorted tag list we scan over this list
and while scanning we check whether the current tag has already been selected
or not. If not and the allocated budget for that community still has not been
exhausted then this tag is chosen. Once the tag selection of a community has
been done then they are merged with the global tag set T . Once the tag selection
is completed next the tag aggregation is done as mentioned in Equation No. 1. At
last, from each of the communities we select the required number of tags based
on the marginal influence gain. Next, we analyze the time and space requirement
of Algorithm 2.

Initializing both S and T requires O(1) time. As mentioned in [5], the
time requirement by Louvain Method for detecting communities of the network
requires O(n log n) time where n denotes the number of nodes of the network.
Initializing both the arrays Seed Budget and Tag Budget require O(1) time.
It is easy to observe that the number of times for loop of Line No. 8 will run
for O(n) times. Also, the statements within this for loop will take O(1) time.
Hence the time requirement for execution from Line No. 8 to 10 will take O(n)
time. Also, the for loop of Line No. 11 will execute O(�) times. Within this
loop, all the statements will take O(1) time. Hence, the time requirement for
execution Line No. 11 to 13 is of O(�). Now, it is easy to observe that the time
requirement for seed set and tag set selection from any community will depend
on the number of nodes and edges that it contains, respectively. Consider the
maximum number of nodes and edges of any community is denoted by nmax

and mmax, respectively. So, nmax = max
Ci∈C

ni and mmax = max
Ci∈C

mi. Now, it is

easy to observe that if we analyze the time requirement for the tag selection
process for the community containing mmax many edges and seed node selection
process for the community containing nmax many nodes and multiply both the
quantities with � then we will get the time requirement for the tag set and seed
set selection, respectively. First, let us consider the tag selection process. It is
easy to observe that the size of T can be of O(t). Initializing the set Ti will take
O(1) time. Now, as there are O(t) many tags, hence computing the frequency
of each tag will require O(t · nmax) time. Now, to sort these tags based on the
tag popularity value will take O(t · log t) time. Now, the for loop of Line No.
19 will take O(t) times. There are two conditions in the if statement. To check
the first condition it will take O(t) time, however the second condition will take
O(1) time. For the community having mmax many edges, the time requirement
for the tag selection will take O(nmax · t + t · log t + t2) time which is reduced
to O(nmax · t + t2). As mentioned previously, the time requirement for the tag
selection for the whole network will take O(� · (nmax · t + t2)) time. Once the
tag selection process is done, the nest step is to aggregate the tags to obtain the
single influence probability and this will take O(m · t) time. In the worst case the
size of the seed set could be of O(nmax). By extending the analysis of Algorithm
1, we can observe that the time requirement for seed set selection for the whole
network will be O(� ·kmax ·n2

max(nmax +mmax)). So, the total time requirement
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of Algorithm 2 will be O(n log n + n + n + � + � · (nmax · t + t2) + � · kmax ·
n2

max(nmax + mmax)). It is easy to observe that this quantity can be reduced
to O(n log n + � · (nmax · t + t2) + � · kmax · n2

max(nmax + mmax)). Now, we can
observe that � can be of O(t) in the worst case, kmax and nmax can be of O(n),
and mmax can be of O(m). Hence, in the worst case total time requirement will
be of O(n log n+� ·(n ·t+t2)+� ·n ·n2(n+m)) = O(� ·(n ·t+t2)+� ·n3 ·(n+m)).

Now, it is easy to observe that the extra space consumed by Algorithm 2 is to
store the seed set and tag set which can be of O(n) and O(t), respectively. The
arrays Community, Seed Budget, Tag Budget, and Community Size will take
O(n), O(�), O(�), and O(�) space, respectively. Also, it is easy to observe that
to store the arrays Ti, Tag Popularity, and Sorted Tags will take O(n), O(t),
and O(t) space, respectively. To store the aggregated influence probability for
all the edges, we need O(m) space. Finally, we need to have O(n) space to store
the marginal gain of the nodes. So the total space requirement by Algorithm 2
is of O(n + t + � + m). Hence, Theorem 2 holds.

Theorem 2. The time and space requirement of Algorithm 2 will be of O(� · (n ·
t + t2) + � · n3 · (n + m)) and O(n + t + � + m), respectively.

4 Experimental Validation

In this section, we describe the experimental evaluation of the proposed solution
approaches. Initially, we start by describing the datasets.

Datasets. In this study, we have used the following two datasets Last.fm, Deli-
cious. Last.fm contains the social relations among the listeners of this online
site. Delicious is a social book-marking web service for storing, sharing, and dis-
covering web bookmarks. These datasets have been previously used by many
researchers in the domain of social networks and recommender systems.

Experimental Set Up. In this study the following parameter values needs to
be set up: Influence Probability, and the value of k and r. We have considered the
following two probability setting, namely, count, and weighted cascade. In count
probability setting, for every tag we compute its frequency for every user of the
network. Consider two users ui and uj and one tag tx. Their respective frequen-
cies are fui

(tx) and fuj
(tx), respectively. The influence probability for the edge

(uiuj) for the tag tx under the count probability setting will be
|fui

(tx)−fuj
(tx)|+1

fui
(tx)

.

In the weighted cascade setting, this probability will be 1
fuj

(tx)
. In this study, we

consider the following (k, r) value airs: (5, 5), (10, 10), (15, 15), (20, 20), (25, 25),
and (30, 30).

Results and Discussions. Now, we describe the experimental results. Figure 1
shows the seed node-Tag Set budget pair Vs. Influence plots for Last.fm and Deli-
cious dataset for two different probability settings, namely Count and Weighted
Cascade. From this figure, we can observe that for most of the (k, r) pair values
the seed and tag set selected by our proposed solution approaches lead to more
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influence compared to the baseline methods. As an example, for the Last.fm
dataset with the weighted cascade setting, when the value of both k and r is
set to 30, among the baseline methods, the Random method leads to the high-
est amount of influence and its value is 48.35. Between the proposed solution
approaches, the seed and tag set selected by the community-based approach
leads to the highest influence vale which is 57.29. Similar observations is made
for the other probability settings as well. For the count probability setting, when
the value of both k and r are set to 30, among the baseline methods, the seed
and tag set selected by the high degree node-high frequency tag method leads
to the influence value of 45.95. Between the two proposed methods, the seed
node and tag set selected by the Coordinate-wise Method lead to the maximum
value which is 65.65. Also, we observe that the computational time requirement
is affordable. Hence, the proposed solution approaches lead to more amount of
influence compared to baseline methods using reasonable computational time.

Fig. 1. (k, r) Pair Value Vs. Influence value for Last.fm and Delicious Dataset for
Count and Weighted Cascade Probability Setting

5 Concluding Remarks

In this paper, we have studied the Tag-Based Influence Maximization Prob-
lem. First, we have shown that the tag-based influence function follows the bi-
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monotonicity and bi-submodularity properties. Subsequently, we have proposed
two solution methodologies with a detailed analysis. Several experiments have
been conducted with real-world datasets. Our future work in this study will
remain concentrated on efficient pruning techniques.
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