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Abstract. Recently, Contrastive Learning (CL) is becoming a main-
stream approach to reduce the influence of data sparsity in recommen-
dation system. However, existing methods do not fully explore the rela-
tionship between the outputs of different Graph Neural Network (GNN)
layers and fail to fully utilize the capacity of combining GNN and CL for
better recommendation. Within this paper, we introduce a novel app-
roach based on CL, called efficient Graph collaborative filtering with
multi-layer output-enhanced Contrastive Learning (GmoCL). It maxi-
mizes the benefits derived from the information propagation property
of GNN with multi-layer aggregation to obtain better node representa-
tions. Specifically, the construction of CL tasks involves considerations
from both intra-layer and inter-layer perspectives. The goal of intra-layer
CL task is to exploit the semantic similarities of different users (or items)
on a certain GNN layer. The inter-layer CL task aims to make the out-
puts of different GNN layers of the same user (or item) more similar.
Additionally, we propose the strategy of negative sampling in the inter-
layer CL task to learn the better node representations. The efficacy of
the suggested approach is validated through comprehensive experiments
conducted on five publicly available datasets.

Keywords: Recommendation System · Collaborative Filtering ·
Contrastive Learning · Graph Neural Network

1 Introduction

As Web 2.0 gains widespread popularity, the issue of information overload is pro-
gressively intensifying. Recommendation systems, as an effective solution, can
alleviate the problem of information overload. Collaborative Filtering (CF) can
effectively recommend for users by learning user preference from various feed-
back, such as clicks, purchases, and adding to cart. Recently, powerful Graph
Neural Networks (GNNs) have further enhanced CF by modeling interactive
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behaviors as graphs. GNNs can learn more effective node representations and
make better recommendation performance for users, known as Graph Collabo-
rative Filtering.

Despite the significant success of GNNs, two main problems remain. First,
the interactive data of users is usually sparse or noisy, which will leads to inac-
curate representations of learned users and items, as graph-based approaches
may be more susceptible to data sparsity [24]. Second, existing GNN-based col-
laborative filtering methods are dependent on explicit interactions to learn node
representations, while relationships of outputs of different GNN layers and user
or item similarity are not used explicitly to enrich graph information. Contrastive
learning methods have been adopted in recent studies to mitigate the scarcity
of interaction data [22,24,26,29], however, they are still not fully exploited to
mine potential various relationships among users (or items).

Apart from the evident interaction relations between users and items, there
are various potential relations, e.g., structural neighbors and semantic neighbors,
which are useful for recommendation tasks. NCL [14] takes these aspects into
account by constructing contrastive pairs using rich neighbor relations. However,
the potential of GNN in facilitating information propagation remains underuti-
lized within NCL. Within the scope of this study, we design a more effective
CL approach in order to fully utilize these potential relationships in graph col-
laborative filtering. Specifically, various potential relationships are utilized after
aggregating multiple layers of GNN and further defined in two aspects: (1) intra-
layer relationships pertain to the resemblance of output representations among
distinct nodes within a given GNN layer, and (2) inter-layer relationships, which
refer to the similarity of output representations of the same node at various GNN
layers.

To harness the complete potential of output representations from diverse
GNN layers, a model-agnostic framework based on contrastive learning for
recommendation, called efficient Graph collaborative filtering with multi-layer
output-enhanced Contrastive Learning (GmoCL), is proposed. Specifically, the
proposed method constructs contrastive targets from two perspectives. From a
macro point of view, there are potential relations between some nodes, which
may not be explicitly connected on the graph. Inspired by NCL [14], we exploit
to divide the similar nodes into same group by means of clustering algorithm.
Each node and the cluster center which the node belongs to consist of posi-
tive pair, and we consider the other cluster center as the negative samples. In
this view, we adopt the outputs of a particular GNN layer to perform cluster
operations and construct contrastive targets. So, we denote it as intra-layer per-
spective and select the outputs of the second layer as representation of nodes in
the experiments. From a micro point of view, the outputs of the kth GNN layer
aggregate the information pertaining to the k-hop neighbors. Consequently, the
outputs from distinct GNN layers of a given node are employed as positive pairs
for contrastive learning. This is called inter-layer CL. The user-item interactive
data can construct a bipartite graph. Considering the homogeneity between 2-
hop neighbors, we divide the inter-layer CL into two kinds: inter-layer CL on
odd layer and inter-layer CL on even layer. Furthermore, in inter-layer CL on
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even layers, we use a negative sampling strategy, with cluster centers as negative
samples.

Within this paper, we fully utilize GNN to mine potential associations
between users (or items) and combine these supplementary information and
relationships to our CL framework. The outcomes of experiments conducted on
five datasets demonstrate that the suggested method contributes to a discernible
enhancement in recommendation performance. Within this paper, the contribu-
tions can be succinctly summarized as follows:

– We introduce a model-agnostic contrastive learning framework named
GmoCL, which leverages the information propagation properties of GNNs
and aggregates multiple layers of GNNs to improve graph collaborative
filtering.

– We devise an intra-layer contrastive learning task and an inter-layer con-
trastive learning task, which effectively capture the similarities between out-
puts from distinct GNN layers, thereby enhancing representation learning.
Furthermore, in the inter-layer CL task, we propose inter-layer CL on even-
layer with negative sampling and inter-layer CL on odd-layer.

– We conduct experiments on five publicly available datasets, where the out-
comes validate the rationality and efficacy of the proposed method. Subse-
quent ablation experiments demonstrate the individual contributions of each
component to the enhancement in performance.

2 Preliminary and Definitions

2.1 Preliminary

Unlike traditional CF approaches, e.g., matrix decomposition [12,17] based
approaches and autoencoder [13,18] based approaches, graph-based collabora-
tive filtering constructs interactions within user-item interaction graphs and
derives semantically valuable node representations from the structural informa-
tion within the graph. Pioneering studies [1,6] extract structural information in
the form of random walking on the graph, and later Graph Neural Networks
(GNNs) are employed for collaborative filtering [9,18,23,27], where GNNs that
introduce convolutional operations into the graph structure are called Graph
Convolutional Networks (GCNs). The fundamental concept behind Graph Con-
volutional Networks (GCNs) is to acquire node representations by diffusing fea-
tures throughout the graph. This is achieved through iterative graph convolu-
tions, where features are progressively aggregated from neighboring nodes to
form the representation of the focal node. For example, NGCF [22] and Light-
GCN [9] use high-order relations on interactive graphs to improve the perfor-
mance of recommendation. The effectiveness of NGCF is not significantly influ-
enced by the inclusion of feature transformation and nonlinear activation, two
operations inherited from GCN. Therefore, LightGCN with these two operations
removed contains only the most essential part of GCN, i.e., neighborhood aggre-
gation for collaborative filtering. This uncomplicated and linear model exhibits
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improved performance and is more straightforward to train. Therefore, Light-
GCN is used as the base encoder Within this paper.

Applying a neighborhood aggregation scheme on the graph forms the core of
the GCN-based collaborative filtering approach. This scheme involves updating
the self-representation by aggregating the representations of neighboring nodes.
It can be formulated as two phases.

z(l)u = fpropagate
({

zl−1
v | v ∈ {Nu ∪ u}})

,

zu = freadout

([
z(0)u , z(1)u , ..., z(L)

u

])
. (1)

In the interactive graph G, where Nu represents the set of neighbors of user u,
and with L denoting the number of GCN layers, z

(0)
u is initialized vector. For user

u, the propagation function fpropagate aggregates its neighbors as well as its own
(l − 1)th layer representation to generate the lth layer representation, and there
are also some works that aggregate only the neighbors’ representations, such as
LightGCN. Upon undergoing l iterations of propagation, the z

(l)
u representation

encapsulates the information derived from l-hop neighbors. The readout function
freadout is used to receive the ultimate representation of user u. Similarly, the
representation of item i can be received.

Predicting the probability of user u engaging with item i is the responsibility
of the prediction layer. Here, zu and zi correspond to the ultimate representations
of user u and item i, respectively. The prediction score is calculated illustrated
as follows:

ŷui = z�
u zi, (2)

To capture information directly from the interactions, the Bayesian Personalized
Ranking (BPR) [17] loss in pairs, a ranking objective function for recommenda-
tions, is used. BPR loss forces unobserved interactions to have lower prediction
scores than observed interactions. Outlined below is the objective function:

Lmain =
∑

(u,i,j)∈O

−logσ(ŷui − ŷuj), (3)

where O = {(u, i, j) | ru,i = 1, ru,j = 0} is the training data in pairs, and ru,j = 0
means that item j is not interacted by user u. Lmain is used as the main super-
vised task for recommendation. By optimizing Lmain, it possesses the capability
to forecast interactions between users and items.

2.2 Problem Definition

In recommender systems, collaborative filtering aims to provide personalized
recommendations to users by suggesting items that align with their potential
interests, utilizing observed feedback as a foundation, e.g., click, adding to cart,
purchase. To elaborate, considering the sets of users U and items I the observed
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feedback matrix is represented as R ∈ {0, 1}|U |×|I|. When there exist interactions
between the user u and the item i, then ru,i = 1, otherwise 0. The recommender
system can predict possible interactions based on the interaction matrix R. In
addition, the GNN-based collaborative filtering method constructs the interac-
tion matrix R as an interactive graph G, thus the objective of the problem
involves mapping each node v within the set V into a lower-dimensional spatial
representation. This mapping aims to facilitate the recommendation of items
that might capture the user’s interest.

2.3 Notations Definition

The notations used in the paper are shown in Table 1.

Table 1. The notations

Notation Description

U, I The set of users and items, respectively
V V = {U ∪ I} the set of all users and items
E E = {(u, i) | u ∈ U, i ∈ I, ru,i = 1} the set of relations
G Interactive graph
R R ∈ {0, 1}|U|×|I| represents the matrix of interactions
Nu Set of neighbor nodes of user u

L Layers of GNN
z
(l)
u Representation of user u at layer l

z
(l)
i Representation of item i at layer l

zu The ultimate representation of user u

zi The ultimate representation of item i

C The set of cluster centers
K The number of clusters
Lmain The main supervised loss
Lintra The intra-layer contrastive loss
Linter The inter-layer contrastive loss

3 Methodology

The model architecture of GmoCL is illustrated in Fig. 1, where the annotation
on the diagram takes the user as an example, and the item is similar. Our model
has four important parts: 1) Multi-layer aggregation is to learn node represen-
tations by smoothing features on the graph, which performs graph convolution
iteratively. 2) The intra-layer CL is to exploit the semantic similarity between
nodes on a particular layer. 3) The inter-layer CL is to pull the outputs of dif-
ferent layer of same node together. 4) Multi-task learning is the joint training of
BPR ranking loss and contrast loss.
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Fig. 1. The architecture of GmoCL. The annotation on the diagram takes the user as
an example, and the item is similar.

3.1 Multi-layer Aggregation

The introduced GmoCL model exhibits model-agnostic properties, enabling its
integration into numerous recommendation models based on graph neural net-
works. But for simplicity, we adopt LightGCN as the basic structure of the
encoders. At each layer, we exploit LightGCN model to obtain embeddings of
nodes. This whole process is repeated for L(L = 3) times due to the over-
smoothing problem. Then, corresponding to L layers, we obtain L output rep-
resentations of each node.

3.2 The Intra-layer Contrastive Learning

The essence of collaborative filtering is to find similar nodes, so it is also essen-
tial to mine the relations between similar nodes that are unreachable (i.e., not
directly or indirectly connected to each other) on the graph. Given output repre-
sentations of a particular GNN layer, we construct a contrastive loss function to
close the distance of nodes with similar features. It will facilitate nodes to learn a
better representation. Specifically, a clustering algorithm is applied to the users
and items output representations of a particular GNN layer to obtain the cluster
centers, respectively. Our objective is to minimize the distance between the node
and the cluster center of the cluster to which the node pertains. In the case of
users, the aim of intra-layer contrastive learning is to minimize the subsequent
functions:

LU
intra =

∑

u∈U

−log
exp

(
cos

(
z
(l)
u , c

)
/τ

)

∑
ck∈C exp

(
cos

(
z
(l)
u , ck

)
/τ

) , (4)

where z
(l)
u is the output representation of user u at lth layer, cos(·, ·) is the cosine

similarity function, τ is the temperature hyper-parameter, and ck is the cluster
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center obtained by applying the K-means algorithm on all user embeddings,
while C represents the set of cluster centers, of which there are K in total. The
contrasting learning objective for items is similar,

LI
intra =

∑

i∈I

−log
exp

(
cos

(
z
(l)
i , c

)
/τ

)

∑
ck∈C exp

(
cos

(
z
(l)
i , ck

)
/τ

) , (5)

where z
(l)
i is a representation of the output of item i at lth layer and ck is the

cluster center of item i. The ultimate objective of intra-layer contrastive learning
is the summation of weights on both the user and item sides,

Lintra = LU
intra + αLI

intra. (6)

Here, α serves as the hyper-parameter for weight, maintaining a balance of the
two losses.

By applying clustering algorithms, contrastive learning from the intra-layer
perspective can alleviate data sparsity and effectively mine similar users or items,
thus enabling the model to acquire an improved representation.

3.3 The Inter-layer Contrastive Learning

Viewing the interactive graph as a bipartite graph, the aggregation of infor-
mation through the GNN-based model combines data from both homogeneous
and heterogeneous nodes. We propose to exploit the similarity of the output
representation of same node on odd or even layers through CL.

Fig. 2. An example of contrast on odd-layer.

Contrastive Learning on Odd-Layer. It is well known that multi-layer GCN
operation on the graph aggregating information of high-hop neighbors can obtain
more accurate node representations. In the recommendation scenario, There is
a special bipartite graph of user-item interaction graph. And there are large
amount of valuable information between the two-hop neighbors.

Illustrated in Fig. 2, user u1 serves as a representative example. After one
layer of GNN propagation, u1 aggregates the information of the interacted items,
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such as i1. After two layers of GNN propagation, u1 aggregates the information
of two-hop neighbors, such as u2. After three layers of GNN propagation, u1

aggregates the information of three-hop neighbors, such as i3. Evident through
the dashed line in Fig. 2, since u1 and u2 have interacted with the same item
i1, it is inferred that u1 is more likely to interact with i3, so the output repre-
sentations of u1 at 1st and 3rd layer are used as positive contrast pair, which
naturally encodes the items that the user may interact with into the user interest.
Specifically, the goal of inter-layer CL on odd-layer is to minimize the distance
of outputs of the same node on two consecutive odd layers, such as 1st and 3rd
layer. The contrastive loss of user and item are shown in Eq. 7 and Eq. 8.

LU
interO =

∑

u∈U

−log
exp

(
cos

(
z
(l)
u , z

(1)
u

)
/τ

)

∑
v∈U exp

(
cos

(
z
(l)
u , z

(1)
v

)
/τ

) , (7)

LI
interO =

∑

i∈I

−log
exp

(
cos

(
z
(l)
i , z

(1)
i

)
/τ

)

∑
j∈I exp

(
cos

(
z
(l)
i , z

(1)
j

)
/τ

) , (8)

where l is an odd number, and the value of l is 3 in this paper.
Combining the above two losses, contrastive learning objective of inter-layer

on odd-layer is constructed as follows:

LinterO = LU
interO + αLI

interO. (9)

Here, α is the weight hyper-parameter utilized for harmonizing the two losses.

Contrastive Learning on Even-Layer with Negative Samples. The moti-
vation of CL on even-layer is similar to that on odd-layer. However, in Sect. 3.2,
we obtain the cluster centers based on the output representations of 2nd layer.
So we adopt negative sampling strategy. To be specific, the negative samples are
the centers of clusters where the target node is not belong to. This is different
from the CL on odd-layer, which treats all other nodes in a batch as negative
pairs and ignores the rest of the data in other batch, which suffers from data
incompleteness. We constructed the contrastive learning objective for user and
item as follows,

LU
interE =

∑

u∈U

−log
exp

(
cos

(
z
(l)
u , z

(0)
u

)
/τ

)

∑
cm∈C exp

(
cos

(
z
(l)
u , cm

)
/τ

) , (10)
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LI
interE =

∑

i∈I

−log
exp

(
cos

(
z
(l)
i , z

(0)
i

)
/τ

)

∑
cn∈C exp

(
cos

(
z
(l)
i , cn

)
/τ

) , (11)

where cm and cn are cluster centers, l is an even number, and the value of l is 2
in this paper.

Merging the losses from both user and item sides, the contrastive learning
objective function can be expressed as follows:

LinterE = LU
interE + αLI

interE . (12)

Here, α functions as the weight hyper-parameter, serving to balance the two
categories of contrast losses.

Multi-layer aggregation constructs two contrastive loss objectives for nodes
on even as well as odd layers of GNN, explicitly mining the information of
homogeneous and heterogeneous nodes, which facilitates representation learning
of nodes. Combining the even and odd layer contrastive learning objectives, the
final multi-layer aggregation contrastive learning objective is:

Linter = LinterE + βLinterO. (13)

In this context, β represents the weight hyper-parameter that achieves a balance
between the two types of contrast losses.

3.4 Multi-task Training

Given that the primary objective of collaborative filtering involves predicting
potential interactions between users and items, the contrast loss serves as a
supplementary component. To simultaneously train the InfoNCE contrast loss
and the traditional BPR ranking loss, we utilize a multi-task learning strategy.
The overall losses are as follows:

L = Lmain + λ1Lintra + λ2Linter + λ3 ‖θ‖22 . (14)

In this equation, λ1, λ2, and λ3 serve as weight hyper-parameters, responsible
for achieving a balance between the two proposed contrast losses and normalized
terms. Meanwhile, θ represents the set of parameters within the GNN model.

4 Experiments

To validate the efficacy of our proposed model, an extensive array of experiments
has been conducted, accompanied by thorough and detailed analyses.

4.1 Experimental Setup

In this section, we introduce the dataset used for the experiments, the baseline
methods, the evaluation metrics, and some implementation details.
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Datasets. To evaluate the performance of the proposed model, experiments are
conducted using five public datasets: Yelp, MovieLens-1M (ML-1M) [7], Alibaba-
iFashion [3], Gowalla [4], and Amazon-Books [16].

Baseline Methods. We conduct a comparative analysis of the proposed model
in contrast to the subsequent baseline methods:

BPRMF [17] uses the matrix factorization (MF) framework to optimize
BPR loss to acquire latent representations of users and items with potential.

NeuMF [10] uses multilayer perceptron instead of dot product in MF model
to learn the matching function of users and items.

FISM [11] represents an item-based collaborative filtering model that com-
bines historical interaction representations to capture user interests.

NGCF [22] utilizes a bipartite graph structure to integrate higher-order
relationships between users and items, while also employing GNN to enhance
the collaborative filtering-based model.

Multi-GCCF [19] facilitates the propagation of information among users
(and items) with higher-order associations, extending beyond the user-item
bipartite graph.

DGCF [23] disentangles representations of users and items, resulting in
enhanced recommendation performance.

LightGCN [9] streamlines the GCN architecture for increased simplicity
and compatibility within recommendation systems.

SGL [24] take advantage of contrastive learning to strengthen recommenda-
tion. In this paper, we adopt SGL-ED which is the best instance of SGL.

NCL [14] proposes the contrastive learning method involving both struc-
tural and semantic neighbors to enhance the recommendation performance. The
method proposed in our paper enhances this model and maximizes the advan-
tages of GNN to construct the contrastive learning loss function.

Table 2. Datasets

Datasets #Users #Items #Interactions Density

ML-1M 6,040 3,629 836,478 0.03816
Yelp 45,478 30,709 1,777,765 0.00127
Amazon-Books 58,145 58,052 2,517,437 0.00075
Gowalla 29,859 40,989 1,027,464 0.00084
Alibaba 300,000 81,614 1,607,813 0.00007

Evaluation Metrics. We employ two widely recognized metrics, NDCG@N
and Recall@N , with N values set at 10, 20, and 50, respectively. These metrics
are utilized to assess the top-N performance. Following [24] and [9], we employ a
full ranking strategy, i.e., ranking all items with which the user has not engaged.
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Implementation Details. Our model and all baseline methods are imple-
mented using RecBole [28], a comprehensive open-source framework designed
for the development and replication of recommendation algorithms. To ensure
just comparisons, the Adam optimizer is employed for optimization across all
methods. All parameters are initialized using the Xavier distribution, with a
batch size of 4096 and an embedding size of 64. We use the early stop approach
to prevent overfitting, the patience value is set to 40 epochs, and set NDCG@10
as the indicator (Table 2).

4.2 Overall Performance

The performance of the proposed method, along with other baseline models, is
depicted in Table 3 across five datasets. From the results, several observations
and conclusions can be drawn:

– Collaborative filtering models that encode representations of historical inter-
action behaviors as user interests, such as FISM, show better performance
on all datasets, which demonstrates the effectiveness of collaborative filter-
ing models. Of all the graph collaborative filtering baseline methods, Light-
GCN performs best in most datasets, indicating that the simple framework is
more effective and robust. Additionally, the decoupled representation learn-
ing method DGCF performs less favorably than LightGCN, particularly when
dealing with sparse datasets. This may be because, the dimensionality of the
decoupled representation is too low to carry enough features.

– In terms of CL methods, SGL and NCL consistently exhibit superior perfor-
mance over other supervised techniques. SGL obtains data augmented graphs
for contrast by randomly perturbing user-item bipartite graphs, and although
effective, this approach ignores other potential relationships (e.g., user simi-
larity) in the recommendation system. NCL considers the importance of user
(or item) similarity for representation learning from structural and semantic
perspectives. While demonstrating effectiveness, it does not fully leverage the
high-order information propagation properties inherent in GNNs.

– The superior performance of our model compared to all baseline models show-
cases the effectiveness of the contrastive learning approach through GNN
multi-layer aggregation. Besides, the performance improvement of our method
is more obvious on sparse datasets, such as Amazon-Books dataset and
Alibaba dataset. This may be due to the fact that sparse datasets have too lit-
tle interaction information, while our method explores the similarity between
the outputs of discontinuous layers of nodes through contrastive learning,
making the model to predict more accurate results.

4.3 Ablation Experiments

This subsection further analyzes the efficacy of the proposed model through
ablation experiments. Figure 3 displays the results for Amazon-Books and ML-
1M datasets, as constraints on space prevent the inclusion of additional data.
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Table 3. Overall performance of different methods

Dataset Metric BPRMF NeuMF FISM NGCF MultiGCCF DGCF LightGCN SGL NCL Ours Improv.

ML-1M Recall@10 0.1804 0.1657 0.1887 0.1846 0.1830 0.1881 0.1876 0.1888 0.2048 0.2106 +2.83%
NDCG@10 0.2463 0.2295 0.2494 0.2528 0.2510 0.2520 0.2514 0.2526 0.2727 0.2771 +1.61%
Recall@20 0.2714 0.2520 0.2798 0.2741 0.2759 0.2779 0.2796 0.2848 0.3032 0.3108 +2.51%
NDCG@20 0.2569 0.2400 0.2607 0.2614 0.2617 0.2615 0.2620 0.2649 0.2842 0.2897 +1.94%
Recall@50 0.4300 0.4122 0.4421 0.4341 0.4364 0.4424 0.4469 0.4487 0.4677 0.4785 +2.31%
NDCG@50 0.3014 0.2851 0.3078 0.3055 0.3056 0.3078 0.3091 0.3111 0.3298 0.3365 +2.03%

Yelp Recall@10 0.0643 0.0531 0.0714 0.0630 0.0646 0.0723 0.0730 0.0833 0.0912 0.0941 +3.18%
NDCG@10 0.0458 0.0377 0.0510 0.0446 0.0450 0.0514 0.0520 0.0601 0.0679 0.0692 +1.91%
Recall@20 0.1043 0.0885 0.1119 0.1026 0.1053 0.1135 0.1163 0.1288 0.1358 0.1411 +3.90%
NDCG@20 0.0580 0.0486 0.0636 0.0567 0.0575 0.0641 0.0652 0.0739 0.0815 0.0837 +2.70%
Recall@50 0.1862 0.1654 0.1963 0.1864 0.1882 0.1989 0.2016 0.2140 0.2171 0.228 +5.02%
NDCG@50 0.0793 0.0685 0.0856 0.0784 0.0790 0.0862 0.0875 0.0964 0.103 0.1066 +3.50%

Amazon Recall@10 0.0607 0.0507 0.0721 0.0625 0.0625 0.0737 0.0797 0.0898 0.094 0.0986 +4.89%
NDCG@10 0.043 0.0351 0.0504 0.0433 0.0433 0.0521 0.0565 0.0645 0.0683 0.072 +5.42%
Recall@20 0.0956 0.0823 0.1099 0.0991 0.0991 0.1128 0.1206 0.1331 0.138 0.1443 +4.57%
NDCG@20 0.0537 0.0447 0.0622 0.0545 0.0545 0.064 0.0689 0.0777 0.0817 0.086 +5.26%
Recall@50 0.1681 0.1447 0.1830 0.1688 0.1688 0.1908 0.2012 0.2267 0.2179 0.2267 +4.04%
NDCG@50 0.0726 0.061 0.0815 0.0727 0.0727 0.0843 0.0899 0.0992 0.1028 0.1079 +4.96%

Gowalla Recall@10 0.1158 0.1039 0.1081 0.1192 0.1108 0.1252 0.1362 0.1465 0.1502 0.1505 +0.20%
NDCG@10 0.0833 0.0731 0.0755 0.0852 0.0791 0.0902 0.0876 0.1048 0.1082 0.1089 +0.65%
Recall@20 0.1695 0.1535 0.1620 0.1755 0.1626 0.1829 0.1976 0.2084 0.2129 0.215 +0.99%
NDCG@20 0.0988 0.0873 0.0913 0.1013 0.0940 0.1066 0.1152 0.1225 0.1263 0.1274 +0.87%
Recall@50 0.2756 0.2510 0.2673 0.2811 0.2631 0.2877 0.3044 0.3197 0.3259 0.3274 +0.46%
NDCG@50 0.1450 0.1110 0.1169 0.1270 0.1184 0.1322 0.1414 0.1497 0.1541 0.155 +0.58%

Alibaba Recall@10 0.303 0.182 0.0357 0.0382 0.0401 0.0447 0.0457 0.0461 0.0484 0.0498 +2.89%
NDCG@10 0.0161 0.0092 0.0190 0.0198 0.0207 0.0241 0.0246 0.0248 0.0264 0.0272 +3.03%
Recall@20 0.0467 0.0302 0.0553 0.0615 0.0634 0.0677 0.0692 0.0692 0.0717 0.0748 +4.32%
NDCG@20 0.0203 0.0123 0.0239 0.0257 0.0266 0.0299 0.0246 0.0307 0.0323 0.0335 +3.72%
Recall@50 0.0799 0.0576 0.0943 0.1081 0.1107 0.1120 0.1144 0.1141 0.1155 0.1209 +4.68%
NDCG@50 0.0269 0.0177 0.0317 0.0349 0.0360 0.0387 0.0396 0.0396 0.041 0.0427 +4.15%

With “w/o inter” and “w/o intra” denote the variables that remove inter-layer
CL and intra-layer CL, respectively. As depicted in the figure, removing each
aspect leads to a performance decrease, while both variants perform better than
the LightGCN. Furthermore, these two relations mutually reinforce each other,
contributing to performance improvement through distinct avenues.

4.4 Hyper-parameter Analysis

Within this specific section, we analyze the effects of hyper-parameter α and
β. However, due to spatial constraints, we present the outcomes solely for the
ML-1M and Amazon-Books datasets in Fig. 4 and 5 respectively.

Effect of Hyper-parameter α. The coefficient α is used for balancing the
user side and item side on the intra-layer contrasts and inter-layer contrasts. To
analyze the effect of it, we set its variation range between 0.1 and 2 and report
the results in Fig. 4. This suggests that a proper α can be effective to increase
the performance of our method. The best results are achieved on the ML-1M
dataset with the value of 1.0 and on the Amazon-Books dataset with the value
of 0.3, indicating that the homogeneity between the outputs of discontinuous
layers is valuable for both users and items.
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Effect of Hyper-parameter β. Here, we analyze the effects of hyper-parameter
β for balancing odd- and even-layer contrasts through experiments. To analyze
the effect of it, we set its variation range between 0.1 and 2 and report the results
in Fig. 5. The results show that the value of β achieves the best results differs
on different datasets. Specifically, the best results are achieved on the ML-1M
dataset with the value of 1.0 and on the Amazon-Books dataset with the value
of 0.5.

4.5 Distribution of Items Embedding

We show the effects of the proposed model on representation learning in Fig. 6,
where our visualization is based on the SVD decomposition, which projects the
embedding matrix into a two-dimensional space. From the figure we can see that
the distribution of embeddings of low-frequency items is more balanced that they
are located around the origin point in our proposed method compared to NCL,
and we hypothesize that a more balanced embedding distribution better models
different user preferences or item features.

Fig. 3. Performance comparison without inter-layer CL and intra-layer CL on two
datasets respectively (Recall@10).

Fig. 4. Performance comparison for different α
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5 Related Work

This section provides a concise overview of two pertinent studies: graph-based
collaborative filtering and contrastive learning.

Graph-Based Collaborative Filtering. The CF-based approach has evolved
by now to apply graph neural networks (GNN) to collaborative filtering
[9,22,23,27]. For example, utilizing higher-order relations within interaction
graphs, NGCF [22] and LightGCN [9] aim to enhance recommendation per-
formance. Furthermore, [19] extends this idea by introducing the construction
of multiple interaction graphs to attain more comprehensive association rela-
tionships between users and items. Although it is effective, they do not explic-
itly address the problem of data sparsity [24]. Lately, the integration of self-
supervised learning into graph collaborative filtering has emerged as an app-
roach to bolster the efficacy of recommendations. However, most graph-based
approaches focus only on interaction history and ignore the potential neighbor
relationships between users or items. Some recent self-supervised learning meth-
ods are proposed. NCL [14] proposes to consider users (or items) and their homo-

Fig. 5. Performance comparison for different β

Fig. 6. Distribution of item embedding on ML-1M.
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geneous neighbors as positive contrastive pairs and construct two self-supervised
losses in the structure space and semantic space, respectively. However, the
strong GNN is still not well utilized to exploit potential user (or item) rela-
tionships.

Contrastive Learning. Given the success of contrastive learning in Computer
Vision (CV) [2], its application has extended across Natural Language Process-
ing (NLP) [5], recommender systems [20], and graph data mining [15,25]. The
primary objective of contrastive learning is to optimize the agreement between
positive pairs while minimizing the agreement between negative pairs. DGI [21]
regards graph-level representations and node-level representations of the same
graph as positive pairs. CMRLG [8] realizes a similar goal by treating adja-
cency matrix and diffusion matrix as positive pairs. Recently, SGL [24] designs
random data augmentation operations and constructed contrastive targets to
improve the recommendation performance. More recently, NCL [14] considers
the importance of user (or item) similarity for representation learning in struc-
tural and semantic aspects, and although effective, It falls short of fully capitaliz-
ing on the high-order information propagation characteristics inherent in GNNs.
Within this paper, we introduce a contrastive learning framework that operates
from both intra-layer and inter-layer perspectives. This framework is devised to
comprehensively harness the output representations derived from various GNN
layers.

6 Conclusion and Future Work

In order to take full advantage of the output representations of different GNN
layers, a model-agnostic contrastive learning framework for recommendation,
called GmoCL, is proposed. Specifically, contrastive goals are constructed in two
respects. For intra-layer CL, we try to find the semantic similar contrastive pair
by use of clustering algorithm. For inter-layer CL, we focus on the similar of
output representations of two consecutive odd or even layers of the same node.
Furthermore, we adopt negative sampling strategy for inter-layer CL on even-
layer, which can make the model learn better representations. The effectiveness
of the proposed method is underscored by an extensive array of experiments
conducted on five publicly accessible datasets.

Going forward, we will place additional emphasis on the matter of positive
and negative sampling. In addition, applying our contrast learning framework to
different recommendation tasks is also part of our work, and we believe that the
potential of GNN still deserves to be explored fully, and combining contrastive
learning with heterogeneous graph neural networks will be more beneficial for
representation learning and thus can be used better for downstream tasks.

Acknowledgements. This work was supported by Shandong Provincial Natural Sci-
ence Foundation, China (ZR2020MF147, ZR2021MF017).



770 K. Li et al.

References

1. Baluja, S., et al.: Video suggestion and discovery for youtube: taking random walks
through the view graph. In: Proceedings of the 17th International Conference on
World Wide Web, pp. 895–904 (2008)

2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

3. Chen, W., et al.: POG: personalized outfit generation for fashion recommendation
at Alibaba iFashion. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2662–2670 (2019)

4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090
(2011)

5. Giorgi, J., Nitski, O., Wang, B., Bader, G.: Declutr: deep contrastive learning for
unsupervised textual representations. arXiv preprint arXiv:2006.03659 (2020)

6. Gori, M., Pucci, A., Roma, V., Siena, I.: Itemrank: a random-walk based scoring
algorithm for recommender engines. In: IJCAI, vol. 7, pp. 2766–2771 (2007)

7. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

8. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR
(2020)

9. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying
and powering graph convolution network for recommendation. In: Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 639–648 (2020)

10. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

11. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 659–667 (2013)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

13. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders
for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference,
pp. 689–698 (2018)

14. Lin, Z., Tian, C., Hou, Y., Zhao, W.X.: Improving graph collaborative filtering
with neighborhood-enriched contrastive learning. In: Proceedings of the ACM Web
Conference 2022, pp. 2320–2329 (2022)

15. Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data
Eng. (2022)

16. McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommen-
dations on styles and substitutes. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
43–52 (2015)

17. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

http://arxiv.org/abs/2006.03659
http://arxiv.org/abs/1205.2618


GmoCL 771

18. Strub, F., Mary, J., Philippe, P.: Collaborative filtering with stacked denoising
autoencoders and sparse inputs. In: NIPS Workshop on Machine Learning for
eCommerce (2015)

19. Sun, J., et al.: Multi-graph convolution collaborative filtering. In: 2019 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 1306–1311. IEEE (2019)

20. Tang, H., Zhao, G., Wu, Y., Qian, X.: Multisample-based contrastive loss for top-k
recommendation. IEEE Trans. Multimedia (2021)

21. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. arXiv preprint arXiv:1809.10341 (2018)

22. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174 (2019)

23. Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph
collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 1001–1010
(2020)

24. Wu, J., et al.: Self-supervised graph learning for recommendation. In: Proceedings
of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 726–735 (2021)

25. Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs:
contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. (2021)

26. Wu, Y., et al.: Multi-view multi-behavior contrastive learning in recommendation.
In: Bhattacharya, A., et al. (eds.) DASFAA 2022. LNCS, vol. 13246, pp. 166–182.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_11

27. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

28. Zhao, W.X., et al.: Recbole: towards a unified, comprehensive and efficient frame-
work for recommendation algorithms. In: Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management, pp. 4653–4664 (2021)

29. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp.
2069–2080 (2021)

http://arxiv.org/abs/1809.10341
https://doi.org/10.1007/978-3-031-00126-0_11

	Efficient Graph Collaborative Filtering with Multi-layer Output-Enhanced Contrastive Learning
	1 Introduction
	2 Preliminary and Definitions
	2.1 Preliminary
	2.2 Problem Definition
	2.3 Notations Definition

	3 Methodology
	3.1 Multi-layer Aggregation
	3.2 The Intra-layer Contrastive Learning
	3.3 The Inter-layer Contrastive Learning
	3.4 Multi-task Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Ablation Experiments
	4.4 Hyper-parameter Analysis
	4.5 Distribution of Items Embedding

	5 Related Work
	6 Conclusion and Future Work
	References


