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Abstract. Timeliness is one of the important indicators of data quality. In indus-
trial production processes, a large amount of dependent data is generated, often
resulting in unclear timestamps. Therefore, this article combines the conclusion
dependency graph into a process dependency graph to determine the identification
order of the timeliness of each process data; By constructing a weighted timeli-
ness graph (WTG) and path single flux, a data timeliness identificationmethod that
does not completely rely on timestamps is proposed. Finally, a time-effectiveness
identification method based on weighted time-effectiveness graph was discussed
through an example and 9 dependency rules, and the effectiveness of the method
was verified through a set of experiments.
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1 Introduction

A large number of sensors will collect various types of data in industrial production
processes. Before using data, it is necessary to evaluate its quality, and the timeliness of
data is an important indicator of data quality [1]. Therefore, a time dependent method for
identifying timeliness is proposed. This method can effectively identify the timeliness
of data when the timestamp is incomplete. The prerequisite for assessing the timeliness
of data is that the data is correct and can meet work needs. Compared to the correctness
of data, the timeliness of data does not necessarily need to be tested in the real world [2].
Therefore, the measurement of data timeliness should be an estimate, not a validation
statement under certainty, to determine the probability of data validity [3]. For a large
amount of data, it is reasonable to quantify timeliness through this estimation when the
validity of the data is unclear [4].

Reference [5] proposes a probability base metric for calculating the timeliness of
Wiki articles related to timeliness events. Reference [6] defines a recurrent timeliness
rules (RTR) to evaluate the timeliness of periodic data generated during the manufactur-
ing process. Reference [7] define a measure as a function that depends on the age of the
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attribute value at the time the currency is evaluated and the sensitivity parameters that
make the measure suitable for the application environment. Reference [8] assumes that
timestamps are available and mentions using the current time variable to represent the
latest time. Reference [9] developed an uncertain constraint database scheme based on
the constraint database scheme, and abstracted the important example of the complexity
of query identification in uncertain time constraint databases. Reference [10] was used to
investigate the work on time constraint satisfaction problem (TCSP) by finding estimates
that satisfy a set of time variables with time constraints. Reference [11] first studied the
use of rules ∀t1, · · · , tj : R(t1[EID] = tj[EID]∧ϕ → tu≺Atv), j ∈ [1, k] to help identify
the timeliness of data when there is no clear timestamp in the database. Document [12]
proposed a dynamic functional dependency relationship, which stipulates that a copy
function can require some attributes that cannot be independently changed to be copied
together. It is necessary to judge the time series relationship describing different attribute
values of the same entity based on a small amount of time series rules obtained from
domain knowledge, so as to identify which values are outdated. The disadvantage is that
the current method cannot identify whether a value is outdated or invalid at a given time
point.

In summary, the current research on data timeliness is not suitable for direct appli-
cation to the identification of industrial data timeliness. There are two main reasons:
firstly, it is unable to effectively provide the timeliness of the current data without clear
timestamps. Secondly, it is impossible to quantify the timeliness of data at a given time
point. Therefore, this article proposes amethod for evaluating the timeliness of manufac-
turing data based on weighted timeliness maps, which is used to identify the timeliness
of industrial data through time dependency relationships without a clear timestamp.

2 Data Timeliness Identification Method

This article presents the dependency relationships between various conclusions by con-
structing a conclusiondependency sequencediagram.Then,merge the conclusiondepen-
dency graph into a process dependency sequence graph to determine the calculation order
of the timeliness of each process data. Finally, the timeliness of data in a certain process
is determined through a weighted timeliness graph.

2.1 Limited Timeliness Dependency Rules

Time dependent rules refer to the identification of the timeliness of production data
through the dependency relationships between processes.

Definition 1. (Limited timeliness dependency rule): In Rule r, there is a dependency
relationship between each process, and the data generated in Process A will be limited
by its related processes. The degree of limitation is quantified by the strength of the
dependency. The rules that have limited dependencies between these process data are
defined as limited time dependency rules, and their dependencies can be represented as:

r : ∀ti, tj(ψB → ti≺Atj, β) (1)
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Among them, ti≺Atj represents the generation of date ti before the generation of date
tj, β It is the dependency strength of the rule, ψ Represents the temporal relationship
or constraint conditions in process B. The dependency strength of rule represents the
likelihood of the rule represented by r. Because in actual industrial production processes,
each process or employee is relatively independent, probability can be used to represent
the relationship between different process data.

Let lhs(r) represents the left part of the rule, and rhs(r) represents the right part of
the rule, that is, in formula (1), lhs(r) = ψ, rhs(r) = ti≺Atj. For the right part of the
rule, rhs(r) = tml(lhs(r)) × tml(r), where the dependency strength calculation of the
left part lhs(r) = ψ follows the following rule:(a). If ψ is the condition ti[A]optj[A]
or tk [A]opa is determined, then if ψ is true, then tml(ψ) = 1 is satisfied, otherwise
tml(ψ) = 0, where op ∈ {=, �=,<,>,≤,≥} and a are constants; (b). If ψ is ti≺Atj
or tk≺Aτ and ψ is not the right part of any rule r, then the value of tml(ψ) is obtained
statistically; (c). If ψ is the right part of other rules r′, the value of tml(ψ) is obtained
by the calculation method of the right part of rules r′ dependence strength; (d). If ψ =
ψ1 ∧ ψ2, then ψ represents the conjunction of ψ1 and ψ2, and the dependence strength
tml(ψ) = min{tml(ψ1), tml(ψ2)} after the conjunction.

2.2 Process Dependency Sequence Graph

To determine the calculation order of the timeliness of each process data, it is necessary
to construct a process dependency graph. To construct a process dependency graph,
it is first necessary to construct a conclusion dependency graph based on dependency
rules, and then merge them. The specific steps for constructing a dependency sequence
diagram are as follows. Firstly, based on the type of conclusion, determine whether the
conclusion needs to be included in the dependency sequence diagram. The conclusion
of ti[A]optj[A] or tk [A]opa is a deterministic conclusion that satisfies the condition of 1,
otherwise it is 0 and does not need to be added to the conclusion dependency diagram;
The conclusions of ti≺Atj and ti≺Aτ are non-deterministic and need to be added to the
conclusion dependency sequence diagram. Then, when the conclusion is determined to
be non-deterministic, two types of nodes, (≺,A, ∗, ∗) and (≺,A, τ), are constructed for
each process A to represent the conclusions of type ti≺Atj and type ti≺Aτ. Finally, scan
the rule set �(r), is there a rule rk that makes ψ1 = lhs(rk), ψ2 = rhs(rk)? If so, add
directed edges from ψ1 to ψ2 to the dependency order graph.

The overall principle for merging conclusion dependency graphs into process depen-
dency graphs is: (a). Merge conclusion nodes containing multiple identical processes in
the diagram into one process node; (b). The directed edge no longer represents the
dependency relationship between conclusions, but rather represents the dependency
relationship between various processes.

2.3 Weighted Timeliness Graph

To evaluate the timeliness of all data items in process A, it is necessary to determine the
values of tml(ti≺Atj) and tml(ti≺Aτ) separately. Therefore, weighted timelines graph
(WTG) has been defined.
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Definition 2. (weighted timeliness graph, WTG): Let D represent a set of data, �

Represents a collection of time dependent rules, T representative � All sets containing
time in the time rule,whereA represents a certain process, θ Is the effective time threshold
of D, and the weighted time graph of process A isWTGA, which is defined as:

1. WTGA contains data items t and time τ in two types of conclusions ti≺Atj and ti≺Aτ ,
and both take a certain time τ as the initial node of theWTGA graph, where τ includes
the original time in the dataset and the threshold we set θ ;

2. aggregate � Each rule r in is defined as the initial node of the WTGA graph if
τ ∈ T ∪ {θ} causes τ ⊂ rhs(r);

3. aggregate � For each rule r in, if t1, t2 ∈ D causes rhs(r) = t1≺At2, tml(lhs(r)) > 0
or tml(r) > 0, update the weight of the directed edge from t2 to t1;

4. Theweight of the directed edge t1, t2 in theWTGA graph is denoted asweight(t1, t2) =
tml(r) × tml(lhs(r)).

The implementation details of constructing a weighted timeliness graph are shown
in Algorithm 1.
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2.4 Path Single Flux of Weighted Timeliness Graph

The timeliness evaluation of data item ti[A] requires determining the possibility of con-
clusion ti≺Aτ being established, that is, the value of tml(ti≺Aτ). The possibility of
conclusion ti≺Aτ can be obtained by immediate inference of a rule rk or there is a
directed path Path(τ, ti) from τ to ti in the weighted time effect graph.

Definition 3. (Path single flux of weighted timeliness graph): The single flux of path
Path(τ, ti) in the WTGA graph is denoted as sFlux(Path(τ, ti)), which is defined as the
weight of the maximum directed edge that can flow in a single path from τ to ti.

The weighted time effect graph path single flux can be mainly divided into two
meanings:

1. (a). In the weighted efficiency graph of process A, when there is only one
path from τ to ti in path Path(τ, ti), we take the directed edge with the high-
est weight in the path as the flux of this path. Namely, Flux(Path(τ, ti)) =
min{weight(ti≺Av1),weight(v1≺Av2), · · · ,weight(vk≺Aτ)}.

2. (b). In the weighted efficiency chart of process A, when there are multiple paths from
τ to ti in path Path(τ, ti), we take the maximum flux value of the multiple paths
as the single flux of path Path(τ, ti) in the graph WTGA. Namely, sFlux(Path) =
Max{Flux(Path1),Flux(Path2), · · · ,Flux(Pathk)}.

3 Example Discussion and Experimental Verification

In order to further explain the definedmethod for assessing timeliness based onweighted
timeliness graph, this article selects an example for discussion. Finally, the effectiveness
of the method was verified by testing its recall and accuracy on real datasets.

Table 1. Process data example.

Number PID Load test Hot test High Voltage test Vibration test Warranty

t1 SC18091 2000 W 280◦C 8.08 × 105pa 20000 Hz 2022

t2 SC18092 2000 W 200◦C 6.06 × 105pa 10000 Hz 2021

t3 SC18093 2000 W 160◦C 6.05 × 105pa 8000 Hz 2020

As shown in Table 1, an example D of a process flow with three tuples is given.
The process flow example D includes four process data examples of load testing, high
pressure test, high temperature test and vibration test, as well as the identification code
PID and Warranty of each product.

In addition, its corresponding set of restricted failure dependency rules has been
defined�(r),�(r) contains 5 dependency rules, denoted as r1 to r5, as shown in Table 2.

There are 5 rules in Table 2 that represent the dependency relationships between
different process data in Table 1. It can be seen that in practice, there may be situa-
tions where multiple dependency rules derive the same conclusion. Due to the stronger
dependency strength of rules, they often have stronger persuasiveness. Therefore, the
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Table 2. Formulation rule representation of dependency intensity uncertainty.

Number Formulaic representation

r1 ∀ti, tj(ti[Loadtest] < tj [Loadtest]
∧

ti
[
Warranty

]
< tj [Warranty] → ti≺Loadtest tj , 0.9)

r2 ∀ti, tj(ti≺Loadtest tj → ti≺Highvoltagetest tj , 0.8)

r3 ∀t(t[Loadtest] = 2000W
∧

t
[
Highvoltagetest

] = 280◦C ∧
t[BID] = SC18091 → t≺Loadtest2023, 1

)

r4 ∀t(t≺Loadtest2023 → t≺Highvoltagetest2023, 0.8)

r5 ∀ti, tj(tml
(
tj≺Loadtest2023

) = min
{
tml(tj≺Loadtest ti

)
, tml(ti≺Loadtest2023)})

value with higher dependency strength is chosen as the final dependency strength of this
conclusion. The formula is:

rhs(r) ⇒ tml(Q) = max{tml(rhs(r1)), tml(rhs(r2)), · · · , tml(rhs(rk))}, i ∈ [1, k] (2)

Among them, tml(rhs(ri)) = tml(ri) × tml(lhs(ri)).
On the basis of the original r2 and r4, three rules r6 : ∀ti, tj(ti≺Vibrationtest tj

→ ti≺Loadtest tj, 0.8), r7 : ∀ti, tj(ti≺Vibrationtest tj → ti≺Highvoltagetest tj, 0.8), r8 :
∀ti, tj(ti≺Loadtest2023→ ti≺Vibrationtest tj) have been added. Since the left part of rules r1
and r3 belong to deterministic conclusions, they do not need to appear in the dependency
order diagram. Based on these five rules, a conclusion dependency order diagram was
constructed, as shown in Fig. 1.

Fig. 1. Dependency sequence diagram.

In the conclusion dependency sequence diagram shown in Fig. 1, ti≺Loadtest tj
and tj≺Loadtest2023 can be combined to obtain a new conclusion ti≺Loadtest2023. At
this point, the three conclusions (∗,≺,Loadtest, τ ), (∗,≺,Loadtest, ∗), and (∗,≺
,Vibrationtest, ∗) interact with each other (there is a hidden loop), so the unique identi-
fication order for the timeliness of the conclusion cannot be determined. At this point, it
is necessary to merge the conclusion dependency sequence diagram, as shown in Fig. 2.

As shown in Fig. 2, the calculation order for the timeliness of each process data can be
determined based on themerged process dependency sequence diagramof the conclusion
dependency sequence diagram as follows: Vibrationtest, Loadtest, Highvoltagetest.
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Fig. 2. Merging conclusion dependency sequence graphs.

In order to make the case more convincing, a new rule r9 = ∀t(t[Vibrationtest]
= 800Hz → t≺Loadtest2023, 0.8) is added to � based on rule sets r1 and r3. By using
these three rules, the weighted efficiency graphWTGLoadtest of process Loadtest at time
2023 can be obtained, as shown in Fig. 3 (a). The timeliness relationship between t1, t2,
and t3 data items in theWTG diagram of the Loadtest process at time τ = 2023 in Fig. 3
(a) is shown in Fig. 3(a). In Fig. 3(b), there is weight(t1, t2) = tml(t1≺Highvoltagetest t2)×
tml(r2) = 0.9 × 0.8 = 0.72.

Fig. 3. Weighted timeliness graph of process Loadtest and process Highvoltagetest at 2023.

Using t3≺Loadtest2023 in Fig. 3 as an example to illustrate how to calculate the
single flux of a path, if there are two paths from τ = 2023 to t3. Therefore,
Flux(Path1(2023, t3)) = min{1, 0.9, 0.9} = 0.9,Flux(Path2(2023, t3)) = min{0.8} =
0.8 and tml(t3[Loadtest]) = sFlux(Path(2023, t3)) = Max{0.9, 0.8} = 0.9.

In order to verify the effectiveness of the time effective identification method based
on the weighted timeliness graph, this paper conducts simulation experiments on real
datasets from the industrial big data innovation platform(https://www.industrial-bigdata.
com/Data). The experimental results are shown in Fig. 4.

As shown in Fig. 4, it can be seen that the recall and precision both increase with
the increase of the number of rules. However, when the number of rules reaches 4, the
recall rate and accuracy remain stable at a certain value and do not change.

https://www.industrial-bigdata.com/Data
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Fig. 4. The trend of recall and precision with the number of rules.

4 Conclusion

The quality appraisal method of manufacturing big data based on timeliness-dependent
rules effectively evaluates the quality of manufacturing big data from the perspective
of data timeliness. This model can effectively identify the timeliness of manufacturing
big data through the dependency relationship between production process data without
a clear timestamp. The quantification of rule dependency intensity was achieved by
limiting the time dependent rules. The calculation order of the timeliness of each process
data was determined through the process order dependency graph. The timeliness of the
data was evaluated through a weighted timeliness graph (WTG) and its path single flux.
Finally, the identification method was discussed through three process data instances
and nine dependency rules, and its effectiveness was verified on real datasets (The recall
rate can reach around 0.97 and the precision rate can reach around 0.82).

In future research on timeliness identification, the weight values of edges in the
weighted timeliness graph can be set to dynamically change to adapt to different
industrial application scenarios.
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