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Abstract. Traffic forecasting is one of the most fundamental problems
in transportation science and artificial intelligence. The key challenge is
to effectively model complex spatial-temporal dependencies and corre-
lations in modern traffic data. Existing methods, however, cannot accu-
rately model both long-term and short-term temporal correlations simul-
taneously, limiting their expressive power on complex spatial-temporal
patterns. In this paper, we propose a novel spatial-temporal neural
network framework: Attention-based Spatial-Temporal Graph Convo-
lutional Recurrent Network (ASTGCRN ), which consists of a graph
convolutional recurrent module (GCRN ) and a global attention mod-
ule. In particular, GCRN integrates gated recurrent units and adaptive
graph convolutional networks for dynamically learning graph structures
and capturing spatial dependencies and local temporal relationships. To
effectively extract global temporal dependencies, we design a temporal
attention layer and implement it as three independent modules based on
multi-head self-attention, transformer, and informer respectively. Exten-
sive experiments on five real traffic datasets have demonstrated the excel-
lent predictive performance of all our three models with all their average
MAE, RMSE and MAPE across the test datasets lower than the baseline
methods.

Keywords: Traffic forecasting · Graph convolutional networks ·
Attention mechanism

1 Introduction

With the development of urbanization, the diversification of transportation
modes and the increasing number of transportation vehicles (cabs, electric vehi-
cles, shared bicycles, etc.) have put tremendous pressure on urban transporta-
tion systems, which has led to large-scale traffic congestions that have become
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a common phenomenon. Traffic congestion has brought serious economic and
environmental impacts to cities in various countries, and early intervention in
traffic systems based on traffic forecasting is one of the effective ways to alleviate
traffic congestion. By accurately predicting future traffic conditions, it provides
a reference basis for urban traffic managers to make proper decisions in advance
and improve traffic efficiency.

Traffic forecasting is challenging since traffic data are complex, highly
dynamic, and correlated in both spatial and temporal dimensions. Recently,
deep learning has dominated the field of traffic forecasting due to their capability
to model complex non-linear patterns in traffic data. Many works used differ-
ent deep learning networks to model dynamic local and global spatial-temporal
dependencies and achieve promising prediction performance. On the one hand,
they often used Recurrent Neural Networks (RNN ) and the variants such as
Long Short-Term Memory (LSTM ) [14] and Gated Recurrent Units (GRU ) [6]
for temporal dependency modeling [1,2,5,22]. Some other studies used Convo-
lutional Neural Networks (CNN ) [15,28,30,31] or attention mechanisms [12,32]
to efficiently extract temporal features in traffic data. On the other hand, Graph
Convolutional Networks (GCNs) [21–23,29] are widely used to capture complex
spatial features and dependencies in traffic road network data.

However, RNN/LSTM/GRU -based models can only indirectly model sequen-
tial temporal dependencies, and their internal cyclic operations make them dif-
ficult to capture long-term global dependencies [20]. To capture global informa-
tion, CNN -based models [29,30] stack multiple layers of spatial-temporal mod-
ules but they may lose local information. The attention mechanism, though
effective in capturing global dependencies, is not good at making short-term
predictions [32]. Most of the previous attention-based methods [12,13] also have
complex structures and thus high computational complexity. For instance in
[13], the prediction of architectures built by multi-layer encoder and decoder,
though excellent, is much slower than most prediction models by 1 or 2 orders of
magnitude. Furthermore, most of the current GCN -based methods [11] need to
pre-define a static graph based on inter-node distances or similarity to capture
spatial information. However, the constructed graph needs to satisfy the static
assumption of the road network, and cannot effectively capture complex dynamic
spatial dependencies. Moreover, it is difficult to adapt graph-structure-based
spatial modeling in various spatial-temporal prediction domains without prior
knowledge (e.g., inter-node distances). Therefore, effectively capturing dynamic
spatial-temporal correlations and fully considering long-term and short-term
dependencies are crucial to further improve the prediction performance.

To fully capture local and global spatial-temporal dependencies from traf-
fic data, in this paper we propose a novel spatial-temporal networks frame-
work: Attention-based Spatial-temporal Graph Convolutional Recurrent Net-
work (ASTGCRN ). It consists of a graph convolution recurrent module (GCRN )
and a global attention module. Our main contributions are summarized as fol-
lows:
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– We develop a novel spatial-temporal neural network framework, called AST-
GCRN, that can effectively model dynamic local and global spatial-temporal
dependencies in a traffic road network.

– In ASTGCRN, we devise an adaptive graph convolutional network with sig-
nals at different depths convoluted and then incorporate it into the GRU.
The obtained GRU with adaptive graph convolution can well capture the
dynamic graph structures, spatial features, and local temporal dependencies.

– We propose a general attention layer that accepts inputs from GCRN at dif-
ferent time points and captures the global temporal dependencies. We imple-
ment the layer using multi-head self-attention, transformer, and informer to
generate three respective models.

– Extensive experiments have been performed on five real-world traffic datasets
to demonstrate the superior performance of all our three models compared
with the current state of the art. In particular, our model with transformer
improves the average MAE, RMSE, and MAPE (across the tested datasets)
by 0.21, 0.37, and 0.28, respectively. We carry out an additional experiment
to show the generalizability of our proposed models to other spatial-temporal
learning tasks.

2 Related Work

2.1 Traffic Forecasting

Traffic forecasting originated from univariate time series forecasting. Early sta-
tistical methods include Historical Average (HA), Vector Auto-Regressive (VAR)
[34] and Auto-Regressive Integrated Moving Average (ARIMA) [19,27], with the
ARIMA family of models the most popular. However, most of these methods
are linear, need to satisfy stationary assumptions, and cannot handle complex
non-linear spatial-temporal data.

With the rise of deep learning, it has gradually dominated the field of traffic
forecasting by virtue of the ability to capture complex non-linear patterns in
spatial-temporal data. RNN-based and CNN-based deep learning methods are
the two mainstream directions for modeling temporal dependence. Early RNN-
based methods such as DCRNN [22] used an encoder-decoder architecture with
pre-sampling to capture temporal dependencies, but the autoregressive computa-
tion is difficult to focus on long-term correlations effectively. Later, the attention
mechanism has been used to improve predictive performance [12,13,26,32]. In
CNN-based approaches, the combination of 1-D temporal convolution TCN and
graph convolution [29,30] are commonly used. But CNN-based models require
stacking multiple layers to expand the perceptual field. The emergence of GCNs
has enabled deep learning models to handle non-Euclidean data and capture
implicit spatial dependencies, and they have been widely used for spatial data
modeling [15,23]. The static graphs pre-defined according to the distance or
similarity between nodes cannot fully reflect the road network information, and
cannot make dynamic adjustments during the training process to effectively cap-
ture complex spatial dependencies. Current research overcame the limitations of
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convolutional networks based on static graphs or single graphs, and more adap-
tive graph or dynamic graph building strategies [2,18,28] were proposed.

In addition to the above methods, differential equations have also been
applied to improve traffic forecasting. [10] capture spatial-temporal dynamics
through a tensor-based Ordinary Differential Equation (ODE ) alternative to
graph convolutional networks. [7] introduced Neural Control Differential Equa-
tions (NCDEs) into traffic prediction, which designed two NCDEs for temporal
processing and spatial processing respectively. Although there are dense methods
for spatial-temporal modeling, most of them lack the capability to focus on both
long-term and short-term temporal correlations, which results in the limitations
of capturing temporal dependencies and road network dynamics.

2.2 Graph Convolutional Networks

Graph convolution networks can be separated into spectral domain graph con-
volution and spatial domain graph convolution. In the field of traffic prediction,
spectral domain graph convolution has been widely used to capture the spatial
correlation between traffic series. [3] for the first time proposed spectral domain
graph convolution based on spectral graph theory. The spatial domain signal is
converted to the spectral domain by Fourier transform, and then the convolu-
tion result is inverted to the spatial domain after completing the convolution
operation. The specific formula is defined as follows:

gθ �G x = g(L)x = Ugθ(Λ)UTx, (1)

In the equation, �G denotes the graph convolution operation between the convo-
lution kernel gθ and the input signal x and L = D− 1

2LD− 1
2 = UΛUT ∈ R

N×N

is the symmetric normalized graph Laplacian matrix, where L = D − A is the
graph Laplacian matrix and D = diag(

∑N
j=1A1j , · · · ,

∑N
j=1ANj) ∈ R

N×N is
the diagonal degree matrix. U is the Fourier basis of G and Λ is the diagonal
matrix of L eigenvalues. However, the eigenvalue decomposition of the Lapla-
cian matrix in Eq. (1) requires expensive computations. For this reason, [8] uses
the Chebyshev polynomial to replace the convolution kernel gθ in the spectral
domain:

gθ �G x = g(L)x =
K−1∑

k=0

βkTk(L̂)x, (2)

where [β0, β1, . . . , βK−1] are the learnable parameters, and K ≥ 1 is the number
of convolution kernels. ChebNet does not require eigenvalue decomposition of
Laplacian matrices, but uses Chebyshev polynomials T0(L̂) = In, T1(L̂) = L̂,
and Tn+1(L̂) = 2L̂Tn(L̂)−Tn−1(L̂). Here L̂ = 2

λmax
L−In is the scaled Laplacian

matrix, where λmax is the largest eigenvalue and In is the identity matrix. When
K = 2, ChebNet is simplified to GCN [17].
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Fig. 1. Detailed framework of the ASTGCRN model.

3 Methodology

In this section, we first give the mathematical definition of the traffic predic-
tion problem, and then describe in detail the implementation of the ASTGCRN
framework (see Fig. 1): GCRN and the attention layer.

3.1 Problem Definition

The traffic prediction task can be formulated as a multi-step time series pre-
diction problem that utilizes historical traffic data and prior knowledge of N
locations (e.g., traffic sensors) on a road network to predict future traffic con-
ditions. Typically, prior knowledge refers to the road network represented as a
graph G = (V,E,A), where V is a set of N = |V | nodes representing differ-
ent locations on the road network, E is a set of edges, and A ∈ R

N×N is the
weighted adjacency matrix representing the proximity between nodes (e.g., the
road network between nodes). We can formulate the traffic prediction problem as
learning a function F to predict the graph signals Y (t+1):(t+T ) ∈ R

T×N×C of the
next T steps based on the past T

′
steps graph signals X(t−T

′
+1):t ∈ R

T
′ ×N×C

and G:
[X(t−T

′
+1):t, G] FΘ−→ [X(t+1):(t+T )], (3)

where Θ denotes all the learnable parameters in the model.

3.2 Adaptive Graph Convolution

For traffic data in a road network, the dependencies between different nodes may
change over time, and the pre-defined graph structure cannot contain complete
spatial dependency information. Inspired by the adaptive adjacency matrix [2,
5,29], we generate T1(L̂) in Eq. (2) by randomly initializing a learnable node
embedding Eφ ∈ R

N×De , where De denotes the size of the node embedding:

T1(L̂) = L̂ = softmax(Eφ · ET
φ ) (4)

To explore the hidden spatial correlations between node domains at different
depths, we generalize to high-dimensional graph signals X ∈ R

N×Cin and concate-
nate Tk(L̂) at different depths as a tensor T̃φ = [I, T1(L̂), . . . , TK−1(L̂)]

T ∈ R
K×N×N .
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Fig. 2. The Graph Convolution Recurrent Module.

Let Cin and Cout represent the number of input and output channels, respectively.
Then the graph convolution formula in Eq. (2) can be refined as:

gθ �G x = g(L)x = T̃φXΨ, (5)

where the learnable parameters Ψ ∈ R
K×Cin×Cout . However, the parameters

shared by all nodes have limitations in capturing spatial dependencies [2].
Instead, we assign independent parameters to each node to get the parameters
Ψ̂ ∈ R

N×K×Cin×Cout , which can more effectively capture the hidden informa-
tion in different nodes. We further avoid overfitting and high spatial complexity
problems by matrix factorization. That is to learn two smaller parameters to
generate Ψ̂ = EφW , where Eφ ∈ R

N×De is the node embedding dictionary and
W ∈ R

De×K×Cin×Cout are the learnable weights. Our adaptive graph convolu-
tion formula can be expressed as:

gθ �G x = g(L)x = T̃φXEφW ∈ R
N×Cout (6)

3.3 GRU with Adaptive Graph Convolution

GRU is a simplified version of LSTM with multiple GRUCell modules and
generally provides the same performance as LSTM but is significantly faster
to compute. To further discover the spatial-temporal correlation between time
series, we replace the MLP layers in GRU with adaptive graph convolution
operation, named GCRN. The computation of GCRN is given as follows:

zt = σ(T̃φ[Xt, ht−1]EφWz + Eφbz),

rt = σ(T̃φ[Xt, ht−1]EφWr + Eφbr),

h̃t = tanh(T̃φ[Xt, rt � ht−1]EφWh̃ + Eφbh̃),

ht = zt � ht−1 + (1 − zt) � h̃t,

(7)

where Wz,Wr,Wh̃, bz, br and bh̃ are learnable parameters, σ and tanh are two
activation functions, i.e., the Sigmoid function and the Tanh function. The
[Xt, ht−1] and ht are the input and output at time step t, respectively. The
network architecture of GCRN is plotted in Fig. 2.
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Fig. 3. The Attention Layer.

3.4 The Attention Layer

GCRN can effectively capture sequential dependencies, but its structural char-
acteristics limit its ability to capture long-distance temporal information. For
the traffic prediction task, the global temporal dependence clearly has a signif-
icant impact on the learning performance. Self-attention directly connects two
time steps through dot product calculation, which greatly shortens the distance
between long-distance dependent features, and improves the parallelization of
computation, making it easier to capture long-term dependencies in traffic data.
Therefore, we propose three independent modules for the self-attention mecha-
nism, namely, the multi-headed self-attention module, the transformer module,
and the informer module, in order to directly capture global temporal depen-
dencies. In the following three subsections, we will explain these three modules
in detail.

Multi-Head Self-attention Module. Multi-head attention is to learn the
dependencies of different patterns in parallel with multiple sets of queries,
keys and values (where each set is regarded as an attention head), and then
concatenate the learned multiple relationships as the output. We use a self-
attentive mechanism to construct the multi-headed attention module. Specifi-
cally, Qo = HoWq, Ko = HoWk and Vo = HoWv are derived from the same
matrix Ho by linear transformation. Here Ho ∈ R

N×T×Cout is the output result of
the GCRN module, and Wq ∈ R

Cout×dq , Wk ∈ R
Cout×dk and Wv ∈ R

Cout×dv are
the learnable parameters of the linear projection. For multi-head self-attention
mechanism, the formula can be stated as:

MHSelfAtt = Concat(head1, . . . , headh)Wo,

where headi = Att(Qo,Ko, Vo)

= softmax(
QoKo

T

√
d

)Vo.

(8)

Transformer Module. The Transformer module (see Fig. 3(a)) contains a
multi-head self-attention layer and two feed-forward neural networks. For self-
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attention, each position of the input sequence is equally inner product, which
results in the loss of sequential information. We use a fixed position encoding
[25] to address this flaw:

PEt(2c) = sin(t/10002c/Cout),

PEt(2c + 1) = cos(t/10002c/Cout),
(9)

where t is the relative position of each sequence (time step) of the input and c
represents the dimension. In order to better identify the relative positional rela-
tionship between sequences, Ho and position encoding are combined to generate
H

′
o ∈ R

N×T×Cout :
H

′
o[:, t, :] = Ho[:, t, :] + PEt (10)

After combining the location encoding, H
′
o is fed as input into the multi-headed

self-attentive layer for remote relationship capture, and then the output state
is passed to the two fully connected layers. Layer normalization and residual
connectivity are used in both sub-layers. Finally, Transformer module outputs
the result Ha ∈ R

N×T×Cout .

Informer Module. According to Eq. (8), the traditional self-attention mech-
anism requires two dot products and O(T 2) space complexity. The sequence
lengths of queries and keys are equal in self-attention computation, i.e., Tq =
Tk = T . After finding that most of the dot products have minimal attention and
the main attention is focused on only a few dot products, [33] proposed Prob-
Sparse self-attention. ProbSparse self-attention selects only the more important
queries to reduce the computational complexity, i.e., by measuring the dilution
of the queries and then selecting only the top-u queries with u = c · lnT for
constant c. The query dilution evaluation formula is as follows:

M̄ (qi,Ko) = max
j

{
qik

T
j√
d

}

− 1
T

T∑

j=1

qik
T
j√
d

(11)

where qi and ki represent the i-th row in Qo and Ko respectively. To compute
M̄ , only U = T lnT dot product pairs are randomly selected, and the other pairs
are filled with zeros. In this way, the time and space complexity are reduced to
only O(T lnT ). Therefore, we construct a new module called Informer module
(see Fig. 3(b)) by using ProbSparse self-attention to replace the normal self-
attention mechanism of Transformer module. It selects top-u query according
to M̄ to generate sparse matrix Qspa

o . Then the Multi-head ProbSparse self-
attention can be expressed as:

MHProbSelfAtt = Concat(head1, . . . , headh)Wo,

where headi = Att(Qspa
o ,Ko, Vo)

= softmax(
Qspa

o Ko
T

√
d

)Vo.

(12)
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Table 1. Statistics of the tested datasets

Datasets Nodes Samples Unit Time Span

PEMSD3 358 26, 208 5 mins 3 months
PEMSD4 307 16, 992 5 mins 2 months
PEMSD7 883 28, 224 5 mins 4 months
PEMSD8 170 17, 856 5 mins 2 months
PEMSD7(M) 228 12, 672 5 mins 2 months
DND-US 53 313 1 week 6 years

We choose the L1 loss to formulate the objective function and minimize the
training error by back propagation. Specifically, the loss function is defined as
follows.

Loss =
1
T

T−1∑

t=0

(Ŷ t − Y t) (13)

where Ŷ is the real traffic data, Y is the predicted data, and T is the total
predicted time steps.

4 Experimental Results

In this section, we present the results of the extensive experiments we have
performed. We start by describing the experimental setups and then discuss the
prediction results obtained in the baseline settings. Finally, the ablation study
and the effects of hyperparameter tuning are provided.
Datasets. We evaluate the performance of the developed models on five widely
used traffic prediction datasets collected by Caltrans Performance Measure Sys-
tem [4], namely PEMSD3, PEMSD4, PEMSD7, PEMSD8, and PEMSD7(M)
[7,10]. The traffic data are aggregated into 5-minute time intervals, i.e., 288
data points per day. In addition, we construct a new US natural death dataset
DND-US to study the generalizability of our method to other spatial-temporal
data. It contains weekly natural deaths for 53 (autonomous) states in the US for
the six years from 2014 to 2020. Following existing works [2], the Z-score nor-
malization method is adopted to normalize the input data to make the training
process more stable. Detailed statistics for the tested datasets are summarized
in Table 1.

Baseline Methods. We compare our models with the following baseline meth-
ods:

– Traditional time series forecasting methods, Historical Average (HA), ARIMA
[27], VAR [34], and SVR [9];

– RNN -based models: FC-LSTM [24], DCRNN [22], AGCRN [2], and Z-
GCNETs [5];

– CNN -based methods: STGCN [30], Graph WaveNet [29], MSTGCN, LSGCN
[15], STSGCN [23], and STFGNN [21];
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Table 2. Performance comparison of different models on the tested datasets. Under-
lined results represent the current best among existing methods. Our three models
outperform almost all baseline methods, as shown in bold font.

Model PEMSD3 PEMSD4 PEMSD7 PEMSD8 PEMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78% 38.03 59.24 27.88% 45.12 65.64 24.51% 34.86 59.24 27.88% 4.59 8.63 14.35%
ARIMA 35.41 47.59 33.78% 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73% 7.27 13.20 15.38%
VAR 23.65 38.26 24.51% 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 13.10% 4.25 7.61 10.28%
SVR 20.73 34.97 20.63% 27.23 41.82 18.95% 32.49 44.54 19.20% 22.00 33.85 14.23% 3.33 6.63 8.53%
FC-LSTM 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99% 4.16 7.51 10.10%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92% 3.83 7.18 9.81%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09% 2.79 5.54 7.02%
Z-GCNETs 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01% 2.75 5.62 6.89%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29% 3.86 6.79 10.06%
Graph WaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15% 3.19 6.24 8.02%
MSTGCN 19.54 31.93 23.86% 23.96 37.21 14.33% 29.00 43.73 14.30% 19.00 29.15 12.38% 3.54 6.14 9.00%
LSGCN 17.94 29.85 16.98% 21.53 33.86 13.18% 27.31 41.46 11.98% 17.73 26.76 11.20% 3.05 5.98 7.62%
STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96% 3.01 5.93 7.55%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60% 2.90 5.79 7.23%
ASTGCN(r) 17.34 29.56 17.21% 22.93 35.22 16.56% 24.01 37.87 10.73% 18.25 28.06 11.64% 3.14 6.18 8.12%
DSTAGNN 15.57 27.21 14.68% 19.30 31.46 12.70% 21.42 34.51 9.01% 15.67 24.77 9.94% 2.75 5.53 6.93%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62% 2.97 5.66 7.36%
STG-NCDE 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92% 2.68 5.39 6.76%
A-ASTGCRN 15.06 26.71 13.83% 19.30 30.92 12.91% 20.42 33.81 8.54% 15.46 24.54 9.89% 2.66 5.36 6.72%
I-ASTGCRN 15.06 26.40 13.91% 19.15 30.80 12.89% 20.81 33.83 8.95% 15.26 24.53 9.65% 2.63 5.30 6.60%
T-ASTGCRN 14.90 26.01 14.17% 19.21 31.05 12.67% 20.53 33.75 8.73% 15.14 24.24 9.63% 2.63 5.32 6.66%

– Attention-based models: ASTGCN(r) [12], and DSTAGNN [18];
– Other types of models: STGODE [10] and STG-NCDE [7].

Experimental Settings. All datasets are split into training set, validation set
and test set in the ratio of 6:2:2. Our model and all baseline methods use the
12 historical continuous time steps as input to predict the data for the next 12
continuous time steps.

Our models are implemented based on the Pytorch framework, and all
the experiments are performed on an NVIDIA GeForce GTX 1080 TI GPU
with 11G memory. The following hyperparameters are configured based on
the models’ performance on the validation dataset: we train the model with
300 epochs at a learning rate of 0.003 using the Adam optimizer [16] and an
early stop strategy with a patience number of 15. The code is available at
https://github.com/Liuhy-666/ASTGCRN.git.

Three common prediction metrics, Mean Absolute Error (MAE ), Root Mean
Square Error (RMSE ), and Mean Absolute Percentage Error (MAPE ), are used
to measure the traffic forecasting performance of the tested methods. In the
discussions below, we refer to our specific ASTGCRN models based on the Multi-
head self-attention module, Transformer module, and Informer module as A-
ASTGCRN, T-ASTGCRN, and I-ASTGCRN, respectively.

https://github.com/Liuhy-666/ASTGCRN.git
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4.1 Experimental Results

Table 2 shows the prediction performance of our three models together with the
nineteen baseline methods on the five tested datasets. Remarkably, our three
models outperform almost all the baseline methods in prediction on all the
datasets. Table 3 lists the training time (s/epoch), inference time (s/epoch) and
memory cost (MB) of our models, as well as several recent and best-performing
baselines on the PEMSD4 dataset.

Table 3. Computation time on PEMSD4.

Model Training Inference Memory

STGODE 111.77 12.19 8773
Z-GCNETs 63.34 7.40 8597
DSTAGNN 242.57 14.64 10347
STG-NCDE 1318.35 93.77 6091
A-ASTGCRN 45.12 5.18 7167
I-ASTGCRN 58.84 6.51 7527
T-ASTGCRN 54.80 5.62 7319

Table 4. Forecasting performance of several competitive methods on DND-US

Dataset Model MAE RMSE MAPE

DND-US AGCRN 105.97 325.09 7.49%
DSTAGNN 47.49 73.37 7.47%
STG-NCDE 47.70 77.30 6.13%
A-ASTGCRN 39.33 62.86* 5.36%
I-ASTGCRN 38.79* 66.99 5.16%*
T-ASTGCRN 40.60 66.28 5.43%

The overall prediction results of traditional statistical methods (including
HA, ARIMA, VR, and SVR) are not satisfactory because of its limited ability to
handle non-linear data. Their prediction performance is worse than deep learning
methods by large margins. RNN -based methods such as DCRNN, AGCRN, and
Z-GCNRTs suffer from the limitation of RNNs that cannot successfully capture
long-term temporal dependence and produce worse results than our methods.
CNN -based models such as STGCN, Graph WaveNet, STSGCN, STFGCN, and
STGODE, have either worse or comparable performance compared to RNN -
based methods in our empirical study. They get the 1-D CNN by temporal
information, but the size of the convolutional kernel prevents them from captur-
ing the complete long-term temporal correlation. Although both ASTGCN and
DSTAGNN use temporal attention modules, they ignore local temporal infor-
mation. STG-NCDE achieves currently best performance in multiple datasets.
But their temporal NCDE using only the fully connected operation cannot pay
full attention to the temporal information.
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To test the generalizability of our proposed models to other spatial-temporal
learning tasks, we perform an additional experiment on the DND-US dataset to
predict the number of natural deaths in each US state. As shown in Table 4, all
our three models again outperform several competitive baseline methods with
significant margins.

Fig. 4. Prediction performance at each horizon

4.2 Ablation and Parameter Study

Ablation Study. We refer to the model without an attention layer as STGCRN,
and the A-ASTGCRN, I-ASTGCRN and T-ASTGCRN without the GCRN
layer as A-ANN, I-ANN and T-ANN, respectively. Also, A-ASTGCRN(s), I-
ASTGCRN(s) and T-ASTGCRN(s) are variant models that use static graphs
for graph convolution. we plot the detailed values of different horizons for our
methods on the PEMSD3 and PEMSD4 datasets in Fig. 4. It shows that the
prediction performance of STGCRN become closer to the three models as the
predicted horizon increases, and the spatial modeling ability of static graphs is
much lower than that of adaptive adjacency matrices. The autoregressive feature
of the GRU model allows more spatial-temporal information to be pooled in
the later time horizons, so that long-term prediction appears to be better than
short-term prediction. But the performance of STGCRN lags behind the three
attention-based models at all time horizons. The attention module is crucial for
capturing long-term temporal dependencies in traffic data, further enhancing
the modeling of spatio-temporal dependencies. However, only using attention
modules to focus on long-term temporal dependencies and removing GRU using
adaptive graph convolutions hurts prediction performance.
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Fig. 5. Effects of hyperparameter tuning on T-ASTGCRN in PEMSD3

Table 5. Effect of convolution kernel number K on T-ASTGCRN.

Dataset K MAE RMSE MAPE Training Inference Memory

PEMSD3 1 15.24 26.46 15.10% 88.94 9.95 6497
2 14.90 26.01 14.17% 95.80 10.22 7555
3 15.33 27.04 13.92% 121.40 13.39 8535

PEMSD4 1 19.40 31.19 13.00% 48.72 5.24 6355
2 19.21 31.05 12.67% 54.80 5.62 7319
3 19.22 31.07 12.84% 66.43 7.12 8137

Parameter Study. To investigate the effects of hyperparameters on the predic-
tion results, we conduct a series of experiments on the main hyperparameters.
Figure 5 shows the MAE and RMSE values of T-ASTGCRN in the PEMSD3
dataset when varying the weight decay and node embedding dimension De. It
can be seen that fine-tuning the weight decay and node embedding dimension
can improve the prediction performance of the model. Meanwhile, Table 5 shows
the prediction performance and training cost for varying the number of convolu-
tion kernels K. From the experimental results, we can see that with K = 1, the
graph convolution is simplified to a unit matrix-based implementation, which
does not enable effective information transfer between nodes. A larger convo-
lution depth does not improve the prediction performance, but instead incurs
longer training time and memory cost. Therefore, for our model and dataset, we
set K to 2.

5 Conclusion

In this paper, we design an attention-based spatial-temporal graph convolutional
recurrent network framework for traffic prediction. We instantiate the framework
with three attention modules based on Multi-head self-attention, Transformer
and Informer, all of which, in particular the Transformer-based module, can
well capture long-term temporal dependence and incorporate with the spatial
and short-term temporal features by the GCRN module. Extensive experiments
confirm the effectiveness of all our three models in improving the prediction
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performance. We believe that the design ideas of Transformer and Informer can
bring new research thrusts in the field of traffic forecasting.
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