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Abstract. Traffic congestion occurs frequently and concurrently on
urban road networks, and may cause widespread traffic paralysis if not
controlled promptly. To relieve traffic congestion and avoid traffic paral-
ysis, it is significant to identify critical congested roads with great prop-
agation influence on others. Existing studies mainly focus on topological
measures and statistical approaches to evaluate the criticality of road
segments. However, critical congested roads are generated by dynamic
changes in traffic flow, so that identifying them involves both the network
structure and dynamic traffic flows is required. In this paper, we propose
a novel road network embedding model, called Seg2Vec, to learn compre-
hensive features of road segments considering both the road structural
information and traffic flow distribution. The Seg2Vec model combines a
Markov Chain-based random walk with the Skip-gram model. The ran-
dom walk is conducted on the road network based on the transition prob-
abilities computed from historical trajectory data. Moreover, we define
the propagation influence of a congested road by a score function based
on the learned road representation. The goal is to find the critical con-
gested roads with top-K propagation influences. Evaluation experiments
are conducted to verify the effectiveness and efficiency of the proposed
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method. A case study of identifying critical congested roads from a con-
gestion cluster is also demonstrated. The identified critical congested
roads can facilitate decision-making for traffic management.

Keywords: Road network embedding · Critical congested roads ·
Congestion propagation · Trajectory data

1 Introduction

Traffic congestion has become a major issue to urban traffic system, since it
causes waste of time, energy consumption and air pollution, which further leads
to economic cost and damages to citizens’ health. In urban road networks, traffic
congestion occurs frequently and concurrently, so that it may cause widespread
traffic paralysis if not controlled promptly. Therefore, to relieve traffic congestion
and avoid traffic paralysis, it is significant to identify critical congested roads with
great propagation influence on other roads.

Existing studies on identifying critical roads mainly focuses on topological
measures and statistical approaches to evaluate the criticality of roads [2,6,9,22].
For instance, a topological graph measure called betweenness is defined in [2] to
identify critical roads that are located on many shortest paths between other
vertices. Guo et al. proposed the weighted degree and the impact distance as
the two major measures to identify the most influential locations [6]. Li et al.
also studied the percolation process on road networks, and identified bottleneck
roads that play a critical role in connecting different functional clusters [9,22].

The above approaches have been proposed to identify fixed critical roads that
caused by the essential structure of road networks. However, critical congested
roads are generated by dynamic changes of traffic flow or sudden increases of
traffic demand, such as traffic accidents, road damage, etc. In order to discover
the root cause of traffic congestion, it is necessary to measure the interactions
among congested roads and the surrounding roads under real-time conditions.
In other words, a congestion occurs on the road segment with great propagation
influence on other road segments is considered as the critical congested road.
The propagation influence of a road segment is determined by many factors,
such as time, location, and properties of road. As a result, identifying critical
congested roads involves both the network structure and dynamic traffic flows.
How to obtain comprehensive road network features that consider both sides
and quantitatively analyze the congestion propagation characteristics of road
segments are significant issues studied in this paper.

In order to learn comprehensive features of road segments, road network
embedding is extended from graph embedding methods [1]. Graph embedding
methods use truncated random walks to map a network to low-dimensional rep-
resentations, while preserving most of the network information. The learned
feature representations are applied widely for network analysis, such as node
classification, link prediction and community detection [21]. It has been verified
that graph embedding methods are able to capture structural information of
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road networks [8]. To quantify the traffic interaction between road segments,
Road2Vec [10] learns the feature representation of road segments using travel
routes. However, straightforwardly using real trajectories to train the model
makes the result bias to main roads with high frequencies, and the local struc-
ture of road network is ignored. Therefore, training the sequences of graph nodes
in an appropriate manner which considers both the road structural information
and traffic flow distribution is required.

In this paper, we propose a traffic flow-aware road network embedding model,
called Seg2Vec, which leverages trajectory data to enhance graph embedding for
road representation. The Seg2Vec model combines a Markov Chain-based ran-
dom walk with the Skip-gram model [14]. The random walk is conducted on
the road network based on the transition probabilities computed from historical
trajectories. The learned road representation is used to measure the traffic simi-
larity between road segments, which is further used to evaluate the propagation
influences of congested roads. Moreover, a critical congested road identification
algorithm is proposed to identify critical roads with top-K propagation influ-
ences. By monitoring the travel speeds of vehicles, it is able to detect traffic
congestion and identify critical congested roads in real time.

Our contributions can be summarized as follows:

1. We propose a road network embedding model, Seg2Vec, to measure the traffic
similarity between road segments. The Seg2Vec model learns feature repre-
sentation of road segments considering both the road network structure and
traffic flow distribution.

2. We define the congestion propagation influence of a congested road by a score
function based on the learned feature representation of road segments. To the
best of our knowledge, it is the first work to measure congestion propagation
influence by road embedding.

3. We propose a critical congested road identification algorithm to identify crit-
ical roads with top-K propagation influences in real time.

4. We conduct extensive experiments to verify the effectiveness and efficiency of
the proposed method using real taxis’ trajectories. A case study of identifying
critical congested roads for a congestion cluster is also demonstrated.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
preliminaries and the problem definition of this paper. The proposed road net-
work embedding model and critical congested roads identification method are
introduced in Sect. 3 and Sect. 4, respectively. Experimental results with a case
study are shown in Sect. 5. Related work is introduced in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2 Problem Statement

2.1 Preliminaries

Definition 1 Road network: A road network is defined as a directed graph
G = (V,E), where V is a set of nodes and E is a set of directed edges on the
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road network. Each edge eij ∈ E is determined by a source node vi and a target
node vj, i.e., eij = (vi → vj), vi, vj ∈ V .

Definition 2 n-hop neighborhood: Given a (un)directed graph G = (V,E),
the n-hop neighborhood of a node u ∈ V , represented as Nn(u), is defined as
nodes within n-hop distance from u on the graph, which means the shortest path
from u to v ∈ Nn(u) or v to u is not large than n, where n is a given parameter.

Note that, we consider both of the upstream and downstream neighborhood of a
node as its neighborhood. This is because traffic congestion can propagate both
backward and forward, i.e., bi-directional.

Definition 3 Trajectory: A trajectory s consists of a sequence of location
points {l1, l2, . . . , l|s|}, where each location point li = (xi, yi, vi, ti) corresponds
to a location coordinate (xi, yi) with a velocity vi at a time stamp ti, where
i ∈ [1, |s|].

Traffic congestion generally causes a slowdown in traffic speed on specific
roads, which lasts for a short time but happens frequently. Here, we define the
congested road by comparing vehicles’ speeds with the free-flow speed. The free-
flow speed is the average speed that a driver would travel if there is no congestion
or other adverse conditions. We use the F percentile of all valid speeds on each
road segment as its free-flow speed, as in [20], with a default value of 85. By
monitoring vehicles’ speeds, traffic congestion is detected rapidly and accurately.

Definition 4 Road speed: Given an edge e on a road network, a set of
sub trajectories Se,t that matched to edge e during time period t, such that
|Se,t| ≥ min sup, where min sup is a confidence threshold. The road speed ve,t
is calculated as follows:

ve,t =
1

|Se,t|
∑

s∈Se,t

∑

li∈s

vi
|s| , (1)

i.e., the average of the speeds of all trajectories in Se,t, where the speed of a
trajectory s ∈ Se,t is the average travel speed of all location points li ∈ s.

Definition 5 Congested road: Given an edge e ∈ E with road speed ve,t, and
a free-flow speed vf . The edge e is defined as a congested road, if ve,t is less than
C percentage of vf , where C is a default parameter.

2.2 Problem Definition

To evaluate the propagation influence of a congested road, we construct a road
graph which considers each road segment as a node, and learn feature repre-
sentation of road segments. Then, we generate congestion clusters from a set of
congested roads, and identify critical congested roads for each congestion cluster.
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Definition 6 Road graph: Given a directed road network G = (V,E), a road
graph is defined as an undirected graph Gr = (Vr, Er), where Vr contains all
road segments in E, i.e., a node vi ∈ Vr corresponds to an edge ei ∈ E. An edge
eij ∈ Er between vi and vj on Gr exists if there is a path from edge ei to ej or
from ej to ei on G.

Definition 7 Road representation: Given a road graph Gr = (Vr, Er), the
road representation aims to learn a feature representation of road segments,
denoted as f : Vr → R

d, which projects each road to a d-dimensional feature
vector.

Definition 8 Congestion cluster: Given a set of congested roads Et during
time period t, a congestion cluster Ec is defined as a subset of Et, such that each
congested road e ∈ Ec has at least one n-hop neighborhood that is congested, and
all of the congested n-hop neighborhood of e belongs to Ec, i.e., |Nn(e)∩Et| ≥ 1
and Nn(e) ∩ Et ⊆ Ec. In addition, |Ec| ≥ c, where c is a default parameter.

Definition 9 Propagation influence: Given a congestion cluster Ec, and the
road representation f , each congested road u ∈ Ec has a propagation influence
with respect to its n-hop neighborhood in Ec, denoted as Nc(u). The propagation
influence of u is defined as follows:

PI(u | Nc(u)) = wu

∑

e∈Nc(u)

Sim(f(u), f(e)), (2)

where, Sim() is a predefined similarity metric, e.g., cosine similarity, and wu is
a normalized occurrence probability of road segment u.

The value of wu is calculated by historical trajectory data. The intuition is
that, the larger the occurrence probability is, the more likely the road segment
affects other road segments.

Definition 10 Critical Congested Roads: Given a congestion cluster Ec,
and an integer K ≤ |Ec|. The critical congested roads in Ec are defined as a
set of congested roads EK ⊂ Ec with maximum size K, such that the sum of
propagation influence of each road in EK is maximal.

3 Seg2Vec: Traffic Flow-Aware Road Network Embedding

As described above, the propagation influence of a congested road is calcu-
lated by the feature representation of road segments. In this paper, we pro-
pose Seg2Vec, a traffic flow-aware road network embedding model that learns
the structural information of road segments by simulating trajectories using a
Markov chain-based random walk. The intuition is that traffic flows on road net-
works follow certain spatiotemporal distributions, and road segments with high
co-occurrences along trajectories indicate high traffic similarities among them.
Therefore, we use historical trajectories to capture the transition probability
between road segments, then generate neighbor nodes by a sampling strategy
based on the precomputed transition matrix, with details as follows.
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3.1 Markov Chain-Based Random Walks

The Markov chain is a stochastic process that satisfies the Markov property [4].
The process describes a sequence of possible events in which the probability of
each event only depends on the state of the previous event. In this paper, we
consider each road segment as a state, the probability of state change between
road segments is called transition probability, calculated by historical data.

Given a set of trajectories S mapped to the road graph Gr, each trajectory
consists of a sequence of nodes (i.e., road segments). The transition probability
distribution can be represented by a transition matrix P , and each element pTij
represents the probability of changing the state from vi to vj during time period
T , which is evaluated by the following equation:

pTij = PrT (sn+1 = vj | sn = vi) =
|ST (vi → vj)|

|ST (vi)| , (3)

where |ST (vi)| is the outflow of road vi during time period T , and |ST (vi → vj)|
is the traffic flow from road vi to road vj during time period T . In addition, the
variable n = 0, 1, ..., l − 1, where l is the walk length. Note that, the transition
probability of current node only depends on the previous node, so the random
walk is the first-order Markov chain.

Benefits of Random Walks. The benefits of random walks are reflected in
both effectiveness and efficiency. For effectiveness, the traffic distribution of real
trajectories essentially has a bias to the main roads with high frequencies, which
leads to the learned features bias to these roads. The proposed Seg2Vec model
simulates equal number of trajectories for each road using a Markov chain-based
random walk, so that it can preserve local network structure with less bias.
Moreover, training random walks is more efficient, since the number of walks
and walk length of the simulated walks are optional. In addition, random walks
can provide sample reuse. For instance, a trajectory with length l will generate
k samples for l − k nodes at once, where k is the context size, and l > k. Then,
for N source nodes each with r random walks, there are Nrk(l − k) samples
generated in total.

3.2 Feature Learning Model

Given a road graph Gr = (Vr, Er), and a set of simulated trajectories S generated
by the random walks introduced above. The objective function of the Seg2Vec
model is to maximize the log-probability of observing the neighborhood N(u)
for a source node u ∈ Vr conditioned on its feature representation, given by f :

max
f

∑

u∈V

log Pr(N(u) | f(u)), (4)

where, the neighborhood N(u) of road segment u is determined by a sliding
window of size k over consecutive road segments of trajectories.
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Based on the conditional independence, the probability of observing a neigh-
borhood ni ∈ N(u), given node u, is calculated by the softmax function:

Pr(ni | f(u)) =
exp(f(ni) · f(u))∑
v∈Vr

exp(f(v) · f(u))
. (5)

Based on the above assumptions, the feature learning model is trained by
optimizing the objective function using stochastic gradient ascent (SGD) and
back propagation [17].

3.3 The Seg2Vec Algorithm

The pseudo-code of Seg2Vec is given in Algorithm 1. The algorithm consists of
three phases, i.e., computing the transition matrix (Line 1), Markov chain-based
random walks (Line 2–14) and optimization using SGD (Line 15). The first phase
is constructing a transition matrix P by computing the transition probabilities
between road segments based on historical trajectories. Since we aim to learn
representations for all nodes, we simulate r walks per node with fixed length l
starting from each node. The sampling strategy for the random walk is the alias
sampling, which is also used in [5,18]. The alias sampling can be done efficiently
in O(1) time complexity, with the precomputed transition matrix for the first-
order Markov chain. Finally, the generated walks are selected as the input of the
training model, and the feature representations of road segments are optimized
using SGD. Note that, each phase described above can be conducted in parallel,
which contributes to the scalability of the proposed model.

Algorithm 1 The Seg2Vec algorithm.
Input: G, trajectories S, dimensions d, walks per node r, length l, context size k.
Output: Feature representation f .
1: P =ComputeTransitionPr(G, S) � Preprocess the transition matrix
2: walks ← ∅ � Initialize the walks to empty
3: for iter ← 1 to r do
4: for all nodes u ∈ V do
5: walk ← [u] � Initialize the walk list as the source node u
6: for n ← 1 to l − 1 do
7: vcur = walk[n − 1]
8: N(vcur) = GetNeighbors(vcur, G) � Get the neighborhoods of vcur
9: vnext =AliasSample(vcur, N(vcur), P )

10: Append vnext to walk
11: end for
12: Append walk to walks
13: end for
14: end for
15: f = StochasticGradientDescent(k,d,walks)
16: return f
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4 Critical Congested Road Identification

Consider a real-time traffic monitoring system that consecutively collects vehi-
cles’ GPS trajectory data, and detects congested roads based on the collected tra-
jectories. In order to identify critical congested roads among a series of detected
congested roads, we propose a critical congested roads identification method as
shown in Algorithm 2. We first generate several congestion clusters based on the
n-hop neighborhoods for each congested road (Line 1). Then, the propagation
influence of each congested road is computed by the feature representation of
road segments (Line 6). Finally, we select the critical roads with top-K propa-
gation influences in each cluster (Line 9-10).

Algorithm 2 The CriticalRoadIdentification algorithm.
Input: Congested roads Et, order n, K, feature representation f .
Output: Overall top-K critical roads R.
1: Ec =GenerateCongestCluster(Et, n) � Generate a set of congestion clusters for Et

2: R ← ∅ � Initialize the top-K critical roads for all congestion clusters
3: for all cluster c ∈ Ec do
4: rc ← ∅ � Initialize the critical road list for cluster c
5: for all road e ∈ c do
6: PI(e) = ComputePI(e, c, f) � Compute the propagation influence of road e
7: Append (e, PI(e)) to rc
8: end for
9: Sort the propagation influences of roads in rc in descending order

10: Select the top-K critical roads in rc and add to result R
11: end for
12: return R

Figure 1 illustrates an instance of identifying critical congested roads. While
Fig. 1a shows a set of congested roads in red, it is difficult to explain the con-
gestion or decide how to relieve them. In this work, we provide an alternative
solution to explain the root cause of congestion. Figure 1b shows a congestion
cluster, in which each node represents a congested road in Fig. 1a. The value on
a node (in red) represents its propagation influence, while the value on an edge
(in black) represents the similarity between two roads. The propagation influ-
ence is calculated by Eq. 2, assuming the occurrence probability of each node is
1. Here, we consider both the upstream and downstream roads of a congested
road as its neighborhoods, e.g., e2 and e7 are both e1’s neighborhoods. Moreover,
we consider the relationship between any 2-hop neighborhoods, e.g., e2 and e7
are mutual neighborhoods. By ranking the propagation influences of congested
roads, it is more intuitive to express the criticality of each one. For instance,
it is evident that the propagation influence of e1 is the greatest one, which has
strong influence on other roads, followed by e5, e2 and e7.
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Fig. 1. An instance of identifying critical congested roads

5 Experiments

5.1 Datasets and Preprocessing

We use real GPS trajectories generated by taxicabs in Chengdu from October
1st to October 20th, 2016, provided by Didi Chuxing1 There are about 3,503,276
records of trip orders with 671 millions trajectory points, each of which contains
a time stamp, a longitude and latitude, an encrypted driver ID and order ID.
We use trajectory data of two weeks for training, and the rest for testing. The
road network of Chengdu is obtained from Open Street Map (OSM)2 with about
3151 nodes and 7336 edges on the road network. Figure 2a shows the original
distribution of trajectory data (in red) generated on October 1st, 2016, inside

Fig. 2. The distribution of trajectory data on the road network

1 Didi chuxing, https://outreach.didichuxing.com/app-vue/dataList.
2 OSM, https://www.openstreetmap.org/,

https://outreach.didichuxing.com/app-vue/dataList
https://www.openstreetmap.org/
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the Second Ring Road of Chengdu’s road network. Since the raw trajectory data
is unordered and full of noise, data preprocessing is necessary. The preprocess-
ing mainly contains three steps, i.e., coordinates transformation, data cleaning
and map matching. We utilize an efficient map matching algorithm, called ST-
Matching algorithm [12], to map the trajectories to the road network. After
data preprocessing phase, the raw trajectory data is transformed into 3,689,336
records of time-sorted trajectories, with about 657 millions of location points
mapped to the road network, as shown in Fig. 2b.

5.2 Experimental Setup

We perform extensive experiments and a case study to evaluate the quality
and efficiency of the proposed method. The quality of Seg2Vec is evaluated by
cosine similarities of the learned road representation, as well as the effectiveness
of critical congested road identification, comparing with Road2Vec [10]. The
efficiency of our methods is evaluated by the execution time of offline training
and online process. In addition, a case study is also demonstrated to show the
effectiveness of our proposed method. Our experiments are performed on a 64-
bit server running Ubuntu 20.04.4 (OS) with an Intel Xeon Gold 6226R CPU @
2.90 GHz × 32 and a 256GB RAM.

Time Division. As shown in Fig. 3, the number of traffic flow and traffic con-
gestion on the road network is time-variant. According to the distribution of
traffic flow and congestion changing by time, we divide a day into three time
periods, i.e., morning peak, normal and evening peak. The morning peak hours
of weekdays and weekends are set as 7 am to 10 am and 8 am to 11 am, respec-
tively, while the evening peak hours are set as 5 pm to 8 pm. The remained time
periods during daytime are set as normal time.

Fig. 3. Traffic distribution changing over time of day
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Effectiveness Evaluation. Given a congestion cluster Ec during time period
[ts, te], and a set of critical congested roads EK with top-K propagation influ-
ences, the effectiveness of EK is measured by the average percentage of traffic
volume reduction if deleting the trajectories passing through EK from the con-
gestion cluster Ec, the calculation function is as follows:

Effectiveness(EK) =
1

|Ec|
∑

e∈Ec

|V (EK) ∩ V (e)|
|V (e)| , (6)

where, V (EK) is the vehicles on the critical congested roads EK during time
period [ts, te], and V (e) is the vehicles passing through road e ∈ Ec during time
period [ts, te + δt]. In the following, we will investigate the effect of time delay
on propagation influence by comparing the effectiveness by varying δt.

5.3 Evaluation Results

Traffic Similarity. We first compare the two learning models by showing the
traffic similarity with varying n, i.e., the average cosine similarities of n-hop
neighbors for each road segment, where n ∈ [1, 5]. In Fig. 4, the traffic similarities
of Road2Vec (in hollow) and Seg2Vec (in solid) are decreased by the increase
of n, which indicates the two models can capture the spatial proximity of road
segments. Moreover, the traffic similarities of Seg2Vec are larger than the ones
of Road2Vec when n equals to 1, while n becomes larger than 2, the traffic
similarities of Seg2Vec are smaller than Road2Vec. The result indicates that
Seg2Vec is more sensitive to both adjacent and distant neighbors than Road2Vec.

Fig. 4. Traffic similarity with varying n

Case Study. We evaluate the effectiveness of our proposed model through a
case study of a congestion cluster around Tianfu Square during 9:10-9:20 on
October 19th, 2016. As shown in Fig. 5a, there are 15 congested roads (in red)
in the congestion cluster. To identify critical congested roads which have strong
influences on others, our proposed road embedding model learns the feature
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representation of road segments. Based on the learned feature vectors and the
proposed propagation influence function, we visualize the embedded road seg-
ments in Fig. 5b. Each congested road is represented as a node, the size of which
represents its propagation influence on others. An edge between two nodes rep-
resents the two road segments that are mutual 5-hop neighborhoods, and the
thickness of an edge represents the traffic similarity between them. As Fig. 5
shows, the top-2 critical roads are road-1 and road-2, which are both located in
the central position of the congestion cluster and have a series of neighborhood
nodes. Even though road-3 locates at the marginal position of the cluster, it has
strong similarities with its neighborhoods, e.g., road-6 and road-7.

Fig. 5. A case study in Chengdu on weekday morning peak hour

Figure 6 shows the effectiveness comparison of Seg2Vec and Road2Vec. In
Fig. 6a, the effectiveness of Seg2Vec for top-K critical roads is better than the
ones of Road2Vec, especially for top-1 critical road. This can be explained by the
sensitivity of Seg2Vec to adjacent neighbors. The effectiveness increases when K
increases, since the more critical congested roads identified, the larger propaga-
tion influence on other roads. Figure 6b illustrates that the effectiveness is also
affected by time delay δt. As Fig. 6b shows, the effectiveness of Seg2Vec increases
when δt changes from 0 to 5 min, while the effectiveness of Road2Vec increases
when δt becomes 15 min, which is caused by the time delay of congestion propa-
gation. The result also suggests that the Top-1 critical congested road identified
by Seg2Vec spreads more quickly than the one identified by Road2Vec.
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Fig. 6. Effectiveness with varying K and δt

Fig. 7. Efficiency

Efficiency. We evaluate the efficiency of the online process, which consists of
data cleaning, map matching, traffic congestion detection and critical road iden-
tification. As shown in Fig. 7a, the execution time of the online process is almost
within 1 min with reasonable numbers of trajectory points during 10 min, such
as 300 thousand. Therefore, the proposed critical congested road identification
method is efficient and suitable for online monitoring scenarios. We also com-
pare the training time of Seg2Vec and Road2Vec. In Fig. 7b, the training time
of Seg2Vec is less than Road2Vec when the road segments increases from 1000
to 5000. The result indicates the scalability of our proposed model.

Discussions. The experimental results are summarized as follows:

1. Both of Seg2Vec model and Road2Vec model can capture spatial proxim-
ity of road segments, while the Seg2Vec model is more expressive to traffic
similarities of adjacent and distant neighborhoods.

2. The effectiveness of Seg2Vec is better than Road2Vec model for top-K critical
congested road identification. The effectiveness becomes better when time
delay increases, which is because of the delay of congestion propagation.

3. For efficiency, the online process of our proposed method is adaptive to online
traffic monitoring scenarios, and the training time of Seg2Vec is also scalable.
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6 Related Work

Congestion Propagation : The causal interactions among road segments are
explored in [11,15] using pattern mining approaches. Liu et al. [11] proposed a
Spatio-Temporal Outlier (STO) method, which divides the road network into
regions, and uses a recursive approach to find frequent traffic jam propagation
trees in the road network. The disadvantage of the STO method is that the road
network is oversimplified to regions and the results are probably imprecise. The
Spatio-Temporal Congestion (STC) [15] process is further studied to develop
the STO method. Instead of regional division, it models the road network as
a directed graph. The STCTree algorithm generates the most frequent subtree
from all discovered congestion trees. The limitation of frequent pattern mining is
that the latent propagation patterns may be infrequent. Visualization methods
that analyze traffic congestion propagation are also studied in [3,20]. Wang et
al. [20] provided a system for traffic congestion visualization based on GPS tra-
jectories. Deng et al. [3] proposed a visual analytics system called VisCas, which
combines a network inference model with interactive visualizations to infer the
latent cascading patterns. They model the congestion cascading network based
on the spatial and temporal distance between congestion events. While this kind
of hand-crafted features is easy to access and understood, they can hardly reserve
the complex spatial and temporal correlations of urban data.

Road Network Embedding. In order to obtain comprehensive features of
road networks, road network embedding is extended from graph embedding [21].
Graph embedding generally uses truncated random walks to learn network repre-
sentations while preserving the network structures [5,16,18]. DeepWalk [16] sim-
ulates uniform random walks, which is analogical to a depth-first search (DFS).
LINE [18] uses a breadth-first search (BFS), and optimizes a carefully designed
objective function that preserves both the local and global network structures.
Node2vec [5] proposed a flexibility random walk procedure which combines the
DFS and BFS by search bias parameters. Node2vec was extended to learn road
segment embeddings in [8], and a case study on the Danish road network was
conducted. The results suggested that the network embedding model is able to
capture structural information of road networks. To quantify the traffic inter-
action between road segments, Road2vec [10] learns the feature representation
of road segments using travel routes based on the Word2Vec model [14]. Wang
et al. [19] proposed RN2Vec to learn intersections and road segments jointly
by exploring geo-locality and homogeneity of them. The learned feature vectors
of road networks are used for downstream tasks such as road classification and
traffic flow prediction [7,13].
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7 Conclusion and Future Work

In this paper, we study the problem of identifying critical congested roads for
traffic congestion management. We propose a road network embedding model,
Seg2Vec, to obtain comprehensive road features that consider both the network
structure and traffic flow distribution. We also define a score function to evaluate
the propagation influence of congested roads based on the learned road represen-
tation. The effectiveness of Seg2Vec is verified by a case study comparing with
Road2vec. The scalability of Seg2Vec and the efficiency of the online process are
also demonstrated. This paper focuses on measuring the congestion propagation
and discovering the critical cause in the local congestion cluster. In future work,
we consider to extend the local critical road identification to global critical road
identification. In addition, other downstream tasks such as road classification
and congestion prediction are also considered.
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