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Abstract. Predicting the time for an event to occur while simultane-
ously exploring the coexisting effects of various risk factors has capti-
vated considerable research interest. However, the profusion of repeated
measurements involving a diverse array of risk factors has outpaced the
capabilities of current methods for analyzing time-to-event data. In this
paper, we propose a novel approach that entails the conversion of the
time-to-event analysis conundrum into a sequence of discrete survival
learning and prediction tasks, each approached autonomously. Our inno-
vative strategy for modeling repeated measures facilitates the quantifi-
cation of measurement impacts on projected outcomes at distinct junc-
tures. When extrapolating the trajectory of health status over time, our
method harnesses both censored and uncensored data to refine logistic
regression parameters. Through a series of comparative experiments and
meticulous ablation studies conducted on two real-life health datasets,
we underscore the intrinsic practical promise of our method. Notably, our
approach showcases its efficacy in prognosticating the temporal aspects
of breast cancer patient mortality and the onset of disabilities among the
elderly.

1 Introduction

Time-to-event data materializes when attention zeroes in on the passage of time
(measured in years, months, weeks, or days) from the inception of a follow-up
study until the occurrence of a specific event. In medical research, this event
of significance is typically an adverse incident encompassing facets like injury,
the inception or resurgence of an ailment, (re)hospitalization, and even demise.
The pursuit of time-to-event prediction seeks to tackle inquiries such as “How
much time remains before the event takes place?” - a question that has held
enduring practical import. Foreseen time-to-event insights empower clinicians
to promptly address patients’ queries about potential outcomes, while decision-
makers glean information about the probable timing of disease-related rehospi-
talizations. To illustrate, envision prognosticating outcomes for individuals diag-
nosed with breast cancer. One could discern that a 60-year-old patient boasts a
70% chance of surviving one year and a 40% probability of reaching the three-
year milestone. These prognostic revelations can exert a pivotal influence on
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treatment choices, lifestyle adaptations, and, on occasion, considerations con-
cerning end-of-life care.

Within time-to-event data, the outcome encompasses not only the occurrence
or non-occurrence of an event but also the specific timing of that event. The
events sometimes cannot be observed throughout the follow-up period due to
various censorships [10]. Hence, predicting time-to-event accurately is challeng-
ing and even impossible. Standard regression models fall short in their capacity
to incorporate both the event occurrence and the timing aspects as outcomes
within the same model. In the recent past, a significant multitude of methods has
been devised to confront this quandary, facilitating predictions that effectively
consider both dimensions concurrently, e.g., statistical models [16] and machine-
learning-based methods [25]. To make the problem simple, we can answer the
question “When and how probably will be free of failure?”

Investigating the simultaneous impacts of risk factors on the outcome holds
significant relevance for both researchers and clinicians, and has been a focal
point of extensive research endeavors. However, the measurement of risk fac-
tors often occurs over time or through real-time devices during the follow-up
period, particularly in the context of extended-term follow-ups. Consequently,
this results in an abundance of recurrent measurements, leading to fluctuations
in the corresponding risk factors over time. Consider breast cancer patients who
are monitored over a span of time, undergoing monthly assessments like white
blood cell counts. Similarly, in studies focusing on cognitive changes related
to aging, researchers gather data on participants’ cognitive capabilities along
with details about their date of death or diagnosis of dementia. These instances
involve time-dependent risk factors like mental health, injuries caused by falls,
and smoking. It is a great challenge for current time-to-event prediction methods
to take care of these complex repeated measures, although they can use a single
measure; of course, this will ignore the effect caused by historical measures.

Analyzing repeated measures and inference needs special techniques. In this
context, approaches such as time-varying analysis [30] can be employed, where a
single measurement evolves over time and is subsequently substituted by succes-
sive measurements to explore short-term relationships. Alternatively, measure-
averaged analysis [29] can be employed, wherein a participant’s initial measure-
ment is solely represented by risk factor values at a specific point in time or a
single estimate derived from the mean of measurements over a defined period.
It’s noteworthy that within the literature [21,28], the impact of repeated mea-
surements on time-to-event outcomes has been demonstrated. Consider an obser-
vational study focusing on the effects of a drug on specific health indicators. In
this scenario, a patient’s present health status could influence their future drug
exposure or dosage. Consequently, establishing a model capable of automatically
accommodating repeated measurements is of paramount importance.

In this paper, we undertake a transformation of the time-to-event prediction
task, reconfiguring it into a sequence of challenges involving survival proba-
bility estimates (SSP) at distinct time junctures. For each of these estimation
challenges, we methodically gauge the influence of recurrent measurements on



50 J. Zhang et al.

the survival probability. The recently devised comprehensive data-driven learn-
ing approach leverages all available data points to compute the cumulative event
risk, thereby optimizing data utilization. To ascertain the parameters, we engage
in the optimization of an objective function, which involves the regularization
of model parameters and the facilitation of their gradual transitions. Empir-
ical assessments are conducted using real-world time-to-event data featuring
repeated measurements. The new technique exhibits superior performance when
compared to other cutting-edge survival models. We summarize the contribu-
tions as follows:

• Our method is characterized by its simplicity, both computationally and con-
ceptually. It entails a series of logistic regression fits, and the operations can
be readily comprehended within the framework of regression modeling.

• Empirical evidence attests to the effectiveness of our approach. We applied
it to predict survival rates in breast cancer patients and a diverse Canadian
cohort, encompassing individuals without disabilities.

2 Related Work

The essence of this paper revolves around the realm of time-to-event data cou-
pled with the inclusion of repeated measurements. Consequently, our focus in
this review shall encompass endeavors related to time-to-event prediction models
and the analysis of time-varying data. Broadly delineated, methods for analyz-
ing time-to-event data can be categorized into two primary groups: statistical
methods and machine-learning-based approaches.

2.1 Statistical Methods

Statistical methods concentrate on the intricacies of event time distributions and
parameter estimation. These methods can be categorized into parametric, non-
parametric, and semi-parametric approaches. Nonparametric methods empiri-
cally estimate the survival probability through Nelson-Aalen estimator [1] and
Kaplan-Meier estimator [11]. While they yield unbiased descriptive insights, they
lack the capability to evaluate the impact of multiple risk factors on outcomes. In
contrast, parametric methods posit that the time-to-event adheres to a specific
distribution, such as exponential, Weibull, (log-)logistic, etc. For example, the
accelerated failure time model [26] operates under the premise that the underly-
ing time-to-event distribution has been accurately specified. To circumvent this
assumption, the semi-parametric Cox model [2] has gained broader traction in
time-to-event data analysis due to its user-friendliness, established efficacy, and
interpretability of results [28]. This model assumes a specific influence of risk
factors on events, an assumption that is frequently violated in practical scenar-
ios.
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2.2 Machine-Learning-Based Approaches

As the utilization of time-to-event data, particularly those featuring time-varying
risk factors, continues to rise, machine-learning-based methods have increasingly
supplanted traditional statistical models within the realm of survival analysis.
This transition is particularly evident in the context of time-to-event studies,
where machine learning finds synergy with survival settings. Feed-forward neu-
ral networks [5], recurrent neural networks [8,27], and deep neural networks
[12,15] have all been employed for time-to-event analysis. Additionally, multi-
task learning has emerged as a common strategy for time-to-event prediction.
For instance, in [18], a pioneering approach involved the creation of a multi-task
logistic regression model to learn patient-specific survival distributions. Gaus-
sian processes have also made their mark in survival analysis tasks. For instance,
[13] introduced scalable variational inference algorithms for a Gaussian-process-
based survival model, accounting for uncertainty in hazard function modeling.
Furthermore, [6] proposed a semi-parametric Bayesian model for survival anal-
ysis employing a Gaussian process. This model modulates the hazard function
through the multiplication of a parametric baseline hazard and a nonparametric
component.

2.3 Time-Varying Models

Recognizing the necessity to accommodate the evolving impact of factors on sur-
vival outcomes as time progresses, especially in the context of extended follow-up
periods [7], there has been a notable surge of interest in the pursuit of learning
time-varying coefficients rather than adhering to fixed ones. These models, char-
acterized by varying coefficients, allow for the exploration of dynamic patterns
and naturally extend the scope of classical parametric models. Their growing
popularity in data analysis [4] is attributed to their robust interpretability. To
estimate the time-varying coefficients within the Cox model framework, diverse
strategies have emerged. [23] maximized a kernel-weighted partial likelihood,
while [22] employed local empirical partial likelihood smoothing. Another app-
roach, as seen in [19], leveraged time-varying coefficients to elucidate the evolving
effects of risk factors on breast cancer failure. However, the practical applica-
bility of the proportionality assumption may be limited, particularly when the
effects of risk factors undergo temporal shifts. To address this, [27] introduced a
survival recurrent neural network, which yielded superior predictions compared
to other state-of-the-art survival models. This advancement underscores the effi-
cacy of modern machine learning techniques in capturing the intricate dynamics
of time-varying factors affecting survival outcomes.

3 Problem Statement

We identify each individual using two variables, that is, the response ‘censor’
C ∈ {0, 1} indicating whether or not the individual time is censored and the



52 J. Zhang et al.

response ‘stamp’ S ∈ R
+ showing the time when the event happened or the

individual is lost to follow-up. If C = 0, we have the time of event occurrence,
say T , which is uncensored. The event occurred right at the last recorded time
S, we thus have T = S. When T is censored, C = 1. For this situation, S
underestimates the true but unknown T , i.e., T > S. Table 1 gives an example:
three old Canadians aged over 65. We have T = 7 months for the 77-year-old
Québecois. C = 1 indicates that T is censored due to dropout or early end of
follow-up. Here, every individual can be presented by D factors that are time-
invariant (e.g., ‘province’ and ‘age’) or time-varying (e.g., ‘depression’, ‘sleep’,
and ‘fall’). Generally, these measures can be written as X = (x1, . . . ,xV ) ∈
R

D×V , where, at the vth time of the V different times τ1 < · · · < τV , we have
xv = (xv1, . . . , xvD)�. The time-invariant factor d is x1d = x2d = · · · = xV d. We
aim to identify a mapping function fW (W is the vector of parameters to learn)
for probability prediction at t1 < t2 · · · < tK .

Table 1. An example: time-to-event data and repeated measures for three aging Cana-
dians living in Québec, Ontario, and Alberta, respectively.

Risk Factors Response

time-invariant time-varying (Repeated Measures) Censor Stamp

Province Age ·· Depression ·· Fall Smoking (C) (S)

Québec 77 ·· mild ·· no sometimes 0 7

mild ·· yes sometimes

·· ·· ·· ··
no ·· no seldom

Ontario 69 ·· severe ·· no often 1 11

moderate ·· no seldom

·· ·· ·· ··
moderate ·· no sometimes

Alberta 86 ·· no ·· yes never 1 18

no ·· no never

·· ·· ·· ··
mild ·· no never

4 Our Approach

4.1 Health Status

The initial step involves encoding the response variables (C and S) into health
statuses represented by Y . The value at a specific time point t can be expressed
as y[t] = (−1(C = 1))1(S<t). This function assumes the value of 1 if the event
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occurred on or before time t, which can be represented as S ≥ t. Otherwise, it
takes the value of 0 when C = 0, or -1 if C = 1. Here, 1(judgment) denotes an
indicator function that equals 1 when the judgment is true, and 0 otherwise.

Example: The health statuses for the three individuals are illustrated in Table 2.
Each health status y[tk] denotes whether a specific event (such as disability) has
occurred by time tk: it takes on a value of 1 if the event has occurred, 0 if it
hasn’t, and -1 if the information is unknown. Once y[tk] transitions to “0”, it
remains so and does not revert back to “1”. Consequently, there exist K+1 valid
sequences following the pattern (1, 1, . . . , 0, 0, . . .), which encompasses sequences
consisting entirely of “1” s and sequences entirely of “0”s. For instance, let’s
consider the case of the 77-year-old Québecois: his health status remains “1”
until S = 7, at which point it transitions to “0”. In contrast, for the other two,
the exact onset times are censored. Consequently, their health statuses remain
“1” until the corresponding time stamp, and subsequently shift to “-1” beyond
that point.

Table 2. An example of health status for three Canadian seniors aged over 60.

Health Status Response

y[1] ·· y[7] y[8] ·· y[11] y[12] ·· y[18] y[19] ·· C S

1 1 1 0 0 0 0 0 0 0 0 0 7

1 1 1 1 1 1 –1 –1 –1 –1 –1 1 11

1 1 1 1 1 1 1 1 1 –1 –1 1 18

4.2 Training

For an individual indexed as i ∈ G0 = {i|∀i : Ci = 0}, possessing known health
statuses denoted as Y = (y[t1], . . . , y[tK ]) at time instances t1 < . . . < tK ,
along with associated measurements X (τV ≤ tK), we estimate the probability
of observing Y through the utilization of generalized logistic regression.

Pr (Y | X;W)0 =
exp (W ∗ X · Δ · 1(y ≤ 0))
exp (W ∗ X · Δ ∗ A) · 1 (1)

W = (w1, . . . ,wV ) ∈ R
D×V

wv = (wv1, . . . , wvD)� ∈ R
D×1,∀v = 1, 2, . . . , V

W ∗ X = (w1 · x1, . . . ,wV · xV ) ∈ R
1×V .

The regression coefficient W serves to quantify the influence of factors and their
recurrent measurements on the probability of an individual’s event-free status.
In this context, the coefficients wv signify the contribution of measurements
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denoted by D at the specific time τv. The summation of transformed measure-
ments over V time instances is computed through a column-wise Hadamard
product [20]. To assess the impact of the D factors and their V repeated mea-
surements on the manifestation of Y , we introduce the concept of the time-decay
ratio. This ratio is shaped by the passage of time and can be expressed as follows:

Δ = exp(δ(k, v)) ∈ R
K×V (2)

δ(k, v) = −(tk − τv) × 1(tk ≥ τv). (3)

The symbol exp denotes the element-wise exponential operation applied to a
matrix. The decay ratio, represented as exp(σ(k, v)), captures the exponential
of the time difference between tk and τv, reflecting how the impact of a mea-
surement at time τv on the probability at time tk diminishes over time. As
time passes, this impact reduces gradually. For instance, the effect of a fall-
caused injury on the onset of disability would attenuate as time progresses. To
delve into event-free probabilities, we employ the lower triangular identity matrix
denoted as A = (α1, . . . ,αK) ∈ R

K×K , where αij = 1 if i ≥ j and 0 otherwise.
This matrix aids us in investigating probabilities of remaining event-free. For
individuals belonging to G1 = {i|for all i : Ci = 1}, who possess an unknown
event time, their health statuses remain consistent prior to the given time stamp.
Consequently,

Pr (Y | X;W)1 =
exp(W ∗ X · Δ ∗ A · 1(y ≤ 0)) · 1

exp (W ∗ X · Δ ∗ A) · 1 . (4)

The numerator represents the accumulation of the risks associated with the
occurrence of target responses. To learn the matrix W, we undertake minimiza-
tion of the negative logarithm of the likelihood across all individuals through an
expectation-maximization process [3]. This involves suitable initialization and
can be outlined as follows:

min
W

P (W) −
∑

i∈G0
log(Pr(Yi|Xi;W)0) −

∑
i∈G1

log(Pr(Yi|Xi;W)1), (5)

The incorporation of the elastic-net penalty P (W) = λ1|W|1 + λ2|W|22 into the
loss function enhances its strong convexity, resulting in a unique minimum. To
establish suitable values for the hyperparameters λ1 and λ2, we rely on an inde-
pendent validation set. The learning objective function exhibits strict convexity
within the feasible domain wk ∈ R

D,∀k, ensuring a unique globally optimal
solution.

4.3 Prediction

Assuming the availability of known measurements X′ for a new individual at
time instances τ1 < · · · < τV ′ before time tk, and utilizing the learned parameters
Ŵ ∈ R

D×V , the prediction of the event-free probability at time tk effectively
amounts to predicting the health statuses Y ′[tk] = (1, 1, . . . , 1) ∈ R

1×k. This
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probability, denoted as Pr
(
Y ′[tk] | X′;Ŵ

)
, is amenable to estimation through

the regression model depicted in Eq. 1. (In the subsequent discussion, the nota-
tion involving a ‘′’ signifies that it is redefined for the test set.)

4.4 Estimate of Time-to-Event

Upon obtaining the predicted survival probabilities for different time points from
our model, the subsequent task entails estimating the time-to-event for the new
individual. To initiate this process, we establish the relative error at time t

using the following definition: E(t) =
∑K

k=1(|log t − log tk|) Pr
(
Y ′[tk] | X′;Ŵ

)
,

thereby seeking the time at which E is the lowest, i.e., the time-to-event is
T̂ = argmint∈{t1,...,tK}E(t).

5 Experiments

5.1 Data

The dataset comprises the Breast Cancer dataset sourced from the prognos-
tic data repository provided by the PCoE of NASA Ames, in addition to the
Aging Canada dataset extracted from the Canadian Community Health Sur-
vey (CCHS) statistical surveys. In the context of the Breast Cancer dataset,
the times-to-event were computed by subtracting the date of diagnosis from the
date of last contact, which corresponds to the study cutoff. As for the Aging
Canada dataset, our focus was on respondents surveyed between 2009 and 2010.
This dataset centers on the health of individuals aged 45 and above, probing
various factors influencing healthy aging. Over 2,000 valid interviews covering
the population residing in all ten provinces were included. Regarding the factors
under consideration, we engaged in pairwise correlation analysis between inde-
pendent factors via a correlation matrix. If the Pearson correlation coefficient
[14] exceeded 0.75 for two factors, we made the decision to retain the more per-
tinent one and discard the other. This process yielded 16 factors for the Breast
Cancer dataset and 24 for the Aging Canada dataset. For the categorization of
factors into numerical representations (with the exception of the two existing
numerical factors: age and BMI), we employed Softmax normalization. For a
comprehensive overview of the data statistics, please refer to Table 3.

Table 3. Statistics of the two lifetime datasets, such as data size (number of individu-
als) N , dimensionality (number of risk factors) V , censoring rate (number of individuals
with censored time-to-event) C, missing-value percentage M , and event of interest

Data N V C M Event

Breast Cancer 2,165 12 23.3% 12.7% death

Aging Canada 4,470 24 42.6% 27.5% disability
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5.2 Baselines

During the experimental phase, we executed a comparative analysis involving
our method and nine distinct time-to-event prediction models. Cox model with
elastic-net regularization (Cox-EN) [31]: This model optimizes regression coef-
ficients through the incorporation of elastic-net regularization. Cox model with
neural network (CoxNN) [5]: CoxNN departs from the traditional linear exponent
of the Cox hazard by introducing a nonlinear artificial neural network output.
Accelerated failure time (AFT) model [26]: AFT assumes a Weibull survival
distribution to model survival times. Random survival forest (RSF) [9]: RSF
aggregates tree-based Nelson-Aalen estimators to derive estimates for the con-
ditional cumulative failure hazard. Multi-task logistic regression (MTLR) [18]:
MTLR models the survival distribution by employing multi-task logistic regres-
sion in a dependent manner, with the regularization parameter determined via
an additional 10-fold cross-validation (10CV). Accumulative-hazard-based joint
likelihood (AHJ) model [28]: AHJ captures the connection between survival
probability and time-varying factors of longitudinal data in a succinct yet potent
manner. DeepSurv [12]: DeepSurv is a deep learning extension of the Cox pro-
portional hazards model. DeepHit [15]: DeepHit employs a deep neural network
to directly learn the distribution of survival times. It avoids presumptions about
the underlying stochastic process, allowing for the possibility of evolving rela-
tionships between risk factors and risks over time. Survival neural network (SNN)
[27]: SNN computes binary classification scores at fixed time intervals to estimate
survival outcomes. For all models, the hyperparameters were optimized using a
validation dataset. The chosen settings are those that yield optimal outcomes as
per the respective work’s findings.

5.3 Performance Evaluation Metrics

To assess the predictive efficacy, we employed three distinct evaluation metrics:
the area under the ROC curve (AUC), the concordance index (C-index), and
the Brier score (BS), which we adapted to align with our specific context.

AUC. AUC measures the predictive ability of the model at a particular time. It
qualifies the ability of a model to address questions such as “Whether individual
i would be likely to die one year after index discharge?” It can be defined as

AUC =
1

|G′
0| × |G′

1|
∑

i∈G′
0

∑

j∈G′
1

1
(
Pr(Y ′

i [T ∗]|Xi) < Pr(Y ′
j [T ∗]|Xj)

)
.

C-Index. C-index is a generalization of the concept of AUC. It measures how
accurately a model can answer the questions such as “Which one of the two
patients i and j is more likely to die or be rehospitalized?” We define C-index
as

C-index =
1

|P|
∑

i,j∈P
1

(
Pr(Y ′

i [Ti]|Xi) ≤ Pr(Y ′
j [Sj ]|Xj)

)
,
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where P = {(i, j)|∀i, j : Ti ≤ Sj} is the number of comparable pairs of patients.
(Refer to [28] for more details regarding this metric.) Similar to AUC, C-index
takes values from 0.5 (completely random) to 1.0 (perfect prediction).

BS. Precisely, the Brier score (BS) operates as a mean squared error for time-
to-event predictions, serving as an indicator of the caliber of survival probability
predictions – in essence, quantifying prediction accuracy. The Brier score allows
for an assessment of the model’s capability to address queries such as “How
precise is the prognosis regarding the recurrence of the disease for patient i?”
This measure is computed as an overall error gauge spanning all the time points,
enabling a comprehensive evaluation of predictive accuracy, as follows:

BS =
1

|G′
0 ∪ G′

1|
∑

i∈G′
0∪G′

1

(Ci − Pr(Y ′
i [Si]|Xi))

2
,

where εi represents the event indicator for individual i, taking the value of 1 when
an event occurs and 0 otherwise. Notably, the Brier score (BS) is constrained
to fall within the interval [0, 1]. A smaller BS value corresponds to a heightened
precision in prognostication, indicating greater accuracy in the predictions.

RE for Survival Time. In order to assess the accuracy of the predicted onset
time, we introduce the concept of relative error (RE), which quantifies the dis-
parity between the estimated time T̂ and the actual ground truth T for all
individuals in the test set who have experienced an event:

RE =
1

|G′
0|

∑
∀i∈G′

0

min
{∣∣(T̂i − Ti)/Ti

∣∣, 1
}

.

Here, a smaller RE means a more accurate estimate of time-to-event.

5.4 Results and Discussion

Comparison of Time-to-Event Prediction. Table 4 presents the 10 cross-
validation results on the two datasets. Our model outperforms all the other mod-
els but the relative error of the predicted time-to-event on the Aging Canada
test set. SSP achieves not only accurate predictions of survival probability but
accurate estimates of time-to-event, where the RE of the survival estimates for
cancer patients is the lowest and for aging people is the second lowest (only
inferior to AHJ). In most cases, SNN is the second best, e.g., it achieves the
second-best C-index, BS, and RE for the time-to-event estimate on the Breast
Cancer dataset, and the second-best AUC and BS on the Aging Canada dataset.
Compared to SNN, we can see that SSP achieves an over 2% AUC improvement
on Breast Cancer data and 1% on Aging Canada data. Meantime, it yields
accurate results with an over 2% C-index improvement, while achieving a lower
BS and more accurate time-to-event prediction. The comparison between SSP
and MTLR demonstrates that our approach designed for repeated measures
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performs more effectively. ML-based models perform better than the statistic
models, such as Cox-EN and AFT, revealing the strong processing capabilities
and applicability of ML-based models to deal with complex time-to-event data.
The performance of Cox-EN, CoxNN, and AHJ, is not as good as SSN, MTLR,
and SSP; the most possible reason is that these three models assume that Cox’s
proportional risk meets. Although AHJ considers the change in the risk of the
event, it does not perform better than SSP. This is mainly because of its pro-
portional hazard assumptions (N.b.: AHJ is a typical Cox-based model). The
performance of the parametric model AFT on two data sets is the worst since
the Weibull distribution assumption does not fit most of the time distribution
well. The models (e.g., SSP, SNN, and AHJ) that are specifically designed for
handling time-varying risk factors perform better, in comparison with those non-
time-varying models.

Table 4. Comparison of the 10 cross-validation (10CV) results, and RE of the esti-
mated survival times, on the test data, in the form of the mean (standard deviation).
The best results are in bold and the second-best performances are underlined.

Dataset Model AUC C-index BS RE

Breast Cancer Cox-EN .676(.047) .695(.027) .283(.033) .473(.068)

CoxNN .693(.034) .673(.028) .313(.025) .542(.073)

AFT .670(.016) .651(.056) .260(.038) .450(.062)

RSF .687(.021) .682(.034) .274(.036) .410(.094)

MTLR 735(.041) .701(.029) .264(.020) .392(.085)

AHJ .712(.024) .682(.017) .302(.012) .325(.073)

DeepSurv .673(.031) .669(.028) .372(.025) .583(.059)

DeepHit .715(.014) .677(.035) .278(.029) .339(.061)

SNN .724(.035) .739(.030) .196(.021) .311(.053)

SSP .757(.022) .763(.029) .192(.019) .308(.058)

Aging Canada Cox-EN .671(.023) .682(.020) .372(.023) .420(.053)

CoxNN .674(.049) .707(.013) .341(.023) .413(.084)

AFT .632(.027) .665(.022) .282(.019) .439(.082)

RSF .634(.033) .643(.044) .302(.033) .475(.075)

MTLR .742(.027) .733(.019) .298(.043) .346(.082)

AHJ .729(.025) .738(.023) .251(.015) .334(.064)

DeepSurv .703(.031) .695(.027) .299(.022) 384(.079)

DeepHit .698(.032) .725(.031) .291(.033) .429(.058)

SNN .772(.018) .723(.024) .234(.041) .369(.064)

SSP .781(.019) .743(.018) .223(.028) .341(.073)
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Predicted Survival Probability. Figure 1 illustrates the average predicted
survival probabilities for all individuals across a 12-month period. Observing
the graph, it becomes evident that the survival probabilities generated by our
model (SSP) markedly diverge from the predictions of the other models. Notably,
our model consistently yields lower probabilities at each time point (with one
time point corresponding to each month). The survival curves produced by SNN,
AHJ, and MTLR appear closely aligned, with their probabilities demonstrating
significant discrepancies from the other six models (Cox-EN, CoxNN, AFT, RSF,
DeepSurv, and DeepHit), which yield comparatively higher probabilities. While
these curves don’t conclusively indicate the superior model, the predictions pro-
vided by SSP, SNN, AHJ, and MTLR effectively facilitate the differentiation
between individuals at high risk and those at low risk. Regarding the Aging
Canada dataset, most models generate closely aligned monthly average survival
probabilities. Notably, both SSP and SNN yield notably lower survival proba-
bilities (dipping below 0.7) for the last three months of the follow-up period.

Fig. 1. Comparison of the average of predicted survival probability

Case Study. Figure 2 showcases the predicted survival probabilities for two
distinct patients: one categorized as high risk and the other as low risk. (Note:
In this context, high-risk patients are those who succumbed during the follow-up
period, while low-risk patients remained unaffected.) Here are the particulars of
the patients: 1) The high-risk is a 58-year-old female who was discharged from
the hospital on July 10, 2010, following a 13-day hospital stay. Tragically, she
passed away due to breast cancer 185 d after her discharge. Notably, there were
no instances of rehospitalization prior to her demise; 2) The low-risk is a 75-
year-old male discharged from the hospital on April 2, 2012, after 23 d of stay.
He was still alive by the end of the 1-year follow-up period and had never been
rehospitalized before his death. Only the SNN, MTLR, and SSP models are able
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to distinctly differentiate between these two patients. Notably, the SSP model
manifests the most pronounced distinction between the two cases. Notably, the
SSP model is capable of projecting an exceedingly low survival probability for
the high-risk patient at the 185-day mark. This functionality holds immense
value as it can enable timely warnings and provision of advice regarding early
interventions for high-risk patients.

Fig. 2. Comparison of the predicted survival probability for two patients

Ablation Study. Given that SSP amalgamates several crucial components,
including censoring likelihood (see Eq. 4), time-sensitive risk considerations (as
depicted in Eq. 2), and regularization within the learning objective, we undertake
exhaustive ablation studies to dissect the contributions of distinct components.
Four distinct variants are considered for analysis: 1) SSP-censor disregards the
censoring likelihood and employs only Eq. 1 to determine model parameters; 2)
SSP-decay omits the time-dependent decay in cumulative risk computation, with
η(u, τ) set to 1 in Eq. 2; 3) SSP-static neglects repeated measures, utilizing Cox
proportional hazard instead of Eq. 2; 4) SSP-reg: In this variant, regularization
is excluded, rendering P (W) = 0 in the learning objective function as presented
in Eq. 5. The results (see Fig. 3) consistently underscore the supremacy of SSP
relative to all the variants. Notably, the improvement of SSP over SSP-censor
underscores the enhancement in predictive capacity gained by estimating the
censoring likelihood. The superiority of SSP in contrast to SSP-decay underscores
the effectiveness of the time-decay setting. Furthermore, the comparison between
SSP and SSP-static accentuates the significance of incorporating all repeated
measures. In comparison with SSP-reg, SSP exhibits higher AUC and C-index
values, illustrating the potential efficacy of regularization.
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Fig. 3. Comparison of variants’ performance

6 Conclusion

This paper proposes a new repeated measure modeling method that quantifies
the impact of measures on health status and time-to-event. The new method
optimizes the parameters on full data and the regularization approach. The
model learning is performed to transform survival prediction into multiple logis-
tic regression learning tasks at different time points. This approach eliminates
the need for any assumptions regarding the distribution of unknown data. The
outcomes of comparative experiments conducted on real-world data substanti-
ate that the proposed method surpasses state-of-the-art models. It demonstrates
superior performance and efficacy in predicting both survival probability and
time-to-event outcomes.
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