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Abstract. Detecting small, multi-scale, and easily obscured traffic signs
in real-world scenarios presents a persistent challenge. This paper pro-
poses an approach that utilizes a multi-scale feature pyramid module to
capture hierarchical features, facilitating robust detection of traffic signs
across varying viewing angles and scales. To aggregate features at differ-
ent scales and eliminate background interference, we employ a superpo-
sition of null convolution kernels with varying dilation rates, expanding
the perceptual field from small to large. This effectively covers the object
distribution across multiple scales while enhancing the resolution of the
final output feature map for improved small target localization. Our
method has demonstrated its effectiveness and superiority over several
state-of-the-art approaches through extensive experiments conducted on
two public traffic sign detection datasets.

Keywords: Traffic sign detection · Multi-scale feature pyramid ·
Hierarchical features · Perceptual field expansion · Robust detection

1 Introduction

The rapid advancement of autonomous driving and intelligent driver assistance
systems has spurred extensive research on traffic sign detection [4]. However,
this task is beset by various challenges, including interference from external
factors such as illumination, occlusion, weather conditions, and shooting angles.
Furthermore, traffic sign targets are typically small and exhibit variations in
scale, exacerbating the difficulty of detection.

To overcome these challenges, researchers have proposed innovative
approaches. Wang et al. [17] have replaced the original feature pyramid net-
work in YOLOv5, resulting in improved real-time detection performance. Simi-
larly, Yao et al. [19] have enhanced the feature fusion method of YOLOv4-Tiny
through the introduction of an AFPN (Adaptive Feature Pyramid Network).
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While single-stage networks are commonly employed in traffic sign detection
studies due to computational limitations in real-world applications, this app-
roach is not without shortcomings. Environmental changes and occlusions often
impact the visibility of traffic signs, leading to a decline in detection performance.

In recent times, researchers have made significant advancements in improv-
ing the performance of ATDR (Automatic Traffic Sign Detection and Recog-
nition) in real-world scenarios. One such approach involves the utilization of
multiscale pre-trained networks, which have shown promising results. In this
context, a novel traffic sign detection network called TSingNet has been intro-
duced. TSingNet leverages scale-aware and context-rich features to effectively
detect and identify small or obscured traffic signs [11]. Furthermore, Shen et al.
[16] propose a population multiscale attention pyramid network that facilitates
optimal feature fusion patterns and the construction of information-rich feature
pyramids to detect traffic signs of various sizes. Although these approaches have
demonstrated strong performance, they primarily incorporate high-level seman-
tic information in the earlier layers. Consequently, they face the challenge of
foreground semantics, particularly regarding small traffic signs, which are prone
to vanishing at higher levels of the FPN (Feature Pyramid Network).

We introduce MDCN (Multi-Scale Dilated Convolutional Enhanced Residual
Network), a novel traffic sign detection network that leverages scale awareness
and context-rich feature representation to detect multi-scale and small-object
traffic signs efficiently. Our paper makes the following key contributions:

– We employ several novel data augmentation methods to increase the diversity
and difficulty of the data, thereby enhancing the generalization ability of the
model and effectively addressing the detection of various scales.

– We propose MDRNet(Multi-scale Deep Residual network), a new backbone
architecture designed to learn scale-aware and context-rich features for traffic
sign detection in outdoor environments. MDRNet aims to narrow the seman-
tic gap between multiple scales, leading to improved detection performance.

– To overcome hardware limitations and accommodate high-resolution images,
we introduce GN to remove the batch size limitation. Additionally, we utilize
WS to further normalize the data from a weight perspective, accelerating
model convergence and improving accuracy.

2 Methodology

We developed MDCN based on the Faster R-CNN framework [15]. The archi-
tecture of our model is illustrated in Fig. 1, which comprises three primary com-
ponents: feature extraction, feature fusion, and detection.

2.1 Multiple Data Augmentation Fusion

In our experiments, we utilized the CTSD and GTSDB datasets, which exhibit
an imbalanced distribution of target scales and contain small target samples.
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Fig. 1. The Overall architecture of MDCN. The feature maps C1 to C5, obtained from
the backbone network, serve as the input for feature extraction. The feature maps
P2 to P6 are then generated to extract features at different scales. The RPN (Region
Proposal Network) is responsible for extracting regions of interest.

To address this issue and enhance the model’s attention towards small targets
during training, we expanded and augmented the datasets with additional data
specifically focused on small targets.

To achieve this, we employed various data augmentation techniques, includ-
ing Mixup [22], Mosaic [1], and Random affine [14]. These methods allowed us
to synthesize samples and expand the dataset effectively. Fig. 2 provides a visu-
alization of the data augmentation techniques employed.

Mixup involves overlaying two images, resulting in improved image detection
accuracy without incurring significant computational overhead. Mosaic, on the
other hand, stitches together four images by randomly cropping, scaling, and
aligning them. This approach not only enhances the richness of the image back-
ground but also increases the diversity of target scales within a single image.
These augmentation methods significantly enrich the detection dataset and con-
tribute to the network’s robustness.

2.2 MDRNet

To address the challenges posed by small-scale traffic sign image targets, multiple
scale levels, and potential occlusion, we propose MDRNet. Our approach involves
replacing all 3 × 3 regular convolutions in the conv4-conv5 layers of ResNet50
with dilated convolutions [20]. This modification expands the model’s perceptual
field without increasing computational complexity or compromising resolution.
Additionally, the different perceptual fields obtained from various convolutional
layers facilitate the extraction of multi-scale contextual information, thereby
enabling the effective detection of traffic sign targets at different scales. Please
refer to Fig. 3 for a visual representation of the details.

The regular convolution operation can be represented by Eq. 1, while a dilated
convolution is defined as Eq. 2.
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Fig. 2. Visualization of multiple data augmentation fusion. The ground truth is repre-
sented by the green box. (a) demonstrates the application of the Mosaic method, where
four images are randomly stitched together. This technique enhances the richness of the
image background and increases the diversity of target scales within a single image. (b)
depicts the use of Mixup, which involves scaling two sample-label data pairs together to
generate a new sample with an adjusted label count. This method effectively improves
the accuracy of image detection. (Color figure online)

Let y(m,n) denote the result of dilated convolution between an input sig-
nal I(m,n) and a filter F(i, j), where I has a length and width of M and N ,
respectively. The formulation of the regular convolution operation is given by
Eq. 1:

y(m,n) =
M∑

i=1

N∑

j=1

I(m + i, n + j) ∗ F(i, j) (1)

In contrast, the dilated convolution introduces a hyperparameter known as
the dilation rate, denoted by r. This parameter defines the spacing between val-
ues as the convolution kernel processes the data. The formulation of the dilated
convolution can be expressed as Eq. 2:

y(m,n) =
M∑

i=1

N∑

j=1

I(m + r × i, n + r × j) ∗ F(i, j) (2)

When the dilation rate r is set to 1, the dilated convolution reduces to a
regular convolution.
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Fig. 3. A detailed design of MDRNet. (a)The network architecture of MDRNet. (b) A
residual module is employed in MDRNet to enhance feature extraction and localization.
This module consists of two 1 × 1 regular convolutional modules and a 3 × 3 dilated
convolutional module. (c) The dilated convolutional module showcases the spacing
between dots.

2.3 Normalization Methods

Smaller batch sizes have been shown to be more robust to variations between
training and test sets [8]. For pixel-level image generation tasks like object detec-
tion and image segmentation, memory consumption limits the batch size to be
small [6]. Moreover, the large image size of traffic signs and the constraints of
general hardware resources further support the use of smaller batch sizes.

However, the effectiveness of BN (Batch Normalization) decreases signifi-
cantly with small batches, limiting its applicability in micro-batch training. To
address this limitation, we employ GN (Group Normalization), which divides
channels into groups and calculates the mean and variance within each group
for normalization. GN demonstrates stable accuracy across a wide range of batch
sizes compared to BN. GN differs from BN in terms of the statistical range over
which the mean and variance are calculated. We also introduce WS (Weight
Standardization) [13] to further enhance the model’s generalization ability and
network performance. WS provides regularization without compromising infor-
mation exchange, thereby improving model generalization. The joint application
of GN and WS is illustrated in Fig. 4. The fusion of GN and WS is expressed as
follows:

x̂ =

⎡

⎣x̂i,j | x̂i,j =
1

σi,·

⎡

⎣
∑

k,l

xi−k,j−l ·
[

1
σw

(Γk,l − μw)
]

− μi

⎤

⎦

⎤

⎦ (3)

where x is the input tensor, Γ is the convolution kernel, and y is the output
tensor. i and j denote the indexes of the output tensor, and k and l denote the
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indexes of the convolution kernel, respectively. In WS, the statistical domain of
the mean and standard deviation of the weight parameters is each channel. The
μi,· and σi,· in Eq. 4 are the mean and standard deviation, calculated as σi and
μi.

μi,· =
1
m

∑

k∈Si

xk, σi =
√

1
m

∑

k∈Si

(xk − μi)
2 + ε (4)

Si is the set of pixels for which the mean and variance are calculated, and Si

of GN is defined as

Si = {k | kN = iN ,

⌊
kc

C/G

⌋
=

⌊
ic

C/G

⌋
} (5)

where G is the number of groups (default value is 32) and C/G is the number
of channels per group. �−� represents the floor operation. GN computes μ and
σ along the (H,W ) axes and along a group of C/G channels.

Fig. 4. The joint application of GN and WS involves utilizing μi, σi, μw, and σw, which
represent the mean and variance of the respective statistical intervals. The normalized
convolution kernel of Filter 1 is denoted as Filter 1

′
, while the normalized feature layer

of Feature 1 is denoted as Feature 1
′
. It is important to note that the same operation

performed on Filter 1 is also repeated for Filter 2 to 5, ensuring consistency across all
filters.

3 Experiment

3.1 Implementation Details

Datasets GTSDB [7]: The traffic signs are classified into three categories: trian-
gular warning signs (yellow or red), circular prohibitory signs (red or black), and
mandatory signs (blue circles or squares). The GTSDB dataset consists of 900
images with a size of 1360 × 800, including 43 types of traffic signs. Similarly,
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the CTSD dataset contains 1100 images captured on highways, urban, and rural
roads, with sizes of 1024 × 768 and 1280 × 720. It also classifies traffic signs in
China into the same three categories as the GTSDB dataset.

Both the CTSD and GTSDB datasets were selected for their inclusion of
small targets and multiple scales in complex environments. Figure 5 shows some
typical examples from these datasets, where small targets and multiple scales of
traffic signs are often present in challenging conditions such as blurred, poorly
lit, damaged, and obscured signs. The datasets were divided into training and
test sets in a 7:1 ratio.

Evaluation Metrics. In this paper, the evaluation metrics used are AP50,
AP75, APS , APM , APL, and AR, which are calculated following the methods
described in COCO [10].

Setting. All experiments were conducted on Ubuntu 20.04 using PyTorch 1.9.1.
The training process utilized an NVIDIA GeForce GTX 3090 GPU with 24 GB
of memory. The SGD optimizer was employed with an initial learning rate of
0.00125, momentum of 0.9, and weight decay of 0.0001.

Fig. 5. Some difficult examples for traffic sign detection.

3.2 Results and Analysis

Comparison with State-of-the-Art Methods on CTSD. We compared our
MDCN method with several state-of-the-art approaches on the CTSD dataset.
The comparison results are presented in Table 1 and Table 2.

Our proposed MDCN method achieves an impressive 83.0 AP and 87.6 AR,
surpassing all other methods in the table. It demonstrates a strong balance
between minimizing false detections and reducing missed detections. In terms of
detection metrics, MDCN not only exhibits significant improvements over the
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original Faster R-CNN, but also outperforms both two-stage and single-stage
target detection algorithms. It outperforms the second-best DH Faster R-CNN
by 1.7 AP and surpasses the lowest AP YOLOF by a remarkable 14.9 AP.
MDCN outperforms other methods in all metrics, except for the APL metric.
This demonstrates the superiority of our method in multi-scale detection.

Furthermore, our proposed method achieves outstanding results for all three
major categories of traffic signs, particularly for the mandatory category, where
it outperforms all other detection methods by at least 3 points. This is due
to the variable shapes and scales of directional traffic signs, with their rectan-
gular aspect ratios often being more extreme compared to other traffic signs.
Consequently, the detection of multi-scale signs in this category poses greater
challenges.

Overall, the results validate the effectiveness of our MDCN method in achiev-
ing superior performance in multi-scale traffic sign detection.

Table 1. Comparison with the state-of-the-art methods on the CTSD dataset. Set Wa
is the abbreviation of Warning, Pr is the abbreviation of Prohibitory, and Ma is the
abbreviation of Mandatory.

Method Backbone Epo AP AP50 AP75 APS APM APL AR Wa Pr Ma

Dynamic rcnn [15] ResNet-50 1x 81.2 97.9 95.0 60.9 82.8 88.9 85.3 79.9 83.1 80.4

Retinanet [9] 2x 76.5 92.4 90.1 49.6 79.4 82.2 84.3 73.0 78.3 78.1

Cascade rcnn [2] 2x 81.2 96.4 96.0 61.9 83.4 91.4 85.4 80.4 83.6 79.6

Baseline [15] 1x 79.0 96.2 94.0 61.0 81.7 85.3 84.1 77.4 81.7 78.1

DH Faster rcnn [18] 1x 81.3 98.3 95.3 64.3 83.1 86.3 84.5 80.8 82.0 81.1

Libra Faster rcnn [12] 1x 80.0 97.3 94.9 63.7 82.4 87.2 85.6 78.7 82.5 78.8

YOLOF [3] 1x 68.1 94.5 81.6 39.4 71.4 77.4 74.7 69.0 64.9 70.2

VfNet [21] 1x 78.4 97.0 93.7 62.5 80.5 88.7 84.7 78.7 80.0 76.4

ATSS [23] 1x 81.1 97.6 96.7 65.5 82.4 87.0 85.6 80.3 81.1 81.9

TOOD [5] 1x 79.8 98.4 95.5 63.4 81.5 88.7 83.8 80.5 79.9 79.1

MDCN MDRNet 1x 83.0 98.3 98.1 70.5 83.9 90.8 87.6 81.7 84.6 82.9

Comparison with State-of-the-Art Methods on GTSDB. We conducted
a comparison between MDCN and several popular detection algorithms on the
GTSDB dataset, which is widely recognized as a representative dataset in the
field of traffic sign object detection. Table 1 presents the results of this compar-
ison.

Among the two-stage algorithms, DH Faster R-CNN and Cascade R-CNN
achieved commendable detection performance with 77.9 AP and 76.6 AP, respec-
tively. However, MDCN surpassed them by achieving an impressive 78.7 AP. Fur-
thermore, MDCN outperformed the baseline by 5.5 AP and surpassed YOLOF,
which had the lowest AP, by a significant factor of 1.48. Overall, MDCN exhib-
ited superior detection accuracy compared to other methods, particularly for the
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warning class of traffic signs that typically occupy a smaller proportion of the
image.

Additionally, MDCN demonstrated higher AP scores in the APS and APL

metrics compared to all other methods. Although its APM was slightly lower
than Dynamic R-CNN, Cascade R-CNN, and DH Faster R-CNN by 0.6 APM , 1.2
APM , and 2.0 APM , respectively, MDCN still outperformed them by significant
margins in the APS metric (10.1 APS , 13.1 APS , and 6.8 APS , respectively).
Moreover, MDCN’s APL was higher than that of these methods. These results
indicate that our method exhibits superior and more stable performance in multi-
scale detection.

In conclusion, MDCN demonstrated excellent detection performance on the
GTSDB dataset, affirming the effectiveness and generalization capabilities of our
proposed model.

Table 2. Comparison with the state-of-the-art methods on the GTSDB dataset. Set
Wa is the abbreviation of Warning, Pr is the abbreviation of Prohibitory, and Ma is
the abbreviation of Mandatory.

Method Backbone Epo AP AP50 AP75 APS APM APL AR Wa Pr Ma

Dynamic rcnn [15] ResNet-50 1x 76.2 96.1 92.5 64.3 82.7 85.6 80.2 76.6 76.3 75.7

Retinanet [9] 2x 67.3 85.5 79.8 44.4 79.5 78.8 76.3 72.3 75.7 53.8

Cascade rcnn [2] 2x 76.6 95.9 91.2 61.3 83.3 82.5 80.6 75.9 78.5 75.4

Baseline [15] 1x 73.2 96.5 92.1 56.9 81.6 85.4 77.8 74.8 77.5 67.3

DH Faster rcnn [18] 1x 77.9 97.8 93.5 67.6 84.1 76.3 82.1 73.9 79.7 80.3

Libra Faster rcnn [12] 1x 75.8 98.9 92.6 63.8 80.9 82.9 79.9 75.3 75.5 76.7

YOLOF [3] 1x 53.3 93.3 62.2 39.7 61.7 59.6 64.0 47.4 58.6 53.9

VfNet [21] 1x 72.2 95.6 85.6 56.6 80.6 78.4 78.0 67.1 76.7 73.0

ATSS [23] 1x 75.4 97.1 92.3 57.7 82.0 81.7 79.8 73.2 77.1 75.8

TOOD [5] 1x 76.1 98.0 92.7 67.4 82.0 83.4 82.1 76.5 76.6 75.3

MDCN MDRNet 1x 78.7 98.0 95.2 74.4 82.1 85.9 83.2 81.2 77.0 78.1

3.3 Ablation Studys

We performed a series of ablation experiments to demonstrate the effectiveness
of MDCN for the detection of small traffic sign targets at multiple scales in
real-world complex environments.

Component Ablation Studies of MDCN. The effectiveness of various opti-
mization components in improving the performance of the baseline model was
evaluated through experiments on the CTSD and GTSDB datasets, and the
results are summarized in Table 3 and Table 4.

The addition of GN led to improvements of 1.4 and 3.4 in AP on the CTSD
and GTSDB datasets, respectively, highlighting its positive impact on detecting
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small targets. Combining GN with WS further enhanced the detection perfor-
mance, resulting in improvements of 1.5 AP and 1.2 AP, as well as 8.9 and
15.4 in APS, respectively, compared to GN alone. This demonstrates that the
combination of GN and WS contributes to improved detection of small targets.

The integration of MDRNet significantly improved the AP values by 3.7
AP and 5.3 AP on both datasets compared to the baseline. Moreover, it led
to notable improvements in APS, APM, and APL, with gains of 8.9, 2.6, and
4.1, respectively, on both datasets. The largest improvement was observed in
APS, indicating the effectiveness of MDRNet in detecting small targets. This
improvement can be attributed to the ability of MDRNet to capture more con-
textual information, which helps reduce the rates of false detections and missed
detections for small targets.

Furthermore, the inclusion of the MDEF method resulted in additional
improvements of 4.0 AP and 5.5 AP on the two datasets compared to the base-
line. MDEF effectively expanded the number of small targets in the dataset and
disrupted the regular positioning of traffic signs on the road, thereby preventing
overfitting to specific road environments.

Visualizations in Fig. 6 further demonstrate the superior performance of
MDCN compared to the baseline. MDCN exhibits greater sensitivity to traf-
fic sign objects with uneven positional distribution and a wide range of scales.
Additionally, it demonstrates better detection performance for small objects, as
evident from the second row of the visualization.

Table 3. Ablation study on the effectiveness of the various MDCN component modules
on CTSD dataset. MDEF is short for Multiple Data augmentation Fusion.

Method GN WS MDRNet MDEF AP AP50 AP75 APS APM APL

MDCN - - - - 79.0 96.2 94.0 61.0 81.7 85.3

✓ - - - 80.4 97.3 96.2 70.2 82.6 84.7

✓ ✓ - - 81.9 97.1 97.0 68.9 83.6 90.3

✓ ✓ ✓ - 82.7 97.6 97.2 69.9 84.3 89.4

✓ ✓ ✓ ✓ 83.0 98.3 98.1 70.5 83.9 90.8

Ablation Experiments of Dilated Convolution Embedding Positions.
In our ablation experiments, we investigated the impact of dilated convolution
on the task of traffic sign detection. Dilated convolution is known for its ability
to expand the receptive field while preserving resolution. However, it is crucial
to carefully select the positions where regular convolutions are replaced with
dilated convolutions to achieve optimal results.

We examined the effect of incorporating dilated convolutions from the
bottom-up, starting from the conv2 to conv5 layers in the backbone network.
The results, as shown in Table 5 and Table 6, revealed that the addition of dilated
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Table 4. Ablation study on the effectiveness of the various MDCN component modules
on GTSDB dataset. MDEF is short for Multiple Data augmentation Fusion.

Method GN WS MDRNet MDEF AP AP50 AP75 APS APM APL

MDCN - - - - 73.2 96.5 92.1 56.9 81.6 85.4

✓ - - - 76.6 95.9 95.1 69.9 82.0 84.6

✓ ✓ - - 77.8 97.7 94.3 72.3 81.2 82.5

✓ ✓ ✓ - 78.5 97.1 95.6 73.1 82.2 89.6

✓ ✓ ✓ ✓ 78.7 98.0 95.2 74.4 82.1 85.9

(a) Original (b) Baseline (c) MDCN

Fig. 6. Comparison of detection results between baseline and MDCN. (a) is the original
image. (b) is the detection result using baseline. (c) is the detection result using MDCN.
The images in the last two columns are taken from the green box in the first column.
(Color figure online)

convolutions in the last two layers of the convolutional hierarchy yielded the most
significant improvements. Specifically, on the CTSD dataset, the APs increased
to 81.7 and 81.6, while on the other dataset, they improved to 76.4 and 77.6,
respectively.
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This observation can be attributed to the fact that deeper convolution lay-
ers tend to lose internal data structures, resulting in the loss of some crucial
information related to small objects. By replacing the deeper convolutions with
dilated convolutions, we were able to improve the localization accuracy of small
targets.

Building upon these findings, we gradually added dilated convolution mod-
ules in pairs until all 3× 3 convolutions between c4 and c5 were replaced. This
configuration resulted in the optimal embedding position for MDRNet, achieving
the best performance of 83.0 AP and 78.7 AP on both datasets.

These ablation experiments highlight the importance of selecting appropriate
positions for dilated convolutions, and they provide valuable insights into the
optimal design choices for our MDRNet architecture.

Table 5. Ablation study with gradually dilated modules on CTSD dataset. In the
setting column, c2, c3, c4 and c5 stand for applying dilated convolution at c2, c3, c4
and c5 layers.

Method c2 c3 c4 c5 AP AP50 AP75 APS APM APL AR

MDRNet ✓ - - - 81.3 96.9 95.9 66.0 83.2 91.1 86.7

- ✓ - - 81.4 96.8 96.4 66.6 83.5 88.7 86.1

- - ✓ - 81.7 97.9 97.8 68.0 82.8 89.4 86.4

- - - ✓ 81.6 97.0 96.0 67.1 83.6 90.2 87.4

✓ ✓ - - 80.5 97.1 96.3 66.6 81.2 89.9 85.0

- ✓ ✓ - 80.4 97.6 97.1 66.5 82.3 87.6 85.9

- - ✓ ✓ 83.0 98.3 98.1 70.5 83.9 90.8 87.6

Table 6. Ablation study with gradually dilated modules on GTSDB dataset. In the
setting column, c2, c3, c4 and c5 stand for applying dilated convolution at c2, c3, c4
and c5 layers.

Method c2 c3 c4 c5 AP AP50 AP75 APS APM APL AR

MDRNet ✓ - - - 75.7 95.6 90.3 70.2 79.6 84.2 80.8

- ✓ - - 75.9 96.1 93.4 65.0 80.1 84.6 81.5

- - ✓ - 76.4 95.9 92.7 66.3 81.8 86.7 80.7

- - - ✓ 77.6 97.4 93.1 72.1 81.3 85.4 82.6

✓ ✓ - - 74.9 95.4 94.0 68.0 78.6 85.0 80.3

- ✓ ✓ - 77.2 96.7 93.7 65.7 81.6 84.2 82.7

- - ✓ ✓ 78.7 98.0 95.2 74.4 82.1 85.9 83.2
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4 Conclusion

The primary objective of this paper is to enhance the detection performance of
small multi-scale traffic signs in complex real-world environments. To achieve
this goal, we propose an MDCN traffic sign detection method based on Faster
R-CNN. Our approach incorporates MDRNet as the backbone network, which
effectively increases the perceptual field and sampling rate. This improvement
enhances the feature representation capability for targets of different scales and
those that may be partially obscured. Considering the characteristics of the
traffic sign dataset, hardware resource limitations, and the dataset’s high res-
olution, we introduce a normalized combination method at the backbone and
pooling layers. This technique accelerates the convergence speed and improves
the generalization ability of the model. Furthermore, we employ a multi-data
augmentation fusion strategy to expand small targets and enhance the network’s
robustness. The effectiveness and generalization of our proposed MDCN method
are validated through comprehensive evaluations on the CTSD and GTSDB
datasets. The results demonstrate its superiority in detecting small traffic signs
and establish its competitiveness compared to other state-of-the-art methods.

For future research, we intend to explore traffic sign recognition techniques
tailored specifically for mobile terminals. By adapting the methodology to mobile
devices, we aim to further expand the applicability and practicality of traffic sign
detection in real-world scenarios.
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