
Multidimensional Adaptative kNN
over Tracking Outliers (Makoto)

Jessy Colonval(B) and Fabrice Bouquet

FEMTO-ST Institue, CNRS, Univ. de Franche Comté (UFC), Besançon, France
{jessy.colonval,fabrice.bouquet}@femto-st.fr

Abstract. This paper presents an approach to detect outliers present in
a data set, also called aberration. These outliers often cause problems to
the learning algorithms by deviating their behavior, which makes them
less efficient. It is therefore necessary to identify and remove them during
the cleaning data step before the learning process. For this purpose, a
method that detects if data is an outlier from its k nearest neighbors is
proposed for multidimensional data sets. In order to make the method
more accurate, the number of k nearest neighbors chosen is adaptive
for each class present in the data set, and each neighbor has a dif-
ferent weight in the decision, depending on their respective proximity.
The proposed method is called Makoto for Multidimensional Adaptative
kNN Over Tracking Outliers. The effectiveness of this method is com-
pared with four other known methods based on different principles: LOF
(Local Outlier Factor), Isolation forest, One Class SVM and Inter Quar-
tile Range (IQR). Thus, on the basis of 406 synthetic data sets and 17
real data sets with distinct characteristics, the Makoto method appears
to be more efficient.

Keywords: Machine learning · Data filtering · Spatial Outlier
Detection · Kernel Functions · Adaptative kNN · Correlation

1 Introduction

An important principle in the use of artificial intelligence algorithms is the qual-
ity of the learning data. The implementation of tools to help filter the data is a
critical point [14]. We are interested here in a particular case, that of outliers.
These are data that contain information that is incompatible with the rest of
the data set. This data can have two effects:

1. Weaken the predictive power of the model obtained at the end of the learning
phase.

2. Weaken the score obtained from the model during its validation phase.

It is important to define a few terms that will be used in this paper. A data
set can be visualized as a table with rows and columns. Each row represents an
individual, often unique, while the columns represent the characteristics of that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14176, pp. 535–550, 2023.
https://doi.org/10.1007/978-3-031-46661-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46661-8_36&domain=pdf
http://orcid.org/0000-0001-6792-0264
http://orcid.org/0000-0001-9181-1172
https://doi.org/10.1007/978-3-031-46661-8_36

536 J. Colonval and F. Bouquet

individual. There are several terms to designate them, but here, the rows will be
called points and the columns will be called attributes.

In general, there are two types of attributes [1, Chap 11]:

– Behavioral attributes is an attribute of interest measured for each point.
Points often have only one, but they can have several. These attributes are
often non-spatial because it measures a certain quantity. For example, the
type of glass, the presence of a heart abnormality or the description of an
image. The values of a behavioral attribute are often called class, but here
we will call it behavioral value to avoid confusion.

– Contextual attributes is an attribute expressing the characteristics of
a point is defined on a continuous domain of values, also called spatial
attributes. A point often has several of them. For example: the composi-
tion of a glass pane, the number of heartbeats per minute, or the color of a
pixel.

We are interested in the detection of what we call spatial outliers, i.e. estab-
lished from a neighborhood. The main criterion of these types of outlier search
is the auto-correlation property, i.e. the fact that data in a neighborhood are
closely correlated. Thus, an outlier is defined as an abrupt change in behavioral
attributes among nearby points according to their contextual attributes.

However, there are two ways to create a neighborhood, depending on the
nature of the data used:

– Multidimensional methods determine the neighborhood based on a dis-
tance between each point.

– Graph-based methods determine the neighborhood from the linkage rela-
tions between the points. For example, by using edges between nodes, where
each node is associated with behavioral attributes.

We are only interested in multidimensional data sets. Thus, the neighborhood
will be established from a distance calculation, euclidean for the Makoto method.

Neighborhood-based multidimensional spatial outlier detection methods have
already been proposed [5,13]. They differ in the way they establish the neighbor-
hood and how they combine them to make an outlier prediction. The problem is
that these techniques consider the neighbors equitably in the final decision, and
the majority use all attributes for the creation of the neighborhood.

First, considering all neighbors as equal can be problematic because the
neighbors are not equidistant from the starting point. And according to the
auto-correlation property, it would make sense to give more importance to the
nearest neighbors. For example, when the difference between the nearest and
the farthest neighbor is important, then it is intuitive to want to give more
importance to the nearest one. However, there are several ways to weight a
neighborhood so, depending on the method chosen, it is possible to obtain sev-
eral outlier predictions. Some methods have decided to generalize this idea and
uses different weighting methods of the neighborhood [11,16].

Second, using all contextual attributes in the establishment of the neighbor-
hood can be problematic because of the likely presence of randomly distributed

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 537

attributes. These attributes are noise and can hinder outlier detection by making
some of them undetectable or by considering data as falsely outlier [10]. More-
over, using fewer attributes leads to performance and resource gains, but this is
not the main objective

In Sect. 2 we will describe the proposed method in detail and then Sect. 3
will compare this method with others from the state of the art to demonstrate
its effectiveness.

2 Principle of the Method Makoto

This section presents the principle of the outlier detection method Makoto (M-
ultidimensional Adaptative kNN Over Tracking Outliers). It can detect outliers
only on multidimensional data sets, i.e. with continuous values. This method
establishes the outliers using a neighborhood whose number is adaptive according
to the distribution of the data set (Sect. 2.3). Each neighbor has a different weight
in the decision-making, and this weight is computed using a kernel function
(Sect. 2.1 and 2.2). In order to avoid being biased by the choice of a kernel
function and to be more confident in the detection, we decide to use several
kernel functions and to make a majority vote among their decisions to determine
if a point is an outlier or not. Moreover, we use several subsets of the original
data set to compute different neighborhoods that will each bring a prediction so
that in the end the majority decision will prevail (Sect. 2.4).

2.1 Kernel Functions

To determine the weight of each neighbor, we decide to use the kernel func-
tions [9]. This function gives a weight according to the distance of a neighbor to
the origin point. We consider that the distances are between -1 and 1, where 0
is the shortest distance and -1 and 1 are the farthest.

These functions have several properties. They reach their maximum in 0
and decrease as the distance increases. Opposite distances are considered to be
equivalent, i.e., their weight is the same. The weighting must be positive or equal
to 0. Thus, the following properties must be respected [7]:

– positive, ∀x ∈ R, f(x) ≥ 0;
– max in 0, max

x∈R

f(x) = f(0);

– opposite, ∀x ∈ R, f(x) = f(−x);
– continuous by party ∀x, y ∈ R, x < y, f(x) ≥ f(y).

As mentioned at the beginning of this section, this method use a majority vote
on several kernel functions. There are several kernel functions in the literature,
only the most common will be studied [9]. However, as shown in Fig. 1, some
of the kernel functions are similar. The risk if we use all these functions, in the
majority vote, is that a subpart of these functions influence the vote because
they often obtain identical results. Thus, some votes will be counted several

538 J. Colonval and F. Bouquet

Fig. 1. Kernel functions below in common coordinate system.

times and will have more importance than they should have, which will bias the
result. So the decision will be taken only by a specific profile of kernel function
and the others will be ignored.

To verify this bias, we calculate the correlation of the votes that each kernel
function produces. We calculate this score from the real data sets, presented in
the Sect. 3.2, with the Pearson’s method. For each of them, the outlier detection
is performed with each kernel function to see which points are commonly con-
sidered as outliers and then to establish a correlation score to determine which
functions often give the same results. Thus, the values in Table 1 are the mean
and standard deviation of the correlation scores obtained for a pair of kernel
functions over all data sets.

Assuming that correlation scores above 90% give such similar results that it
is equivalent to doing the same thing then these functions can be separated into
only three different groups:

– Rectangular and Gaussian;
– Triangular, Biweight, Triweight, Tricube, Cosine and Epanechnikov;
– Inverse.

As previously mentioned, if we use simultaneously these functions in the
majority vote, then the decision will be made only by the second group. So the
final result will have globally the same result as if it had been done with one
of the functions of the second group. This vote will be biased and questions the
relevance of using all these functions. Thus, we recommend the use of several
functions that have different profiles and capture different behaviors.

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 539

Table 1. Correlation scores of outlier votes for each kernel function.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) —
0.68 0.66 0.62 0.66 0.73 0.94 0.71 0.49

± 0.14 ± 0.14 ± 0.14 ± 0.14 ± 0.12 ± 0.04 ± 0.12 ± 0.17

(b)
0.68

—
0.96 0.93 0.96 0.92 0.74 0.94 0.71

± 0.14 ± 0.03 ± 0.05 ± 0.04 ± 0.04 ± 0.12 ± 0.04 ± 0.14

(c)
0.66 0.96

—
0.94 0.98 0.91 0.72 0.93 0.71

± 0.14 ± 0.03 ± 0.03 ± 0.02 ± 0.05 ± 0.12 ± 0.04 ± 0.14

(d)
0.62 0.93 0.94

—
0.93 0.86 0.68 0.87 0.76

± 0.14 ± 0.05 ± 0.03 ± 0.04 ± 0.07 ± 0.13 ± 0.07 ± 0.13

(e)
0.66 0.96 0.98 0.93

—
0.92 0.72 0.93 0.70

± 0.14 ± 0.04 ± 0.02 ± 0.04 ± 0.05 ± 0.12 ± 0.04 ± 0.15

(f)
0.73 0.92 0.91 0.86 0.92

—
0.79 0.98 0.65

± 0.12 ± 0.04 ± 0.05 ± 0.07 ± 0.05 ± 0.10 ± 0.01 ± 0.16

(g)
0.94 0.74 0.72 0.68 0.72 0.79

—
0.78 0.52

± 0.04 ± 0.12 ± 0.12 ± 0.13 ± 0.12 ± 0.10 ± 0.10 ± 0.16

(h)
0.71 0.94 0.93 0.87 0.93 0.98 0.78

—
0.66

± 0.12 ± 0.04 ± 0.04 ± 0.07 ± 0.04 ± 0.01 ± 0.10 ± 0.16

(i)
0.49 0.71 0.71 0.76 0.70 0.65 0.52 0.66

—± 0.17 ± 0.14 ± 0.14 ± 0.13 ± 0.15 ± 0.16 ± 0.16 ± 0.16

The use of kernel functions, in Makoto method, is based on the assumption
that the closer the neighbors are, the more they share common characteris-
tics with the point of origin. However, this neighborhood is established from a
Euclidean distance calculation which, by its simplicity, gives only an approxima-
tion of the real distance between the points. Thus, it is possible that the points
considered to be nearest by the Euclidean calculation are not in reality so, and
therefore do not have the characteristics closest to the point of origin. By putting
aside this principle, we can imagine other kernel functions which take more care
of further points or located on specific distance slices. For example, from the
sinusoidal, we get the functions in Fig. 2. Makoto will use these kernel functions
with the addition of the Rectangular function.

Fig. 2. Kernel functions sinusoidal.

540 J. Colonval and F. Bouquet

2.2 Weighted k Nearest Neighbor Classification Method

These methods are based on the idea that the closest neighbors should have
a higher weight than the farthest neighbors in the prediction. This prediction
will be used to determine if a point is an outlier. To do this, the distances on
which the search for neighbors is based must be transformed into weight using
the functions presented in Sect. 2.1.

The wkNN classification method is used to combine the behavioral attributes
of the neighborhood in order to make a prediction. It has been generalized to
take the existence of several behavioral attributes within the same point. The
prediction algorithm takes the following form:

Step 1 → Define the number of neighbors k, the distance function d, usually
the Euclidean distance, and the kernel function f .

Step 2 → Let O = {(Xi, Bi)|i ∈ [1, n]} the set of n points where Xi is the
set of contextual attributes and Bi is the set of behavioral attributes. Steps 3 to
7 are applied for each object, we note the current one (X,B).

Step 3 → Find the k nearest neighbors to the current point using the method
distance only on contextual attributes, such as d(X,Xi). This set will be denoted
K = {(Xki

, Bki
)|i ∈ [1, k]}.

Step 4 → As in the previous step, find the k + 1 nearest neighbor to the
current object. This neighbor will be denoted (Xk+1, Bk+1) and will be used to
normalize the distances between the point and its neighbors.

Step 5 → Normalize the distances of the k nearest neighbors such as: Dki
=

D(Xki
,Xk+1) = d(X,Xki

)

d(X,Xk+1)

Step 6 → Transform the normalized distance into weight using the kernel
function, wki

= f(Dki
).

Step 7 → Let b ∈ B be a behavioral attribute and Cb the set of possible
classes for b then the set of predictions is defined as the class with the highest
weighting for each behavioral attribute:

B̂(X,B) = {∀b ∈ B|maxb(∀c ∈ Cb| Σ
ki∈K

{
if cki

= c, wki

otherwise, 0)} (1)

For example, a data set whose contextual attributes are planar coordinates
and the behavioral attribute is a colored geometric figure, a red circle or a
blue rectangle. Let a point among this set whose coordinates are center and its
unknown geometrical shape will be symbolized by a green star. The algorithm
presented above is used to determine the shape of the object. To begin, the
five closest neighbors are found using the Euclidean distance. To normalize the
distances, a sixth neighbor is found, which is not visually represented because
it has no influence in the final decision. The weight of each neighbor can be
calculated from the normalized distance. Thus, the prediction in the shape of
the point can change according to the chosen kernel function. Figure 3 plots
the weight of each neighbor and the resulting prediction for the Rectangular,
Triangular, Triweight and Gaussian kernel functions. The gradient represents
the relative weight according to the relative distance to the k + 1 neighbor. The
darker it is, the more weight the neighbor will have.

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 541

Fig. 3. Predictions according to the chosen kernel function.

This example illustrates the influence of kernel functions in the prediction.
Here, the blue rectangles are in the majority but further from the evaluated point
than the red circles. Thus, the prediction changes according to the difference
between the maximum and minimum of the kernel function used (see Fig. 1).
In this example, the Triangular and Triweight functions vary enough that the
proximity of the red circles counterbalances the numerical advantage of the blue
rectangles. In contrast, the Rectangular and Gaussian functions vary little or
not at all to allow this.

2.3 Adaptative k per Class

The choice of the number of neighbors k is important because it affects the pre-
dictions made. A bad value of k decreases the quality of prediction and thus the
quality of outlier detection. If the number of neighbors k is too large, then small
groups of points with the same behavioral values may be underrepresented by
different neighboring groups and therefore the prediction will not be represen-
tative of reality. The presence of this type of such cases when the number of
representatives for each behavioral value is unbalanced. For example, in Fig. 3
the number of neighbors k is equal to 5 but if this number is decreased then the
weights given by the kernel functions change and the predictions of Rectangu-
lar and Gaussian move from blue rectangle to red circle. And can change if the
number k had been higher. Finally, is 5 the right value of k for this example?

Moreover, choosing a unique number of neighbors k is not always relevant,
and it is better to choose an adaptive number depending on the point being
evaluated. Several methods to establish these numbers have been proposed, and
their efficiency compared to the use of a unique k has already been demon-
strated [6]. The main problem is the asymmetry of the data sets in the distribu-
tion of behavioral values. A number k that is relevant for the majority classes
can be destructive for the minority ones. If this number is too high compared to
the absolute number of representatives, then we will fall into the case discussed

542 J. Colonval and F. Bouquet

above. This will cause the suppression of these minority classes. Based on this
principle, the optimal number k is different for each behavioral value.

The formula for calculating the number of neighbors per class is inspired by
the one proposed by Baoli et al. [3]. It has been modified to avoid the use of
constants, so the constant α is removed to be replaced by the lower bound equal
to 3 to handle cases where the value given by the equation is too low. While
the starting value k in the original equation is approximated by the formula√

max(∀y∈Vb|N(y))
2 .

Let b ∈ B be a behavioral attribute and Vb the set of behavioral values of b
then for each value x ∈ Vb the number of neighbors is determined according to
the following equation:

3 ≤
√

max(∀c∈Vb|N(c))
2 ∗ N(x)

max(∀y ∈ Vb|N(y))
≤ min(∀y ∈ Vb|N(y)) (2)

where N() gives the number of elements with the same behavioral value provides
as parameter. The number of neighbors must be between 3 and the number of
elements of the smallest class. The lower bound is 3 because it is the minimum
number of neighbors that we consider reasonable to take to make a decision, less
would be absurd. The upper bound is the number of elements of the minority
class, so a behavioral value cannot be underrepresented in its neighborhood by
a majority class and can influence decisions.

To illustrate the relevance of the upper bound, the Shuttle data set (see
Sect. 3.2) will be used as an example. The specificity of this data set is the great
disparity in the distribution of points for each behavioral value, i.e. between 10
and 45 000. Thus, in the case where a point initially has a behavioral value of 1
when it should be 6, then the number k used without the bound is equal to 150
(see Table 2). Logically, these nearest neighbors will have a behavioral value equal
to 6, but it only has 10 points in the data set. In the best case where these points
were the 10 nearest neighbors, there are still 140 neighbors who will probably
be of the majority behavioral value, i.e. 1. Even with a good neighborhood
weighting, the 140 neighbors will have more weight and this hypothetical outlier
cannot be detected. It is therefore necessary to limit this number of neighbors
in order to ensure that even minority behavioral values can have an influence in
the detection.

Table 2. The neighbor number k calculated with and without the upper bound in
Eq. 2 for Shuttle data set.

Behavioral value 1 2 3 4 5 6 7

Number of members 45 586 50 171 8 903 3 267 10 13

the number k without bound 150 3 3 29 10 3 3

with bound 10 3 3 10 10 3 3

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 543

2.4 Sub Data Sets and Sub Contextual Attributes and Filtering

In order to make the method more efficient and generalized to avoid overfitting,
we decide to use this algorithm on a defined number of sub-data-sets ns inspired
by the functioning of Random Forest machine learning algorithms. Let nc be
the number of contextual attributes, then ns =

√
nc ∗ 10. To do this, we must

first decide how to create a subset from a data set. The objective is to have
several sub-data-sets, i.e., with only a part of the points, in order to evaluate all
the points in slightly different configurations to finally determine that the point
is an outlier if it is in the majority of cases.

The subsets should respect several characteristics if they want to use them
for this outlier detection method. First, all points must be represented, i.e., a
point must be present in at least one subset, so that all points can be evaluated
at least once. This feature is most likely to be respected when there are numerous
subsets to be generated, however we choose to force it algorithmically in order
to ensure it in all circumstances. Second, all subsets must have a distribution of
behavioral values similar to the original data set in order to have a representation
close to the original data set.

To respect the first condition, an algorithm is used to create the minimum
number of subsets that allows the presence of all points at least once. This
algorithm only needs the percentage of points present on each subset, pr. It
must not be too low in order to have subsets close from the original set to have
reliable decisions, e.g. 70%. Thus, this minimum number of subsets created is
equal to 	 1

pr

. Then the rest of the subsets, i.e. ns −	 1

pr

, are created randomly.

All these subsets always respect the second condition.
Still for the same purpose as the subsets, only a part of the contextual

attributes are used. Half of the attributes are kept, and each subset uses a
different subgroup of attributes. But before that, a slight filtering of the contex-
tual attributes is performed in order to remove those that are considered useless
in establishing the behavioral value because they will influence the creation of
neighborhoods, deviating them from reality and making the decision less reli-
able. Thus, we decide to remove from the process all attributes that are not
correctly correlated with at least one of the other attributes. This number must
be low enough so that only noisy attributes are removed, e.g. ±0.1. Finally, the
correlation matrix is calculated using the MIC method, which is more accurate
than the Pearson and Spearman methods which are commonly used.

3 Experimentation

For the experimentation, we study two kinds of data sets. The first is synthetic
one and the second is real data sets proposed by the community. Computations
have been performed on the supercomputer facilities of the Mésocentre de calcul
de Franche-Comté. The details of the results on the synthetic data sets and the
real data sets used are present in a GitHub directory1.

1 https://github.com/JessyColonval/Makoto.

https://github.com/JessyColonval/Makoto

544 J. Colonval and F. Bouquet

During these experiments, Makoto will have 70% of the points of the original
data set for each subset and the filtering of contextual attributes is equal to
0.1 of correlation. As comparison, 4 state-of-the-art methods are used: IQR [15],
LOF [4], SVM [2] and Isolation Forest [12]. They are chosen because they are
often used for outlier detection and have different approaches. However, there
are other methods that are more recent as PyOD [17]. But it doesn’t use the
same logic of detection, in fact they assume that the training subset doesn’t
contain outliers and the detection is performed only on the test subset.

For validation of certain results, we will use the same 6 machine learning
(ML) algorithms at three different ways (see Sects. 3.1 and 3.2). They come from
the Python library scikit-learn2 and represent different approaches in order to
avoid being biased by the results that only one type of machine learning would
give. These algorithms are: SVC, KNeighborsClassifier, RandomForestClassifier
(RF), ExtraTreesClassifier (ET), GradientBoostingClassifier and LogisticRegres-
sion (LR). All meta-parameters have the default values, except for ET/RF where
n estimator is 200 and LR where max iter is 1 000.

3.1 On Synthetic Data Sets

These data sets are created with the same algorithm that was designed to gener-
ate the Madelon data set [8]. They all have only one behavioral attribute whose
values are homogeneously distributed. And all contextual attributes are useful
for establishing the behavioral value, i.e., there is no noise. The original genera-
tion does not contain any outliers, they are added later and are therefore known
for further experimentation.

Table 3. Characteristics of synthetic data sets.

samples attributes classes

250 10 . . . 50, 25 2 . . . 5

500 10 . . . 70, 25, 75 2 . . . 5

1 000 10 . . . 100, 25, 75 2 . . . 7

2 500 10 . . . 100, 25, 75 2 . . . 8

5 000 10 . . . 100, 25, 75, 125 2 . . . 11

10 000, 25 000 10, 50, 75, 100, 250 2, 3, 5, 7, 9, 11

The outliers are created using the 6 ML algorithms described earlier. The
idea is to detect the most useful points for predictions in order to change their
behavioral value. Thus, the chances of having strong outliers which are harmful
to the predictions is increased. While a purely random method wouldn’t prevent
the selection of points that are not very useful for the prediction. For this pur-
pose, the data sets are randomly divided into a training subset (70%) and a test
2 https://scikit-learn.org/stable/index.html.

https://scikit-learn.org/stable/index.html

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 545

subset (30%). These 6 ML algorithms are trained with the training subset, then
we see if they are able to correctly predict the points contained in the test sub-
set. These actions are repeated 10 times, and count for each point the number of
times they have been correctly predicted. Finally, the points that will change in
behavioral value are all those with the lowest scores, and stop once the desired
number of outliers is created. In cases where there are more than 2 behavioral
values, the new one is chosen randomly.

Thus, with these methods, we create 406 data sets having the characteris-
tics presented in Table 3 and having 5% outliers. These data sets have distinct
characteristics to ensure that there is no significant difference in behavior based
on the numbers of points, of attributes or of behavioral values. For those with
a number of points between 250 and 5 000, the numbers of attributes increase
with a step of 10 (except for 25 and 75) and the numbers of behavioral attributes
increase with a step of 1. Data sets with 10 000 and 25 000 points are less exhaus-
tive in their number of attributes and behavioral values due to computational
time concerns during their generation and outlier detection.

Fig. 4. Specificity and sensitivity of the 5 methods.

Since the generated outliers are known, then it’s possible to use the sensitiv-
ity and specificity scores to determine which one is the best limit. As a reminder,
the calculation of the sensitivity and specificity is based on the numbers of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN).
The sensitivity measures the ability of a test to give a positive result when a
hypothesis is verified, it’s calculated by: TP

TP+FN . In this case, it is interpreted by
the percentage of correctly detected outliers. And the specificity measures the

546 J. Colonval and F. Bouquet

ability of a test to give a negative result when the hypothesis is not verified, it’s
calculated by: TN

TN+FP . In this case, it is interpreted by the percentage of unde-
tected points that are actually healthy. These metrics are interpreted together,
a good method must give two scores as close to 100% as possible.

Figure 4 compares the sensitivity and specificity scores obtained with the
5 methods on synthetic data sets. A good method should give sensitivity and
specificity scores close to 100%, so visually the points should be at the top
right of the plot. Makoto is clearly the best method, in most cases it is able to
detect numerous outliers (≥ 80%) while keeping well the healthy points (≥ 80%).
However, there are some cases where too many healthy points are removed (60–
79%) but this is still acceptable compared to the other solutions. While the LOF,
SVM and Isolation Forest keep the healthy points well but remove very few
outliers (≤ 20%), which makes these methods not very useful. IQR is the worst
because these solutions are either useless, i.e. few outliers detected with healthy
points kept, or harmful, i.e. too many healthy points deleted.

3.2 Real Data Sets

In order to confirm the efficiency of Makoto, the comparison continues with 17
real data sets whose contextual attributes have continuous values. They all come
from the UCI Machine Learning Repository3 database, except Mammography,
which comes from the BCSC (Breast Cancer Surveillance Consortium) site4. The
characteristics of these data sets cover several combinations (Table 4), in order
to verify that the behavior of a method doesn’t change according to these.

Table 4. Characteristics of real data sets.

Data sets Points Attributes
Behavioral

values

annthyroid 7 200 21 3

breastW 683 9 2

cardio 2 126 21 10

glass 214 9 6

ionosphere 351 33 2

isolet 7 797 617 26

letter
20 000 16 26

recognition

mammo-
11 183 6 2

graphy

Data sets Points Attributes
Behavioral

values

multiple
2 000 619 10

features

musk 6 598 166 2

parkinson 756 752 2

pendigits 10 992 16 10

satimage2 6 435 36 6

shuttle 58 000 9 7

wine 178 13 3

wine-
1 599 11 6

quality

The metrics used to compare the methods studied are different from those
used for the synthetic data sets. This is because these data sets come from the

3 https://archive.ics.uci.edu/ml/index.php.
4 https://www.bcsc-research.org/.

https://archive.ics.uci.edu/ml/index.php
https://www.bcsc-research.org/

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 547

Table 5. Comparison of cross-validation, false positive and class keeping scores of IQR,
LOF, SVM, Isolation Forest and Makoto methods on real data sets.

IQR LOF SVM IF Makoto

Data sets
CV FP CK CV FP CK CV FP CK CV FP CK CV FP CK

annthyroid

Error 98.12% 94.72% 97.12% 97.98% 97.68% 94.22% Error

✗ ± 0.22 ± 0.12 ✓ ± 0.22 ± 0.06 ✓ ± 0.19 ± 0.07 ✓ ✗

53.60% 11.22% 3.01% 5.54% 7.42%

breastW

97.13% 91.66% 96.73% 95.08% 97.09% 99.67% 98.61% 70.86% 98.8% 6.22%

± 1.12 ± 0.36 ✓ ± 1.19 ± 0.25 ✓ ± 0.91 ± 0.0 ✓ ± 0.29 ± 0.90 ✓ ± 0.72 ± 0.94 ✓

28.11% 24.60% 7.32% 37.63% 2.20%

cardio

81.4% 60.35% 82.45% 71.67% 82.06% 85.30% 81.23% 72.71% 90.06% 25.53%

± 1.94 ± 0.19 ✗ ± 1.04 ± 1.14 ✓ ± 1.5 ± 0.3 ✓ ± 1.26 ± 0.35 ✓ ± 0.97 ± 0.36 ✓

56.35% 1.69% 3.15% 16.04% 14.44%

glass

73.46% 28.12% 73.49% 40.98% 72.28% 49.17% 74.75% 48.7% 82.72% 21.99%

± 4.87 ± 1.09 ✗ ± 5.15 ± 1.25 ✓ ± 4.66 ± 1.76 ✓ ± 5.05 ± 1.71 ✓ ± 4.92 ± 0.98 ✓

36.45% 15.89% 1.87% 16.82% 23.83%

ionosphere

95.12% 59.47% 94.23% 55.61% 91.21% 91.67% 90.81% 86.54% 97.0% 23.76%

± 2.58 ± 0.43 ✓ ± 2.00 ± 0.72 ✓ ± 1.88 ± 0.0 ✓ ± 1.97 ± 0.52 ✓ ± 1.75 ± 1.24 ✓

48.15% 34.76% 2.85% 32.48% 8.83%

isolet

Error 93.6% 75.0% 93.53% 90.55% 93.1% 93.4% 95.23% 39.48%

✗ ± 0.5 ± 0.0 ✓ ± 0.44 ± 0.25 ✓ ± 0.49 ± 0.14 ✓ ± 0.34 ± 0.61 ✓

96.63% 0.05% 2.98% 14.21% 3.36%

letter
recognition

90.04% 68.37% 91.48% 94.52% 91.64% 92.75% 91.48% 88.15% 95.03% 49.01%

± 0.38 ± 0.23 ✓ ± 0.25 ± 0.23 ✓ ± 0.32 ± 0.12 ✓ ± 0.27 ± 0.09 ✓ ± 0.26 ± 0.18 ✓

9.96% 0.19% 3.01% 13.57% 9.61%

mammography

99.41% 94.33% 98.66% 90.98% 98.69% 91.23% 99.26% 91.06% 99.66% 7.06%

± 0.04 ± 0.03 ✓ ± 0.09 ± 0.19 ✓ ± 0.12 ± 0.16 ✓ ± 0.03 ± 0.2 ✓ ± 0.09 ± 0.13 ✓

37.61% 1.78% 3.08% 19.88% 1.34%

multiple
features

Error 98.33% 3.33% 98.29% 90.14% 99.0% 91.15% 99.1% 30.36%

✗ ± 0.47 ± 10.54 ✓ ± 0.45 ± 0.54 ✓ ± 0.45 ± 0.2 ✓ ± 0.4 ± 2.22 ✓

97.65% 0.05% 3.00% 35.45% 1.40%

musk

91.38% 59.22% 96.54% 93.17% 96.45% 99.31% 96.39% 98.78% 98.15% 14.4%

± 4.61% ± 0.37 ✓ ± 0.35 ± 0.41 ✓ ± 0.27 ± 0.25 ✓ ± 0.34 ± 0.06 ✓ ± 0.28 ± 0.45 ✓

97.39% 0.32% 2.99% 6.68% 2.39%

parkinson

Error 86.67% 83.26% 86.45% 87.03% 87.04% 86.19% 87.0% 22.6%

✗ ± 1.67 ± 0.79 ✓ ± 1.9 ± 1.08 ✓ ± 1.78 ± 1.14 ✓ ± 1.74 ± 1.69 ✓

100% 3.04% 3.04% 2.78% 2.12%

pendigits

98.58% 85.18% 98.67% 76.34% 98.52% 94.99% 98.87% 50.45% 98.91% 44.56%

± 0.2 ± 0.17 ✓ ± 0.2 ± 0.45 ✓ ± 0.16 ± 0.16 ✓ ± 0.23 ± 0.17 ✗ ± 0.16 ± 0.57 ✓

4.64% 1.56% 2.98% 51.91% 0.99%

satimage2

89.19% 96.65% 89.89% 76.35% 89.28% 97.56% 88.48% 58.24% 95.25% 10.93%

± 0.45 ± 0.16 ✓ ± 0.52 ± 0.49 ✓ ± 0.52 ± 0.06 ✓ ± 0.75 ± 4.04 ✓ ± 0.5 ± 0.27 ✓

8.42% 1.54% 2.97% 19.40% 6.96%

shuttle

99.83% 81.91% Error Error 99.78% 60.8% 99.43% 92.26%

± 0.05 ± 0.0 ✗ ✗ ✓ ± 0.03 ± 0.04 ✗ ± 0.04 ± 0.13 ✓

79.56% 19.00% 2.79% 15.62% 1.00%

wine

98.03% 90.2% 98.11% 70.67% 98.3% 88.12% 95.96% 95.83% 98.65% 53.33%

± 1.66 ± 0.0 ✓ ± 1.54 ± 1.41 ✓ ± 1.45 ± 1.01 ✓ ± 2.81 ± 0.0 ✓ ± 1.22 ± 2.64 ✓

9.55% 2.81% 4.49% 13.48% 2.25%

winequality

64.42% 51.85% 63.66% 41.31% 63.48% 35.72% 63.99% 46.05% Error

± 2.17 ± 0.61 ✓ ± 1.69 ± 1.02 ✓ ± 1.85 ± 1.16 ✓ ± 1.95 ± 0.57 ✓ ✗

25.20% 2.94% 2.88% 16.45% 27.39%

real world, and we’re looking for only the outliers contains in these data sets.
Thus, it is not possible to measure the ability to detect outliers because we don’t
know which points are real outliers. To circumvent this problem, the comparison
is done using the cross-validation and false positivity scores.

The cross-validation score will measure the performance of the 6 ML algo-
rithms described above after removing outliers. The idea is that the presence of

548 J. Colonval and F. Bouquet

outliers reduces the performance of these algorithms. Thus, by measuring this
score for each method, it’s possible to determine which removal was the most
beneficial for these ML algorithms, therefore which method is the most efficient.
To obtain this score, the data set is randomly separate into two subsets: a train-
ing subset (70%) and a test subset (30%) which keeps the proportion of the
behavioral values of the original set. Then, each of the ML algorithms is trained
with the training subset, and we look at their ability to correctly predict the
behavioral value of the points contained in the test subset. This operation gives
a score as a percentage, the closer it is to 100% the more the algorithm is able
to correctly predict this point and the more effective the training, the better
the quality of the data. This process is repeated 10 times, i.e. with 10 different
separation of the subsets, then averaged in order to have more reliable results.

The false positivity score will measure the relevance of the points that have
been removed. It is assumed that a true outlier is a point that will be wrongly
predicted, and a false outlier is a point that will be correctly predicted, so that
it could have been kept in the training set. However, this way of calculation
is imperfect. If too many outliers are removed, then the data set is denatured
and those predictions made are not relevant. It works better with few outliers
and should be read in addition to the other scores. This score is calculated with
the same logic as the cross-validation score. Except that the training set are
the healthy points and the test set are the outliers. For the same reasons, this
process is repeated 10 times, but only changing the random seeds of the ML
algorithms and keeping the same subsets.

The Table 5 gives all the results obtained from the 5 methods on the 17 real
data sets. The CV columns give, respectively, the averages of the cross-validation
scores and the standard deviations, and then the percentage of outliers detected
among all points. The FP columns give the mean of the false positivity scores
and the standard deviations. The CK columns indicate if at least one behavioral
value was completely considered as an outlier. The cells labeled Error appears
when a method have denatured the data set too much to be able to compute
a part of the metrics. The best methods are those with a high cross-validation
score, a low false positivity score, no missing behavioral values and a reasonable
number of detected outliers (≤ 25%). Thus, Makoto outperforms the other
methods on 15 of the 17 data sets.

4 Conclusion

This paper presented a complete outlier detection method, Makoto, and showed
its effectiveness by comparing it with 4 other methods in the literature on syn-
thetic and real data sets. However, some of Makoto’s results can be improved
by changing some of these meta-parameters or the way they are calculated. A
possible extension would be to establish a better methodology to choose them.
Moreover, this method is similar to a machine learning algorithm and could be
used to predict behavioral values.

Multidimensional Adaptative kNN over Tracking Outliers (Makoto) 549

Acknowledgement. Work supported by the French National Research Agency (con-
tract ANR-18-CE25-0013) and by the EIPHI Graduate School (contract ANR-17-
EURE-0002)

References

1. Aggarwal, C.C.: Outlier Analysis. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-47578-3

2. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vec-
tor machines for unsupervised anomaly detection. In: Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description, ODD 2013, pp. 8–15.
Association for Computing Machinery, New York (Aug 2013). https://doi.org/10.
1145/2500853.2500857

3. Baoli, L., Qin, L., Shiwen, Y.: An adaptive k-nearest neighbor text categorization
strategy. ACM Trans. Asian Lang. Inform. Process. 3(4), 215–226 (2004). https://
doi.org/10.1145/1039621.1039623

4. Breunig, M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local
outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104 (Jun 2000). https://doi.org/
10.1145/342009.335388

5. Chehreghani, M.H.: K-nearest neighbor search and outlier detection via minimax
distances. In: Proceedings of the 2016 SIAM International Conference on Data
Mining, p. 9. Society for Industrial and Applied Mathematics (2016). https://doi.
org/10.1137/1.9781611974348.46

6. Dietterich, T., Wettschereck, D., Wettschereck, D., Dietterich, T.G.: Locally adap-
tive nearest neighbor algorithms. In: Advances in Neural Information Processing
Systems 6, pp. 184–191. Morgan Kaufmann (1994)

7. Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability den-
sity. Theory Probabil. Appli. 14(1), 153–158 (1969). https://doi.org/10.1137/
1114019

8. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Design and Analysis of the NIPS2003
Challenge, vol. 207, pp. 237–263 (Nov 2008). https://doi.org/10.1007/978-3-540-
35488-8 10

9. Hechenbichler, K., Schliep, K.: Weighted k-Nearest-Neighbor Techniques and Ordi-
nal Classification. discussion paper 399 (Jan 2004)

10. Keller, F., Muller, E., Bohm, K.: HiCS: high contrast subspaces for density-based
outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering,
pp. 1037–1048 (Apr 2012). https://doi.org/10.1109/ICDE.2012.88

11. Kou, Y., Lu, C.T., Chen, D.: Spatial weighted outlier detection. In: Proceedings
of the 2006 SIAM International Conference on Data Mining, p. 5. Proceedings,
Society for Industrial and Applied Mathematics (Apr 2006). https://doi.org/10.
1137/1.9781611972764.71

12. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-Based Anomaly Detection. ACM
Trans. Knowl. Dis. Data 6(1), 3:1–3:39 (2012). https://doi.org/10.1145/2133360.
2133363

13. Lu, C., Chen, D., Kou, Y.: Algorithms for spatial outlier detection. In: Third
IEEE International Conference on Data Mining, pp. 597–600 (Nov 2003). https://
doi.org/10.1109/ICDM.2003.1250986

https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1145/2500853.2500857
https://doi.org/10.1145/2500853.2500857
https://doi.org/10.1145/1039621.1039623
https://doi.org/10.1145/1039621.1039623
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1137/1.9781611974348.46
https://doi.org/10.1137/1.9781611974348.46
https://doi.org/10.1137/1114019
https://doi.org/10.1137/1114019
https://doi.org/10.1007/978-3-540-35488-8_10
https://doi.org/10.1007/978-3-540-35488-8_10
https://doi.org/10.1109/ICDE.2012.88
https://doi.org/10.1137/1.9781611972764.71
https://doi.org/10.1137/1.9781611972764.71
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1109/ICDM.2003.1250986
https://doi.org/10.1109/ICDM.2003.1250986

550 J. Colonval and F. Bouquet

14. Thung, F., Wang, S., Lo, D., Jiang, L.: An empirical study of bugs in machine
learning systems. In: 2012 IEEE 23rd International Symposium on Software Relia-
bility Engineering, pp. 271–280 (Nov 2012). https://doi.org/10.1109/ISSRE.2012.
22

15. Whaley, D.L.: The Interquartile Range: Theory and Estimation (2005)
16. Zhang, S., Wan, J.: Weight-based method for inside outlier detection. Optik 154,

145–156 (2018). https://doi.org/10.1016/j.ijleo.2017.09.116
17. Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a python toolbox for scalable outlier detec-

tion. J. Mach. Learn. Res. 20(96), 1–7 (2019). http://jmlr.org/papers/v20/19-011.
html

https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1016/j.ijleo.2017.09.116
http://jmlr.org/papers/v20/19-011.html
http://jmlr.org/papers/v20/19-011.html

	Multidimensional Adaptative kNN over Tracking Outliers (Makoto)
	1 Introduction
	2 Principle of the Method Makoto
	2.1 Kernel Functions
	2.2 Weighted k Nearest Neighbor Classification Method
	2.3 Adaptative k per Class
	2.4 Sub Data Sets and Sub Contextual Attributes and Filtering

	3 Experimentation
	3.1 On Synthetic Data Sets
	3.2 Real Data Sets

	4 Conclusion
	References

