
Exploring the Effectiveness of Positional
Embedding on Transformer-Based

Architectures for Multivariate Time
Series Classification

Chao Yang(B), Yakun Chen, Zihao Li, and Xianzhi Wang

School of Computer Science, University of Technology Sydney, Ultimo, Australia

chao.yang@student.uts.edu.au

Abstract. Positional embedding is an effective means of injecting posi-
tion information into sequential data to make the vanilla Transformer
position-sensitive. Current Transformer-based models routinely use posi-
tional embedding for their position-sensitive modules while no efforts are
paid to evaluating its effectiveness in specific problems. In this paper,
we explore the impact of positional embedding on the vanilla Trans-
former and six Transformer-based variants. Since multivariate time series
classification requires distinguishing the differences between time series
sequences with different labels, it risks causing performance degradation
to inject the same content-irrelevant position token into all sequences.
Our experiments on 30 public multivariate time series classification
datasets show positional embedding positively impacts the vanilla Trans-
former’s performance yet negatively impacts Transformer-based variants.
Our findings reveal the varying effectiveness of positional embedding on
different model architectures, highlighting the significance of using posi-
tional embedding cautiously in Transformer-based models.

Keywords: Positional embedding · Multivariate time series
classification · Deep learning

1 Introduction

Multivariate time series classification plays a critical role in various fields, such as
gesture recognition [29], disease diagnosis [15], and brain-computer interfaces [6].
RecentyearshavewitnessedTransformer-basedmethodsmakingremarkablebreak-
throughs innumerousdisciplines, suchasnatural languageprocessing [19,24], com-
puter vision [1,9], and visual-audio speech recognition [20,22]. This success has
inspired an increasing application of Transformer-based architectures [4,16,30] to
multivariatetimeseriesclassification.Besides,Transformer’sabilitytoperformpar-
allel computation and leverage long-range dependencies in sequential data make it
especially suitable for modeling time series data [26].

Since Transformer is position-insensitive, positional embedding was intro-
duced to allow the model to learn the relative position of tokens. Positional
embedding generally injects position information into sequence data [23]. It takes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14176, pp. 34–47, 2023.
https://doi.org/10.1007/978-3-031-46661-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46661-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-46661-8_3


Exploring the Effectiveness of Positional Embedding 35

the form of sinusoidal functions of different frequencies, with each embedding
dimension corresponding to a sinusoid whose wavelengths form a geometric pro-
gression. To date, positional embedding has been a routine for Transformer-based
models that deal with multivariate time series classification problems.

Despite the widespread use, there have been debates [27,31] around the
necessity of positional embedding, and a comprehensive investigation of posi-
tional embedding’s effectiveness on various Transformer-based models is still to
be developed. Firstly, Transformer-based models [14,33] that contain position-
sensitive modules (e.g., convolutional and recurrent layers) can automatically
learn the position information, making positional embedding redundant to some
extent. This point is supported by studies in other fields [18,28] suggesting posi-
tional embedding may be unnecessary and replaced with position-sensitive lay-
ers. Secondly, positional embedding has inherent limitations that may potentially
impair the classifier’s performance. Since positional embedding is hand-crafted,
it may bring inductive bias that may adversely impact the model’s performance
in some cases. While positional embedding injects the same position tokens into
time series of different classes, it poses additional challenges to the classifier in
figuring out the differences between sequences with different class labels.

In this paper, we explore the impact of positional embedding on various
Transformer-based models to facilitate researchers and practitioners in making
informed decisions on whether to incorporate positional embedding in their mod-
els for multivariate time series classification. In a nutshell, we make the following
contributions in this paper:

– We comprehensively review existing Transformer-based models that contain
position-sensitive layers and summarize them into six types of Transformer-
based variants.

– We conduct extensive experiments on 30 multivariate time series classifica-
tion datasets and evaluate the impact of positional embedding on the vanilla
Transformer and Transformer-based variants.

– Our results show that positional embedding positively impacts the perfor-
mance of the vanilla Transformer while negatively influencing the performance
of the Transformer-based variants in multivariate time series classification.

2 Background

2.1 Positional Embedding

Positional embedding was first proposed for Transformer in [23], which uses
fixed sine and cosine functions of different frequencies to represent the position
information, as described below:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

) (1)



36 C. Yang et al.

Fig. 1. A summary of Transformer-based variants for modeling sequential data.

where pos and i are the position and the dimension indices, respectively. dmodel

is the dimensionality of the input time series, where each dimension of theposi-
tional embedding corresponds to a sinusoid. For any fixed offset k, PEpos+k is
represented as a linear function of PEpos; this enables the model to learn the
relative positions easily. The positional embedding is then added to the time
series as the input to Transformer.

Considering hand-crafted positional embedding is generally less expressive
and adaptive [26], Time Series Transformer (TST) [32] enhances the vanilla
Transformer [23] by implementing learnable positional embedding. Specifically,
TST shares the same architecture as the vanilla Transformer, which stacks sev-
eral basic blocks, each consisting of scaled dot-product multi-head attention
and a feed-forward network (FFN) to leverage temporal data. But it differs in
initializing the positional embedding using fixed values and then updating the
embedding jointly with other model parameters through the training procedure.

2.2 Transformer-Based Variants

Current studies often incorporate convolutional or recurrent layers in the vanilla
Transformer architecture in dealing with sequence-related tasks, including time
series analysis. Figure 1 summarize these Transformer-based variants into six
categories of representative methods, as detailed below.

– Convolutional Embedding: Methods in this category, namely Informer
[33], Tightly-Coupled Convolutional Transformer (TCCT) [21], and ETS-



Exploring the Effectiveness of Positional Embedding 37

former [27], implement a convolutional layer to obtain convolutional embed-
dings, which map the raw input sequences to a latent space before feeding
them to the transformer block.

– Convolutional Attention: Instead of calculating the point-wise attention,
LogTrans [13] and Long-short Transformer [34] use the convolutional layer
to calculate the attention matrix (including queries, keys, and values) of seg-
ments to leverage the local temporal information.

– Convolutional Feed-forward: Uni-TTS [17] and Conformer [8] implement
a convolutional layer after the multi-head attention as the feed-forward layer
(or part of the feed-forward layer) to capture local temporal correlations.

– Recurrent Embedding: Temporal Fusion Transformer (TFT) [14] and the
work in [3] use a recurrent layer to encode content-based order dependencies
into the input sequence.

– Recurrent Attention: Recurrent Memory Transformer [2], Block Recurrent
Transformer [11], and R-Transformer [25] use a recurrent neural net to cal-
culate the attention matrix, which harnesses the temporal information more
effectively when compared with the point-wise attention.

– Recurrent Feed-forward: Instead of point-wise feed-forward, TRANS-
BLSTM [10] uses a recurrent layer after multi-head attention to harness non-
linear temporal dependencies.

3 Problem Definition

A multivariate time series sequence can be described as: X = {x1, x2, . . . xT },
where xi ∈ R

N , i ∈ {1, 2, · · · , T}, T is the maximum length of the sequence, and
N is the number of variables. A dataset contains multiple (sequence, label) pairs
and is denoted by D = {(X1, y1) , (X2, y2) , . . . , (Xn, yn)} , where each yk denotes
a label, k ∈ {1, 2, · · · , n}. The objective of multivariate time series classification
is to train a classifier to map the input sequences to probability distributions
over the classes for the dataset D.

4 Methodology

We call TST [32] the basic model. To avoid having to compare all the related
studies exhaustively, we design six Transformer-based variants based on the six
types of techniques that are incorporated in the related studies (shown in Fig. 1),
respectively. We further identify three configurable components of a Transformer
architecture (shown in Fig. 2) as the input embedding layer (which projects the
input time series into the latent space), the projection layer (which calculates
the attention matrix), and the feed-forward layer (which leverages non-linear
relationships). For each variant, we try different techniques (e.g., a Linear layer,
a Convolutional layer, or a Gated Recurrent Unit) in each layer/component, as
detailed in Table 1.



38 C. Yang et al.

Fig. 2. A general architecture of transformer-based variants for modeling sequential
data. The corresponding relations between configurable components and the respective
candidate techniques are indicated by dashed lines.

4.1 Basic Model

The basic model adopts linear layers in all three components. In this case, for
each sample xt ∈ R

M : X ∈ R
M×T = [x1,x2, . . . ,xT], where T is the sequence

length and M is the variable number. The input embedding can be described
as:

Ut = W xxt + bx (2)

where t = 0, 1, ..., T is the time stamp index, W x ∈ R
M×dk and bx ∈ R

dk are
learnable parameters. The projection layer can be described as:

Q = WQUt + bQ

K = WKUt + bK

V = WV Ut + bV

(3)

where WQ ∈ R
dk×dk , WK ∈ R

dk×dk , WV ∈ R
dk×dk , bQ ∈ R

dk , bK ∈ R
dk , and

bV ∈ R
dk are are learnable parameters. We use standard scaled Dot-Product

attention proposed in the vanilla Transformer [23] for self-attention calculation:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V. (4)

The feed-forward layer can be described as:

FFN(x) = ReLU (W1x + b1) W2 + b2 (5)



Exploring the Effectiveness of Positional Embedding 39

Table 1. Configurations for the basic model and six variants. ConvEmbedding means
Convolutional Embedding Variant; RecEmbedding means Recurrent Embedding Vari-
ant; the same naming rule applies to other models.

Model Input Embedding Projection Feed-forward

Basic Model Linear Linear Linear

ConvEmbedding Convolutional Layer Linear Linear

ConvAttention Linear Convolutional Layer Linear

ConvFFD Linear Linear Convolutional Layer

RecEmbedding Gated Recurrent Unit Linear Linear

RecAttention Linear Gated Recurrent Unit Linear

RecFFD Linear Linear Gated Recurrent Unit

where W1 ∈ R
dk×dk , W2 ∈ R

dk×dk , b1 ∈ R
dk , and b2 ∈ R

dk are all leanable
parameters.

4.2 Convolutional-Based Variants

We refer to the architectures that employ convolutional layers in any of the three
components (input embedding layer, projection layer, or feed-forward layer) as
convolutional-based variants. Here, we utilize a one-dimensional convolutional
layer with a kernel size of 3. We also set the padding to 1 to preserve the lengths
of representations. In the following, we illustrate our convolutional-based variants
one by one.

Convolutional Embedding Variant replaces the linear layer with the
convolution layer in the input embedding layer, which is formulated below:

Ut = W x ∗ xt + bx (6)

where ∗ is the convolutional operation, W x ∈ R
M×dk×P and bx ∈ R

M are
learnable parameters, and P is the kernel size.

Convolutional Attention Variant replaces the linear layer with the con-
volution layer in the projection layer, which is formulated below:

Q = WQ ∗ Ut + bQ

K = WK ∗ Ut + bK

V = WV ∗ Ut + bV

(7)

where WQ ∈ R
dk×dk×P , WK ∈ R

dk×dk×P , WV ∈ R
dk×dk×P , bQ ∈ R

dk , bK ∈
R

dk , and bV ∈ R
dk are learnable parameters.

Convolutional Feed-forward Variant formulated the linear layer with
the convolution layer in the feed-forward layer, which is described below:

FFN(x) = ReLU (W1 ∗ x + b1) ∗ W2 + b2 (8)

where W1 ∈ R
dk×dk×P , W2 ∈ R

dk×dk×P , b1 ∈ R
dk , and b2 ∈ R

dk are the leanable
parameters.



40 C. Yang et al.

4.3 Recurrent-Based Variants

We name the architectures that use recurrent layers in any of the three com-
ponents (input embedding layer, projection layer, or feed-forward layer) as
recurrent-based variants. Here, we use Gate Recurrent Unit (GRU) [5] as the
recurrent layer. In the following, we illustrate our recurrent-based Variants one
by one.

Recurrent Embedding Variant replaces the linear layer with the GRU in
the input embedding layer, which is formulated below:

rt = σ
(
W x

irxt + bxir + W x
hrU(t−1) + bxhr

)

zt = σ
(
W x

izxt + bxiz + W x
hzh(t−1) + bxhz

)

nt = tanh
(
W x

inxt + bxin + rt ◦ (
W x

hnh(t−1) + bxhn
))

ht = (1 − zt) ◦ nt + zt ◦ h(t−1)

Ut = Concat(h1, h2, ..., hT )

(9)

where W x
ir ∈ R

M×dk , W x
iz ∈ R

M×dk , W x
in ∈ R

M×dk , W x
hr ∈ R

dk×dk , W x
hz ∈

R
dk×dk , W x

hn ∈ R
dk×dk , bxir ∈ R

dk , bxhr ∈ R
dk , bxiz ∈ R

dk , bxhz ∈ R
dk , bxin ∈ R

dk ,
and bxhn ∈ R

dk are learnable parameters, ◦ is the Hadamard product.
Recurrent Attention Variant replaces the linear layer with the GRU in

the projection layer. Since the calculation processes of all the matrices are similar,
for simplicity, we only present the calculation process of the query matrix Q in
the projection layer below:

rt = σ
(
WQ

irUt + bQir + WQ
hrU(t−1) + bQhr

)

zt = σ
(
WQ

izUt + bQiz + WQ
hzh(t−1) + bQhz

)

nt = tanh
(
WQ

inUt + bQin + rt ◦
(
WQ

hnh(t−1) + bQhn

))

ht = (1 − zt) ◦ nt + zt ◦ h(t−1)

Q = Concat(h1, h2, ..., hT )

(10)

where WQ
ir ∈ R

dk×dk , WQ
iz ∈ R

dk×dk , WQ
in ∈ R

dk×dk , WQ
hr ∈ R

dk×dk , WQ
hz ∈

R
dk×dk , WQ

hn ∈ R
dk×dk , bQir ∈ R

dk , bQhr ∈ R
dk , bQiz ∈ R

dk , bQhz ∈ R
dk , bQin ∈ R

dk ,
and bQhn ∈ R

dk are learnable parameters.
Recurrent Feed-forward Variant replaces the linear layer with the GRU

in the feed-forward layer, which is formulated below:

rt = σ
(
WirUt + bir + WhrU(t−1) + bhr

)

zt = σ
(
WizUt + biz + Whzh(t−1) + bhz

)

nt = tanh
(
WinUt + bin + rt ◦ (

Whnh(t−1) + bhn
))

ht = (1 − zt) ◦ nt + zt ◦ h(t−1)

O = Concat(h1, h2, ..., hT )

(11)



Exploring the Effectiveness of Positional Embedding 41

where Wir ∈ R
dk×dk , Wiz ∈ R

dk×dk , Win ∈ R
dk×dk , Whr ∈ R

dk×dk , Whz ∈
R

dk×dk , Whn ∈ R
dk×dk , bir ∈ R

dk , bhr ∈ R
dk , biz ∈ R

dk , bhz ∈ R
dk , bin ∈ R

dk ,
and bhn ∈ R

dk are learnable parameters, and O is the final output of the feed-
forward layer.

5 Experiments

We empirically evaluate the impact of positional embedding on the performance
of the basic model and transformer-based variants (illustrated in Sect. 4) for
multivariate time series classification. We report our experimental configurations
and discuss the results in the following subsections.

5.1 Datasets

We selected 30 public multivariate time series datasets from the UEA Time
Series Classification Repository [7]. All datasets were pre-split into training and
test sets1. We normalized all datasets to zero mean and unit standard deviation
and applied zero padding to ensure all the sequences in each dataset bear the
same length.

5.2 Model Configuration and Evaluation Metrics

We trained the basic model and six variants for 500 epochs using the Adam
optimizer [12] on all the datasets with and without the learnable positional
embedding. Besides, we applied an adaptive learning rate, which was reduced
by a factor of 10 after every 100 epochs, and employed dropout regularization
to prevent overfitting. Table 2 summarizes our model configurations for each
dataset.

We evaluate the models using two metrics: accuracy and macro F1-Score.
To mitigate the effect of randomized parameter initialization, we repeated the
training and test procedures five times and took the average as the final results.

5.3 Results and Analysis

Table 3 and Table 4 show the methods’ performance on the 30 datasets. The
results show positional embedding positively impacts the basic model—with
positional embedding, the basic model’s performance improves by 17.5% and
14.3% in accuracy and macro F1-Score, respectively. This reveals the signifi-
cance of enabling the basic model to leverage the position information (e.g.,
via positional embedding) in solving the multivariate time series classification
problem.

In contrast, positional embedding negatively impacts the performance of
the Transformer-based variants. Without positional embedding, convolutional
1 Details about datasets and train-test split can be found at http://www.

timeseriesclassification.com/dataset.php.

http://www.timeseriesclassification.com/dataset.php
http://www.timeseriesclassification.com/dataset.php


42 C. Yang et al.

Table 2. Model configurations.

Dataset Learning Rate #Layer Batch Size Dropout #Attention head

ArticularyWordRecognition 0.01 3 32 0.01 2

AtrialFibrillation 0.01 2 16 0.01 2

BasicMotions 0.00001 2 16 0.01 2

CharacterTrajectories 0.01 2 16 0.01 2

Cricket 0.01 2 16 0.01 2

DuckDuckGeese 0.001 4 8 0.3 5

EigenWorms 0.01 1 1 0.01 2

Epilepsy 0.00001 4 16 0.01 2

EthanolConcentration 0.001 2 16 0.01 4

ERing 0.00001 2 16 0.01 2

FaceDetection 0.00001 2 16 0.01 2

FingerMovements 0.001 2 16 0.01 2

HandMovementDirection 0.01 2 16 0.1 2

Handwriting 0.01 5 16 0.01 2

Heartbeat 0.00001 2 16 0.01 2

JapaneseVowels 0.01 3 16 0.3 2

Libras 0.01 5 16 0.01 2

LSST 0.01 2 16 0.01 2

MotorImagery 0.00001 2 16 0.01 2

NATOPS 0.00001 3 16 0.01 2

PenDigits 0.001 2 16 0.01 2

PEMS-SF 0.00001 2 16 0.01 2

Phoneme 0.00001 3 16 0.01 2

RacketSports 0.00001 2 16 0.1 4

SelfRegulationSCP1 0.00001 3 16 0.1 2

SelfRegulationSCP2 0.00001 2 16 0.01 2

SpokenArabicDigits 0.00001 3 16 0.1 2

StandWalkJump 0.01 3 16 0.01 2

UWaveGestureLibrary 0.01 2 16 0.01 2

embedding (i.e., ConvEmbedding in Table 1) and recurrent embedding (i.e.,
RecEmbedding in Table 1) models outperformed all other variants, achieving
the best accuracy of 56.21% and 56.17%, respectively, and the best macro F1-
Scores of 0.528 and 0.5375, respectively. These two models differ from all other
models in that their input embedding layers encode the position information
when projecting the raw data to a latent space, making the position information
accessible by subsequent layers for feature extraction and resulting in superior
performance. Incorporating positional embedding decreased the average accu-
racy of the variants by 12.7% (convolutional embedding), 9.1% (convolutional
attention), 18.6% (convolutional feed-forward), 22.1% (recurrent embedding),



Exploring the Effectiveness of Positional Embedding 43

Table 3. Accuracy of different models on 30 benchmark datasets.

ArticularyWordRecognition AtrialFibrillation BasicMotions CharacterTrajectories Cricket DuckDuckGeese

BasicModel (w/ PE) 0.4788 0.4524 1.0000 0.5140 0.9643 0.7667

BasicModel (w/o PE) 0.1280 0.2949 1.0000 0.4684 0.9395 0.5847

ConvEmbedding (w/ PE) 0.5125 0.4333 1.0000 0.4560 0.7468 0.6922

ConvEmbedding (w/o PE) 0.6774 0.7037 1.0000 0.6207 0.8016 0.7145

ConvAttention (w/ PE) 0.5413 0.5238 1.0000 0.2120 0.6515 0.6257

ConvAttention (w/o PE) 0.5091 0.4000 1.0000 0.1975 0.7433 0.3902

ConvFFD (w/ PE) 0.5232 0.4524 1.0000 0.2834 0.8775 0.5858

ConvFFD (w/o PE) 0.6483 0.5238 1.0000 0.3000 0.9623 0.6472

RecEmbedding (w/ PE) 0.5580 0.4524 1.0000 0.4227 0.8442 0.4800

RecEmbedding (w/o PE) 0.7321 0.6111 1.0000 0.5478 0.9339 0.6608

RecAttention (w/ PE) 0.7312 0.6444 1.0000 0.3842 0.6938 0.3120

RecAttention (w/o PE) 0.7548 0.6768 1.0000 0.7450 0.8371 0.6444

RecFFD (w/ PE) 0.6052 0.4167 1.0000 0.3405 0.6660 0.6065

RecFFD (w/o PE) 0.6890 0.5500 1.0000 0.5001 0.7978 0.6419

EigenWorms Epilepsy JapaneseVowels Libras LSST MotorImagery

BasicModel (w/ PE) 0.4447 0.8153 0.9616 0.0113 0.1716 0.5801

BasicModel (w/o PE) 0.4186 0.7753 0.9346 0.1527 0.1770 0.4332

ConvEmbedding (w/ PE) 0.3556 0.8156 0.9526 0.0317 0.1719 0.4264

ConvEmbedding (w/o PE) 0.4843 0.8725 0.9633 0.0760 0.1086 0.7525

ConvAttention (w/ PE) 0.3792 0.7377 0.7418 0.0878 0.1365 0.5000

ConvAttention (w/o PE) 0.3844 0.5564 0.7491 0.1352 0.1845 0.6420

ConvFFD (w/ PE) 0.4716 0.8041 0.9688 0.0298 0.0987 0.4391

ConvFFD (w/o PE) 0.4872 0.8954 0.9721 0.0490 0.1269 0.4585

RecEmbedding (w/ PE) 0.6724 0.8037 0.9566 0.0691 0.0461 0.5525

RecEmbedding (w/o PE) 0.7053 0.8538 0.9669 0.1070 0.0943 0.6326

RecAttention (w/ PE) 0.4171 0.6734 0.9668 0.1023 0.1006 0.6302

RecAttention (w/o PE) 0.6420 0.8163 0.9608 0.1897 0.0904 0.7551

RecFFD (w/ PE) 0.4199 0.7711 0.9702 0.1014 0.1370 0.4688

RecFFD (w/o PE) 0.6545 0.8353 0.9709 0.1159 0.1664 0.4719

NATOPS PenDigits PEMS-SF Phoneme EthanolConcentration ERing

BasicModel (w/ PE) 0.2834 0.1639 0.6204 0.0164 0.3880 0.6659

BasicModel (w/o PE) 0.1198 0.1203 0.8091 0.0110 0.0627 0.6065

ConvEmbedding (w/ PE) 0.2249 0.6416 0.8076 0.0126 0.1086 0.6982

ConvEmbedding (w/o PE) 0.3074 0.6452 0.8770 0.0291 0.1979 0.7695

ConvAttention (w/ PE) 0.2111 0.0784 0.8717 0.0170 0.0632 0.6660

ConvAttention (w/o PE) 0.2699 0.5021 0.8953 0.0211 0.1254 0.6913

ConvFFD (w/ PE) 0.2339 0.2036 0.8155 0.0142 0.0627 0.4966

ConvFFD (w/o PE) 0.2796 0.3388 0.8816 0.0142 0.1340 0.7357

RecEmbedding (w/ PE) 0.2951 0.3561 0.6314 0.0059 0.0618 0.4318

RecEmbedding (w/o PE) 0.4215 0.4066 0.8277 0.0106 0.4755 0.8008

RecAttention (w/ PE) 0.2638 0.1491 0.5946 0.0111 0.0985 0.6291

RecAttention (w/o PE) 0.4958 0.1711 0.8348 0.0243 0.1236 0.6488

RecFFD (w/ PE) 0.2797 0.1003 0.5953 0.0074 0.0618 0.7222

RecFFD (w/o PE) 0.4231 0.2755 0.8333 0.0123 0.1254 0.7735

FaceDetection FingerMovements HandMovementDirection Handwriting Heartbeat RacketSports

BasicModel (w/ PE) 0.6285 0.6075 0.2691 0.0239 0.7528 0.0879

BasicModel (w/o PE) 0.5487 0.3925 0.1830 0.0460 0.8627 0.0546

ConvEmbedding (w/ PE) 0.6461 0.5405 0.3032 0.0266 0.8663 0.4439

ConvEmbedding (w/o PE) 0.5589 0.5861 0.3224 0.0307 0.7506 0.4530

ConvAttention (w/ PE) 0.6762 0.7082 0.2908 0.0154 0.7238 0.2111

ConvAttention (w/o PE) 0.6816 0.7552 0.3442 0.0664 0.8663 0.5574

ConvFFD (w/ PE) 0.6457 0.6725 0.2858 0.0364 0.7258 0.1691

ConvFFD (w/o PE) 0.6347 0.7242 0.2950 0.4540 0.7272 0.3109

RecEmbedding (w/ PE) 0.6793 0.5187 0.4222 0.0400 0.3610 0.1716

RecEmbedding (w/o PE) 0.5500 0.5233 0.3779 0.0570 0.7096 0.2121

RecAttention (w/ PE) 0.6797 0.5028 0.2083 0.0318 0.3610 0.1970

RecAttention (w/o PE) 0.5425 0.6731 0.2559 0.0513 0.7528 0.3110

RecFFD (w/ PE) 0.6648 0.2550 0.4335 0.0189 0.7238 0.1253

RecFFD (w/o PE) 0.5527 0.4167 0.4454 0.0352 0.7435 0.2003

SelfRegulationSCP1 SelfRegulationSCP2 SpokenArabicDigits StandWalkJump UWaveGestureLibrary Average

BasicModel (w/ PE) 0.8494 0.5259 0.1111 0.5694 0.5284 0.4915

BasicModel (w/o PE) 0.8176 0.5125 0.1111 0.2778 0.2865 0.4183

ConvEmbedding (w/ PE) 0.8720 0.5847 0.4433 0.2778 0.3656 0.4986

ConvEmbedding (w/o PE) 0.8846 0.5694 0.5988 0.5500 0.3938 0.5621

ConvAttention (w/ PE) 0.8188 0.5207 0.4681 0.4524 0.4763 0.4623

ConvAttention (w/o PE) 0.8592 0.5000 0.6620 0.5500 0.3818 0.5042

ConvFFD (w/ PE) 0.8375 0.5250 0.5591 0.1944 0.3472 0.4607

ConvFFD (w/o PE) 0.8979 0.6080 0.6418 0.5500 0.5496 0.5465

RecEmbedding (w/ PE) 0.7935 0.2500 0.5833 0.4778 0.4031 0.4600

RecEmbedding (w/o PE) 0.8472 0.2500 0.7232 0.8182 0.4338 0.5617

RecAttention (w/ PE) 0.8494 0.5000 0.5112 0.5500 0.4113 0.4553

RecAttention (w/o PE) 0.8746 0.5710 0.5420 0.7167 0.3374 0.5531

RecFFD (w/ PE) 0.8658 0.4486 0.4491 0.4667 0.3620 0.4512

RecFFD (w/o PE) 0.8843 0.5752 0.4555 0.4615 0.5370 0.5222



44 C. Yang et al.

Table 4. Macro F1-Score of different models on 30 benchmark datasets.

ArticularyWordRecognition AtrialFibrillation BasicMotions CharacterTrajectories Cricket DuckDuckGeese

BasicModel (w/ PE) 0.5395 0.3523 1.0000 0.5783 0.9581 0.7177

BasicModel (w/o PE) 0.0988 0.3297 1.0000 0.5687 0.9156 0.4478

ConvEmbedding (w/ PE) 0.6170 0.4139 1.0000 0.5554 0.7208 0.5365

ConvEmbedding (w/o PE) 0.7226 0.6035 1.0000 0.6734 0.8285 0.6379

ConvAttention (w/ PE) 0.5094 0.4000 1.0000 0.1879 0.6382 0.3959

ConvAttention (w/o PE) 0.5821 0.5157 1.0000 0.3141 0.7758 0.4760

ConvFFD (w/ PE) 0.5921 0.3529 1.0000 0.3892 0.8719 0.5365

ConvFFD (w/o PE) 0.7152 0.3333 1.0000 0.4318 0.9582 0.6360

RecEmbedding (w/ PE) 0.6272 0.3591 1.0000 0.4510 0.8194 0.4748

RecEmbedding (w/o PE) 0.7605 0.4577 1.0000 0.6335 0.9025 0.5304

RecAttention (w/ PE) 0.7599 0.4603 1.0000 0.4473 0.7108 0.3354

RecAttention (w/o PE) 0.7767 0.4553 1.0000 0.7868 0.8600 0.5338

RecFFD (w/ PE) 0.6615 0.4142 1.0000 0.4351 0.7121 0.5338

RecFFD (w/o PE) 0.7314 0.5161 1.0000 0.5712 0.8176 0.6114

EigenWorms Epilepsy JapaneseVowels Libras LSST MotorImagery

BasicModel (w/ PE) 0.4020 0.8169 0.9670 0.0321 0.2009 0.4325

BasicModel (w/o PE) 0.3912 0.7667 0.9439 0.1307 0.1297 0.5799

ConvEmbedding (w/ PE) 0.2471 0.7568 0.9514 0.0148 0.1504 0.4265

ConvEmbedding (w/o PE) 0.2849 0.8345 0.9600 0.0403 0.1220 0.4500

ConvAttention (w/ PE) 0.2460 0.5912 0.7222 0.0581 0.0555 0.4120

ConvAttention (w/o PE) 0.3592 0.7100 0.6509 0.0158 0.1317 0.6393

ConvFFD (w/ PE) 0.3695 0.7667 0.9656 0.0568 0.0585 0.4390

ConvFFD (w/o PE) 0.4923 0.8941 0.9744 0.0744 0.0829 0.4623

RecEmbedding (w/ PE) 0.5984 0.7479 0.9566 0.1339 0.0752 0.5498

RecEmbedding (w/o PE) 0.6606 0.8557 0.9679 0.1508 0.0681 0.6291

RecAttention (w/ PE) 0.3231 0.5496 0.9686 0.0690 0.0950 0.4630

RecAttention (w/o PE) 0.5197 0.8072 0.9673 0.2292 0.0830 0.5526

RecFFD (w/ PE) 0.3738 0.7462 0.9721 0.1448 0.1312 0.4533

RecFFD (w/o PE) 0.6519 0.8410 0.9741 0.1512 0.0724 0.4547

NATOPS PenDigits PEMS-SF Phoneme EthanolConcentration ERing

BasicModel (w/ PE) 0.3127 0.0869 0.7693 0.0236 0.2152 0.6486

BasicModel (w/o PE) 0.2291 0.0747 0.6615 0.0191 0.1432 0.5273

ConvEmbedding (w/ PE) 0.3257 0.6173 0.7872 0.0234 0.1739 0.6498

ConvEmbedding (w/o PE) 0.3974 0.6262 0.8655 0.0247 0.2096 0.7679

ConvAttention (w/ PE) 0.2333 0.1291 0.8543 0.0099 0.0777 0.5992

ConvAttention (w/o PE) 0.3031 0.4512 0.8900 0.0259 0.2224 0.6600

ConvFFD (w/ PE) 0.2121 0.2591 0.7932 0.0249 0.1432 0.5523

ConvFFD (w/o PE) 0.3564 0.3129 0.8763 0.0207 0.1581 0.7092

RecEmbedding (w/ PE) 0.3635 0.4070 0.6814 0.0142 0.1419 0.4622

RecEmbedding (w/o PE) 0.3715 0.4176 0.7929 0.0149 0.2600 0.7814

RecAttention (w/ PE) 0.1894 0.2101 0.6375 0.0205 0.1483 0.5415

RecAttention (w/o PE) 0.3423 0.2118 0.8277 0.0234 0.2217 0.6511

RecFFD (w/ PE) 0.2344 0.1380 0.6328 0.0165 0.1419 0.6853

RecFFD (w/o PE) 0.4271 0.3123 0.7916 0.0238 0.2224 0.7615

FaceDetection FingerMovements HandMovementDirection Handwriting Heartbeat RacketSports

BasicModel (w/ PE) 0.6270 0.5580 0.2603 0.0441 0.6119 0.1502

BasicModel (w/o PE) 0.5483 0.4029 0.1593 0.0680 0.6167 0.1304

ConvEmbedding (w/ PE) 0.6454 0.4931 0.2703 0.0549 0.6167 0.2044

ConvEmbedding (w/o PE) 0.5563 0.5310 0.2960 0.0598 0.6119 0.3170

ConvAttention (w/ PE) 0.6814 0.5710 0.3052 0.0369 0.7351 0.2400

ConvAttention (w/o PE) 0.6762 0.5181 0.1970 0.0622 0.5950 0.2582

ConvFFD (w/ PE) 0.6396 0.5612 0.3102 0.0454 0.6144 0.2732

ConvFFD (w/o PE) 0.5544 0.5923 0.2349 0.0631 0.6093 0.2814

RecEmbedding (w/ PE) 0.6793 0.5154 0.2097 0.0713 0.4561 0.1677

RecEmbedding (w/o PE) 0.5499 0.5211 0.3298 0.0795 0.5702 0.2394

RecAttention (w/ PE) 0.6793 0.4997 0.1763 0.0594 0.4561 0.2551

RecAttention (w/o PE) 0.5419 0.5457 0.2305 0.0653 0.6091 0.2499

RecFFD (w/ PE) 0.6642 0.4031 0.3617 0.0465 0.5950 0.1940

RecFFD (w/o PE) 0.5523 0.4174 0.3231 0.0609 0.5986 0.3186

SelfRegulationSCP1 SelfRegulationSCP2 SpokenArabicDigits StandWalkJump UWaveGestureLibrary Average

BasicModel (w/ PE) 0.8167 0.4669 0.2222 0.4260 0.5309 0.4748

BasicModel (w/o PE) 0.8120 0.5040 0.2222 0.2947 0.3282 0.4153

ConvEmbedding (w/ PE) 0.8632 0.5131 0.5001 0.2871 0.3785 0.4757

ConvEmbedding (w/o PE) 0.8839 0.5448 0.6328 0.4611 0.3677 0.5280

ConvAttention (w/ PE) 0.2548 0.4346 0.3021 0.2353 0.3867 0.3898

ConvAttention (w/o PE) 0.8119 0.4434 0.4141 0.2559 0.4812 0.4633

ConvFFD (w/ PE) 0.8249 0.5217 0.6121 0.2508 0.3023 0.4600

ConvFFD (w/o PE) 0.8976 0.5740 0.6497 0.4496 0.5897 0.5167

RecEmbedding (w/ PE) 0.7074 0.4000 0.5586 0.4680 0.4077 0.4657

RecEmbedding (w/o PE) 0.8132 0.4000 0.6771 0.7370 0.4143 0.5375

RecAttention (w/ PE) 0.8167 0.4511 0.4883 0.4128 0.3663 0.4341

RecAttention (w/o PE) 0.8736 0.5425 0.5469 0.5220 0.3617 0.5151

RecFFD (w/ PE) 0.8524 0.4133 0.5315 0.2353 0.3765 0.4517

RecFFD (w/o PE) 0.8839 0.5533 0.5451 0.4163 0.5811 0.5235



Exploring the Effectiveness of Positional Embedding 45

21.5% (recurrent attention), and 15.7% (recurrent feed-forward), respectively.
Results for the macro F1-Score show similar trends.

Since the convolutional and recurrent layers can inherently capture the posi-
tion information from sequential data, it is natural to consider positional embed-
ding redundant for Transformer-based variants. Besides, positional embedding
risks introducing inductive bias and contaminating the original data. Specifically,
positional embedding injects the same information into sequences of different
classes, bringing new challenges to the classifiers; this may also contribute to
performance degradation.

Further reflecting on the results, we suggest that positional embedding may
not be necessary for Transformer-based variants that already contain position-
sensitive modules. In particular, for time series classification tasks, while the
classifier focuses on the differences between time series sequences across differ-
ent classes, positional embedding is content-irrelevant, adding the same posi-
tion information to all sequences regardless of their class labels. As position-
sensitive modules generally consider content information when encoding the
position information, redundant content-irrelevant positional embedding may
lead the model towards capturing spurious correlations that potentially hinder
the classifier’s performance.

6 Conclusion

Existing Transformer-based architectures generally contain position-sensitive
layers while routinely incorporating positional embedding without comprehen-
sively evaluating its effectiveness on multivariate time series classification. In this
paper, we investigate the impact of positional embedding on the vanilla Trans-
former architecture and six types of Transformer-based variants in multivari-
ate time series classification. Our experimental results on 30 public time series
datasets show that positional embedding lifts the performance of the vanilla
Transformer while adversely impacting the performance of Transformer-based
variants on classification tasks. Our findings refute the necessity of incorpo-
rating positional embedding in Transformer-based architectures that already
contain position-sensitive layers, such as convolutional or recurrent layers. We
also advocate applying position-sensitive layers directly on the input for any
Transformer-based architecture that considers using position-sensitive layers to
gain better results in multivariate time series classification.

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video
vision transformer. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6836–6846 (2021)

2. Bulatov, A., Kuratov, Y., Burtsev, M.S.: Recurrent memory transformer. arXiv
preprint arXiv:2207.06881 (2022)

http://arxiv.org/abs/2207.06881


46 C. Yang et al.

3. Chen, K., Wang, R., Utiyama, M., Sumita, E.: Recurrent positional embedding for
neural machine translation. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 1361–1367 (2019)

4. Chen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X.: Learning graph structures with
transformer for multivariate time series anomaly detection in IoT. IEEE Internet
Things J. 9, 9179–9189 (2021)

5. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

6. Coyle, D., Prasad, G., McGinnity, T.M.: A time-series prediction approach for
feature extraction in a brain-computer interface. IEEE Trans. Neural Syst. Rehabil.
Eng. 13(4), 461–467 (2005)

7. Dau, H.A., et al.: Hexagon-ML: the UCR time series classification archive (2018)
8. Gulati, A., et al.: Conformer: convolution-augmented transformer for speech recog-

nition. arXiv preprint arXiv:2005.08100 (2020)
9. Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu,

C., Xu, Y., et al.: A survey on vision transformer. IEEE Trans. Pattern Anal.
Mach. Intell. 45(1), 87–110 (2022)

10. Huang, Z., Xu, P., Liang, D., Mishra, A., Xiang, B.: Trans-blstm: transformer with
bidirectional LSTM for language understanding. arXiv preprint arXiv:2003.07000
(2020)

11. Hutchins, D., Schlag, I., Wu, Y., Dyer, E., Neyshabur, B.: Block-recurrent trans-
formers. arXiv preprint arXiv:2203.07852 (2022)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of trans-
former on time series forecasting. Adv. Neural Inf. Process. Syst. 32 (2019)

14. Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for inter-
pretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764
(2021)

15. Liu, M., Kim, Y.: Classification of heart diseases based on ecg signals using long
short-term memory. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pp. 2707–2710. IEEE (2018)

16. Liu, M., et al.: Gated transformer networks for multivariate time series classifica-
tion. arXiv preprint arXiv:2103.14438 (2021)

17. Liu, Y., et al.: Delightfultts: the microsoft speech synthesis system for blizzard
challenge 2021. arXiv preprint arXiv:2110.12612 (2021)

18. Pan, Z., Cai, J., Zhuang, B.: Fast vision transformers with hilo attention. arXiv
preprint arXiv:2205.13213 (2022)

19. Raganato, A., Tiedemann, J.: An analysis of encoder representations in
transformer-based machine translation. In: Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. The
Association for Computational Linguistics (2018)

20. Serdyuk, D., Braga, O., Siohan, O.: Transformer-based video front-ends for audio-
visual speech recognition, p. 15. arXiv preprint arXiv:2201.10439 (2022)

21. Shen, L., Wang, Y.: TCCT: tightly-coupled convolutional transformer on time
series forecasting. Neurocomputing 480, 131–145 (2022)

22. Song, Q., Sun, B., Li, S.: Multimodal sparse transformer network for audio-visual
speech recognition. IEEE Trans. Neural Netw. Learn. Syst. (2022)

23. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/2005.08100
http://arxiv.org/abs/2003.07000
http://arxiv.org/abs/2203.07852
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2103.14438
http://arxiv.org/abs/2110.12612
http://arxiv.org/abs/2205.13213
http://arxiv.org/abs/2201.10439


Exploring the Effectiveness of Positional Embedding 47

24. Wang, Q., et al.: Learning deep transformer models for machine translation. arXiv
preprint arXiv:1906.01787 (2019)

25. Wang, Z., Ma, Y., Liu, Z., Tang, J.: R-transformer: recurrent neural network
enhanced transformer. arXiv preprint arXiv:1907.05572 (2019)

26. Wen, Q., et al.: Transformers in time series: a survey. arXiv preprint
arXiv:2202.07125 (2022)

27. Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Etsformer: exponential smoothing
transformers for time-series forecasting. arXiv e-prints arXiv:2202.01381 (2022)

28. Wu, H., et al.: CVT: introducing convolutions to vision transformers. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31
(2021)

29. Yang, C., Jiang, W., Guo, Z.: Time series data classification based on dual path
CNN-RNN cascade network. IEEE Access 7, 155304–155312 (2019)

30. Yuan, Y., Lin, L.: Self-supervised pretraining of transformers for satellite image
time series classification. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14,
474–487 (2020)

31. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504 (2022)

32. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A
transformer-based framework for multivariate time series representation learning.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pp. 2114–2124 (2021)

33. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 11106–11115 (2021)

34. Zhu, C., et al.: Long-short transformer: efficient transformers for language and
vision. Adv. Neural. Inf. Process. Syst. 34, 17723–17736 (2021)

http://arxiv.org/abs/1906.01787
http://arxiv.org/abs/1907.05572
http://arxiv.org/abs/2202.07125
http://arxiv.org/abs/2202.01381
http://arxiv.org/abs/2205.13504

	Exploring the Effectiveness of Positional Embedding on Transformer-Based Architectures for Multivariate Time Series Classification
	1 Introduction
	2 Background
	2.1 Positional Embedding
	2.2 Transformer-Based Variants

	3 Problem Definition
	4 Methodology
	4.1 Basic Model
	4.2 Convolutional-Based Variants
	4.3 Recurrent-Based Variants

	5 Experiments
	5.1 Datasets
	5.2 Model Configuration and Evaluation Metrics
	5.3 Results and Analysis

	6 Conclusion
	References


