
Exploring the Design Space of Unsupervised
Blocking with Pre-trained Language Models

in Entity Resolution

Chenchen Sun1(B), Yuyuan Jin1, Yang Xu1, Derong Shen2, Tiezheng Nie2,
and Xite Wang3

1 School of Computer Science and Engineering, Tianjin University of Technology, Tianjin,
China

suncc_db@163.com
2 School of Computer Science and Engineering, Northeastern University, Shenyang, China

{shendr,nietiezheng}@mail.neu.edu.cn
3 College of Information Science and Technology, Dalian Maritime University, Dalian, China

wangxite@dlmu.edu.cn

Abstract. Entity resolution (ER) finds records that refer to the same entities in
the real world. Blocking is an important task in ER, filtering out unnecessary
comparisons and speeding up ER. Blocking is usually an unsupervised task. In
this paper, we develop an unsupervised blocking framework based on pre-trained
languagemodels (B-PLM).B-PLMexploits the powerful linguistic expressiveness
of the pre-trained languagemodels. A design space for B-PLM contains two steps.
(1) The Record Embedding step generates record embeddings with pre-trained
language models like BERT and Sentence-BERT. (2) The Block Generation step
generates blocks with clustering algorithms and similarity search methods. We
explore multiple combinations in above two dimensions of B-PLM. We evaluate
B-PLMon six datasets (Structured+ dirty, and Textual). TheB-PLM is superior to
previous deep learningmethods in textual and dirty datasets.We perform sufficient
experiments to compare and analyze different combinations of record embedding
and block generation. Finally, we recommend some good combinations inB-PLM.

Keywords: entity resolution · unsupervised blocking · pre-trained language
models · data integration · deep learning

1 Introduction

Entity resolution (ER) is a fundamental problem in data integration and data governance.
Blocking [1] is a key issue in ER, reducing unnecessary comparisons and improving ER
efficiency. Blocking methods place similar records in the same block and then perform
intra-block comparisons. Traditional blocking methods are based on blocking keys,
which require human selections for each dataset. How to reduce human involvement?
That is, how to get high-quality blockswithout block keys.Meanwhile, traditional block-
ing techniques are difficult to achieve good blocking results on textual and dirty datasets.
Thus, how to perform blocking on text and dirty datasets is another issue.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14176, pp. 228–244, 2023.
https://doi.org/10.1007/978-3-031-46661-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46661-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-46661-8_16

Exploring the Design Space of Unsupervised Blocking 229

Many deep learning (DL) works make contributions to reducing human efforts. As
DL continues to evolve, DL has been widely used in ER [2, 3]. These works apply
similarities between record embeddings to calculate the likelihood of matches. For effi-
ciency, some DL-based ER methods [2, 3] use hash functions for blocking. DL-based
blocking approaches are rare [4–6]. Meanwhile, blocking is still seen as a step in ER,
rather than as a separate problem. Most current DL-based blocking approaches [2–4]
use labeled record pairs to train representation models for blocking. Other DL-based
blocking approaches [5] use the generated auxiliary labels for training. However, block-
ing essentially filters irrelevant record pairs, similar to indexing in databases. Therefore,
blocking shouldn’t use labeled data. Moreover, as described in [6], in most blocking
scenarios there is no labeled data available. To this end, this paper explores the design
space of unsupervised blocking solutions.

We propose an unsupervised blocking framework based on pre-trained language
models (B-PLM). B-PLM is a simple but strong baseline for deep unsupervised blocking.
Pre-trained language models (PLMs), like BERT [7], Sentence-BERT [8], Doc2Vec [9],
and fastText [10], can provide rich semantic information for blocking. The potential
of PLMs in unsupervised blocking has not been systematically explored. In addition,
the PLMs are outstanding in handling long text data. At the same time, PLMs can
handle other types of datasets (e.g., structured and dirty). Therefore, based on PLMs,
B-PLM consists of two major steps: record embedding and block generation. Record
embedding obtains the semantic features of records based on PLMs and aggregation
methods. PLMs have strong capabilities of semantic representation and discrimination,
which are useful for record representation. For block generation, the essence is to group
records according to estimated similarities. Clustering algorithms [11–13] are often
used for grouping tasks; top-k query and range query in databases also have similar
capabilities. Therefore, we provide clustering algorithms and similarity search methods
for block generation. Our experimental results demonstrate effectiveness of B-PLM.
We design sufficient experiments to investigate impacts of different record embedding
methods and different block generation methods. Finally, we recommend some blocking
solutions in our framework.

The main contributions are as follows.

• We define a solution space for an unsupervised blocking framework based on pre-
trained language models (B-PLM), consisting of five record embedding methods and
seven block generation options.

• WedemonstrateB-PLM’s effectivenesswith experimental evaluations on six datasets.
Experimental results show that optimal methods in B-PLM greatly outperform the
state-of-the-art work DeepBlocker [5]. This result demonstrates B-PLM on a textual
dataset.

• We systematically compare and analyze characteristics and effectiveness of differ-
ent record embedding methods and different block generation methods in B-PLM.
Furthermore, we further studied the different layers of BERT and Sentence-BERT.
Finally, we compared parameter sensitivity of block generation methods.

Organization. Section 2 introduces the B-PLM framework in detail. Section 3
conducts extensive experiments to compare different combinations and analyze each
component in B-PLM. Section 4 presents related work. Section 5 concludes the paper.

230 C. Sun et al.

2 The Design Space of Unsupervised Blocking with Pre-Trained
Language Models

2.1 Framework Overview

Given a set of records from a single data source or multiple data sources, blocking filters
out unnecessary comparisons by dividing the records that are likely to match into the
same block as much as possible. To this end, we proposed an unsupervised blocking
framework based on pre-trained language models (B-PLM), which contains two core
steps, as shown in Fig. 1.

Step 1: Record Embedding. This step generates record embeddings for later block
generation. First, each record transforms into a token sequence. Second, token sequences
input a PLM to get record embeddings. Record embeddings are either directly generated
or produced with aggregations of token embeddings. We explored the current dominant
PLMS. This step provides five options: BERT + Average, Sentence-BERT, Doc2Vec,
fastText + Average, and fastText + SIF, which are introduced in Sect. 2.2.

Step 2: Block Generation. With record embeddings, similar records should be
grouped into the same blocks. In Fig. 1, block generation methods are divided into
two categories: one is based on clustering and the other is based on similarity search.
We explore the current common clustering algorithms and similarity search methods.
Clustering algorithms includeAHC, BIRCH,DBSCAN,AP and k-means; and similarity
search methods include top-k query and range query, which are specified in Sect. 2.3.

Pre-trained Language

Models

Similarity Search

Clustering

Step 2: Block GenerationStep 1: Record Embedding

BERT+Average; Sentence-BERT;

Doc2Vec; fastText+Average;

fastText+SIF

AHC; BIRCH; DBSCAN;

AP; k-means

top-k query; range query

B-PLM

Fig. 1. Unsupervised blocking framework with pre-trained language models.

2.2 Record Embedding

This step provides five options for record embedding, as Fig. 1 shows.We convert records
into sequences for input into PLMs to obtain record embedding. Formally, a record r =
{attri, vali}1≤i≤k converts to a sequence S(r). This paper considers both the case with
and without schema information. In the case with schema information, S(r) = [CLS]
[ATT] attr1 [VAL] val1 …[ATT] attrk [VAL] valk [SEP]. In the case without schema
information, S(r) = [CLS] val1 … valk [SEP]. [ATT] and [VAL] indicate the beginning
of the attribute name and attribute value, respectively.

BERT (Bidirectional Encoder Representations from Transformers) [7] adopts
a multi-layer transformer encoder architecture, as Fig. 2 shows. BERT generates an
embedding for each token, thus averaging all token embeddings in a sequence to get

Exploring the Design Space of Unsupervised Blocking 231

Fig. 2. Architecture of BERT. Fig. 3. Architecture
of Sentence-BERT.

Fig. 4. Architecture
of Doc2Vec.

record embeddings. BERT tends to encode all records into a smaller space region, which
results in most record pairs having a high similarity score.

SBERT (Sentence-BERT) [8] is a modification of BERT, as shown in Fig. 3. Sen-
tence A and Sentence B are put into shared weight BERT models, respectively. Going
by pooling gets the embedding u and embedding v corresponding to sentence A and
sentence B. In contrast to BERT, SBERT enables semantically similar sentences to be
similar in the embedding space as well.

Doc2Vec [9] learns embeddings from text fragments with variable lengths. As shown
in Fig. 4, a paragraph vector is introduced in Doc2Vec. In B-PLM, Doc2Vec uses
paragraph vectors as record embeddings.

FastText [10] is a character-level pre-trained word embedding model. FastText can
generate embeddings for tokens outside the vocabulary and is robust to some spelling
errors. B-PLM provides two fastText methods, fastText + Average and fastText + SIF.
The average method does not consider the importance of each token in the record. In
contrast, SIF [14] is a state-of-the-art solution for weighted averaging.

2.3 Block Generation

The block generation step contains two types of methods, clustering algorithms and
similarity search methods.

Clustering Algorithms. There are five clustering algorithms: AHC, AP, DBSCAN,
BIRCH and k-means.

AHC (Agglomerative Hierarchical Clustering) [11] is a bottom-up hierarchical
clustering algorithm. In the beginning, each sample point is treated individually as a
cluster. Clusters with high similarities are merged until all sample points form a cluster
or a certain similarity threshold is reached.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [12]
is a hierarchical clustering algorithm. The main step in BIRCH is the creation of CF
(clustering feature) tree. BIRCH does not work well if the clusters are not spherical, as
it uses the concept of radius to control cluster boundaries.

DBSCAN (Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise) [11] is a density-based clustering algorithm that can discover
clusters of arbitrary shape. It defines a cluster as the largest set of density connected
points.

232 C. Sun et al.

AP(AffinityPropagation) [13] is a graph-based clustering algorithm.The algorithm
starts by treating all sample points as cluster centers, and clustering is run by passing
messages between sample points. Automatically it identifies the number of clusters from
sample points by maximizing the similarity sum of all sample points to their nearest
cluster centers.

k-means [11] is a partitioning-based clustering algorithm. First, k initial clustering
centers are randomly selected. Next, each point is arranged into the cluster closest to that
point. Subsequently, the cluster centers are recalculated for each cluster. It is repeated
until the result is stable.

Similarity Search Methods. Similarity search methods include top-k query and range
query.

Top-k query. For each record r, similarities between r and other records are first com-
puted, and then records with the k highest similarities are selected to form a block with
r. We use top-k for short in this paper.

Range Query. For each record r, similarities between r and other records are first
computed, and then records with similarity scores above a given threshold are selected
to form a block with r.

3 Comparative Experimental Evaluation and Analysis

3.1 Experiment Setup

Datasets. We evaluate B-PLM on six ER datasets, which are shown in Table 1. Most of
the datasets in this paper are textual datasets, and previous blocking methods have strug-
gled to achieve high-quality blocking on textual datasets. Cora is a common ER dataset.
Notebook and Altosight are both from Blocking Contest in SIGMOD 20221. Notebook
is a dataset about laptops, with only one title attribute. Altosight is a dataset about elec-
tronic products, with attribute values that may be misplaced or missing. WDC_cameras
is from the Web Data Commons project [15] and we use the cameras_small version. In
WDC_cameras, we only use the title attribute. Both Abt-Buy and Amazon-Google2 are
dual-source datasets about products.

We further analyze the characteristics of datasets. We obtain the entity redundancy
figure for each dataset, which details the number of records corresponding to each
entity, as shown in Fig. 5. In Cora, most entities have a large amount of redundancy. In
Notebook, Altosight and WDC_cameras, few entities have more than 8 corresponding
records. Almost all entities in Abt-Buy andAmazon-Google2 have only 1–3 correspond-
ing records. Cora has the highest entity redundancy while Abt-Buy and Amazon-Google
have the lowest.

Metrics. We use pair completeness (PC), reduction ratio (RR), Fα and PC-RR curve as
evaluationmetrics. PC= |G∩C|/|G|, RR= 1-(|C|/|D|), whereG denotes all trulymatched
pairs, C denotes candidate pairs generated by blocking, and D denotes all record pairs

1 http://sigmod2022contest.eastus.cloudapp.azure.com.

http://sigmod2022contest.eastus.cloudapp.azure.com

Exploring the Design Space of Unsupervised Blocking 233

Table 1. Dataset details.

Dataset #records #attributes Type

single-source Cora 1295 12 Structured + Dirty

Notebook 1661 1 Textual

Altosight 1993 5 Structured + Dirty

WDC_cameras 1904 1 Textual

dual-source Abt-Buy 1081 + 1092 3 Textual

Amazon-Google2 1363 + 3226 2 Textual

Fig. 5. Entity redundancy figures of datasets.

in a dataset. PC measures how many truly matched pairs are retained in blocks, while
RR measures how many comparisons are reduced. We use Fα (the harmonic mean of
PC and RR) to measure the overall performance, Fα = 2 · PC · RR/(PC + RR). In the
PC-RR curve, the closer the curve is to the upper right, the better the performance of a
blocking method is.

Baselines. DeepBlocker [5] is a state-of-the-art deep blocking work. DeepBlocker pro-
poses eight blocking solutions. DeepBlocker first uses fastText to get the word embed-
ding. The word embeddings are then aggregated into record embeddings and finally
paired based on cosine similarity between vectors. We select the three best solutions:
SIF, AE, and CTT as the baseline. AE uses full connection layers as encoder and decoder
and the output of encoder as the record embedding. CTT uses a data generation proce-
dure to automatically generate labeled record pairs. Then CTT learns record embeddings
through classification tasks. In block generation, SIF, AE, and CTT all use top-k query.

Settings. Experiments are implemented with following Python libraries: Scikit-learn,
transformer, sentence-transformer, fastText and gensim. All experiments are run on a
server with an Inter Core I9-10900K CPU @ 3.70 GHz, 32 G RAM and an NVIDIA
Quadro RTX 4000 GPU. Record embedding uses SBERT in default. All PLMs are used
in this paper without fine-tuning. For BERT, we use the pre-trained version of “bert-
base-uncased”. For SBERT we use the pre-trained version of “all-mpnet-base-v2”. For
Doc2Vecwe use the pre-trained version of “EnglishWikipediaDBOW”. For fastText, we
use the pre-trained version of “Wiki.En”. Except for k-means the other block generation

234 C. Sun et al.

methods do not specify the number of clusters, which is more in line with real-world
situations. The k of k-means is chosen from10 to 50 and the step size is set to 2. Similarity
search methods use cosine similarity.

3.2 Overall Performance

For eachdataset,we report the best result fromSIF,AE, andCTTasDeepBlocker.Overall
comparison results are presented in Table 2 and Table 3. Overall B-PLM has advantages
in textual and dirty datasets. The best performer in our framework is SBERT + top-k.
SBERT + top-k has an average Fα of 93.65% on six datasets and a 5.55% improvement
compared to the baseline. SBERT + range query has an average Fα of 92.85% on the
six datasets, and a 4.75% improvement compared to the baseline. SBERT + AHC and
SBERT + k-means also achieve better results than the baseline. In addition, except for
Notebook, on the rest datasets, the best, second, and third solutions are all from our
framework, demonstrating B-PLM’s effectiveness.

The powerful semantic expressiveness of SBERT is reflected in the results. The
results of DeepBlocker and SBERT + top-k, which both take the same block generation
method, andwe find that SBERT+ top-k performs significantly better thanDeepBlocker
on most datasets.

For Cora, the clustering algorithms perform better overall. As illustrated in Fig. 5,
many entities in Cora have high redundancy. In the remaining datasets, most entities have
low redundancy (no more than five records). Clustering methods can generate blocks of
different sizes according to the redundancy level of each entity, which is a self-adaption
process. Therefore, clustering methods are more advantageous on datasets with various
high entity redundancy.

The dual-source datasets Abt-Buy and Amazon-Google2 are more suitable for top-
k query and range query. Because the dual-source dataset assumes that there are no
duplicates within each data source. The executions of top-k query and range query
naturally ensure that each record of data source A finds the most similar records in
data source B to form a block. Top-k query and range query are not interfered with
by similar records within data sources, making them easier to get high-quality blocks.
Dual-source datasets are more difficult for clustering-based block generation methods.
Because clustering-based methods run in the entire set of two data sources, but do not
only conduct comparisons between two data sources.

3.3 Analysis of Record Embedding

Effectiveness of Record Embedding Methods. We compare record embeddings with
different PLMs in blocking. The results are shown in Tables 4, 5, 6, 7, 8, 9 and 10. For
both BERT and SBERT, we report the results at layer 12, and for *BERT and *SBERT,
we report their results at optimal layers.

Overall, the best record embedding method is SBERT. The overall performance of
SBERT is better than other PLMs for each block generation method. SBERT’s strong
linguistic power is demonstrated. The overall results of BERT are generally worse than
those of SBERT, mainly because the focus of BERT in the pre-training step is to produce

Exploring the Design Space of Unsupervised Blocking 235

Table 2. Overall Performance on six datasets (part 1 in 2). Bold, single underline and double
underline represent the best, second and third, respectively.

Method Dataset

Cora Notebook Altosight WDC_cameras

PC(%) RR(%) Fα(%) PC(%) RR(%) Fα(%) PC(%) RR(%) Fα(%) PC(%) RR(%) Fα(%)

DeepBlocker 88.08 91.73 90.38 96.80 90.68 93.64 68.76 79.49 73.74 83.65 91.83 87.55

SBERT +
AHC

93.18 94.03 93.60 93.99 97.76 95.84 70.08 79.74 74.60 89.64 87.66 88.63

SBERT +
BIRCH

93.47 96.08 94.76 89.52 97.84 93.49 70.77 82.57 76.21 72.97 91.93 81.36

SBERT +
DBSCAN

92.10 96.94 94.46 97.30 48.54 64.77 73.63 55.17 63.08 81.22 81.28 81.25

SBERT +
AP

93.51 96.77 95.11 88.88 87.69 88.28 64.57 83.05 72.65 81.22 88.12 84.53

SBERT + k
-means

93.46 97.07 95.23 81.49 97.16 88.64 74.52 90.00 81.53 85.19 89.54 87.31

SBERT +
top-k

93.18 94.80 93.98 95.42 88.72 91.95 86.95 88.00 87.47 92.13 91.83 91.98

SBERT +
range query

91.74 95.44 93.55 94.95 97.58 96.25 79.49 82.36 80.90 91.36 90.79 91.07

Table 3. Overall Performance on six datasets (part 2 in 2).

Method Dataset

Abt-Buy Amazon-Google2 AVG of Six

PC(%) RR(%) Fα(%) PC(%) RR(%) Fα(%) Fα(%)

DeepBlocker 95.04 95.24 95.14 82.86 94.17 88.16 88.10

SBERT + AHC 97.08 95.41 96.24 86.29 97.38 91.50 90.07

SBERT +
BIRCH

91.44 93.55 92.48 67.10 95.88 78.95 86.21

SBERT +
DBSCAN

91.83 84.34 87.92 86.46 69.71 77.19 78.11

SBERT + AP 88.23 93.87 90.96 61.95 96.35 75.42 84.49

SBERT + k
-means

92.12 96.64 94.33 72.32 94.96 82.11 88.19

SBERT + top-k 99.22 97.25 98.23 98.46 98.14 98.30 93.65

SBERT + range
query

98.64 96.77 97.70 97.00 98.27 97.63 92.85

better token embeddings rather than sentence embeddings. In contrast, SBERT learns
embeddings of whole sentences directly, requiring that semantically similar sentences

236 C. Sun et al.

Table 4. Results of AHC using different record embedding methods. Bold, single underline and
double underline represent the best, second and third, respectively.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 74.38 94.15 54.98 65.55 55.61 65.60 68.38

SBERT 93.60 95.84 74.60 88.63 96.24 91.50 90.07

Doc2Vec 90.99 94.86 65.54 80.90 66.40 64.60 77.22

fastText +
Average

75.03 93.41 58.49 72.26 54.85 56.54 68.43

fastText +
SIF

88.80 95.64 43.45 74.81 86.42 73.74 77.14

*BERT 87.56(l = 1) 94.71(l = 5) 63.82(l = 0) 78.45(l = 0) 69.92(l = 1) 66.62(l = 1) 76.85

*BERT +
Schema

1.53(l = 12) 96.60(l = 6) 63.96(l = 1) 74.17(l = 0) 54.41(l = 2) 62.91(l = 11) 58.93

*SBERT 96.17(l = 0) 96.65(l = 0) 74.60(l = 12) 88.63(l = 12) 96.24(l = 12) 91.50(l = 12) 90.63

*SBERT +
Schema

92.43(l = 12) 96.64(l = 0) 76.40(l = 12) 85.65(l = 12) 93.45(l = 12) 85.41(l = 12) 88.33

are also similar in the embedding space. The performance differences between BERT
and *BERT are large. The reasons for this will be analyzed later.

Table 5. Results of BIRCH using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 76.60 92.80 52.89 63.75 36.88 55.08 63.00

SBERT 94.76 93.49 76.21 81.36 92.48 78.95 86.21

Doc2Vec 26.39 49.95 24.95 6.80 0.19 0.51 18.13

fastText +
Average

76.75 90.18 25.89 44.07 31.10 52.13 53.35

fastText +
SIF

77.09 94.69 48.84 60.63 63.68 61.41 67.72

*BERT 88.15(l = 3) 94.70(l = 2) 64.65(l = 0) 64.48(l = 9) 50.60(l = 3) 57.19(l = 5) 69.96

*BERT +
Schema

79.29(l = 2) 93.81(l = 4) 55.17(l = 8) 67.68(l = 12) 47.49(l = 4) 61.12(l = 11) 67.43

*SBERT 96.39(l = 0) 94.82(l = 0) 76.21(l = 12) 81.36(l = 12) 92.48(l = 12) 78.95(l = 12) 86.70

*SBERT +
Schema

92.93(l = 12) 94.36(l = 5) 73.77(l = 12) 80.44(l = 12) 89.17(l = 12) 74.93(l = 12) 84.27

FastText + Average is less effective than fastText + SIF. This suggests that the
core words in each record play dominant roles. Another aspect, Doc2Vec achieves good
performances in AHC, top-k, and range query (top 3 or so). But it has poorer results in all
other block generationmethods,which are all Euclidean distance-based block generation

Exploring the Design Space of Unsupervised Blocking 237

Table 6. Results of DBSCAN using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 71.07 62.84 55.73 66.58 66.43 58.51 63.53

SBERT 94.46 64.77 63.08 81.25 87.92 77.19 78.11

Doc2Vec 48.12 17.07 11.75 1.66 0.91 6.71 14.37

fastText +
Average

76.86 66.63 48.81 53.79 55.67 53.07 59.14

fastText +
SIF

64.97 65.52 56.08 61.75 61.24 58.04 61.27

*BERT 87.15(l = 1) 67.95(l = 8) 59.61(l = 0) 71.46(l = 4) 68.63(l = 0) 59.30(l = 1) 69.02

*BERT +
Schema

83.43(l = 3) 67.55(l = 2) 58.77(l = 3) 74.34(l = 2) 64.95(l = 4) 57.88(l = 3) 67.82

*SBERT 94.46(l = 12) 67.43(l = 8) 63.08(l = 12) 81.25(l = 12) 87.92(l = 12) 77.19(l = 12) 78.56

*SBERT +
Schema

92.48(l = 12) 67.72(l = 0) 62.67(l = 12) 77.92(l = 3) 85.33(l = 12) 73.47(l = 12) 76.60

Table 7. Results of AP using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 82.05 90.28 58.54 72.43 71.51 54.93 71.62

SBERT 95.11 88.28 72.65 84.53 90.96 75.42 84.49

Doc2Vec 53.43 68.73 44.26 54.20 4.93 11.01 39.43

fastText +
Average

81.58 89.36 40.28 62.43 60.32 52.46 64.41

fastText +
SIF

70.19 77.11 54.20 62.21 70.17 68.50 67.06

*BERT 89.96(l = 2) 92.10(l = 1) 69.97(l = 0) 74.30(l = 1) 71.51(l = 12) 54.93(l = 12) 75.46

*BERT +
Schema

72.35(l = 12) 91.97(l = 3) 64.87(l = 1) 73.03(l = 12) 52.71(l = 11) 50.95(l = 11) 67.65

*SBERT 95.11(l = 12) 93.18(l = 0) 72.65(l = 12) 84.53(l = 12) 90.96(l = 12) 75.42(l = 12) 85.31

*SBERT +
Schema

94.51(l = 12) 93.34(l = 0) 75.88(l = 12) 81.21(l = 12) 87.54(l = 12) 68.89(l = 12) 83.56

methods, so we infer that Doc2Vec is not suitable for block generation methods using
Euclidean distance. All in all, SBERT shows its great advantage in record embedding,
compared to other PLMs. In addition, this paper conducts experiments on BERT and
SBERT which consider schema information. In most cases, schema information does
not improve blocking results. Therefore, the schema information is not considered in
this paper.

238 C. Sun et al.

Table 8. Results of k-means using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 82.80 92.62 60.52 69.64 53.26 58.49 69.56

SBERT 95.23 88.64 81.53 87.31 94.33 82.11 88.19

Doc2Vec 88.20 92.04 64.43 79.18 50.49 47.06 70.23

fastText +
Average

80.60 90.43 51.64 73.37 65.54 54.49 69.35

fastText +
SIF

82.01 89.93 48.44 66.68 82.33 66.89 72.71

*BERT 89.74(l = 1) 94.57(l = 5) 69.42(l = 1) 76.09(l = 0) 58.29(l = 1) 58.49(l = 12) 74.43

*BERT +
Schema

79.74(l = 1) 94.22(l = 1) 57.56(l = 12) 74.99(l = 0) 32.78(l = 12) 40.35(l = 12) 63.27

*SBERT 96.07(l = 0) 94.67(l = 4) 81.53(l = 12) 87.31(l = 12) 94.33(l = 12) 82.11(l = 12) 89.34

*SBERT +
Schema

93.40(l = 12) 94.52(l = 0) 78.81(l = 12) 84.43(l = 12) 92.33(l = 12) 79.12(l = 12) 87.10

Table 9. Results of top-k using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

SBERT 93.98 91.95 87.47 91.98 98.23 98.30 93.65

Doc2Vec 91.32 91.21 82.32 89.64 95.28 90.72 90.08

fastText +
Average

88.77 92.89 68.66 87.26 84.68 76.58 83.14

fastText +
SIF

90.36 93.29 70.52 87.37 95.08 88.13 87.46

*BERT 92.17(l = 1) 92.48(l = 0) 82.29(l = 1) 90.09(l = 0) 90.68(l = 0) 80.57(l = 1) 88.05

*BERT +
Schema

87.98(l = 1) 92.36(l = 0) 77.54(l = 1) 88.47(l = 0) 86.24(l = 12) 76.27(l = 12) 84.81

*SBERT 94.98(l = 0) 92.51(l = 0) 87.47(l = 12) 91.98(l = 12) 98.23(l = 12) 98.30(l = 12) 93.91

*SBERT +
Schema

94.10(l = 0) 92.95(l = 0) 87.39(l = 12) 90.92(l = 12) 98.21(l = 12) 95.12(l = 12) 93.12

Layer Analysis of Sentence-BERT and BERT. We investigate effectiveness of each
layer in SBERT and BERT for blocking on Cora, Altosight, and Amazon-Google2. We
get output token embeddings from each layer of BERT and SBERT and apply an average
operation to obtain record embeddings.

In Fig. 6, 7 and 8, for BERT, the highest Fα is often found in layers 0–3. Therefore,
shallow layers are superior to other layers in most cases. A study [16] has shown that
surface information features are in the shallow network, syntactic information features
and semantic information features are in the middle and higher layer network. Surface

Exploring the Design Space of Unsupervised Blocking 239

Table 10. Results of range query using different record embedding methods.

Embedding Dataset

Cora
Fα(%)

Notebook
Fα(%)

Altosight
Fα(%)

WDC_cameras
Fα(%)

Abt-Buy
Fα(%)

Amazon-Google2
Fα(%)

AVG
Fα(%)

BERT 63.52 80.66 62.78 74.54 81.72 73.33 72.76

SBERT 93.55 96.25 80.90 91.07 97.70 97.63 92.85

Doc2Vec 89.13 95.46 78.33 87.66 92.37 85.86 88.14

fastText +
Average

73.94 95.85 62.44 81.79 83.22 70.00 77.87

fastText +
SIF

90.27 96.15 72.12 87.07 94.92 87.83 88.06

*BERT 87.62(l = 1) 96.50(l = 0) 75.61(l = 0) 85.91(l = 0) 88.58(l = 0) 74.82(l = 1) 84.84

*BERT +
Schema

14.77(l = 12) 96.85(l = 3) 67.13(l = 12) 85.21(l = 0) 76.96(l = 2) 76.01(l = 12) 69.49

*SBERT 93.64(l = 0) 97.43(l = 0) 80.90(l = 12) 91.07(l = 12) 97.70(l = 12) 97.63(l = 12) 93.06

*SBERT +
Schema

92.29(l = 12) 97.43(l = 0) 83.45(l = 12) 88.92(l = 0) 97.05(l = 12) 96.40(l = 12) 92.59

Fig. 6. Results of different BERT layers on Cora, layer = 0 indicates the input of BERT (token
embedding + segment embedding + position embedding).

information is some intuitive information including sentence length etc. Syntactic infor-
mation and semantic information include a great deal of grammar. In blocking, if two
records are similar in surface information, then the two records should be placed in the
same block. The syntactic and semantic details are more meaningful in matching of ER.
For most experimental results, our intuition is correct. On Amazon-Google2, the opti-
mal layers of BIRCH, AP, and k-means fall into other layers because Amazon-Google2’s
records are longer than other datasets. Longer records can result in common tokens being
repeated in many records, and this is where syntax information is needed to help get
better record embeddings. In addition, the shallower the layer is, the wider the focus of
each token is [17]. Thus, each token in the shallow layers aggregates with each other,
leading to drops in performance in the shallow layers.

In Fig. 9, 10 and 11, we observe that for SBERT, good blocking results can be seen
at the 0-th layer and the 11-th layer, but the optimal layer is usually the 12-th layer. We

240 C. Sun et al.

Fig. 7. Results of different BERT layers on Altosight.

Fig. 8. Results of different BERT layers on Amazon-Google2.

Fig. 9. Results of different SBERT layers on Cora, layer= 0 indicates the input of SBERT (token
embedding + position embedding).

can draw a general conclusion: the optimal layer comes most from the last layer, and
the first two layers generally outperform the middle layers. SBERT benefits from its
whole-sentence learning, with the 12-th layer output showing a clear advantage on the
blocking task. Of course, due to the nature of the blocking task itself, layers that focus
on surface information can also work well.

Exploring the Design Space of Unsupervised Blocking 241

Fig. 10. Results of different SBERT layers on Altosight.

Fig. 11. Results of different SBERT layers on Amazon-Google2.

3.4 Analysis of Block Generation

Effectiveness of Block Generation Methods. In Table 2, we find that the best block
generation methods in B-PLM are top-k and range query. The simple similarity search
method achieves optimal performance. AHC performs better than other clustering algo-
rithms. Firstly, AHC is a bottom-up clustering algorithm. Thus naturally more similar
records are preferentially grouped into the same blocks. Also, AHC and k-means use
cosine distances, whereas other clustering algorithms use Euclidean distances. In higher
dimensional spaces, the Euclidean distance loses efficacy, whereas the cosine distance
does not have this problem. In addition, k-means also achieves good results, especially
on Cora, a more redundant dataset, and on Altosight, a dirty dataset, so we believe that
k-means may be suitable for more difficult settings. BIRCH, DBSCAN, and AP perform
poorly overall. To explore the characteristics of each block generationmethodmore fully,
we present the PC-RR curves for different block generation variants on six datasets, as
shown in Fig. 12. The optimal block generation method is top-k, as the top-k method
has a more slow decrease in RR as PC increases. The performance of range query is
second only to that of top-k. For AHC, RR declines sharply if PC exceeds a certain
value. In general, the top four block generation methods in terms of RC-RR curve are
top-k, range query, AHC and k-means. Furthermore, we believe that DBSCAN is less
suitable for blocking. Firstly, density measurement is inaccurate in high dimensional
spaces where Euclidean distance’s accuracy declines. Secondly, we cannot guarantee

242 C. Sun et al.

that cluster densities in a dataset are similar, but DBSCAN is only applicable to data
with similar densities across different clusters. Finally, DBSCAN has several parameters
that need to be adjusted, which decreases its usability for blocking.

Fig. 12. PC-RR curves of different block generation methods on different datasets.

Parameter Sensitivity in Block Generation. We investigate parameters of different
block generation methods. With SBERT, how parameter adjustments affect blocking
qualities in different block generation methods are presented in Fig. 9, 10 and 11. AP,
k-means and top-k are relatively insensitive to parameters, where blocking qualities on
most layers change mildly with parameter adjustments. BIRCH is more sensitive to
parameters. In general, top-k, k-means, and AP are robust to parameter changes, and
their appropriate parameters are easy to catch.

4 Related Work

Non-deep learning blocking has been extensively studied [1]. There are six types of
blocking techniques. 1. The Traditional Blocking method inserts all records with the
same blocking key value (BKV) into the same block. 2. The basic idea of Sorted Neigh-
borhood Blocking is to sort the database according to BKVs and then generate blocks by
movingwindows. 3. The basic idea ofQ-GramBasedBlocking creation is to use q-grams
for each BKV variation. 4. Suffix Array-Based Blocking is to insert the BKVs and their
suffixes into a suffix array-based inverted index. 5. Canopy Clustering is based on the
idea of using a computationally cheap clustering approach to create high-dimensional
overlapping clusters. 6. String-Map-Based Blocking is based on a mapping of strings to
objects in a multi-dimensional Euclidean space, where the distances between strings are
preserved. Recently, DL-based blocking methods have emerged, which obtain record
embedding by applying DL models, and then perform embedding-based block gener-
ation. DeepER [2] uses an RNN or LSTM to learn record embeddings for facilitating
ER, and LSH is employed for blocking. BERT-ER [3] is based on BERT learn record

Exploring the Design Space of Unsupervised Blocking 243

embeddings and uses learnable hash functions for blocking. AutoBlock [4] uses fast-
Text [10] to obtain token embeddings and learns how to combine token embeddings
into record embeddings with labeled data. The above methods all use labeled data.
Fabio Azzalini et al. [6] use fastText to obtain token embeddings and generate record
embeddings by averaging or recurrent neural network (RNN). Then block generation
is performed by LSH or clustering-based methods. DeepBlocker [5] utilizes fastText
for token embeddings. To obtain record embeddings, DeepBlocker proposes four self-
supervised tasks to accomplish the aggregation of token embeddings. Please refer to
Sect. 3.1 for details of DeepBlocker. Most DL-based approaches still see blocking as
part of ER, whereas B-PLM sees blocking as a separate task. B-PLM leverages the
powerful linguistic expressiveness of PLM compared to the above methods, providing
a wealth of external information for unsupervised blocking tasks.

5 Conclusion

This paper explores a design space of unsupervised blocking solutions based on PLMs.
B-PLM is available as a baseline for unsupervised blocking. We compare seven rep-
resentative solutions. The proposed solutions are experimentally proven to outperform
the state-of-the-art DL-based blocking framework. The experimental results proved the
advantages of B-PLM on textual and dirty datasets. Based on thorough experiments,
we suggest recommended methods for record embedding (SBERT) and block genera-
tion (top-k). In the next step, we will consider some more advanced PLM models, and
consider fine-tuning PLMs and dimension reduction.

Acknowledgments. This work is supported by the National Natural Science Foundation of China
(Grant Nos. 62002262, 62172082, 62072086, 62072084).

References

1. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication.
IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2011)

2. Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang, N.: Distributed rep-
resentations of tuples for entity resolution. Proc. VLDB Endowment 11(11), 1454–1467
(2018)

3. Li, B., Miao, Y., Wang, Y., Sun, Y., Wang, W.: Improving the efficiency and effectiveness
for BERT-based entity resolution. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 15, pp. 13226–13233 (2021)

4. Zhang, W., Wei, H., Sisman, B., Dong, X. L., Faloutsos, C., Page, D.: AutoBlock: a hands-off
blocking framework for entity matching. WSDM, pp. 744–752 (2020)

5. Thirumuruganathan, S., Li, H., Tang, N., Ouzzani, M., Govind, Y., Paulsen, D., Fung, G.,
Doan, A.: Deep learning for blocking in entity matching: a design space exploration. Proc.
VLDB Endow. 14(11), 2459–2472 (2021)

6. Azzalini, F., Jin, S., Renzi, M., Tanca, L.: Blocking techniques for entity linkage: a semantics-
based approach. Data Sci. Eng. 6(1), 20–38 (2020)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

http://arxiv.org/abs/1810.04805

244 C. Sun et al.

8. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-
networks. In: EMNLP-IJCNLP, pp. 3980–3990 (2019)

9. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML,
pp. 1188–1196 (2014)

10. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguistics, 5, 135–146 (2017)

11. Han, J., Pei, J., Tong, H.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2022)
12. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very

large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996). https://doi.org/10.1145/235
968.233324

13. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315(5814), 972–976 (2007)

14. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings.
In: ICLR (Poster) (2017)

15. Primpeli, A., Peeters, R., Bizer, C.: The WDC training dataset and gold standard for large-
scale productmatching. In:CompanionProceedings of the 2019WorldWideWebConference,
pp. 381–386 (2019)

16. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure of language?.
ACL 1, 3651–3657 (2019)

17. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does BERT look at? An analysis
of bert’s attention: BlackboxNLP@ACL, 276–286 (2019)

https://doi.org/10.1145/235968.233324

	Exploring the Design Space of Unsupervised Blocking with Pre-trained Language Models in Entity Resolution
	1 Introduction
	2 The Design Space of Unsupervised Blocking with Pre-Trained Language Models
	2.1 Framework Overview
	2.2 Record Embedding
	2.3 Block Generation

	3 Comparative Experimental Evaluation and Analysis
	3.1 Experiment Setup
	3.2 Overall Performance
	3.3 Analysis of Record Embedding
	3.4 Analysis of Block Generation

	4 Related Work
	5 Conclusion
	References

