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Abstract. Chinese Nested Named Entity Recognition (CNNER) faces
several challenges due to the language diversity phenomena, the complex-
ity of the language, and the imbalanced distribution of entity types in
Chinese text. To address these challenges in CNNER, we propose a new
method called CPMFA (Character Pair-based method with Multi-feature
representation and Attention mechanism). The CPMFA method predicts
the predefined relations of character pairs in a sentence, and identi-
fies nested named entities based on these relations. First, our method
utilizes the pre-trained language model LERT (Linguistically-motivated
Bidirectional Encoder Representation from Transformer), and Bidirec-
tional Long Short-Term Memory (BiLSTM) to generate comprehensive
and precise character representations. Second, our method uses multi-
feature representation to capture complex semantic information within
the text, and employs the Pyramid Squeeze Attention (PSA) module to
emphasize key features. Finally, to overcome the challenge of the imbal-
anced distribution of entity types, PolyLoss function is integrated into
our model training process. Results of experiments show that the pro-
posed CPMFA method achieves an F1 score of 83.79%. Compared to
other mainstream span-based methods, the proposed CPMFA method
has excellent performance in CNNER.

Keywords: Chinese character pair · Chinese nested named entity
recognition · Multi-feature representation · Attention mechanism ·
Pre-trained language model

1 Introduction

Nested named entities are entities that have overlapping structures. The majority
of existing named entity recognition models have difficulty in accurately identify-
ing such complex nested named entities, and cannot capture specific and detailed
entity information in the text. Therefore, recognizing nested named entities has
always been a highly challenging task.
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In recent years, researchers have increasingly focused on the application of
deep learning models in Chinese Nest Named Entity Recognition (CNNER).
However, the literature in this field remains limited. Zhang et al. [1] proposed a
novel boundary-aware layered neural model (BLNM) with segmentation atten-
tion, which captures the potential word information and enhance Chinese charac-
ter representation, but is ineffective when dealing with a combination of Chinese
and English text. Yu et al. [2] introduced a layered regional exhaustive model
(LREM), which utilizes a neural network to explore exhaustive combinations of
sentences; however, it requires an improved understanding of Chinese semantic
language and does not fully utilize critical information within the text. Li et al.
[3] developed a multi-layer joint learning model that uses a self-attention mech-
anism to effectively aggregate entity information features and identify nested
entities layer by layer. However, the method faces challenges in handling imbal-
anced entity classes.

Previous studies on nested named entity recognition (NNER) primarily
focus on English texts. There are notable differences between Chinese and
English. Models that perform well in English NNER often encounter challenges
when applied to Chinese texts, resulting in unsatisfactory outcomes. Existing
researches has identified the following difficulties in CNNER:

1. Language diversity phenomena in Chinese text: with the constant integration
and evolution of language and culture, the language diversity phenomena in
Chinese technical materials and reference documents continue to increase.
The mixture of Chinese, English, numbers, symbols, and other linguistic
expressions presents a significant challenge for CNNER.

2. Complexity of the Chinese language: in Chinese text, the presence of multiple
layers and high frequency of nested named entities, along with polysemous
phenomena, results in a significantly challenging task of CNNER.

3. Entity type imbalance in Chinese text: for practical applications, entity type
numbers distribution in Chinese text often follows a long-tail distribution
where only a few entity types occupy the majority of data, significantly imped-
ing model recognition performance.

To address the previously outlined challenges, this study proposes a Char-
acter Pair-based method with Multi-feature representation and an Attention
mechanism (CPMFA). The proposed method makes the following contributions:

1. To overcome the challenge of language diversity phenomena in Chinese text,
we introduce the linguistically-motivated pre-trained language model called
LERT (Linguistically-motivated Bidirectional Encoder Representation from
Transformer), as well as Bidirectional Long Short-Term Memory (BiLSTM),
to vectorize the text. This approach improves the quality of character repre-
sentation in Chinese text.

2. To address the complexity of Chinese language, this study utilizes multi-
feature representation to incorporate comprehensive information from the
text, as well as adopts the Pyramid Squeeze Attention (PSA) module to
prioritize key features.
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3. To deal with the long-tail distribution problem of entity class numbers in Chi-
nese text, PolyLoss loss function is employed to improve the model’s recog-
nition performance.

This paper provides an overview of related work in Sect. 2, introduces the
CPMFA method in Sect. 3, evaluates its performance on a Chinese nested named
entity dataset with a detailed performance analysis in Sect. 4, and draws conclu-
sions in Sect. 5.

2 Related Work

NNER utilizes two primary methods: sequence labeling-based and span-based.
Using a sequence labeling-based method, a label sequence with the highest

probability is generated, which infers the boundaries and types of named enti-
ties more efficiently. Huang et al. [4] first utilized the BiLSTM-CRF model for
named entity recognition (NER), which enables the capture of contextual infor-
mation and dependencies between labels. To handle nested entities, Strakova et
al. [5] combined multiple labels to create new ones. However, because characters
in nested entities can have multiple labels, decoding named entities using the
sequence labeling-based approach is more complex.

Using a span-based method, named entities are identified by categorizing
the subsequences of the text sequence. Li et al. [6] detected entity fragments
by exploring every possible text span and applying relationship classification to
discover possible relationships among sets of entity fragments, thereby achieving
recognition of nested entities. Xia et al. [7] proposed the Multi-Grained Named
Entity Recognition (MGNER) model, which comprises a detection system and
a classifier. The model aims to identify and categorize all potential fragments
of entities. Li et al. [8] accomplished entity boundary determination and entity
type recognition by predicting word relationships. However, span-based methods
focus primarily on contextual information and do not fully explore the underlying
information of the text.

Basic NNER methods have limitations in mining deep textual information.
Therefore, some scholars have suggested incorporating attention mechanisms in
NNER models to improve their performance and effectiveness [9]. Cui et al. [10]
proposed a Multi-Head Adjacent Attention-based Pyramid Layered model to
capture the dependency relationships between adjacent characters in the input
text. Similarly, Rodŕıguez et al. [11] proposed an attention mechanism based
specifically on the use of elements of the noun syntactic type to capture syntactic
information in the text. These models show that attention mechanisms can be
used to extract deep textual information.

The pre-trained language models, represented by Bidirectional Encoder Rep-
resentation from Transformers (BERT) [12], have shown remarkable performance
in many NER tasks. To address the issue of polysemy in Chinese, Li et al. [13]
suggested a syntactic dependency guided BERT-BiLSTM-GAM-CRF model. Yu
et al. [14] incorporated BERT into a previously utilized NER model to extract
entities from mineral literature.
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Xu et al. [15] proposed an approach that utilized BERT and a supervised
multi-head self-attention mechanism to capture lexical correlations. This app-
roach combined both attention mechanism and pre-trained language model,
achieving excellent performance in the task of nested named entity recogni-
tion. In this study, the LERT pre-trained language model and Pyramid Squeeze
Attention (PSA) module were employed to further enhance performance of the
named entity recognition model. In real-world scenarios, the uneven distribu-
tion of entity quantities is a common issue. Various types of entities can exhibit
distinct frequencies and distributions within the text. Such type imbalance can
significantly impair the performance of NNER models.

The loss function measures the discrepancy between predicted and true labels
during training. Focal Loss [16], an adaptive loss function utilized in the field
of image recognition, aims to address type imbalance by reducing the impact of
more frequently appearing samples while increasing the weight of the less fre-
quent ones. Leng et al. [17] introduced PolyLoss, a linear combination of poly-
nomial functions that can be customized to match the unique characteristics of
the dataset. This method improves upon traditional loss functions by account-
ing for the nuances of the data, resulting in more accurate predictions. Although
there has been extensive research conducted in the field of NNER, there are
currently no literature references that examine the effectiveness of implementing
PolyLoss within this area. We present the first study to use PolyLoss in NNER
and demonstrate its ability in enhancing performance.

3 CPMFA Method

Our inspiration for defining the task of CNNER as the prediction of relations
between characters comes from Li et al. [8]. Therefore, we propose a Character
Pair-based method with Multi-feature Representation and Attention mechanism
(CPMFA).

CPMFA model predicts the relations of character pairs in a sentence, based on
three predefined relations: None, Next Neighboring Character (NNC), and Tail-
Head Character-* (THC-*, where * represents the entity type). None indicates no
relation between two characters. Next Neighboring Character (NNC) indicates
whether two characters are adjacent within an entity. Tail-Head Character-*
(THC-*) identifies the entity boundary and entity type. THC-* denotes the tail
and head boundaries, while * represents the entity type.

3.1 CPMFA Model

Figure 1 depicts the architecture of the CPMFA model, consisting of three dis-
crete components: Encoder Layer, Feature Extraction Layer, and Decoder Layer.

Encoder Layer. The Encoder Layer incorporates LERT and BiLSTM to pro-
duce superior character representations. LERT, a pre-trained language model,
is applied to attain a comprehensive representation of textual information.
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Fig. 1. The architecture of the CPMFA model.

For an input sentence C = [c1, c2, ..., cn], LERT produces vectorized text
X = [x1, x2, ..., xn], as demonstrated in Eq. (1). To further enhance the model’s
understanding of textual context, the BiLSTM is employed to produce the result
H = [h1, h2, ..., hn] ∈ RN×dh , as mentioned in Eq. (2). Here, dh is the dimen-
sional aspects of character representation.

X = LERT (C) (1)

H = BiLSTM(X) (2)

Feature Extraction Layer. The Feature Extraction Layer is used to extract
pertinent features of character pair relations, thereby enabling accurate predic-
tion of named entities. The layer comprises three components: a conditional layer
normalization (CLN), multi-feature representation, and a PSA module.

Conditional Layer Normalization. The CLN generates grid representations
between two characters, which are fundamental for extracting pertinent features
related to character pairs, as illustrated in Eq. (3). This matrix V ∈ R

N×N×dh

is the result of the CLN, where Vij stands for the representation of the char-
acter pair (ci, cj). Since both NNC and THC-* relations are directional, Vij ,
which represents the character pair (ci, cj), can be considered as a combination
of the representations of ci and cj , denoted by hi and hj respectively. Here, hi

is the condition for producing the gain parameter γij = Wαhi + bα as well as
bias λij = Wβhi + bβ of layer normalization. As mentioned in Eq. (4), μ and σ
represent the mean and standard deviation of the elements present in hj .

Vij = CLN (hi, hj) = γij �
(

hj − μ

σ

)
+ λij (3)

μ =
1
dh

dh∑
k=1

hjk, σ =
√

1
dh

dh∑
k=1

(hjk − μ)2 (4)
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Multi-feature Representation. Constructing multi-feature representations facil-
itates the integration of features from various perspectives and improves the
accuracy of predicting character pair relations. Referring to Eq. (5), the multi-
feature representation E ∈ R

N×N×de is obtained through concatenating distance
embedding ED ∈ R

N×N×dd , region embedding ER ∈ R
N×N×dr , and character

embedding V ∈ R
N×N×dh . The distance embedding shows the relative position

of characters; the region embedding displays up-down triangle area information
on the grid; and character embedding conveys semantic information.

E = Concat([ED, ER, V ]) (5)

PSA module. The PSA module can efficiently focus on key features in multi-
feature representations and process character-to-character interaction informa-
tion. The PSA module consists of two modules: the Squeeze and Concat (SPC)
module and the SEWeight module [18].

As shown in Fig. 2, the SPC module is composed of multiple parallel branches
that operate independently. Each branch takes E′ as input and contains a num-
ber of channels de. E′ is obtained by permuting the dimensions of the input
multi-feature representation E. Grouped convolutions and convolution kernels
of various sizes are utilized to compress the channels and capture spatial infor-
mation across different scales. The resulting feature maps from the SPC module
are represented by F ∈ R

de×N×N , as depicted in Eq. (6).

F = SPC(E′) (6)

The SEWeight module utilizes input F , as shown in Eq. (7), to generate an
attention vector Zi for that branch.

Zi = SEWeight (Fi) , i ∈ 1, 2, 3, 4 (7)

Equation (8) shows the concatenation of attention weights from each branch,
which creates the multi-scale channel weight. Multiplying the multi-scale fusion
feature map with the multi-scale fusion channel weight in a channel-wise oper-
ation creates an adaptive channel weight for the feature map. The “Concat”
denotes the concatenate operator, while � denotes the element-wise product
operator.

MF = Concat([W1,W2, . . . ,W4]) � F (8)

Decoder Layer. The Decoder Layer comprises two main parts: predicting char-
acter pair relations and decoding identified named entities.

Predict. Our proposed model is designed to predict character pair relations
by calculating the relation’s probability of belonging to a specific class. The
feature extraction layer and dimensional transposition produce the feature grid
representation of character pairs, denoted as M ′

F . The relation score y′
ij of the
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Fig. 2. The PSA module’s structure diagram and a detailed description of the SPC
module at S=4. K refers to the convolution kernel’s size, G represents the group size,
and “Concat” represents the feature concatenation in the channel dimension.

character pair (ci, cj) is computed by the Multilayer Perceptron (MLP), as shown
in Eq. (9). To evaluate the probability ŷij of character pair (ci, cj) belonging to
specific classes, the Softmax function is employed, as indicated in Eq. (10).

y′
ij = MLP (M ′

Fij
) (9)

ŷij = Softmax(y′
ij) (10)

Decode. We extract named entities by decoding the relations of character pairs.
Relations of character pairs establish a directed graph, including nodes for char-
acters and edges for relations. The model identifies specific pathways connecting
distinct characters to one another, with each pathway mapped to a unique entity.

3.2 Training

Loss Function. We integrate the PolyLoss framework into our CPMFA model
to resolve the long-tail entity type distribution issue in Chinese text. Tuning
the polynomial coefficients in the PolyLoss-based loss function can optimize the
model’s performance for different datasets and tasks.

Our objective during training is to minimize LCPMFA, as shown in Eq. (11).
Here, LCE , Pt, and ε represent the cross-entropy loss function, the probability
of the model’s true class label, and an adjustable hyperparameter, respectively.

In Eq. (12) and Eq. (13), the symbols used include N , representing the num-
ber of characters present in the sentence. Additionally, yij denotes a binary
vector used to represent the actual relation of the character pair (ci, cj). The
predicted probability vector, in contrast, is denoted as ŷij . Lastly, r signifies the
r-th relation contained in a predefined relation set, R.

LCPMFA = LCE + ε (1 − Pt) (11)
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LCE =
N∑

i=1

N∑
j=1

|R|∑
r=1

yij logŷij (12)

Pt =
N∑

i=1

N∑
j=1

|R|∑
r=1

yij ŷij (13)

4 Experiments and Results

4.1 Dataset

We utilized DiaKG, the authoritative dataset for the Chinese diabetes domain,
and followed the division protocol established by Chang et al. [19] to extract the
train, validation, and test sets.

Table 1 displays the statistical information for different granularities of the
DiaKG dataset. The dataset contains a proportion of nested entities, up to 22%
of it. Improving the precision of nested named entity recognition has the potential
to enhance the overall model’s performance.

Table 1. The statistical information on the granularity of the DiaKG dataset.

Granularity Statistics Train Dev Test Total

Sentence Total 4906 1636 1636 8178

Sentences with nested named entities 3550 (72.36%) 1205 (73.66%) 1164 (71.15%) 6255 (76.49%)

Avg. sentence length 151.34 153.68 150.63 151.68

Entity Total 65774 22417 21496 109687

nested named entities 11101(16.88%) 3771(16.82%) 3516(16.36%) 24155(22.02%)

Avg. entity length 4.37 4.37 4.38 4.37

Max number of nested layers 3 3 2 3

Figure 3 presents the frequency of annotations for the 18 entity types in the
DiaKG dataset. The figure shows that the number of entity types are diverse
and follow a long-tailed distribution, indicating data imbalance.

4.2 Evaluation Metrics

In this study, we follow the exact matching pattern to evaluate the performance
of NNER. That is to say, a predicted entity is considered as correctly identi-
fied only when its predicted boundaries and types exactly match the annotated
results in the dataset. Currently, in CNNER tasks, precision (P), recall (R), and
F1 score (F1) are commonly used to evaluate the performance [20]. Precision
measures the model’s ability to correctly predict entities, while Recall measures
the model’s ability to identify all entities. The F1 score is the harmonic mean of
precision and recall.
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Fig. 3. Distribution of entities and number of entities in DiaKG dataset.

Precision, recall, and F1 score are calculated based on the number of true
positives (TP), false positives (FP), and false negatives (FN), as shown in Eq.
(14), Eq. (15) and Eq. (16).

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

F1 =
2 × P × R

P + R
(16)

4.3 Experimental Setting

The development language used in this study is Python and the deep learning
framework used is Pytorch, which was trained on an NVIDIA 3090 Ti graphics
card. Regarding the model hyper-parameters, we set the dimension of the LERT
embedding to 768, the dimension of the LSTM hidden layer to 478, the batch size
to 8, and the initial learning rate to 0.001. To prevent the model from overfitting,
early stopping criteria and a dropout rate of 0.5 were employed in this study.

4.4 Results

Comparison of Loss Function. This study evaluates the performance of three
loss functions: LCPMFA, cross-entropy (LCE), and focal (LFL). The hyperpa-
rameter ε of LCPMFA can be adjusted. Figure 4(a) and Fig. 4(c) demonstrate
that models trained with LCPMFA perform better in F1 score and recall than
those using LCE and LFL functions. Figure 4(b) illustrates that, when ε ∈ 1, 2, 4,
models trained with LCPMFA have lower precision compared to models trained
with LCE . However, models trained with LCPMFA have higher precision than
models trained with LFL. In conclusion, using the LCPMFA loss function and
customizing the hyperparameters based on dataset characteristics could improve
the CPMFA model’s ability to identify named entities.
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Fig. 4. Performances of our model trained with different loss functions.

Necessity of Multi-feature Representation. We conducted ablation exper-
iments on the embeddings to verify the significance of multi-feature represen-
tation. The results are presented in Table 2. Using only character embedding
for input features yielded the lowest F1 score. Integrating distance and region
embedding resulted in a noteworthy improvement in the performance of the
model. The integration of character and region embedding attained optimal
precision, with a score of 85.41%. However, the multi-feature representation
recorded only 0.01% lower precision, indicating a negligible difference between
them. Our multi-feature representation, which integrated character, distance,
and region embedding, achieved excellent results in both recall and F1 score.
Therefore, the incorporation of multi-feature representation could effectively
represent the relations of character pairs and enhance the model’s recognition
performance.

Table 2. Performances of our model with different feature embedding. The bold value
indicates the optimal results.

F1 (%) P (%) R (%)

Char Embedding 80.61 82.99 78.36

Char Embedding+Distance Embedding 82.90 84.11 81.73

Char Embedding+Region Embedding 83.05 85.41 80.81

Ours (Char Embedding+Distance Embedding+Region Embedding) 83.79 85.40 82.23

Comparison with Baselines. Table 3 provides a comparison between our pro-
posed model and previous work on the DiaKG dataset. The span-based method
outperformed the sequence labeling-based method. Our CPMFA model achieved
the highest F1 score and recall at 83.79% and 82.23%, respectively. However, the
model’s precision was suboptimal, at 85.40%, which was 1.58% lower than that
of the Efficient Global Pointer model. The analysis indicated that the pointer-
based architecture of the Efficient Global Pointer model had a higher accuracy in
identifying longer entities in input sequences. It successfully identified spans by
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learning patterns of head and tail word pairs, even if the intermediate words had
changed. In contrast, our CPMFA model comprehensively recognized entities by
classifying the relation between each character pair.

Table 3. Performances of our model and baseline models on DiaKG dataset. The bold
value indicates the optimal results.

Method F1 (%) P (%) R (%)

Sequence labeling-based Cascade-CRF [21] 62.58 59.52 65.97

Span-based W2NER [8] 80.51 81.52 79.52

Global Pointer [22] 69.35 73.36 65.76

Efficient Global Pointer [23] 82.95 86.98 79.28

Ours CPMFA 83.79 85.40 82.23

Ablation Experiments. We selected the DiaKG dataset to evaluate the effec-
tiveness of our model’s components. We conducted an analysis by removing one
component at a time to observe the impact on performance. Table 4 shows the
performance of the model’s variations with “w/o” representing “without.” The
results signify that all model components are essential for optimal performance.

First, we replaced the LERT pre-trained language model with the BERT
pre-trained language model in our CPMFA model, causing a 2.26% decrease in
the F1 score. This indicates that pre-trained language model with rich linguistic
features can significantly tackle the challenge of linguistic diversity phenomena
in Chinese text.

Then, we removed the multi-feature representation from our model CPMFA.
This resulted in a 3.18% decrease in the F1 score, indicating that the multi-
feature representation module can perform deeper information mining as a com-
plement to pre-trained language models.

Lastly, we evaluated the effectiveness of using the PSA module by removing
it from the experiment, resulting in a 1.18% reduction in F1-score. The result
indicates that the PSA module can help to focus on the most essential aspects
of the input features.

Table 4. Ablation study on DiaKG dataset. The bold value indicates the optimal
results.

F1 (%) P (%) R (%)

CPMFA (ours) 83.79 85.40 82.23

w/o LERT 81.52 84.38 78.85

w/o multi-feature representation 80.61 82.99 78.36

w/o PSA 82.61 84.03 81.23
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5 Conclusion

This paper proposes a CPMFA model for CNNER and evaluate its performance
in medical nested text related to diabetes. First, our model utilizes a pre-trained
language model LERT and BiLSTM to acquire high-quality character embed-
dings that effectively tackle the challenge of linguistic diversity phenomena in
Chinese text. Second, the model integrates multi-feature representation and the
PSA module to capture critical features for effective text mining. To address
the issue of imbalanced entity types, the PolyLoss-based function is employed
during training. Ablation Experiments validate the effectiveness of each model
component. Notably, the CPMFA model outperforms existing NNER models in
terms of F1 score, demonstrating its potential to enhance CNNER performance
for Chinese medical text and offer a novel technical solution in other domains.
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