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Abstract. BERT and its variants are the most performing models for
named entity recognition (NER), a fundamental information extraction
task. We must apply inference speedup methods for BERT-based NER
models to be deployed in the industrial setting. Early exiting allows the
model to use only the shallow layers to process easy samples, thus reduc-
ing the average latency. In this work, we introduce FastNER, a novel
framework for early exiting with a BERT biaffine NER model, which
supports both flat NER tasks and nested NER tasks. First, we intro-
duce a convolutional bypass module to provide suitable features for the
current layer’s biaffine prediction head. This way, an intermediate layer
can focus more on delivering high-quality semantic representations for
the next layer. Second, we introduce a series of early exiting mechanisms
for BERT biaffine model, which is the first in the literature. We con-
duct extensive experiments on 6 benchmark NER datasets, 3 of which
are nested NER tasks. The experiments show that: (a) Our proposed
convolutional bypass method can significantly improve the overall per-
formances of the multi-exit BERT biaffine NER model. (b) our pro-
posed early exiting mechanisms can effectively speed up the inference
of BERT biaffine model. Comprehensive ablation studies are conducted
and demonstrate the validity of our design for our FastNER framework.

Keywords: Early Exiting · Pre-trained language models · Inference
speed-up

1 Introduction

Since the rise of BERT [3], the pre-trained language models (PLMs) are the
state-of-the-art (SOTA) models for natural language processing (NLP) [13,31].
Many PLMs are developed by the academia and industry, such as GPT [15],
XLNet [25], and ALBERT [10], and so forth. These BERT-style models achieved
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considerable improvements in many NLP tasks by self-supervised pre-training
and transfer learning on labeled tasks, such as classification, text pair matching,
named entity recognition (NER), etc. Despite their outstanding performances,
their industrial usage is still limited by the high latency during inference.

Fig. 1. The overall architecture of our FastNER framework.

NER and other sequence labeling tasks play a central role in many appli-
cation scenarios, such as question answering, document search, document-level
information extraction, etc. However, these applications require low latency. For
example, an online search engine needs to respond to the user’s query in less
than 100 milo-seconds. Thus, a NER model should be accurate and efficient. In
addition, at certain time intervals, consumer query traffic is very concentrated.
For example, during dinner hours, food search engines will be used much often
than usual. Thus, it is important for deployed NER models to flexibly adjust
their latency.

Literature has focused on making PLMs’ inference more efficient via adaptive
inference [14,23,28,30]. The idea of adaptive inference is to process simple queries
with lower layers of BERT and more difficult queries with deeper layers, thus
speeding up inference on average without loss of accuracy. The speedup ratio can
be flexibly controlled with certain hyper-parameters without re-deploying the
model services. Early exiting is the representative adaptive inference methods
[1]. As depicted in Fig. 1, it implements adaptive inference by installing an early
exit, i.e., an intermediate prediction head, at each layer of PLMs (multi-exit
PLMs) and early exiting “easy” samples to speed up inference. All the exits are
jointly optimized at the training stage with BERT’s parameters. At the inference
stage, certain early exiting strategies are designed to decide which layer to exit
[4,8,18,23,27,28]. In this mode, different samples can exit at different depths.

For our framework to be generally applicable, we mainly adopt the biaffine
model [26] for NER. The biaffine model converts the NER task into a 2-
dimensional table filling task, thus providing a solution to both the flat and
nested NER problem. [26] shows that the biaffine model can achieve state-of-
the-art (SOTA) performances on both nested NER tasks and flat NER tasks.
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In this work, we propose a framework for the early exiting of BERT biaffine
NER models, inspired by BADGE [29]. First, we add a convolutional bypass to
the current transformer layer to provide different representations for the current
layer’s biaffine exit and the next transformer layer of the BERT backbone. In
this way, the BERT backbone will not be distracted from different tasks, thus
improving the cross-layer average performance of the multi-exit biaffine model.
Second, we extend the commonly used early exiting mechanisms in sentence
classification tasks, entropy-based early exiting and max-probability based early
exiting, to the biaffine NER model, we can perform adaptive inferences for NER
tasks. Intuitively, the decision of early exit is made when the intermediate biaffine
exit is confident in its predictions.

Extensive experiments are conducted on the six benchmark NER tasks. Three
of the tasks are nested NER tasks, ACE20041, ACE20052, GENIA [9]. We also
experiment on three flat NER tasks, CONLL2003 [19], OntoNotes 4.0 Chinese3

and the Chinese MSRA task [11]. We show that: (1) our FastNER training
method consistently performs better than the baseline multi-exit model training
methods. (2) We show that we can achieve 2–3x speedup with limited perfor-
mance losses. In addition, we show that with the better multi-exit model trained
with our FastNER, better efficiency-performance tradeoffs can be made. Abla-
tion studies validate the architectural design of our FastNER methods.

The rest of the paper is organized as follows. First, we introduce the pre-
liminaries for the Biaffine NER model and early exiting. Second, we elaborate
on our FastNER method. Third, we conduct experiments on 6 NER tasks and
conduct a series of ablations studies. Finally, we conclude with possible future
works.

2 Preliminaries

This section introduces the background for PLMs and early exiting. Throughout
this work, we consider a NER task with samples {(x, y), x ∈ X , y ∈ Y, i =
1, 2, ..., N}, e.g., sentences and their NER span information, and the number of
entity categories is K (including the non-entity type label). The input sequence
length after BERT’s subword tokenization is L.

2.1 PLM Models

We use BERT as the backbone model. BERT is a Transformer [20] model pre-
trained in a self-supervised manner on a large corpus. In the ablation studies, we
also use ALBERT [10] as backbones. ALBERT is more lightweight than BERT
since it shares parameters across different layers, and the embedding matrix is
factorized. The number of layers of our PLM backbone is denoted as M , and the
hidden dimension is d.
1 https://catalog.ldc.upenn.edu/LDC2005T09.
2 https://catalog.ldc.upenn.edu/LDC2006T06.
3 https://catalog.ldc.upenn.edu/LDC2011T03.
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2.2 The Biaffine Model for NER

The BERT-Biaffine model [26] transforms the NER task into a two-dimensional
table filling task. It asks the model to identify whether the slot in the table with
coordinate (s, e) corresponds to an entity with category k, that is, whether a
pair of tokens (xs, xe) in the input sequence x = (x1, x2, , , , , xL) is the start
and end tokens for an entity with category k. Formally, after BERT encoding,
the contextualized embedding of tokens s and e are hs and he (hs, he ∈ Rd).
Then hs and he will go through two multi-layer perceptrons with Tanh activation
function (denoted as MLP-start and MLP-end),

hs = Tanh(hsW
start
1 )W start

2 , (1)

he = Tanh(heW
end
1 )W end

2 . (2)

MLP-start and MLP-end transform the BERT’s representations to adapt to the
table-filling NER task. Then in a biaffine layer f , the score of span (s, e) is
calculated by

f(s, e) = hT
s Uhe + W (hs ⊕ he) + b. (3)

Since we need to calculate the scores for K entity categories, U is a d × K × d
tensor, and W is a 2d × K tensor. f(s, e) ∈ RK is the scores (or logits). A
softmax operation will transform f(s, e) into a probability distribution p(s, e),
which represents how likely the span (s, e) is a category k entity.

The learning objective of the biaffine model is to assign a correct category
(including the non-entity) to each valid span. Hence it is a multi-class classifi-
cation problem at each slot of the two-dimensional table and can be optimized
with cross-entropy loss:

L = −
L∑

s=1

L∑

e=s

K∑

k=1

I(y(s, e) = k) log pk(s, e), (4)

where y(s, e) is the ground-truth label of span (s, e), pk(s, e) is the predicted
probability mass of (s, e) having label k, and I(·) is the indicator function.
After fine-tuning the BERT biaffine model, the inference procedure of the BERT
biaffine model follows [26], which involves determining the final named entity
spans. Since there may be conflicting spans, [26] rank the spans via their prob-
ability masses, and the span with a higher probability mass will be kept when
it conflicts with other predicted spans.

2.3 Early Exiting

As depicted in Fig. 1, early exiting architectures, or multi-exit architectures, are
networks with exits4 at each transformer layer. Since the previous literature usu-
ally considers sentence-level classification tasks, the exits are sentence classifiers.
However, since we are dealing with sequence labeling tasks formulated as two-
dimensional table filling, with M exits, M separate biaffine modules f (m) are
4 Some literature (e.g., DeeBERT [23]) also refers to exits as off-ramps.
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installed right after each layer of BERT (m = 1, 2, ...,M), and the scores for
span (s, e) at layer m is given by:

f (m)(s, e) = hT
s U (m)he + W (m)(hs ⊕ he) + b(m). (5)

And the loss function at each layer becomes

L(m) = −
L∑

s=1

L∑

e=s

K∑

k=1

I(y(s, e) = k) log p
(m)
k (s, e), (6)

where p(m)(s, e) = Softmax(f (m)(s, e)) is the predicted probability distribution
at exit m.

Training. The most commonly used training method for early exiting architec-
tures is joint training (JT). All the exits are jointly optimized at the training
stage with a summed loss function. Following [6] and [28], the overall loss func-
tion is:

LWA =
∑M

m=1 m ∗ L(m)

∑M
m=1 m

. (7)

Note that the weight m corresponds to the relative inference cost of exit m.
Two other commonly used training methods are two-stage training [14,23]

(2ST) and alternating training [24] (ALT). 2ST first fine-tunes the PLM back-
bone and the last exit till convergence in the first stage and then fine-tunes
the intermediate exits in the second stage. ALT trains the backbone and the
last exit at the even optimization steps, and the intermediate exits at the odd
optimization steps.

Inference. At inference, the multi-exit PLMs can operate in two different
modes, depending on whether or not the computational budget to classify an
example is known.

Static Early Exiting. We can directly appoint a fixed exit m∗ of PLM,
f (m∗), to predict all the queries.

Dynamic Early Exiting. Under this mode, upon receiving a query input
x, the model starts to predict on the exits f (1), f (2), ..., in turn. It will continue
until it receives a signal to stop early at an exit m∗ < M , or arrives at the last
exit M . At this point, it will output a predictions by combining the current and
previous predictions in a certain way. Different samples might exit at different
layers under this early exit setting.

Speedup Ratio. Following PABEE [28], we mainly report the speedup ratio as
the efficiency metric. For each test sample xi, the inference time cost is ti under
early exiting, and is Ti without early exiting, then the average speedup ratio on
the test set is calculated by

Speedup = 1 −
∑N

i=1 ti∑N
i=1 Ti

. (8)
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3 FastNER

3.1 A Lite Biaffine Module

Note that the original BERT biaffine NER model does not consider the early exit-
ing scenarios. Each biaffine module (Eq. 5) introduces 5–7 million parameters.
If we add this biaffine module at each layer, the added parameters will amount
to 60 million or above. Introducing too many randomly initialized parameters
would result in low efficiency, difficulty in optimization, and overfitting for shal-
low layers. Thus, we propose a modified version of biaffine module called the lite
biaffine module.

In the lite biaffine module, MLP-start and MLP-end are substituted by a
simple linear projection layer that project hs and he from dimension d to d1 =
d/4,5 and the down-projected h−s and he are fed into Eq. 5 for logit calculations.
This way, the parameters in a biaffine layer will be reduced to less than 0.5
million. In the experiments, we will show that our lite biaffine module performs
better than the original one in the early exiting scenarios.

3.2 Motivation

Similar to the analysis in [29], training a multi-exit BERT biaffine model requires
training multiple prediction heads of different depths simultaneously. Thus,
under this setting, an intermediate layer has to fulfill two tasks at once: (a)
providing semantic representations to the next layer and (b) providing proper
token features to the biaffine module of the current layer. One may wonder
whether these two tasks conflict with each other and result in poor optimiza-
tions. [12] investigate this problem in the sentence classification tasks and find
that each layer’s optimizations are often in conflict and can cause gradient insta-
bility. They provide a solution called gradient equilibrium, which is to adjust the
gradients from each exit. However, in our experiments, we will show that this
method does not provide significant improvements.

Another solution is to use different sub-networks for these two tasks, fol-
lowing the literature on sparse multi-task learning [17]. However, this method
provides two different representations with two different, forward passes with dif-
ferent sub-networks, significantly slowing down the inference speed. Thus, this
approach does not meet our purpose.

To summarize, we need a new method that can provide two different repre-
sentations, one for the next layer and the other for the current layer’s prediction,
within a single forward pass.

3.3 Bypass Architecture

We now present the core of our FastNER framework: the convolutional bypasses
(depicted in Fig. 1). The notation follows [29]. Denote the hidden states of the
5 The reason why we set d1 = d/4 is that smaller d1 would result in significant per-

formance drops, according to our initial experiments.
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input from the last layer as Hm−1. Hm−1 will go through the transformer layer’s
self-attention (MHSA) and positional feed-forward (FFN) modules, to become
Hm,0, and then a LayerNorm operation to output Hm.

We want the efficient bypass Bm to adjust Hm to fit the task better. Bm

is simple in architecture (On the right side of Fig. 1). After receiving the input
Hm−1, Bm reduce its dimension from d to r, and obtain H

(1)
m,B (where r << d,

and r is called the bottleneck dimension) via a down-projection Wdown ∈ R
d×r.

H
(1)
m,B will go through a non-linear activation function g1, a convolutional layer

with kernel size 3 (denoted as conv) and another activation function g2, and
become H

(2)
m,B. H

(2)
m,B will then be up-projected to H

(3)
m,B to recover the dimension,

by an up-projection matrix Wup ∈ R
r×d. The literature usually refer to r as the

bottleneck dimension. Formally, Bm can be expressed as:

H
(3)
m,B ← g2(conv(g1(Hm−1Wdown)))Wup. (9)

Finally, the current layer will output two representations, Hm, which is the
original hidden states, and H

′
m, which is modified by the bypass by:

H
′
m = LayerNorm(H(3)

m,B + Hm,0),

Hm = LayerNorm(Hm,0). (10)

Hm is passed to the next transformer layers as input, and Hby
m will be the hidden

states received by the intermediate biaffine exit. The bottleneck dimension r is
very small, like 16, so that the extra parameters or flops introduced by the
bypasses are less than 1% of the compared to the BERT backbone.

3.4 Early Exiting for Biaffine NER Model

Although the literature comprehensively studied the early exiting for sentence
classification tasks, the early exiting mechanism of entity-level tasks like NER has
been neglected. Based on the literature on early exiting on sentence classification
tasks, this work proposes two plausible early exiting mechanisms for the biaffine
NER model.

Entropy-Based Early Exiting (Entropy). This method is a directly exten-
sion of [18] and [23] from the sentence classification tasks to NER. We denote the
table of distributions predicted by the biaffine exit m as T (m) = {p(m)(s, e)|s, e ∈
1, ..., L}, which is a L×L×K tensor. On each slot p(m)(s, e) of the biaffine table,
we can calculate its entropy Ent(m)(s, e) via

Ent(m)(s, e) =
−1

log(K)

K∑

k=1

p
(m)
k (s, e) log(p(m)

k (s, e)). (11)

Intuitively, if the biaffine exit is confident with its prediction, the average entropy
AvgEnt(m), calculated by

AvgEnt(m) =
∑L

s=1

∑L
e=1 Ent(m)(s, e)
L ∗ L

, (12)
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will be smaller. Thus AvgEnt(m) can be treated as the early exiting criterion.
A threshold τe is predefined. If at layer m, AvgEnt(m) is smaller than τe, the
model will exit. Otherwise, the model will continue its forward pass.

Maximum-Probability-Based Early Exiting (Maxprob). This method is
a direct extension of [16] from the sentence classification tasks to NER. Intu-
itively, if the biaffine exit is confident with its prediction, the table of predicted
distributions T (m) will concentrate their probability masses on single specific
labels. Denote the maximum probability mass at slot (s, e) as MP (m)(s, e), then
the average maximum probability is given by

AvgMP(m) =
∑L

s=1

∑L
e=1 MP (m)(s, e)
L ∗ L

. (13)

A threshold τmp is predefined. If at layer m, AvgMP(m) is larger than τmp, the
model will exit. Otherwise, the model will continue its forward pass.

4 Experiments

4.1 Datasets

We evaluate our FastNER on both nested and flat NER tasks. For the nested
NER task, we use the ACE2004 task6, ACE2005 task7, and GENIA task [9].
For the flat NER task, we evaluate our method on the CONLL 2003 task [19]
(CONLL03), the OntoNotes 4.0 corpus8 (Onto-4), and the Chinese MSRA NER
(MSRA) task [11].

4.2 Baselines

For multi-exiting BERT biaffine fine-tuning, we compare our FastNER frame-
work with the following baselines:

Two-Stage Training (2ST). This method is adapted by [23] and [14]. It
first fine-tunes the backbone and the last exit till convergence. Then all the
intermediate layers’ exits (except the last layer’s exit) will be trained on top of
the frozen backbone.

Joint Training (JT). This method trains the BERT backbone and all the
biaffine exits jointly. Literature has different variations for JT. PABEE [28] and
RightTool [16] adopts increasing loss weights for higher layers. We will denote
their version of joint training as JT-PABEE. BranchyNet [18] adopts different
and gradually increasing learning rates for different exits during training. We
will denote their version as JT-BranchyNet.
6 https://catalog.ldc.upenn.edu/LDC2005T09.
7 https://catalog.ldc.upenn.edu/LDC2006T06.
8 https://catalog.ldc.upenn.edu/LDC2011T03.
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Alternating Training. BERxit proposes to combine the training of JT-
PABEE and 2ST, that is, conduct back-propagation via the loss from the last
exit at the odd optimization steps and conduct back-propagation via the average
loss from all the intermediate exits.

Gradient Equilibrium (GradEquil). [12] proposes to adjust the gradient
norm of each intermediate layer during optimization, so that the training process
will be more stable.

Sparse Multi-task (Sparse-MT). [17] As analyzed in Sect. 3.2, this method
is not suitable for model inference speedup methods since it requires multiple
forward passes to generate different representations suitable for different tasks.
We include this method as a sanity check and show that our FastNER method
performs better even with a single forward pass.

Early Exiting Mechanisms. To show that our FastNER method can effec-
tively improve the model’s early exiting performances, we will run dynamic
early exiting with different early exiting mechanisms as described in Sect. 3.4:
(a) Entropy-based method (entropy); (b) maximum probability-based method
(maxprob). Early exiting will be run on different backbones to show that our
FastNER framework can improve the efficiency-performance tradeoffs.

4.3 Experimental Settings

Training. English NER tasks use the open-sourced Google BERT [3]9 as the
backbone, and the Chinese tasks adopt the BERT-www-ext released from [2]10

as the backbone model. We also use ALBERT-base and ALBERT base Chinese
by [10] as the backbone models for ablation studies. We add a lite biaffine NER
layer or an original biaffine layer after each intermediate layer of the pre-trained
models as the intermediate classifiers. The convolutional bypasses’ activation
function is set to be GELU [5]. We fine-tune models for at most 25 epochs; early
stopping with patience eight is performed, and the best checkpoint is selected
based on the dev set performances. We perform grid search over batch sizes of
16, 32, 128, learning rates of 1e−5, 2e−5, 3e−5, 5e−5 with an Adam optimizer,
and the convolutional bypasses’ bottleneck dimension of 8, 16, 32. We implement
FastNER and all the baselines on the base of Hugging Face’s Transformers [22].
Experiments are conducted on four Nvidia V100 16 GB GPUs.

Inference. Following prior work on input-adaptive inference [8,18], inference
is on a per-instance basis, i.e., the batch size for inference is set to 1. This is a
common scenario in the industry where individual requests from different users
[16] come at different time points. We report the median performance over five
runs with different random seeds.
9 https://huggingface.co/bert-base-uncased.

10 https://github.com/ymcui/Chinese-BERT-wwm.

https://huggingface.co/bert-base-uncased
https://github.com/ymcui/Chinese-BERT-wwm
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4.4 Evaluation Metrics

Entity-level F1 is the most widely used metric for NER tasks [7]. For multi-exit
PLMs, each exit has a performance score. Thus, to properly evaluate multi-exit
PLMs, we propose the following three derived metrics: (a) F1-avg, which denotes
the cross-layer average F1 score; (c) F1-best, which is the best F1 score among
all the layers. We use F1-avg as our primary metric for experimental result
reporting and checkpoint selection during training.

Table 1. Experimental results of models with BERT backbone on the six benchmark
NER datasets.

ACE2004 ACE2005 GENIA CONLL2003 MSRA OntoNotes4.0

BERT biaffine model

F1 F1 F1 F1 F1 F1

BERT + original Biaffine 83.5 83.9 77.4 90.7 95.3 81.7

BERT + Lite Biaffine (ours) 83.6 83.8 77.6 91.0 95.2 82.2

Multi-exit BERT biaffine model

F1-avg F1-best F1-avg F1-best F1-avg F1-best F1-avg F1-best F1-avg F1-best F1-avg F1-best

2ST 69.6 83.6 73.0 83.8 70.2 77.9 82.8 91.1 88.1 94.3 71.3 75.9

JT-PABEE 77.5 82.5 78.7 82.8 70.3 77.8 86.6 90.3 89.5 94.5 69.3 79.8

JT-BranchyNet 77.6 82.8 78.6 82.9 70.5 77.4 86.9 90.5 89.1 94.0 70.8 80.6

GradEquil 77.8 83.2 78.4 83.8 70.7 77.9 87.1 90.7 89.5 94.3 71.2 81.1

ALT 78.1 83.3 78.4 83.3 70.5 77.8 86.8 90.6 88.7 93.7 71.9 81.8

Sparse-MT 77.9 83.0 78.1 82.9 70.8 78.2 86.3 90.2 88.4 93.6 71.6 80.5

FastNER + original biaffine 78.5 84.1 79.4 83.9 71.1 78.1 87.7 91.3 90.5 94.7 73.2 82.1

FastNER 78.7 84.0 79.7 84.1 71.5 78.8 87.8 91.5 91.1 95.1 73.8 82.3

4.5 Overall Comparison

We compare our FastNER with the previous SOTA training methods of multi-
exit BERT-biaffine models. Table 1 reports the performance on the six bench-
mark NER datasets when using BERT as the backbone model. The upper half
of the table reports the performances of the last transformer layer’s biaffine exit
or the 6-th layer’s exit. With fewer randomly initialized parameters, our lite
biaffine layer can outperform comparably with the original biaffine layer.

The cross-layer average and best performances are reported in the lower half
of Table 1. The following takeaways can be made:

– Our FastNER method consistently outperforms the existing multi-exit BERT
biaffine model training methods in terms of F1-avg by a clear margin. Note
that as modifications to the joint training methods, GradEquil and Sparse-
MT perform comparably to JT-BranchyNet and JT-PABEE under our set-
tings. Although ALT [24] and 2ST [23] perform well in sentence-level tasks
like the GLUE benchmarks [21], it does not perform very well when training
the BERT biaffine NER models.

– With the help of the bypasses, our FastNER method improves the average per-
formances across all the intermediate layers and improves the F1-best scores
compared with JT-PABEE or JT-BranchyNet by a large margin. This result
is consistent with our motivation: introducing the convolutional bypasses can
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help the intermediate transformer layer to concentrate on providing hidden
representations. In contrast, the bypasses can provide a modified version of
the current layer’s hidden states that are more suitable for the current layer’s
biaffine exit. In this way, both the F1-best and F1-avg scores can improve.
As a direct result, the best layer’s score under our FastNER framework is
comparable to or performs better than vanilla fine-tuning.

– To show that our FastNER does not achieve such performance improvements
merely by adding more parameters, we also run FastNER with the original
biaffine module (the FastNER + original biaffine setting in Table 1). With
much more additional parameters, FastNER + original biaffine still under-
performs the FastNER setting in terms of F1-avg. We think this is because
the original biaffine modules are too parameter cumbersome for the shallow
layers to learn.

Fig. 2. The speedup-score curves with different dynamic early exiting methods, on the
ACE, CoNLL03 and Onto-4 datasets. The multi-exit BERT biaffine models are trained
with FastNER or JT-PABEE.

4.6 Dynamic Early Exiting Performances

With the improved overall performances on each layer, intuitively, the model’s
early exiting performances can be improved. We run early exiting with different
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Table 2. Experimental results for the ablation study of whether to pass H
′
i to the

next layer. The F1-avg (cross-layer average F1) scores are reported. The performance
differences between FastNER and FastNER-reduced are significant for both tasks.

ACE2004 Onto-4

F1-avg F1-best F1-avg F1-best

FastNER 78.7 84.0 73.8 82.3

FastNER-reduced 76.6 80.7 71.3 75.9

confidence thresholds on multi-exit BERT-biaffine models trained by FastNER
or JT-PABEE. The early exiting mechanisms are the entropy-based method
and the maxprob-based method. The resulting speedup-performance curves are
plotted in Fig. 2, where the x-axis represents the speedup ratio, and the y-axis
is the F1 score achieved on the test set.

From Fig. 2, we can see that with our FastNER training and early exiting
methods, a BERT biaffine model can achieve 2x–3x speedups with limited per-
formance degradations. The apparent gaps between our FastNER model and
JT-PABEE shown in Fig. 2 can also be observed in Fig. 2, proving that improv-
ing the averaging performances across layers in better efficiency-performance
tradeoffs during early exiting. In addition, the entropy-based and maxprob-based
methods can perform comparably with each other for the early exiting of BERT
biaffine models.

4.7 Ablation on Whether to Pass H
′
i to the Next Layer

The core idea of FastNER is to provide different intermediate hidden states
for different purposes via our convolutional bypasses. As a sanity check and
to demonstrate that our design is necessary, we now consider the following
setting: reducing our design of bypasses by passing H

′
i to the next layer and

using it for prediction. We will denote this setting as FastNER-reduced. We use
FastNER-reduced for training on ACE2004 and Onto-4 datasets, and the results
are reported in Table 2.

From Table 2, we can see that FastNER-reduced asks H
′
i to complete two

tasks at once, resulting in a significant drop in overall performances. Note that
the performance difference between FastNER and FastNER-reduced is signifi-
cant on ACE2004 and Onto-4. The results show that our design of providing
different representations for different purposes via convolutional passes is the
key to improving the overall performances of multi-exit BERT biaffine models.

4.8 Comparisons of Different Bottleneck Dimensions r

The bottleneck dimension r is 16 for the main experiments. To investigate the
effects of bottleneck dimensions on the model performances, We conducted abla-
tion experiments on the ACE2004 and Onto-4 tasks. Table 3 reports the F1-avg
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Table 3. Experimental results for comparing different bottleneck dimensions. The F1-
avg (cross-layer average F1) scores are reported.

ACE2004 Onto-4

F1-avg F1-best F1-avg F1-best

r = 64 78.5 83.3 73.7 80.8

r = 32 78.7 83.9 73.8 82.3

r = 16 78.8 84.0 73.6 82.4

r = 8 78.7 83.8 73.3 81.9

r = 4 78.3 83.5 72.7 81.8

scores under different values of r. From Table 3, we can see that smaller bottle-
neck dimensions do not result in significant performance drops. An intriguing
observation is that larger bottleneck dimensions do not provide performance
improvements, demonstrating that the superior performances of FastNER do
not come from introducing additional model parameters.

5 Conclusions

In this work, we first design the FastNER-bypass framework, consisting of con-
volutional bypasses, to enhance the overall performances of multi-exit BERT
biaffine NER models. Second, the existing literature does not investigate the
problem of early exiting for the NER tasks. Thus, we transfer the early exiting
methods for sentence-level tasks to the biaffine NER model and propose two early
exiting mechanisms: the entropy-based method and the maxprob-based method.
Experiments are conducted on six benchmark NER datasets. The experimental
results show that: (a) our FastNER framework can effectively improve the overall
performances of multi-exit BERT biaffine models, thus providing stronger back-
bones for dynamic early exiting; (b) the early exiting mechanisms we designed
for the BERT biaffine NER models can achieve 2–3 times inference speedups
with quite limited performances drops.
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