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Abstract. One of the biggest challenges in Recommendation Algo-
rithms (RA) is how to obtain user and item embeddings from sparse
interaction history. To take this challenge, most graph neural network
based RAs explicitly incorporate high-order collaborative filtering sig-
nals on the user-item bipartite graph with either multi-layer semantics
on the Knowledge Graph (KG) or multi-level neighbors on the social net-
work. However, none of them fully integrate these three types of graph-
structured data, which decreases embeddings’ precision. Based on this
consideration, this paper integrates the three types of data by proposing
a knowledge-rich influence propagation RA based on the graph atten-
tion mechanism. Specifically, in the semantic propagation, we categorize
user preferences into deep interest obtained by multiple graph atten-
tion message propagations on related KG parts, and shallow interest
generated from the interaction history. Moreover, the influence weight
between items is determined by the number of co-interactions and the
semantic similarity. These two factors as well as social relations together
decide the influence weight between users. With these influence weights,
final user and item embeddings are calculated through multi-layer mes-
sage propagation. The experimental results show that the proposed rec-
ommendation algorithm outperforms several compelling baselines on six
scaled-down real-world datasets. This work has confirmed the effective-
ness of combining these three types of data to increase RAs’ coverage
and accuracy.

Keywords: Recommendation Algorithm · Knowledge Graph · Social
Network · Graph Attention Network · User Preference

1 Introduction

As one of the most popular recommendation Algorithms (RA), Collaborative
Filtering (CF) is able to detect inter-user or inter-item similarities to make rec-
ommendations for users accordingly. Since user-item interaction history is rep-
resented as a bipartite graph, Graph Neural Networks (GNN) are utilized to
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predict the missing user-item interactions [3]. However, user preference infer-
ence based only on the sparse user-item interaction history yields insufficient
and coarse-grained results. The widely used approach of solving the sparsity
problem is to combine side information collected from the system. Side informa-
tion includes attributes in the form of text or images, social relationships among
users and users’ comments on items and other contents [10]. In particular, as
shown in Fig. 1, GNNs can be used to fully merge two kinds of graph-structured
side information: triplets between items and attributes on the Knowledge Graph
(KG) and user-user connections on the social network with the bipartite graph
[4].

Fig. 1. An example with three kinds of graph-structured data in Yelp2018

Specifically, GNN-based collaborative filtering RAs usually combine the
bipartite graph with either the KG or the social network. The former incor-
porates rich semantics to enhance the accuracy and interpretability of recom-
mendations, and the latter leverages high-order social effects to modify user
interests [17,21]. Yet, neither of them is fully satisfactory as they mainly rely
on limited data. On the one hand, the KG-based RAs fail to account for user
attribute-level interests despite that users choose items for specific reasons. On
the other hand, they neglect to explicitly model high-order CF signals reflecting
directly inter-user and inter-item influences [19]. In addition, they do not appre-
ciate the importance of social diffusion. Without mixing high-order CF signals
expressing user interest similarities with social influences, the social network-
based RAs also fail to take advantage of available item attributes to infer user
preferences.

To address these issues, this paper proposes a Knowledge-Rich Influence
Propagation Recommendation (KIPRec) that seamlessly fuses the KG, the
social network, and the user-item bipartite graph. To obtain reasonably precise
user and item embeddings, multi-layer Graph ATtention networks (GAT) are
employed to aggregate neighbor messages. There are two main components in
KIPRec. The first part is to explore semantic information, where user preferences
are divided into shallow-level interests derived from interacted item sequences
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and deep-level interests obtained by aggregating semantics from their KG sub-
graphs. The second part is to propagate influence information. User-user con-
nections in the social network are combined with user-user co-interactions from
the bipartite graph to organize an influence graph and refine user interests. In
particular, the main contributions of this paper are summarized as follows:

– A comprehensive RA is proposed by integrating three types of side informa-
tion with graph structures to alleviate the sparsity problem in RAs.

– The validity of the proposed RA is fully and extensively investigated in two
commonly used recommendation scenarios: Click-Through-Rate (CTR) pre-
diction and Top-K recommendation. Specifically, for the Recall@20 metric,
our RA improves by 1.92% and 5.64% on the Last-FM and Yelp2018 datasets,
respectively, compared to the state-of-the-art (SOTA) KG-based RA, and it
improves by 10.05% and 11.54% over the SOTA social network-based RA,
respectively.

– Ablation experiments are conducted to analyze the functions of KIPRec’s two
main components.

The rest of this paper is organized as follows: Sect. 2 reviews the related work
on GNN-based collaborative filtering RAs based on the KG or the social network.
Section 3 presents the main problem addressed in this paper. The structure of
proposed model is detailedly explained in Sect. 4. Extensive comparisons among
KIPRec and its baselines as well as other studies are provided in Sect. 5. Finally,
we conclude this paper with a discussion of the future directions in Sect. 6.

2 Related Work

By explicitly modeling high-order CF signals on the user-item bipartite graph
via multiple forms of message passing, the current graph convolutional neural
network-based methods such as LightGCN [5], GAT-based methods, and graph
sampling aggregate network-based methods have achieved significant improve-
ments compared with the traditional matrix decomposition methods [12] and
most deep learning-based methods [26]. However, these GNN-based approaches
fail to satisfactorily perform the task of acquiring useful information on het-
erogeneous graphs with multiple node or edge types. We will discuss the most
related work in terms of the following aspects.

GNN-based RAs on the KG are divided into the following three categories:
embedding-based methods, path-based methods, and propagation-based meth-
ods [6]. Items in the bipartite graph are mapped to entities in the KG, hence
embedding-based approaches like MKR [14] combine the KG embedding algo-
rithms and the recommendation module in a certain sequence. However, it might
be difficult to accurately correlate the embeddings learned by these two modules.
Path-based approaches, such as KPRN [18], merge the bipartite graph and the
KG into a unified graph according to the correlations between items and enti-
ties. Paths between users and items are extracted from the graph to generate
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embeddings. Yet, path-based approaches require expert knowledge to decrease
space and time consumption for processing huge volumes of paths.

Differently, propagation-based approaches apply GNNs directly to the KG,
deriving node semantic embeddings by message propagation. Typical procedures
for this sort of algorithms are outlined below. RippleNet [13] initializes item
embeddings and refines user embeddings based on related multi-layer triplets.
Starting from the user-interacted items, these triplets are obtained by aligning
head and tail entities in triplets on the KG. KGCN [15] first randomly initial-
izes user embeddings but constructs item embeddings for the target user by
aggregating the neighbor messages from the items’ receptive fields with GAT.
By correlating intents with relations on the KG, KGIN [17] provides an explicit
interpretation of intentions and a finer granularity of user and item embeddings.
Besides exploring semantics in the KG, CKAN [19] additionally employs CF sig-
nals on the item side. CKAN first refreshes entity embeddings on the KG using a
multi-layer GAT, then considers embeddings of the user-interacted items on the
KG as the user embedding, and finally pools embeddings of all items on the KG
that share at least one users on the bipartite graph into the item embedding. In
this paper, the semantic propagation component adopts a KGCN-like technique
to construct semantic propagation trees and refine embeddings, which provides
a reasonable explanation of users’ preferences and items’ features. CKAN does
not involve the interest similarities between users with co-interactions.

GNN-based RAs on the social network aim to rationally leverage the bipartite
graph and the social network with diverse topologies to strengthen user interests.
GATs are employed to evaluate the impacts of social connections and CF signals
on each user’s interest, as some users are easily swayed by their peers while others
tend to adhere to their own preferences [1]. GraphRec [2] only considers users’
first-order CF signals and social neighbors, and Diffnet++ [21] takes into account
users’ high-order contexts. Furthermore, some approaches like DISGCN [9] are
proposed to disentangle the correspondence between the social connection and
interest similarity into multiple dimensions, and some self-supervised approaches
such as SEPT [24] are designed to eliminate fragile and noisy social relationships.

In addition, GSIRec [8] is equipped with a knowledge assistance module as the
bridge between knowledge-aware recommendation and social-aware recommen-
dation. However, this multi-task method may encounters the problem of negative
transfer when knowledge gained in one task lowers performance in another [27].
Social-RippleNet [7] additionally utilizes the KG to adjust item embeddings and
applies the social network to modify user preferences. Yet, users’ profiles would
be more transparent if the KG were used to extend the tags that define users.

3 Problem Formulation

In this paper, the user-item bipartite graph is denoted as a binary-valued sym-
metric matrix Y ∈ R

m×n as usual, where yui = yiu = 1 indicates there is
an observed interaction between a user u ∈ U and an item i ∈ I. The KG
G = {(h, r, t) | h, t ∈ E, r ∈ R} is a directed graph made up of the entity set
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E and relation set R, where (h, r, t) refers to a triplet containing a head entity
h, a tail entity t and a relation r connecting them. Most items in the bipartite
graph have corresponding entities in the KG, i.e., I ⊆ E. The social network
is an undirected graph represented by S ∈ R

m×m , with suu′ = su′u = 1 indi-
cating the existence of a following or followed relationship for users u, u′ ∈ U .
Given a bipartite graph Y , a KG G and a social network S, our model opti-
mizes parameters in Θ to learn embeddings of user up and item iq, which in turn
predict the likelihood ŷpq of the interaction between them via the function F:
ŷpq = F(up, iq | Y,G, S,Θ). We will specify Θ in Sect. 4.4.

4 Methodology

This paper focuses on implicit binary-valued user behaviors without considering
the effect of time. As mentioned before, the goal is to predict the probability of an
interaction between a user-item pair (p, q). To this end, Fig. 2 and Fig. 3 illustrate
the overall structure of the proposed RA. It consists of four components: an
initialization layer, a semantic propagation layer, an influence propagation layer,
and a prediction layer. We will elaborate them in the following.

Fig. 2. The initialization layer and semantic propagation layer in KIPRec

4.1 The Initialization Layer

To begin with, we represent all nodes and edges on all graphs with trainable
embeddings of a fixed length d. The notations ef

up
, ef

iq
, ef

ec , ef
rd

∈ R
d respectively

denote the free embedding of user up, item iq, entity ec, relation rd. The influence
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propagation layer’s initial embeddings are derived from the semantic propagation
layer’s outputs. Before proceeding to the semantic propagation layer, we need
to calculate the context information for the user-item pair (p, q) in the influence
propagation layer, i.e., all the users and items related to (p, q).

The inter-user and inter-item influence matrices Yinf ∈ R
m×m and Ainf ∈

R
n×n are calculated by multiplying the user-item interaction matrix Y ∈ R

m×n

with the item-user interaction matrix A ∈ R
n×m. Values in Yinf and Ainf reflect

numbers of common interactions. (p, q)’s user-level context information is repre-
sented as Ucon(p,q) = U1

con(p,q) ∪ U2
con(p,q) ∪ U3

con(p,q). In detail, U1
con(p,q) contains

the users who have shared items with up. U2
con(p,q) represents the users that might

share similar interests with up in the absence of co-interactions. And U3
con(p,q)

denotes users who have social connections with up. U t
con(p,q) = ∪K

k=1U
t(k)
con(p,q),

where U0
con(p,q) = {up}, k ∈ {1, 2, ...,K} and t ∈ {1, 2, 3}. Each user group con-

tains K parts, since the influence propagation procedure is repeated K times.

Fig. 3. The influence propagation layer and the interaction prediction layer in KIPRec

Specifically, during the k-th influence propagation, U
1(k)
con(p,q) consists of the

first-order neighbors of all users in U
1(k−1)
con(p,q), with column subscripts of the non-

zero elements in Yinf . Similarly, U
3(k)
con(p,q) is formed by all users in the first-order

neighbors of U
3(k−1)
con(p,q) under the direction of the social matrix S. Regarding

U
2(k)
con(p,q), user interaction histories are frequently restricted to a narrow area,

resulting in users with similar interests rarely having shared items, so we ran-
domly choose a L fraction from U − U

1(k)
con(p,q) to generate U

2(k)
con(p,q).

The item-level context information of (p, q) lies in Icon(p,q) = I1con(p,q) ∪
I2con(p,q) ∪ I3con(p,q). Alternatively, we use a similar method as before to obtain
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I1con(p,q) and I2con(p,q). During the k-th influence propagation, I
3(k)
con(p,q) is formed

by first-order neighbors of all users in U
(k−1)
con(p,q) under the direction of the interac-

tion matrix Y . I3con(p,q) = ∪K
k=1I

3(k)
con(p,q), where k ∈ {1, 2, ...,K}. Figure 2 displays

how to obtain the third-order context information for the target user and item.

4.2 The Semantic Propagation Layer

This section shows how to generate semantic propagation trees and update their
roots’ embeddings. For all users from the user contexts and items from the item
contexts of the target user-item pair (p, q) described in Sect. 4.1, we establish
their semantic propagation trees according to the user-item bipartite graph Y
and the KG G. Initial embeddings of these users and items are then updated
through extended GAT operations on the trees.

Constructing Semantic Propagation Trees. Th
q′ and Th

p′ respectively rep-
resent triplet sets related to an item iq′ in Icon(p,q) and a user up′ in Ucon(p,q)

during the h-th semantic propagation. From corresponding entity of iq′ on the
KG as root, related subgraph of iq′ is extracted by aligning the tail of one triplet
with the head of another for H times as described in Eq. (1), where the symbol
∗ indicates an arbitrary entity or relationship, and (h, r, t) is a triplet on the KG
G. We limit the number of entities per layer | Th

q′ | as w1 to save memory space.{
Th

q′ = {(h, r, t) | (h, r, t) ∈ G and h = iq′} , h = 1

Th
q′ =

{
(h, r, t) | (h, r, t) ∈ G and (∗, ∗, h) ∈ Th−1

q′

}
, h = 2, ...,H

(1)

As described in Eq. (2), for each user up′ in Ucon(p,q), we sample w2 attributes
from the first-order entity neighbors of up′ ’s interacted items, i.e., |T 1

p′ | = w2, and
connect up′ with these entities. yp′h = 1 means there is an interaction between up′

and the item corresponding to entity eh. Afterwards, the semantic propagation
trees are built for users in the same way, i.e., | Th

p′ |= w1 when h ≥ 2. Figure 2
illustrates four semantic propagation trees with H,w1 = 2 and w2 = 4.{

T h
p′ = {(up′ , r, t) | (h, r, t) ∈ G and yp′h = 1} , h = 1

T h
p′ =

{
(h, r, t) | (h, r, t) ∈ G and (∗, ∗, h) ∈ T h−1

p′

}
, h = 2, ..., H

(2)

Implementing Semantic Propagation Operations. We represent an arbi-
trary user or item with the uniform symbol o. The semantic propagation
procedure is executed (H − v) times for each node in Nv

o . Nv
o includes all

nodes on the v-th layer of the semantic tree with node o as the root, where
v ∈ {0, 1, . . . ,H}. Assumed that the l-th message propagation is to be performed
(l ∈ {1, . . . , H−v}) and the g-th node on the v-th layer is eg ∈ Nv

o , related triplets
of eg are contained in T v+1

o(g) = {(h, r, t) | (h, r, t) ∈ T v+1
o and h = eg}. We first

map the tail entity et’s embedding derived from the (l − 1)-th message propaga-
tion onto the same level with relation rr via the Hadamard product operation �.
This not only decouples et’s features, but also preserves semantics along message
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propagation paths, as described in KGIN [17]. Further, the contribution of the
t-th (t ∈ {1, ..., |T v+1

o(g) |}) triplet to the head entity eg, i.e., αl
t, is valued in Eq. (3)

as the similarity between the root o and et by concatenating the two embeddings
labeled with || and then obtaining a numerical value via a two-layer perceptron.

αl
t = W2

(
LeakyReLU

(
W1

(
el−1

o || (err � el−1
et )

)
+ b1

))
+ b2 (3)

Moreover, α̃l
t is the result of softmax normalization on αl

t. The embedding of
eg after the l-th message propagation results from aggregated relevant features
and the embedding of eg after the (l − 1)-th propagation, shown in Eq. (4).

el
eg = el−1

eg +

|Tv+1
o(g) |∑
t=1

α̃l
t(err

� el−1
et ), where α̃l

t =
eαl

t∑|Tv+1
o(g) |

t′=1 eαl
t′

(4)

The symbol n denotes a user, an item or an entity. r refers to a relation. In
general, the initial embeddings of n and r in the semantic propagation layer come
from the initialization layer, i.e., e0n = ef

n and err
= ef

rr
. After the propagation

procedure is performed H times, semantics related to the root nodes (up′ ∈
Ucon(p,q) and iq′ ∈ Icon(p,q)) on the semantic propagation trees, is distilled into
their embeddings eH

up′ and eH
iq′ . Primary characteristics of iq′ are indicated by es

iq′

(equal to eH
iq′ ). However, as in Eqs. (5) and (6), interests of up′ are also expressed

by user-item interactions Yup′ except for deep-level user interests marked by edeep
up′

(equal to eH
up′ ) [20]. The contribution β̃p′v of up′ ’s interactive item iv to shallow

interest embedding eshallow
up′ is generated through an extended GAT operation

and normalization. Eventually, deep interest edeep
up′ and shallow interest eshallow

up′
of up′ both contribute to the preliminary embedding es

up′ .

βp′v = W4

(
LeakyReLU

(
W3(edeep

up′ || es
iv) + b3

))
+ b4 (5)

eshallow
up′ =

∑
v∈Yu

p′

β̃p′ve
s
iv , where β̃p′v =

eβp′v∑
v′∈Yu

p′
eβp′v′

(6)

4.3 The Influence Propagation Layer

For further adjustment of user and item embeddings, the influence propagation
is required to be performed over K iterations by absorbing relevant information
from their K-nearest neighbors. The inital embedding of any user u in context
Ucon(p,q) of up, indicated by e

r(0)
u , is equal to es

u. Similarly, each item i in context
I1con(p,q) ∪ I2con(p,q) of iq has the condition e

r(0)
i = es

i . K-nearest neighbors of up

and iq are respectively included in Ucon(p,q) and I1con(p,q) ∪ I2con(p,q).
During the k-th message propagation, item ip needs to gain influence from

its first-order neighbors in I
(1)
con(p,q) = I

1(1)
con(p,q) ∪ I

2(1)
con(p,q), where k ∈ {1, 2, ...,K}.
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I
1(1)
con(p,q) denotes items with which ip shares users, while I

2(1)
con(p,q) indicates items

with similar semantics but no shared user. These items that may affect form
I
(1)
con(p,q). For an item iq ∈ I

(1)
con(p,q), we measure the semantic similarity between iq

and iq via the inner product of e
r(k−1)
iq

and e
r(k−1)
iq

, then amplify it by multiplying
with the number of their co-interactions denoted as aqq from Ainf in Eq. (7), and
finally get the influence degree γ

(k)
qq . As shown in Eq. (8), the embedding of iq

after the k-th influence propagation is the total of the (k−1)-th outcome and the
weighted sum of its first-order neighbors’ embeddings during this propagation.

γ
(k)
qq = aqq(e

r(k−1)
iq

· e
r(k−1)
iq

) (7)

e
r(k)
iq

= e
r(k−1)
iq

+
∑

iq∈I
(1)
con(p,q)

γ̃(k)
qq e

r(k−1)
iq

, where γ̃(k)
qq =

eγ
(k)
qq∑

iq′ ∈I
(1)
con(p,q)

e
γ
(k)
qq′

(8)

During the k-th propagation, the embedding of up is affected by users with
social relationships, in addition to users with co-interactions or similar semantics,
i.e., U

(1)
con(p,q) = U

1(1)
con(p,q)∪U

2(1)
con(p,q)∪U

3(1)
con(p,q). Therefore in Eq. (9), the semantic

similarity between up and up ∈ U
(1)
con(p,q) is amplified by the number of co-

interactions ypp and the social influence spp, where we set spp to λ times the most
co-interactions as described in Eq. (10) since friends tend to orient user interests
more. spp > 0 implies that there is a social relationship between up and up. As
described in Eq. (11), the embedding of up after the k-th propagation combines
each neighbor’s embedding based on an weight δ̃

(k)
pp and its own embedding on

the (k − 1)-th propagation together.

spp =

⎧⎨
⎩

0, if spp = 0
max

up′ ∈U
1(1)
con(p,q) ∪ U

2(1)
con(p,q)

λypp′(λ ∈ N and 1 ≤ λ ≤ 10), if spp > 0 (9)

δ
(k)
pp = (ypp + spp)(er(k−1)

up
· er(k−1)

up
) (10)

er(k)
up

= er(k−1)
up

+
∑

up∈U
(1)
con(p,q)

δ̃
(k)
pp er(k−1)

up
, where δ̃

(k)
pp =

eδ
(k)
pp∑

up′ ∈U
(1)
con(p,q)

e
δ
(k)
pp′

(11)

4.4 The Interaction Prediction Layer

The results after K iterations of influence propagation represented by e
r(K)
up and

e
r(K)
iq

are supposed as the final embeddings of up and iq. They fully incorporate
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the semantics of the KG, social influences amongst users, and the numbers of
co-interactions. The inner product of e

r(K)
up and e

r(K)
iq

predicts whether there
is an interaction between them. As shown in Eq. (12), this paper applies the
gradient descent to the BPR loss function to optimize parameters in Θ, including
embeddings of all users, items, relationships as well as entities denoted as Θ1 and
the perceptrons’ factors labeled as Θ2, i.e., Θ1 = {ef

up
, ef

iq
, ef

ec , e
f
rd

| up ∈ U, iq ∈
I, ec ∈ E, rd ∈ R} and Θ2 = {[Wi, bi]i=1,2,3,4}. We sample one item ij without
observed interaction for each observed user-item pair (up, iq) in the training set,
contributing to the collection O. Moreover, the L2 regularization technique is
served to avoid overfitting, where η is the related hyper-parameter.

L = min
Θ

1
| O |

∑
(up,iq,ij)∈O

− ln Sigmoid(ŷpq − ŷpj) + η|| Θ ||22 (12)

5 Experiments

In this section, we conduct experiments on six datasets including KGs or social
networks to evaluate our proposed method and address the three questions:
RQ1: Can KIPRec outperform the SOTA KG-based RAs and social network-
based ones on real-world datasets ? RQ2: What exactly is the function of each
component of KIPRec ? RQ3: How do user-user influence, item-to-item influence
and multi-layer user interest affect KIPRec based on a real-world example ?

5.1 Experimental Settings

Dataset Description. Six real datasets are applied: Last-FM (music),
Yelp2018 (business), Movie-Lens20M (film), Book-Crossing (book), Epinions (e-
commerce) and Flickr (image). Last-FM, Movie-Lens20M and Book-Crossing
are collected from CKAN [19], which contains the interaction history and the
KG. Epinions and Flickr are obtained from GraphRec [2] and Diffnet++ [21]
separately. KGAT [16] provides the bipartite graph and the KG of Yelp2018.
We further extract its social network from the official dataset. We finally divide
all users and items into four groups according to the number of their observed
interactions, and narrow down all the datasets by randomly picking about 10%
from each group. The statistics of all datasets are summarized in Table 1. All the
datasets are randomly divided into training (60%), validation (20%) and testing
(20%).

Evaluation Metrics. We investigate the performance of the proposed model
with the Area Under Curve (AUC) metric in the CTR prediction, and the Recall
(Recall@20) as well as Normalized Discounted Cumulative Gain (NDCG@20)
metrics in top-K recommendation. From items other than those in the training
set, the model is required to recommend 20 items to each user.
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Table 1. Statistics of the datasets used in the experiments (# means the number, ✕

means the dataset doesn’t involve this part, the inter-density means the density of each
user-item interaction matrix, the triplet-avg means the average triplets per item and
the social-density means the density of each social matrix.)

Content Last-FM Yelp2018 Movie-Lens20M Book-Crossing Epinions Flickr

Bipartite Graph # users 1,892 3,884 5,734 5,931 5,183 5,791

# items 3,846 4,553 1,695 7,483 5,589 8,212

# interactions 21,173 13,059 28,194 17,603 9,457 32,432

inter-density 0.291% 0.074% 0.290% 0.040% 0.033% 0.068%

Knowledge Graph # entities 9,366 95,514 87,310 70,419 ✕ ✕

# relations 60 42 32 25 ✕ ✕

# triplets 15,518 1,071,279 50,188 133,892 ✕ ✕

triplet-avg 4 235 30 18 ✕ ✕

Social Network # links 12,532 3,418 ✕ ✕ 44,613 116,570

social-density 0.350% 0.023% ✕ ✕ 0.166% 0.348%

Baselines. Seven GNN-based RAs on the KG are chosen, including embedding-
based approaches (CKE, MKR, KGAT) and propagation-based methods (Rip-
pleNet, KGCN, CKAN and KGIN), and Diffnet and Diffnet++ in the second
category are selected. In addition, BPRMF is not dependent on either the KG or
the social network. CKE [25] is an embedding-based approach in the co-learning
category that integrates the loss functions in the KG embedding and recom-
mendation task into a whole, while MKR [14] is a multi-task learning strategy
with the cross&compress units. KGAT [16] proposes a novel GAT-based app-
roach inspired by transR to maintain the adjacency matrix between entities.
RippleNet [13] emphasizes description of user interests, on the contrary, KGCN
[15] focuses on the exploration of items’ semantics. KGIN [17] explains recom-
mendation actions with intents. In contrast to the KG-based RA mentioned
above, CKAN [19] also takes into account items’ first-order CF signals. Diffnet
[22] conveys high-order impacts between users on the social network to enhance
user embeddings. Diffnet++ [21] additionally weights the contributions of the
user’s high-order CF signals and high-order social neighbors.

Parameter Settings. Our KIPRec model is implemented with the Pytorch
deep learning framework. To be fair, the embedding size of all nodes and edges
is 64, the mini-batch size is 128, and the maximum number of training epochs
is 250 for all methods across all datasets. We initialize all parameters with the
Xavier initializer and optimize them with the Adam optimizer. We tune the
hyper-parameters within given ranges via a grid search. The training phrase is
terminated if Recall@20 on the training set does not improve in the subsequent
10 epochs. Each result in this section is the average of five repeated experiments
with different random seeds under the best hyper-parameter setup.
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5.2 RQ1: Performance Evaluation

We compare KIPRec with its baselines with Recall@20 and NDCG@20 as shown
in Table 2 and Table 3, and AUC in Fig. 4. The main experimental results are
summarized as follows.

Table 2. Overall comparison of 9 KG-based methods in the top-K recommendation
(The %Improv. symbol indicates the gap between the bolded best performance and
the underlined suboptimal result from KIPRec’s perspective.)

Model Last-FM Yelp2018 Movie-Lens20M Book-Crossing

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPRMF 0.2492 0.1446 0.0546 0.0266 0.4077 0.2086 0.0467 0.0285

CKE 0.2557 0.1444 0.0602 0.0296 0.4137 0.2108 0.0491 0.0323

MKR 0.2663 0.1469 0.0923 0.0461 0.4305 0.2139 0.0752 0.0534

RippleNet 0.2483 0.1387 0.0667 0.0282 0.4242 0.1981 0.0513 0.0366

KGCN 0.2864 0.1514 0.1370 0.0566 0.4965 0.2259 0.0853 0.0396

KGAT 0.2903 0.1702 0.1588 0.0681 0.4180 0.2098 0.0571 0.0324

CKAN 0.2449 0.1368 0.1486 0.0693 0.4670 0.2669 0.0779 0.0483

KGIN 0.3342 0.1922 0.2004 0.0875 0.5720 0.3018 0.1476 0.0863

KIPRec 0.3406 0.1946 0.2117 0.0900 0.5718 0.2877 0.1472 0.0846

%Improv. 1.92% 1.25% 5.64% 2.86% -0.03% -4.67% -0.27% -1.97%

Compared with the KG-based KGIN, Recall@20 and NDCG@20 evaluated
on KIPRec are respectively improved by 1.92% and 1.25% on Last-FM, and
by 5.64% and 2.86% on Yelp2018. In comparison with the social network-based
Diffnet++, the two metrics on KIPRec increases by 10.05% and 12.81% on
Last-FM, and by 11.54% and 7.91% on Yelp2018. Side information is reason-
ably utilized by KIPRec to generate more accurate user and item embeddings.
In particular, the gap between KIPRec and Diffnet++ is more noticeable than
that between KIPRec and KGIN, proving that the KG provides richer materi-
als than the social network. It is feasible in KIPRec to obtain the preliminary
embeddings from the KG. Moreover, BPRMF is the least effective, because it
makes absolutely no use of any side information other than the bipartite graph.

On the other hand, on Movie-Lens20M and Book-Crossing including only the
KG, KIPRec decreases by 0.03% and 0.27% respectively in terms of Recall@20,
and by 4.67% and 1.97% relative to NDCG@20 compared with KGIN. This is
because KIPRec incorporates the intention dimension associated with relation-
ships on the KG. Yet, KIPRec achieves the similar goal, slightly less effective,
by developing the multi-layer user interests structure. Figure 4 illustrates that
CKAN or KIPRec is always the optimal or suboptimal model in the CTR predic-
tion on Last-FM, Yelp2018 and Book-Crossing, since CF signals on the bipartite
graph modify embeddings from the KG.



150 Y. Yang et al.

Table 3. Overall comparison of 4 social based methods in the top-K recommendation

Model Last-FM Yelp2018 Epinions Flickr

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPRMF 0.2492 0.1446 0.0546 0.0266 0.0614 0.0234 0.0109 0.0047

Diffnet 0.2730 0.1504 0.1770 0.0772 0.1310 0.0609 0.0261 0.0129

Diffnet++ 0.3095 0.1725 0.1898 0.0834 0.1448 0.0651 0.0306 0.0148

KIPRec 0.3406 0.1946 0.2117 0.0900 0.1471 0.0602 0.0351 0.0156

%Improv. 10.05% 12.81% 11.54% 7.91% 1.59% -7.53 % 17% 6.85%

Fig. 4. The result of AUC in the CTR prediction scenario

Diffnet++ and KIPRec surpass Diffnet by integrating high-order CF sig-
nals and social influence. Recall@20 of KIPRec on Epinions and Flickr increases
by 1.59% and 17%, and NDCG@20 is improved by −7.53% and 6.85% com-
pared with Diffnet++. Inter-user and inter-item influences directly enable more
accurate embeddings with less noise in KIPRec. In addition, KIPRec promotes
embedding learning by broadening influence ranges through random sampling.

5.3 RQ2: Ablation Experiments

Table 4. Comparisons among variants of KIPRec

Category Last-FM Yelp2018 Movie-Lens20M Book-Crossing Setting

KIPRecw/o DI 0.3189 0.2053 0.5607 0.1274 es
up′ = eshallow

up′

KIPRecw/o SI 0.3197 0.2061 0.5683 0.1290 es
up′ = edeep

up′

KIPRecw/o Semantic 0.3098 0.1938 - - Eq. (8):e
r(0)
iq

= ef
iq

, Eq. (11):e
r(0)
up = ef

up

KIPRecw/o Sample 0.3203 0.1516 0.5432 0.1074 L = 0, I2
con(p,q) = ∅, U2

con(p,q) = ∅

KIPRecw/o Social 0.3301 0.2040 0.5718 0.1472 Eq. (10):spp = 0

KIPRecw/o Propagation 0.3018 0.1878 0.5325 0.1161 Sect. 4.3: e
r(K)
up = e

r(0)
up = es

up
, e

r(K)
iq

= e
r(0)
iq

= es
iq

KIPRec 0.3406 0.2117 0.5718 0.1472 -
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We conduct two ablation experiments to estimate two layer’s effects in KIPRec
(KIPRecw/o Semantic and KIPRecw/o Propagation). Their performances have signif-
icantly been decreased compared to KIPRec. As shown in Table 4, their perfor-
mances indicates that both are indispensable. Further, both KIPRecw/o DI and
KIPRecw/o SI outperform the KIPRecw/o Semantic on Last-FM and Yelp2018, but
they are less effective than KIPRec, which reveals that capturing multi-layer
user interests is essential. The effectiveness improvement in KIPRecw/o Sample or
KIPRecw/o Social is significant over KIPRecw/o Propagation, since RAs cannot ade-
quately capture user interests from semantics without rich interaction history.

In addition, this paper explores the impact of different embedding dimensions
on information capture ability through the experiment results in Table 5. It can
be seen that KIPRec’s recommendation effect performs best when d = 64 on
three datasets. The optimal performances on the other three datasets are not
particularly better than that of 64 dimensional setting. It is worth mentioning
that larger dimensions on the large-scale dataset (Yelp2018) lead to GPU’s usage
exceeding the limit.

Table 5. Embedding dimension (d) settings’ influence in KIPRec

Dataset 16 32 64 128 256 512

Last-FM 0.3287 0.3324 0.3406 0.3418 0.3436 0.3439

Yelp2018 0.1428 0.2094 0.2117 0.2151 - -

Movie-Lens20M 0.5585 0.5627 0.5718 0.5586 0.5677 0.5713

Book-Crossing 0.0954 0.1130 0.1472 0.1425 0.1346 0.1447

Epinions 0.1471 0.1442 0.1471 0.1471 0.1399 0.1471

Flickr 0.0325 0.0334 0.0351 0.0345 0.0356 0.0339

5.4 RQ3: Case Study

To illustrate the effect of KIPRec’s semantic propagation layer at the attribute
level, we select users and items associated with u268 and i73, as shown in Fig. 5.

Fig. 5. A real-word example from Yelp2018 related to the semantic propagation layer
(The solid line connects a user or item with the attributes that it values the most.
Number on the line indicates how much the importance the attribute is placed.)
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From the perspectives of whether users or items attach the same level of
importance to each attribute and whether their most valued attributes are the
same, we find that the semantic similarities to i73 and u475 in descending order
are i229 > i503 > i81 > i74 > i75 and u475 > u660 > u393 > u638, which is
consistent with the statistics in Table 6 and Table 7.

Table 6. Relations between i73 and its related nodes in influence propagation layer

Neighbors i503 i81 i229 i74 i75

Semantic similarity 0.9082 0.8393 0.9755 0.6429 0.5286

Co-interactions (training) 0 1{u660} 1{u660} 3{u660, u268, u638} 2{u268, u638}
Overall similarity 0.0001 0.0018 0.1359 0.0493 0.0252

KIPRec aggregates messages from neighbors based on the overall similar-
ity among users or items. The overall similarity is mainly determined by the
semantic similarity, followed by co-interactions and social relationships. Thus,
compared to i74, i229 has a higher semantic similarity to i73 and thus a higher
overall similarity; compared to i75, i81 has a lower number of interactions in
common with i73, and thus a lower overall similarity.

Table 7. Relations between u268 and its related nodes in influence propagation layer

Neighbors u475 u393 u638 u660

Semantic similarity 0.7986 0.5822 0.5690 0.7732

Co-interactions (training) 0 0 3{i73, i74, i75} 2{i73, i74}
Social relationships 0 1 0 1

Overall similarity 3.20 × 10−35 5.41 × 10−12 1.74 × 10−32 1.14 × 10−6

Co-interactions (testing) 1{i484} 3{i225, i265, i652} 1{i235} 1{i229}

Because social influence plays a greater role in user representations, users
that have social relationships with u268 are more similar in general to those
have no social relationship. Furthermore, i73 and u268 respectively absorb user
information from i503 and u475, which are only semantically similar. The number
of users’ co-interactions in the testing set is essentially consistent with their
overall similarity. The exception to this is that u660 and u268 have the highest
overall similarity yet with one common interaction. This is because there are a
few interaction records in the dataset for u660.

6 Conclusion

This paper has proposed a RA based on GATs that naturally combines the
knowledge graph, the bipartite graph and the social network to enrich user
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and item embeddings. A multi-layer user interest structure is designed at the
attribute and item levels to achieve user embeddings with rich semantics. Besides
the similarity from the semantic propagation layer, the inter-user and inter-item
influence weights in the influence propagation layer are further acquired based
on the bipartite graph and the social network. Multiple graph attention message
propagation are performed in the two layers to obtain more precise user and item
embeddings. Extensive experiments and comparative analysis on two datasets
demonstrate the advantage of the proposed model over the SOTA baselines.

The future work is manifold. It would be interesting to study how to reduce
GAT operations’ time and space costs in the semantic propagation layer on large-
scale graphs using sample strategies [11,23]. It is also worth investigating self-
supervised methods to generate more accurate recommendations by identifying
relationships among the refined item embeddings from the user-item bipartite
graph, the item-item co-interaction graph, and the KG.
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