
An Adaptive Data-Driven Imputation
Model for Incomplete Event Series

Jiadong Chen, Hengyu Ye, Xiaofeng Gao(B), Fan Wu, Linghe Kong,
and Guihai Chen

MoE Key Lab of Artificial Intelligence, Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai, China
{chenjiadong998,cs_22_yhy,linghe.kong}@sjtu.edu.cn,

{gao-xf,fwu,gchen}@cs.sjtu.edu.cn

Abstract. Event sequences play as a general fine-grained representation
for temporal asynchronous event streams. However, in practice, event
sequences are often fragmentary and incomplete with censored intervals
or missing data, making it hard for downstream prediction and decision-
making tasks. In this work, we propose a fresh extension on the defi-
nition of the temporal point process, which conventionally characterizes
chronological prediction based on historical events, and introduce inverse
point process that characterizes counter-chronological attribution based
on future events. These two point process models allow us to impute miss-
ing events for one partially observed sequence with conditional intensities
in two symmetric directions. We further design a peer imitation learn-
ing algorithm that lets two models cooperatively learn from each other,
leveraging imputed sequences given by the counterpart as the supervised
signal. The training process consists of iterative learning of two mod-
els and facilitates them to achieve a consensus. We conduct extensive
experiments on both synthetic and real-world datasets, which demon-
strate that our model can recover incomplete event sequences very close
to the ground-truth, with averagely 49.40% improvement compared with
related competitors measured by normalized optimal transport distance.

Keywords: Event Sequence · Temporal Point Process · Missing
Data · Sequence Imputation

1 Introduction

Event sequences record temporal events by a sequence of tuples (mi, ti), where
mi denotes discrete event markers (i.e., types) and ti denotes continuous times-
tamps. Event sequences play as a general fine-grained representation for event
streams that are ubiquitous in many real-life applications, e.g., 1) medical records
for patients in hospital [5]; 2) user’s activity and behaviors in social networks [16];
3) individual’s visiting points of interests in a large city [18], etc. One common
way for modeling event sequences is to treat arrival of each event as a ran-
dom variable and formulate an event sequence as a stochastic point process of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Yang et al. (Eds.): ADMA 2023, LNAI 14176, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-46661-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46661-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-46661-8_1


4 J. Chen et al.

which a (conditional) intensity function is introduced to characterize the condi-
tional distribution of next event given historical events. For point process, prior
works [27] attempt to model intensity functions in statistical aspects, while some
recent works [22] leverage deep neural networks to learn a more expressive neu-
ral intensity model. All of these methods assume that input event sequences are
complete based on which one can learn a robust representation via the point
process model.

However, in most practical situations, the collected event sequences are usu-
ally fragmentary and partially observed due to common missing-data mecha-
nisms. One typical example could be medical records which chronologically mark
down symptoms, diagnoses, and medications for patients. Data from one or few
hospitals cannot guarantee completeness since patients usually come over to
different hospitals for medical assistance. Therefore, it is greatly in demand to
build a theoretically sound and practically effective approach to recover partially
observed event sequences. To solve the above-mentioned problem, one may con-
front three non-trivial challenges. The first question is how to build a model
that possesses enough expressiveness to estimate missing data with any possible
timestamp and marker for any given observed sequence (Q1). Second, there is
no ground-truth information that can be used as supervision for learning, so
a following question arises: how to design a self-supervised approach for model
learning on event sequence imputation (Q2) ? Third, even if one manages to
define or construct some artificial signals as supervision, it is hard to charac-
terize the discrepancy between an estimated sequence and a target one, which
induces another question: how to properly define optimization objective (Q3)?

In this paper, we propose a novel Peer Imitation Learning point process
model for Event Sequence imputation (PILES) that efficiently solve the above
three challenging questions. To answer Q1, we propose an acceptance-rejection
strategy that can adaptively sample missing events based on a neural intensity
function parametrized by bidirectional Long-Short Term Meomory (LSTM) net-
work. The neural intensity model guarantees enough representation capacity for
event sequences with any latent process, while the acceptance-rejection strategy
can incrementally sample missing events between any two observed events in an
input sequence. To answer Q2, we extend the definition of temporal point pro-
cess, which conventionally characterizes chronological prediction for next events
based on historical ones, and pioneeringly propose inverse point process model
that characterizes counter-chronological attribution for previous events based
on future ones. The two point process models allow us to tackle one partially
observed sequence in a bidirectional view where we sample missing events via
conditional intensities in two directions. Then the sampling results given by one
model can naturally be used as supervision for another model, through which
we can achieve self-supervised learning.

To answer Q3, i.e., measuring distance between imputed event sequences
given by two models, we propose a novel peer imitation learning algorithm that
enforces consistency between one model’s output (as model policy) and the coun-
terpart’s (as expert policy). Similar to GAIL [9], we introduce discriminators



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 5

and adversarial training to learn better consistency measurement, which equiv-
alently minimizes the Jensen-Shannon divergence between two model distribu-
tions. Extensive experiment results on four synthetic datasets and two real-world
datasets demonstrate that PILES is capable of giving much closer reconstructed
event sequences to ground-truth event sequences compared with unsupervised
competitors, with an averaged improvement of 49.40% measured by normalized
optimal transport distance. Also, ablation studies show the necessity of proposed
units for superior performance.

Our contributions are summarized as follows.

i) New Aspect: We propose an inverse point process model that characterizes
conditional intensities for previous events in a direction of attribution, which
can cooperate with conventional (forward) point process model to deal with
sequence imputation in unsupervised situation. To our knowledge, this is the
first work on fully unsupervised imputation for asynchronous event sequences.

ii) Methodology: We propose a novel peer imitation learning approach to syn-
ergize two point process models via pushing them to achieve a consensus,
which enables self-supervised learning in unsupervised case.

iii) Experiments: We conduct experiments on six datasets with different latent
structures and demonstrate convincing superiority of new model and its gen-
erality in three missing-data situations. All source code and data will be made
publicly available.

2 Related Works

In this section, we briefly discuss related works and highlight their differences
from our work. For event sequence inference, the work [6] proposes an impor-
tance sampling-based algorithm to analyze marked event sequences under the
condition of continuous time Bayesian Networks [15], and develops filtering and
smoothing algorithms to deal with incomplete data. Similarly, [17] designs an
inference framework based on Markov Chain Monte Carlo (MCMC), and par-
ticularly employs a jumping strategy for missing data in sequences. However,
these two approaches heavily rely on specific parametric models with strong
prior assumptions, suffering from limitations for generalization to event streams
with different latent structures. Besides, [12] considers a more general neural
intensity function, integrating Z-transform [1] for learning model parameters.
Such a method could only handle uni-dimensional events and would fail when it
comes to high-dimensional event markers.

For event sequence imputation, [19] and [21] focus on specific application
scenarios. The former targets intrapolated estimation for blood glucose concen-
tration given specific time in an observed sequence of patient’s medical records,
while the latter aims to predict interactions between two users in social networks
given a timestamp in a sequence of user activity. In these methods, notably, the
arrival time of target events is assumed to be known in advance, which plays as
informative features and substantially reduces the problem difficulty. Moreover,
[20] puts forward an MCMC-based model to recover incomplete event sequences



6 J. Chen et al.

driven by Hawkes process [8]. However, the method assumes time intervals that
contain missing events to locate specific positions for event imputation. Also,
the Hawkes process used in this model introduces strong inductive bias and suf-
fers from limitations when it comes to more general point processes. Recently,
[14] develops the Neural Hawkes Particle Smoothing method for imputing miss-
ing events, and however, it requires a large number of ground-truth complete
sequences for training an intensity model that provides sufficient information for
latent process in input event sequences as important prior information. Unfor-
tunately, in most practical scenarios, one has no access to such complete event
sequences.

3 Problem Formulation

An event sequence consists of a series of tuples ei = (mi, ti), where mi stands
for the type of an event (a.k.a. event marker) and ti denotes continuous event
timestamp. We use E to represent an event sequence composed of N marker-time
tuples.

E = {ei}N
i=1 , ∀ 1 � i � N : mi ∈ M, ti ∈ [0, T ] .

where M is a marker set of size M .

Temporal Point Process. One common way to model event sequences is via
point process [3] which treats the arrival of each event as a random variable
given the history of previous events. To characterize the probability for when
the next event would happen, a (conditional) intensity function is defined as
λ(t|Ht) :=

P(N(t+dt)−N(t)=1|Ht)
dt , where Ht and N(t) denote the history of pre-

vious events and number of events before time t, respectively. The intensity
function induces conditional density distribution for arrival time of the next
event, P (t|Ht) = λ(t|Ht) exp(−

∫ t

tn
λ(τ |Ht)dτ). The marker of a new event usu-

ally obeys a certain categorical distribution P (m|Ht). There are various ways
to specify the intensity function as parametric forms. For instance, the simplest
case is Poisson process which has a constant intensity over time. Also, many
previous works leverage various forms to parameterize the intensity function by
assuming different inductive bias for event sequences, such as inhomogeneous
Poisson process, Hawkes process, self-correcting process, etc. Recent works pro-
pose to use deep neural networks to model the intensities [25]. Beyond these
expressive networks, [25] proposes to train a neural point process via genera-
tive adversarial networks, and [13,22] adopt reinforcement learning or imitation
learning to further improve learning on asynchronous sequences.

Real-life event sequences are often partially discovered. Given an observed
sequence E = {(mi, ti)}, we define Ui as a subsequence of missing events in
time interval of two adjacent observed events [ti, ti+1] and each missing event
is denoted by εi,j = (μi,j , τi,j), where μi,j and τi,j denote the marker and time
of the j-th unobserved event in Ui respectively. Ui = {εi,j}ni

j=1 , ∀ 1 � j �
ni : μi,j ∈ M, τi,j ∈ [ti, ti+1]. Note that Ui can be an empty set (ni = 0) or



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 7

with arbitrary length ni. Here we define t0 = 0 and tN+1 = T . The ground-truth
complete event sequence E is the union of observed sequence E and unobserved
event sequences Ui, E = E ∪ U1 ∪ U2 ∪ · · · ∪ UN .

Given a collection of partially observed event sequences {Ek}K
k=1, our target

is to build a model that can impute all the missing events (including timestamps
of markers) in Ek, as an estimation for Uk,i, i = 1, · · · , Nk, k = 1, · · · ,K. Note
that the ground-truth complete sequences {Ek} are not available as input, and
one can only leverage {Ek} for model learning and inference. Besides, other prior
information about missing data is unknown, such as total number of missing
events or missing-data mechanisms (interval-censored or missing-at-random).
We call this as extremely or fully unsupervised situation.

4 Proposed Method

We propose PILES, a Peer Imitation Learning point process model for Event
Sequence imputation, to solve the problem in fully unsupervised setting. An
illustration of our proposed framework is depicted in Fig. 1.

Fig. 1. An illustration of our peer imitation learning method for unsupervised event
sequence imputation. Given input event sequence, missing events are imputed in both
forward and backward directions.

4.1 Forward Imputation Model

Given a partially observed event sequence E = {e1, e2, · · · , eN}, our target is
to estimate missing events between each pair of adjacent observed events ei

and ei+1. Note that missing events may exist at any position in [0, T ], so we
need an imputation model with enough expressiveness to accommodate all pos-
sible results. To this end, our forward imputation model chronologically samples
new event markers and timestamps in an iterative manner from t = 0 to T ,
using newly imputed events to update historical sequence which gives condi-
tional intensities for subsequent imputation.



8 J. Chen et al.

Suppose we finish imputing events before observed event ei and currently
focus on imputing missing events between ei and ei+1 and denote the latest
imputed event as ε̂i,j , and then the current status of reconstructed sequence can
be represented as Ê[i, j] = E ∪ Û1 ∪ Û2 ∪ · · · ∪ Ûi−1 ∪ {ε̂i,1, · · · , ε̂i,j}, where
Ûp = {ε̂p,q} denotes set of imputed events in [tp, tp+1] for p = 1, · · · , i − 1, and
ε̂p,q = (μ̂p,q, τ̂p,q) ∈ Ûp denotes the q-th imputed event between observed events
ep and ep+1. Then the problem boils down to how to sample the next imputed
event ε̂ = (μ̂, τ̂). We next introduce embeddings for events and neural intensity
model that play as building blocks for our forward imputation model.

Event Embeddings. We embed each marker-time pair (m, t) into low-
dimensional vectors via learnable embedding matrices. For event marker m ∈ M,
we first generate a one-hot representation v ∈ {0, 1}M , and then multiply
it with an embedding matrix WM ∈ R

d×M to obtain an embedding vector
m = WMv. To encode continuous timestamp t ∈ R, we adopt a linear transfor-
mation t = wT t+bT to get its representation. Here WM ∈ R

d×M , bT ∈ R
d, and

wT ∈ R
d are all trainable parameters. The final representation vector Emb(e)

for event e = (m, t) is the combination of marker and time representations with
a integrating parameter β:

Emb(e) = β · WMv + (1 − β) · (wT t + bT ). (1)

Neural Intensity Model. We further model intensity function over an event
sequence using bidirectional LSTMs to concurrently utilize both history and
future information. Such Bi-LSTM based encoding technique is widely used in
event sequence modeling, such as recent work [14]. Given the current status of
imputed sequence in Sect. 4.1 we define history subsequence H[i, j] and future
subsequence F [i, j]:

H[i, j] = {e1, e2, · · · , ei} ∪ Û1 ∪ · · · ∪ Ûi−1 ∪ {ε̂i,1, · · · , ε̂i,j}
F [i, j] = {eN , eN−1, · · · , ei+1}

(2)

we encode H[i, j] and F [i, j] using two LSTMs gh(·) and gf (·) respectively to
get the hidden states hi,j , zi,j ∈ R

H ,

hi,j = gh (Emb(H[i, j])) , zi,j = gf (Emb(F [i, j])) , (3)

where Emb(H[i, j]) and Emb(F [i, j]) denote the matrices generated by mapping
each event in the sequence to an embedding vector using Eq. (1). From Eq. (2),
we can see that the historical events, including both observed events and imputed
events, are encoded to get the hidden state hi,j . In contrast, the future events,
which only include observed events, are encoded to get zi,j . Then final hidden
state xi,j ∈ R

2H can be set as the concatenation of hi,j and zi,j : xi,j = [hi,j , zi,j ] .
Similar to [4], we define latent intensities λi,j ∈ R

M over M marker classes λi,j =
Whxi,j + bh. where Wh ∈ R

(2H)×M and bh ∈ R
M are trainable parameters.

Here each scalar element in λi,j represents conditional intensity for a certain
class of marker.



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 9

Sampling Events for Imputation. We proceed to present how to sample
next imputed events ε̂ = (μ̂, τ̂) given the conditional intensities. In general, we
first sample marker μ̂ and obtain the corresponding intensity value from λi,j

to estimate timestamp τ̂ . Given the hidden state vector xi,j , the next marker
μ̂ ∈ M can be sampled from a softmax distribution

μ̂ ∼ P (m | H[i, j], F [i, j]) =
exp

(
(Wpxi,j + bp)[m]

)

∑M
m′=1 exp

(
(Wpxi,j + bp)[m′]

) . (4)

where a[k] denotes the k-th element of vector a. Here Wp ∈ R
(2H)×M and bh ∈

R
M . Then the corresponding intensity λ can be indexed from λi,j . Given the

latest imputed timestamp τ̂i,j , we can sample the time interval of next imputed
event δt̂ from a continuous distribution T (δt;λ) parametrized by λ = λi,j[μ̂].
Similar to [22], T can be chosen as Exponential distribution and the time interval
can be sampled from a conditional density:

δt̂ ∼ P (δt | H[i, j], F [i, j]) = T (δt;λ). (5)

Then we have timestamp for next event as τ̂ = τ̂i,j + δt̂. Here one can also
consider estimation for δt̂ using approximated expectation [4] or deterministic
mapping [24]. Once we obtain a sampled event ε̂ = (μ̂, τ̂) as candidate, we need
to check its validity by taking the following acceptance-rejection method to judge
if it can be properly added to the current status of reconstructed sequence. If
τ̂ < ti+1, i.e., the timestamp of the sampled event is before the next observed
event, we keep it in the sequence, set ε̂i,j+1 = ε̂, and update the history and
future subsequences for next imputation step:

H[i, j + 1] = H[i, j] ∪ {ε̂i,j+1},

F [i, j + 1] = F [i, j].
(6)

If the timestamp τ̂ exceeds the time of next observed event ti+1, we discard
ε̂ = (μ̂, τ̂) and continue to impute missing events between observed events ei+1

and ei+2 by updating the history and future subsequences:

H[i + 1, j] = H[i, j] ∪ {ei+1},

F [i + 1, j] = F [i, j] \ {ei+1}.
(7)

Sequence Reconstruction. When we go to the next step with updated history
and future subsequences given by Eq. (6) or Eq. (7), we can encode H[i, j + 1],
F [i, j+1] (resp. H[i+1, j], F [i+1, j]) by Eq. (3) and continue to impute the next
missing event. Note that here we do not need to encode the whole sequence again,
since for historical events, we can simply update the hidden state hi,j+1 (resp.
hi+1,j) using the newly included event ε̂i,j+1 (resp. ei+1). For future events, we
can inversely encode the whole sequence {eN , · · · , e2, e1} before the imputation
process, and store and reuse the results during the imputation process. Therefore,



10 J. Chen et al.

our imputation model still maintains a linear time complexity w.r.t. the length
of sequence. The whole process is executed iteratively until sampled timestamp
reaches T , and we use ÊF to denote the final imputed event sequence in forward
direction: ÊF = E ∪ ÛF

1 ∪ ÛF
2 ∪ · · · ∪ ÛF

N , where ÛF
i denotes a subsequence of

imputed events between ei and ei+1, i.e., ÛF
i = {(μ̂i,j , τ̂i,j)} , ∀ 1 � j � n̂i.

Here we use a superscript F to highlight its forward direction for imputation to
distinguish from the backward version in Sect. 4.2.

4.2 Inverse Point Process and Backward Model

While we obtain reconstructed event sequences, it is hard for model optimization
since we have no ground-truth data as supervision. To solve the obstacle, we take
a different view from traditional perspective. In temporal point process model,
it conventionally characterize conditional intensities for future events given a
history of events. In essence, it considers prediction in a chronological order.
Why cannot we take an inverse perspective and tackle conditional intensities for
historical events given future ones, which focuses on attribution in a counter-
chronological order.

To this end, we introduce the concept of Inverse Point Process, which could
be identified as a complementary latent model for traditional point process. We
define conditional intensity function for inverse temporal point process as follows.

Definition 1. (Inverse Temporal Point Process): Given future events F (t) after
time t, conditional intensity λ(t|F (t)) is defined as the probability density of a
possible hidden event existing in [t − Δt, t], where N ′(t) represents the number
of future events after time t.

λ (t|F (t)) := lim
Δt→0

P(N ′(t) − N ′(t − Δt) = 1F (t))

Δt
. (8)

One can realize that the definitions of inverse point process and traditional
point process are symmetric in nature. Both of them are based on countings and
probability density of event occurrence within a unit period of time. The only
difference lies in that the original definition uses countings of historical events,
while inverse point process model considers future ones. Therefore, it is natural
to consider a (symmetric) backward imputation model that can sample imputed
events in input sequences from the future to the beginning.

Backward Imputation Model. Given a partially observed event sequence
E = {e1, e2, · · · , eN}, similar to Sect. 4.1, we suppose the current imputation
status represented by Ê[i, j] = E ∪ ÛN ∪ ÛN−1 ∪ · · · ∪ Ûi+1 ∪ {ε̂i,−j , · · · , ε̂i,−1} and
the latest imputed event is ε̂i,−j . We employ another two LSTMs g′

f (·) and g′
h(·)

to encode history and future subsequences defined as

H ′[i,−j] = {e1, e2, · · · , ei}
F ′[i,−j] = {eN , · · · , ei+1} ∪ ÛN−1 ∪ · · · ∪ Ûi+1 ∪ {ε̂i,−j , · · · , ε̂i,−1},



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 11

based on which we can obtain hidden state vector x′
i,j and intensity vector

λ′
i,j . After that, we sample a newly imputed event marker μ̂ and time interval

δt̂ using softmax distribution and exponential distribution as in Eq. (4) and
Eq. (5) respectively, and the timestamp of next imputed event is calculated by
τ̂ = τ̂i,−j − δt̂. Then we conduct a similar acceptance-rejection strategy for the
newly sampled ε̂ = (μ̂, τ̂). If τ̂ > ti, we set ε̂i,−j−1 = ε̂ and update history and
future subsequences by

H ′[i,−j − 1] = H ′[i,−j],
F ′[i,−j − 1] = F ′[i,−j] ∪ {ε̂i,−j−1}.

(9)

Otherwise, we have
H ′[i − 1,−j] = H ′[i,−j] \ {ei},

F ′[i − 1,−j] = F ′[i,−j].
(10)

Finally, the model outputs a reconstructed sequence ÊB where we use the super-
script B to highlight its backward direction. We denote trainable parameters in
backward imputation model as θB .

Given imputed sequences ÊF and ÊB by forward and backward models
respectively, we can build a self-supervised learning approach by enforcing consis-
tency between the results of two models. One straightforward way is to consider
Maximum Likelihood Estimation (MLE) that uses output of the counterpart
as observed ‘ground-truth’ labels, which equivalently minimizes the Kullback-
Leibler (KL) divergence [11] between two model distributions. The objective for
forward imputation model can be maxθF

(
logPθF

(
ÊB

))
, where

PθF
(ÊB) =

∏

ε=(μ,τ)∈ÊB

PθF
(μ) · PθF

(δt). (11)

Here PθF
(μ) is given by Eq. (4) and PθF

(δt) (where δt denoting time interval
between event ε and the next imputed event) is given by Eq. (5). Similarly, the
objective for backward imputation model can be maxθB

(
logPθB

(
ÊF

))
, where

PθB
(ÊF ) =

∏

ε=(μ,τ)∈ÊF

PθB
(μ) + PθB

(δt) (12)

and PθB
(μ) as well as PθB

(δt) are given by the backward model.

4.3 Peer Imitation Learning

The MLE-based self-supervised learning enables two models to learn from each
other in unsupervised situation. However, one limitation is that MLE loss
enforces hard match of two models and assigns each imputed event in the
sequence with equal importance. Some prior works focusing on learning point
process models for complete event sequences propose to use reinforcement learn-
ing [13] and, especially, imitation learning [22,24] for optimization by 1) treating



12 J. Chen et al.

the prediction as model policy and ground-truth data as expert policy and 2)
guiding the model to generate policy close to the expert. The imitation learn-
ing approach brings about some tolerance on local mismatch of two sequences
and would adaptively allocate different importance to event pairs via a learnable
discriminator that is jointly optimized to provide an adequate measurement.

In our case, we have no ground-truth data as expert policy. Like the MLE
method, we can use the output of one model as ‘ground-truth’ data for target
of the other model’s training. The intuition is from real-world scenarios when
students take classes: 1) students can directly learn from what teachers taught
in class (ground-truth expert policy), which corresponds to the case in [22,24]
with complete sequences in training set, and 2) students can also learn from
the peers through discussion and knowledge sharing when teachers are absent.
Inspired by this, we propose a novel peer imitation learning approach to improve
the MLE-based optimization. We let one model’s output (as model policy) be
close to the counterpart’s (as expert policy) through a measurement given by
a neural reward function, which is with the same spirit of the discriminator
in GAIL [9]. In this way, we free the model optimization from distance-based
objectives via joint learning of sequence imputation model and reward function
in an adversarial manner.

The objective for forward model can be written as

min
θF

max
wF

EÊB∼PθB

(
logDwF

(ÊB)
)
+ EÊF ∼PθF

(
1 − logDwF

(ÊF )
)

, (13)

where PθF
and PθB

are given in Eq. (11) and (12) and we introduce a discrimi-
nator DwF

(·) (with parameters wF ) that aims to maximize reward for backward
model’s imputation and minimize reward for forward model’s imputation. As
shown in [7], Eq. (13) is equivalent to minimizing Jensen-Shannon divergence
between two model distributions PθF

and PθB
. Similarly, for backward model,

the objective is

min
θB

max
wB

EÊF ∼PθF

(
logDwB

(ÊF )
)
+ EÊB∼PθB

(
1 − logDwB

(ÊB)
)

, (14)

where DwB
(·) is a discriminator with parameters wB .

Neural Reward Functions. We further present the specification of two dis-
criminators. We take DwF

(·) for illustration and DwB
(·) can be specified in a

similar way. Assume Ê as an imputed sequence with n̂ imputed events in total.
DwF

(Ê) can be a sequence-to-sequence model, mapping Ê to a sequence of
reward values for each imputed event: [r1, r2, · · · , rn̂] = dF (Ê), where dF (·) is a
Bi-LSTM.

Policy Gradients. To optimize Eq. (13), we REINFORCE algorithm and com-
pute policy gradient for θF ,

∇θF
EÊF ∼PθF

(
logDwF

(ÊF )
)

≈ 1
C

C∑

c=1

∑

εi∈ÊF
c

γiri · ∇θF
logPθF (εi), (15)



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 13

where we sample C imputed sequences {ÊF
c } from the forward imputation model

PθF
, γ ∈ (0, 1] is a discount factor, εi = (μi, τi) denotes the i-th imputed event

in ÊF
c , and PθF

(εi) = PθF
(μi) · PθF

(τi) (given by Eq. (4) and (5)).
Also, the policy gradient for the discriminator wF can be computed by

∇wF EÊB∼PθB

(
logDwF (ÊB)

)
+ EÊF ∼PθF

(
1 − logDwF (ÊF )

)

≈ 1

C

C∑
c=1

∑

εi∈ÊB
c

γiri · ∇wF logPθB
(εi) +

1

C

C∑
c′=1

∑

εi′ ∈ÊB
c′

γi′ri′ · ∇wF

(
1 − logPθF

(εi′ )
)
.

(16)

The policy gradients for θB and wB in Eq. (14) can be computed in similar
ways. The training process is conducted iteratively. In each iteration of the algo-
rithm, the parameters of forward and backward model are updated alternately,
during which both of the modules (generator and discriminator) are adversari-
ally optimized. In specific, we optimize over θF and wF in Ns steps and then we
turn to θB and wB using Ns steps of updates.

5 Experiments

5.1 Experimental Setup

Datasets. For synthetic data, we adopt typical point processes for data gener-
ation: Hawkes Process [8], Self-Correcting Process [10], Inhomogeneous Poisson
Process, and neural point process RMTPP [4]. For real-world datasets, we adopt
NYC-Taxi [23] and Elevator [2] as widely used in previous works. We adopt the
following hyper-parameter settings: learning rate lr = 10−4, embedding dimen-
sion d = 10, batch size 128, integrating parameter in the event embeddings
β = 0.3, discount factor γ = 0.95, update steps Ns = 3. All these hyper-
parameters are optimized by grid search.

Missing-Data Mechanisms. We adopt three common missing-data mecha-
nisms to generate incomplete event sequences.

1. Random Missing (RM). We consider a fixed missing probability p and each
event in sequences has the same probability to be masked out. We adopt
p = 0.2 in our experiments.

2. Time Intervals (TI). Another typical real-life missing-data mechanism could
be the unavailability of data between a certain time interval. Correspond-
ingly, given time upper bound T of event sequences, we cut off all events in
[α1T, α2T ]. We consider α1=0.4 and α2=0.6 in our experiments.

3. Marker Types (MT). In some cases, one may exactly know the arrival time
of events but event markers (i.e., types) are unobserved. In our experiments,
we randomly choose one marker class in each dataset and drop all the events
with such class of markers to generated incomplete sequences.



14 J. Chen et al.

Baselines. It is hard to provide a fair comparison between our unsupervised
model and other weakly supervised or semi supervised models, such as [14,19–
21], as we discussed in Sect. 2. Therefore, for a convincing comparison, we
turn to migrate state-of-the-art neural intensity model and consider four dif-
ferent variants namely Uni-RMTPP(F), Uni-RMTPP(B), Bi-RMTPP(F), and
Bi-RMTPP(B) from Recurrent Marked Temporal Point Process (RMTPP) [4] as
competitors for unsupervised sequence imputation. In addition, we also simplify
our imitation learning as directly using MLE for optimization, which constructs
two variants of our models PILES-MLE(F) and PILES-MLE(B) for abla-
tion studies. Moreover, to investigate the gap between our imputation results
in unsupervised learning to those of supervised learning, we apply ground-truth
complete event sequences for training Bi-RMTPP(F), called Oracle-SUP.

Table 1. The comparison results evaluated by Normalized OTD

Methods Hawkes Self-Correcting Inhomogeneous Recurrent Elevator NYC Taxi
RM TI MT RM TI MT RM TI MT RM TI MT RM TI MT RM TI MT

Oracle-SUP 10.58 11.59 18.66 3.239 4.214 7.980 0.011 0.085 0.017 0.172 0.193 0.491 0.368 0.623 0.056 2.172 2.107 5.989
PILES(F) 15.24 13.30 33.01 4.508 6.276 16.30 0.039 0.098 0.068 0.177 0.204 0.586 0.505 0.908 0.197 2.229 3.016 9.091
PILES(B) 24.67 19.92 42.29 9.132 13.21 14.55 0.047 0.111 0.101 0.526 0.285 0.701 0.648 0.912 0.118 2.917 3.011 13.47
PILES-MLE(F) 23.26 21.12 32.60 12.31 10.33 16.15 0.036 0.102 0.074 0.487 0.324 1.116 0.582 0.816 0.322 3.453 4.126 10.41
PILES-MLE(B) 28.43 26.57 49.37 15.43 17.29 25.37 0.055 0.124 0.148 0.619 0.721 1.134 0.665 0.694 0.136 3.314 3.164 16.32
Bi-RMTPP(F) 34.37* 34.52* 50.09 19.23 20.63 37.34 0.105* 0.101* 0.111 1.147* 1.141* 3.864 * 0.863 0.797* 0.110 11.32* 10.37 35.65*
Bi-RMTPP(B) 39.76 38.55 50.23 20.58 22.57 39.86 0.147 0.176 0.196 1.837 1.546 4.932 0.419 0.817 0.086 11.41 10.16* 38.36
Uni-RMTPP(F) 36.02 35.20 48.08* 18.31 18.67 33.04 0.108 0.110 0.106* 1.911 1.443 5.532 0.765 0.816 0.133 12.64 15.23 58.38
Uni-RMTPP(B) 36.52 40.11 50.28 17.33* 14.07* 30.00* 0.187 0.193 0.178 2.204 1.703 5.921 0.674* 0.811 0.091* 13.21 16.32 60.43
Improvement 55.6% 61.5% 31.3% 74.0% 55.4% 51.5% 62.9% 3.0% 35.8% 84.6% 82.1% 84.8% 25.1% 0.0% 0.0% 80.3% 70.4% 74.5%

5.2 Evaluation Metrics

Evaluating event sequence imputation involves the difficulty for a well-defined
distance metric between two asynchronous event sequences. It is intractable to
align events in two sequences with asynchronous timestamps and different num-
bers of events. Recently, [14] proposes to use Optimal Transport Distance (OTD)
for describing the event sequence similarity, which is computed by dynamic pro-
gramming with pre-defined insertion and deletion costs. The fundamental intu-
ition for OTD is to describe the distance between sequences by how much it
cost to “modify” one sequence to become identical to another (similar to mini-
mum edit distance in NLP [26]), where smaller OTD indicates better imputation
performance. In specific, given a complete event sequence E = {e1, e2, · · · , eP },
and an imputed event sequence Ê = {ê1, ê2, · · · , êQ}, where ei = (mi, ti) and
êj = (μ̂j , τ̂j), we define an alignment set S for pairing events from two sequences:
S = {(i, j) | mi = μ̂j , i ∈ [1, P ], j ∈ [1, Q]}, where we can discover that in our
settings, only events with the same types of markers are allowed to be aligned.

We can also discover that given two event sequences, the alignment set S is
not unique, since different events (say e1, e2 here) in one sequence could have the
same type of markers so that given an event ê in another sequence with identical
marker, we can actually align ê with either e1 or e2. Given two event sequences



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 15

E and Ê, the distance D is defined as OTD(E, Ê) = minS
∑

(i,j)∈S |ti − τ̂j | +∑
i/∈S Cinsert+

∑
j /∈S Cdelete Besides, we propose a normalized optimal transport

distance (normalized OTD) as follows: nOTD(E, Ê) = minS
∑

(i,j)∈S
|ti−τ̂j |

T +
∑

j /∈S
|T−τ̂j |

T +
∑

i/∈S
|ti|
T .

5.3 Results and Analysis

Comparison on OTD. Figure 2(a) and Fig. 2(b) show OTD results on NYC
Taxi and Elevator datasets respectively. Here we set the insertion and deletion
cost C from 2−5 to 24 and compare the performances of our model and several
baselines. On both datasets, the OTD values increase approximately linearly as
C grows in logarithmic space, and notably, PILES constantly outperforms oth-
ers with a minimal gap to supervised method Oracle-SUP. Among comparative
methods, bi-directional model generally performs better than the uni-directional
counterpart due to better utility of event data in sequences. There are significant
improvements achieved by PILES over two RMTPP models: 76.2% on NYC Taxi
dataset and 42.4% on Elevator dataset.

Fig. 2. Optimal Transport Distance
(OTD) with delete and insert cost C ∈
[−5, 24] in logarithmic axes. Each data
point is average of forward and back-
ward reconstructions.

Fig. 3. Sensitivity of update steps Ns

and discount factor γ evaluated on
NYC-Taxi in an RM setting. We fix
γ = 0.95, and set Ns = 3 to evaluate
the sensitivity of γ, where the learning
rate is fixed at 10−4.

Comparison on Normalized OTD. Table 2 presents results of normalized
OTD on four synthetic datasets and two real-world datasets. As we can see,
PILES generally provides the best performances in the majority of cases with
different missing-data mechanisms on six datasets. The results demonstrate the
superiority of proposed model. Notably, compared with RMTPP models, PILES
manages to achieve 80.3% improvement on NYC-Taxi dataset with the setting
of random missing (RM), which shows that the peer imitation learning approach
contributes to better self-supervised learning by enforcing consistency between
forward and backward imputation rather than training the model directly over
imcomplete sequences. Comparing different missing-data mechanisms, we can see



16 J. Chen et al.

that missing marker type (MT) appears to be much more difficult than other
two missing-data mechanisms and there exist obvious gaps between unsupervised
methods and Oracle-SUP in MP settings. Moreover, in terms of different data
generating processes, we can see that when using neural intensity model to gen-
erate data, our model PILES gives very close results to Oracle-SUP with much
smaller gaps compared to other data generating processes. This phenomenon
indicates that our method has capability to capture complex latent process in
input sequences and also, the inductive bias shared by both the model and data
generation affects the performance a lot.

Ablation Study. One more straight-forward approach for mutual learning is
to directly use outputs from another model as supervised training data, based
on which one can use MLE for optimization. Here we compare our PILES with
peer imitation learning with the model using MLE as ablation study. As shown
in Fig. 2 where we report results for PILES and PILES-MLE on six datasets,
we can find that although slightly, PILES outperforms PILES-MLE on both
datasets. Also in Table 1, the results show that PILES turn out to be superior
than PILES-MLE in the majority of cases, which indicates that our proposed
peer imitation learning is effective for event sequence imputation.

Parameter Sensitivity. We also analyze the sensitivity of our model on two
hyper-parameters, the number of update steps Ns and discount factor γ, in
Fig. 3. As shown in Fig. 3(a), PILES performs the best when Ns equals to 3.
In fact, Ns controls how sufficiently two models’ results are matched in each
step of iterative training. When Ns is too small, two models are insufficiently
learned from each other; when Ns is too large, they would ‘over-fit’ the estimation
from the counterpart and get stuck by some local optima. In Fig. 3(b), we plot
normalized OTD of PILES v.s. different discount factor γ’s. We can see that
the model performance declines faster when γ decreases. One possible reason is
that when using relatively small γ, the rewards from previously imputed events
would be weakened and the model focuses more on a few imputed events in a
sequence, ignoring global information.

6 Conclusion

In this paper, we focus on reconstructing partially observed event sequences in
a fully unsupervised setting. We propose a novel peer imitation learning point
process framework which entails two-fold contributions on methodological level.
First, we extend the definition of conventional temporal point process and pro-
pose inverse point process model. Second, we design a new peer imitation learning
approach that lets two point process models in different directions cooperatively
learn from each other to achieve a consensus on imputation results. Comprehen-
sive experimental results on six datasets with multifarious missing-data mecha-
nisms show the superiority of our method.



An Adaptive Data-Driven Imputation Model for Incomplete Event Series 17

Acknowledgement. This work was supported by the National Key R&D Pro-
gram of China [2020YFB1707900]; the National Natural Science Foundation of China
[62272302, 62172276], and Shanghai Municipal Science and Technology Major Project
[2021SHZDZX0102].

References

1. Antoniou, A.: Digital Signal Processing. McGraw-Hill, New York (2016)
2. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement

learning. In: NeurIPS, pp. 1017–1023 (1995)
3. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes:

Volume II: General Theory and Structure. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-0-387-49835-5

4. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recur-
rent marked temporal point processes: embedding event history to vector. In:
SIGKDD, pp. 1555–1564 (2016)

5. Enguehard, J., Busbridge, D., Bozson, A., Woodcock, C., Hammerla, N.Y.: Neural
temporal point processes for modelling electronic health records (2020)

6. Fan, Y., Xu, J., Shelton, C.R.: Importance sampling for continuous time bayesian
networks. J. Mach. Learn. Res. 11(Aug), 2115–2140 (2010)

7. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS, pp. 2672–2680
(2014)

8. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes.
Biometrika 58(1), 83–90 (1971)

9. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: NeurIPS, pp.
4565–4573 (2016)

10. Isham, V., Westcott, M.: A self-correcting point process. Stochastic Process. Appl.
8(3), 335–347 (1979)

11. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

12. Lee, Y., Vo, T.V., Lim, K.W., Soh, H.: Z-transforms and its inference on partially
observable point processes. In: IJCAI, pp. 2369–2375 (2018)

13. Li, S., Xiao, S., Zhu, S., Du, N., Xie, Y., Song, L.: Learning temporal point processes
via reinforcement learning. In: NeurIPS, pp. 10781–10791 (2018)

14. Mei, H., Qin, G., Eisner, J.: Imputing missing events in continuous-time event
streams. In: ICML, pp. 4475–4485 (2019)

15. Nodelman, U., Shelton, C.R., Koller, D.: Continuous time bayesian networks. arXiv
preprint arXiv:1301.0591 (2012)

16. Pan, Z., Huang, Z., Lian, D., Chen, E.: A variational point process model for social
event sequences. In: AAAI, pp. 173–180 (2020)

17. Rao, V., Teh, Y.W.: MCMC for continuous-time discrete-state systems. In:
NeurIPS, pp. 701–709 (2012)

18. Reinhart, A.: A review of self-exciting spatio-temporal point processes and their
applications. Stat. Sci. 33(3), 299–318 (2018)

19. Schaubel, D.E., Cai, J.: Multiple imputation methods for recurrent event data with
missing event category. Can. J. Stat. 34(4), 677–692 (2006)

20. Shelton, C.R., Qin, Z., Shetty, C.: Hawkes process inference with missing data. In:
AAAI, pp. 6425–6432 (2015)

https://doi.org/10.1007/978-0-387-49835-5
https://doi.org/10.1007/978-0-387-49835-5
http://arxiv.org/abs/1301.0591


18 J. Chen et al.

21. Stomakhin, A., Short, M.B., Bertozzi, A.L.: Reconstruction of missing data in
social networks based on temporal patterns of interactions. Inverse Prob. 27(11),
115013 (2011)

22. Upadhyay, U., De, A., Rodriguez, M.G.: Deep reinforcement learning of marked
temporal point processes. In: NeurIPS, pp. 3172–3182 (2018)

23. Whong, C.: Foiling nyc’s taxi trip data (2014)
24. Wu, Q., Zhang, Z., Gao, X., Yan, J., Chen, G.: Learning latent process from high-

dimensional event sequences via efficient sampling. In: NeurIPS, pp. 3842–3851
(2019)

25. Xiao, S., Yan, J., Yang, X., Zha, H., Chu, S.M.: Modeling the intensity function of
point process via recurrent neural networks. In: AAAI, pp. 1597–1603 (2017)

26. Zhao, Y., Jiang, H., Wang, X.: Minimum edit distance-based text matching algo-
rithm. In: NLPKE, pp. 1–4 (2010)

27. Zhou, K., Zha, H., Song, L.: Learning triggering kernels for multi-dimensional
hawkes processes. In: ICML, pp. 1301–1309 (2013)


	An Adaptive Data-Driven Imputation Model for Incomplete Event Series
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Proposed Method
	4.1 Forward Imputation Model
	4.2 Inverse Point Process and Backward Model
	4.3 Peer Imitation Learning

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation Metrics
	5.3 Results and Analysis

	6 Conclusion
	References


