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Abstract. In this paper, we study the decoding failure rate (DFR)
of non-binary QC-MDPC codes using theoretical tools, extending the
results of previous binary QC-MDPC code studies. The theoretical esti-
mates of the DFR are particularly significant for cryptographic applica-
tions of QC-MDPC codes. Specifically, in the binary case, it is established
that exploiting decoding failures makes it possible to recover the secret
key of a QC-MDPC cryptosystem. This implies that to attain the desired
security level against adversaries in the CCA2 model, the decoding fail-
ure rate must be strictly upper-bounded to be negligibly small. In this
paper, we observe that this attack can also be extended to the non–
binary case as well, which underscores the importance of DFR estima-
tion. Consequently, we study the guaranteed error–correction capability
of non–binary QC–MDPC codes under one–step majority logic (OSML)
decoder and provide a theoretical analysis of the 1–iteration parallel sym-
bol flipping decoder and its combination with OSML decoder. Utilizing
these results, we estimate the potential public-key sizes for QC-MDPC
cryptosystems over F4 for various security levels. We find that there is
no advantage in reducing key sizes when compared to the binary case.

Keywords: code–based cryptography · non–binary MDPC codes ·
symbol flipping · decoding failure rate

1 Introduction

With the advent of quantum computers, many traditional public–key cryptosys-
tems based on number–theoretic or elliptic curves primitives are to become vul-
nerable to attacks using them [14,42]. So, there is a strong need in developing
post-quantum cryptographic protocols that will remain secure against adver-
saries equipped with quantum computers. One of the most prominent and well-
established approach to post-quantum cryptography is cryptography based on
error-correcting codes.

The first code–based cryptosystem was proposed in 1978 by R. McEliece [31].
The main idea of the McEliece cryptosystem is to mask a generator matrix of a
fast–decodable code by permuting its columns and multiplying by a scrambling
matrix on the left. The encryption is performed by encoding a message using the
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public generator matrix and adding an error. So, the security against message–
recovery attacks is based on NP–hard syndrome decoding problem [13]. The
original proposal of R. McEliece was based on binary Goppa codes, so the secu-
rity against key–recovery attack relies on hardness of the problem of distinguish-
ing permuted Goppa codes. It is worth mentioning that the original McEliece
cryptosystem with several improvements is one of three Round 4 competitors in
NIST-PQC [1]. Despite many advantages, the main drawback of McEliece cryp-
tosystem is large public–key size. There were many attempts to overcome this by
replacing Goppa codes with more efficient ones. The notable examples are Gen-
eralized Reed–Solomon codes [35], Reed–Muller codes [43], algebraic geometry
codes [29], concatenated codes [40], rank–metric Gabidulin codes [22]. However,
most of this modifications were proven unsecure [15,17,32,38,40,44]. In addi-
tion, several modifications of protocol itself were proposed to avoid key–recovery
attacks against McEliece–like cryptosystems based on efficient algebraic codes
(e.g. [7,12,28,48]), however most of them were also successfully cryptanalyzed
[16,18,19,30,47,50].

One of the most efficient approaches to reducing public-key size was proposed
by P. Gaborit [23] and is based on using quasi-cyclic codes (QC-codes). A code
C of length n = n′l is said to be quasi-cyclic of order n′ and index l if its permu-
tation automorphism group PAut(C) has a cyclic subgroup of order n′ that acts
freely on coordinates. The quasi-cyclic structure implies the existence of gener-
ator and parity-check matrices of C that admit a block-circulant representation,
i.e.

⎛
⎜⎝

rot(h1,1) . . . rot(h1,l)
...

. . .
...

rot(hs,1) . . . rot(hs,l)

⎞
⎟⎠ , rot(a1, a2, . . . , an′) =

⎛
⎜⎜⎜⎝

a1 a2 . . . an′

an a1 . . . an′−1

...
...

. . .
...

a2 a3 . . . a1

⎞
⎟⎟⎟⎠ . (1)

This representation allows storing only the first row of each circulant block
rot(hi,j), thereby reducing storage and communication costs. Therefore, the pub-
lic key sizes of code-based encryption protocols that preserve quasi-cyclic struc-
ture can be significantly reduced. Note that many encryption protocols based
on algebraic QC–codes (e.g. [12,23]) have been successfully attacked [20,36].
However, protocols based on random quasi–cyclic moderate density parity–check
(QC–MDPC) codes [33], which have no algebraic structure except being quasi–
cyclic, are still considered secure and efficient.

The concept of moderate-density parity-check (MDPC) codes extends the
idea of low-density parity-check codes (LDPC codes) initially introduced by R.
Gallager [24]. In Gallager’s seminal work [24], it was shown that efficient decod-
ing of binary codes with a parity-check matrix containing a very small constant
number of ones in each row is feasible using iterative algorithms such as bit-
flipping and belief propagation, provided certain conditions are met (no two
rows have two or more ones in the same positions). In 2000, C. Monico et al.
[34] considered replacing Goppa codes in the McEliece cryptosystem with LDPC
codes and pointed out that these codes can be easily distinguished due to the
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existence of very low–weight codewords in the dual code. The application of
quasi-cyclic LDPC codes in constructing code-based cryptosystems was initially
proposed in [11] and further developed in [8,10]. To mitigate key-recovery attacks
based on searching for low-weight dual codewords, it was suggested to replace
the permutation matrix in the protocol with a sparse non–singular matrix of a
specific form. However, this approach was found to introduce serious vulnerabil-
ities [2,36]. An alternative method to prevent key–recovery based on the search
for low–weight codewords was proposed in [33], where it was suggested to use
random QC–MDPC codes instead of LDPC. The difference between MDPC and
LDPC codes lies in the slightly higher weight of the rows in the parity-check
matrices, i.e., which is of order O(

√
n) for MDPC codes and O(1) for LDPC.

We denote the finite field of size q as Fq. For a vector v ∈ Fn
q , the notation

supp(v) = {i ∈ �1, n� | vi �= 0} is used to represent the set of indices correspond-
ing to the positions where v is nonzero. Here, �a, b� = {a, a + 1, . . . , b} denotes
set of all integers between a and b. The Hamming weight of vector v, denoted as
wt(v), is defined as the number of nonzero positions in v. A linear code C ∈ Fn

q

of length n and dimension k is refereed as [n, k]q–code. A generic description of
a QC-MDPC cryptosystem [33] in the Niedderiter form [35] is as follows:

– Key generation The secret key is the parity-check matrix H of a random
QC-MDPC [n = ln′, (l − 1)n′]q-code, represented as

H =
(
H1 | H2 | . . . | Hl−1 | Hl

)
. (2)

The matrix H consists of circulant (n′ × n′)–blocks Hi, where each Hi has a
row weight of γ. Note that n′ is usually chosen to be a prime number p. The
public key is the systematic form of H, i.e.

H̃ = H−1
1 H =

(
In′ | H−1

1 H2 | . . . | H−1
1 Hl,

)

which can be represented by the first rows of H−1
1 Hi, where i ∈ �2, l�, since

the product of circulant matrices is also a circulant matrix.
– Encryption The plaintext is an error vector e ∈ Fn

q of weight t, and the
ciphertext is its syndrome s̃ = H̃eT.

– Decryption To decrypt, the private syndrome s = HeT = H1s̃
T is computed

and used as input for the MDPC decoder (bit-flipping or symbol flipping).

Note that in NIST-PQC, the QC–MDPC approach is represented by BIKE (bit-
flipping key encapsulation) protocol [3].

Due to probabilistic nature of decoding of LDPC and MDPC codes, there is
a non–zero probability of decryption failure. In [26] it was shown that decryption
failures can be used to recover the secret key in binary case. Hence in order to
achieve indistinguishability against chosen ciphertext attacks, where an adversary
has an access to a decryption oracle (IND–CCA2 security), the decoding failure
rate (DFR) has to be negligibly small, i.e. of order 2−λ, where λ is a security level.
In [46], an experimental–based extrapolation framework for estimating DFR has
been proposed. In this approach, the DFR curve is assumed to be concave, so
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Fig. 1. Approximate illustration of a situation where the use of extrapolation may lead
to an incorrect estimation of DFR due to the presence of an error floor.

estimates for high DFR (> 10−9) can be obtained via numerical simulations and
then extrapolated to low DFRs providing an upper bound. However, it is known
that LDPC and MDPC codes exhibit error floor phenomenon, resulting in vio-
lation of concavity assumption (see e.g. [4,6]). Hence DFR estimates obtained
by extrapolation could possibly be overly optimistic (see Fig. 1). Another app-
roach is to estimate DFR using only theoretical tools. In [45] J. P. Tillich studied
guaranteed error–correction performance of binary QC–MDPC codes under one–
step majority logic decoder (OSML). In addition, in [45] the DFR of two–iteraion
decoder is studied under some reasonable assumptions, i.e. the probability that
one iteration of parallel bit–flipping decoder reduces error weight enough to be
corrected by OSML decoder is computed. In [39], the estimate of the number
of errors correctable by OSML decoder was improved. Under the same assump-
tions as in [45], the worst–case plausibility analysis of one and two iteration
randomized serial bit–flipping decoder was performed in [5]. In addition, in [5]
a combination of one iteration of randomized serial bit-flipping and OSML was
studied, and recommended design parameters for IND–CCA2 secure QC-MDPC
cryptosystems were given.

In this paper, we study DFR of non–binary QC–MDPC codes using theo-
retical tools. Namely, we extend the results of [39,45] to the non–binary case,
i.e. we show that error–correcting performance of OSML decoder can also be
estimated using similar methods of [39,45]. In addition, we propose a parallel
symbol flipping decoder. Under the same assumptions used in [5,45], we give
theoretical estimates of DFR for the parallel symbol–flipping decoder and its
combination with the OSML decoder. We also note that the extension of the
randomized serial approach, as considered in [5], in the non-binary case seems
to yield unreliable results due to a observed discrepancy between the theoretical
estimates and the worst-case simulations. Hence this approach is not included
in this paper. In addition, we experimentally demonstrate that slightly modi-
fied attack of [26] can also recover secret key in non–binary case. Employing
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the obtained results, recommended parameters and corresponding key sizes for
IND-CCA2–secure QC–MDPC cryptosystems over Fq for various security levels
are computed.

The paper is organized as follows. In Sect. 2, we present the basic principles of
decoding non-binary QC-MDPC codes and study the guaranteed error-correction
capability of the one-step majority logic decoder in an assumption-free setting. In
Sect. 3, we provide a plausibility analysis of error counters distribution and flip-
ping probability in the non-binary case. Subsequently, we propose a 1-iteration
parallel symbol flipping decoder and theoretically estimate the probability of
reducing the error weight to a certain value, allowing for further decoding by
the OSML decoder. We also provide experimental validation of the theoretical
model. Finally, in Sect. 4, we consider the reaction attack against non–binary
QC–MDPC cryptosystems and find potential cryptosystem parameters and cor-
responding public-key sizes.

2 Analysis of Guaranteed Error–correction Capability
of Non–binary QC-MDPC Codes

Recall that a code C with a parity–check matrix H ∈ Fm×n
q is said to be a

moderate–density parity–check (MDPC) code if each row of the H = (hi,j) is of
weight O(

√
n). In addition, C is said to be (γ, δ)–regular if the weight of each

column of H is γ and the weight of each row is δ. Unless otherwise specified, we
will focus exclusively on regular MDPC codes.

Let z = c + e ∈ Fn
q , where c ∈ C and wt(e) ≤ t, be a noisy codeword. By

s = HzT = HeT we denote the syndrome of e. One can easily note that since
i–th position of s is computed as

si = 〈hi, e〉 =
∑

ω∈supp (hi)

hi,ωeω.

Hence, by selecting γ row indices i1, i2, . . . , iγ for which hi1,j , . . . , hi1,j are non-
zero, we obtain the following γ equalities:

⎧⎪⎪⎨
⎪⎪⎩

si1h
−1
i1,j = ej + h−1

i1,j

(∑
ω∈supp(hi1 )\{j} hi1,ωeω

)
,

. . .

siγ
h−1

iγ ,j = ej + h−1
iγ ,j

(∑
ω∈supp(hiγ )\{j} hiγ ,ωeω

)
.

(3)

Since C is an MDPC code, the rows hi of H are sparse. Considering sparsity of
e, it follows that sih

−1
i,j equals ej with high probability. Hence it is possible to

use the values sih
−1
i,j for estimating e.

Let Fq = {α0 = 0, α1 = 1, α2, . . . , αq−1} be a enumeration of elements of Fq.
Let us define

σj,i =
∣∣{w | hw,j �= 0 and sih

−1
w,j = αi

}∣∣ (4)

as the number of rows hw containing the position j in supp(hw) and sih
−1
w,j = αi.

The values of σj,i will be referred to as error counters in position j. Clearly, σj,i
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indicates the likelihood that the error value ej in position j is equal to αi.
In particular, a higher value of σj,0 implies that position j is less likely to be
corrupted, while higher values of σj,i, i �= 0, indicate a greater likelihood that
ej = αi �= 0.

Therefore, several decoding strategies are possible. For instance, it is possible
to choose an information set I of k positions with highest σj,0, indicating that
these positions less likely to be erroneous, and then use this I for information
set decoding (ordered statistics decoding [21] and statistical decoding [37]).

Another straightforward decoding algorithm that uses counters is as follows:

1. compute the syndrome s and the counters σj,i for all j ∈ �1, n� and i ∈
�0, q − 1�;

2. update the position j of the received word z having the highest value of
σ∗

j − σj,0, where
σ∗

j = max
i∈�1,q−1�

σj,i, (5)

to the new value zj − αi∗ , where i∗ = argmaxi∈�1,q−1� σj,i;
3. repeat from step 1 until either s = 0 or maximum number of iterations is

reached.

Remark 1. One can easily note that the syndrome weight after step 2 is decreased
by σ∗

j − σj,0. Therefore, the error position and error value in step 2 are chosen
to decrease the syndrome weight the most. In this formulation the decoding
approach described above was proposed in [9] as a generalization of Gallager’s
bit–flipping. In the binary case, the Gallagher’s decoder is also a greedy algorithm
that reduces the syndrome weight the most in each step .

2.1 One–Step Majority Logic Decoding

In this subsection, we study guaranteed decoding performance of regular MDPC
codes under the OSML decoder (Algorithm 1) which can be considered as single
iteration version of parallel symbol flipping.

Algorithm 1: OSML
Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n, s ← HzT;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σ∗
j ≥ thj then
l ← argmaxi∈�1,q−1� σj,i;
ẽj ← ẽj + αl;

end
return ẽ



Theoretical Analysis of Decoding Failure 41

Remark 2. Note that in the decoder description, instead of recovering the cor-
rected codeword c ∈ C from the noisy codeword z = c + e by iteratively sub-
tracting the estimated error from z, we employ an equivalent formulation where
we iteratively find the estimated error ẽ itself.

Let X ∈ Fm×n
q be an (m × n)–matrix, and let I ⊂ �1,m� and J ⊂ �1, n� be

sets of row and column indices, respectively. We denote the matrix composed of
the elements of X with indices (i, j) ∈ I × J as XI,J = (xi,j)i∈I,j∈J . For con-
venience, we use the notations X:,J and XI,: to represent X�1,m�,J and XI,�1,n�,
respectively.

Proposition 1. Let H = (hi,j) ∈ Fm×n
q be a parity–check matrix of a MDPC

code, and let e ∈ Fn
q be an error of weight t. Define H(j) as the matrix consisting

of rows from the set
{
h−1

i,j · (
Hi, �1,n�\{j}

) | i ∈ �1,m�, hi,j �= 0
}

.

Let
al = wt(H(j)

:,l ), μ(s) =
∑

ω∈indicies of s largest
values of al

aω,

If ej = αi, then σj,i can be lower bounded as follows

σj,i ≥
{

γ − μ(t), ej = αi = 0,

γ − μ(t − 1), ej = αi �= 0.

Proof. Using (3), we obtain that σj,i denotes the frequency of occurrence of αi

in the vector

v =

⎛
⎜⎝

si1h
−1
i1,j

...
siγ

h−1
iγ ,j

⎞
⎟⎠ =

⎛
⎜⎝

ej

...
ej

⎞
⎟⎠ + H(j)e′T︸ ︷︷ ︸

v′

, e′ = e�1,n�\{j}.

Hence if ej = αi then σj,i = γ −wt(v′). Since v′ is a linear combination of wt(e′)
columns of H(j), its weight can be upper bounded by

wt(v′) ≤ μ(wt(e′)) =

{
μ(t), ej = 0,

μ(t − 1), ej �= 0.

This concludes the proof of the proposition.

Remark 3. Note that the weight wt(H(j)
:,l ) of l–th column H

(j)
:,l of H(j) equals

|supp (H:,l) ∩ supp (H:,j)| .
Corollary 1. Let wt(e) ≤ t. If μ(t) < thj ≤ γ − μ(t − 1), then the OSML
decoder correctly estimates the j–th position of e.
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Proof. If ej = 0, then σj,0 ≥ γ − μ(t) and hence σ∗
j ≤ γ − σj,0 ≤ μ(t). It follows

that setting thj > μ(t) in Algorithm 1 will ensure that no non–erroneous position
will be corrupted.

If ej = αi �= 0, then σj,i ≥ γ − μ(t − 1). Since μ(t) < γ − μ(t − 1) and
μ(t) ≥ μ(t−1), it follows that μ(t−1) < γ/2 and thereby σj,i ≥ γ−μ(t−1) > γ/2.
This implies that a clear majority of equalities in (3) vote for αi and hence
σ∗

j = σj,i (see (5)). Therefore, setting thj < γ − μ(t − 1) will ensure that error
value in a erroneous position will be estimated correctly.

Corollary 2. The guaranteed error–correction capability of OSML decoder is t
if for all j ∈ �1, n� it is possible to choose thj according to Corollary 1.

Note that OSML is a very simple yet effective decoder that is capable of
correcting low–weight error patterns. However, it is particularly useful as a sec-
ond decoding iteration because it does not rely on probabilistic assumptions.
It can effectively decode errors of a certain weight that remain after previous
iterations, even if they have a harder–to–decode structure that would make plau-
sibility analysis based on probabilistic assumptions irrelevant.

3 Plausibility Analysis of 1–iteration Parallel Symbol
Flipping Decoder

In this section, we provide an analysis of the single-iteration parallel symbol flip-
ping algorithm. Namely, following the approach of [45], we estimate the probabil-
ity of correcting an error using this decoder under several probabilistic assump-
tions. Furthermore, under the same assumptions, we estimate the probability
of decreasing the error weight to a value that allows correction by the OSML
decoder. This provides an upper bound on the decoding failure rate for the com-
bination of a single iteration of parallel symbol flipping followed by the OSML
decoder.

3.1 Distribution of Counters

Below we give necessary results on probabilistic distributions of syndrome values
and counters σj,i, j ∈ �1, n�, i ∈ �0, q − 1�, required for further analysis of
decoding iteration of proposed parallel symbol–flipping decoder. Our analysis
will rely on several assumptions that are analogous to those used in [5,45].

Assumption 1. Let H be a parity–check of a random QC–MDPC code C in
block–circulant form. It is assumed that each row of H is well modeled as a
sample from uniform distribution over Fn

q .

Proposition 2. Let x ∈ Fn
q , y ∈ Fn

q be uniformly sampled. Let

Am = Pr[〈x, y〉 �= 0 | |supp(x) ∩ supp(y)| = m].
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Then Am can be found recursively using

Am =

{
(1 − Am−1) + q−2

q−1Am−1, m ≥ 1
0, m = 0.

Proof. Without loss of generality, we assume that supp(x) ∩ supp(y) =
{1, . . . , m}. It follows that

Am = Pr

[(
m−1∑
i=1

xiyi = 0

)
, xmym �= 0

]
+ Pr

[(
m−1∑
i=1

xiyi �= 0

)
, xmym �= −

m−1∑
i=1

xiyi

]
=

= Pr

[(
m−1∑
i=1

xiyi = 0

)]
· Pr

[
xmym �= 0 |

(
m−1∑
i=1

xiyi = 0

)]
+

+ Pr

[(
m−1∑
i=1

xiyi �= 0

)]
· Pr

[
xmym �= −α |

(
m−1∑
i=1

xiyi = α �= 0

)]
=

= (1 − Am−1) · 1 + Am−1
q − 2

q − 1
.

Theorem 1. Let H = (hi,j) be a parity–check matrix of (γ, δ)–regular QC-
MDPC code C of length n. Let e ∈ Fn

q be a random error of weight t, and
s = eHT be its syndrome. Then for any row hi of H, such that j ∈ supp(hi)

Pr[sih
−1
i,j = ej | ej �= 0] =

min(δ−1,t−1)∑
i=0

(
δ−1

i

)(
n−δ

t−i−1

)
(
n−1
t−1

) (1 − Ai), (6)

Pr[sih
−1
i,j = ej | ej = 0] =

min(δ−1,t)∑
i=0

(
δ−1

i

)(
n−δ
t−i

)
(
n−1

t

) (1 − Ai), (7)

Pr[sih
−1
i,j = α �= ej | ej �= 0] = (q − 1)−1

(
1 − Pr[sih

−1
i,j = ej | ej �= 0]

)
, (8)

Pr[sih
−1
i,j = α �= 0 | ej = 0] = (q − 1)−1

(
1 − Pr[sih

−1
i,j = ej | ej = 0]

)
. (9)

Proof. Since j ∈ supp(hi), Eq. (3) implies that sih
−1
i,j = ej + h−1

i,j 〈e′, h′〉, where

e′ = e�1,n�\{j}, h′ = Hi,�1,n�\{j}.

One can easily note that

wt(e′) =

{
t, ej = 0
t − 1, ej �= 0

, wt(h′) = δ − 1. (10)

Since sih
−1
i,j = ej if and only if 〈h′, e′〉 = 0, it follows that

Pr[sih
−1
i,j = ej | ej = α] = Pr[〈e′, h′〉 = 0].
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So, using Assumption 1, we obtain

Pr[〈e′, h′〉 = 0] =
min(wt(e′),wt(h′))∑

i=0

Pr[〈e′, h′〉 = 0, |supp(e′) ∩ supp(h′)| = i] =

=
min(wt(e′),wt(h′))∑

i=0

(1 − Ai) · Pr[|supp(e′) ∩ supp(h′)| = i] =

=
min(wt(e′),wt(h′))∑

i=0

(
wt(h′)

i

)(
n−1−wt(h′)
wt(e′)−i

)
(

n−1
wt(e′)

) (1 − Ai).

Substituting (10) into this formula, we obtain (6) and (7). In addition, when
〈e′, h′〉 �= 0, the product 〈e′, h′〉 can assume any non–zero element of Fq with
equal probabilities. Consequently, we obtain (8) and (9).

In the parallel symbol flipping decoder (see Algorithm 2), we propose the
following flipping criterion based on counter values, using three decoding thresh-
olds: th0, thE , and thD. Namely, the position j of the received noisy codeword
z = c + e will be updated to zj − αi if the following conditions are satisfied:

1. σj,i > σj,ω for all ω ∈ �0, q − 1� \ {i}, and thus σ∗
j = σj,i,

2. σ∗
j ≥ thE ,

3. σj,0 < th0,
4. σ∗

j − σj,0 ≥ thD.

Note that conditions 1–4 can be replaced by the single condition

σj = (σj,0, . . . , σj,q−1) ∈ Δth0,thE ,thD
(i),

where Δth0,thE ,thD
(i) is defined as follows

Δth0,thE ,thD
(i) = Δ(i) =

{
(b0, . . . , bq−1) ∈ Zq |

q−1∑
ω=0

bω = γ, bi > max
ω �=i

bz ,

b0 ≤ th0, bi ≥ thE , bi − b0 ≥ thD

}
.

In the following theorem, we will estimate the probability that the flipping cri-
terion accurately determines the positions and values of errors.

Assumption 2. We assume that the probability Pr[σj ∈ Δ(i)] to flip position
j to value zj − αi is a function only of error weight, i.e. it does not depend on
error structure and the location j.

Theorem 2. Let H be a parity–check matrix of (γ, δ)–regular QC-MDPC code
C of length n and dimension k. Let e ∈ Fn

q be a random error of weight t. Define

p1 = Pr[sih
−1
i,j = ej | ej �= 0], p2 = Pr[sih

−1
i,j = α �= ej | ej �= 0],

p3 = Pr[sih
−1
i,j = ej | ej = 0], p4 = Pr[sih

−1
i,j = α �= ej | ej = 0].
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Then the probability that non–zero error value will be estimated correctly is

pe→c(t) = Pr[σj ∈ Δ(i) | ej = αi �= 0] =
∑

(b0,...,bq−1)∈Δ(i)

γ!
b0! . . . , bq−1!

pbi
1 pγ−bi

2 ,

(11)

and the probability of incorrect estimate in non–erroneous position is

pc→e(t) = (q − 1) · Pr[σj ∈ Δ(i) | ej = 0], (12)

where

Pr[σj ∈ Δ(i) | ej = 0] =
∑

(b0,...,bq−1)∈Δ(i)

γ!
b0! . . . , bq−1!

pb0
3 pγ−b0

4 , i �= 0.

Proof. From Assumption 2 it follows that the probability

Pr [σj = (b0, . . . , bq−1) | ej = αi �= 0]

can be modelled using multinomial distribution with parameters(
Pr[sih

−1
i,j = 0 | ej �= 0], . . . ,Pr[sih

−1
i,j = αq−1 | ej �= 0]

)
= (p2, . . . , p2︸ ︷︷ ︸

i−1

, p1, p2, . . . , p2︸ ︷︷ ︸
q−i

).

Hence

Pr [σj = (b0, . . . , bq−1) | ej = αi �= 0] =
γ!

b0! . . . , bq−1!
pbi
1 pγ−bi

2 ,

which implies (11). By similar reasoning, we can also obtain (12).

3.2 Analysis of Parallel Symbol-Flipping Decoder

In this subsection, we employ results of previous subsection to give an plausibility
analysis of the one–step parallel symbol flipping decoder (Algorithm 2) and its
combination with OSML decoder (Algorithm 3).

Algorithm 2: 1–iteration parallel symbol flipping decoder

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n ∈ Fn

q ;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σj ∈ Δ(s) then
ẽj ← ẽj + αs

end
return ẽ

Note that, after each iteration some error positions can be estimated correctly
and some non–erroneous positions can be estimated to be erroneous incorrectly.
In the following proposition, we provide an analysis of the probability that 1-
iteration version of this decoder transforms a random error e of weight t into
some new error e′ of weight t′.
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Proposition 3. Let e be a random error of weight t, then after execution Algo-
rithm 2

1. the probability to correctly estimate u error positions from e is

Pcorrect(t, u) =
(

t

u

)
(pe→c(t))

u (1 − pe→c(t))
t−u

,

2. the probability to corrupt v non–erroneous positions is

Pcorrupt(t, v) =
(

n − t

v

)
(pc→e(t))

v (1 − pc→e)
n−t−v

,

3. the probability to transform e into an error e′ of weight t′ is

Pr(t → t′) =
∑

t−u+v=t′
Pcorrect(t, u)Pcorrupt(t, v).

Proof. Assumption 2 implies that the flip decisions are statistically indepen-
dent and depend solely on the error weight. It follows that Pcorrect(t, u) and
Pcorrupt(t, v) can be modeled as samples from binomial distributions with param-
eters pe→c(t) and pc→e(t) described in Theorem 2, respectively. The last claim
trivially follows from the first two.

Corollary 3. The decoding failure rate of 1-iteration parallel symbol-flipping
decoder can be estimated as follows

DFR1 = 1 − Pr(t → 0).

Note that the new error e′ is not random anymore and, therefore, the same
analysis for further iteration is not possible. However, it is possible to decode e′

using OSML decoder, which rely on no probabilistic assumptions.

Algorithm 3: PSF+OSML

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n ∈ Fn

q ;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σj ∈ Δ(s) then
ẽj ← ẽj + αs

end
s ← HeT − HẽT;
ẽ ← ẽ + OSML(s);
return ẽ

Thus, we obtain the following corollary:



Theoretical Analysis of Decoding Failure 47

Fig. 2. Simulation results of DFR1 for random QC-MDPC [n = 2 · 2339, k = 2339]4–
codes over F4 (l = 2, p = 2339, γ = 37), with decoding thresholds (th0, thE , thD) =
(18, 4, 4)

Corollary 4. Let e be a random error of weight t, let τ be the number of errors
which can be corrected with certainty using OSML decoder. Then DFR of this
combination is upper bounded by

DFR2 = 1 −
τ∑

t′=0

Pr(t → t′).

In Figs. 2, 3, 4, we present the results of numerical simulations and compare
them with the obtained theoretical estimates. Each experiment involved gener-
ating a random key and decoding a random error. For each error weight, the
experiments were conducted until 100 decoding failures were detected or until
108 experiments were performed, whichever occurred first.

We observe that the theoretical estimates of DFR1 and DFR2 closely match
the simulation results, substantiating the accuracy of the obtained theoretical
model.

4 Choice of Cryptosystem Parameters

The choice of parameters of QC–MDPC cryptosystems is determined by the com-
plexity of potential attacks on such cryptosystems. Specifically, the parameters
of the cryptosystem should be chosen in such a way that the best key-recovery
attacks and message-recovery attacks require a sufficiently large number of oper-
ations.

The most effective message–recovery attacks are a family of information
set decoding (ISD) algorithms, designed for decoding random codes. This fam-
ily includes the Prange algorithm, the Lee-Brickell algorithm, Stern algorithm,
BJMM, ball–collision, etc. An overview of ISD–algorithms can be found in [49].
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Fig. 3. Simulation results of DFR2 for random QC-MDPC [n = 2 · 2339, k = 2339]4–
codes over F4 (l = 2, p = 2339, γ = 37, (th0, thE , thD) = (18, 4, 4), and τ = 4). For
each experiment, we generated a random code and then checked if its OSML bound
(see Corollary 2) is ≥ τ . If a code had a lower bound, it was rejected. We chose τ = 4
to reject no more than 50% of keys (the actual rejection rate was 3%).

The average complexity of these algorithms can be directly estimated using a
formula that depends on parameters such as the field size q, code length n, code
dimension k, and the weight of the error w that needs to be found. For non–
binary code direct complexity estimates for the Lee-Brickell and Stern algorithms
can be found in [49], for BJMM in [25], and for ball-collision in [27].

It should be noted that for quasi-cyclic codes of order n′, it has been shown
[41] that the complexity of ISD attacks can be reduced by a factor of

√
n′ com-

pared to codes without any structure. One of the features of QC-MDPC cryp-
tosystems is that for key-recovery attacks, which involve finding low-weight dual
codewords, the best attacks are also based on ISD. This is because the same algo-
rithms can easily be adapted to search for codewords of a given weight instead
of finding an error of a given weight. For quasi-cyclic codes, in this case, it is also
possible to reduce the complexity by a factor of n′ compared to random codes.

Furthermore, we must consider the decoding failure rate since in [26], Q. Guo
et al. proposed a reaction attack that allows the recovery of secret keys in cryp-
tosystems based on binary QC-MDPC codes by exploiting decoding failures. The
original description assumes that l = 2, i.e., n = 2n′, but it can be easily gener-
alized to other cases. This attack is based on the observation that certain error
patterns are more easily decodable than other ones. Namely, let Er be the set of
error patterns of the following form:

Er = {(e,0) ∈ F
2p
2 | e ∈ F

p
2, ∃ distinct s1, s2, . . . , st, s.t. esi

= 1 and
s2i = (s2i−1 + r) mod n′ for i ∈ �1, t/2�}

Let h1 ∈ Fn′
q denote the first row of H1 (see (2)). Let ψ(r) denote the number

of pairs of non-zero positions of h1 placed at distance d. The distance between
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Fig. 4. Simulation results of DFR1 and DFR2 for random QC–MDPC [n = 2 ·
1583, k = 1583]8–codes over F8 (l = 2, p = 1583, γ = 37, (th0, thE , thD) = (18, 4, 4),
and τ = 4)

i and j is computed as min {(i − j) mod n′, (j − i) mod n′}. The set of values
ψ(i), i ∈ �1, �n′/2��, is called the distance spectrum of h1 ∈ Rn. In [26], it was
shown that there is a correlation between the decoding failure rate on errors
from Er and the value of ψ(r). Specifically, the larger ψ(r) is, the lower the DFR
for errors from Er.

Therefore, computing the DFR on errors from Er for different r allows for
the recovery of the distance spectrum of h1 and subsequently h1 itself. Conse-
quently, it becomes possible to reconstruct the secret key of binary QC-MDPC
cryptosystems by exploiting the decoding failures. Below, we demonstrate how
this attack can be applied to the non-binary case as well.

Table 1. Dependency between simulated DFR for random errors e ∈ Ẽr and the values
ψ(r). The results are averaged over 100 random QC–MDPC [4678, 2339]–codes.

ψ(r) 0 1 2 3 4

simulated DFR 0.0203 0.0134 0.0085 0.0059 0.0039

In our experiments, we observed a correlation between the DFR for errors
from Ẽr and the values of ψ(r), where the set Ẽr is defined as follows:

Ẽr = {(e,0) ∈ F2p
q | e ∈ F

p
2, ∃ distinct s1, s2, . . . , st, s.t. esi

�= 0 and

s2i = (s2i−1 + r) mod n′ for i ∈ �1, t/2�}
For instance, we conducted simulations to decode errors of weight t = 84 from
Ẽr using Algorithm 4 for random QC-MDPC codes over F4 with parameters
n′ = 2339, l = 2, and γ = 37, which ensure a minimal cost of ISD-based
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key-recovery and message-recovery attacks of 280 bit operations [9]. The results
obtained from these simulations are presented in Table 1. As shown in the table,
a strong dependency between the distance spectrum and the DFR for errors of
this specific form can still be observed.

Algorithm 4: Sorted Parallel Symbol Flipping

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n;
for it ← 1 to 5 do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j for all j ∈ �1, n�,

i ∈ �0, q − 1� ;
th ← 20th largest(σ∗

j − σj,0);
for j ← 1 to n do

if σj − σj,0 ≥ max(th, 1) then
i∗ ← argmaxi∈�1,q−1� σi,j ;
ẽj ← ẽj + αi∗;

end
s ← HeT − HẽT;
if s = 0 then return ẽ;

end
return fail ;

Thus, it is possible to reconstruct the support of the secret vector h1 (up to
a cyclic shift) using the following steps:

1. for each r ∈ �1, �n′/2�� numerically estimate DFR for random errors from Ẽr,
and then use the obtained results to recover the distance spectrum ψ of h1;

2. recover supp(h1) using the procedure described in [26] for finding positions
of ones in h1 for the binary case

Once supp(h1) is recovered, it is possible to recover the whole secret key (h1,h2)
in the non-binary case as follows. Let I be an information set such that

|I ∩ supp(h1 | h2)| = 1,

then the matrix H̃−1
:,I H̃ = H−1

:,I H contains the row (h1,h2) or its quasi–circular
shift. When supp(h1) is known, I can be constructed of one element from
supp(h1), n′ − γ elements from �1, n′� \ supp(h1), and randomly guessed γ − 1
elements from �n′ +1, 2n′�. Therefore, the probability of finding a suitable I can
be estimated as follows:

(
n′ − γ

γ − 1

)
·
(

n′

γ − 1

)−1

.

So, the method described above in our experiments allowed reconstruction of
secret key with significantly lower complexity than claimed security level of 280

bit operations.
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It follows that, when choosing the parameters of QC–MDPC cryptosystem
that can be converted into IND–CCA2 secure KEM in non–binary case the design
criteria are the complexity of ISD–based key–recovery, and message–recovery
attacks and small enough decoding failure rate making reaction attacks infea-
sible. Table 2 provides potential parameters of QC-MDPC cryptosystems over
F4, with l = 2 and n′ = p being a prime such that the polynomial xp − 1 has
a low number of irreducible factors. These parameters are given for three dif-
ferent security levels: λ ∈ {128, 192, 256}, which correspond to the complexity
of breaking AES with the corresponding key sizes. All the proposed instances
are designed to have DFR2 ≤ 2−λ (see Corollary 4). Note that the resulting
public key sizes (pksize) are slightly larger than in the binary case (28, 277,
52, 667, 83, 579 respectively [5]). Moreover, increasing the field size to q = 8
with security level λ = 128 yields an estimated public key size of 36, 321 bits
(p = 12, 107, γ = 69, t = 130). Thus, for a fixed security level, public key size
grows with increasing field size. Indeed, to maintain the same or smaller pksize
when increasing q, one must consider shorter MDPC codes. However, due to the
complexity of ISD-based key–recovery and message–recovery attacks, γ and t
are nearly the same across various ranges of q, implying higher-density codes.
Therefore, the increased field size does not appear to compensate for the negative
impact of increased code density.

Table 2. Cryptosystem parameters

q λ p γ t (th0, thE , thD) τ pksize (bits)

4 128 ( 2143 bit operations) 16 651 71 132 (γ, 5, 5) 9 33, 302

4 192 ( 2207 bit operations) 30 971 103 197 (γ, 6, 6) 12 61, 942

4 256 ( 2272 bit operations) 47 903 137 263 (γ, 6, 6) 16 95, 806

5 Conclusion

In this paper, we have studied the guaranteed error-correction capability of the
one-step majority logic (OSML) decoder and provided a plausibility analysis of
the 1-iteration parallel symbol flipping decoder for non-binary QC-MDPC codes.
Through this analysis, we were able to estimate the decoding failure rate (DFR)
of the combined use of these decoders, where parallel symbol flipping is employed
to reduce the error weight to a level at which the OSML decoder can successfully
correct any remaining errors. Consequently, we have obtained worst-case esti-
mates of the DFR, considering some minimalistic and reasonable assumptions.
The accuracy and validity of our theoretical model have been verified through
numerical simulations.

Furthermore, we have demonstrated the importance of considering key-
recovery reaction attacks when designing non-binary QC-MDPC cryptosystems.
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This implies that such cryptosystems need to be constructed with an extremely
low DFR in order to achieve IND-CCA2 security with long-term keys. Finally,
we have provided possible parameters for different NIST security levels of non-
binary QC-MDPC cryptosystems, along with their theoretically estimated DFR.

It should be noted that the resulting key sizes are slightly larger than those
in the binary case. Therefore, it appears that using non-binary QC-MDPC codes
does not offer any benefits in terms of reducing the public-key sizes of IND-CCA2-
secure cryptosystems considering the reaction attack. However, there is a possi-
bility that replacing the quasi-cyclic structure with a more general (non-abelian)
quasi-group structure, specifically replacing circulant matrices with matrices of
multiplication operators in group algebras, could potentially hinder the reaction
attack.

Additionally, by abandoning the requirement of key re-usage, it becomes pos-
sible to consider more sophisticated decoders for cryptosystems resistant against
chosen plaintext attacks (CPA–secure). The study of such decoders can only be
carried out through experimental methods and may provide benefits in terms of
reducing key sizes, as previously explored in [9].

It is worth mentioning that the obtained in this paper theoretical models
could potentially be useful for providing conservative estimates of the DFR of
non-binary codes in telecommunications applications.
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