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Preface

Post-quantum cryptography has seen tremendous interest in recent years, especially after
the call for standardization of quantum-safe primitives by the US National Institute of
Standards and Technology (NIST) back in 2017. The first draft PQC standards have just
been published, while the competition is still ongoing with a fourth (and probably last)
round. NIST has also issued a call for additional post-quantum digital signatures; the
first round started earlier this summer.

Code-based cryptography, i.e., the study of schemes based on coding theory assump-
tions, is arguably among the most relevant and active areas in post-quantum cryptogra-
phy. As such, all remaining candidates of the NIST PQC fourth round, as well as several
proposals submitted to the call for additional signatures, follow code-based assumptions.

Originally named the “Code-Based Cryptography (CBC)Workshop”, the series was
initiated in 2009 as an informal forum with the goal of bringing together researchers
active in the analysis and development of code-based encryption and authentication
schemes. Over the years, theworkshop has grown from aEurope-based, regional event to
become a worldwide venue for the code-based cryptography community. The workshop
was renamed “CBCrypto” in 2020, and its organization was co-located with the flag-
ship conference Eurocrypt, and extended to include the publication of revised selected
manuscripts in the form of a post-conference proceedings volume. Quickly, CBCrypto
has become a popular event with high participation. The 2023 edition of CBCrypto, held
in Lyon, France with more than 120 registrations for physical attendance and 80 for
online participation, confirmed this trend.

Featuring 8 sessions and 2 invited talks, there were 22 contributed talks over 2 days,
presenting recent research and works in progress. This book collects the 8 contributions
that were selected for publication by the Program Committee through a careful peer
review process. These contributions span many important aspects of code-based cryp-
tography such as cryptanalysis of existing schemes, the proposal of new cryptographic
systems and protocols, as well as improved decoding algorithms. As such, the works
presented in this book provide a synthesized yet significant overview of the state of the
art of code-based cryptography, laying out the groundwork for future developments. We
wish to thank the Program Committee members and the external reviewers for their hard
and timely work.

September 2023 Andre Esser
Paolo Santini
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An Analysis of the RankSign Signature
Scheme with Rank Multipliers

Anna Baumeister1,2(B) , Hannes Bartz2 , and Antonia Wachter-Zeh1

1 Technical University of Munich (TUM), Munich, Germany
{anna.baumeister,antonia.wachter-zeh}@tum.de

2 German Aerospace Center (DLR), Oberpfaffenhofen-Wessling, Germany
hannes.bartz@dlr.de

Abstract. We investigate the application of rank multipliers as intro-
duced by Loidreau to repair the 2017 NIST proposal RankSign. In
RankSign, a signature is generated by interpreting the message to
be signed as the syndrome of a low-rank parity-check (LRPC) code.
Through knowledge of F , the low-dimensional subspace of Fqm from
which the elements of the parity-check matrix are drawn, this syndrome
can be decoded to a low-rank signature e. Thus, the security of RankSign
crucially relies on the obfuscation of F , ideally making the public code
indistinguishable from a random code. Unfortunately, RankSign was bro-
ken shortly after its submission by an attack exploiting low-rank code-
words in the public code due to the right scrambler being chosen over
the base field Fq . We propose to adapt RankSign by using the inverse of
a rank multiplier as a right scrambler, increasing the minimum distance
of both the public code Cpub and its dual C⊥

pub. With this change, the
public code contains significantly fewer codewords of low-rank weight,
thus preventing the attack that broke the initial RankSign proposal.

Keywords: Code-Based Cryptography · Post-Quantum
Cryptography · Rank Metric · Digital Signatures

1 Introduction

This contribution explores the use of rank multipliers introduced by Loidreau [7]
to repair the digital signature scheme RankSign [5], a round-1 candidate in the
NIST Post-Quantum Cryptography standardization project. RankSign is a hash-
and-sign signature scheme whose security relies on the hardness of the rank
syndrome decoding (RSD) problem: A signature is generated by interpreting the
message to be signed (or rather a fixed-length hash thereof) as the syndrome
of a public augmented low-rank parity-check (LRPC) code. This syndrome is
then decoded to a low rank-weight signature using knowledge of F , the low
dimensional subspace of Fqm from which the elements of the parity-check matrix
H are drawn.

Since knowledge of F alone allows to sign, H must be obfuscated in order
to serve as the public key. The most general form of the public key is Hpub =
c© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023
A. Esser and P. Santini (Eds.): CBCrypto 2023, LNCS 14311, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-46495-9_1
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Q[R |H]P, where H is the parity-check matrix of an LRPC code whose elements
are drawn from a d-dimensional subspace F , Q and P are invertible matrices
and R is a random matrix.
In the original RankSign proposal [5], the right scrambler P was chosen as an
invertible matrix over the base field Fq , since the transformation by P is then
an isometry for the rank metric and does not change the rank weight of the
error. Together with an unfortunate choice of parameters, this resulted in the
scheme being broken shortly after its submission by an attack exploiting low-
weight codewords in the public code Cpub that were not affected by the matrix
P [2]. In this proposal, we investigate the use of an inverted rank multiplier over
the extension field Fqm as a right scrambler P to increase the minimum distance
of the public code Cpub and its dual C⊥

pub. With this adaptation, the public code
contains significantly fewer codewords of low-rank weight d, thus preventing the
attack by Debris-Alazard and Tillich [2].

2 Rank Metric Properties and Bounds

In this section, we will review the definition of rank-metric codes along with some
useful constructions and bounds. Finally, the rank syndrome decoding problem
is introduced upon whose security RankSign relies.

2.1 The Rank Metric

Let Fq be the finite field of order q and Fqm its extension field of extension
order m. Given a vector v ∈ F

n
qm and a basis β = (β1, . . . , βm) of Fqm over Fq,

we can associate to v a matrix Mv ∈ F
m×n
q where the ith column of Mv is the

representation of vi in the basis β

(v1, . . . , vn) ↔

⎛
⎜⎝

v1,1 . . . v1,n

...
. . .

...
vm,1 . . . vm,n

⎞
⎟⎠

The rank weight of a vector v is then the rank of its associated matrix Mv:

|v|r := rank(Mv)

and the distance between two vectors a,b in the rank metric is:

dr(a,b) = rank(Ma − Mb).

Even though the associated matrix Mv depends on the choice of basis β for Fqm ,
the rank of Mv and thus the rank weight of the associated vector does not.

In the context of the rank metric, we often need to find the product space
〈AB〉 of two Fq -subspaces A and B of Fqm . It is the space generated by all
Fqm -linear combinations of elements in A with elements in B. A basis of the
product space can be found as the tensor product of the bases of A and B.
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Definition 1 (Product Space). Given two Fq-subspaces A and B of Fqm with
bases α = (α1, . . . , αn) and β = (β1, . . . , βm), the product space 〈AB〉 is the space
generated by the set {αi · βj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Its dimension is bounded
from above by n · m.

The dimension of the product space is naturally bounded by the product of
the dimensions of the two component spaces A and B. From [4], we also have
that the probability that the dimension of the product space is ‘full’ is given by:

Pr(dim(〈AB〉) = n · m) ≥ 1 − n
qnm

qm

We also recall the concept of rank multiplication as described by Loidreau [7]:

Definition 2 (Rank Multipliers). ß Let V = 〈ν1, . . . , νλ〉 be a λ-dimensional
subspace of Fqm . Any invertible matrix P ∈ F

nxn
qm with coefficients in V is a

rank multiplier of weight λ with the property: |xP|r ≤ λ · |x|r, ∀x ∈ F
n
qm . The

inverse of a rank multiplier P−1 ∈ F
nxn
qm , on the other hand, has elements that

are no longer confined to the subspace V, but rather belong to all of Fqm .

This is a direct consequence of the properties of a product space since the com-
ponents of any xP belong to the product space 〈XV〉, where X is the support
of x and has dimension at most |X |rλ.

We can quantify the probability that the rank of xP is exactly λ|x|r using the
result obtained for product spaces in [1]. If x is of rank r (i.e., the support of x
has r linearly independent elements) and the support V of P has λ independent
elements, the probability that the product space has dimension exactly λr (and
thus |xP|r = rλ) is given by

Pr(dim(〈XV〉) = rλ) ≥ 1 − λqλr−m, (1)

which is exponentially close to 1 for the large values of q required for RankSign.
The rank amplifier P can equivalently be viewed as the parity-check matrix of
a rate-0 LRPC code with weight λ, i.e., a matrix whose entries all belong to a
small λ-dimensional subspace of Fqm .

2.2 Bounds in the Rank Metric

Let S(n,m, q, i) denote the cardinality of a sphere of radius i, i.e., the number of
words of Fn

qm with weight exactly i. In the rank metric case, this corresponds to
the number of m × n matrices over Fq that have rank i, which is

S(n,m, q, i) =
i−1∏
j=0

(qm − qj)(qn − qj)
qi − qj

.

By definition, the volume of a ball of radius r is given by V (n,m, q, r) =∑r
i=0 S(n,m, q, i), i.e., the number of words with weight up to (and including) r.
The Rank-Gilbert Varshamov (RGV) bound can be defined similarly to the

Hamming case as follows.
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Definition 3 (Rank Gilbert-Varshamov Bound). Let C be an [n, k]qm lin-
ear rank metric code of length n and dimension k over the extension field Fqm .
The rank Gilbert-Varshamov bound RGV (n, k,m, q) for C is the smallest integer
r such that V (n,m, q, r) > q(n−k)m, i.e., the smallest r for which the number of
words with weight up to r exceeds the number of syndromes. In the general case
(m 	= n):

RGV (n,m, k) ∼ m + n −
√

(m − n)2 + 4km

2
.

Finally, the Singleton bound can be transferred to the rank metric as in [3]:

Definition 4 (Rank Singleton Bound). The minimum rank distance dR of
an [n, k]qm linear rank metric code is bounded by:

dR ≤ n − k + 1.

If n > m, a tighter bound can be obtained as:

dR ≤ m

n
(n − k) + 1.

2.3 A Difficult Problem in the Rank Metric

To define a cryptographic scheme, we need a problem that is in general hard to
solve but which becomes feasible given some secret trapdoor information. One
such problem is the rank-syndrome decoding problem, which was recently proven
hard by a probabilistic reduction in [6].

Definition 5 (Rank-Syndrome Decoding Problem). Given an (n−k)×n
matrix H over Fqm , s ∈ F

n−k
qm and an integer r, the RSD problem consists of

finding an error e ∈ F
n
qm such that HeT = s and |e| = r.

Note that if r = |e| is chosen to be the RGV bound, we expect the system
HeT = s to have on average one solution. The security of RankSign relies on
the masking of the low-rank parity check matrix H since knowledge of this low-
dimensional subspace is what makes decoding efficient.

3 LRPC Codes

LRPC codes were established in [4] as the rank-metric-analogue to classical
LDPC codes of the Hamming metric. They are well-suited for cryptographic
applications due to their weak algebraic structure.

Definition 6 (LRPC Code). A Low-Rank Parity Check code of rank d, length
n and dimension k over Fqm is a code that has as parity check matrix an (n−k)×n
matrix H such that the subspace F ⊆ Fqm generated by its coefficients hij has
dimension at most d.
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Put differently, the elements of H are not drawn from the whole of Fqm , but
rather a small d-dimensional subspace that we denote as F .

Efficient decoding of LRPC codes is at the heart of the RankSign signature
scheme. In order to be able to decode above the RGV bound, the classical LRPC
decoding algorithm is adapted to an erasure decoder, which can not only correct
rank errors but also rank erasures.

3.1 Erasure Decoder for LRPC Codes

In the decoding of LRPC codes, given a parity check matrix H and a syndrome
s, we are asked to find an error e of small rank weight r such that HeT = s. In
erasure decoding, some additional side information is incorporated, e.g., on the
subspace spanned by the elements of the error vector. In the case of RankSign,
we define a randomly chosen t-dimensional erasure space T and impose the
condition T ⊂ E , where E space generated by the elements of e.

Once the erasure space T is fixed, we can define the set of T -decodable
syndromes, which are the syndromes that are efficiently decodable to a low-
weight error whose support contains T :

Definition 7 (T -Decodability). Let F1 and F2 be two linearly independent
elements of Fand let T be a fixed erasure space of small dimension t. A syndrome
s ∈ F

n−k
qm is T -decodable if there exists a subspace E of Fqm with dimension r

that fulfills the following conditions:

1. dim(〈FE〉) = dim(F) dim(E)
2. dim(F−1

1 〈FE〉 ∩ F−1
2 〈FE〉) = dim(E)

3. supp(s) ⊂ 〈FE〉 ∧ supp(s) + 〈FT 〉 = 〈FE〉

The decoding algorithm can be divided into two phases: First, the error
space E is recovered under the condition T ⊂ E . Second, the system HeT = s
is rewritten using the basis of the product space 〈FE〉 using the error space
estimated in the previous step, which gives just enough equations to solve for e.
Decoding is performed under the assumption that s is T -decodable according to
Definition 7. If s happens to be non-T -decodable, the decoder reports a failure
and can be queried again with a different randomly chosen subspace T . However,
it can be shown that the parameters can be chosen such that any syndrome is
T -decodable with probability arbitrarily close to 1.

Recovering the Error Space. The decoder first computes the product space
B = 〈FT 〉 and the subspace S = 〈B ∪ {s1, . . . , sn−k}〉. According to condition
(3) of T -decodability the coordinates si of s all belong to the space 〈FE〉and
S is equal to 〈FE〉 for some E . Now, from the definition of product spaces, we
have that E ⊆ F1

−1〈FE〉 ∩F2
−1〈FE〉 and using condition (2) of T -decodability

together with S = 〈FE〉 we know that in fact E = F1
−1S ∩ F2

−1S.
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Recovering the Error. Now that we have obtained E , we can solve the system
HeT = s with the additional constraint that e ∈ En. First, we rewrite HeT = s
as a linear system over the small field Fq by expanding the elements of H,e
and s (which are from Fqm) to vectors over Fq according to the bases F , E and
S = 〈FE〉, respectively. Decoding can also be sped up by precomputing the
decoding matrix D, which will be introduced in Sect. 4.1.

Algorithm 1. Erasure decoder for LRPC codes
Input: A T -decodable syndrome s′ ∈ F

n−k
qm , decoding matrix D, erasure space T ,

F = 〈hij〉
Output: e′ of weight r such that He′ T = s′

1: B ← (FiTj), a basis of 〈FT 〉
2: S ← 〈B ∪ {s1, . . . , sn−k}〉
3: E ← F1

−1S ∩ F2
−1S

4: Express s′ in the basis (FiEj) of 〈FE〉
5: Express the coordinates of e′ in a basis e′

i =
∑r

j=1 e
′′
ijEj

6: Solve He′ T = s′ with nr unknowns (the e′′
ij) and (n − k)rd equations.

7: return e′

As long as the syndrome s′ is T -decodable, the algorithm will always return a
valid e′. When choosing a random syndrome to decode, there is some probability
that one of the conditions of T -decodability is not fulfilled, causing the algorithm
to fail. In the RankSign scheme, parameters were chosen such that this case is
overwhelmingly unlikely. The full erasure decoder is illustrated in Algorithm 1.

4 The RankSign Signature Scheme

RankSign is a hash-and-sign signature scheme based on the decoding of LRPC
codes. A signature is generated by interpreting the message (or rather a fixed-
length hash thereof) as the syndrome of a public LRPC code. The signer can
decode the message to a low-weight error using the private key, which contains
knowledge about the structure of the LRPC code, i.e., the low-dimensional sub-
space from which the elements of its parity-check matrix are drawn. A typical
concern in hash-and-sign schemes is the density of decodable syndromes, mean-
ing that not every hashed message corresponds to a syndrome that can be effi-
ciently decoded. In fact, if the required weight of the error vector is chosen to be
small, say on the RGV bound, we expect this instance of the syndrome decoding
problem to have only one solution on average, making the decoding infeasible
using the ‘standard’ error decoder. By using the erasure decoder introduced in
Sect. 3.1, it is possible to instead decode to an error vector whose weight lies
above the RGV bound while imposing the additional condition that the support
of this error contains a randomly chosen low-dimensional ‘erasure space’ T .
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4.1 KeyGen

During the decoding step, an error e′ of small weight r will be computed such
that He′ T = s′. Recall that the elements of H are drawn from the d-dimensional
space F and the error e′ has a basis E with dimension r. The elements of the
syndrome s′ can then be written as elements of the product space 〈FE〉, leading
to a system Ae′ T = s′ with nr unknowns (the elements of e′ in the basis E)
and (n − k)rd equations, where the matrix A is obtained by representing each
element of H in the basis of the product space 〈FE〉. From A, we can derive the
decoding matrix D = A−1 and store it in the secret key. Note that this reduces
the equation-solving part of the decoder to a simple multiplication. Since A
solely depends on H and the weight r, we can do this precomputation in the key
generation step. Moreover, in order to ensure that A exists and is invertible, we
can flip the problem: Generate A uniformly at random and derive H from it.

H and A are related by the following equation, see [1]:

hijv = au+(v−1)r+(i−1)rd, u+(j−1)r, (2)

where A = (hijv) is the matrix H unfolded in the basis F of dimension d and
A = (aij) with i ∈ {1, . . . , n − k}, j ∈ {1, . . . , n}.

The elements of the invertible masking matrix Q are drawn uniformly at
random from Fqm , while the right scrambler P has only elements from the base
field Fqm . Additionally, t random columns R over Fqm are appended to the parity-
check matrix H to increase the distance of the dual code (which is not affected by
the multiplication with P from the base field). The key generation is summarized
in Algorithm 2.

Algorithm 2. Key generation
Output: pk = [Hpub, G], sk = [F, Q, P, D]

1: Choose F = 〈F1, . . . ,Fd〉, a random d-dimensional subspace of Fqm

2: Choose H of size n x n invertible in Fqm with coefficients in Fq.
3: D ← A−1

4: Compute H from A according to Eq. 2

5: P
$←− GLn(Fq )

6: R
$←− F

(n−k)×t
qm

7: Hpub = echelonize(HP−1) � negligible failure probability ∼ q−m

8: Q ← GLn−k(Fqm ) such that Q(R|H)P−1 = Hpub

9: sk ← [Hpub, G]
10: pk ← [F, Q, P, D]
11: return sk, pk

4.2 Sign

To authenticate a message, the signer first chooses a random seed of length l and
computes s, the hash of the message with respect to the seed. Recall that the
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public key is constructed as Hpub = Q(H|R)P−1, hence Q(R|H)P−1 eT = s.
The final error vector e must be assembled from two parts: One of length n − t
that is decoded with respect to the private parity check matrix H, and one of
length t, that accounts for the random columns R appended to H. From [4] we
know that the modified syndrome s′ will be decodable with respect to a randomly
chosen t-dimensional subspace T with high probability. Should the syndrome
ever be non-T -decodable, the decoder will be queried again with a new randomly
chosen subspace T . The result of the decoder is a vector e′ of rank weight r,
whose weight is not affected by the multiplication with P, since multiplication
with P is an isometry for the rank metric. A more detailed description of the
signature generation is found in Algorithm3.

Algorithm 3. Signature of a message
Input: message m, pk = [Hpub, G], sk = [F, Q, P, D]
Output: seed, signature e such that Hpub e

T = s and |e|r = r

1: seed
$←− {0, 1}l

2: s ← G(m, seed)
3: Choose e′ ∈ F

n+t
qm of weight t′ uniformly at random.

4: Choose T = 〈T1, . . . , Tt〉, a random t-dimensional subspace of Fqm

5: s′ ← s − e′Hpub
T

6: s′′ ← s′(QT )−1 − (Tt, . . . Tt)R
T

7: e′′ ← Decode(s′′,D, T , F) � If s′′ is not T -decodable, return to 1
8: e ← e′ + (T1, . . . , Tt|e′′)(PT )−1

9: return e, seed

4.3 Verify

Given the public key pk = [Hpub, G], the document m, and its associated signa-
ture [e|seed], the verifier checks that:

– Hpub eT = G(m,seed)
– |e|r ≤ λr.

5 Attack by Debris-Alazard and Tillich

Shortly after its submission to the NIST competition, the RankSign scheme was
broken by an attack by Debris-Alazard and Tillich [2] in which it was shown
that the public code contains many codewords of rank weight 2 that could be
efficiently recovered using Gröbner basis techniques.
First, we recall a general result given in the paper on the minimum distance of
any LRPC code.
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Theorem 1 (Low-rank codewords in LRPC codes). Let C be an [n,k]
LRPC code over Fqm defined by a parity-check matrix H whose entries lie in
a subspace F of Fqm . If there exists another subspace F ′ ⊆ Fqm with the prop-
erty

(n − k) dim(〈FF ′〉) < ndim(F ′),

then C contains non-zero codewords whose support is included in F ′ (i.e., their
weight is at most dim(F ′)).

This theorem can be derived from observing the following: Any codeword in
C satisfies HcT = 0. Supposing that c has its support in F ′, it can be expressed
in a basis of F ′. HcT = 0 gives n−k equations which can be expressed in a basis
of 〈FF ′〉, hence we obtain (n−k) dim(〈FF ′〉) equations over Fq with n ·dim(F ′)
unknowns. A solution exists (i.e. C contains codewords whose support is in F ′)
if n dim(F ′) > (n − k) dim(〈FF ′〉).

For the following, let F ′ be a subspace of F with dimension 2. If
{x1, x2, . . . , xd} is a basis for F , let {x1, x2} be the basis of F ′. Now observe that
the dimension of the product space 〈FF ′〉 can be at most dim(F ′) ·dim(F)−1 =
2d − 1 using the definition of product spaces and the fact that x1x2 = x2x1.
Theorem 1 gives the result that C contains codewords of weight dim(F ′) if
n dim(F ′) > (n − k)dim(〈FF ′〉). Together with dim(〈F F ′〉) ≤ 2d − 1 we get
that C contains codewords of weight 2 if 2n > (n − k) · (2d − 1).

Denote by C the code defined by H and let

C′ = {c ∈ C : ci ∈ F ′, 1 ≤ i ≤ n + t}

i.e., the subset of all codewords in C whose support is in F ′ and that consequently
have weight at most 2. These form an Fq -subspace of Fqm that has dimension
≥ 2n − (n − k) · (2d − 1).

Now, for the original RankSign scheme, we have the constraint on the param-
eters that n = (n − k)d, and thus, for this special case

dimFq
(C′) ≥ n

d
.

Since clearly C′ in C, this means that there exists a large amount of weight-2
codewords in the secret code C. Finally, it was shown that also C′ in C′

pub, i.e.,
the low-weight codewords from the secret code carry over to the public code.

Recall the public parity-check matrix Hpub in RankSign is constructed as
follows:

Hpub = Q[R|H]P

where Q is an invertible matrix over Fqm , R is a matrix over Fqm adding t
random columns to H and P is an invertible matrix over the base field Fq . Let
Cpub be the public code generated by Hpub.

Define now
C ′

pub = {(0t, c)(P−1)T : c ∈ C ′}.
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Clearly the dimension of C ′
pub is the same as C ′ and its codewords c′ have their

entries in F ′ since P is only a permutation matrix over Fq . Finally, it can be
shown that C′ in C′

pub and thus the public code contains codewords of rank 2:

Hpubc′T = Q[R|H]PP−1

= Q[R|H]cT

= 0 (since c belongs to C defined by H).

Having identified that the public code contains many codewords of low-rank
weight (weight 2 in the case of the RankSign parameters), these codewords
could be recovered using algebraic techniques and enable an attacker to sign
like a legitimate user.

In summary, the proposed attack hinges on the fact that the LRPC code
defined by the low-rank parity check matrix H contains many low-weight code-
words that cannot be masked by the scrambling matrix P since its entries are
drawn from the base field Fq .

6 Repairing RankSign

In the following, we propose a repair to the RankSign scheme by replacing P with
the inverse of a rank-multiplier of weight λ. This can equivalently be described
as multiplying the generator matrix of the public code by a rank multiplier, thus
vastly reducing the number of low-weight codewords according to Theorem1.

6.1 KeyGen

The key generation remains very similar to what was discussed in Algorithm 2.
The two notable changes are the replacement of P ∈ F

n×n
q in step 5 by P−1 ∈

F
n×n
qm , the inverse of a rank multiplier of weight λ as shown in Definition 2 and

the omission of step 6, since the random columns R are no longer required due
to the masking by P−1, which behaves like a random matrix over Fqm .

6.2 Sign

Algorithm 4 illustrates the modified signature generation.
Since we no longer have to consider the random columns R, the algorithm
becomes a little simpler. Note that since P has been replaced by a rank mul-
tiplier, the weight of the error in step 6 will now be increased by a factor of
λ.
Correctness. The returned vector e fulfills the property Hpub eT = s since

Hpub eT = s

QHP−1 (Pe′)T = s

He′ T = s′ ,

which is true by the definition of the erasure decoder. We also have |e|r = λr
with high probability since e′ has rank weight r by definition and most likely
|Pe′|r = λr from (1).
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Algorithm 4. Signature of a message
Input: message m, pk = [Hpub, G], sk = [F, Q, P, D]
Output: seed, signature e such that Hpub e

T = s and |e| = λr

1: seed
$←− {0, 1}l

2: s ← G(m, seed)
3: s′ ← Q−1s
4: Choose T = 〈T1, . . . , Tt〉, a random t-dimensional subspace of Fqm

5: e′ ← Decode(s′,D, T , F) � If s′ is not T -decodable, return to 1
6: e ← Pe′

7: return e, seed

6.3 Verify

The verification algorithm remains unchanged, except for the fact that the ver-
ifier now has to check whether |e|r ≤ λr.

6.4 Key and Signature Size

To represent one element in Fqm we need log2(q) · m bits of storage. Since Hpub

= [In−k|R′] is in systematic form, it is sufficient to store R′ of size (n − k) · k,
resulting in a signature size of

size(Hpub) = (n − k) · km log2(q) bits.

The signature e can be stored in one of two ways, depending on the size of the
parameter λ. Either as n elements of Fqm , making the signature size log2(q) ·mn,
or as n linear combinations of supp(e). We can obtain the support of e from the
product space 〈VE〉, which has dimension at most λ ·r. To save additional space,
the support of e can be represented in row echelon form, giving a support size
of log2(q)((m − λr)m) bits. In summary, the size of the signature is given by:

size(e) = min{log2(q) · mn, log2(q) · (λrn + (m − λr)m)} bits.

Thus, the size of the signature increases by a factor of λ while the key size
remains the same (for the same choice of n,m, k).

6.5 Discussion of Parameters

The original RankSign scheme imposes the following strict conditions on its
parameters:

◦ m = (r − t)(d + 1)
◦ (n − k) = d(r − t − t′)
◦ n = (n − k)d,
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where r is the weight of the decoded error, t is the dimension of the erasure
space T (which is equal to the number of random columns in R) and t′ is the
weight of e′ in the signing Algorithm 3. These parameters ensure that generic
decoding of the public code is hard (it is required to stay above the Singleton
bound at least) and that the density of decodable syndromes remains high. For
our adapted version, we now have the weight of the error as r′ = λr, which leads
to an increase of m and n to remain in the range of feasible parameters. In turn,
the weight of the error e must increase to remain above the RGV bound and
ensure a high decodable density.

To further illustrate this point, consider the public decoding problem,
HpubeT = s where e must be of weight ≤ λr. To remain resilient to generic
decoding, it is necessary to impose λr ≤ m(n−k)

n (Singleton bound) to avoid even
a basic polynomial-time attack. The public decoding problem thus gives con-
straints on m,n, k, and r. Conversely, in the private decoding problem He′T = s′,
s′ must be decoded to an error e′ of weight r. This parameter r must be chosen
above (and optimally near) the RGV bound to ensure any syndrome’s decodabil-
ity. Hence, the private decoding problem gives another constraint on those same
parameters n,m, k but forces them in the other direction. This leads to a sort
of avalanche effect, where the parameters grow until the distance between the
Singleton bound and the RGV bound becomes large enough, leading to infeasi-
ble parameter sizes. It remains an open problem how the scheme can be further
adapted to retain a reasonably-sized set of parameters.

Finally, we conclude with two open questions that might lead to a feasible
set of parameters for the proposed scheme:

1. Is it always possible to find a ‘complementary’ erasure space V, such that the
product space 〈T V 〉 has the same dimension as T ? Put more generally, under
which conditions does such a ‘complementary’ subspace exist for any given
subspace of Fqm , and how does it affect the performance of the decoder?

2. Is it possible to define a partial rank multiplier? If so, which effects does it
have on a given code and its dual? Is the inverse of this partial rank amplifier
distinguishable from a random matrix over Fqm , and if so, does this weaken
its masking property?

7 Conclusion

We considered the use of rank multipliers to repair the digital signature scheme
RankSign. The initial proposal of RankSign was broken by an attack targeting
low-weight codewords in the public code that were insufficiently masked in the
key generation step. The distance of the public code can be increased by replacing
the scrambling matrix over the small field Fq with the inverse of a rank multiplier.
Additionally, the public parity-check matrix is now masked by a matrix that
behaves like a random matrix over Fqm , making the addition of random columns
to increase the distance of the dual code obsolete. The selection of parameters,
however, poses a challenge. The rank multiplier causes a large increase in the
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weight of the error that is decoded with respect to the public parity-check matrix,
which leads to an increase in the overall parameter size to be resistant to generic
decoding attacks.

Finally, we pose two open questions that could lead to feasible parameters
for the repaired scheme: First, is it possible to construct the rank multiplier P
in such a way that the weight of the error is amplified by a smaller amount?
This could be achieved by choosing the erasure space T complementary to the
support of P, such that only part of the error is amplified, though it is unclear
how this would affect the success probability of the erasure decoder. Second, is it
possible to replace P with a partial rank amplifier? This would probably involve
splitting the rank multiplier into a block whose elements are from Fqm and a
block whose elements are drawn from the small field Fq , though it is unclear
how this would affect the masking of both the public and dual of the public code.
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Abstract. Both horizontal interleaving as well as the sum-rank metric
are currently attractive topics in the field of code-based cryptography,
as they could mitigate the problem of large key sizes. In contrast to
vertical interleaving, where codewords are stacked vertically, each code-
word of a horizontally s-interleaved code is the horizontal concatenation
of s codewords of s component codes. In the case of horizontally inter-
leaved linearized Reed–Solomon (HILRS) codes, these component codes
are chosen to be linearized Reed–Solomon (LRS) codes.

We provide a Gao-like decoder for HILRS codes that is inspired by
the respective works for non-interleaved Reed–Solomon and Gabidulin
codes. By applying techniques from the theory of minimal approximant
bases, we achieve a complexity of Õ(s2.373n1.635) operations in Fqm ,
where Õ(·) neglects logarithmic factors, s is the interleaving order and n
denotes the length of the component codes. For reasonably small inter-
leaving order s � n, this is subquadratic in the component-code length
n and improves over the only known syndrome-based decoder for HILRS
codes with quadratic complexity. Moreover, it closes the performance
gap to vertically interleaved LRS codes for which a decoder of complex-
ity Õ(s2.373n1.635) is already known.

We can decode beyond the unique-decoding radius and handle errors
of sum-rank weight up to s

s+1
(n−k) for component-code dimension k. We

also give an upper bound on the failure probability in the zero-derivation
setting and validate its tightness via Monte Carlo simulations.
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1 Introduction

The American National Institute of Standards and Technology (NIST) started a
competition for post-quantum cryptography (PQC) in 2016. After three rounds,
the lattice-based key-encapsulation mechanism (KEM) CRYSTALS-Kyber [8]
was standardized in July 2022 [3]. Moreover, NIST announced a fourth round to
which four KEM candidates advanced: BIKE [4], Classic McEliece [14], HQC [1],
and SIKE [9]. SIKE is the only candidate based on hard problems in the area
of isogenies and was broken by [17] shortly after NIST’s round-4 announcement.
The remaining three candidates in this round rely on coding-theoretical problems
in the Hamming metric.

In his seminal paper [32] in 1978, McEliece proposed the first code-based
cryptosystem, which still serves as a blueprint for most of the recent proposals.
The McEliece framework essentially resisted the cryptanalytic effort of 45 years.
However, it suffers from large key sizes and is thus not usable in many practical
applications.

Rank and Sum-Rank Metric. As the syndrome-decoding problem in the rank
metric is harder than its Hamming-metric counterpart [7,10], many McEliece-
like schemes based on rank-metric codes as e.g. [18,19,27,28] were considered.
Unfortunately, most of them were broken by structural attacks. A new approach
is to consider the sum-rank metric which covers both the Hamming and the rank
metric as special cases. Even though the gain in terms of key size might not be
as large as for the rank metric, it is reasonable to hope that rank-metric attacks
cannot be adapted to the sum-rank-metric case [21] and the corresponding sys-
tems will remain secure.

Interleaved Codes. Another way to reduce the key size is to use codes with
higher error-correction capability. An increased error weight will result in higher
complexities for generic attacks like [37] and thus require smaller parameter
sizes to achieve the same level of security. One well-known code construction
to improve the (burst) error-correction capability is interleaving, where each
codeword of the s-interleaved code consists of s vertically or horizontally stacked
codewords of s component codes, respectively.

Metzner and Kapturowski [33] showed that vertically interleaved Hamming-
metric codes can be efficiently decoded with negligible failure probability as soon
as their interleaving order s is high compared to the error weight t. This result
was generalized to the rank metric [38,40] and recently also to the sum-rank
metric [24]. As no knowledge about the code structure is needed for Metzner–
Kapturowski-like decoders, this is a direct generic attack on any code-based
cryptosystem based on vertically interleaved codes with high interleaving order.
Thus, horizontal interleaving appears to be better suited for cryptographic pur-
poses. This is also reflected in recent proposals as for example in the KEM
LowMS [6] that is based on horizontally interleaved Gabidulin codes, in the sig-
nature scheme Durandal [5] based on the closely related rank-support-learning



16 F. Hörmann and H. Bartz

(RSL) problem [10], and in the cryptosystem [2] that makes use of horizontally
interleaved low-rank parity-check (LRPC) codes [39].

The cryptanalysis of the underlying hard problems ensures reliable security-
level estimates. However, also performance improvements for decoding horizon-
tally interleaved codes have a significant impact as they directly speed up decryp-
tion and verification within the corresponding cryptosystems and digital signa-
tures.

HILRS Codes Horizontally interleaved linearized Reed–Solomon (HILRS) codes
combine the usage of an alternative decoding metric for higher generic-decoding
complexity and the interleaving construction for higher error-correction capa-
bility. Both approaches promise to reduce the key size in a McEliece-like setup.
The component codes of an HILRS code are linearized Reed–Solomon (LRS)
codes which were introduced by Martínez-Peñas in 2018 [29]. Up to now, LRS
codes are one of the most studied code families in the sum-rank metric. They
are evaluation codes with respect to skew polynomials and form the natural gen-
eralization of Reed–Solomon (RS) codes in the Hamming metric and Gabidulin
codes in the rank metric.

As the performance of code-based cryptosystems strongly depends on the
decoding speed for the underlying codes, fast decoders for HILRS codes are
crucial. Currently, the only known decoder for HILRS codes is syndrome-based
and has a quadratic complexity in the length sn of the interleaved code (ongoing
work [23] extending [22]). It can handle a combination of errors, row erasures,
and column erasures.

In contrast, vertically interleaved linearized Reed–Solomon (VILRS) codes,
which are constructed by vertically stacking s LRS codewords, allow for decoding
with lower complexity Õ(sωM(n)) ⊆ Õ(s2.373n1.635) [12,13]. Here, ω and M(n)
denote the matrix-multiplication coefficient and the cost of multiplying two skew
polynomials of degree at most n, respectively, and Õ(·) neglects logarithmic
factors.

Contributions. This paper presents a Gao-like decoder for HILRS codes. It is
based on the original Gao decoder for Reed–Solomon codes in the Hamming
metric [20] as well as on its known extensions to Gabidulin codes [45,46] and their
horizontally interleaved version [36] in the rank metric. We consider probabilistic
unique decoding beyond the unique-decoding radius and derive an upper bound
on the decoding-failure probability in the zero-derivation case. We achieve a
decoding radius of s

s+1 (n − k) for the interleaving order s and for n and k
denoting the length and the dimension of the component codes, respectively.

We further show how a major speedup can be obtained by using the theory
of minimal approximant bases [11]. The fast variant of the Gao-like decoder
achieves subquadratic complexity in the length n of the component codes for a
fixed interleaving order s. Particularly, we obtain Õ(sωM(n)) ⊆ Õ(s2.373n1.635)
and thus close the performance gap with respect to the decoding of VILRS codes.

Our conceptually new approach to solving the Gao-like key equation results
in the fastest known decoder for HILRS codes in the sum-rank metric. Moreover,
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the special case obtained for the rank metric yields the fastest decoder for hori-
zontally interleaved Gabidulin codes in the rank metric, improving on [36,41,42].

Outline. We start the paper in Sect. 2 by giving basic preliminaries on skew
polynomials, on HILRS codes in the sum-rank metric, and on the channel model
we consider. Then, we present a Gao-like decoder for HILRS codes in Sect. 3 and
analyze its decoding radius, complexity, and failure probability. Section 4 deals
with a speedup for the shown decoder that is based on the theory of minimal
approximant bases. Finally, we summarize the main results of the paper in Sect. 5
and give an outlook on future work.

2 Preliminaries

We denote the finite field of order q by Fq and refer to its degree-m extension field
by Fqm . We often consider vectors x ∈ F

n
qm that are divided into blocks. More

precisely, we define a length partition of n ∈ N
∗ as the vector n = (n1, . . . , n�) ∈

N
� with

∑�
i=1 ni = n and ni > 0 for all i = 1, . . . , �. We write x = (x(1) | · · · |

x(�)), where the blocks x(i) belong to F
ni
qm for all i = 1, . . . , �. Similarly, we write

X = (X(1) | · · · | X(�)) for a subdivided matrix X ∈ F
k×n
qm with X(i) ∈ F

k×ni
qm

for all i = 1, . . . , �. The Fqm-linear row space of X is denoted by 〈X〉qm .
Further choose an Fqm-automorphism θ with fixed field Fq. Note that θ is Fq-

linear and satisfies both θ(a+b) = θ(a)+θ(b) and θ(a·b) = θ(a)·θ(b) for arbitrary
a, b ∈ Fqm . Moreover, we consider a map δ : Fqm → Fqm for which the equalities
δ(a+ b) = δ(a)+ δ(b) and δ(ab) = δ(a)b+ θ(a)δ(b) hold for all a, b ∈ Fqm . In the
finite-field setting, all such θ-derivations δ are inner derivations [29], i.e., they
have the form δ = γ(Id −θ) for a parameter γ ∈ Fqm and the identity Id.

The automorphism θ and the derivation δ give rise to a partition of Fqm with
respect to (θ, δ)-conjugacy [25]. Namely, two elements a, b ∈ Fqm are conjugate
if there is a nonzero c ∈ F

∗
qm with

ac := θ(c)ac−1 + δ(c)c−1.

The conjugacy class of an element a ∈ Fqm is denoted by C(a) := {
ac : c ∈ F

∗
qm

}

and C(γ) is called the trivial conjugacy class. There are q − 1 distinct nontrivial
(θ, δ)-conjugacy classes. In the zero-derivation case, each of the first q−1 powers
of any primitive element of Fqm belongs to another nontrivial class.

2.1 Skew-Polynomial Rings

Skew polynomials were first studied by Ore in 1933 [34,35] and are used e.g.
for the construction of LRS codes [29]. The skew-polynomial ring Fqm [x; θ, δ]
contains all formal polynomials

∑
i fix

i−1 with finitely many nonzero coeffi-
cients fi ∈ Fqm . The notion of the degree deg(f) := max{i − 1 : fi �= 0} of a
skew polynomial f(x) =

∑
i fix

i−1 carries over from Fqm [x]. The set of skew
polynomials forms a non-commutative ring with respect to conventional polyno-
mial addition and a multiplication that is determined by the non-commutative
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rule xa = θ(a)x + δ(a) for any a ∈ Fqm . By Fqm [x; θ, δ]<k we denote the
subset of Fqm [x; θ, δ] containing all skew polynomials of degree less than k.
For simplicity, we refer to the skew-polynomial ring with zero derivation by
Fqm [x; θ] := Fqm [x; θ, 0].

Fqm [x; θ, δ] is Euclidean which ensures the existence of skew polynomials
q, r ∈ Fqm [x; θ, δ] with f(x) = q(x)g(x) + r(x) and deg(r) < deg(g) for each
pair f, g ∈ Fqm [x; θ, δ] with deg(f) ≥ deg(g). We denote the remainder r of this
right-hand division by f modr g.

The literature provides two meaningful ways to evaluate skew polynomi-
als, namely, the remainder evaluation [25] and the generalized operator evalua-
tion [29]. The former corresponds to the idea of enforcing a remainder theorem
similar to the one in conventional polynomial rings and will not be of interest
for this paper. The latter is e.g. used for the construction of LRS codes that we
heavily rely on. For defining the generalized operator evaluation of skew poly-
nomials we first introduce the operator Da(b) := θ(b)a+ δ(b) and its i-th power
Di

a(b) := Da(Di−1
a (b)) for i ∈ N

∗ and any a, b ∈ Fqm . The operator simplifies
to Da(b) = θ(b)a for all a, b ∈ Fqm in the case of zero derivation. In this case,
its i-th power Di

a(b) for i ∈ N
∗ can be written as Di

a(b) = θi(b) · Ni (a), where
Ni (a) :=

∏i−1
k=0 θk(a) is the i-th truncated norm of a.

The generalized operator evaluation of a skew polynomial f(x) =
∑d

i=1 fix
i−1

∈ Fqm [x; θ, δ] at a point b ∈ Fqm and with respect to an evaluation parameter
a ∈ Fqm is defined as

f(b)a :=
d∑

i=1

fiDi−1
a (b).

We use the notation f(b)a := (f(b1)a, . . . , f(bn)a) to denote the vector con-
taining the evaluations of f at every entry of b ∈ F

n
qm . Moreover, if b =

(b(1) | · · · | b(�)) ∈ F
n
qm is subdivided according to a length partition n and

a = (a1, . . . , a�) ∈ F
�
qm , we use the shorthand f(b)a := (f(b(1))a1 , . . . , f(b

(�))a�
)

to evaluate f at the elements of the i-th block b(i) with respect to the evaluation
parameter ai for every i = 1, . . . , �.

The evaluation of a product of two skew polynomials f, g ∈ Fqm [x; θ, δ] sat-
isfies the product rule (f · g)(b)a = f(g(b)a)a for all a, b ∈ Fqm [25].

For a vector x =
(
x(1) | · · · | x(�)

) ∈ F
n
qm , a vector a ∈ F

�
qm , and a parameter

d ∈ N
∗ the generalized Moore matrix Md(x)a is defined as

Md(x)a :=
(
md(x(1))a1 | · · · | md(x(�))a�

)
∈ F

d×n
qm ,

with md(x(i))ai
:=

⎛

⎜
⎜
⎜
⎜
⎝

x
(i)
1 · · · x

(i)
ni

Dai
(x(i)

1 ) · · · Dai
(x(i)

ni )
...

. . .
...

Dd−1
ai

(x(i)
1 ) · · · Dd−1

ai
(x(i)

ni )

⎞

⎟
⎟
⎟
⎟
⎠

for all i = 1, . . . , �.
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If a contains representatives of pairwise distinct nontrivial conjugacy classes
of Fqm and rkq

(
x(i)

)
= ni for all i = 1, . . . , �, it holds rkqm (Md(x)a) =

min(d, n) [25,29].
Consider b = (b(1) | · · · | b(�)) ∈ F

n
qm and a = (a1, . . . , a�) ∈ F

�
qm . The

minimal skew polynomial that vanishes on the entries of b(i) with respect to
the evaluation parameter ai for each i = 1, . . . , � is denoted by mpol(b)a

(x) and
characterized by

mpol(b)a
(b(i))ai

= 0 for all i = 1, . . . , �.

According to [15], it can be computed as a least common left multiple (lclm) via

mpol(b)a
(x) = lclm

{

x − Dai
(b(i)ι )

b
(i)
ι

: b(i)ι �= 0,
ι = 1, . . . , ni,

i = 1, . . . , �

}

. (1)

The degree satisfies deg(mpol(b)a
) ≤ n with equality if and only if the entries of

b(i) are Fq-linearly independent for all i = 1, . . . , � and the evaluation parameters
a1, . . . , a� belong to distinct nontrivial conjugacy classes of Fqm .

Now consider an additional vector c = (c(1) | · · · | c(�)) ∈ F
n
qm . Then there

exists a unique skew interpolation polynomial intpol c
(b)a

(x) ∈ Fqm [x; θ, δ] with

deg(intpol c
(b)a

) < n and

intpol c
(b)a

(b(i))ai
= c(i) for all i = 1, . . . , � [16].

For the complexity analysis of the Gao-like decoder, we will use O(·) to
state asymptotic costs in terms of the usual big-O notation. Moreover, the
notation Õ(·) indicates that logarithmic factors in the input parameter are
neglected. The complexity of skew-polynomial operations in the zero-derivation
setting was summarized in [11, Section II.D.]. Particularly, left and right divi-
sion of skew polynomials with degree at most n as well as the computa-
tion of a minimal or an interpolation polynomial of degree at most n can be
achieved in Õ(Mq,m(n)) operations in Fqm . Here, Mq,m(n) denotes the cost
of multiplying two skew polynomials of degree n from Fqm [x; θ] and it holds
O(Mq,m(n)) ⊆ O(nmin(ω+1

2 ,1.635)) ⊆ O(n1.635). The exponent ω ≥ 2 denotes
the matrix-multiplication coefficient for which the currently best known upper
bound is ω < 2.3728639 [26].

2.2 The Sum-Rank Metric and the Corresponding Interleaved
Channel Model

The sum-rank weight of a vector x = (x(1) | · · · | x(�)) ∈ F
n
qm with respect to

the length partition n is

wtΣR,n (x) =
�∑

i=1

rkq

(
x(i)

)
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where rkq

(
x(i)

)
is the maximum number of Fq-linearly independent entries of

the block x(i) for each i = 1, . . . , �. The sum-rank metric is induced by the
sum-rank weight via dΣR,n (x,y) = wtΣR,n (x − y) for all vectors x,y ∈ F

n
qm .

Note that we omit the index n and simply write wtΣR and dΣR when the length
partition is clear from the context.

The sum-rank metric coincides with the Hamming metric for � = n, i.e.,
when every block has length one, and with the rank metric for � = 1, i.e., when
the vector is considered as a single block.

Let now x = (x1 | · · · | xs) ∈ F
sn
qm with xj ∈ F

n
qm for all j = 1, . . . , s be a

horizontally s-interleaved vector for an interleaving order s ∈ N
∗. Let us further

assume for simplicity that all component vectors xj = (x(1)
j | · · · | x

(�)
j ) ∈ F

n
qm

for j = 1, . . . , s are equipped with the same length partition n. The natural way
to define the sum-rank weight of x ∈ F

sn
qm is with respect to the block-ordered

length partition ñ = (sn1, . . . , sn�), i.e., as

wtΣR,ñ (x) :=
�∑

i=1

rkq(x(i)) for x(i) = (x(i)
1 | · · · | x(i)

s ).

As for the conventional sum-rank metric, we often omit the length partition in
the index and simply write wtΣR(x) when ñ is clear from the context. Figure 1
illustrates how the sum-rank weight of horizontally interleaved vectors is com-
puted by grouping the same-indexed blocks of the component vectors. It shows
how the block-ordered length partition arises naturally in this setting.

Fig. 1. Illustration of the sum-rank weight for a horizontally s-interleaved vector x =
(x1 | · · · | xs) ∈ F

sn
qm .

We now consider the transmission of an interleaved vector x ∈ F
sn
qm over a

sum-rank error channel with output

y = x + e (2)

where the error vector e is understood as a horizontally s-interleaved vector
e = (e1 | · · · | es) ∈ F

sn
qm of sum-rank weight wtΣR,ñ (e) = t. We further assume

a uniform channel distribution, that is, that the error e is drawn uniformly at
random from the set

{x = (x1 | · · · | xs) ∈ F
sn
qm : wtΣR,ñ (x) = t}. (3)
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Fig. 2. The additive sum-rank channel for horizontally interleaved vectors.

The described channel is illustrated in Fig. 2.
Let t = (t1, . . . , t�) ∈ N

� with ti = rkq(e(i)) := rkq(e
(i)
1 | · · · | e

(i)
s ) for all

i = 1, . . . , � denote the rank partition of e. Then, we obtain for each i = 1, . . . , �
a decomposition of the form (e(i)

1 | · · · | e
(i)
s ) = a(i) ·

(
B

(i)
1 | · · · | B

(i)
s

)
, where

a(i) ∈ F
ti
qm with rkq(a(i)) = ti and B

(i)
j ∈ F

ti×ni
q with rkq

(
B

(i)
1 | · · · | B

(i)
s

)
= ti

for all j = 1, . . . , s. After reordering the components, the error vector e can thus
be decomposed as

e = a · B (4)

with a = (a(1) | · · · | a(�)) ∈ F
t
qm and

B =

⎛

⎜
⎜
⎝

B
(1)
1 B

(1)
s

. . . . . .
. . .

B
(�)
1 B

(�)
s

⎞

⎟
⎟
⎠ ∈ F

t×sn
q , (5)

where for any i = 1, . . . , � and any j = 1, . . . , s

a(i) ∈ F
ti
qm with rkq(a(i)) = ti

and B
(i)
j ∈ F

ti×ni
q with rkq

(
B

(i)
1 | · · · | B(i)

s

)
= ti.

Note that the decomposition in (4) is not unique. Moreover, the uniform distri-
bution of e among all vectors of sum-rank weight t implies that, for fixed rank
partition t, both a and B are also chosen uniformly at random from the sets

{x ∈ F
t
qm : wtΣR,t(x) = t}

and {X ∈ F
t×sn
qm of the form (5) : wtΣR,ñ (X) = t}, (6)

respectively.
The elements in a(i) form a basis of the column space of e(i) and are called

error values. Similarly, the rows of B
(i)
j form a basis of the row space of e

(i)
j and

are referred to as error locations. For horizontal interleaving, the error values in
a are common for all component errors.

2.3 Horizontally Interleaved Linearized Reed–Solomon (HILRS)
Codes

We first introduce LRS codes [29, Definition 31], which are one of the most
prominent families of sum-rank-metric codes.
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Definition 1 (Linearized Reed-Solomon Codes). Let ξ = (ξ1, . . . , ξ�) ∈
F

�
qm contain elements of distinct nontrivial conjugacy classes of Fqm . Further

denote by n = (n1, . . . , n�) ∈ N
� a length partition of n, i.e., n =

∑�
i=1 ni. Let

the vectors β(i) = (β(i)
1 , . . . , β

(i)
ni ) ∈ F

ni
qm contain Fq-linearly independent Fqm-

elements for all i = 1, . . . , � and write β =
(
β(1) | · · · | β(�)

) ∈ F
n
qm . A linearized

Reed–Solomon (LRS) code of length n and dimension k is defined as

LRS[β, ξ;n, k] =
{(

f(β(1))ξ1 | · · · | f(β(�))ξ�

)
: f ∈ Fqm [x; θ, δ]<k

}
⊆ F

n
qm .

Every codeword c ∈ LRS[β, ξ;n, k] corresponds to a skew polynomial f ∈
Fqm [x; θ, δ]<k. We sometimes write c = c(f) to emphasize this and call f the
message polynomial of c.

The minimum distance d of an LRS code satisfies the Singleton-like bound
d ≤ n − k + 1 with equality. Thus, LRS codes are maximum sum-rank distance
(MSRD) codes.

Similar to RS and Gabidulin codes, LRS codes have a generator matrix G
of a particularly useful form. Namely, the matrix G = (G(1) | · · · | G(�)) =
Mk(β)ξ ∈ F

k×n
qm with

G(i) = mk(β(i))ξi
=

⎛

⎜
⎜
⎜
⎜
⎝

β
(i)
1 . . . β

(i)
ni

Dξi
(β(i)

1 ) . . . Dξi
(β(i)

ni )
...

. . .
...

Dk−1
ξi

(β(i)
1 ) . . . Dk−1

ξi
(β(i)

ni )

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
k×ni
qm

for all i = 1, . . . , � generates the code LRS[β, ξ;n, k].

We obtain an HILRS code with interleaving order s ∈ N
∗ by combining s LRS

component codes. Namely, each codeword of the HILRS code is the horizontal
concatenation of s codewords of the chosen component codes.

Definition 2 (Horizontally Interleaved LRS Codes). Fix an interleav-
ing order s ∈ N

∗ and pick for each j = 1, . . . , s an LRS code LRS[βj , ξ;n, k]
according to Definition 1. We define the horizontally interleaved linearized Reed–
Solomon (HILRS) code with interleaving order s, code locators β := (β1 | · · · |
βs), evaluation parameters ξ, and length partition sn := (sn1, . . . , sn�) as

HILRS[β, ξ, s; sn, sk] =
{

(c1 | · · · | cs) :
cj ∈ LRS[βj , ξ;n, k]
for all j = 1, . . . , s

}

⊆ F
sn
qm .

The code HILRS[β, ξ, s; sn, sk] has length sn and dimension sk over Fqm . Its
minimum distance d equals the minimum distance of its component codes, i.e.,
d = n−k+1. HILRS codes are hence not MSRD. Similar to LRS codes, we write
c(f) = (c1(f1) | · · · | cs(fs)) ∈ HILRS[β, ξ, s; sn, sk] with f = (f1, . . . , fs) and
fj ∈ Fqm [x; θ, δ]<k for each j = 1, . . . , s to emphasize the relation to the message
polynomials of the component codewords c1, . . . , cs. We call f the message-
polynomial vector corresponding to c.
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Remark 1. It is straightforward to generalize Definition 2 and all concepts of
this paper to component codes with different length partitions, lengths, and
dimensions. However, we assume that the component codes only have different
code locators βj for j = 1, . . . , s for simplicity of notation. 
�

3 A Gao-Like Decoder for HILRS Codes

We now derive a Gao-like decoder in the spirit of [20,36,45] for HILRS codes and
the interleaved sum-rank-channel model described in (2). Let y = c + e ∈ F

sn
qm

denote the received vector after the codeword c = c(f) ∈ HILRS[β, ξ, s; sn, sk]
was corrupted by the error e ∈ F

sn
qm of sum-rank weight wtΣR(e) = t during

transmission. Recall that we assume a uniform error distribution, that is, that
e is chosen uniformly at random from the set of all vectors of sum-rank weight
t as given in (3).

The main ingredient of the decoder is the Gao-like key equation that exploits
the relation between certain polynomials to recover the error values as zeros of
the error-span polynomial. Then, the message-polynomial vector f that corre-
sponds to c can be retrieved.

The error span polynomial (ESP) σ ∈ Fqm [x; θ, δ] makes use of the error
decomposition shown in (4). It is the skew polynomial that vanishes at all error
values, i.e.,

σ(a(i))ξi
= 0 for all i = 1, . . . , �.

For horizontal interleaving, the component errors ej share the same error values
a for all j = 1, . . . , s according to (4). This implies that the ESP is common for
all component errors.

Next let Gj ∈ Fqm [x; θ, δ] for each j = 1, . . . , s be the minimal skew poly-
nomial for the code locators βj with respect to generalized operator evaluation.
Namely,

Gj(x) := mpol(βj)ξ
(x) for all j = 1, . . . , s.

Remark that these polynomials only depend on code parameters and can thus
be precomputed. Further, define Rj ∈ Fqm [x; θ, δ] for each j = 1, . . . , s as the
interpolation polynomial whose evaluation at the code locators βj yields the
channel observation yj . That means that Rj(x) := intpol yj

(βj)ξ
(x) satisfies

Rj(βj)ξ = yj for all j = 1, . . . , s.

Note that the polynomials Rj can be computed directly from the channel obser-
vation y = (y1 | · · · | ys).

Theorem 1 (Gao-like Key Equation for HILRS Codes). Let c = c(f) ∈
HILRS[β, ξ, s; sn, sk] be a codeword corresponding to the message-polynomial
vector f = (f1, . . . , fs) with fj ∈ Fqm [x; θ, δ]<k for all j = 1, . . . , s. Let further
y = c + e ∈ F

sn
qm denote a channel observation according to (2). For the ESP

σ ∈ Fqm [x; θ, δ] and the polynomials

Gj(x) = mpol(βj)ξ
(x) and Rj(x) = intpol yj

(βj)ξ
(x) for each j = 1, . . . , s,
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it holds
σ · Rj ≡ σ · fj modr Gj for all j = 1, . . . , s. (7)

Proof. Consider a fixed j = 1, . . . , s and let us show the equivalent formulation

σ · (Rj − fj) ≡ 0 modr Gj

of the key equation. By definition, we know that the evaluation of Rj − fj at βj

is (Rj − fj)(βj)ξ = yj − cj = ej . Thus,

(σ · (Rj − fj))(βj)ξ
(�)
= σ((Rj − fj)(βj)ξ)ξ = σ(ej)ξ = 0

applies, where () follows from the product rule for generalized operator eval-
uation and the other equalities hold by definition. Together with the fact that
Gj is the minimal polynomial of the code locators, we conclude that Gj divides
σ · (Rj − fj) on the right. Since this argument is true for every j = 1, . . . , s, the
statement follows. 
�

As can be seen from the proof of Theorem 1, the Gao-like key Eq. (7) is in
fact equivalent to

(σ · (Rj − fj))(βj)ξ = 0 for all j = 1, . . . , s.

By rewriting it in terms of a system of Fqm-linear equations, we obtain

⎛

⎜
⎝

(Mt+k(β1)ξ)
� − (Mt+1(y1)ξ)

�

. . .
...

(Mt+k(βs)ξ)
� − (Mt+1(ys)ξ)

�

⎞

⎟
⎠

︸ ︷︷ ︸
=:M �

·

⎛

⎜
⎜
⎜
⎝

σf1

...
σfs

σ

⎞

⎟
⎟
⎟
⎠

= 0. (8)

Here, the vectors σ and σfj for j = 1, . . . , s contain the coefficients of the
respective polynomials, i.e.,

(σfj)� := ((σ · fj)1, . . . , (σ · fj)t+k) ∈ F
t+k
qm for all j = 1, . . . , s

and σ� := (σ1, . . . , σt+1) ∈ F
t+1
qm .

Equation (8) displays a homogeneous system of sn equations in s(t+k)+ t+1 =
(s + 1)t + sk + 1 unknowns. It can be solved by Gaussian elimination with a
complexity of O(max(sn, (s + 1)t + sk + 1)ω) operations in Fqm [44, Proposi-
tion 2.15.].

As soon as the Gao-like key equation is solved, we have access to a candidate
σ̃ for the ESP σ ∈ Fqm [x; θ, δ] as well as to candidates pj for the products
σ · fj ∈ Fqm [x; θ, δ]<t+k for all j = 1, . . . , s. Thus, for any j = 1, . . . , s, left
division of pj by σ̃ recovers a candidate f̃j for the j-th message polynomial fj .
If the remainder rj of the left division of pj by σ̃ is nonzero for any j = 1, . . . , s
or if any of the f̃1, . . . , f̃s has degree at least k, we declare a decoding failure.
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Algorithm 1: Gao-like Decoder for HILRS Codes
Input : received vector y ∈ F

sn
qm with y = c(f ) + e according to (2) and with

c(f ) ∈ HILRS[β, ξ, s; sn, sk]
precomputed G1, . . . , Gs with Gj := mpol(βj)ξ

(x) for all j = 1, . . . , s

Output : f = (f1, . . . , fs) or "decoding failure"
1 Rj := intpol

yj

(βj)ξ
(x) ∈ Fqm [x; θ, δ] for all j = 1, . . . , s

/* use σ · Rj ≡ σ · fj modr Gj to find pj � σ · fj and σ̃ � σ */
2 (p1, . . . , ps, σ̃) := solveKeyEquation(R1, . . . , Rs, G1, . . . , Gs, n, k, s)
3 forall j = 1, . . . , s do
4 (f̃j , rj) := leftDivide(pj , σ̃)

5 if rj �= 0 or deg(f̃j) ≥ k then
6 return "decoding failure"

7 return f := (f̃1, . . . , f̃s)

Otherwise, the decoding was correct and f̃j = fj applies for all j = 1, . . . , s.
Algorithm 1 summarizes all steps of the Gao-like decoder.

Let us now further investigate the structure of M�, which gives rise to the
decoding-failure probability Prfail. Remark that the system (8) has a nontrivial
solution by definition, which implies rkqm(M) ≤ (s + 1)t + sk. Moreover, a
decoding failure can only occur if the solution space of (8) has dimension greater
than one. In other words, rkqm(M�) = rkqm(M) < (s + 1)t + sk must apply
and we obtain the inequality

Prfail ≤ Pr (rkqm(M) < (s + 1)t + sk)) .

The following lemma gives a characterization of when the solution space of (8)
is one-dimensional. Recall that this case implies correct decoding.

Lemma 1. Consider a vector y = c+e ∈ F
sn
qm that was received after transmit-

ting c ∈ HILRS[β, ξ, s; sn, sk] over the channel (2). Assume that the error has
weight wtΣR(e) = t ≤ n − k and can be decomposed into e = a · B accord-
ing to (4). Further, define M as in (8) and let H = diag(H1, . . . ,Hs) ∈
F

s(n−k−t)×sn
qm be a parity-check matrix of the code HILRS[β, ξ, s; sn, s(k + t)].

Then,

rkqm(M) = (s + 1)t + sk if and only if rkqm(BH�) = t.

Proof. First note that the upper part of M is a generator matrix of the code
HILRS[β, ξ, s; sn, s(k+ t)]. In other words, the j-th block on its diagonal gener-
ates LRS[βj , ξ;n, k+t] for all j = 1, . . . , s. For any j = 1, . . . , s, the additivity of
the generalized operator evaluation yields Mt+1(yj)ξ = Mt+1(cj)ξ +Mt+1(ej)ξ .
Further, cj ∈ LRS[βj , ξ;n, k] = 〈Mk(βj)ξ〉qm implies Dι

ξ(cj) ∈ 〈Mk+ι(βj)ξ〉qm

for all ι = 1, . . . , t. We can hence consider the matrix
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M̃ =

⎛

⎜
⎜
⎜
⎝

Mt+k(β1)ξ
. . .

Mt+k(βs)ξ
Mt+1(e1)ξ . . . Mt+1(es)ξ

⎞

⎟
⎟
⎟
⎠

=:
(

U
L

)

which has the same Fqm -linear row space, and thus the same Fqm-rank, as M .
In the following, we denote the upper s(t + k) rows of M by U and the lower
part by L for convenience. The error decomposition and the Fq-linearity of the
generalized operator evaluation let us write L = Mt+1(a)ξ · B. Therefore,

M̃ =
(

Is(t+k) 0
0 Mt+1(a)ξ

)

·
(

U
B

)

applies, where Is(t+k) denotes the identity matrix of size s(t+k)×s(t+k). Since
the left matrix has full column rank over Fqm , [31, Theorem 2] yields

rkqm(M̃) = rkqm

(
U
B

)

.

Define H := diag(H1, . . . ,Hs) ∈ F
s(n−k−t)×sn
qm with Hj being a parity-check

matrix of the code LRS[βj , ξ;n, k + t] for all j = 1, . . . , s. Then, H is a parity-
check matrix of HILRS[β, ξ, s; sn, s(k + t)] and satisfies UH� = 0. Since

rkqm(M) = rkqm(U) + rkqm(B) − dimqm(〈U〉qm ∩ 〈B〉qm)

≤ (s + 1)t + sk − dimqm(〈U〉qm ∩ 〈B〉qm)

holds, the equality rkqm(M) = (s+1)t+sk is equivalent to 〈U〉qm ∩〈B〉qm = {0}
and thus to 〈H〉⊥

qm ∩〈B〉qm = {0}. This is equivalent to rkqm(BH�) = t, which
proves the lemma. 
�

This equivalent reformulation gives a condition on the error weight t and
thus determines the decoding radius. In fact, the matrix BH� has t rows and
s(n − k − t) columns and can achieve rkqm(BH�) = t only if t ≤ s(n − k − t)
applies. Since we obtain a decoding failure in all other cases, we obtain the
necessary condition

t ≤ tmax :=
s

s + 1
(n − k)

for successful decoding.
We now focus on the zero-derivation case and derive an upper bound on

the probability that rkqm(BH�) < t which will also bound the decoding-
failure probability according to Lemma 1. Recall that we can choose H such
that H1, . . . ,Hs are generalized Moore matrices, as the dual of an LRS code
is again an LRS code in the zero-derivation setting [30, Theorem 4]. For such
a choice of H, the product BH� = (B1H

�
1 | · · · | BsH

�
s ) is the transpose
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of vertically stacked generalized Moore matrices because B = (B1 | · · · | Bs)
contains only Fq-elements and Dξ(·) is Fq-linear for a fixed ξ ∈ Fqm . Namely,

HB� =

⎛

⎝
Mt+k(h1B

�
1 )ξ

. . .
Mt+k(hsB

�
s )ξ

⎞

⎠ ,

where hj denotes the first row of Hj for each j = 1, . . . , s.
Further recall that, for a fixed rank partition t, the matrix B is uniformly

distributed among the set of all matrices of a particular form having fixed sum-
rank weight as described in (6). As wtΣR (hj) = n applies for every j = 1, . . . , s,
the (s × t)-matrix containing the vectors hjB

�
j as rows is chosen uniformly at

random from all matrices in F
s×t
qm with sum-rank weight t. This allows us to

apply parts of the proof of [13, Lemma 7].
In the zero-derivation setting, we thus obtain the upper bound

Prfail ≤ Pr
(
rkqm(BH�) < t

) ≤ κ�+1
q q−m((s+1)(tmax−t)+1) (9)

on the decoding-failure probability Prfail, where tmax := s
s+1 (n−k) and κq < 3.5

is defined as κq :=
∏

i

1
1−q−i for any prime power q.

We implemented the proposed decoder in SageMath [43] and ran a Monte
Carlo simulation to heuristically verify the tightness of the upper bound on the
decoding-failure probability given in (9). Note that the actual failure probability
is hard to simulate for reasonable parameter sizes, as even the upper bound
decreases exponentially. To obtain observable results, we chose Fqm = F38 , Fq =
F3, and an HILRS code of length n = 16 and dimension k = 4 with respect to
the Frobenius automorphism. We considered � = 2 blocks of the same length,
namely n = (8, 8), interleaving order s = 3, and randomly chosen errors of sum-
rank weight t = tmax = 9. The failure probability that we observed for 100 Monte
Carlo errors is 1.569 · 10−4 while the bound yields 6.535 · 10−3.

We finish this section with a summary of the results we have obtained so far
and give a complexity analysis of the Gao-like decoder for HILRS codes.

Theorem 2 (Gao-like Decoding of HILRS Codes). Consider the trans-
mission of a codeword c ∈ HILRS[β, ξ, s; sn, sk] over the channel (2). Let
y = c + e ∈ F

sn
qm denote the received word and assume that the error e has

bounded sum-rank weight

wtΣR(e) = t ≤ s

s + 1
(n − k). (10)

Then, the Gao-like decoder from Algorithm 1 can recover c with a failure prob-
ability Prfail that is bounded by

Prfail ≤ κ�+1
q q−m((s+1)(tmax−t)+1) < 3.5�+1q−m((s+1)(tmax−t)+1)

in the zero-derivation setting. If the key Eq. (7) is solved via Gaussian elimination
in the formulation of (8), the overall complexity of the decoder is in the order
of Õ((sn)ω) ⊆ Õ((sn)2.373) operations in Fqm .
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Proof. The decoding radius and the bound on the failure probability were derived
above. Let us thus focus on the complexity analysis.

– The computation of a minimal or an interpolation polynomial of degree at
most n can be done with complexity Õ(Mq,m(n)) according to [11, Section
II.D.], e.g. by using the recursive formula (1). Thus, the computation of
G1, . . . , Gs and R1, . . . , Rs takes Õ(sMq,m(n)) operations in Fqm .

– Finding the solution of the key equation via Gaussian elimination has com-
plexity O(max(sn, (s + 1)t + sk + 1)ω) as stated above. Since Eq. (10) ensures
sn ≥ (s + 1)t + sk + 1, we obtain O((sn)ω).

– The for-loop runs in Õ(sMq,m(n)) operations in Fqm because the left division
in line 4 has complexity Õ(Mq,m(n)) for each j = 1, . . . , s according to [11,
Section II.D.]. Checking the conditions for a decoding failure is essentially for
free.

Note that Õ(sMq,m(n)) ⊆ Õ(snmin(ω+1
2 ,1.635)) ⊆ Õ(sn1.635). Thus, solving the

Gao-like key equation determines the overall complexity of Õ((sn)ω) operations
in Fqm . 
�

4 A Fast Variant of the Gao-Like Decoder for HILRS
Codes

We now present a fast variant of the decoder from Algorithm 1. As we have seen
in its complexity analysis in the proof of Theorem 2, the complexity-dominating
task is the solution of the Gao-like key equation. Thus, we focus on this problem
and obtain a performance gain by reformulating it in terms of minimal approx-
imant bases.

Note that we restrict ourselves to the zero-derivation case in this section,
even though the used concepts and algorithms generalize straightforwardly to
nonzero derivations. The reason is that the complexity analysis of algorithms
involving skew-polynomial operations with nonzero derivations is more involved
and was e.g. not conducted for the minimal-approximant-basis algorithm [11,
Algorithm 5] that we use for the speedup.

4.1 Minimal Approximant Bases

Let us give some definitions and basic properties of minimal approximant bases.
Note that we will only discuss left/row approximant bases and leave out their
right/column counterparts, as we are only concerned with these.

Let v ∈ Z
a be a shifting vector. Then, the v-shifted row degree of a vector

b ∈ Fqm [x; θ]a is
rdegv (b) := max

j=1,...,a
{deg(bj + vj)}.

For b ∈ Fqm [x; θ]a \ {0} and v = (v1, . . . , vb) ∈ Z
a, the v-pivot index of b is the

largest index i ∈ {1, . . . , a} with deg(bi) + vi = rdegv (b).
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A matrix W ∈ Fqm [x; θ]a×b with a ≤ b is in v-ordered row weak-Popov form
if the v-pivot indices of its rows are strictly increasing in the row index.

A vector b ∈ Fqm [x; θ]a is a left approximant of order d ∈ N of a matrix
W ∈ Fqm [x; θ]a×b if

bW ≡ 0 modr xd.

A left v-ordered weak-Popov approximant basis of A of order d ∈ N is a full-
rank matrix B ∈ Fqm [x; θ]a×a in v-ordered row weak-Popov form whose rows
are a basis of all left approximants of A of order d.

4.2 Solving the Gao-Like Key Equation via Minimal Approximant
Bases

The Gao-like key equation (7) can also be written as

σ · fj = χj · Gj + σ · Rj for all j = 1, . . . , s, (11)

where χj ∈ Fqm [x; θ] exists according to the Euclidean algorithm and has degree
at most k + t for each j = 1, . . . , s. Observe that (11) implies that the vector

(σ · f1, . . . , σ · fs, σ, χ1, . . . , χs) ∈ Fqm [x; θ]2s+1

is in the left kernel of the matrix

W =

⎛

⎝
−Is

R
G

⎞

⎠ ∈ Fqm [x; θ](2s+1)×s (12)

where R := (R1, . . . , Rs) and G := diag(G1, . . . , Gs).
The following result based on [11, Lemma 21] is fundamental for reformulat-

ing the Gao-like key equation as a minimal-approximant-bases problem.

Lemma 2. Consider the same setting as in Theorem2 and let W be defined as
in (12). Further write

ρ := (σ · f1, . . . , σ · fs, σ) and χ := (χ1, . . . , χs)

for simplicity. Further define the shifting vectors w := (0s, k − 1) ∈ Z
s+1 and

v := (0s, k − 1,0s) ∈ Z
2s+1, as well as the degree constraints D := tmax =

s
s+1 (n − k) and d := D + n. Then,

(ρ | χ) · W = 0 and rdegw (ρ) < D (13)

if and only if

(ρ | χ) · W ≡ 0 modr xd and rdegv (ρ | χ) < D. (14)
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Proof. We start with showing that (13) implies (14). The left-hand side of (14)
clearly follows from (13) and it remains to show that deg(χj) < D holds for all
j = 1, . . . , s. With (11), we get

deg(χj) ≤ max{deg(σ · fj),deg(σ · Rj)} − deg(Gj)
≤ max{t + k − 1, t + n − 1} − n < t ≤ tmax = D.

For the other implication, note that the right-hand side of (14) directly
implies the right-hand side of (13). In order to see that the left-hand side of (13)
holds, we show that all entries of the vector (ρ | χ) · W have degree less than d.
With the help of the right-hand side of (14) and (11), we obtain:

– deg(σ · fj) < D < d,
– deg(σ · Rj) ≤ deg(σ) + deg(Rj) ≤ t + n − 1 = D + n − 1 < d,
– deg(χj · Gj) < t + n = D + n = d.


�
Hence, we can solve the Gao-like key Eq. (7) by computing a left v-ordered

weak-Popov approximant basis B of W . This can be accomplished by [11, Algo-
rithm 5] requiring Õ(M(n)) ⊆ Õ(nmin{ω+1

2 ,1.635}) ⊆ Õ(n1.635) operations in
Fqm .

We then obtain candidates pj for the products σ · fj for each j = 1, . . . , s
and a candidate σ̃ for the σ by choosing the row bmin of B having minimal v-
weighted degree. This choice makes sure to satisfy the degree constraint in (14)
to get a proper solution as described in Lemma 2. The subroutine for solving the
Gao-like key equation via the presented minimal-approximant-bases approach is
summarized in Algorithm 2.

Algorithm 2: Subroutine solveKEviaMAB(·) for Solving the Gao-like Key
Equation via a Minimal Approximant Basis
Input : R1, . . . , Rs, G1, . . . , Gs, n, k, s
Output : p1, . . . , ps, σ̃

1 v := (0s, k − 1,0s)
2 D := s

s+1
(n − k) and d := D + n

3 W :=

⎛
⎝

−Is

R
G

⎞
⎠ ∈ Fqm [x; θ](2s+1)×s with R := (R1, . . . , Rs) and

G := diag(G1, . . . , Gs)
/* left v-ordered weak Popov approximant basis of W of order d */

4 B := LeftSkewPMBasis(d, W , v) ∈ Fqm [x; θ](2s+1)×(2s+1)

5 Define bmin = (bmin,1, . . . , bmin,2s+1) as the minimal row of B with respect to
the v-weighted degree

6 return bmin,1, . . . , bmin,s, bmin,s+1
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Theorem 3. Algorithm2 solves the Gao-like key Eq. (7) in Õ(sωn1.635) ⊆
Õ(s2.373n1.635) Fqm-operations.

Proof. The complexity of Algorithm2 is dominated by finding a minimal approx-
imant basis in line 4. This can be achieved using [11, Algorithm 5] whose com-
plexity is Õ(sωn1.635) ⊆ Õ(s2.373n1.635) [11, Theorem 11].

This directly implies the following complexity improvement for Theorem2:

Corollary 1. When the Gao-like key Eq. (7) is solved by Algorithm2, the com-
plexity of the Gao-like decoder from Algorithm1 decreases to Õ(sωn1.635) ⊆
Õ(s2.373n1.635) operations in Fqm .

With Corollary 1, the Gao-like decoder is the fastest known decoder for
HILRS codes in the sum-rank metric as well as for horizontally interleaved
Gabidulin codes in the rank metric. Its complexity is essentially subquadratic in
the component-code length n, as the interleaving order s is usually much smaller
than the code length n. Remark in particular that the gain in the error-correcting
capacity increases fast for increasing s, as s

s+1 quickly tends to one.

5 Conclusion

We studied HILRS codes and their fast decoding which has promising potential
applications in code-based cryptography. As a starting point, we presented a
Gao-like decoder that features probabilistic unique decoding for an error of sum-
rank weight at most s

s+1 (n−k), where s is the interleaving order, and n and k are
the length and the dimension of the component codes. We gave a bound on the
failure probability and achieved a complexity of Õ((sn)2.373) operations in Fqm

by solving the Gao-like key equation conventionally via Gaussian elimination.
Techniques from the area of minimal approximant bases allowed us to speed

up the decoder significantly and obtain a complexity of Õ(s2.373n1.635) opera-
tions in Fqm . Under the reasonable assumption that the interleaving order s is
small compared to the component-code length n, this is subquadratic. Overall,
this results in the fastest known decoders for both HILRS codes in the sum-rank
metric and for horizontally interleaved Gabidulin codes in the rank metric.

Further work can include the generalization of the presented decoder to the
error-erasure case. Next to errors, this error model includes row and column
erasures, for which either the row space or the column space is known. More-
over, other techniques could give bounds on the failure probability for nonzero
derivations or yield tighter ones for the zero-derivation setting.
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Abstract. In this paper, we study the decoding failure rate (DFR)
of non-binary QC-MDPC codes using theoretical tools, extending the
results of previous binary QC-MDPC code studies. The theoretical esti-
mates of the DFR are particularly significant for cryptographic applica-
tions of QC-MDPC codes. Specifically, in the binary case, it is established
that exploiting decoding failures makes it possible to recover the secret
key of a QC-MDPC cryptosystem. This implies that to attain the desired
security level against adversaries in the CCA2 model, the decoding fail-
ure rate must be strictly upper-bounded to be negligibly small. In this
paper, we observe that this attack can also be extended to the non–
binary case as well, which underscores the importance of DFR estima-
tion. Consequently, we study the guaranteed error–correction capability
of non–binary QC–MDPC codes under one–step majority logic (OSML)
decoder and provide a theoretical analysis of the 1–iteration parallel sym-
bol flipping decoder and its combination with OSML decoder. Utilizing
these results, we estimate the potential public-key sizes for QC-MDPC
cryptosystems over F4 for various security levels. We find that there is
no advantage in reducing key sizes when compared to the binary case.

Keywords: code–based cryptography · non–binary MDPC codes ·
symbol flipping · decoding failure rate

1 Introduction

With the advent of quantum computers, many traditional public–key cryptosys-
tems based on number–theoretic or elliptic curves primitives are to become vul-
nerable to attacks using them [14,42]. So, there is a strong need in developing
post-quantum cryptographic protocols that will remain secure against adver-
saries equipped with quantum computers. One of the most prominent and well-
established approach to post-quantum cryptography is cryptography based on
error-correcting codes.

The first code–based cryptosystem was proposed in 1978 by R. McEliece [31].
The main idea of the McEliece cryptosystem is to mask a generator matrix of a
fast–decodable code by permuting its columns and multiplying by a scrambling
matrix on the left. The encryption is performed by encoding a message using the
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public generator matrix and adding an error. So, the security against message–
recovery attacks is based on NP–hard syndrome decoding problem [13]. The
original proposal of R. McEliece was based on binary Goppa codes, so the secu-
rity against key–recovery attack relies on hardness of the problem of distinguish-
ing permuted Goppa codes. It is worth mentioning that the original McEliece
cryptosystem with several improvements is one of three Round 4 competitors in
NIST-PQC [1]. Despite many advantages, the main drawback of McEliece cryp-
tosystem is large public–key size. There were many attempts to overcome this by
replacing Goppa codes with more efficient ones. The notable examples are Gen-
eralized Reed–Solomon codes [35], Reed–Muller codes [43], algebraic geometry
codes [29], concatenated codes [40], rank–metric Gabidulin codes [22]. However,
most of this modifications were proven unsecure [15,17,32,38,40,44]. In addi-
tion, several modifications of protocol itself were proposed to avoid key–recovery
attacks against McEliece–like cryptosystems based on efficient algebraic codes
(e.g. [7,12,28,48]), however most of them were also successfully cryptanalyzed
[16,18,19,30,47,50].

One of the most efficient approaches to reducing public-key size was proposed
by P. Gaborit [23] and is based on using quasi-cyclic codes (QC-codes). A code
C of length n = n′l is said to be quasi-cyclic of order n′ and index l if its permu-
tation automorphism group PAut(C) has a cyclic subgroup of order n′ that acts
freely on coordinates. The quasi-cyclic structure implies the existence of gener-
ator and parity-check matrices of C that admit a block-circulant representation,
i.e.

⎛
⎜⎝

rot(h1,1) . . . rot(h1,l)
...

. . .
...

rot(hs,1) . . . rot(hs,l)

⎞
⎟⎠ , rot(a1, a2, . . . , an′) =

⎛
⎜⎜⎜⎝

a1 a2 . . . an′

an a1 . . . an′−1

...
...

. . .
...

a2 a3 . . . a1

⎞
⎟⎟⎟⎠ . (1)

This representation allows storing only the first row of each circulant block
rot(hi,j), thereby reducing storage and communication costs. Therefore, the pub-
lic key sizes of code-based encryption protocols that preserve quasi-cyclic struc-
ture can be significantly reduced. Note that many encryption protocols based
on algebraic QC–codes (e.g. [12,23]) have been successfully attacked [20,36].
However, protocols based on random quasi–cyclic moderate density parity–check
(QC–MDPC) codes [33], which have no algebraic structure except being quasi–
cyclic, are still considered secure and efficient.

The concept of moderate-density parity-check (MDPC) codes extends the
idea of low-density parity-check codes (LDPC codes) initially introduced by R.
Gallager [24]. In Gallager’s seminal work [24], it was shown that efficient decod-
ing of binary codes with a parity-check matrix containing a very small constant
number of ones in each row is feasible using iterative algorithms such as bit-
flipping and belief propagation, provided certain conditions are met (no two
rows have two or more ones in the same positions). In 2000, C. Monico et al.
[34] considered replacing Goppa codes in the McEliece cryptosystem with LDPC
codes and pointed out that these codes can be easily distinguished due to the



Theoretical Analysis of Decoding Failure 37

existence of very low–weight codewords in the dual code. The application of
quasi-cyclic LDPC codes in constructing code-based cryptosystems was initially
proposed in [11] and further developed in [8,10]. To mitigate key-recovery attacks
based on searching for low-weight dual codewords, it was suggested to replace
the permutation matrix in the protocol with a sparse non–singular matrix of a
specific form. However, this approach was found to introduce serious vulnerabil-
ities [2,36]. An alternative method to prevent key–recovery based on the search
for low–weight codewords was proposed in [33], where it was suggested to use
random QC–MDPC codes instead of LDPC. The difference between MDPC and
LDPC codes lies in the slightly higher weight of the rows in the parity-check
matrices, i.e., which is of order O(

√
n) for MDPC codes and O(1) for LDPC.

We denote the finite field of size q as Fq. For a vector v ∈ Fn
q , the notation

supp(v) = {i ∈ �1, n� | vi �= 0} is used to represent the set of indices correspond-
ing to the positions where v is nonzero. Here, �a, b� = {a, a + 1, . . . , b} denotes
set of all integers between a and b. The Hamming weight of vector v, denoted as
wt(v), is defined as the number of nonzero positions in v. A linear code C ∈ Fn

q

of length n and dimension k is refereed as [n, k]q–code. A generic description of
a QC-MDPC cryptosystem [33] in the Niedderiter form [35] is as follows:

– Key generation The secret key is the parity-check matrix H of a random
QC-MDPC [n = ln′, (l − 1)n′]q-code, represented as

H =
(
H1 | H2 | . . . | Hl−1 | Hl

)
. (2)

The matrix H consists of circulant (n′ × n′)–blocks Hi, where each Hi has a
row weight of γ. Note that n′ is usually chosen to be a prime number p. The
public key is the systematic form of H, i.e.

H̃ = H−1
1 H =

(
In′ | H−1

1 H2 | . . . | H−1
1 Hl,

)

which can be represented by the first rows of H−1
1 Hi, where i ∈ �2, l�, since

the product of circulant matrices is also a circulant matrix.
– Encryption The plaintext is an error vector e ∈ Fn

q of weight t, and the
ciphertext is its syndrome s̃ = H̃eT.

– Decryption To decrypt, the private syndrome s = HeT = H1s̃
T is computed

and used as input for the MDPC decoder (bit-flipping or symbol flipping).

Note that in NIST-PQC, the QC–MDPC approach is represented by BIKE (bit-
flipping key encapsulation) protocol [3].

Due to probabilistic nature of decoding of LDPC and MDPC codes, there is
a non–zero probability of decryption failure. In [26] it was shown that decryption
failures can be used to recover the secret key in binary case. Hence in order to
achieve indistinguishability against chosen ciphertext attacks, where an adversary
has an access to a decryption oracle (IND–CCA2 security), the decoding failure
rate (DFR) has to be negligibly small, i.e. of order 2−λ, where λ is a security level.
In [46], an experimental–based extrapolation framework for estimating DFR has
been proposed. In this approach, the DFR curve is assumed to be concave, so
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Fig. 1. Approximate illustration of a situation where the use of extrapolation may lead
to an incorrect estimation of DFR due to the presence of an error floor.

estimates for high DFR (> 10−9) can be obtained via numerical simulations and
then extrapolated to low DFRs providing an upper bound. However, it is known
that LDPC and MDPC codes exhibit error floor phenomenon, resulting in vio-
lation of concavity assumption (see e.g. [4,6]). Hence DFR estimates obtained
by extrapolation could possibly be overly optimistic (see Fig. 1). Another app-
roach is to estimate DFR using only theoretical tools. In [45] J. P. Tillich studied
guaranteed error–correction performance of binary QC–MDPC codes under one–
step majority logic decoder (OSML). In addition, in [45] the DFR of two–iteraion
decoder is studied under some reasonable assumptions, i.e. the probability that
one iteration of parallel bit–flipping decoder reduces error weight enough to be
corrected by OSML decoder is computed. In [39], the estimate of the number
of errors correctable by OSML decoder was improved. Under the same assump-
tions as in [45], the worst–case plausibility analysis of one and two iteration
randomized serial bit–flipping decoder was performed in [5]. In addition, in [5]
a combination of one iteration of randomized serial bit-flipping and OSML was
studied, and recommended design parameters for IND–CCA2 secure QC-MDPC
cryptosystems were given.

In this paper, we study DFR of non–binary QC–MDPC codes using theo-
retical tools. Namely, we extend the results of [39,45] to the non–binary case,
i.e. we show that error–correcting performance of OSML decoder can also be
estimated using similar methods of [39,45]. In addition, we propose a parallel
symbol flipping decoder. Under the same assumptions used in [5,45], we give
theoretical estimates of DFR for the parallel symbol–flipping decoder and its
combination with the OSML decoder. We also note that the extension of the
randomized serial approach, as considered in [5], in the non-binary case seems
to yield unreliable results due to a observed discrepancy between the theoretical
estimates and the worst-case simulations. Hence this approach is not included
in this paper. In addition, we experimentally demonstrate that slightly modi-
fied attack of [26] can also recover secret key in non–binary case. Employing
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the obtained results, recommended parameters and corresponding key sizes for
IND-CCA2–secure QC–MDPC cryptosystems over Fq for various security levels
are computed.

The paper is organized as follows. In Sect. 2, we present the basic principles of
decoding non-binary QC-MDPC codes and study the guaranteed error-correction
capability of the one-step majority logic decoder in an assumption-free setting. In
Sect. 3, we provide a plausibility analysis of error counters distribution and flip-
ping probability in the non-binary case. Subsequently, we propose a 1-iteration
parallel symbol flipping decoder and theoretically estimate the probability of
reducing the error weight to a certain value, allowing for further decoding by
the OSML decoder. We also provide experimental validation of the theoretical
model. Finally, in Sect. 4, we consider the reaction attack against non–binary
QC–MDPC cryptosystems and find potential cryptosystem parameters and cor-
responding public-key sizes.

2 Analysis of Guaranteed Error–correction Capability
of Non–binary QC-MDPC Codes

Recall that a code C with a parity–check matrix H ∈ Fm×n
q is said to be a

moderate–density parity–check (MDPC) code if each row of the H = (hi,j) is of
weight O(

√
n). In addition, C is said to be (γ, δ)–regular if the weight of each

column of H is γ and the weight of each row is δ. Unless otherwise specified, we
will focus exclusively on regular MDPC codes.

Let z = c + e ∈ Fn
q , where c ∈ C and wt(e) ≤ t, be a noisy codeword. By

s = HzT = HeT we denote the syndrome of e. One can easily note that since
i–th position of s is computed as

si = 〈hi, e〉 =
∑

ω∈supp (hi)

hi,ωeω.

Hence, by selecting γ row indices i1, i2, . . . , iγ for which hi1,j , . . . , hi1,j are non-
zero, we obtain the following γ equalities:

⎧⎪⎪⎨
⎪⎪⎩

si1h
−1
i1,j = ej + h−1

i1,j

(∑
ω∈supp(hi1 )\{j} hi1,ωeω

)
,

. . .

siγ
h−1

iγ ,j = ej + h−1
iγ ,j

(∑
ω∈supp(hiγ )\{j} hiγ ,ωeω

)
.

(3)

Since C is an MDPC code, the rows hi of H are sparse. Considering sparsity of
e, it follows that sih

−1
i,j equals ej with high probability. Hence it is possible to

use the values sih
−1
i,j for estimating e.

Let Fq = {α0 = 0, α1 = 1, α2, . . . , αq−1} be a enumeration of elements of Fq.
Let us define

σj,i =
∣∣{w | hw,j �= 0 and sih

−1
w,j = αi

}∣∣ (4)

as the number of rows hw containing the position j in supp(hw) and sih
−1
w,j = αi.

The values of σj,i will be referred to as error counters in position j. Clearly, σj,i
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indicates the likelihood that the error value ej in position j is equal to αi.
In particular, a higher value of σj,0 implies that position j is less likely to be
corrupted, while higher values of σj,i, i �= 0, indicate a greater likelihood that
ej = αi �= 0.

Therefore, several decoding strategies are possible. For instance, it is possible
to choose an information set I of k positions with highest σj,0, indicating that
these positions less likely to be erroneous, and then use this I for information
set decoding (ordered statistics decoding [21] and statistical decoding [37]).

Another straightforward decoding algorithm that uses counters is as follows:

1. compute the syndrome s and the counters σj,i for all j ∈ �1, n� and i ∈
�0, q − 1�;

2. update the position j of the received word z having the highest value of
σ∗

j − σj,0, where
σ∗

j = max
i∈�1,q−1�

σj,i, (5)

to the new value zj − αi∗ , where i∗ = argmaxi∈�1,q−1� σj,i;
3. repeat from step 1 until either s = 0 or maximum number of iterations is

reached.

Remark 1. One can easily note that the syndrome weight after step 2 is decreased
by σ∗

j − σj,0. Therefore, the error position and error value in step 2 are chosen
to decrease the syndrome weight the most. In this formulation the decoding
approach described above was proposed in [9] as a generalization of Gallager’s
bit–flipping. In the binary case, the Gallagher’s decoder is also a greedy algorithm
that reduces the syndrome weight the most in each step .

2.1 One–Step Majority Logic Decoding

In this subsection, we study guaranteed decoding performance of regular MDPC
codes under the OSML decoder (Algorithm 1) which can be considered as single
iteration version of parallel symbol flipping.

Algorithm 1: OSML
Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n, s ← HzT;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σ∗
j ≥ thj then
l ← argmaxi∈�1,q−1� σj,i;
ẽj ← ẽj + αl;

end
return ẽ
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Remark 2. Note that in the decoder description, instead of recovering the cor-
rected codeword c ∈ C from the noisy codeword z = c + e by iteratively sub-
tracting the estimated error from z, we employ an equivalent formulation where
we iteratively find the estimated error ẽ itself.

Let X ∈ Fm×n
q be an (m × n)–matrix, and let I ⊂ �1,m� and J ⊂ �1, n� be

sets of row and column indices, respectively. We denote the matrix composed of
the elements of X with indices (i, j) ∈ I × J as XI,J = (xi,j)i∈I,j∈J . For con-
venience, we use the notations X:,J and XI,: to represent X�1,m�,J and XI,�1,n�,
respectively.

Proposition 1. Let H = (hi,j) ∈ Fm×n
q be a parity–check matrix of a MDPC

code, and let e ∈ Fn
q be an error of weight t. Define H(j) as the matrix consisting

of rows from the set
{
h−1

i,j · (
Hi, �1,n�\{j}

) | i ∈ �1,m�, hi,j �= 0
}

.

Let
al = wt(H(j)

:,l ), μ(s) =
∑

ω∈indicies of s largest
values of al

aω,

If ej = αi, then σj,i can be lower bounded as follows

σj,i ≥
{

γ − μ(t), ej = αi = 0,

γ − μ(t − 1), ej = αi �= 0.

Proof. Using (3), we obtain that σj,i denotes the frequency of occurrence of αi

in the vector

v =

⎛
⎜⎝

si1h
−1
i1,j

...
siγ

h−1
iγ ,j

⎞
⎟⎠ =

⎛
⎜⎝

ej

...
ej

⎞
⎟⎠ + H(j)e′T︸ ︷︷ ︸

v′

, e′ = e�1,n�\{j}.

Hence if ej = αi then σj,i = γ −wt(v′). Since v′ is a linear combination of wt(e′)
columns of H(j), its weight can be upper bounded by

wt(v′) ≤ μ(wt(e′)) =

{
μ(t), ej = 0,

μ(t − 1), ej �= 0.

This concludes the proof of the proposition.

Remark 3. Note that the weight wt(H(j)
:,l ) of l–th column H

(j)
:,l of H(j) equals

|supp (H:,l) ∩ supp (H:,j)| .
Corollary 1. Let wt(e) ≤ t. If μ(t) < thj ≤ γ − μ(t − 1), then the OSML
decoder correctly estimates the j–th position of e.
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Proof. If ej = 0, then σj,0 ≥ γ − μ(t) and hence σ∗
j ≤ γ − σj,0 ≤ μ(t). It follows

that setting thj > μ(t) in Algorithm 1 will ensure that no non–erroneous position
will be corrupted.

If ej = αi �= 0, then σj,i ≥ γ − μ(t − 1). Since μ(t) < γ − μ(t − 1) and
μ(t) ≥ μ(t−1), it follows that μ(t−1) < γ/2 and thereby σj,i ≥ γ−μ(t−1) > γ/2.
This implies that a clear majority of equalities in (3) vote for αi and hence
σ∗

j = σj,i (see (5)). Therefore, setting thj < γ − μ(t − 1) will ensure that error
value in a erroneous position will be estimated correctly.

Corollary 2. The guaranteed error–correction capability of OSML decoder is t
if for all j ∈ �1, n� it is possible to choose thj according to Corollary 1.

Note that OSML is a very simple yet effective decoder that is capable of
correcting low–weight error patterns. However, it is particularly useful as a sec-
ond decoding iteration because it does not rely on probabilistic assumptions.
It can effectively decode errors of a certain weight that remain after previous
iterations, even if they have a harder–to–decode structure that would make plau-
sibility analysis based on probabilistic assumptions irrelevant.

3 Plausibility Analysis of 1–iteration Parallel Symbol
Flipping Decoder

In this section, we provide an analysis of the single-iteration parallel symbol flip-
ping algorithm. Namely, following the approach of [45], we estimate the probabil-
ity of correcting an error using this decoder under several probabilistic assump-
tions. Furthermore, under the same assumptions, we estimate the probability
of decreasing the error weight to a value that allows correction by the OSML
decoder. This provides an upper bound on the decoding failure rate for the com-
bination of a single iteration of parallel symbol flipping followed by the OSML
decoder.

3.1 Distribution of Counters

Below we give necessary results on probabilistic distributions of syndrome values
and counters σj,i, j ∈ �1, n�, i ∈ �0, q − 1�, required for further analysis of
decoding iteration of proposed parallel symbol–flipping decoder. Our analysis
will rely on several assumptions that are analogous to those used in [5,45].

Assumption 1. Let H be a parity–check of a random QC–MDPC code C in
block–circulant form. It is assumed that each row of H is well modeled as a
sample from uniform distribution over Fn

q .

Proposition 2. Let x ∈ Fn
q , y ∈ Fn

q be uniformly sampled. Let

Am = Pr[〈x, y〉 �= 0 | |supp(x) ∩ supp(y)| = m].
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Then Am can be found recursively using

Am =

{
(1 − Am−1) + q−2

q−1Am−1, m ≥ 1
0, m = 0.

Proof. Without loss of generality, we assume that supp(x) ∩ supp(y) =
{1, . . . , m}. It follows that

Am = Pr

[(
m−1∑
i=1

xiyi = 0

)
, xmym �= 0

]
+ Pr

[(
m−1∑
i=1

xiyi �= 0

)
, xmym �= −

m−1∑
i=1

xiyi

]
=

= Pr

[(
m−1∑
i=1

xiyi = 0

)]
· Pr

[
xmym �= 0 |

(
m−1∑
i=1

xiyi = 0

)]
+

+ Pr

[(
m−1∑
i=1

xiyi �= 0

)]
· Pr

[
xmym �= −α |

(
m−1∑
i=1

xiyi = α �= 0

)]
=

= (1 − Am−1) · 1 + Am−1
q − 2

q − 1
.

Theorem 1. Let H = (hi,j) be a parity–check matrix of (γ, δ)–regular QC-
MDPC code C of length n. Let e ∈ Fn

q be a random error of weight t, and
s = eHT be its syndrome. Then for any row hi of H, such that j ∈ supp(hi)

Pr[sih
−1
i,j = ej | ej �= 0] =

min(δ−1,t−1)∑
i=0

(
δ−1

i

)(
n−δ

t−i−1

)
(
n−1
t−1

) (1 − Ai), (6)

Pr[sih
−1
i,j = ej | ej = 0] =

min(δ−1,t)∑
i=0

(
δ−1

i

)(
n−δ
t−i

)
(
n−1

t

) (1 − Ai), (7)

Pr[sih
−1
i,j = α �= ej | ej �= 0] = (q − 1)−1

(
1 − Pr[sih

−1
i,j = ej | ej �= 0]

)
, (8)

Pr[sih
−1
i,j = α �= 0 | ej = 0] = (q − 1)−1

(
1 − Pr[sih

−1
i,j = ej | ej = 0]

)
. (9)

Proof. Since j ∈ supp(hi), Eq. (3) implies that sih
−1
i,j = ej + h−1

i,j 〈e′, h′〉, where

e′ = e�1,n�\{j}, h′ = Hi,�1,n�\{j}.

One can easily note that

wt(e′) =

{
t, ej = 0
t − 1, ej �= 0

, wt(h′) = δ − 1. (10)

Since sih
−1
i,j = ej if and only if 〈h′, e′〉 = 0, it follows that

Pr[sih
−1
i,j = ej | ej = α] = Pr[〈e′, h′〉 = 0].
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So, using Assumption 1, we obtain

Pr[〈e′, h′〉 = 0] =
min(wt(e′),wt(h′))∑

i=0

Pr[〈e′, h′〉 = 0, |supp(e′) ∩ supp(h′)| = i] =

=
min(wt(e′),wt(h′))∑

i=0

(1 − Ai) · Pr[|supp(e′) ∩ supp(h′)| = i] =

=
min(wt(e′),wt(h′))∑

i=0

(
wt(h′)

i

)(
n−1−wt(h′)
wt(e′)−i

)
(

n−1
wt(e′)

) (1 − Ai).

Substituting (10) into this formula, we obtain (6) and (7). In addition, when
〈e′, h′〉 �= 0, the product 〈e′, h′〉 can assume any non–zero element of Fq with
equal probabilities. Consequently, we obtain (8) and (9).

In the parallel symbol flipping decoder (see Algorithm 2), we propose the
following flipping criterion based on counter values, using three decoding thresh-
olds: th0, thE , and thD. Namely, the position j of the received noisy codeword
z = c + e will be updated to zj − αi if the following conditions are satisfied:

1. σj,i > σj,ω for all ω ∈ �0, q − 1� \ {i}, and thus σ∗
j = σj,i,

2. σ∗
j ≥ thE ,

3. σj,0 < th0,
4. σ∗

j − σj,0 ≥ thD.

Note that conditions 1–4 can be replaced by the single condition

σj = (σj,0, . . . , σj,q−1) ∈ Δth0,thE ,thD
(i),

where Δth0,thE ,thD
(i) is defined as follows

Δth0,thE ,thD
(i) = Δ(i) =

{
(b0, . . . , bq−1) ∈ Zq |

q−1∑
ω=0

bω = γ, bi > max
ω �=i

bz ,

b0 ≤ th0, bi ≥ thE , bi − b0 ≥ thD

}
.

In the following theorem, we will estimate the probability that the flipping cri-
terion accurately determines the positions and values of errors.

Assumption 2. We assume that the probability Pr[σj ∈ Δ(i)] to flip position
j to value zj − αi is a function only of error weight, i.e. it does not depend on
error structure and the location j.

Theorem 2. Let H be a parity–check matrix of (γ, δ)–regular QC-MDPC code
C of length n and dimension k. Let e ∈ Fn

q be a random error of weight t. Define

p1 = Pr[sih
−1
i,j = ej | ej �= 0], p2 = Pr[sih

−1
i,j = α �= ej | ej �= 0],

p3 = Pr[sih
−1
i,j = ej | ej = 0], p4 = Pr[sih

−1
i,j = α �= ej | ej = 0].
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Then the probability that non–zero error value will be estimated correctly is

pe→c(t) = Pr[σj ∈ Δ(i) | ej = αi �= 0] =
∑

(b0,...,bq−1)∈Δ(i)

γ!
b0! . . . , bq−1!

pbi
1 pγ−bi

2 ,

(11)

and the probability of incorrect estimate in non–erroneous position is

pc→e(t) = (q − 1) · Pr[σj ∈ Δ(i) | ej = 0], (12)

where

Pr[σj ∈ Δ(i) | ej = 0] =
∑

(b0,...,bq−1)∈Δ(i)

γ!
b0! . . . , bq−1!

pb0
3 pγ−b0

4 , i �= 0.

Proof. From Assumption 2 it follows that the probability

Pr [σj = (b0, . . . , bq−1) | ej = αi �= 0]

can be modelled using multinomial distribution with parameters(
Pr[sih

−1
i,j = 0 | ej �= 0], . . . ,Pr[sih

−1
i,j = αq−1 | ej �= 0]

)
= (p2, . . . , p2︸ ︷︷ ︸

i−1

, p1, p2, . . . , p2︸ ︷︷ ︸
q−i

).

Hence

Pr [σj = (b0, . . . , bq−1) | ej = αi �= 0] =
γ!

b0! . . . , bq−1!
pbi
1 pγ−bi

2 ,

which implies (11). By similar reasoning, we can also obtain (12).

3.2 Analysis of Parallel Symbol-Flipping Decoder

In this subsection, we employ results of previous subsection to give an plausibility
analysis of the one–step parallel symbol flipping decoder (Algorithm 2) and its
combination with OSML decoder (Algorithm 3).

Algorithm 2: 1–iteration parallel symbol flipping decoder

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n ∈ Fn

q ;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σj ∈ Δ(s) then
ẽj ← ẽj + αs

end
return ẽ

Note that, after each iteration some error positions can be estimated correctly
and some non–erroneous positions can be estimated to be erroneous incorrectly.
In the following proposition, we provide an analysis of the probability that 1-
iteration version of this decoder transforms a random error e of weight t into
some new error e′ of weight t′.
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Proposition 3. Let e be a random error of weight t, then after execution Algo-
rithm 2

1. the probability to correctly estimate u error positions from e is

Pcorrect(t, u) =
(

t

u

)
(pe→c(t))

u (1 − pe→c(t))
t−u

,

2. the probability to corrupt v non–erroneous positions is

Pcorrupt(t, v) =
(

n − t

v

)
(pc→e(t))

v (1 − pc→e)
n−t−v

,

3. the probability to transform e into an error e′ of weight t′ is

Pr(t → t′) =
∑

t−u+v=t′
Pcorrect(t, u)Pcorrupt(t, v).

Proof. Assumption 2 implies that the flip decisions are statistically indepen-
dent and depend solely on the error weight. It follows that Pcorrect(t, u) and
Pcorrupt(t, v) can be modeled as samples from binomial distributions with param-
eters pe→c(t) and pc→e(t) described in Theorem 2, respectively. The last claim
trivially follows from the first two.

Corollary 3. The decoding failure rate of 1-iteration parallel symbol-flipping
decoder can be estimated as follows

DFR1 = 1 − Pr(t → 0).

Note that the new error e′ is not random anymore and, therefore, the same
analysis for further iteration is not possible. However, it is possible to decode e′

using OSML decoder, which rely on no probabilistic assumptions.

Algorithm 3: PSF+OSML

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n ∈ Fn

q ;
for j ← 1 to n do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j ;

if σj ∈ Δ(s) then
ẽj ← ẽj + αs

end
s ← HeT − HẽT;
ẽ ← ẽ + OSML(s);
return ẽ

Thus, we obtain the following corollary:
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Fig. 2. Simulation results of DFR1 for random QC-MDPC [n = 2 · 2339, k = 2339]4–
codes over F4 (l = 2, p = 2339, γ = 37), with decoding thresholds (th0, thE , thD) =
(18, 4, 4)

Corollary 4. Let e be a random error of weight t, let τ be the number of errors
which can be corrected with certainty using OSML decoder. Then DFR of this
combination is upper bounded by

DFR2 = 1 −
τ∑

t′=0

Pr(t → t′).

In Figs. 2, 3, 4, we present the results of numerical simulations and compare
them with the obtained theoretical estimates. Each experiment involved gener-
ating a random key and decoding a random error. For each error weight, the
experiments were conducted until 100 decoding failures were detected or until
108 experiments were performed, whichever occurred first.

We observe that the theoretical estimates of DFR1 and DFR2 closely match
the simulation results, substantiating the accuracy of the obtained theoretical
model.

4 Choice of Cryptosystem Parameters

The choice of parameters of QC–MDPC cryptosystems is determined by the com-
plexity of potential attacks on such cryptosystems. Specifically, the parameters
of the cryptosystem should be chosen in such a way that the best key-recovery
attacks and message-recovery attacks require a sufficiently large number of oper-
ations.

The most effective message–recovery attacks are a family of information
set decoding (ISD) algorithms, designed for decoding random codes. This fam-
ily includes the Prange algorithm, the Lee-Brickell algorithm, Stern algorithm,
BJMM, ball–collision, etc. An overview of ISD–algorithms can be found in [49].
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Fig. 3. Simulation results of DFR2 for random QC-MDPC [n = 2 · 2339, k = 2339]4–
codes over F4 (l = 2, p = 2339, γ = 37, (th0, thE , thD) = (18, 4, 4), and τ = 4). For
each experiment, we generated a random code and then checked if its OSML bound
(see Corollary 2) is ≥ τ . If a code had a lower bound, it was rejected. We chose τ = 4
to reject no more than 50% of keys (the actual rejection rate was 3%).

The average complexity of these algorithms can be directly estimated using a
formula that depends on parameters such as the field size q, code length n, code
dimension k, and the weight of the error w that needs to be found. For non–
binary code direct complexity estimates for the Lee-Brickell and Stern algorithms
can be found in [49], for BJMM in [25], and for ball-collision in [27].

It should be noted that for quasi-cyclic codes of order n′, it has been shown
[41] that the complexity of ISD attacks can be reduced by a factor of

√
n′ com-

pared to codes without any structure. One of the features of QC-MDPC cryp-
tosystems is that for key-recovery attacks, which involve finding low-weight dual
codewords, the best attacks are also based on ISD. This is because the same algo-
rithms can easily be adapted to search for codewords of a given weight instead
of finding an error of a given weight. For quasi-cyclic codes, in this case, it is also
possible to reduce the complexity by a factor of n′ compared to random codes.

Furthermore, we must consider the decoding failure rate since in [26], Q. Guo
et al. proposed a reaction attack that allows the recovery of secret keys in cryp-
tosystems based on binary QC-MDPC codes by exploiting decoding failures. The
original description assumes that l = 2, i.e., n = 2n′, but it can be easily gener-
alized to other cases. This attack is based on the observation that certain error
patterns are more easily decodable than other ones. Namely, let Er be the set of
error patterns of the following form:

Er = {(e,0) ∈ F
2p
2 | e ∈ F

p
2, ∃ distinct s1, s2, . . . , st, s.t. esi

= 1 and
s2i = (s2i−1 + r) mod n′ for i ∈ �1, t/2�}

Let h1 ∈ Fn′
q denote the first row of H1 (see (2)). Let ψ(r) denote the number

of pairs of non-zero positions of h1 placed at distance d. The distance between
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Fig. 4. Simulation results of DFR1 and DFR2 for random QC–MDPC [n = 2 ·
1583, k = 1583]8–codes over F8 (l = 2, p = 1583, γ = 37, (th0, thE , thD) = (18, 4, 4),
and τ = 4)

i and j is computed as min {(i − j) mod n′, (j − i) mod n′}. The set of values
ψ(i), i ∈ �1, �n′/2��, is called the distance spectrum of h1 ∈ Rn. In [26], it was
shown that there is a correlation between the decoding failure rate on errors
from Er and the value of ψ(r). Specifically, the larger ψ(r) is, the lower the DFR
for errors from Er.

Therefore, computing the DFR on errors from Er for different r allows for
the recovery of the distance spectrum of h1 and subsequently h1 itself. Conse-
quently, it becomes possible to reconstruct the secret key of binary QC-MDPC
cryptosystems by exploiting the decoding failures. Below, we demonstrate how
this attack can be applied to the non-binary case as well.

Table 1. Dependency between simulated DFR for random errors e ∈ Ẽr and the values
ψ(r). The results are averaged over 100 random QC–MDPC [4678, 2339]–codes.

ψ(r) 0 1 2 3 4

simulated DFR 0.0203 0.0134 0.0085 0.0059 0.0039

In our experiments, we observed a correlation between the DFR for errors
from Ẽr and the values of ψ(r), where the set Ẽr is defined as follows:

Ẽr = {(e,0) ∈ F2p
q | e ∈ F

p
2, ∃ distinct s1, s2, . . . , st, s.t. esi

�= 0 and

s2i = (s2i−1 + r) mod n′ for i ∈ �1, t/2�}
For instance, we conducted simulations to decode errors of weight t = 84 from
Ẽr using Algorithm 4 for random QC-MDPC codes over F4 with parameters
n′ = 2339, l = 2, and γ = 37, which ensure a minimal cost of ISD-based
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key-recovery and message-recovery attacks of 280 bit operations [9]. The results
obtained from these simulations are presented in Table 1. As shown in the table,
a strong dependency between the distance spectrum and the DFR for errors of
this specific form can still be observed.

Algorithm 4: Sorted Parallel Symbol Flipping

Input: syndrome s = HeT

Output: estimated error ẽ
ẽ ← 0n;
for it ← 1 to 5 do

using (4), (5) compute σj = (σj,0, . . . , σj,q−1) and σ∗
j for all j ∈ �1, n�,

i ∈ �0, q − 1� ;
th ← 20th largest(σ∗

j − σj,0);
for j ← 1 to n do

if σj − σj,0 ≥ max(th, 1) then
i∗ ← argmaxi∈�1,q−1� σi,j ;
ẽj ← ẽj + αi∗;

end
s ← HeT − HẽT;
if s = 0 then return ẽ;

end
return fail ;

Thus, it is possible to reconstruct the support of the secret vector h1 (up to
a cyclic shift) using the following steps:

1. for each r ∈ �1, �n′/2�� numerically estimate DFR for random errors from Ẽr,
and then use the obtained results to recover the distance spectrum ψ of h1;

2. recover supp(h1) using the procedure described in [26] for finding positions
of ones in h1 for the binary case

Once supp(h1) is recovered, it is possible to recover the whole secret key (h1,h2)
in the non-binary case as follows. Let I be an information set such that

|I ∩ supp(h1 | h2)| = 1,

then the matrix H̃−1
:,I H̃ = H−1

:,I H contains the row (h1,h2) or its quasi–circular
shift. When supp(h1) is known, I can be constructed of one element from
supp(h1), n′ − γ elements from �1, n′� \ supp(h1), and randomly guessed γ − 1
elements from �n′ +1, 2n′�. Therefore, the probability of finding a suitable I can
be estimated as follows:

(
n′ − γ

γ − 1

)
·
(

n′

γ − 1

)−1

.

So, the method described above in our experiments allowed reconstruction of
secret key with significantly lower complexity than claimed security level of 280

bit operations.
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It follows that, when choosing the parameters of QC–MDPC cryptosystem
that can be converted into IND–CCA2 secure KEM in non–binary case the design
criteria are the complexity of ISD–based key–recovery, and message–recovery
attacks and small enough decoding failure rate making reaction attacks infea-
sible. Table 2 provides potential parameters of QC-MDPC cryptosystems over
F4, with l = 2 and n′ = p being a prime such that the polynomial xp − 1 has
a low number of irreducible factors. These parameters are given for three dif-
ferent security levels: λ ∈ {128, 192, 256}, which correspond to the complexity
of breaking AES with the corresponding key sizes. All the proposed instances
are designed to have DFR2 ≤ 2−λ (see Corollary 4). Note that the resulting
public key sizes (pksize) are slightly larger than in the binary case (28, 277,
52, 667, 83, 579 respectively [5]). Moreover, increasing the field size to q = 8
with security level λ = 128 yields an estimated public key size of 36, 321 bits
(p = 12, 107, γ = 69, t = 130). Thus, for a fixed security level, public key size
grows with increasing field size. Indeed, to maintain the same or smaller pksize
when increasing q, one must consider shorter MDPC codes. However, due to the
complexity of ISD-based key–recovery and message–recovery attacks, γ and t
are nearly the same across various ranges of q, implying higher-density codes.
Therefore, the increased field size does not appear to compensate for the negative
impact of increased code density.

Table 2. Cryptosystem parameters

q λ p γ t (th0, thE , thD) τ pksize (bits)

4 128 ( 2143 bit operations) 16 651 71 132 (γ, 5, 5) 9 33, 302

4 192 ( 2207 bit operations) 30 971 103 197 (γ, 6, 6) 12 61, 942

4 256 ( 2272 bit operations) 47 903 137 263 (γ, 6, 6) 16 95, 806

5 Conclusion

In this paper, we have studied the guaranteed error-correction capability of the
one-step majority logic (OSML) decoder and provided a plausibility analysis of
the 1-iteration parallel symbol flipping decoder for non-binary QC-MDPC codes.
Through this analysis, we were able to estimate the decoding failure rate (DFR)
of the combined use of these decoders, where parallel symbol flipping is employed
to reduce the error weight to a level at which the OSML decoder can successfully
correct any remaining errors. Consequently, we have obtained worst-case esti-
mates of the DFR, considering some minimalistic and reasonable assumptions.
The accuracy and validity of our theoretical model have been verified through
numerical simulations.

Furthermore, we have demonstrated the importance of considering key-
recovery reaction attacks when designing non-binary QC-MDPC cryptosystems.
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This implies that such cryptosystems need to be constructed with an extremely
low DFR in order to achieve IND-CCA2 security with long-term keys. Finally,
we have provided possible parameters for different NIST security levels of non-
binary QC-MDPC cryptosystems, along with their theoretically estimated DFR.

It should be noted that the resulting key sizes are slightly larger than those
in the binary case. Therefore, it appears that using non-binary QC-MDPC codes
does not offer any benefits in terms of reducing the public-key sizes of IND-CCA2-
secure cryptosystems considering the reaction attack. However, there is a possi-
bility that replacing the quasi-cyclic structure with a more general (non-abelian)
quasi-group structure, specifically replacing circulant matrices with matrices of
multiplication operators in group algebras, could potentially hinder the reaction
attack.

Additionally, by abandoning the requirement of key re-usage, it becomes pos-
sible to consider more sophisticated decoders for cryptosystems resistant against
chosen plaintext attacks (CPA–secure). The study of such decoders can only be
carried out through experimental methods and may provide benefits in terms of
reducing key sizes, as previously explored in [9].

It is worth mentioning that the obtained in this paper theoretical models
could potentially be useful for providing conservative estimates of the DFR of
non-binary codes in telecommunications applications.
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Abstract. In this work, we introduce a new code-based signature
scheme, called FuLeeca, based on the NP-hard problem of finding code-
words of given Lee-weight. The scheme follows the Hash-and-Sign app-
roach applied to quasi-cyclic codes. Similar approaches in the Hamming
metric have suffered statistical attacks, which revealed the small support
of the secret basis. Using the Lee metric, we are able to thwart such
attacks. We use existing hardness results on the underlying problem and
study adapted statistical attacks. We propose parameters for FuLeeca and
compare them to an extensive list of proposed post-quantum secure sig-
nature schemes including the ones already standardized by NIST. This
comparison reveals that FuLeeca is competitive. For example, for NIST
category I, i.e., 160 bit of classical security, we obtain an average signa-
ture size of 1100 bytes and public key sizes of 1318 bytes. Comparing
the total communication cost, i.e., the sum of the signature and pub-
lic key size, we see that FuLeeca is only outperformed by Falcon while
the other standardized schemes Dilithium and SPHINCS+ show higher
communication costs than FuLeeca.

Keywords: Post-Quantum cryptography · Signature scheme ·
Code-Based cryptography · Lee metric

1 Introduction

Due to the threat coming from capable quantum computers, NIST initialized in
2016 a standardization call for post-quantum alternatives.

Since the standardization call several of the submitted cryptosystems have
been broken or removed from the competition as the proposed parameters
seemed inferior to other schemes. Recently, several cryptosystems have been
selected for standardization, both for key encapsulation and digital signatures.
The most competitive and already selected signature schemes in terms of param-
eter sizes (keys and signature sizes) are based on structured lattices, namely
CRYSTALS-Dilithium [28] and Falcon [36]. If signature sizes or signing times
are not a major concern, hash-based signatures like SPHINCS+ [5] provide even
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smaller key sizes. Since it is desirable to have a broader variety of schemes to
choose from, NIST reopened the standardization call for digital signatures.

One possibility to build quantum-secure signature schemes is to rely on
hard problems from coding theory which have been examined over decades
[9,10,15,18]. While classical code-based cryptography considers vector spaces
endowed with the Hamming metric, other metrics, such as the rank metric, have
attracted attention in the context of cryptography and show great potential for
smaller key sizes. To the best of our knowledge, this work marks the first Lee-
based cryptographic primitive (note that the paper [42] introduces a McEliece
framework in the Lee metric, but without a particular code to instantiate it and
thus we do not consider it a cryptographic primitive).

In general, there are two main methods to construct code-based signature
schemes: the first one applies the Fiat-Shamir transform [35] to a code-based
zero-knowledge protocol and the second one is called Hash-and-Sign approach
[14]. The former approach usually suffers from large signature sizes due to large
cheating probabilities within the zero-knowledge protocol. At the same time, the
latter features small signature sizes at the cost of larger public key sizes.

The signature scheme we present in this paper is based on the Hash-and-Sign
approach, which was introduced in 2001 by Courtois, Finiasz and Sendrier [24]
(following the idea of [14]). This so called CFS scheme is a direct adaption of the
McEliece public-key encryption scheme. In fact, the rationale is to start with
an algebraically structured secret code that comes with an efficient decoding
algorithm. The public key is a disguised version of the secret code. To generate a
signature, the message and a salt is hashed until the digest results in a syndrome
of a low-weight error vector. This approach has some potential drawbacks that
have been exploited for attacks in the past: on the one hand, the public code
might be distinguishable from a random code and thus leak information on
the secret code1. On the other hand, the event that the hash of a message is
a syndrome of a low weight error vector is highly unlikely and therefore this
process has to be repeated many times. This causes the signing time of CFS to
be impractically high. Additionally, as the public key is a disguised version of an
algebraically structured code, the public key size of CFS tends to be rather large.
The CFS scheme was the starting point for several Hash-and-Sign signature
schemes, such as [6,23,40], which have not survived cryptanalysis [46,48]. The
code-based scheme WAVE [26] also follows the same blueprint but translated
into the theoretical framework of [39]. Additionally, it is based on the hardness
of finding errors having large Hamming weights instead of small ones, thereby
preventing all aforementioned attacks and so far no successful cryptanalysis has
been mounted.

Code-based signature schemes based on quasi-cyclic structures with low den-
sity codes in the Hamming metric, e.g., [6,47], are vulnerable to statistical key
recovery attacks [27,51]. These attacks have in common that they make use of
the small support of the secret key. An attacker can recover the sparse secret key

1 See for example [31], where the CFS scheme using high rate Goppa codes has been
attacked.



58 S. Ritterhoff et al.

by observing the distribution of many signatures and comparing it to a random
distribution. The use of the Lee metric thwarts such attacks, as even if the Lee
weight of the secret basis is low, the number of non-zero entries is relatively
large.

FuLeeca is based on quasi-cyclic codes in the Lee metric. In a nutshell,
the signature scheme works as follows: the secret key is a quasi-cyclic gener-
ator matrix, where the generators have Lee weight according to the Lee-metric
Gilbert-Varshamov (GV) bound and the public key is its systematic form. Note
that recovering the original generators is as hard as the problem of finding code-
words of given Lee weight, which has been proven to be NP-hard [56]. The
binary hash output of the message m is mapped onto {±1} and is considered
as the target vector c for the main step of the scheme: the signer uses the secret
generators to find a codeword, which is connected to the signature for m, with
two properties: firstly, the Lee weight should be low and secondly, the signum of
the codeword should have many 1s, respectively −1s, in the same places as the
target vector c. This second property, called sign matching, is used to bind the
message to the signature, while the first property is essential for the scheme’s
security.

For our chosen parameters targeting NIST security level I, the public key
and signature sizes are only 1318 bytes and 1100 bytes, respectively. The total
size, which is the sum of the public key and signature sizes is often used for
comparisons, since in certificates one would need to download both. The total
size of FuLeeca is smaller than that of Dilithium [28] and SPHINCS+ [5], and
slightly larger than Falcon [36], which are the three signature schemes currently
selected for standardization by NIST.

A multiple-use signature scheme should have an existential unforgeability
under adaptive chosen message attacks (EUF-CMA) security proof. For code-
based signatures constructed from a zero-knowledge protocol this property is
assured by using a sufficiently large number of rounds with respect to the desired
security level and the cheating probability of the zero-knowledge protocol. How-
ever, the EUF-CMA security proof is notoriously difficult for Hash-and-Sign
approaches. To the best of our knowledge, WAVE [26] is the only known code-
based Hash-and-Sign signature scheme that provides such a proof. Unfortunately,
the achieved public-key size of more than 2 megabytes for 128 bit classical secu-
rity is very large compared to Falcon’s 897 bytes.

The capability of breaking FuLeeca (e.g. recovering the secret key from a
polynomial number of collected signatures) is crucially based on the fact that
signatures do not leak any useful information on the secret key. An EUF-CMA
security proof would immediately follow by assuming that such problem is hard.
However, we feel like such a proof would be immature, given the current state of
affairs. Indeed, such problem is somewhat non-standard, since this problem has
not been used in cryptography before. EUF-CMA security proofs for novel prob-
lems can also lead to concrete breaks. In fact, Durandal [2], a promising code-
base signature scheme with an EUF-CMA security proof, was recently attacked
in [3]. Thus, an EUF-CMA security proof does not prevent from cryptanalysis.
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Although we do not provide such a security proof, we consider attacks exploiting
the leakage via published hash/signature pairs, and design our scheme integrat-
ing countermeasures for those attacks.

This paper is structured as follows: In Sect. 2, we introduce the notation that
is used throughout this paper and recall the required coding-theoretic basics.
In Sect. 3, we describe the proposed Lee metric signature scheme FuLeeca. In
Sect. 4, we analyze the security of the proposed scheme. We first consider the best
known solver to find d codewords of given Lee weight codewords, and secondly we
provide heuristics for EUF-CMA security, which allow the signature scheme to be
used multiple times. Finally, in Sect. 5, we analyze the performance of the scheme.
We also compare the key sizes, the signature size and the computation time
for signing and verification to other post-quantum signature schemes. Section 7
concludes the paper.

Remark. After this paper has been accepted, we have been noticed about an
attack on the scheme.2 Even though the attack is preliminary, i.e., there is no
paper which fully describes the attack, we believe it may have an important
impact on FuLeeca. We will describe the idea of the attack and possible coun-
termeasures at the end of the paper in Sect. 6.

2 Preliminaries

2.1 Notation

Throughout this work, we denote by Fp the finite field of order p, where p is a
prime. We often choose to represent this prime field as {−p−1

2 , . . . , 0, . . . , p−1
2 },

which we call the symmetric representation. We denote vectors in bold lowercase
and matrices in bold uppercase letters. We refer to the i-th element of the vector
v by vi and similarly, to the j-th row of a matrix A by aj and we denote the
element in the j-th row and k-th column by aj,k. The identity matrix of size n is
denoted by In. We denote by uppercase letters sets and for a set S ⊂ {1, . . . , n},
we denote by |S| the cardinality and by SC = {1, . . . , n}\S the complement. For
a set S ⊂ {1, . . . , n} of size s and matrix A ∈ F

k×n
p , we denote by AS the k × s

matrix formed by the columns of A indexed by S, similarly for a vector x ∈ F
n
p ,

we denote by xS the vector of length s formed by the entries of x indexed by S.
The sampling of an element a from the uniform distribution over a set K is

denoted by a
$←− K. While the sampling of an element a according to a distribu-

tion χ is given by a
$←− χ and by a slight abuse of notation we denote sampling

of a vector v independently and identically distributed (i.i.d.) from χ by v
$←− χ.

The binary entropy function with parameter p is defined as h2(p) :=
−p log2(p) − (1 − p) log2(1 − p).

2 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/KvIege2EbuM.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/KvIege2EbuM
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2.2 Basic Cryptographic Tools

We denote the security parameter by λ. We use standard definitions of prob-
abilistic polynomial time algorithms. We denote by “Hash” a Hash function in
the perfect random oracle model.

In a digital signature scheme, we have two parties, the signer and the verifier,
and three efficiently computable algorithms: the key generation, the signature
generation and the signature verification. In the key generation, the signer ran-
domly samples a secret key sk and computes and publishes the connected public
key pk. For the signature generation, given a message m, the signer then uses
the secret key sk to compute a signature v. The signer then sends (m,v) to the
verifier. The verifier checks the validity of the signature v for the message m
under the constraints imposed by the scheme using the public key in the sig-
nature verification step. An adversary might try to construct a valid signature,
either using just the knowledge of the public key or after having observed sev-
eral signatures corresponding to different messages. The adversary should only
succeed with negligible probability, e.g., < 2−λ.

2.3 Lee-Metric Codes

An [n, k] linear code C is a k-dimensional linear subspace of F
n
p and can be

compactly represented either through a generator matrix G ∈ F
k×n
p , which has

the code as its image or through a parity-check matrix H ∈ F
(n−k)×n
p having

the code as its kernel. The elements of a code are called codewords and for any
x ∈ F

n
p , we call s = xH� the syndrome of x. The rate of an [n, k] code is R = k

n .
For an [n, k] linear code C and a set I ⊂ {1, . . . , n}, we denote by CI the set

of restrictions on codewords restricted to the coordinates specified in I. We say
that I ⊂ {1, . . . , n} of size k is an information set, if |CI | = |C|. As a consequence,
we have that for a generator matrix G, respectively a parity-check matrix H
of the code, GI and HIC are invertible. We say that a generator matrix G,
respectively a parity-check matrix H, is in systematic form (with respect to I),
if GI = Ik, respectively HIC = In−k.

Classically, we endow the vector space F
n
p with the Hamming metric, where

the Hamming weight of a vector v, denoted by wtH(v), is given by the number
of non-zero entries of v. However, for this scheme, we are interested in a different
metric, called the Lee metric.

The Lee weight of an element a ∈ Fp is defined as

wtL(a) := min{a, p − a}, (1)

where the representation of a is chosen to be in {0, . . . , p − 1}. In fact, one can
think of the Lee weight as the L1-norm modulo p. Clearly, the Lee weight of an
element can be at most (p − 1)/2 and therefore, we will denote this value by M .
For a vector v ∈ F

n
p , its Lee weight is defined as the sum of the Lee weights of

its elements, i.e.,

wtL(v) :=
n∑

i=1

wtL(vi). (2)
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Note that, wtH(v) ≤ wtL(v) ≤ MwtH(v) and the average Lee weight of the
vectors in F

n
p is given by (M/2)n.

The Lee weight induces the Lee distance, which we define by dL(x,y) :=
wtL(x − y), for all x,y ∈ F

n
p . For a linear code C we define the minimum Lee

distance as
dL(C) = min{wtL(c) | c ∈ C, c �= 0}.

We denote by δ the relative minimum Lee distance, that is δ = dL(C)
nM . Let us

denote by VL(p, n, r) the Lee sphere of radius t

VL(p, n, t) := {x ∈ F
n
p | wtL(x) = t},

and by

FL(p, T ) = lim
n→∞

1
n
logp(|VL(p, n, TnM)|)

its asymptotic size. The exact formulas for the size of VL(p, n, t) and FL(p, T )
can be found in [37,56].

Let us denote by A(n, δ) the maximal size of a code in F
n
p of minimum Lee

distance δMn and by

R(δ) = lim sup
n→∞

1
n
logp(A(n, δ)).

The Gilbert-Varshamov (GV) bound in the Lee-metric [4] then states:

R(δ) ≥ 1 − FL(p, δ).

In [21], it was shown that random Lee-metric codes attain with high proba-
bility the Lee-metric GV bound, i.e., a random code has with high probability
a relative minimum Lee distance δ such that R(δ) = 1 − FL(p, δ). For the con-
sidered quasi-cyclic code of rate 1/2, the corresponding minimum Lee distance
δ of codes on the GV bound will only depend on p and is thus denoted by δGV

p .
If C ∈ F

n
p is a random code of dimension k, we can also compute the expected

number of codewords of a given Lee weight w as

|VL(p, n, w)|pk−n.

3 System Description

In this section, we describe how FuLeeca works.
For our scheme we represent the elements of Fp as

{
−p − 1

2
, . . . , 0, . . . ,

p − 1
2

}

for p > 3 prime and n ∈ N even. As usual, we write M for the maximal Lee
weight in Fp, that is M = p−1

2 . We define a function sgn(x), that gives us the
sign of an element in Fp.
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Definition 1 (Signum). For x ∈ Fp =
{−p−1

2 , . . . , 0, . . . , p−1
2

}
let

sgn(x) =

⎧
⎪⎨

⎪⎩

0 if x = 0,
1 if x > 0,
−1 if x < 0.

For the symmetric representation of Fp, this corresponds to the common signum
function.

Furthermore, we define a matching function mt(x,y) that compares x and
y and counts the number of symbols that hold the same sign.

Definition 2 (Sign Matches). Let x,y ∈ F
n
p and consider the number of

matches in their sign such that

mt(x,y) = |{i ∈ {1, . . . , n} | sgn(xi) = sgn(yi), xi �= 0, yi �= 0}|.
We are interested in upper bounding the probability of an attacker being

able to reuse any of the previously published signatures. For that, we introduce
a function calculating the probability that a vector and a uniformly random hash
digest (in {±1}n) have μ sign matches. When talking about the security of the
signature scheme, we will usually consider the negative log2 of this probability.

Definition 3 (Logarithmic Matching Probability (LMP)). For a fixed
v ∈ F

n
p and y

$←− {±1}n, the probability of y to have μ := mt(y,v) sign matches
with v is

B(μ,wtH(v), 1/2),

where B(k, n, q) is the binomial distribution defined as

B(k, n, q) =
(

n

k

)
qk(1 − q)n−k .

To ease notation, we write LMP(v,y) = − log2(B(μ,wtH(v), 1/2)).

Note that this function can be efficiently approximated via additions and sub-
tractions of precomputed values of log2(x!), i.e., using a look-up table.

In [11], the authors computed the marginal distribution of entries where
vectors are uniformly distributed in VL(p, n, w). Let E denote a random variable
corresponding to the realization of an entry of x ∈ F

n
p . As n tends to infinity,

we have the following result on the distribution of the elements in x ∈ F
n
p .

Lemma 4 ([11, Lemma 1]). For any x ∈ Fp, the probability that one entry of
x is equal to x is given by

pw(x) =
1

Z(β)
exp(−β wtL(x)),

where Z(β) =
∑p−1

i=0 exp(−β wtL(x)) denotes the normalization constant and β

is the unique solution to w =
∑p−1

i=0 wtL(i)pw(x).
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Definition 5 (Typical Lee Set). For a fixed weight w, let pw(x) be the prob-
ability from Lemma 4 of the element x ∈ Fp. Then, we define the typical Lee set
as

T (p, n, w) =
{
x ∈ F

n
p | xi = x for f(pw(x)n) coordinates i ∈ {1, . . . , n}} ,

for a rounding function f . That is the set of vectors, for which the element x
occurs f(pw(x)n) times.

In principle, f could be simply chosen as the rounding function. This would,
however, mean that the elements of T (p, n, w) do not have Lee weight w in
general. This effect is particularly evident when moderate values w are picked,
for which the number of occurrences would be rounded to zero for many field
elements.

Therefore, to obtain a closer approximation of the target weight, we design f
as follows: if the expected number of occurrences for a symbol x ∈ Fp according to
pw(x)n is at least 1, we always round down. If, however, the element x is expected
to occur at most once, we round up or down according to a threshold τ . This τ
allows us fine control over the Lee weight of the vector x ∈ T (p, n, w) ⊂ F

n
p . We

choose this value such that the vector used to generate the secret key has a Lee
weight as close to the GV bound as possible.

3.1 Key Generation

The key generation of our signature scheme is presented in Algorithm 1. The
basic idea to generate the secret key Gsec is to sample two cyclic matrices A,B ∈
F

n/2×n/2
p of Lee weight wkey = δGV

p n, where A has to fulfill the extra property
of being an invertible matrix. Note that this property is satisfied for random
matrices with large probability. However, as A is a cyclic matrix of a sampled
from the typical Lee set and symmetric in 0, A is not invertible as is. Therefore,
the sign of each coefficient in a is randomly flipped such that a is not symmetric
in 0 anymore. The public key is obtained by computing the row reduced Echelon
form of Gsec, referred to as Gsys. The public key is then formed by the non-trivial
part of Gsys, which we denote by T .

Algorithm 1: Key Generation
Input: Prime p, code length n, security level λ, Lee weight wkey

1 Choose a, b
$←− T (p, n/2, wkey/2).

2 Randomly flip each coefficient’s sign in a

3 Construct cyclic matrix A ∈ F
n/2×n/2
p from all shifts of a. A needs to be

invertible. If this is not the case, resample a according to Line 1.
4 Construct cyclic matrix B ∈ F

n/2×n/2
p from all shifts of b.

5 Generate the secret key Gsec =
(
A B

) ∈ F
n/2×n
p .

6 Calculate the systematic form Gsys =
(
In/2 T

)
of Gsec with T = A−1B.

Output: public key T , private key Gsec



64 S. Ritterhoff et al.

Note that |T (p, n/2, wkey)|2 corresponds to the cardinality of our key space.
In order to prevent brute force attacks, this cardinality needs to be larger than
2λ.

3.2 Signature Generation

Note that most of the Hash-and-Sign schemes require the Hash of a message to
be a syndrome for a public parity-check matrix. In this Hash-and-Sign algorithm,
we proceed differently. We use the generator matrix to generate signatures which
are codewords of Lee weight within a fixed range. The connection to the Hash
of the message vector is established through the number of sign matches.

The signature generation takes as its input the message m to be signed and
makes use of the private key Gsec and outputs the signature y. To do so the
algorithm utilizes the secret generators matrix of the code, namely the rows of
Gsec, to find a codeword v = [y,yT ] of Lee weight in [wsig − εs, wsig] with
sign matches achieving a desired LMP between the hash of the message and the
signature codeword. Without having access to a secret basis (the private key),
it is already computationally hard to find codewords in the desired Lee weight
range (even ignoring the LMP). Therefore, this property suffices to ensure that
it is hard to generate fresh codewords that can function as signatures even for
arbitrary hashes.

Loosely speaking, a high LMP value ensures that enough signs of the code-
word v and challenge c match. This establishes the connection between the
signature and the message and prevents reusing codewords contained in previ-
ously published signatures to sign freshly generated hashes. Sampling a fresh salt
if a signing attempt does not work guarantees that any message can be signed
successfully.

In line 1, one takes the secret key Gsec from the Key Generation 1 and stacks
it with its negative −Gsec. In line 2, we hash the input message and get m′,
which will be fed together with a salt to CSPRNG in line 5 to get the target
vector c for the number of sign matches, i.e., the LMP(v, c), where v denotes the
information vector of the signature y. Line 6 assures that c is in {±1}n making
its signs comparable with the signs of vectors in F

n
p . In line 9, we are checking

how many matches the row gi has with the target vector c. We take into account
how many of the signs of c and gi are matching in line 10, where �·	 denotes
truncation. We do this by setting the magnitude in the corresponding position
of the information vector according to the number of matches and the scaling
factor s. Thus, if the row has many matches with the target c, we add this row
multiple times. This results in the information vector x and in line 12 produces
the preliminary codeword v.

Lines 11–33, which we refer to as the Concentrating procedure, are necessary
to ensure that the signatures vary as little as possible in Lee weight and sign
matches.

A keeps track of which rows have already been added or subtracted from the
codeword v and is updated respectively in line 26, 28. In line 14, we initiate the
condition lf with 1, which keeps track of whether the conditions of the signature
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Algorithm 2: Signing
Input: Secret key a, b, message m, threshold ε, signature weight wsig, key

weight wkey, scaling factor s ∈ R, security level λ, number of
concentrating iterations ncon.

Output: salt, signature y.

1 Gsec ← (A, B), G =

(
Gsec

−Gsec

)
with rows g′

i

2 m′ ← Hash(m)
3 repeat
4 salt $←− {0, 1}256 // Simple signing starts
5 c ← CSPRNG(m′ || salt)
6 ci ← (−1)ci ∀i
7 x ← (0, . . . , 0)
8 for i ← 1 to n/2 do
9 xmt = mt(gi, c) − wtH (gi)

2

10 xi = �xmts� // Simple signing ends
end

11 A ← {1, . . . , n} // Allowed row index set
12 ν ← xGsec // Concentrating starts
13 ν ′ ← (0, ..., 0), i′ = 0
14 lf ← 1
15 for j ← 1 to ncon do
16 for i ∈ {1, . . . , n} do
17 ν ′′ ← ν + g′

i

18 if |LMP(ν ′′, c) − (λ + 64 + ε)| ≤ |LMP(ν ′, c) − (λ + 64 + ε)| then
19 if i ∈ A || lf = 0 then
20 ν ′ ← ν ′′, i′ ← i

end
21 w′ ← wtL(ν

′)
22 if w′ > wsig − wkey then

lf ← 0
23 if w′ ≤ wsig then
24 ν ← ν ′

25 if i′ ≤ n
2
then

26 A ← A \ {i′ + n/2}
27 else
28 A ← A \ {i′ − n/2}

end
29 if wtL(ν) ≤ wsig && wtL(ν) > wsig − 2wkey &&

LMP(ν, c) ≥ λ + 64 then
30 [y, yT ] ← ν
31 return salt, encode(y)
32 else
33 go to Line 3 // Concentrating ends

end
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(that is LMP and Lee weight) are satisfied, in which case lf will be set to 0. To
ensure a constant time signature generation, the lines 16–28 will only run up to
ncon times.

To have signatures with much lower Lee weight than other signatures is
undesirable, as this might leak information on the secret key. Thus, the iterative
approach in lines 16–20 is used to add or subtract the generator row minimizing
the absolute difference to the desired LMP. For this, we first add the row g′

i to
v in line 17 and then check in line 18 if the difference of the LMP to the target
is minimized by adding this row. Line 19 checks whether the row g′

i is within
the set of allowed rows, i.e., in A, or if the signature conditions are satisfied, i.e.,
lf = 0. This results in a codeword v′, which is close enough to the target LMP.

Lines 21–24 aim at creating signatures of almost constant Lee weight. For
this, we compute in line 21 the Lee weight w′ of v′ and check in line 22 if it is
close enough to the target Lee weight wsig, i.e., at most has a wkey difference.
In this case, we update the signature condition lf with 0. If the Lee weight w′

is larger than the target, we reset v′ with the initial v in lines 23, 24. Lines
25–28 update the set of rows that are allowed to be added. In fact, if i′ ≤ n/2,
we added a row of Gsec and excluded the same row to be extracted again by
excluding i′ + n/2 from the allowed set A. If i′ > n/2, the added row was from
−Gsec and we exclude i′ −n/2 from A to avoid subtracting the same row again.

After all iterations have been completed, lines 29–33 check whether the result-
ing codeword is within the desired LMP/Lee weight range. If this is the case,
we extract the information vector y from v in line 30 and publish the signature
(salt,encode(y)). The encoding procedure encode(·) is described in Sect. 3.4.
Otherwise, another salt is sampled and the signing procedure restarts.

The scaling parameter s used in line 10 is experimentally determined with
the goal of minimizing the running time of the Signing algorithm. Its value is a
trade-off between the probability of creating a valid signature for a specific hash
value and the amount of iterations within the Concentrating procedure.

3.3 Signature Verification

The verification process is quite simple. In a first step, the received signature y′

is decoded as explained in Sect. 3.4 to obtain the uncompressed vector y. The
verifier computes in lines 3 and 4 c as CSPRNG from the hash of the message
and salt. Then, the verifier checks that v is indeed a codeword of the public
code; this is ensured by computing v as [y yT ] in line 5.

Then, the verifier checks in line 6 that the codeword v has Lee weight
of at most wsig. Finally, one checks whether a sufficient amount of the signs
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of the signature v match the output c of the CSPRNG(Hash(m)||salt), i.e.,
LMP(v, c) ≥ λ + 64. This verification process is given in Algorithm 3.

Algorithm 3: Verification
Input: signature (salt, y′) message m, public key T , Lee weight wsig.

1 y ← decode(y′)
2 m′ ← Hash(m)
3 c ← CSPRNG(m′ || salt)
4 ci ← (−1)ci ∀i
5 v = [y yT ].
6 Accept if the following two conditions are satisfied:
(a) wtL(v) ≤ wsig,
(b) LMP(v, c) ≥ λ + 64.

Otherwise, Reject.
Output: Accept or Reject

3.4 Encoding and Decoding

The coefficients that constitute a signature before encoding follow a Gaussian-
like distribution centered at zero. This allows to reduce the signature size by
compressing the signature and encoding it in a bitstring. For that, we use the
same approach as proposed in the Falcon signature scheme [36]. That is, each
coefficient is converted into its signed representation and split into a tail and
head. The coefficient’s sign bit is concatenated with the uncoded tail, as this tail
is approximately uniformly distributed and thus cannot be compressed efficiently.
The remaining bits in the coefficients head are then encoded in a 0k1 fashion,
that is a sequence of k zeroes and a one, where k is the value of the head.

4 Security Analysis

In this section, we assess the security of FuLeeca. The analysis consists of three
parts. We begin by considering the generic solvers for finding codewords of given
Lee weight. The second part describes known attacks and our countermeasures.
The third part discusses the applicability of lattice reduction algorithms to solve
the hard computational problems underlying this system. Considering all men-
tioned attacks, we determine the presented parameters to achieve the security
levels required by NIST.

4.1 Hardness of Underlying Problem and Generic Solvers

The adversary can attempt to recover the secret key from the public key, which is
known as a key recovery attack. For FuLeeca, this is equivalent to finding any of
the rows of the secret generator matrix, which are of weight wkey. Alternatively,
the attacker can try to forge a signature directly without knowledge of the secret
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key. Forging a signature of FuLeeca is, therefore, equivalent to finding a codeword
of given Lee weight that satisfies both the number of required matches and the
weight restriction.

Hence, both attacks require solving instances of the finding a codeword of
given Lee weight problem, which is formally defined as follows.

Problem 6 (Finding Codeword of Given Lee Weight). Given H ∈ F
(n−k)×n
p and

w ∈ N find a c ∈ F
n
p such that cH� = 0 and wtL(c) = w.

This problem has first been studied in [42]. Problem 6, i.e., finding codewords
of given weight is equivalent to the decoding problem. The decisional version of
this problem has been proven to be NP-complete in [56].

Several algorithms have been proposed to solve this problem, they all belong
to the family of Information Set Decoding (ISD) algorithms.

Remark 7. Note that ISD algorithms can be formulated such that they solve the
syndrome decoding problem, that is: given a parity-check matrix H ∈ F

(n−k)×n
p ,

a syndrome s ∈ F
n−k
p and a target weight t, they find an error vector e ∈ F

n
p ,

such that He� = s� and wt(e) = t. Thus, by setting s = 0, we can use such
solvers to find codewords of weight t. However, note that Prange’s algorithm
[49] searches for a transformed syndrome s′ = sU , for some invertible U and
wants the transformed syndrome to have weight t. As this is never satisfied for
s = 0, Prange cannot be used to find codewords of given weight. However, all
improvements upon Prange, such as Stern/Dumer [29,55], MMT [45], BJMM
[13] try to first enumerate the error vector in the information set and then check
whether the remaining vector has the remaining weight. This can also be applied
to s = 0.

ISD algorithms make use of an information set of the code, where one assumes
a small weight and thus constructs lists of these partial solutions.

Let us quickly recall the main steps of an ISD algorithm. Given H ∈
F
(n−k)×n
p , choose an information set I and bring H into a partial systematic

form. For this, let J be a set of size k + �, which contains the information set I
and transform H as

UHP = H̃ =
(

In−k−� H1

0 H2

)
,

where U ∈ F
(n−k)×(n−k)
p is an invertible matrix and P ∈ F

n×n
p is a permutation

matrix. Thus, we also split the unknown solution c into the indices J and JC ,
i.e., cP � = (c1, c2). Assuming that c2 has Lee weight v, we get the following
two equations:

c1 + c2H
�
1 = 0

c2H
�
2 = 0.
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Thus, we can first solve the second equation, c2H
�
2 = 0 with wtL(c2) = v as

we then can easily check if the missing part c1 has the remaining Lee weight, by
wtL(c2H�

1 ) = w − v.
In [56], several algorithms have been presented to solve the smaller instance,

namely using Wagner’s approach of a set partitioning and using representation
technique. In [22], the authors presented the amortized Wagner’s approach.

Finally, in [12], the authors presented an adaption of these algorithms, taking
into account that a random low Lee weight codeword has the exponential weight
distribution observed in [11]. In these papers, it has been observed that the
amortized BJMM approach attains the lowest computational cost, and thus we
consider this algorithm to compute the security level of the proposed parameters.

For the details of the algorithm, we refer to [12]. Mathematica programs
to compute the computational costs of BJMM are publicly available3 or for
Wagner’s cost here4.

We adapted the program, which computes the classical asymptotic cost c in
the form 2c·n, by considering the cost c/2 on a capable quantum computer (see
[16,22]).

Since we sample the secret vectors for the generator matrix using the typical
Lee sets, i.e., any x ∈ Fp occurs in the sought-after codeword f(pwkey

(x) · n)
number of times, it makes sense to use this information in an ISD algorithm.
However, as shown in [12], the amortized BJMM algorithm outperforms even
the attempts to use restricted balls in the case where we are beyond the unique
decoding radius. Thus, we build our security analysis on this fastest known
algorithm, taking into account also polynomial speedups due to the quasi-cyclic
structure [53].

4.2 Analysis of the Algorithm with Respect to Known Attacks

We assume that an attacker has access to up to 264 signatures for chosen mes-
sages. Such multi-use scenarios require an existential unforgeability under cho-
sen message attack (EUF-CMA) security proof. For Hash-and-Sign approaches,
EUF-CMA security proofs are notoriously difficult. Unfortunately, we cannot
provide one at the moment. We prevented possible leakages and vulnerabilities
via the Concentrating procedure. These considerations are described in more
detail below. Note that the Concentrating procedure at the moment does not
involve a threshold on how close the valid signatures have to be to the target
LMP. This flexibility might be of use in a future EUF-CMA security proof. Addi-
tionally, the scheme does not involve rejection sampling, which might be helpful
to strengthen security, as soon as new attack vectors are known.

Exploiting additional knowledge given to the attacker in the form of signa-
tures is perhaps the most common way to attack Hash-and-Sign based signature
schemes. In fact, information leaked by the signatures has repeatedly been used

3 https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/
Lee-ISD-restricted.nb.

4 https://github.com/setinski/Information-Set-Decoding-Analysis.

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://github.com/setinski/Information-Set-Decoding-Analysis
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to retrieve the private key. To give an example, successful attacks on the schemes
[6,47] have been presented in [27,51]. Specifically, these attacks exploit the fact
that for the proposed schemes in the Hamming metric a basis vector as well
as the signatures have low weight, i.e., a small support. The main problem in
the design of these attacked schemes was that the supports of the published
signatures correlate with the private key. We consider attacks exploiting leakage
via published hash/signature pairs. Such support-based attacks cannot directly
be applied to FuLeeca as in the Lee metric vectors of low Lee weight do not
necessarily have a small Hamming support. In fact, by putting the weight of the
secret generators on the GV bound, we may even treat the resulting code as
a random code. This thwarts Hamming-metric attacks as the secret generators
and the signatures have close to full Hamming weight.

Setting a sufficiently high threshold for the number of required sign matches
prevents that a previously published signature can be directly used to sign
another message. An obvious generalization of this reuse attack is creating linear
combinations of existing signatures to forge new signatures. Note, however, that
with overwhelming probability, the Lee weight of the resulting vector will be too
large to be accepted by the verifier. Hence, such an attack, which is similar to
performing a sieving algorithm known from lattice-based cryptography, requires
complexity which is exponential in the code parameters. Notably, the works
[38,44] show that finding a codeword of lower Lee weight in a quasi-cyclic code
is significantly easier in case the code dimension n/2 is a composite number. In
fact, the security reduces to the codeword finding problem in a quasi-cyclic code
with dimension equal to the smallest factor of n/2. Therefore, for all considered
parameter sets in this work, we choose n/2 to be prime.

Fig. 1. Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two
different keys (left and right) after application of “Simple Signing”.

To avoid leakage via published hash/signature pairs, we integrated a specific
procedure into the signing algorithm, which we refer to as the Concentrating pro-
cedure. In the following, we first examine the signing algorithm without applying
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Fig. 2. Evaluation of 500 signatures for simulated hashes (i.i.d uniform) for two differ-
ent keys after application of both “Simple Signing” and “Concentrating”.
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Fig. 3. Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two
different keys both after application of the “Simple Signing” part of Algorithm 2 and
as well as applying the “Concentrating” procedure (dense clusters in the upper right).

the specified Concentrating procedure. We randomly draw k = 500 salts and mes-
sages and observe the corresponding outputs of the hash-function h1, . . . , hk, i.e.,
h� = Hash(salt||m�). For two different private keys we compare the Lee weights
and sign matches of the corresponding signatures after just applying “Simple
Signing”. Figure 1 shows the relation between the relative Lee weights and the
LMP between the codeword and the target vector, which is the hash of the mes-
sage. Since the signature algorithm effectively correlates the secret key and the
hashes it appears to be possible to learn at least some information about the
secret key based on the distribution of resulting codewords in this Lee weight /
LMP space.

The distribution of signatures for both private keys of Fig. 1 show that the
LMP between hash and codeword, as well as the resulting Lee weights vary sig-
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nificantly and depend on the secret key. Since we are using two different private
keys, we obtain two different signatures for each of the hashes. To exemplify
this, we marked the resulting signatures before the Concentrating procedure for
the same hash (the red dots) but using different private keys in Fig. 1. Even
though we do not provide a specific attack exploiting this behavior, the results
suggest that some information about the private key is leaked and can poten-
tially be exploited to help in the process of recovering the secret key. Figure 2
shows the distribution of LMP values and relative Lee weights for the same
hashes as in Fig. 1 after the Concentrating part of Algorithm 2 has been com-
pleted. The difference between the distributions for the different secret keys shall
be as small as possible to minimize leakage of the secret key. As in Fig. 1, we
marked the signatures for the same hashes and different secret keys, this time
after the Concentrating procedure in Fig. 2. The results show that the Concen-
trating procedure significantly reduces the leakage observable via the relative
Lee weight/LMP map. Figure 3 provides the information observable from Fig. 1
and Fig. 2 within a single plot to further illustrate the effect of the Concentrating
procedure.

Fig. 4. Evaluation of 500 signatures for simulated hashes (i.i.d uniform) before applying
the Concentrating procedure. Unlike the previous figures, all of the displayed signatures
were created using a single key. The vectors are divided into two (nearly equally large)
groups, where the ratio between the log probability (LMP) and the Lee weight is above
average (left), respectively below average (right).

Similarly, we also observe that the shape of the distribution of signatures
in the Lee weight/LMP space does not appear to meaningfully depend on the
distribution of the same signatures after “Simple Signing”. This is demonstrated
in Fig. 4 and 5 where for a single key we apply “Simple Signing” to the same set
of hashes as before but split the signatures into two groups of almost equal size.
For group one (left hand side of Fig. 4), obtaining a codeword with the required
LMP after application of the Concentrating procedure is expected to be easier
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Fig. 5. The same two sets of hashes for the same key (as in Fig. 4) after applying the
“Concentrating” algorithm.

than for group two (right hand side of Fig. 4) since in terms of the ratio between
the log probability (LMP) and the Lee weight all of these are above average,
while group two is below average. In fact, the percentage of hashes in group two
that lead to a valid signature (right hand side of Fig. 5) in the end is slightly
lower than for group one (left hand side of Fig. 5). However, this behaviour is to
be expected for effectively every private key and, thus, this does not reveal any
useful information about any chosen key in particular.

4.3 Lattice-Based Attacks

Since the Lee metric is close to the Euclidean metric used in lattice-based cryp-
tography, one has to study the known combinatorial attacks therein. In fact,
the Lee metric corresponds to the L1-norm, whereas the Euclidean metric corre-
sponds to the L2-norm. It is well known [50] that problems with respect to the
L2-norm can be reduced to problems with respect to any other Lp-norm. This
result translates to: any algorithm solving a problem in the Lp-norm can also be
used to solve the problem in the L2-norm. Or as stated in [50]: “our main result
shows that for lattice problems, the L2-norm is the easiest.” Thus, one can use
the Lee-metric ISD algorithms to solve lattice-based problems in the Euclidean
metric. It is unknown whether the reverse direction is also possible, i.e., whether
there exists a reduction from problems with respect to the L1-norm to problems
with respect to the L2-norm. This is, however, exactly the direction required in
order to use lattice-based algorithms to solve problems in the Lee metric.

To the best of our knowledge, the only sieving algorithm in the L1-norm is
provided in [20], where the authors provide an (1 + ε) approximation algorithm
for the closest vector problem for all Lp-norms that runs in (2 + 1/ε)O(n). The
asymptotic cost of this algorithm does not outperform the considered Lee-metric
ISD algorithms.

Another lattice-based approach is to search for the codeword of the lowest
Euclidean weight, e.g., using the BKZ algorithm [52]. Since we set the weight of
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the secret generators on the GV bound and thus assume that our code behaves
like a random code, it is not known whether the codeword of the lowest Euclidean
weight is also the codeword of the lowest Lee weight, i.e., the secret key. Under
the conservative assumption that this is indeed the case, we estimate the cost of
BKZ for the full rank lattice to be in O (

20.292n
)
. We observe that the parameter

sets we choose attain the target security levels also according to this attack.

Assumption 1: Let us use BJMM to find a vector v of Lee weight wsig. We
assume that finding another vector v′ of equal Euclidean length, i.e., ||v||2 =
||v′||2, by using BKZ has a lower complexity than finding v using BJMM. If
this assumption did not hold, then using BJMM we would be able to achieve a
speedup in solving SVP compared to using BKZ, which would in turn affect all
lattice-based cryptosystems.

Assumption 2: We assume that the complexity of using BKZ to find a vector
having Lee weight less than or equal to wsig is higher compared to using BJMM
for this task.

For a Lee weight of wsig, the consequence of Assumption 2 not holding is that
BKZ would outperform all known ISD algorithms for solving the given weight
codeword finding problem at that weight. BKZ requires orthogonal projections
within the LLL step. However, the L1 norm is not induced by a scalar product
and, therefore, we assume that the best way to use BKZ for finding short vectors
in the L1 norm is to use it for finding short vectors in L2 norm and to hope that
those are also short enough in the L1 norm. We assume that using BJMM to
find short vectors in the L1 norm is more efficient than this.

5 Efficiency and Performance

5.1 Parameters

Due to the quasi-cyclic structure of the private matrix Gsec it is sufficient to
store only one of its rows. Therefore, the size of the private key is in the order
Op(n), where the constant depends on the parameter p.

We take a conservative choice for the NIST security levels [43], as shown in
Table 1.

Table 1. Conservative NIST Categories

NIST Security Level Classical Cost Quantum Cost

I 160 80
III 224 112
V 288 144
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Table 2. Parameters for the proposed signature scheme FuLeeca. All sizes are given in
Bytes.

NIST cat. n s ncon secret key size public key size sign. size

I 1318 0.046 875 100 2636 1318 1100
III 1982 0.035 156 25 90 3964 1982 1620
V 2638 0.023 437 5 178 5276 2638 2130

The chosen parameters and associated data sizes for the NIST categories I,
III, and V are given in Table 2. An extensive comparison of FuLeeca’s commu-
nication costs with other signature schemes is provided in Table 3. Note that
for all parameter sets, we fix p = 65521, ε = 1 and the relative Lee weights
ωsig = wsig/(nM) = 0.03, and ωkey = wkey/(nM) = 0.001437 is on the GV
bound, where we recall that M = �p−1

2 	 is the maximal Lee weight in Fp.
The signature sizes are averaged over 1k generated compressed signatures and

include the size of the salt. For compression, we have adapted the mechanisms as
used in the Falcon signature scheme. Although the signature size is not constant,
it can be padded to obtain a fixed size. As proposed in [30], it is possible to
compress the signatures resulting from Algorithm 2 even further.

5.2 Reason for Choice of Parameters

Recall that the choice to set wkey on the Lee-metric GV bound is necessary to
treat the public code as a random code and thus estimate the BKZ algorithms
cost at 20.292n.

We choose p = 65 521 in order to set the Lee weight wkey of the secret
generators on the Lee-metric GV bound and still have a large enough distance
to the Lee weight of the signatures wsig. In fact, for smaller choices of p and
setting wkey on the Lee-metric GV bound, we cannot find enough sign matches
to signatures of Lee weight wsig with wsig < 0.2. The bound wsig < 0.2 is
mandatory to avoid a polynomial time cost of ISD algorithms.

The parameters are also chosen according to the best-known attack to find a
codeword of given Lee weight given our public key Gpub, namely the quantum,
amortized BJMM algorithm in the Lee metric.

For the choice of p = 65 521, one cannot explicitly compute the cost of the
BJMM algorithm using the program5 due to numerical instabilities. A conser-
vative extrapolation from results for smaller choices of p suggests that the cost
for BJMM at wsig = 0.03 lies at 20.08n. We want to note here that Wagner’s
algorithm implies a cost of 20.5n.

5 https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/
Lee-ISD-restricted.nb.

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
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Table 3. Comparison of post-quantum signature schemes for NIST level I (except for
Dilithium which achieves NIST level II). All sizes are given in kB.

scheme public key size signature size total size variant

Falcon [36] 0.9 0.6 1.5 -
FuLeeca [This work] 1.3 1.1 2.4 -
Dilitihium [28] 1.3 2.4 3.7 -
R-BG [7] 0.1 7.7 7.8 Fast

0.1 7.2 7.3 Short
Rank SDP Fen [32] 0.9 7.4 8.3 Fast

0.9 5.9 6.8 Short
Ideal Rank BG [19] 0.5 8.4 8.9 Fast

0.5 6.1 6.6 Short
PKP BG [19] 0.1 9.8 9.9 Fast

0.1 8.8 8.9 Short
SDItH [34] 0.1 11.5 11.6 Fast

0.1 8.3 8.4 Short
Ret. of SDitH [1] 0.1 12.1 12.1 Fast, V3

0.1 5.7 5.8 Shortest, V3
SPHINCS+ [5] <0.1 16.7 16.7 Fast

<0.1 7.7 7.7 Short
Beu [17] 0.1 18.4 18.5 Fast

0.1 12.1 12.2 Short
Durandal [2] 15.2 4.1 19.3 -
FJR [33] 0.1 22.6 22.7 Fast

0.1 16.0 16.1 Short
GPS [41] 0.1 24.0 24.1 Fast

0.1 19.8 19.9 Short
MinRank Fen [32] 18.2 9.3 27.5 Fast

18.2 7.1 25.3 Short
LESS-FM [8] 10.4 11.6 23.0 Balanced

205.7 5.3 211.0 Short sign
WAVE [26] 3200 2.1 3202 -

We choose the length n according to the BKZ algorithm on full-rank lattices,
which runs with a cost of 20.292n. We aim at the conservative classical security
levels λ1 = 160, λ3 = 224, λ5 = 288 and set n at least such that

2λi + 64 = 0.292n.

This choice is conservative in two ways. Not only the security levels λi have
been chosen conservatively but, also assuming a loss in the security level of λi
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for each of the provided 264 signature vectors is a very conservative approach
within the estimation of the resulting security level. In fact, the parameters are
chosen in such a way that even for the aforementioned loss of λi + 64 bits,
a security level of at least λi bits is maintained for the respective parameter
sets. It is possible to speed up solving the SVP using BKZ by providing the
algorithm with short Euclidean lattice vectors [25]. The obtainable speedup is
upper bounded by the cost of finding the provided lattice vectors since other-
wise, we would have found an improved lattice reduction algorithm. The exact
speedup obtained from integrating the short (codeword) vectors depends on their
Euclidean length. However, we assume that a vector of comparable Euclidean
length can be obtained at a lower cost using BKZ compared to using BJMM.
We conservatively add 64 to account for the maximum possible speedup once
264 signatures have been published.

In fact, we choose n even slightly larger to ensure that we reach the necessary
LMP with good probability. This leads to the following lengths: n1 = 1318, which
ensures that n1/2 = 659 is prime, n3 = 1982, which ensures that n3/2 = 991
and finally n5 = 2638, which ensures that n5/2 = 1319 is prime.

Parameter Choice I. The parameter choice p = 65 521, n = 1318, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads at least to the desired
quantum cost of 280, since BJMM’s algorithm indicates a quantum complexity
of 280 = 20.08n operations and the BKZ algorithm requires at least a classical
complexity of 2384 = 20.292n.

Parameter Choice III. The parameter choice p = 65 521, n = 1982, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads to the desired quantum
cost of 2112, since BJMM’s algorithm indicates a quantum complexity of 2112 =
20.08n operations and the BKZ algorithm requires at least a classical complexity
of 2578 = 20.292n.

Parameter Choice V. The parameter choice p = 65 521, n = 2638, ωsig =
wsig/(nM) = 0.03, ωkey = wkey/(nM) = 0.001437 leads to the desired quantum
cost of 2144, since BJMM’s algorithm indicates a quantum complexity of 2144 =
20.08n operations and the BKZ algorithm requires at least a classical complexity
of 2770 = 20.292n.

5.3 Detailed Performance Analysis

To evaluate FuLeeca, we provide a constant-time C reference implementation that
is publicly available at https://gitlab.lrz.de/tueisec/fuleeca-signature. Both the
hash functions as well as the CSPRNGs were instantiated with SHA-3 primitives.
More precisely, we use the SHA-3 hash functions, as specified in FIPS 202 [54],
with a digest size of 2λ for the message hashing and expand this message digest
together with a salt using the eXtendable-Output Function (XOF) SHAKE256
from the FIPS 202 specification as CSPRNG.

https://gitlab.lrz.de/tueisec/fuleeca-signature
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Table 4 shows the required clock cycles and run time in milliseconds for the
reference implementation of the algorithm averaged over 10 000 runs. These val-
ues were obtained on an Ubuntu 22.04 machine with an Intel Comet Lake (Intel
Core i7-10700) CPU at its base frequency of 2900MHz and 64GB of RAM
using GCC version 11.3.0 and an O3 optimization. In order to generate reliable
results, all dynamic performance enhancement and power management features
like hyper-threading, turbo boost, and dynamic undervolting of the CPU were
disabled. Clock cycles are measured using the internal performance registers of
the CPU using the library libcpucycles6.

Table 4. Runtime of the constant-time reference implementation in kilocycles and
milliseconds on an Intel Comet Lake with a base frequency of 2900MHz averaged over
10000 runs.

NIST cat. Unit Keygen Sign Verify

I kCycles 53 913 1 803 104 1452
ms 18 621 0.49

III kCycles 111 937 2 139 170 2534
ms 38 737 0.86

V kCycles 195 729 11 805 175 3845
ms 67 4070 1.32

6 Preliminary Attack on FuLeeca

After this paper has been accepted, we have been noticed about an attack on the
scheme. Even though the attack is preliminary, i.e., there is no paper that fully
describes the attack, we believe it may have an important impact on FuLeeca.
We now briefly describe how the attack works and possible countermeasures.

The signatures are codewords of the code generated by the secret generator
matrix Gsec, thus, any signature is v = xGsec mod p. The attack experimentally
observes that for the current parameters, no modular reduction is required, that
is v = xGsec, and therefore any signature v leaks the Z-span of Gsec. The lattice
L(Gsec) ∈ Z

n has rank n/2 as it is enough to consider the first n/2 coefficients
of v and recover the lattice L(G′), where Gsec = (G′, G′′).

The attack experimentally observes that the n/2 shortest vectors (in the
Euclidean metric) of the lattice L(G′) are the rows of G′. Thus, using the BKZ
algorithm, these secret generators can be retrieved with a cost in O (

2n/4 0.292
)
,

instead of the predicted O (
2n/2 0.292

)
. Finally, since L(G′) is a circulant lattice,

the attack predicts that the actual cost of retrieving the shortest vectors is sub-
exponential.

6 The implementation is publicly available at https://cpucycles.cr.yp.to/.

https://cpucycles.cr.yp.to/
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Several countermeasures can be employed, such as forcing signatures v which
require modular reduction, that is v = xGsec mod p but v �= xGsec. This coun-
termeasure, however, is expected to lead to much larger weights of the signatures,
which will facilitate forgery attacks. One could use a generator matrix G ∈ F

k×n
p

which is not quasi-cyclic and thus will not lead to a circulant lattice L(G′) and
additionally increase the length n, to cope with the rank k of the lattice. In this
case, however, the public key size will increase drastically to (n − k)k log2(p).
For the NIST category I and k = 1318 = n/2, the public key size is roughly 3.5
MB and thus impractical.

7 Conclusion

In this paper, we proposed a Hash-and-Sign signature scheme based on the
hardness of finding a codeword of given Lee weight. Taking known statistical
attacks into account, we refined the simple signing process to render the scheme
multiple-use. We keep the EUF-CMA security proof as an open problem. The
scheme can be efficiently implemented as it only uses simple arithmetics and is
able to achieve short signatures of 1100 bytes and public keys of 1318 bytes for
the NIST category I security level. This compares favorably to the state-of-the-
art of lattice-based and code-based schemes. Unfortunately, due to the attack
mentioned in Sect. 6, we do not recommend the use of FuLeeca in its current
version.
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Abstract. The Alternating Trilinear Form Equivalence (ATFE) prob-
lem was recently used as a hardness assumption in the design of a digital
signature scheme by Tang et al. using the Fiat-Shamir paradigm. It is a
hard equivalence problem known to be in the class of equivalence prob-
lems that includes, for instance, the Tensor Isomorphism (TI), Quadratic
Maps Linear Equivalence (QMLE) and the Matrix Code Equivalence
(MCE) problems. Due to the increased cryptographic interest, the under-
standing of its practical hardness has also increased in the last couple
of years. Currently, there are several combinatorial and algebraic algo-
rithms for solving it, the best of which is a graph-theoretic algorithm
that also includes an algebraic subroutine.

In this paper, we take a purely algebraic approach to the ATFE prob-
lem, but we use a coding theory perspective to model the problem.
This modelling was introduced earlier for the MCE problem. Using it,
we improve the cost of an algebraic attack against ATFE compared to
previously known ones.

Taking into account the algebraic structure of alternating trilinear
forms, we show that the obtained system has less variables but also
less equations than for MCE and gives rise to structural degree-3 syzy-
gies. Under the assumption that outside of these syzygies the system
behaves semi-regularly, we provide a concrete, non-asymptotic complex-
ity estimate of the performance of our algebraic attack. Our results show
that the complexity is below the estimated security levels of the signa-
ture scheme of Tang et al. and comparable to the currently best graph-
theoretic attack by Beullens.

Keywords: trilinear form · matrix codes · algebraic cryptanalysis

1 Introduction

NIST’s announcement of reopening the call for post-quantum digital signature
proposals specifies the need for shorter signatures whose security is based on
problems outside the realm of structured lattices. One family of problems that
has recently been brought to focus by the quest for alternative signatures is the
family of equivalence problems. The reason behind the rising interest in these
problems is that they typically can be used to construct a cryptographic group
c© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023
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action. Once we have a cryptographic group action, the vectorization problem
is used to build a Sigma protocol that, through the Fiat-Shamir transform, can
be transformed into a digital signature scheme. For instance, if we take the set
comprised of k-tuples of multivariate polynomials together with the group of
isomorphisms acting on this set, then we obtain the cryptographic group action
underlying the IP signature scheme proposed by Patarin [Pat96]. The original
proposition of this scheme is based on the inhomogenous quadratic variant of the
isomorphism of polynomials (IP) problem, that is, the case where the polynomials
have quadratic, linear and constant terms. This subclass of IP turned out to be
easy to solve in practice and hence the IP signature scheme is considered to be
broken [FP06]. However, this would not be case for the IP signature scheme
instantiated with another subclass of IP, such as the homogenous quadratic
variant, also referred to as the Quadratic Maps Linear Equivalence (QMLE)
problem.

Recently, as a result of several optimization techniques [DFG19,BKP20,
BMPS20,BBPS21] Patarin’s construction became attractive again. It was
revived through two new signature schemes based on the hardness of two prob-
lems closely related to QMLE. A signature scheme based on the hardness of the
alternating trilinear form equivalence (ATFE) problem was introduced at Euro-
crypt 2022 [TDJ+22], whereas matrix code equivalence (MCE) was used in the
more recently proposed construction called MEDS [CNP+22].

As the result of this attention, the understanding of the practical hardness
of both ATFE and MCE also significantly improved. An adaptation of Bouil-
laguet et al. graph-theoretic algorithm for the IP problem [BFV13,Bou11] to
the case of ATFE provides an upper bound of Õ(q2n/3) and this one was used
to choose parameters for the scheme from [TDJ+22]. The authors of [TDJ+22]
also analyzed the problem purely algebraically, but their model and assumptions
on the obtained algebraic system gave worse estimates of O(26ωn log2(n)). They
further provided a basic collision based approach similar in nature to the one
in [BFV13] but looking at low rank codewords as in Leon’s algorithm for the
Hamming metric [Leo82,Beu20]. This basic attack was subsequently improved
by Beullens [Beu22] to Õ(qmax (n−5)/2,n−7) for odd n and Õ(qmax (n−4)/2,n−4) for
even n. For some special cases of weak keys, even better results were presented
leading to practical polynomial time attacks. If such weak keys are avoided, the
attack performs better in the odd n case.

Similar approaches were taken into account for the MCE problem which was
analyzed in [RST22,CNP+22]. In [RST22], Bouillaguet et al.’s algorithm was
transformed into an algorithm of complexity Õ(q4n/3). Using a different property
for building the graph, the authors proposed an improvement resulting in a
complexity of Õ(qn). Currently the best algorithms against MCE were developed
in [CNP+22] and they take nontrivial approaches in adapting Leon’s algorithm
to the rank metric and modeling the problem algebraically but from a coding
theory viewpoint. The focus of this work is related to this improved algebraic
modeling.
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Our Contribution. In this work, we take advantage of the relation between
the two equivalence problems – ATFE and MCE to improve the cryptanalysis of
ATFE. Namely, an alternating trilinear form can easily be represented as a matrix
code. A reduction from ATFE to MCE directly follows from the reduction results
in [TDJ+22] and [RST22]. Theorem 2 in [TDJ+22] states that ATFE is tensor
isomorphism complete and thus equivalent to QMLE and Theorem 11 in [RST22]
shows a reduction from QMLE (the bilinear case) to MCE. Specifically, an MCE
instance with a pair of matrix codes derived from a positive ATFE instance, has
a solution of the form (A�,A), where the matrix A is a solution to the original
ATFE instance.

Viewing ATFE as a problem on matrix codes enables us to model the problem
using coding theory techniques. In particular, we model ATFE algebraically in a
nontrivial way using the approach from [CNP+22] for MCE. This model improves
the cost of an algebraic attack compared to previously known models as for
example described in [TDJ+22].

Taking into account the algebraic structure of alternating trilinear forms, we
show that the obtained system has less variables but also less equations than for
MCE. In particular we can model ATFE as a system of n(

(
n
2

) − n) equations in
n2 variables.

For our complexity analysis, we first show the existence of (n+1)(n−1)(n−3)
3

structural degree-3 syzygies in such systems. Then, under the assumption that
outside of these syzygies the system behaves semi-regularly, we show that the
complexity is below the estimated security levels of the signature scheme in
[TDJ+22] for all proposed parameters, and comparable to the currently best
graph-theoretic attack of Beullens [Beu22] against ATFE. Furthermore, we pro-
vide concrete, non-asymptotic, security estimates for other, higher parameter
sets. Our results for the parameters proposed in [TDJ+22] are given in Table 1.

Table 1. Comparison of the concrete complexities (in log2 scale) of different algorithms
for solving ATFE.

n q Tang et al. [TDJ+22] Beullens [Beu22] Our work

9 524287 133 38 90

10 131071 133 122 95

11 65521 138 85 101

Organization. The paper is organized as follows. Section 2 introduces the nec-
essary preliminaries and Sect. 3 reviews state-of-the-art algorithms for solving
ATFE. In Sect. 4, we show how a positive ATFE instance is transformed into a
positive MCE instance and we explore the structure of the matrix codes obtained
from this transformation. In Sect. 5 we show algebraic modellings for the ATFE
problem and in Sect. 6 we give a complexity analysis for solving the systems from
our proposed variant. Finally, in Sect. 7 we show our experimental results.
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2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respectively
the general linear group and the general affine group of degree n over Fq. We
use bold letters to denote vectors a, c,x, . . . , and matrices A,B, . . . . The entries
of a vector a are denoted by ai, and we write a = (a1, . . . , an) for a (column)
vector of dimension n over some field. Similarly, the entries of a matrix A are
denoted by aij . We denote by e1, . . . , en the vectors of the canonical basis of
F

n
q . If b1, . . . ,bn is a basis for a vector space, we denote by b∗

1, . . . ,b
∗
n the

corresponding dual basis. We denote by Sn the symmetric group of degree n.
Finally, we denote the set of all m × n matrices over Fq by Mm,n(Fq).

Cryptographic Group Actions

Definition 1. Let X be a set and (G, ·) be a group. A group action is a mapping

� : G × X → X
(g, x) �→ g � x

such that the following conditions hold for all x ∈ X:

– e � x = x, where e is the identity element of G.
– g2 � (g1 � x) = (g2 · g1) � x, for all g1, g2 ∈ G.

A cryptographic group action commonly refers to a group action that has
some additional properties that are useful for cryptographic applications. To
begin with, there are some desirable properties of computational nature. Namely,
the following procedures should be efficient:

– Evaluation: given x and g, compute g � x.
– Sampling : sample uniformly at random from G.
– Membership testing : verify that x ∈ X.

The crucial property that distinguishes cryptographic group actions is that
the corresponding vectorization problem should be hard:

Problem 1. GroupActionVectorization(X,x1, x2):
Input: The pair x1, x2 ∈ X.
Question: Find – if any – g ∈ G such that g � x1 = x2.

Early constructions using this paradigm are based on the action of finite groups
of prime order, for which the vectorization problem is the discrete logarithm
problem. Notable isogeny-based constructions can be found, for instance, in the
work of Couveignes in [Cou06] and later by Rostovtsev and Stolbunov [RS06].
Recently, a general framework based on group actions was explored in more
detail by [ADFMP20], allowing for the design of several primitives.
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The Alternating Trilinear Form Equivalence Problem. A k-linear form
is a function φ : Fn

q × · · · × F
n
q → Fq that is linear in each argument: if we fix

k−1 arguments, it is linear in the remaining argument. A k-linear form is called

– symmetric: if φ(x1, . . . ,xk) = φ(xπ(1), . . . ,xπ(k)) for any permutation π ∈ Sk;
– skew-symmetric: if φ(x1, . . . ,xk) = φ(xτ(1), . . . ,xτ(k)) for any transposition

τ ∈ Sk;
– alternating if φ(x1, . . . ,xk) = 0 whenever xi = xj for some i �= j.

Every alternating form is skew-symmetric, and if q ≥ 3, every skew-
symmetric form is alternating. In the following, we will focus on the k = 2
and k = 3 cases: bilinear and trilinear forms.

An alternating trilinear form can be represented as
∑

1�i<j<s�n

cijs(e∗
i ∧ e∗

j ∧
e∗

s), where cijs ∈ Fq, ei is the ith canonical basis vector, e∗
i is the linear form

sending u = (u1, ..., un) ∈ F
n
q to ui and ∧ denotes the wedge product. Hence,

e∗
i ∧e∗

j ∧e∗
s is an alternating form sending (x,y, z) to the determinant

∣
∣
∣
∣
∣
∣

xi yi zi

xj yj zj

xs ys zs

∣
∣
∣
∣
∣
∣
.

From this representation it is clear that an alternating trilinear form can be
stored using

(
n
3

)
entries: one for each coefficient cijs.

The alternating trilinear form equivalence problem is formally defined as
follows:

Problem 2. ATFE(n, φ, ψ):
Input: Two alternating trilinear forms φ, ψ.
Question: Find – if any – A ∈ GLn(q) such that ψ(x,y, z) = φ(Ax,Ay,Az).

The ATFE-based group action is defined by the action of the general linear
group GLn(q) on the set of all alternating trilinear forms defined over F

n
q . The

vectorization problem is the ATFE problem defined above. Since ATFE is a hard
problem, we obtain a cryptographic group action.

Array Representation of Bilinear and Trilinear Forms. It is common
to represent a bilinear form as x�My, where M is a matrix where the (i, j)
entry holds the coefficient of the term xiyj . Similarly, trilinear forms can be
represented with a 3-way array where the (i, j, s) entry holds the coefficient
of xiyjzs. In this representation, we implicitly choose e1, . . . , en as a basis for
F

n
q . Alternating bilinear and trilinear forms can be represented in such a way,

although it is not the most efficient representation. The array representation of
an alternating bilinear form is a skew-symmetric matrix with zeros on the main
diagonal. The array representation of a trilinear form has even more redundancy.
Notice from the ’determinant representation’ above that for all permutations of
the index triple (i, j, s), the terms xiyjzs have the same coefficient, up to sign.
Specifically, if we denote by Mijs the (i, j, s) entry of the 3-way array, then
Mijs = −Misj = Msij = −Mjis = Mjsi = −Msji. This is the key property that
makes all of the terms cancel out (and hence the form evaluate to zero) whenever
two arguments are the same.
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The Matrix Code Equivalence Problem. A matrix code is a subspace C
of m × n matrices over Fq endowed with the rank metric defined as d(A,B) =
Rank(A − B). We denote by k the dimension of C as a subspace of Fm×n

q and
its basis by (C(1), . . . ,C(k)) where C(i) ∈ F

m×n
q are linearly independent.

The matrix code equivalence problem is formally defined as follows:

Problem 3. MCE(k, n,m, C,D):
Input: Two k-dimensional matrix codes C,D ⊂ Mm,n(Fq).
Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that for all C ∈ C, it
holds that ACB ∈ D.

Algebraically, the MCE problem corresponds to the problem of finding the
unknown entries of matrices A,B,T such that

D(i) =
∑

1�j�n

tjiAC(j)B, ∀i, 1 � i � n

is satisfied. The matrix T ∈ GLk(q) corresponds to a change of basis of ACB.
The MCE problem also gives rise to a group action: the group GLm(q) ×

GLn(q) acts on the set formed by the k-dimensional matrix codes of size m × n
over the base field Fq. The vectorization problem is MCE, and since this is a
hard problem, we obtain a cryptographic group action.

Exterior Powers and Extending Trilinear Forms. For combinatorial anal-
ysis it can be useful to work with linear maps instead of trilinear maps. To this
end we introduce, for every k, the exterior powers of a vector space. These are
vector spaces generated by wedge products:

∧k
F

n
q := {

∑

i

(x1)i ∧ . . . ∧ (xk)i | (xj)i ∈ F
n
q }.

These vector spaces have dimension
(
n
k

)
. Furthermore, linear transformations

A : Fn
q → F

n
q also act on

∧k
F

n
q by

A(x1 ∧ . . . ∧ xk) = Ax1 ∧ . . . ∧ Axk.

Now each alternating k-linear form φ : Fn
q × . . . × F

n
q → Fq can be extended to

a linear form φ̂ :
∧k

F
n
q → Fq where the map is given by:

φ̂

(
∑

i

(x1)i ∧ . . . ∧ (xk)i

)

=
∑

i

φ ((x1)i, . . . , (xk)i) .

This extension is unique and is in fact a natural bijection between k-linear forms
and linear forms on the kth exterior power. Therefore we will abuse notation and
write φ for both maps. The number of arguments will indicate what is meant.
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This can also be used to partly linearize a k-linear form in the first l argu-
ments. In this case, an alternating k-linear form φ : Fn

q × . . . × F
n
q → Fq can be

extended to a (k − l + 1)-linear form

φ̂ :
∧l

F
n
q ×

k−l times︷ ︸︸ ︷
F

n
q × . . . × F

n
q → Fq

(x1 ∧ . . . ∧ xl,xl+1, . . .xk) �→ φ(x1, . . .xk).

This extension is again unique. Note that this extension has arguments from
different spaces so it is not alternating any more. We will again denote both
forms by φ, the number and type of arguments should indicate what is meant.
For our use case, k = 3, this implies the following equations:

φ(x,y, z) = φ(x ∧ y, z) = φ(x ∧ y ∧ z).

For a more thorough treatment on exterior powers, alternating forms and
multilinear algebra in general we refer the reader to [Gre12].

3 Previous Algorithms for Solving ATFE

The state-of-the-art algorithms against ATFE build upon relatively old algo-
rithms against the Isomorphism of polynomials (IP) [Per05,BFFP11,BFV13].
We present the two most relevant below.

3.1 Graph-Theoretic Algorithm of Bouillaguet et al. [BFV13]

More than 10 years ago, Bouillaguet et al. [BFV13] proposed a birthday-based
graph-theoretic algorithm for solving the Quadratic Maps Linear Equivalence
(QMLE) problem. It is now known that the ATFE problem is polynomial-time
equivalent to the homogeneous version of QMLE [GQ21] implying that this algo-
rithm can be adapted for ATFE.

Specifically, two isomorphic alternating trilinear forms φ and ψ over F
n
q can

be seen as two equivalent homogeneous quadratic maps F and P of n multivari-
ate polynomials in n variables over Fq. Furthermore, these quadratic maps are
alternating and bilinear, so they have a skew-symmetric matrix representation.
The main observation of the algorithm is that once a pair of vectors u,v ∈ F

n
q

is known such that u = Av, this information is enough to find the isomorphism
with low complexity1. Hence, the goal of the algorithm is to find this collision of
points, and different invariants under isomorphism can be used to achieve this.

1 In [BFV13] it was conjectured that this complexity is O(n9) i.e. polynomial. Later
in [Bou11,RST22] this was reevaluated and shown that the conclusion was made
based on some false assumptions. Nevertheless, even though there is no proof of the
polynomial behavior of this step, in practice it does finish in an expected polynomial
time.
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For the case of ATFE, a useful invariant is the rank of the corresponding
bilinear form φv(w, z) = φ(v,w, z) which is preserved under the isomorphism
defined by A. The algorithm now proceeds as a standard collision-search algo-
rithm in two steps: First, create lists Lφ and Lψ of size O(qn/3) elements in F

n
q

of the same rank. Then, find a collision between these lists by calling the efficient
algorithm described above. The total complexity amounts to Õ(q2n/3) where we
neglect the estimated O(n9) cost of finding the isomorphism once one collision
is known.

3.2 Graph-Theoretic Algorithm of Beullens [Beu22]

Beullens [Beu22] improves generically upon the previous approach by further
using clever graph-walking techniques. The basic idea is to populate the lists
faster by exploiting the structure of a particular invariant graph for alternating
trilinear forms. This graph had been studied before and was used for complete
classification of trilinear forms of dimensions n = 8, 9. Namely, the structure of
the graph allows to find points of the same or lower rank in the neighborhood
of an identified point of a specified rank in polynomial time. Thus, one can first
find using brute force a point of higher rank (which is easier than finding one
of lower rank), and then by exploring the neighborhood can find points of lower
rank faster. In total, this costs Õ(q(n−5)/2) for odd n and Õ(q(n−4)/2) for even
n. The second part of the algorithm is as previous and consists of matching each
pair in the lists and checking whether it leads to the unknown isomorphism. This
part has a complexity of Õ(qn−7) for odd n and Õ(qn−4) for even n, and for
larger n, it becomes the dominating part of the algorithm.

4 A Coding Theory Perspective of ATFE

A trilinear form can be seen as a matrix code and the other way around.
For an informal argument for the equivalence between these two objects, we

refer to their algorithmic representation. A matrix code is usually represented
by an array of the matrices forming its basis. This is a 3-way array, no different
than a 3-way array representing a trilinear form as described in Sect. 2. It is then
evident that we can obtain a matrix code from an (alternating) trilinear form
simply by choosing a basis for the code.

Indeed, let φ(i)(x,y) = φ(x,y, ei) be the bilinear form obtained by fixing the
third argument of a trilinear form φ to ei, where ei denotes the ith vector of the
canonical basis (e1, . . . , en). With respect to this basis, a vector a =

∑
αiei can

be written as a = (α1, . . . , αn). If φ is alternating, then φ(i) is also alternating and
it holds that φ(i)(−, ei) = φ(i)(ei,−) = 0. Let C(i) be the matrix representation
of φ(i). Then, (C(1), . . . ,C(n)) is a basis of an n-dimensional matrix code. The
only piece left is to show the relation between the solutions of two such related
instances. Specifically, we show the following.

Lemma 1. Finding a solution of the form (A�, A) to an MCE instance derived
from an ATFE instance is equivalent to finding a solution A to the original ATFE
instance.
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Proof. Let (n, φ, ψ) be an instance of ATFE and let C and D be matrix codes
obtained by applying the above transformation to φ and ψ respectively. If
(n, φ, ψ) is a positive instance of ATFE, then there exists A ∈ GLn(q) such
that ψ(i)(x,y) = ψ(x,y, ei) = φ(Ax,Ay,Aei) for all i ∈ {1, . . . , n}. Since
Aei = (a1i, . . . , ani), we have that ψ(i)(x,y) = φ(Ax,Ay, a1ie1 + · · · +
anien). By linearity, we infer that ψ(i)(x,y) =

∑

1�j�n

ajiφ(Ax,Ay, ej) =
∑

1�j�n

ajiφ
(j)(Ax,Ay). This can be rewritten in matrix form as x�D(i)y =

∑

1�j�n

aji(Ax)�C(j)(Ay), ∀i, 1 � i � n. Since this holds for any (x,y), we

have that
D(i) =

∑

1�j�n

ajiA�C(j)A, ∀i, 1 � i � n. (1)

Taking (C(1), . . . ,C(n)) as a basis of a matrix code C and (D(1), . . . ,D(n)) as a
basis of a matrix code D, from Eq. (1) we infer that

– The codes C and D are equivalent up to a change of basis represented by the
matrix A.

– (A�,A) is a solution to the MCE instance (n, n, n, C,D). 
�
Example 1. Let

φ(x,y, z) = x2y3z1 + 3x2y4z1 + 6x3y2z1 + 6x3y4z1 + 4x4y2z1 + x3y4z1

+ 6x1y3z2 + 4x1y4z2 + x3y1z2 + 6x3y4z2 + 3x4y1z2 + x4y3z2 + x1y2z3

+ x1y4z3 + 6x2y1z3 + x2y4z3 + 6x4y1z3 + 6x4y2z3 + 3x1y2z4 + 6x1y3z4

+ 4x2y1z4 + 6x2y3z4 + x3y1z4 + x3y2z4

and

ψ(x,y, z) = 6x2y3z1 + 6x2y4z1 + x3y2z1 + x4y2z1 + x1y3z2 + x1y4z2

+ 6x3y1z2 + 6x3y4z2 + 6x4y1z2 + x4y3z2 + 6x1y2z3 + x2y1z3 + x2y4z3

+ 6x4y2z3 + 6x1y2z4 + x2y1z4 + 6x2y3z4 + x3y2z4

be two equivalent alternating trilinear forms over F7. The terms that are redun-
dant in a compact representation are written in green. An isomorphism between
these two forms is, for instance,

A =

⎛

⎜
⎜
⎝

6 4 5 1
2 0 2 0
1 2 6 2
5 6 6 1

⎞

⎟
⎟
⎠ .

The corresponding codes are

C =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 3
0 6 0 6
0 4 1 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 6 4
0 0 0 0
1 0 0 6
3 0 1 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 1 0 1
6 0 0 1
0 0 0 0
6 6 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 3 6 0
4 0 6 0
1 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠
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and

D =

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 0 0 0
0 0 6 6
0 1 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 1 1
0 0 0 0
6 0 0 6
6 0 1 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 6 0 0
1 0 0 1
0 0 0 0
0 6 0 0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 6 0 0
1 0 6 0
0 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

We can check that (A�,A) is an isometry from C to D. Note that for such small
parameters (n = 4), there are probably many isometries from C to D.

The codes C and D have several properties intrinsic to their derivation from
alternating trilinear forms. For simplicity, we discuss all of them assuming the
choice of basis specified in the beginning of this section. All of the matrices
forming the basis of C are skew-symmetric with zeros on the main diagonal, hence
they are all of even rank. More generally, we have the following relations between
their entries: C

(s)
ij = −C

(j)
is = C

(j)
si = −C

(s)
ji = C

(i)
js = −C

(i)
sj . The same holds

for the basis of D. The ith column and the ith row is zero in the ith matrix of
the basis, that is, the matrix corresponding to the bilinear form φ(i)(x,y) (resp.
ψ(i)(x,y) for D). These zero column and row vectors, as well as the zeros on
the diagonal, result from the property that in an alternating trilinear form, the
coefficient of a term xiyjzs is zero if any two of the three indices (i, j, s) are the
same. Finally, positive MCE instances derived from positive ATFE instances have
a specific solution. Instead of a pair of unrelated matrices, we have a solution
(A,B) such that A = B�. Hence ATFE can be reduced to a subclass of MCE.

5 Algebraic Algorithms for Solving ATFE

In view of the connection of ATFE to MCE we continue to use the matrix code
representation introduced in the previous section.

5.1 Direct Modelling

A straightforward way to model this problem algebraically is to describe Eq. (1)
as a system of n · (n

2

)
equations in n2 variables, corresponding to the coefficients

of A. The resulting system is of degree three. Alternatively, we can move one
linear transformation to the other side of the equality and obtain

∑

1�j�n

ãjiD(i) = A�C(j)A, ∀i, 1 � i � n, (2)

where ãji is the (j, i) entry of A−1. When we rewrite the system like this, the
number of equations does not change and we double the number of variables, but
we obtain an inhomogenous quadratic system instead of a cubic one. Specifically,
the system is quadratic in the A-variables and linear in the A−1-variables. We
add to this the constraint AA−1 = I, which yields n2 equations that are bilinear
in A-variables and A−1-variables. We will refer to this approach as the direct
modelling. The direct modelling dates back to the work in [FP06] for solving
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the QMLE problem, with further analysis in [BFV13,Bou11]. Recently, it was
analysed as a modelling for MCE in [CNP+22], before a more advanced approach
was introduced. The work in this paper shows that the improved modelling
introduced in [CNP+22] is even more relevant in the ATFE case. We describe
this approach in the following subsection.

A similar modelling was used in [TDJ+22] for the analysis of an algebraic
attack on ATFE. In fact, with the algebraic modelling in [TDJ+22] we obtain a
subset of the equations in the system arising from Eq. (2). Due to the compact
representation of ATFE, the number of equations is

(
n
3

)
+ n2, which is less than

the n · (
n
2

)
+ n2 equations that we obtain from the corresponding matrix rep-

resentation. The complexity of this approach is analysed under the assumption
that the polynomials in the system form a semi-regular sequence. Using the anal-
ysis techniques from [Bar04,BFSY05], the degree of regularity is estimated to
be 3n asymptotically, and the complexity is upper-bounded by O(N3nω), where
N = 2n2 is the number of variables and ω is the linear algebra constant.

In [BDN+23], the direct modelling is improved by adding the equations aris-
ing from ∑

1�j�n

ajiC(i) = (A−1)�D(j)A−1, ∀i, 1 � i � n,

and also A−1A = I. This is called the quadratic with inverse modelling and
results in a system of 2n(

(
n
2

)
+ n) equations in 2n2 variables. In [BDN+23], it

is used as reference for calculating the complexity of an algebraic attack on the
ATFE problem.

5.2 Improved Matrix-Code Modelling

The improved modelling uses ideas from coding theory and its greatest advantage
is that all variables that occur linearly in the direct modelling are not present
in the improved system. In this description of the modelling, we will focus on
MCE instances derived from ATFE instances. For these instances, we obtain a
polynomial system in n2 variables, which is a significant improvement over the
system with 2n2 variables obtained from the direct modelling.

Let G and G′ be the n×n2 generator matrices of C and D respectively. These
generator matrices are obtained by flattening the matrix code, in the following
manner. For a matrix C ∈ Mn,n(Fq), let vec be a mapping that sends a matrix
C to the vector vec(C) ∈ F

n2

q obtained by:

vec : C =

⎛

⎜
⎝

a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n

⎞

⎟
⎠ �→ vec(C) = (a1,1, . . . , a1,n, . . . , an,1, . . . , an,n).

Then G is constructed as follows

G :=

⎛

⎜
⎝

vec(C1)
...

vec(Cn)

⎞

⎟
⎠ .
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The representation using generator matrices constructed as above allows us to
view a matrix code as an Fq-subspace of Fn2

q . We can now describe the improved
modelling in three steps:

– Compute G′⊥, that is, the generator matrix of the dual code of D. This is an
(n2 −n)×n2 matrix containing only constant values, and it can be computed
directly from G′.

– Compute G̃, that is, a generator matrix of D represented as A�CA for A with
unknown coefficients. This is an n × n2 matrix whose entries are quadratic
equations in the A-variables. It can be obtained either by computing matrices
A�CiA and flattening them to obtain the rows of G̃, or by computing G̃ =
G(A ⊗ A).

– Construct the system
G′⊥ · G̃� = 0(n2−n)×n. (3)

Note that the system obtained from Eq. (3) has n(n2 − n) equations, but only
n(

(
n
2

) − n) of them are linearly independent because of the specific structure
of matrix codes obtained from alternating trilinear forms. Recall from Sect. 4
that we have the following relations between the entries of the matrices from
the basis: C

(s)
ij = −C

(j)
is = C

(j)
si = −C

(s)
ji = C

(i)
js = −C

(i)
sj . This shows that any

generator matrix G of a matrix code derived from an alternating trilinear form
has

(
n
2

)
linearly independent columns. For an alternative view of this modelling

that is in the spirit of the minors modellings of MinRank [FdVP08,BBC+20],
we refer the reader to [CNP+22].

5.3 Removing Invalid Solutions

One drawback of the improved modelling is that it does not contain the con-
straint that the solution A has to be an invertible matrix. As a consequence,
the polynomial system can have solutions that do not correspond to solutions to
the ATFE instance, and this effect can significantly slow down the resolution of
the system. Note that the direct modelling does not have this problem because
there are equations describing AA−1 = I.

As an example for invalid solutions we show that all rank-1 matrices A are
a solution to the improved modelling as is. Let A = ab�, then A�CiA =
ba�Ciab�. But we know that Ci is skew-symmetric, hence a�Cia = 0. After
flattening, G̃ = 0 and our system is trivially satisfied.

In the following, we show how we can add the constraint that A has to be
invertible to the improved modelling and remove the invalid solutions without
introducing new variables.

First, we take some equations from the system in Eq. (2) and use them to
express A−1 in terms of A. This is possible because the variables of A−1 appear
only linearly and there are more that n2 equations in the system. Specifically,
we build the Macaulay matrix of the system, choosing an ordering such that
the linear A−1-variables correspond to the leading columns. Then, we find the
reduced row echelon form and take the first n2 equations. They all contain only
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one linear A−1-variable, so the variable can be expressed as a quadratic equation
in A-variables. We use these terms to substitute the A−1-variables in the system
corresponding to AA−1 = I. This approach yields n2 − n homogeneous and n
inhomogeneous cubic equations in the A-variables, that we add to the system
derived from Eq. (3).

Since the new equations are all cubic, they do not influence greatly the
asymptotic complexity of solving the system using a Gröbner basis algorithm
like F4 [Fau99]. However, they are useful for eliminating the invalid solutions
and they improve the running times for practical sizes. Hence, we use these
equations in our experimental work, but we do not consider them in the com-
plexity analysis in Sect. 6, or rather, we assume that they can only improve the
solving complexity. It is commonly known that adding equations improves the
solving time of Gröbner basis algorithms, and our experiments (in Sect. 7) show
that this holds true for our case. In conclusion, we consider the following com-
plexity analysis to be an upper bound, and, asymptotically, we do not expect
it to differ a lot from the complexity analysis that includes the added cubic
equations.

6 Complexity Analysis

The system obtained from Eq. (3) is a quadratic system of n · (
(
n
2

) − n) = n2 ·
n−3
2 equations in n2 variables. With the assumption that this system is semi-

regular, the asymptotic behavior of the degree of regularity can be estimated
using [BFSY05]. Then, with α = n−3

2 , the resulting degree of regularity would
grow as dreg ∼ n

4 . However, as we will shortly see, the system is not semi-regular.

6.1 Non-trivial Syzygies

The exterior powers described in Sect. 2 hold a lot of extra structure. These will
allow us to find extra syzygies in our system. Consider the following vector space:

L(φ) := {ω ∈
∧2

F
n
q | φ(ω, z) = 0, ∀z ∈ F

n
q }.

This vector space can also be realized as the kernel of the following map:

∧2
F

n
q → F

n
q , ω �→

⎡

⎢
⎣

φ(ω, e1)
...

φ(ω, en)

⎤

⎥
⎦ .

This vector space enables a different perspective on the improved matrix-code
modelling. The system described in Eq. (3) is also generated by

{φi(Aω) | 1 ≤ i ≤ n, ∀ω ∈ L(ψ)}. (4)
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Let us now consider the degree-3 elements of the ideal generated by the
system above. This is a vector space generated by elements {ajk · φi(Aω)}. For
any combination (ω, i) there is a specific linear combination given by

∑

j

ajiφj(Aω) = φ(Aω,Aei) = φ(A(ω ∧ ei)).

These linear combinations are all of the form φ(Aθ) where θ ∈ ∧3
F

n
q . More

specifically, 0 = φ(Aθ) = ψ(θ), must hold for every θ, therefore θ ∈ ker(ψ).
With this structure in consideration let us look at the map

ξψ : L(ψ) ⊗ F
n
q → ker(ψ), (ω,x) �→ ω ∧ x (5)

Of special interest are elements in the kernel of ξψ. Let
∑

k ωk ⊗ eik
∈ ker ξψ

then
∑

k

∑

j

ajik
φj (Aω) =

∑

k

φ (Aωk,Aeik
)

= φ

(

A

(
∑

k

ωk ∧ eik

))

= φ (A(0))
≡ 0.

Thus, we get a syzygy for each vector in the kernel of ξψ. Let us call these wedge
syzygies.

Remark 1. Empirical analysis for n up to 25 shows that this map is surjective
for n ∈ {4, 5} ∪ {7, . . . , 25} for random alternating trilinear forms. In the case
n = 6, the image consistently has dimension one lower than ker(ψ). This might be
interesting to look at from a mathematical point of view. However, for practical
considerations we treat this as just a curiosity.

Now using the rank-nullity theorem we obtain the dimension for the module in
degree 3 generated by wedge syzygies:

((
n

2

)
− n

)
· n −

((
n

3

)
− 1

)
=

(n + 1)(n − 1)(n − 3)
3

.

6.2 Hilbert Series and the Solving Degree

We analyze how the system behaves under the block Wiedemann XL algorithm
[Cop94]. For this we need the Hilbert series, the generating function for the
monomials, and the density of our equations. In order to state the Hilbert series
we have to make an assumption about the syzygies appearing in our system.

Assumption 1. The syzygy module of the ideal in the system in Eq. (4) is gen-
erated by the trivial syzygies and the wedge syzygies.
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Using this assumption we can state the Hilbert series for the ideal generated
by our system. To sum-up, we have a system of n2(n−3)

2 quadratic equations
in n2 variables with (n+1)(n−1)(n−3)

3 syzygies in degree 3. First let us give the
generating function for the amount of monomials in each degree as:

M(t) =
1

(1 − t)n2 .

Here we denote by [tα]M the coefficient of tα in the series. Now we can state
the Hilbert series:

H(t) = (1 − t2)
n2(n−3)

2 (1 − t3)− (n+1)(n−1)(n−3)
3 M(t).

Next let us look at the density of the equations in our system. In the modelling
in Eq. (3) we take the product of the matrices G′⊥ and G(A ⊗ A). The dual
code of D is of dimension

(
n
2

) − n in a vector space of dimension
(
n
2

)
. Therefore

it can be represented by a basis of skew-symmetric matrices with n+1 non-zero
entries in the upper-half triangle. Then taking the systematic form of G′⊥, we
obtain 2(n + 1) nonzero entries per row. On the other hand G(A ⊗ A) has a
linear combination of

(
n−1
2

)
terms aijai′j′ in every cell. Therefore, the density

per equation is at most 2(n + 1)
(
n−1
2

)
.

The complexity for using the block Wiedemann XL algorithm is given by:

O
(

min
α,[tα]H≤0

3 · (n − 2)(n − 1)(n + 1) · ([tα]M)2
)

.

Here the factor (n−2)(n−1)(n+1) is the density and 3 is a hidden constant of the
algorithm itself. Now a simple computation will give us the witness degree and
complexities for solving ATFE systems. These are summarized in table Table 2.

7 Experimental Results

To confirm our theoretical findings, we implemented both the direct modelling
described in Sect. 5.1 and the improved modelling with our proposed variant
described in Sect. 5.3. Using this implementation, we perform experiments to
confirm the estimates in our complexity analysis. In addition, we solve random
instances of both modellings to compare the running times.

7.1 Computing Syzygies

In order to find the structure of the system of equations, we ran experiments
to look for syzygies. This was done in two ways. In the first setting, we ran
experiments by computing the entire Macaulay matrix up to certain degrees.
However, since these experiments are computationally heavy we considered also
another approach to be able to tell something for higher n. In the second setting,
we looked at the kernel of ξψ as in Eq. (5), as these generate syzygies.
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Table 2. Solving degrees and complexities for ATFE instances using the improved
matrix-code modelling.

n dwit log2 complexity

8 9 83

9 9 90

10 9 95

11 9 101

12 9 105

13 9 110

14 10 123

15 10 127

20 11 155

25 13 193

30 14 219

35 15 245

40 17 283

Using Macaulay Matrices. We ran experiments on computing the Macaulay
matrices for several degrees and several values for n. For this, we first generate
the system of equations from our modelling. Next, we multiply all equations by
all monomials of the corresponding degrees. Then, we construct the Macaulay
matrix from this and finally, we row reduce in order to find the left nullity. The
left nullity will tell us the amount of syzygies in the corresponding degree. The
predicted amount of syzygies in each degree can be calculated from the Hilbert
series and correspond to the coefficients of the following series:

S(t) = n

((
n

2

)
− n

)
t2 − M(t) + H(t).

For d = 3, 4 this corresponds to

[t3]S =
(n + 1)(n − 1)(n − 3)

3

and

[t4]S = n2 (n + 1)(n − 1)(n − 3)
3

+
(

n
((

n
2

) − n
)

2

)
.

Note that the resources required to run these calculations are high and this limits
the size of n and d in our setup. The results can be found in Table 3.

From the results, we conclude that we correctly predict the amount of syzy-
gies in degree 3 for the n values that we tested (except for n = 6) and that we
correctly predict n = 7, d = 4. As we can see, for n = 5, 6, the predictions for
d = 4 are off and extra syzygies appear. This is not surprising as for n = 5 and
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Table 3. Experimental syzygies.

n d = 3 d = 4

experiment prediction experiment prediction

5 16 16 906 700

6 72 35 4149 2691

7 64 64 7889 7889

8 105 105

9 160 160

10 231 231

11 320 320

n = 6 we know that the automorphism groups are non-trivial. Furthermore, the
matrices φi are of rank at most 4 since they have to be even and at most n − 1.
This might also lead to extra syzygies in degree 4 for these two values of n. The
fact that n = 7 is a correct prediction should give us some reassurance for higher
n.

The Function ξψ . Recall the function ξψ that we introduced in Eq. (5). Since
every element in ker(ξψ) leads to a syzygy in degree three, it is worthwhile to
explore its size. Then we can give a lower bound on the amount of syzygies. As
stated before, we used experiments to verify that this is surjective for random
alternating trilinear forms for n up to 30 (except n = 6). For each of those we
computed the vector space L(ψ). Then we created a list of wedge products of
ω ∈ L(ψ) and canonical basis vectors ei. This results in a list of elements from∧3

F
n
q . These are just 3-way arrays so we vectorized them to vectors of length

n3. Finally, we computed the dimension of the space spanned by these vectors
and verified this is the same dimension as ker(ψ). We conclude that the functions
ξψ are surjective for all these random instances and assume this holds for the
generic case.

7.2 Running Gröbner Basis Computations

As a final step in our experimental work, we solve concrete instances of the sys-
tems arising from the quadratic with inverse modelling from [BDN+23] and the
improved modelling, using the F4 [Fau99] implementation in MAGMA [BCP97].
For parameter sizes n = {5, 6, 7}, we generate 50 random instances of ATFE with
one planted solution. We do this by generating a random trilinear form φ and a
random invertible matrix A, and then applying the group action to compute ψ.
Note that for these parameter sizes (n < 9) we expect to have many solutions
to the systems, so instead of enumerating the solution space, we stop after the
computation of the Gröbner basis.
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Table 4. Running times (in seconds) of F4 using two modellings of ATFE.

n Modelling in [BDN+23] Our modelling

5 64.20 0.64

6 > 200000 679.46

Results shown in Table 4 are an average of 50 runs. All of the instances are
over Fq with q = 3, however, we performed (fewer instances of) these experi-
ments with q = 31 and obtained comparable results. We see that the improved
modelling significantly outperforms the quadratic with inverse modelling, which
is in line with our theoretical findings. For n = 7, the computation for both
variants timed out after 72 h. For n = 6, we were only able to solve the systems
using the improved modelling. However, the authors of [BDN+23] report that
they were able to solve the system for n = 6 in about 25 h with the quadratic
with inverse modelling.
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Abstract. In this paper we use code-based public key encryption
schemes to construct key exchange protocols that are suitable for use
in the presence of transmission bit-errors, such as in mobile ad hoc net-
works.

Building upon the security model by Bellare and Rogaway [2], we let
instances that have matching conversations up to a certain error bound
generate the same session key. In order to prevent an adversary from
trivially attacking the schemes, a relaxed version of matching conversa-
tion is introduced and shown to be well-defined.

To give validity to our model we show that the introduced secu-
rity model can be reduced to the original Bellare and Rogaway-security
model. Additionally, we prove the naive and obvious solution of adding
error correction to a key exchange protocol will not affect the security of
the protocol.

Finally, we introduce the concept of error-resistant asymmetric
schemes and key encapsulations. Then through a modified Fujisaki-
Okamoto-transform we show that a probabilistic error-resistant asym-
metric scheme can be transformed into an error-resistant key encapsula-
tion mechanism (KEM). A key exchange protocol construction based on
the transformed KEM’s is then presented and proven secure.

Keywords: Key Exchange · Unreliable Networks · Error Correction ·
Emergency Networks

1 Introduction

In the key exchange security model by Bellare and Rogaway [2], it is a fun-
damental requirement that two instances with distinct transcripts should not
produce the same session key with more than a negligible probability. If this
property is not preserved then this may give rise to the following trivial attack:
The adversary chooses two instances with distinct transcripts; challenging one
while revealing the session key of the other. If the protocol is as described then
the adversary can select the two instances such that there is a non-negligible
probability that they produce the same session key.
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For everyday network usage (Internet access and WiFi connection), where
communication happens over e.g. a TCP connection1 [4], the perfect transmis-
sion requirement does not introduce problems. For other networks, such as mobile
ad hoc networks (MANET) used in emergency networks by search and rescue
personnel [12,15], TCP is not a suitable protocol due to the expected amount of
errors on the network which drops TCP traffic. Bandwidth constraints and avail-
ability requirements prevent additional error correction to be added or increased.
Instead UDP without checksum [14] may be utilized, to prevent flooding the net-
work with re-transmitted packets, to accept packets containing errors. If the net-
work is mainly used for voice or video streams and a symmetric key has already
been established this is a manageble problem. This is because some block cipher
modes have no error propagation, i.e. single bit-errors in the ciphertext translate
to single bit-errors in the message. Asymmetric encryption or key exchange, on
the other hand, does in general not have this feature. The current solution for
key exchange and distribution in such networks is to use pre-shared symmetric
keys to obtain the desired security goals [17]. We want to improve on this.

1.1 Our Contributions

In this paper, we build upon the security model of Bellare and Rogaway [2]
to gain a security notion that allows some noise on message transcripts. Fur-
thermore, we use a code-based public key encryption scheme to construct a key
exchange protocol that is suitable for use in the presence of bit-errors that occur
during transmission.

We introduce a lower bound, good distance bound e, specifying the minimum
amount of noise that an error-resistant key exchange protocol must tolerate.
Meaning, any instance with transcript less than e apart from the noiseless orig-
inal transcript must generate the intended session key. Since different unreliable
networks have different error distributions and expected error rates, both the
value for good distance bound and the metric used to determine the quantity of
noise is incorporated into the protocol design choices.

The adversary is still allowed full network control, meaning it is in control of
all the noise added to transmitted messages. The ideal transcripts will therefore
not be known to the individual instances nor the simulator running the exper-
iment, making computing the difference between a received transcript and the
ideal transcript an impossible task for anyone but the adversary. This gives the
adversary an avenue for the trivial attack above, and, although meant to be pre-
vented, cannot be observed since the information needed to stop the adversary is
missing. To solve this we remove the requirement specifying that two instances
with matching conversations must generate the same session key. Instead we
say that two instances are loosely related if they have transcripts at most 2e
apart. Thus preventing the adversary from breaking freshness in a way that is
perceivable by the experiment.
1 TCP requires that received packets are error-free. If a packet containing error is

received by the intended recipient over TCP connection a re-transmittal of the spe-
cific data packet will be requested.
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In order to prove the validity of our model we show that by setting the
parameters appropriately the error-resistant security model is equivalent to the
original model by Bellare and Rogaway [2]. We also show that the naive and
obvious solution of adding error correction to a key exchange protocol will result
in a protocol in the modified model that is as secure as the original protocol.

The final part of the paper concerns a protocol specifically designed for a
noisy environment. By assuming the existence of an asymmetric encryption
scheme that will decrypt to the correct message even if the ciphertext con-
tains errors, we develop a modified Fujisaki-Okamoto-transform that preserves
this error-resistant property when transforming the asymmetric scheme into a
key encapsulation mechanism (KEM). The KEM can then be applied in a gen-
eral construction of a KEM-based two-message key exchange protocol with the
additional error resistance inherited from the KEMs. The existence of an error-
resistant asymmetric encryption scheme is easily shown by choosing suitable
parameters of selected code-based schemes like McEliece [13].

1.2 Related Work

As discussed in the previous section the key exchange model presented by Bellare
and Rogaway (BR) [2] is not suitable for noisy network channels. Either opening
for trivial attacks or preventing a correct session key from being established.

The modified BR model presented by Li and Schäge [11] removes the require-
ment of matching conversation to determine partnership and instead considers
the produced session key in order to determine partnering relations. Although
this partnering relation would include our model, it is a highly generalized defini-
tion and does not specify when transcripts should or should not lead to identical
session keys, as done in our model. Additional overlaying restrictions would also
be required to encompass concepts such as noise variation. As a result we have
decided to build directly upon Bellare and Rogaway [2]. This choice also gives
us the benefit of a publicly computable (loose) partnering relation.

Error correcting codes focus on sending messages error-free over networks,
but do not offer security [7]. Some work has been put into combining error correc-
tion codes and encryption [5,16]. They focus, however, on symmetric encryption
and not key exchange as done here. Furthermore, they do not aim to present
a refined security model for unreliable networks, but rather present a specific
protocol. As such, CryptCode [5], when modified for key exchange, can be con-
sidered a use-case for our generalized model, as seen in Theorem 3.

Finally, fully homomorphic encryption has recently introduced a notion of
approximate fully homomorphic encryption that allow approximate decryption
[10], i.e. decryptions that are correct up to a certain error margin. This can be
considered the dual problem of what we wish to achieve; correct decryptions on
ciphertext with some small amount of error.
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2 Prerequisites

Informally, key exchange is an interaction between two entities that, hopefully,
results in the generation of a session key k. The participating parties are called
instances and have either an initiating or a responding role in the exchange. In
order to differentiate between instances they will be numbered as they occur.
The enumeration has no other function than to improve readability and help
with bookkeeping.

Each instance has access to a long term key pair, (pk, sk), consisting of a
public key pk and a secret key sk. Multiple instances may share the same long
term key. Public information relating to the environment and the context of a
key exchange protocol execution is called associated data, ad.

In the following definition, Definition 1, we formally define key exchange. The
definition is based on Bellare and Rogaway [2].

Definition 1. A two-party key exchange protocol KEX = (K,K, I,R) consists
of a set of keys K and the following three algorithms:

– The key generation algorithm K takes no argument as input and outputs a
pair of long-term keys (pk, sk).

– The initiator algorithm I takes associated data, ad, long-term key pair,
(skI , pkI) and a public key, pkR, as input. It exchanges multiple messages
with the responder R before outputting either a session key k or ⊥ to signify
failure.

– The responder algorithm R takes associated data, ad, long-term key pair,
(skR, pkR), and a public key, pkI , as input. It exchanges multiple messages
with the initiator I before outputting either a session key k or ⊥ to signify
failure.

The transcript, tr, of an initiator or responder consists of the sequence of
messages sent and received by the algorithm together with the associated data
and public keys. If both I(ad, skI , pkI , pkR) and R(ad, skR, pkR, pkI) output keys
when run using identical transcript tr the keys will be identical.

Two instances are considered partners if they have matching conversations,
i.e. they have identical transcripts. Matching conversation forms a reflexive rela-
tion between instances, denoted ∼. Any two instances i, j where i ∼ j will
produce the same session key. An instance is implicitly authenticated if it has at
most one partner and that partner should be of the opposite role.

The security of the model is game based, and runs as an experiment hosted
by a simulator, see Fig. 1. The adversary controls the experiment though a series
of queries to the simulator using public information. At some point during run
time the adversary may issue a real or random (ROR) challenge to an instance.
The goal of the adversary is to determine whether the returned key is a real or
fake session key. The adversary wins if it determines correctly.

The adversary may query the simulator to reveal information about specific
instances in order to improve its success rate. An instance is exposed if one of the
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Fig. 1. A real-or-random (ROR) experiment game ExpROR
KEX(A) for key exchange KEX =

(K,K, I,R).

following query combinations has been issued: (1) a session key reveal query has
been sent to itself or its partnered instance; (2) both a long-term key reveal and
state reveal query has been sent to itself or its partnered instance; (3) a challenge
query has been sent to both the instance and its partner. An instance that is
not exposed is fresh. Challenges should only be issued towards fresh instances.

The formal ROR security definition for key exchange is given in Definition 2.

Definition 2. Let KEX be a key exchange protocol, let ∼ be a partnering rela-
tion and let A be an adversary against KEX that can perform at most lp key
generation queries, lt test queries and li execute queries.
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Let Ea be the event that implicit authentication is broken and Ed be the event
that the experiment ExpROR

Ξ (A) terminates with the correct output b without
breaking freshness, or the random bit b′′ when breaking freshness. The advan-
tage of A is then defined as

AdvrorKEX(A) = max
{
2
∣
∣Pr[Ed] − 1

2

∣
∣ , Pr[Ea]

}
.

3 Key Exchange over Unreliable Networks

Unreliable networks are networks where there is a high probability of packet loss,
noise and varying degree of bandwidth and connectivity. Data sent over such
networks may, therefore, be received out of order, partially lost or distorted. We
aim to develop a model for key exchange protocols that can function in such
environments.

3.1 Modeling Noise

In order to modify the security model for key exchange to fit unreliable networks
we need to decide how noise is added to messages in the security game. There
are two choices; either the noise is added by the experiment or by the adversary.

If we require that the security experiment adds the noise we may gain a
more realistic model as the adversary will often be located somewhere on the
network and would only see noisy messages. It is important to point out that
having the security experiment be in charge of adding noise does not prevent the
adversary from successfully adding additional noise in such a way that identical
session keys are generated. On the other hand, allowing the adversary to control
all added noise is a stronger requirement. Not only will the adversary see all
transmitted messages without noise, but it also has full control over how much
noise is added before passing the message to its intended recipient. As there
should be no minimum amount of noise required to use protocols for unreliable
networks, i.e. they should be secure in the standard noise-free environment, we
will use adversarially controlled noise in our model. Similarly, we do not require
the adversary to add noise according to a specified distribution.

Due to the noise added to messages sent over unreliable networks we dis-
tinguish between sent and received messages. We define sent messages as mes-
sages sent from an instance onto the network. The received messages are deliv-
ered from the network to an instance. Sent messages are always as generated
by the instance, while received messages may contain errors. With adversarial-
controlled noise the adversary will always know the sent message and decides
how the received message is altered. A noise free transcript, that is a transcript
that consist only of sent messages, is called an ideal transcript.

The noise added to messages in an unreliable network happens during mes-
sage transmission. As all messages are encoded as bit-streams, any noise on the
message can be interpreted as bit-flips. However, the transmission usually con-
tain error correction on lower levels of the OSI-model [3], even when working
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over unreliable networks. Therefore, depending on the error correction used by
the network, the noise distribution on the received messages may not be uniform.
Protocols should consequently be designed to match the expected noise distri-
bution of the specific network it is intended for. As such, when differentiating
between sent and received messages, depending on the protocol design, it might
not be enough to just calculate the Hamming distance. A specific metric should
in other words be determined during protocol construction. Similarly, the lower
bound of how far apart a transcript can be from the ideal transcript and still
generate the correct session key, should also be protocol-specific.

Definition 3. Let d be a metric and let e > 0. A two-party key exchange protocol
KEX is e-error-resistant over d if any instance i with transcript tr′ produces the
correct session key if d(tr, tr′) ≤ e where tr is an ideal transcript.

The value e is called a good distance bound.

The metric d and the good distance bound e refer to the pattern of errors and
the “amount” of errors an e-error-resistant protocol over d is able to withstand.
We point out that just because an instance can process a protocol-specific tran-
script containing some noise does not mean that an instance is able to interpret
any transcript or message sequence. For instance the sent and received messages
need to be of the correct length and format. Additionally, the public keys and
associated data needs to be as expected, i.e. the transcript needs to be in accor-
dance to protocol. The latter requirement will ensure that error-resistant key
exchange protocols are no more susceptible too man in the middle attacks than
their noise free counterparts.

3.2 Noisy Matching Conversations

The natural next step now is to extend the matching conversation relation to
tolerate noise. We say that two instances i and j of an e-error-resistant KEX over
d have e-matching conversation if their ideal transcripts are identical. It is clear
that e-matching conversations is a valid partnering relation for e-error-resistant
key exchange protocols, as any two instances with identical transcripts will by
Definition 1 generate the same session key. However, with the exception of the
adversary it is hard for anyone, simulator included, to determine partnership
using e-matching conversation since the ideal transcript is unknown, defeating
the purpose of a partnering relation.

From triangular inequality property of metrics we know that if two instances
i, j with transcripts tri, trj have e-matching conversation, then d(tri, trj) ≤ 2e.
The opposite, however, does not necessarily hold; just because two transcripts
happen to be less than 2e apart does not mean they generate the same ses-
sion key, meaning it is not immediately straight forward to use the metric to
determine partnership.

Remember the point of the matching conversation and other partnering rela-
tions is to prevent the adversary from trivially winning the game. It is used to
calculate freshness so that an adversary cannot challenge and reveal information
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pertaining to the same session key. So, if we relax the requirement that part-
nered instances have to generate the same session key to only requiring that they
generate the same session key with non-negligible probability, then we might be
able to use d to say all instances with transcripts closer than some distance are
loosely related. The natural value for this bound is 2e. Note, that due to hash
collisions and the general nature of the birthday paradox we cannot require that
an adversary never will be able to find collisions outside of the ball B2e. The
choice of d and e needs to be carefully selected to give maximum coverage and
prevent transcripts outside of the 2e-ball to generate the correct codeword with
non-negligible probability.

Freshness can then be defined as in Sect. 2, substituting matching conversa-
tions for loosely related instances. We say that an instance that is fresh under
this new notion is e-fresh, dually an exposed instance is e-exposed.

The requirement for implicit authentication remains that an instance i has
no more than one partner of the opposite role, using loosely related as the part-
nering relation. However, we add the additional requirement that the partners
all need to produce the correct session key in order for it to be a valid authentica-
tion break. We call this slightly modified authentication requirement e-implicit
authentication.

As in the original security definition given in Definition 2, let Ed be the event
that an adversary can determine whether it is presented a real or random key.
If the adversary sends a test query to an e-exposed instance, the adversary will
automatically lose. Since we use a freshness notion that uses a loose partnering
relation, the event Ed might in some cases hold even when the same session key
has not been computed. This is different from the original model, but will only
give any adversary a higher advantage, hence it is not a problem when computing
the security of a key exchange protocol.

To summarize, we allow the adversary to add some noise to messages when
running the experiment without affecting key generation, freshness or authenti-
cation. The modifications presented in Definition 3 and freshness is sufficient, so
we can continue using ExpROR

KEX from Fig. 1. The security definition for noisy key
exchange now follows naturally.

Definition 4. Let KEX be an e-error-resistant key exchange protocol with met-
ric d, and let A be an adversary against KEX that can perform at most lp key
generation queries, lt test queries and li execute queries.

Let Ea be the event that e-implicit authentication is broken and Ed be the
event that the experiment ExpROR

Ξ (A) terminates with the correct output b without
breaking e-freshness using metric d. The advantage of A is then defined as

Advrore−KEX(A) = max
{
2
∣
∣Pr[Ed] − 1

2

∣
∣ , Pr[Ea]

}
.

4 The Validity of Our Model

To argue the validity of our model we need to show it fulfills specific requirements.
First, the model has to be applicable for regular key exchange protocols in an
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ideal situation, i.e. a noiseless channel with zero error allowance. In this ideal
setting the adversarial advantage given by our model and that given by the
original Bellare and Rogaway [2] should be indistinguishable. Second, given any
key exchange protocol secure under Bellare and Rogaway [2], by adding enough
error correcting code the corresponding protocol should be secure under the
introduced security model. In other words, we need to show that the intuitive
and canonical way of generating a noise resistant key exchange protocol holds.

4.1 Secure in a Noise-Free Environment

It is clear that any error-resistant key exchange protocol where the good distance
bound is zero does not tolerate noise. The 0-matching conversation requires that
only transcripts identical to the ideal transcripts should generate the correct
session key, and only instances with identical transcripts are considered loosely
related. The strict equality requirements is identical to the original key exchange
protocol from Sect. 2. Note that this holds true independently of choice of d.

4.2 Canonical Extension to a Noisy Environment

We construct a noise-resistant key exchange protocol in the canonical way using
an error correcting code together with a noiseless key exchange protocol. The
constructed protocol is then shown to be just as secure as the noiseless version.

The construction follows naturally by adding a layer of error correction to all
messages before transmission. When the message is received it is first decoded
before being processed. More formally, let (K,K, I0,R0) be any key exchange
protocol for ideal situation, and let (E ,D) be an error correcting code. For noisy
channels we define (K,K, I,R) where

I: Uses I0 as an internal algorithm. Any message sent by I0 is first encoded
using E before sent by I. Any message received by I is decoded using D
before given to I0. If I0, E or D at any point output ⊥ then I stops and
outputs ⊥. Else, when I0 outputs k, I outputs similarly.

R: Uses R0 as an internal algorithm. Any message received by R is decoded
using D before given to R0. Any message sent by R0 is first encoded using
E before sent by R. If R0, E or D at any point output ⊥ then R stops and
outputs ⊥. Else, when R0 outputs k, R outputs similarly.

To prove the construction is secure in the new model, we use the fact that
we can freely determine the metric used. Let x, y be sent or received messages.
We define d∗ as follows

d∗(x, y) =

⎧
⎪⎨

⎪⎩

0 if x = y

1 if D(x) = D(y)
3 otherwise

.

Given transcripts trx and try consisting of messages (x0, x1, x2, · · · , xn) and
(y0, y1, y2, · · · , yn), respectively, we expand d∗ to d as follows:

d(trx, try) = max{d∗(xi, yi) : i = 0, · · · , n}.
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Then only if all sent and received messages in the two transcripts decode to
the same messages, will d output either a zero or a one. By using the metric
d together with good distance bound e = 1, we get that any two instances
are loosely related if they have transcripts no further apart than 2, meaning
they deviate from the same codeword. From here the following statement and
reduction follows straight forward.

Theorem 1. Let (E ,D) be an error correcting code, let KEX0 be a key exchange
protocol for noiseless channels, let d be the metric described above, and let KEX
be the key exchange protocol constructed above using KEX0 and (E ,D).

Then KEX is a 1-error-resistant key exchange protocol over d. Furthermore,
there exists an (li, lp, lt)-adversary A against KEX that uses time at most t if
and only if there exists an (li, lp, lt)-adversary A0 against KEX0 that uses at
most t′ time, where t and t′ are essentially equal and

AdvrorKEX0
(A0) = Advror1−KEX(A).

Proof. By construction and choice of d it follows directly from definition that
KEX is a 1-error-resistant key exchange protocol.

The second part of the proof will be a two way reduction between A and A0.
Given an adversary A0 against KEX0 we create an adversary A against KEX.

A : When A0 outputs b, A outputs b.

Key gen query: When A0 sends a key gen query to KEX0, A send key gen
query to KEX. When A receives public long term key pk from the oracle, it
passes pk to A0.

Execute query: When A0 sends an execute query to KEX0, A sends execute
query to KEX. If A receives confirmation from oracle, this is passed along (if
received) to A0.

Send query: When A0 sends a send query (i,m) to KEX0, A sends a send
query (i, E(m)) to KEX. If A receives (i, c) it passes (i,D(c)) along to A0.

Test query: If A0 sends test query to KEX0, the constructed adversary A will
use this as its challenge as well, passing the query to KEX. When A receives
challenge (i, sb) it forwards the challenge to A0.

Session key reveal: If A0 sends session reveal query to KEX0, the query is
passed to KEX. When A receives key (i, s0) it forwards it to A0.

State reveal: If A0 sends state reveal query to KEX0, the query is forwarded
to KEX. When A receives random tape from KEX, it forwards this to A0.

Long term key reveal: If A0 sends long term reveal query to KEX0, A passes
query along to KEX. When A receives key pair (pk, sk), the key pair is for-
warded to A0.

It is clear that if A0 outputs the correct b then so does A. Furthermore, if a
session is non-fresh in ExpROR

KEX(A) it has identical underlying sent and received
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messages, meaning it is fresh in ExpROR
KEX0

(A0). If A0 breaks implicit authentica-
tion, then A will as well. Thus we have that

Advror1−KEX(A) ≥ AdvrorKEX0
(A0).

Given an adversary A against KEX we create an adversary A0 against
KEX0.

A0 : When A outputs b, A0 outputs b.

Key gen query: When A sends a key gen query to KEX, A0 send key gen
query to KEX0. When A0 receives public long term key pk from the oracle,
it passes pk to A.

Execute query: When A sends an execute query to KEX, A0 sends execute
query to KEX0. If A0 receives confirmation from oracle, this is passed along
(if received) to A.

Send query: When A sends a send query (i, c) to KEX, A0 sends a send query
(i,D(c)) to KEX0. If A0 receives (i,m) it passes (i, E(c)) along to A.

Test query: If A sends test query to KEX, the constructed adversary A0 will
use this as its challenge as well, passing the query to KEX0. When A0 receives
challenge (i, sb) it forwards the challenge to A.

Session key reveal: If A sends session reveal query to KEX, the query is
passed to KEX0. When A0 receives key (i, s0) it forwards it to A.

State reveal: If A sends state reveal query to KEX, the query is forwarded to
KEX0. When A0 receives random tape from KEX0, it forwards this to A.

Long term key reveal: If A sends long term reveal query to KEX, A0 passes
query along to KEX0. When A0 receives key pair (pk, sk), the key pair is
forwarded to A.

Since the challenges for A0 is the same as for A, and the noise will not affect
the session key value, it is clear that if A outputs the correct b then so does A0.
Furthermore, if a session in ExpROR

KEX(A) is fresh then it also fresh in ExpROR
KEX0

(A0)
since the sent and received messages all decode to the same values. Similarly, if
A breaks implicit authentication if follows directly by construction that implicit
authentication is broken in ExpROR

KEX0
(A0).

Combining the two reductions we get

Advror1−KEX(A) = AdvrorKEX0
(A0).

��

5 Tools for Constructing Noisy Key Exchange

Now that we know we have a valid model we desire to develop the tools often used
when designing key exchange protocols. The end goal is to develop a KEA [9]
like construction that transforms an error-resistant asymmetric scheme through
a modified FO-transform [6] into an error-resistant key encapsulation (KEM).
The KEM is then used to construct an error-resistant key exchange protocol.
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5.1 Other Error-Resistant Security Notions

The first step to achieve this is to define what we mean with an error-resistant
asymmetric scheme and likewise an error-resistant KEM.

When working with error-resistant key exchange protocols we wanted a
scheme that would remain functional even when transmitted messages contain
noise. For asymmetric encryption schemes and KEMs this translates to schemes
that should produce the correct output even when ciphertext contains some
small amount of noise.

Definition 5. Let Π = (K, E ,D) be an asymmetric encryption scheme (key
encapsulation mechanism) and let d be a metric. We say that Π is e-error-
resistant over d if any two ciphertexts c1, c2 generated under the same public
key pair (sk, pk) decrypt (decapsulate) to the same message m (key k) when
d(c1, c2) ≤ e.

The security notions that revolve around revealing plain text will still hold in
an unreliable setting. However, all security notions that allow ciphertexts to be
revealed must be altered in order to prevent trivial attacks from the adversary.
What we need is a modified IND-CCA notion that allows an adversary to reveal
ciphertexts as long as they are not to close to the challenged ciphertext.

Since the KEA construction only requires that the KEM is IND-CCA secure,
the following definitions will be defined for KEMs. A very similar definition can
be made for asymmetric schemes as well.

Definition 6. Let Π = (K, E ,D) be a e-error-resistant key encapsulation mech-
anism (KEM) over d, let b ←$ {0, 1}, and let A be an adversary against Π that
has access to encapsulation oracle OE and decapsulation oracle OD. We define
ExpIND-bCCA

e−Π as follows:

ExpIND-bCCA
e−Π

1 : b ←$ {0, 1}
2 : k1 ←$ K

3 : (sk, pk) ← K

4 : (c, k0) ← E(pk)

5 : b′ ← AOD,OE (pk, c, kb)

OE(pk′ 	= pk)

1 : return (c′, k′) ← E(pk)

OD(c′), where d(c, c′) > e

1 : return k′ ← D(sk, c′)

The adversary interacts with ExpIND-bCCA
e−Π , the encapsulation and decapsula-

tion oracles and outputs a guess b′ ∈ {0, 1} when it terminates. A may not query
the decryption oracle on any ciphertext c′ where d(c, c′) ≤ e. Define

Advind-bccae−Π (A) = 2
∣
∣
∣
∣Pr[A = b] − 1

2

∣
∣
∣
∣ .

Π is said to be e-benign IND-CCA secure if Advind-bccae−Π (A) is negligible for
any polynomial time adversary A.
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Instead of determining if the challenge key received is the correct key, another
way that results in breaking the key encapsulation scheme is to find two cipher-
texts that generate the same session key but are further than e apart. It is clear
that if two such ciphertexts are found for a specific key, then when the KEM is
used as part of an error-resistant key exchange, one can be challenged while the
other one queried.

Definition 7. Let Π = (K, E ,D) be an e-error-resistant key encapsulation
mechanism (KEM) over d, and let A be an adversary against Π. Define Expα−dist

Π

as follows:

Expα−dist
Π

1 : (sk, pk) ← K

2 : (c, k) ← E(pk)

3 : (c′, c′′) ← A(pk, k)

The adversary interacts with Expα−dist
Π and outputs a guess (c′, c′′) when it

terminates. Let E be the event that d(c′, c′′) > α and both c′ and c′′ produce k
under valid key pairs (sk, pk) and (sk′, pk). We say that A wins if E occurs and
define

Advα−dist
e−Π (A) = Pr[E].

The advantage of the adversary does of course not mean much in terms of
protocol security if α is chosen to be less than e.

It is also worth pointing out that the secret key used in decryption is
never specified. As long as the adversary finds two distinct ciphertexts c, c′ that
decrypts to c then the decryptions may use different secret keys sk, sk′ as long as
they have the same public keys. The reason for this seemingly strange concept is
that we wish to capture the chance of correct decryption given publicly available
information.

5.2 Error Tolerant FO-Transform

The Fujisaki-Okamoto-transform is one of the most useful tools for developing
key exchange protocols. It takes an asymmetric scheme with low security and
transforms it through two steps into a IND-CCA secure KEM.

A vital part of the FO-transform, and part of why the security increases, is
that it, as part of decryption, preforms a re-encryption in order to check that
the received ciphertext is the same as the ciphertext produced by the decrypted
plain text. If this is not the case the decryption algorithm will return ⊥.

It is clear that this test will fail when used over error-resistant asymmetric
schemes. In order to benefit from the FO-transform we need offer some mod-
ifications where cipher texts within a certain distance from each to other are
allowed.
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Definition 8 (Modified FO-transform). The modified FO-transform takes
a probabilistic e-error-resistant PKE-scheme Π0 = (K, E0,D0) and transforms
it to a deterministic e-error-resistant PKE-scheme Π1 = (K, E1,D1) using the
following encryption and decryption algorithms:

E1(pk,m) = E0(pk,m;G(m))

D1(sk, c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m′ ← D0(sk, c)
c′ ← E0(pk,m′;G(m′))

return m′, if d(c′, c) ≤ e

return ⊥, otherwise

Then using the following approach a deterministic e-error-resistant PKE-
scheme Π1 = (K, E1,D1) can be transformed into an e-error-resistant KEM Π =
(K, E ,D).

E(pk) = (c ← E1(pk,m), k ← H(c,m))

D(sk, c) =

{
H(E1(pk,m′),m′) if m′ ← D1(sk, c)
⊥ if ⊥ ← D1(sk, c)

where m is selected at random and H, G are hash functions in the random oracle
model.

To see that this modified FO-transform has the desired effect we show that
the error-resistance is preserved through each evolution step in the transforma-
tion. The proof of the following theorem closely follows the original FO-transform
proof, the modifications can be found in Appendix A.

Theorem 2. If (K, E0,D0) is e-resistant and OW-CPA secure then (K, E1,D1)
created through the modified FO-transform is e-resistant and OW-PCA secure
and (K, E ,D) is e-benign IND-CCA secure.

To see if the modified FO-transform has the desired effect we additionally
need to determine how easy an adversary may find ciphertexts with colliding
keys for the constructed KEM.

The following lemma indicates the probability that an adversary C can find
two ciphertexts that both decrypt to the same session key independent of the
secret key associated with the public key. It turns out this has no higher success
rate than the adversary performing a lucky guess.

Lemma 1. Let Π = (K, E ,D) be an e-error-resistant KEM produced from an
e-error-resistant PKE Π0 = (K, E0,D0) using the modified FO-transform. Let C
be an adversary against Π. We then have

Adv2e−dist
e−Π (C) ≤ l2H

|K| ,

where lH denotes the number of hash-queries made by C.
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Proof. Assume there exists two secret keys sk, sk′ that have the same public key
pk and produces the same key k under E . Then

D(sk, c) = D(sk′, c′).

This means
H(E1(pk,m),m) = H(E1(pk,m′),m′) (1)

where m = D1(sk, c) and m′ = D1(sk′, c′). We know that if 1 holds then either
m = m′ or there is a collision in H.

If the first case is true this means

d(c, E0(pk,m;G(m)) ≤ e d(c′, E0(pk,m;G(m)) ≤ e,

where it from the triangle inequality property of metrics directly follows that

d(c, c′) ≤ 2e,

which is still smaller the minimum distance required in order for Exp2e−dist to
be satisfied.

This means the only chance the adversary has of success is to find a collision
on H. Due to the birthday bound the advantage of the adversary is bounded by
Adv2e−dist

Π−e (C) ≤ l2H
|K| . ��

5.3 Error-Resistant KEA Construction

We now have both the language and the tools needed to finally build the error-
resistant key exchange from an error-resistant KEM.

Theorem 3. Let Π = (K, E ,D) be an error-resistant KEM generated from an
e-error-resistant PKE over d, i.e. Π0, through the modified FO-transform.

Then the key exchange protocol, KEX, with following initiator and responder
algorithms is an e-error-resistant key exchange protocol over d.

I
1 : (cR, kR) ← E(pkR)

2 : Send cR to R
3 : Await until c′

I received from R
4 : k′

I ← D(skI , c
′
I)

5 : k ← kdf(k′
I , kR, pkR, pkI)

R
1 : Await until c′

R received from I
2 : (cI , kI) ← E(pkI)

3 : Send cI to I
4 : k′

R ← D(skR, c′
R)

5 : k ← kdf(kI , k
′
R, pkR, pkI)
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Furthermore, if A is an adversary against KEX that can perform no state
queries, lh hash queries, lp key generation queries, li execute queries and 1 test
query, then there exists an adversary B against Π such that

Advrore−KEX(A) ≤ lilpAdv
ind-bcca
e−Π (B) +

l2h
|K| .

Proof (Proof Sketch).
In the first scenario the adversary sends a session reveal query to an instance

that has queried kdf on the correct input, i.e. A sends a session reveal query to
an instance with knowledge of the challenged session key. Since the public keys
are part of kdf used to compute the session keys, the only viable instances to
query are those instances that agree on the public keys used during negotiation.
From Lemma 1 we know that given an e-error-resistant KEM the probability
that an adversary may find two ciphertexts at least than 2e-distance apart is
upper bound by l2H

|K| . Since we have good distance bound e we know that any
instances with transcripts closer than 2e are loosely related. As such we have
that the adversarial advantage against scenario one is upper bounded by l2H

|K| ,
otherwise freshness does not hold.

In the second scenario the adversary will have to determine the KEM-
generated keys. There are two ways to determine the KEM-keys ki; either by
breaking Π, or through sufficient queries. Gaining knowledge of both KEM-keys
through queries alone is not possible without breaking freshness. This leaves
breaking the underlying KEM protocol.

A reduction from A to a KEM-adversary B is easily achieved as follows

B on challenge (pk, c, k) : when A returns b, B returns b.
Select an instance j and user j at random.
Run A and simulate KEX according to protocol with the following alter-

ations
if A sends a key generation query for user i:
Send pk to A
if A sends execute query for instance j:
Send (j, c) to A
if A sends test query to instance s:
if the role of s is I and (s = j or s, j are partners):

Send kdf(k, kR, pks, pkR)
if the role of s is R and (s = j or s, j are partners):

Send kdf(kI , k, pkI , pks)

If B selects the correct user and instance that A will query then a correct
answer from A will yield a correct answer for B. If the isntances do not match the
success probability of B is 1

2 . Since the user and instance are chosen completely
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at random without adversary knowledge, the probability that one of the two
cases above happens is 1

luls
. We therefore get that

Adv(A) ≤ lulsAdv(B) +
l2h
|K| .

��

6 Existence of Error-Resistant PKE

Finally, we need to show the existence of e-error-resistant public key cryptosys-
tems. As it turns out, McEliece is an OW-CPA PKE that uses Goppa Codes. By
tweaking the parameters we are able to use the integrated error correcting codes
both to correct against errors as well as still preserve the OW-CPA functionality.

Fig. 2. OW-CPA secure McEliece [8] modified to obtain e-resistance.

Theorem 4. The modified McEliece protocol presented in Fig. 2 is OW-CPA
secure and e-resistant using hamming distance metric.
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Proof. To see that the protocol is e-error-resistant let (sk = (S,G, P, ψ()), pk =
(SGP, t, e)) be an arbitrary key pair. Then for any message m

c = E(pk,m) = mSGP ⊕ z.

Let ε ∈ Bn be a bit-string of length n with hamming weight at most e be an
arbitrary error vector. Decrypting we get

m′ = D(sk, c + ε) = ψ(mSG ⊕ (z ⊕ ε)P−1)S−1,

and since z ⊕ ε has Hamming weight at most t and P is a permutation matrix,
we have that ψ corrects z ⊕ ε. Thus we get

m′ = mSS−1 = m

and we have that the modified McEliece from Fig. 2 is e-error-resistant.
For large enough values of n, t, k and small enough e the original proof of

OW-CPA security holds [8,13]. ��
We now know that an error-resistant PKE does exist and our proposed pro-

tocol does indeed work in theory.
As final remarks we would like to comment on the fact that the final protocol

presented is not a practical solution. Since we cannot assume that all public keys
are stored locally on each device these keys would need to be transmitted and
versified prior to use. The length of said public keys are, however, too large to
be reliably transmitted over unreliable networks [1]. Combining the substantial
key length with the short lifespan of emergency network messages, it would
be more efficient to use a Diffie-Hellman based approach that requires perfect
transmission in these settings. This is, however, an approach that is currently
considered unfeasible. In other words; for KEX to be applicable over unreliable
networks a great deal of work is needed in order to reduce message and key size.

A Proof of Modified FO-transform Theorem 2

The proof sketch below has to be read in correspondence with the original proof
in Hofheinz, Hövelmanns and Kiltz [6]. The only alterations needed, and thus
given, are those of each game-step. The remaining arguments hold with respect
to the new games presented.

Proof (Proof sketch).
PKE OW-CPA =⇒ PKE1 OW-PCA:
The original reduction and proof given by Hofheinz, Hövelmanns and Kiltz [6]
holds for the new game setup presented below when using e-error-resistant PKEs
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for correctness. The only difference between the original setup and the modified
setup is that we allow e amount of noise on every ciphertext instead of requiring
strict equality (Fig. 3).

PKE1 OW-PCA =⇒ KEM⊥ IND-CCA:
The hash oracle for H requires a larger rewrite since we need to make sure the
oracle is consistent when given ciphertext less than e apart. Other than some
bookkeeping this does not infringe on the argument and the original proof by
Hofheinz, Hövelmanns and Kiltz [6] still holds (Fig. 4).

Fig. 3. PKE OW-CPA =⇒ PKE1 OW-PCA. Where B is an adversary of the form
BG(·),PCO(·,·),CV O(·)
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Fig. 4. PKE1 OW-PCA =⇒ KEM⊥ IND-CCA
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Abstract. This paper introduces a new family of CVE schemes built
from generic errors (GE-CVE) and identifies a vulnerability therein. To
introduce the problem, we generalize the concept of error sets beyond
those defined by a metric, and use the set-theoretic difference opera-
tor to characterize when these error sets are detectable or correctable
by codes. We prove the existence of a general, metric-less form of the
Gilbert-Varshamov bound, and show that - like in the Hamming setting
- a random code corrects a generic error set with overwhelming proba-
bility. We define the generic error SDP (GE-SDP), which is contained
in the complexity class of NP-hard problems, and use its hardness to
demonstrate the security of GE-CVE. We prove that these schemes are
complete, sound, and zero-knowledge. Finally, we identify a vulnerability
of the GE-SDP for codes defined over large extension fields and without
a very high rate. We show that certain GE-CVE parameters suffer from
this vulnerability, notably the restricted CVE scheme.

Keywords: Code-based cryptography · Syndrome Decoding Problem ·
generic error set · zero-knowledge scheme · CVE

1 Introduction

In 2016, NIST - recognizing the lack of acceptably secure post-quantum crypto-
graphic protocols - created a competition of sorts, comparing the pros and cons
of proposed algorithms, with the aim on creating a system that is secure against
both classical and quantum computers. Code-based cryptography has become an
attractive post-quantum candidate over the years, as it is believed to present a
computationally difficult problem even against quantum computers [14]. Classic
McEliece [3], a code-based KEM has recently passed into Round 4 of the NIST
Post-Quantum Standardization Competition and remains the candidate based
on the oldest problem in the competition [1].

The Cayrel-Véron-El Yousfi Alaoui (CVE) protocol is a zero-knowledge iden-
tification scheme based on the Syndrome Decoding Problem (SDP) for linear
codes, with competitive computation speed and key sizes in practical instances.
This is a fruitful system; it is quite flexible in that it can be applied to a range
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of different cryptographic primitives and settings. This paper focuses on generic
error sets and the theory of error correctability and detectability based on the set
difference operator contained in [28,29]. Then, to elucidate, we apply this work
to two specific cases: the restricted form of CVE, which takes a different error set
than the standard protocol, and rank-CVE, which takes a different metric. Using
this framework, we generalize the SDP and CVE to generic error sets indepen-
dent of metric, introducing a new, NP-complete SDP based on these arbitrary
errors. From this, we can construct a generic error CVE. We characterize the
parameters of error sets for which this generic SDP has a polynomial-time decod-
ing algorithm, leading to a vulnerability of generic error CVE for certain error
sets. To be clear, we show that CVE based on the restricted SDP is vulnerable
when it is defined for certain parameters of codes without a high rate.

The paper is organized as follows. In Sect. 2, we recall standard coding the-
ory results and present the notation we will use throughout this paper. Section 3
introduces the set difference, an operator from set theory. When this operator
repeatedly acts on a set of generic errors, we show that it will stabilize at a
subspace over a prime field. We introduce the notion of detectability and cor-
rectability using the set difference, resulting in a more general concept than the
standard definition based on balls. These concepts also result in a generalization
of the Gilbert-Varshamov Bound that guarantees the existence of a code cor-
recting an arbitrary error set. Finally, we use the results of this section to prove
that a random code will correct a general error set with a probability that tends
towards one as the code length increases. Section 4 is devoted to complexity.
From the SDP, we define the Generic Error SDP (GE-SDP) and its decisional
variant and provide evidence that they are NP-complete problems. For Sect. 5,
we generalize the zero-knowledge CVE scheme from [15] to generic errors and
prove that it is complete, sound, and zero-knowledge. Paired with the complexity
arguments of the previous section, we obtain strict bounds about the probabil-
ity that an adversary can forge their veracity to a verifier in this generic error
setting. Finally, we devote Sect. 6 to highlighting a vulnerability that results
from this generic definition of detectability and correctability. We show that the
GE-SDP can be solved in polynomial times under certain conditions. We apply
this result to the Restricted Syndrome Decoding Problem (R-SDP) defined in [7]
and show that for certain parameter choices, an adversary can correct the errors
introduced to obfuscate the plaintext in a polynomial-time decoding algorithm.

2 Preliminaries

We introduce the notation used throughout this paper and recall some standard
linear algebra and coding theory results.

Let Fq denote the finite field with q elements, with q = pN a prime power
and F

n
q be the set of n-length vectors over Fq. For E ⊆ F

n
q , let E∗ be E \ {0}.

For a set E ⊆ F
n
q with k elements, let 〈E〉Fp

be the span of E over Fp:

〈E〉Fp
= λ1e1 + λ2e2 + ... + λkek for λi ∈ Fp, ei ∈ E.
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Let Mn be the set of monomial transformations. A monomial transformation
τ : F

n
q → F

n
q is a map that acts on vectors by permuting their entries and scaling

them by non-zero multiples. That is, there exists v ∈ F
n
q \ {0} and σ ∈ Sn, the

symmetric group, such that

τ(x) = (vσ(1)xσ(1), vσ(2)xσ(2), ..., vσ(n)xσ(n)) for all x ∈ F
n
q .

Recall that GLn(Fq) is the set of n × n invertible matrices over the field
Fq, which forms a group under standard matrix multiplication. We define the
stabilizer of a set E ⊆ F

n
q , denoted SE , as the set of invertible matrices that

map E into E, meaning SE = {M ∈ GLn(Fq) | eM ∈ E for all e ∈ E}.
We continue with some basic definitions and results from coding theory, which

may be found in [32].

Definition 1. We say C is an [n, k]-linear code when C is a linear subspace of
F

n
q over Fq of dimension k.

We focus this work on linear codes, and we refer to them simply as codes.
We also assume that C is a code over Fq.

Definition 2. For an [n, k] code C, a generator matrix G ∈ F
k×n
q is a full-rank

matrix where the rows are comprised of a basis of C over Fq. The parity-check
matrix of a code C is a (full-rank) matrix H ∈ F

(n−k)×n
q such that C = {x ∈ F

n
q |

xHt = 0}.
For x ∈ F

n
q , we define the Hamming weight ω(x) to be the number of non-zero

entries in the vector x. This gives rise to the Hamming distance between two
vectors, d(x, y), defined as the weight of their difference ω(x−y). The Hamming
ball with radius r and center x is denoted Br(x), and is defined as the set of
vectors that are distance less than or equal to r from x. While we will not focus
on the Hamming metric in this paper, it is used by tradition in certain definitions
that we will generalize in future sections.

3 Generic Error Sets

In this section, we generalize the concepts of decodability and correctability
with generic error sets beyond any metric. To do that, we need to introduce the
concept of set difference.

Definition 3. For some E ⊆ F
n
q , the set difference of E is ΔE = {e1 − e2 |

e1, e2 ∈ E}.
Since the set E will represent an error set for the purposes of our work, we

assume that 0 ∈ E ⊆ F
n
q .

The following examples demonstrate that the cardinality of the set difference
depends on if the elements themselves are in an arithmetic progression. This is a
result of the Cauchy-Davenport Theorem for restricted sumsets; see [26, Theorem
25] and [27, Theorem 3]. We only use this example to show that the set difference
is not immediate from the set itself and that one must inspect every element in
the worst case to check for arithmetic progression.
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Example 1. Consider A = {1, 2, 3} ⊆ F7, where the elements of A are in an
arithmetic progression modulo 7. We can calculate ΔA = {0, 1, 2, 5, 6}, thus
|ΔA| = 2|A| − 1.

Example 2. On the other hand, the elements of B = {1, 2, 4} are not in an
arithmetic progression. This time, despite having the same cardinality as A in
Example 1, we see that ΔB = {0, 1, 2, 3, 4, 5, 6}, with |ΔB| > 2|B| − 1.

We introduce the concept of Δ-closure of a set E ⊆ F
n
q , meaning the smallest

set that contains E and all the difference sets originating by it.

Theorem 1. For a set E ⊆ F
n
q , the chain E ⊆ ΔE ⊆ Δ2E ⊆ ... stabilizes,

meaning that there exists some k ∈ N such that ΔkE = Δk+1E. In this case,
ΔkE = 〈E〉Fp

.

Proof. The chain stabilizes because we work with a finite sets.
Let x ∈ ΔrE and y ∈ ΔsE for r, s ∈ N with r ≥ s. Then −y ∈ Δr+1E, so

x + y = x − (−y) ∈ Δr+2E. Now for x ∈ ΔrE and α ∈ Fp, then αx ∈ Δr+αE.
From this, we can see that for x, y ∈ ΔkE = Δk+1E, we have that x + y ∈ ΔkE
and αx ∈ ΔkE. Thus ΔkE is an Fp-subspace, so ΔkE ⊆ 〈E〉Fp

.
On the other hand, for all x ∈ ΔrE, we can write x = xr−1 − yr−1 for

xr−1, yr−1 ∈ Δr−1E, so each element is the difference of two elements one step
down on the difference chain. Continuing this, x =

∑|E|
n=1 αnxn for xi ∈ E and

αi ∈ Fp. Thus 〈E〉Fp
⊆ ΔkE, as every element in ΔkE can be decomposed into

a linear combination of elements from E.

Definition 4. For a set E ⊆ F
n
q , the Δ-closure of E is E

Δ

= limk→∞ ΔkE.
We say that a set E ⊆ F

n
q is Δ-closed if E = E

Δ

.

The cardinality of a Δ-closed set is as follows.

Corollary 1. For a set E ⊆ F
n
q , the |EΔ| = pm for some m ∈ N.

This is a corollary of Theorem 1 where we show that the stabilizing set E
Δ

is a subspace of F
n
q over Fp.

Example 3. Since we will work on Δ-closed sets throughout this manuscript, we
provide two examples that are going to be used.

– Br(0)
Δ

= F
n
q for any r > 0.

– If E = {0, 1}n ⊆ F
n
q , then E

Δ

= F
n
p .

3.1 Error Detectability and Correctability

When considering communication over a q-ary symmetric channel, errors are
additive. More precisely, if C ⊆ F

n
q is an [n, k] code of minimum distance d and

c ∈ C is sent through the channel c + e with e ∈ F
n
q is received. Considering

a minimum distance decoder, meaning a map that returns the unique closest
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codeword to a received vector if it exists, then we can say that an error is
detectable if e ∈ Bd−1(0), and (uniquely) correctable if e ∈ Bt(0) with t = �d−1

2 	.
These are well-known results from classical coding theory that can be reviewed
in any coding theory textbook such as [32].

With another application in mind, similar definitions have been developed
based on the rank distance, meaning the rank over Fp between two elements
of F

n
q . This metric is useful when communicating over a multicast network; for

more information, see [31] and [33].
In [28] and [29], the author generalizes the concepts of error detectability and

correctability to generic error sets. We recall some of the results in this section
for matters of completeness.

Definition 5. An error set E ⊆ F
n
q is detectable by some code C ⊆ F

n
q if E∩C =

{0}, or equivalently if E∗ ∩ C = ∅. Similarly, this set of errors E is correctable
by C if ΔE ∩ C = {0}.

This definition generalizes the classical concept of detectability and cor-
rectability based on Hamming balls and balls based on rank metric. In the case
of Hamming balls,

ΔBt(0) ⊆ Bd−1(0), (1)

meaning that any error that is detectable under the difference set definition is
also detectable under the minimum distance of a code. Note that the difference
set of a ball is a ball itself: if d is odd, then ΔBt(0) = Bd−1(0), whereas if d is
even, then ΔBt(0) = Bd−2(0).

The following proposition can be viewed as a motivation for the language
used in Definition 5.

Proposition 1. Let C ⊆ F
n
q be a code with parity-check matrix H ∈ F

n−k×n
q .

The set E ⊆ F
n
q is correctable by C if and only if its syndromes are unique,

meaning that for e, e′ ∈ E, eHt = e′Ht if and only if e = e′.

Proof. Let e, e′ ∈ E be errors with the same syndrome, meaning that eHt =
e′Ht. This is equivalent to saying that (e − e′)Ht = 0, meaning that e − e′ ∈ C.
Since by hypothesis ΔE ∩ C = {0}, then e = e′.

The following proposition is a direct consequence of Definition 5.

Proposition 2. Let C ⊆ F
n
q be a code. E ⊆ F

n
q is decodable by C if and only if

ΔE is detectable by C.

It follows the next corollary showing that Δ-closed sets are maximal sets for
which detectability corresponds to correctability.

Corollary 2. Given a code C ⊆ F
n
q , a set E ⊆ F

n
q is detectable and correctable

if and only if E is Δ-closed, meaning that E
Δ

= E.

We focus now on results regarding the existence of codes correcting a generic
error set E ⊆ F

n
q .
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3.2 Generic Gilbert-Varshamov Bound

The proof of the following results may be found in [28] or [29], and are based on
the concept of a balanced family of codes.

Definition 6. Let B be a collection of [n, k]-linear codes. We call B a balanced
family of codes if each vector in (Fn

q )∗ belongs to the same number of codes of B.

Theorem 2 ([28]). Let B be a balanced family of codes and f : F
n
q → C be a

complex-valued function. Then

1
|B|

∑

C∈B

∑

c∈C∗
f(c) =

qk − 1
qn − 1

∑

v∈(Fn
q )∗

f(v).

Proof. Construct a bipartite graph where the upper nodes are linear codes in B,
the lower nodes are the non-zero elements of F

n
q , and there is an edge if the code

above contains the element below. Figure 1 depicts such a bipartite graph.

Fig. 1. Bipartite graph of a balanced family.

There are |B| nodes above and qn − 1 nodes below. This graph is regular,
meaning each top node has the same degree of qk − 1, and each bottom node
has the same degree NB. Counting the edges from both levels, we find

(qn − 1)NB = (qk − 1)|B|. (2)

Label each edge with the value f(v), where v ∈ (Fn
q )∗ is the lower node.

Summing over all the edges of the graph, we obtain

∑

C∈B

∑

c∈C∗
f(c) = NB

∑

v∈(Fn
q )∗

f(v) = |B| q
k − 1

qn − 1

∑

v∈(Fn
q )∗

f(v),

where the last equality follows from Eq. (2).

Theorem 3. Let B be a balanced family of codes, and E ⊆ F
n
q an error set such

that
(qk − 1)|E∗| < qn − 1.

Then there exists a code C ∈ B such that E ∩ C = {0}. That is, E is detectable
by C.
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Proof. Let f : F
n
q → C be such that f(v) = χ{v∈E∗}, the indicator function for

the set E∗. Applying Theorem 2, we can see that

qk − 1
qn − 1

|E∗| =
1

qn − 1

∑

v∈(Fn
q )∗

f(v) =
1

|B|
∑

C∈B

∑

c∈C∗
f(c) =

1
|B|

∑

C∈B
|C ∩ E∗|.

Note that for every C ∈ B, it’s true that |C∩E∗| ∈ N∪{0}. By the hypothesis
of our statement, we have qk−1

qn−1 |E∗| < 1, thus

1
|B|

∑

C∈B
|C ∩ E∗| < 1.

Hence, by an averaging argument, it must hold that there exists some C ∈ B
such that C ∩ E∗ = ∅.

Theorem 3 tells us that any error set E ⊆ F
n
q can be detected via an [n, k]

code, so long as |E∗| < qn−1
qk−1

. If we wish to correct this error set, it suffices to

consider |ΔE∗| < qn−1
qk−1

. Note that if |ΔE| < qn−k, then it can be shown that

|ΔE∗| <
qn − 1
qk − 1

. (3)

Theorem 3 is a generalization of the Gilbert-Varshamov bound. Indeed, if
one applies Equations (1) and (3) to the set E ⊆ Bt(0), we obtain the following
Theorem.

Theorem 4 (Gilbert-Varshamov Bound, [29]). Let n, k, and d be such
that

d−1∑

i=1

(
n

i

)

(q − 1)i < qn−k.

Then there exists C an [n, k] code C of minimum distance d.

It is outside the purpose of this paper to prove results on balanced families
of codes, nevertheless, it is easy to show that these families exist. (Desarguesian)
spreads are an example.

Definition 7. A (Desarguesian) spread S is a partition of F
n
q into k-

dimensional subspaces. That is, a spread S is a collection of k-dimensional sub-
spaces such that

⋃

C∈S
C = F

n
q , and for any C1, C2 ∈ S, we have C1 ∩ C2 = {0}.

It is well-known that Desarguesian spreads exist if and only if k | n. We refer
the reader interested in the construction of spreads to see [24] and [25].
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3.3 Density of Codes Correcting a Generic Error Set

The following theorem shows that, with high probability, a randomly chosen
code corrects a fixed error set.

Theorem 5. Let E ⊆ F
n
q , and k ≤ n

(
1 − logp(|ΔE|)

N − ε
)

for some 0 < ε <

1 − logp(|ΔE|)
N . Then for any G ∈ F

k×n
q of rank k sampled uniformly at random,

the code C generated from G corrects E with probability no less than 1 − q−nε.

Proof. Since G is sampled uniformly at random from F
k×n
q , each entry of G can

be viewed as taken uniformly at random from Fq. Then we can consider the
codewords in C - which are linear combinations of the rows of G - as vectors
with entries sampled uniformly from Fq.

From this, the probability that an arbitrary nonzero codeword is in ΔE is

|(ΔE)∗|
| (Fn

q

)∗ | =
|ΔE| − 1
qn − 1

<
|ΔE|
qn

= q−n(1−logq(|ΔE|)).

Applying logarithm rules, we calculate

logq(|ΔE|) = logq(|ΔE|) =
logp(|ΔE|)
logp(pN )

=
logp(|ΔE|)

N
.

Because G has rank k, there will be a total of qk codewords in C. Since

qkq−n(1− logp(|ΔE|)
N ) ≤ qn(1− logp(|ΔE|)

N −ε)q−n(1− logp(|ΔE|)
N ) = q−nε,

we obtain that the probability a nonzero codeword from C will also be in ΔE is
at most q−nε. Thus, the probability that ΔE ∩ C = {0} is bounded from below
by 1 − q−nε.

4 Generic Error SDP

With the terminology introduced at the end of Sect. 2 in mind, we can introduce
the standard formulation of the Syndrome Decoding Problem.

Problem 1 (The Syndrome Decoding Problem). For an [n, k] code C with parity-
check matrix H, a syndrome vector s ∈ F

n−k
q , and some t ∈ N∪{0}, find a vector

e ∈ F
n
q with Hamming weight w(e) ≤ t such that eHt = s, if such e exists.

This Hamming weight case was shown to be NP-hard for binary codes in
1978 by Berlekamp, McEliece, and Tilborg [10], then over any finite field in 1997
by Barg [8]. We are now ready to move away from the Hamming weight and
define the syndrome decoding problem based on generic errors, with no specific
metric.
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Problem 2 (The Restricted Syndrome Decoding Problem). For an [n, k] code C
with parity-check matrix H and a syndrome vector s ∈ F

n−k
q , find a vector

e ∈ {0,±1}n with Hamming weight w(e) ≤ t such that eHt = s, if such e exists.

This sphere of vectors is the space over which [7] defines their restricted CVE
scheme. For this paper, we no longer restrict ourselves to {0,±1}n, but instead
take vectors in some arbitrary subset - though we will later apply our generic
results to this specific case.

Problem 3 (The Generic Error Syndrome Decoding Problem (GE-SDP)). For
an [n, k] code C with parity-check matrix H, a syndrome vector s ∈ F

n−k
q , and

some subset E ⊆ F
n
q , find an e ∈ E such that eHt = s, if such an e exists.

Problem 4 (Decisional GE-SDP). For an [n, k] code C with parity-check matrix
H, a syndrome vector s ∈ F

n−k
q , and some subset E ⊆ F

n
q , decide whether there

exists an e ∈ E such that eHt = s.

This decisional GE-SDP is sometimes called the Coset Weights Problem [6].
Due to complexity theory, we know there exists a search-to-decision reduction
that carries across the difficulty of the problem. Thus, the complexity of the
Decisional GE-SDP will be the same as GE-SDP. We will abuse terminology
and state that, for example, GE-SDP is NP-complete, despite the fact that this
term applies only to the Decisional GE-SDP.

In [8], the q-ary SDP is shown to be NP-complete. More generally, over any
finite ring with identity and any additive weight (i.e.: Hamming, Lee), the SDP
will still be NP-complete [35]. Moreover, it is widely believed that the q-ary SDP
is difficult on average, resulting in the difficulty of random instances [5].

Via a reduction argument, the authors of [7] demonstrate that the R-SDP
problem is NP-complete based on the difficulty of the q-ary SDP problem. The
GE-SDP presented here evidently contains all instances of SDP, as the metric
is not specified. Since R-SDP is NP-complete, it represents a difficult type of
problem in NP. As R-SDP is contained in our general form of SDP, we have that
the hardest instances of our presentation of SDP are NP-complete, hence the
GE-SDP is contained in the NP-complete complexity hierarchy. This sentiment
is contained in the following theorem:

Theorem 6. The Decisional GE-SDP is NP-complete.

Note that this does not imply that all instances of the GE-SDP are NP-
complete. For example, the exact computational complexity of rank-SDP, the
rank metric form of the SDP, is not known [36] - but it is widely believed to be
a difficult problem [19]. In practice, this rank form seems to be more difficult
to solve than the Hamming weight SDP [11], and cryptographic schemes built
from the rank metric appear to be more secure against decoding attacks [34]. We
note that [20] demonstrates there exists a randomized polynomial time algorithm
that can reduce the rank-SDP to an NP-hard problem. This is a wonderful result
but not a deterministic reduction - thus, the exact complexity of the rank-SDP
remains open.
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5 Generic Error CVE

We now generalize the format of the CVE scheme to accept generic errors that
do not depend on a specific metric. Traditionally, CVE takes an error set being
the sphere of some specific Hamming weight, and samples uniformly at random
a monomial transformation from Mn to permute and obfuscate an error from
that set [15]. In the R-SDP case from [7], this error set is taken to be {0,±1}n,
with the set of monomial transformations M̃n restricted to permit scaling fac-
tors of ±1 only. Another variant of CVE is the one developed in [9] where the
metric considered is the rank metric. Here, the error set is the set of vectors
of a certain rank weight and the transformations are the natural analogue of
monomial transformations in the rank-metric setting.

We note that for generic errors with no structure to speak of applying mono-
mial transforms with no restrictions may be inappropriate. Indeed, for the set
E = {(0, 2), (1, 0)} over F3, the monomial transformation

M =
(

0 2
1 0

)

.

would not be allowed in the generic error setting. To address this issue, we
instead use the language of the stabilizer SE , which may or not may not include
Mn.

The CVE scheme based on a generic error set (GE-CVE) is shown in Fig. 2.

Remark 1. The protocol described in Fig. 2 is only one pass; in practice, many
passes will be required to push the probability of error below some acceptable
threshold.

We prove this system is a zero-knowledge identification scheme by showing
that the following conditions hold.

– Completeness: if an honest prover and verifier follow the protocol correctly,
then the verifier will always accept.

– Soundness: if an adversary outputs two valid tapes [(c0, c1), z, y, b, and f ]
and [(c0, c1), z, y, b′, and f ′] with b �= b′, then there exists a polynomial-time
algorithm that will extract the private key e.

– Zero-Knowledge: there exists a probabilistic polynomial-time simulator that
outputs tape [(c0, c1), z, y, b, and f ] which is computationally indistinguish-
able from one produced by an honest execution.

The proofs mimic those in [7,15], and [36]. For a more rigorous treatment of
these definitions, we refer the interested reader to [23] or [21].

5.1 Completeness

The hash values should match the appropriate commitment if the prover is
honest.
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Fig. 2. One pass of the generic error CVE algorithm.
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If b = 0, then

(yf−1)Ht − zs = ((u + ze)MM−1)Ht − zs = uHt + zeHt − zs = uHt,

hence Hash(f, (yf−1)Ht − zs) is the same as c0, the original commitment.
On the other hand, if b = 1, then

y − zf = (u + ze)M − zeM = uM,

which matches commitment c1.

5.2 Soundness

In the case of a dishonest prover, we show this adversary can convince the verifier
that they are truthful with a probability that is limited by q

2(q−1) . There are two
avenues to consider: the first in which the dishonest prover is expecting to receive
challenge b = 0, and the second where they expect b = 1.

Call the first strategy st0. Here, the adversary picks u and M uniformly at
random, and will attempt to find e′ such that e′Ht = s. The commitments are
then

c0 = Hash(M,uHt) and c1 is a random string.

Hence, independent of the verifier’s sent value of z, the dishonest prover can
respond to the challenge b = 0 and pass the verification test.

The second strategy st1 is where the adversary anticipates the challenge
b = 1. Again, u and M are chosen uniformly at random, but now they must pick
e′ ∈ E ⊆ F

n
q . The commitments are then

c0 is a random string and c1 = Hash(uM, e′M).

Since M ∈ SE has the property that e′M ∈ E by definition, this is sufficient for
the dishonest prover to pass the challenge for b = 1.

These strategies can both be improved somewhat from probability 1
2 to

q
2(q−1) . The dishonest prover attempts to guess the verifier’s choice of z; call
this guess z′. In st0, we saw above that the adversary can correctly answer the
challenge b = 0 independent of z, but if the guess of z′ is correct they can answer
the challenge b = 1 as well. Likewise, in st1, they can respond to b = 0 if z′ has
been guessed correctly, and to b = 1 regardless of the value of z.

For one round of CVE, an adversary following strategy stk can pick z′ and
thus respond correctly to the challenge b with probability

P[b = k] + P[b = 1 − k] · P(z′ = z) =
1
2

+
1
2

· 1
q − 1

.

That is,

P[dishonest prover passes challenge b] =
q

2(q − 1)
.
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5.3 Zero-Knowledge

In the same vein as [22], we consider a resetable, probabilistic, polynomial-time
simulator. The aim of this simulation is to perform as naturally as possible, so
that a third party inspecting the simulator’s communication history would view
it as indistinguishable from a genuine interaction.

Given that in this 5-pass scheme the verifier only ever sends information
to the prover twice, they will have exactly two strategies. Indeed, let st0 be the
strategy involving taking into consideration (c0, c1), then producing z. Let st1 be
the other strategy of accepting (c0, c1) and y, then generating b as the challenge.

The simulation is executed in the following fashion:

– If b = 0, uniformly at random select u and M , then solve s = e′Ht for e′,
ignoring the condition that e′ ∈ E. The commitments will then be c0 =
Hash(M,uHt) with c1 generated randomly. By simulating the verifier, the
simulator will apply st0 and return z. Computing y = (u+ze′)M and sending
it to the simulator, it will apply st1 and return b′.

– If b = 1, the simulator still chooses u and M uniformly, but now selects a
random vector e′, this time with e′ ∈ E. The commitments will then be c0
generated randomly and c1 = Hash(uM, e′M). Upon calling the simulator
and inputting (c0, c1), it will apply st0 and return z. Again, computing and
sending y = (u + ze′)M , the simulator returns b′.

The simulator then goes through the following loop: if b′ = b, halt the simula-
tion and output the string of communication [(c0, c1), z, y, b, and f ]; else, restart
the protocol from the top.

After an average of 2r rounds, because these values are distributed uniformly,
the simulator’s string of communication will be indistinguishable from one that
was produced from an honest execution of the protocol after r rounds - thus
satisfying ZK.

We now demonstrate the (2, 2)-special soundness of the protocol, which
tightly implies knowledge soundness.

Proposition 3. The protocol in Fig. 2 is (2, 2)-special sound and has soundness
error

q

2(q − 1)
.

Proof. Consider the situation of an honest verifier and a cheating prover. Sup-
pose there exist four transcripts T1, T2, T3, T4, all of which are valid and which
correspond to the same commitment pair (c0, c1). That is, there exist z �= z′ such
that the prover was able to reply convincingly to queries (z, 0), (z, 1), (z′, 0) and
(z′, 1). The commitments are then the following:

T1:
(
c0, c1, y,M);

T2:
(
c0, c1, y, eM);

T3:
(
c0, c1, y

′,M ′);
T4:

(
c0, c1, y

′, eM ′).
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For the commitment c0 to be valid for both transcripts T1 and T3, it must
be that

Hash(M, (yM−1)Ht − zs) = c0 = Hash(M ′, (y′M ′−1)Ht − z′s).

Therefore either there exists an extractor algorithm that can efficiently compute
hash collisions, or M is indeed equal to M ′ and ((y − y′)M−1)Ht = (z − z′)s.

Likewise, from the validity of transcripts T2 and T4, we see that

Hash(y − z(eM), eM) = c1 = Hash(y′ − z′(eM ′), eM ′).

Recall however that M = M ′, so either a cheating prover can find hash collisions
or it holds that y − y′ = (z − z′)(eM).

Combining these results, we find that (e′M−1)Ht = s with e′M−1 ∈ E,
where e′ = eM . Thus either hash collisions have been found or this e′ forms a
valid key that can be used to impersonate an honest prover.

Finally, we calculate the soundness probability of Fig. 2 from [4] as

1 −
(

1 − 1
q − 1

)(

1 − 1
2

)

=
q

2(q − 1)
.

We end with a theorem that shows if an adversary is, in the long run, able to
guess correctly more often than expected, then one of our security assumptions
must have been violated.

Theorem 7. After r rounds of the protocol in Fig. 2, if

P[honest verifier accepts dishonest prover] ≥
(

q

2(q − 1)

)r

+ ε

for ε > 0, then it is possible to either find a collision for Hash(·) or recover the
private key e.

This is a direct result of Proposition 3. The consequence of this theorem is
that either it is feasible to find collisions in the hash function, or that the GE-SDP
is not an NP-complete problem - both of these violate standard cryptographic
results.

6 On Polynomial Instances of GE-SDP

This section shows that if the generic error set E ⊆ F
n
q is included in a small

Δ-closed set intersecting the code trivially, then Problem 3 can be solved by
means of Gaussian elimination, leading to an attack of GE-CVE on that error
set.

The attack here is a projection argument. Because the SDP was shown to be
NP-complete for binary codes in [10], then over any finite field in [8], we cannot
efficiently solve for an arbitrary syndrome in general.
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However, solving this smaller instance over Fp is computationally feasible.
This would not normally be of use - the errors E ⊆ F

n
q will generally not have

any basis to speak of - but using the framework that E
Δ

forms a subspace allows
us to find a basis. Once we recognize that we can solve this for vectors over Fp,
we can solve it for vectors over {0,±1}, solving the R-SDP problem.

Recall the field Fq, where q = pN is a prime power and that Fq is an N -
dimensional vector space over Fp. Thus we know that there exists an isomorphism
ϕ mapping Fq into F

N
p . If we consider the action of this isomorphism on the

entries of the parity-check matrix H, we obtain a new, reduced instance - call
it H ′ = ϕ(H) ∈ F

N(n−k)×n
p . The same action on the entries of s will give

s′ = ϕ(s) ∈ F
N(n−k)
p . With this in mind, we need only consider the projection

of the code from Fq down to Fp.
Let E ⊆ F

n
q , and consider E

Δ

as defined in Sect. 3. By Theorem 1, we know
that E

Δ

is an Fp-subspace; let

E
Δ

= 〈E〉Fp
= 〈e1, e2, ..., em〉Fp

where e1, . . . , em ∈ E form a Fp-basis.
Concerning the GE-SDP, given syndrome s ∈ F

n−k
q and parity check matrix

H ∈ F
(n−k)×n
q , we can then apply Gaussian Elimination and efficiently solve the

system for E
Δ

over Fq:

s = eHt = λ1e1H
t + λ2e2H

t + ... + λmemHt. (4)

If E
Δ ∩ C = {0}, since E ⊆ E

Δ

, then E is correctable and the error e ∈ E
such that s = eHt is unique and can be found solving Eq. (4). We resume this
argument in the following theorem.

Theorem 8. Let C ⊆ F
n
q be a code and E ⊆ F

n
q an error set such that E

Δ ∩C =
{0}. Then Problem 3 can be solved in O(n3).

For a code C ⊆ F
n
pN and an error set E ⊆ F

n
pN , for E

Δ∩C = {0} is it necessary
that

dimFp
E

Δ

+ dimFp
C = kN + dimFp

E
Δ ≤ nN = dimFp

F
n
q .

This is equivalent to the condition that

R ≤ 1 − dimFp
E

Δ

nN
. (5)

Remark 2. Theorem 8 does not apply when E
Δ ∩ C �= {0}. Indeed, in this case,

the system from Eq. 4 does not have a unique solution, rather as many as |EΔ∩C|.
This is the case for the SDP based on the Hamming metric or on the rank metric.
Indeed given a ball E = Br(0), E

Δ

= F
n
q for either metrics.
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6.1 Vulnerability of R-SDP and R-CVE

The presented attack applies to R-CVE. As already mentioned, [7] shows that
the R-SDP problem is an NP-complete problem.

The attack presented in the previous section applies to all R-CVE schemes
defined over a code C with C ∩ F

n
q = {0}. Indeed, the error set considered for

R-CVE is E = {0,±1}n and E
Δ

= F
n
p . Equation 5, in this case, reduces to

R ≤ N − 1
N

,

meaning that it is sufficient to use codes with very high rates to nullify our
attack.

The cardinality of the set of codes that intersect trivially with a given error set
may be calculated as a function of the q-binomial coefficient. The exact formula
is outside the purpose of this paper, but it may be found as [30, Corollary 3.3].

Note that if the R-CVE is defined over a prime field, then the attack cannot
be performed since C ∩ F

n
p = C.

Example 4. Let pN = 55, with n = 10 and k = 9. For this example, we take E
Δ

to be of dimension 5 over F5.
From the viewpoint of rate, the inequality looks like

R = 0.9 ≤ 1 − 5
10 · 5

.

Hence, this code is vulnerable to being solved via basis in E
Δ

. This example
highlights that the weakness only cares about the exponent in the prime power
of the code rather than the specific prime used. One can readily see that p does
not appear in the inequality. Taking p = 5 results in the same inequality as
p = 7, or indeed any prime.

Example 5. Consider the exact same parameters as before, except now let E
Δ

be slightly larger, of dimension 6 over F5.
Now the inequality - which does not hold - looks like

R = 0.9 � 0.88 = 1 − 6
10 · 5

.

For these values, the initial conditions are not met, so the vulnerability
described above does not apply here. This highlights a more general fact: when
dimFp

E
Δ

is small, the rate R will have more flexibility in the values it can take.

7 Conclusions

We have generalized the SDP and CVE to accept an error set without structure
and argued the complexity of these problems. Using the set difference oper-
ation, we have constructed a particularly generic notion of detectability and
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correctability and applied them to this GE-SDP and GE-CVE. This also results
in a generalization of the Gilbert-Varshamov Bound. It was used to give con-
ditions that determine when there exists a code that can correct a given error
set and bounds on the probability that a random code will correct an arbitrary
error set. This framework demonstrates that certain GE-SDP parameters have
vulnerabilities, permitting an adversary to correct the errors that are crucial
to the security of the problem. We have shown that this vulnerability is only
applicable when the parameters satisfy a certain bound. To conclude, we have
demonstrated a vulnerability in the GE-SDP, and thus R-SDP, and presented a
method of working around this susceptibility.

In regard to future work, we would welcome concrete results about the
average-case complexity of GE-SDP. Seeing as R-SDP is a special case of GE-
SDP with error set {0,±1}n, it is possible that other choices of small error sets
may result in a practical cryptosystem. These would in turn, result in special
cases of GE-CVE, which may improve the scheme.

Additionally, many of these results may be improved with the use of a
trusted helper or vector (see [12,13,16]) or by leveraging the “MPC in the head”
paradigm (see [2,17,18]). We relegate this to future work.

Acknowledgements. We would like to thank Violetta Weger and Paolo Santini
for their helpful discussions, and Frank Kschischang for sharing some fundamental
resources.
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Abstract. In this paper, we propose PALOMA, a new code-based key
encapsulation mechanism, which is designed by combining an NP-hard
SDP(Syndrome Decoding Problem)-based trapdoor with a binary sep-
arable Goppa code and FO(Fujisaki-Okamoto) transformation. Crypto-
graphic schemes based on an SDP defined with a binary Goppa code
have not been found to be vulnerable to critical attacks, and the FO
transformation ensures IND-CCA2 security in the ROM(Random Oracle
Model). The combination is highly regarded in cryptographic commu-
nities for its strong security guarantees. PALOMA has a public key size
of approximately 300KB or more due to its SDP-based trapdoor nature.
Furthermore, the key generation process, which involves generating the
parity-check matrix of the scrambled Goppa code, is relatively slow com-
pared to other post-quantum ciphers. However a primary role of post-
quantum cryptography is to serve as an alternative to current cryptosys-
tems that are vulnerable to quantum computing attacks. Therefore, in
post-quantum cryptography, ensuring strong security guarantees is more
important than efficiency. Consequently, we have designed PALOMA with
a focus on conservative security guarantees, while ensuring that there is
no significant degradation in application quality.

Keywords: code-based key encapsulation mechanism · Binary
separable Goppa code · Patterson decoding · post-quantum
cryptography

1 Introduction

In this paper, we propose PALOMA, a new code-based KEM(Key Encapsulation
Mechanism), which has the following features:

– Trapdoor based on SDP with a binary separable Goppa code.
– IND-CCA2-secure KEM based on FO transformation.
– Parameter sets that ensure security strengths of 128, 192, and 256-bit.

1.1 Trapdoor

Syndrome Decoding Problem. SDP is a problem of finding the preimage vec-
tor with a specific Hamming weight for a given random binary parity-check
c© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023
A. Esser and P. Santini (Eds.): CBCrypto 2023, LNCS 14311, pp. 144–173, 2023.
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matrix and a syndrome. In 1978, SDP was proven to be NP-hard because it
is equivalent to the 3-dimensional matching problem [3,15]. The McEliece and
Niederreiter cryptosystems are designed with a trapdoor based on SDP [22,24].
However, because the public key of an SDP-based trapdoor is a random-looking
matrix, the public key is larger than that of other ciphers. Therefore, there have
been attempts to reduce the size of a public key through cryptographic design
using SDP-variant, such as rank metric-based SDP and quasi-cyclic code-based
SDP. However, SDP-variants assume the problem’s difficulty due to the lack of
guaranteed NP-hardness for SDP and the insufficient maturity of security anal-
ysis.

A primary role of post-quantum cryptography is to serve as an alternative
to current cryptosystems that are vulnerable to quantum computing attacks.
Therefore, in post-quantum cryptography, ensuring strong security guarantees
is more important than efficiency. We think the analysis method for SDP is
sufficiently mature. Consequently, we have designed PALOMA based on SDP
with a focus on conservative security guarantees, while ensuring that there is no
significant degradation in application quality.

Niederreiter -type Code Scrambling (a.k.a. Syndrome Scrambling). In general,
code-based cryptographic schemes use the information of a scrambled code ̂C,
which is an equivalent code of the underlying code C, as a public key pk, while the
decoding information for C serves as a secret key sk. The McEliece scheme scram-
bles codewords, while the Niederreiter scheme scrambles syndromes. Syndrome
scrambling has the advantage of being shorter than codeword scrambling and
more intuitive for decoding, as syndromes serve as ciphertext. However, it has
the drawback of requiring higher computational complexity in converting input
plaintext into specific Hamming weight vectors. By the way, in the case of KEM,
which does not involve encryption and thus no message input, this conversion
process is unnecessary. Therefore, PALOMA adopts the syndrome scrambling
approach.

Similar to the Niederreiter scheme, PALOMA uses the parity-check matrix
̂H of a scrambled code ̂C defined by SHP. Here, H represents the parity-check
matrix of C, while S and P denote an invertible matrix and a permutation matrix
respectively. The P used in PALOMA is randomly chosen. However, to reduce
the size of a public key, the invertible matrix S is derived from the reduced row
echelon form procedure applied to HP, resulting in ̂H being in a systematic
form, denoted as ̂H = [In−k | M]. PALOMA uses the submatrix M of ̂H as a
public key, similar to Classic McEliece [4].

Binary Separable (not irreducible) Goppa Code. There are no critical attacks on
cryptographic schemes based on an SDP defined with a binary separable Goppa
code [13], for example, McEliece scheme, which is the first code-based cipher
[22]. Many researchers have attempted to design code-based ciphers using vari-
ous codes such as GRS and RM to enhance efficiency in terms of public key size
and decryption speed. However, most of these schemes have been vulnerable to
attacks due to their structural properties, and the remaining ones still require
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more rigorous security proofs [23,27]. Therefore, PALOMA adopts a binary sep-
arable Goppa code that has no attack even though it has been studied for a long
time with a conservative perspective.

A binary separable Goppa code C = [n, k,≥ 2t + 1]2 is defined by a support
set L consisting of n distinct elements in F2m and a separable Goppa polynomial
g(X) ∈ F2m [X] with degree t, for some integer m > 1. Typically, an irreducible
polynomial is chosen as the Goppa polynomial, as every irreducible polynomial
is separable. However, since the algorithms generating irreducible polynomials
are probabilistic, i.e., not guaranteed to have constant-time complexity. For a
generation in constant-time, PALOMA defines L and g(X) with randomly chosen
n + t elements in F213 as follows: For a random 256-bit string r,

[α0, α1, . . . , αn−1
︸ ︷︷ ︸

n elements for L

, αn, . . . , αn+t−1
︸ ︷︷ ︸

t elements for g(X)

, αn+t, . . . , α2m−1] ← Shuffle(F2m , r)

⇒ L ← [α0, α1, . . . , αn−1], g(X) ←
n+t−1
∏

j=n

(X − αj).

After shuffling all F2m elements, the set of the first n elements is defined as a sup-
port set and the next t elements are the root of a Goppa polynomial with degree
t. Note that g(X) is separable but not irreducible in F213 [X], and we call the
Goppa codes generated by the separable polynomial g(X) totally decomposed
Goppa codes [8]. The shuffling function, Shuffle, is a deterministic modifica-
tion of the Fisher-Yates shuffling algorithm. It shuffles the set using a 256-bit
string r. As a result, PALOMA efficiently generates a binary separable Goppa
code in constant-time.

Patterson and Berlekamp-Massey are decoding algorithms commonly used
for binary separable Goppa codes [2,19,25]. Patterson shows better speed per-
formance compared to Berlekamp-Massey. However, it only operates when the
Goppa polynomial g(X) is irreducible. Therefore, PALOMA adapts the extended
Patterson to handle cases where the Goppa polynomial is not irreducible [7].

1.2 KEM Structure

In general, IND-CCA2-secure schemes are constructed with OW-CPA-secure trap-
doors and hash functions that are treated as random oracles. The FO transfor-
mation is a method for designing IND-CCA2-secure schemes, and it has been
proven to be IND-CCA2-secure inROM [12,14,29]. To achieve IND-CCA2-secure
KEM, PALOMA is designed based on the implicit rejection KEM�⊥ = U �⊥[PKE1 =
T[PKE0, G],H], among FO-like transformations proposed by Hofheinz et al. [14].
This is combined with two modules: (1) T, which converts an OW-CPA-secure
PKE0 into an OW-PCA(Plaintext Checking Attack)-secure PKE1, and (2) U �⊥,
which converts it into an IND-CCA2-secure KEM.
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1.3 Parameter Sets

The security of PALOMA is evaluated by the number of bit computations of
generic attacks to SDP as there are currently no known attacks on binary
separable Goppa codes. ISD (Information Set Decoding) is the most powerful
generic attack of an SDP. The complexity of ISD has been improved by modi-
fications to the specific conditions for the information set [1,17,18,20,21,26,28]
and birthday-type search algorithms. PALOMA determines the level of security
strength by evaluating the computational complexity of the most effective attack.

PALOMA provides three parameter sets: PALOMA-128, PALOMA-192 and
PALOMA-256, which correspond to security strength levels of 128-bit, 192-bit,
and 256-bit, respectively. Each parameter set was carefully chosen to meet the
following conditions, ensuring efficient implementation.

(1) Binary separable Goppa codes are defined in F213 which can be used for
PALOMA-128, PALOMA-192, and PALOMA-256 simultaneously,

(2) n + t ≤ 213 to define a support set and a Goppa polynomial,
(3) n ≡ k ≡ t ≡ 0 (mod 64) for 64-bit word-aligned implementation, and
(4) k/n > 0.7 to reduce the size of a public key.

The structure of this paper is as follows: In Sect. 1, the design rationale
of PALOMA is discussed. Section 2 introduces the specification of PALOMA.
Section 3 presents the performance analysis results, while Sect. 4 provides the
security analysis results. In Sect. 5, the differences between PALOMA and Clas-
sic McEliece are explained, and the conclusion is drawn. Mathematical theories
necessary for understanding PALOMA and the pseudo codes of PALOMA are
included in the appendix.

2 Specification

The notations used throughout this paper are listed below.
{0, 1}l set of all l-bit strings
[i : j] integer array [i, i+ 1, . . . , j − 1]
a[i:j] substring ai‖ai+1‖ · · · ‖aj−1 of a bit string a = a0‖a1‖ · · ·
Fq finite field with q elements

F
m×n
q set of all m × n matrices over a field Fq

F
l
q set of all l × 1 matrices over a field Fq , i.e., F

l
q := F

l×1
q (v ∈ F

l
q is

considered as a column vector)
0l zero vector with length l

vI subvector (vj)j∈I ∈ F
|I|
q of a vector v = (v0, v1, . . . , vl−1) ∈ F

l
q

Il l × l identity matrix
MI submatrix [mr,c]c∈I of a matrix M = [mr,c] where r and c are row index

and column index, respectively
MI×J submatrix [mr,c]r∈I, c∈J of a matrix M = [mr,c] where r and c are row

index and column index, respectively
Pl set of all l × l permutation matrices

x
$←− X x randomly chosen in a set X
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2.1 Parameter Sets

PALOMA consists of three parameter sets: PALOMA-128, PALOMA-192, and
PALOMA-256 offering 128/192/256-bit security strength, respectively. Table 1
shows each parameter set.

Table 1. Parameter Sets of PALOMA

Parameter set m t n† k‡

PALOMA-128 13 64 3904 3072
PALOMA-192 13 128 5568 3904
PALOMA-256 13 128 6592 4928

† n ≤ 2m−t, ‡ mt = n−k

In Table 1, the parameter m(= 13) represents the degree of a binary field
extension. The binary extension field F213(= F2m) used in PALOMA is defined
by an irreducible polynomial f(z) = z13 + z7 + z6 + z5 + 1 ∈ F2[z], i.e., F213 =
F2[z]/ 〈f(z)〉. The parameters t, n, and k denote the number of correctable errors,
the length of a codeword, the dimension of a binary Goppa code, respectively.

2.2 Key Generation

The trapdoor of PALOMA is designed with SDP based on a scrambled code ̂C of a
binary separable Goppa code C. The public key is the submatrix of the systematic
parity-check matrix of ̂C, and the secret key is the necessary information for
decoding and scrambling of C. The key generation process of PALOMA is outlined
below, and Algorithm 7 presents the pseudo code for key generation.

Step 1. Generation of a random binary separable Goppa code C.

Generate a support set L in F213 and a Goppa polynomial g(X) ∈ F213 [X]
for a Goppa code C, and compute the parity-check matrix H ∈ F

13t×n
2 of C.

(1.1) Reorder elements of F213 with a random r ∈ {0, 1}256 using Shuffle
(Algorithm 5).

F213 = [0, 1, z, z + 1, z2, . . . , z12 + · · · + 1]
︸ ︷︷ ︸

lexicographic order

Shuffle−−−−−→
with r

[α0, . . . , α2m−1].

Note that we consider a field element α =
∑12

j=0 ajz
j ∈ F213 as an integer

∑12
j=0 aj2j ∈ Z for using Shuffle.

(1.2) Set the support set L = [α0, . . . , αn−1], and set the separable Goppa poly-
nomial g(X) =

∑t
j=0 gjX

j =
∏n+t−1

j=n (X − αj) ∈ F213 [X] of degree t.
(1.3) Compute the parity-check matrix H = ABC where A,B,C are defined

in Eq. (2).
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(1.4) Parse H as a matrix in F
13t×n
2 because a Goppa code is a subfield subcode

of the code, i.e., H = [hr,c] ∈ F
t×n
213 ⇒ H := [h0 | h1 | · · · | hn−1] ∈ F

13t×n
2 ,

where hc := [h(0)
0,c | · · · | h

(12)
0,c | h

(0)
1,c | · · · | h

(12)
1,c | · · · | h

(12)
t−1,c]

T ∈ F
13t
2 and

h
(j)
r,c ∈ F2 such that hr,c =

∑12
j=0 h

(j)
r,czj ∈ F213 for r ∈ [0 : t] and c ∈ [0 : n].

Step 2. Generation of a scrambled code ̂C of C.

The parity-check matrix H of C is scrambled below.

(2.1) Reorder elements of [0 : n] with a random r ∈ {0, 1}256 using the Shuffle.

[0 : n] = [0, 1, . . . , n − 1] Shuffle−−−−−→
with r

[l0, l1, . . . , ln−1].

(2.2) Define P := P0,l0P1,l1 · · ·Pn−1,ln−1 , and Pj,lj is the n × n permutation
matrix for swapping j-th column and lj-th column (Algorithm 6).

(2.3) Compute HP.
(2.4) Compute the reduced row echelon form ̂H of HP. If ̂H[0:n−k] �= In−k, back

to (2.1). Note that Pr[ ̂H[0:n−k] = In−k] > 0.288788.
(2.5) Define the invertible matrix S−1 := (HP)[0:n−k] ∈ F

(n−k)×(n−k)
2 . Note

that ̂H = SHP.

Step 3. Define a public key pk and a secret key sk.

Since ̂H is a matrix in systematic form, i.e., ̂H[0:n−k] = In−k, return ̂H[n−k:n],
which is the submatrix of ̂H consisting of the last k columns, as a public key pk
and (L, g(X),S−1, r) as a secret key sk.

Remark 1. S−1 can be derived from L, g(X) and r. Both L and g(X) are gen-
erated by a 256-bit random string r′. Therefore the secret key can be defined as
a 512-bit string r′‖r ∈ {0, 1}512.

Shuffle parses a 256-bit random bit string r = r0‖r1‖ · · · ‖r255 as sixteen
16-bit non-negative integers r̂0, . . . , r̂15 where r̂w =

∑15
j=0 r16w+15−j2j < 216 and

uses each as a random integer required in the Fisher-Yates shuffle. Algorithm 5
shows the process of Shuffle in detail.

2.3 Encryption and Decryption

Encryption. PALOMA encryption is as follows (Algorithm 9).

Step 1. Retrieve the parity-check matrix ̂H = [In−k | ̂H[n−k:n]] of the scrambled
code ̂C from the public key pk = ̂H[n−k:n] ∈ F

(n−k)×k
2 .

Step 2. Compute the (n − k)-bit syndrome ŝ(= ̂Hê) of an n-bit error vector
input ê with wH(ê) = t, and return ŝ as the ciphertext of ê.
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Decryption. PALOMA decryption is as follows (Algorithm 9).

Step 1. Convert the syndrome ŝ of the input ̂C into the syndrome s(= S−1ŝ) of
C by multiplying the secret key S−1.

Step 2. Recover the error vector e corresponding to s with the secret key L, g(X),
which are decoding information of C. At that stage, we use the extended
Patterson decoding introduced by Appendix A.3 (Algorithm 8).

Step 3. Return the error vector ê(= P−1e) of ̂C obtained from e and the permu-
tation matrix P−1 generated by the secret key r.

Figure 1 depicts these operations.

Fig. 1. PALOMA: Encryption and Decryption

2.4 Encapsulation and Decapsulation

PALOMA is a KEM designed in the random oracle model. PALOMA uses two
random oracles, namely ROG and ROH , which are defined using the Korean KS
standard hash function LSH-512 [16]. Algorithm 9 presents the definition.

Encapsulation. Encap takes a public key pk as an input and returns a key κ
and the ciphertext c = (r̂, ŝ) of κ. The procedure is as follows (Algorithm 9).

Step 1. Generate a random n-bit error vector e∗ with wH(e∗) = t using GetEr-
rVec (Algorithm 9).

Step 2. Query e∗ to ROG and obtain a 256-bit string r̂.
Step 3. Compute the n × n permutation P and its inverse P−1 corresponding

to r̂ using GetPermMat.
Step 4. Compute ê = Pe∗.
Step 5. Obtain the (n − k)-bit syndrome ŝ of ê using Encrypt with pk.
Step 6. Query (e∗‖r̂‖ŝ) to ROH and obtain a 256-bit key κ.
Step 7. Return a key κ and its ciphertext c = (r̂, ŝ).
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Decapsulation. Decap returns the key κ when given the secret key sk and the
ciphertext c = (r̂, ŝ) as inputs. The process is as follows (Algorithm 9).

Step 1. Obtain the error vector ê by entering ŝ and sk into the Decrypt.
Step 2. Generate the n×n permutation P and its inverse P−1 corresponding to

r̂ which is part of the ciphertext c using GetPermMat.
Step 3. Compute e∗ = P−1ê.
Step 4. Query e∗ to the ROG and obtain a 256-bit string r̂′.
Step 5. Generate the error vector ẽ using GetErrVec with the secret key r.
Step 6. If r̂′ = r̂, then query (e∗‖r̂‖ŝ) to the random oracle ROH , and if not,

query (ẽ‖r̂‖ŝ) to ROH . Return the received bit string from ROH as a
key κ.

Figure 2 outlines Encap and Decap.

Fig. 2. PALOMA: Encapsulation and Decapsulation

3 Performance Analysis

In this section, we provide the performance analysis result of PALOMA.
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3.1 Description of C Implementation

3.1.1 Data Structure for F213 [X]
The elements of F213 = F2[z]/ 〈f(z)〉 are stored in the 2-byte data type unsigned
short. The data structure for a field element a(z) =

∑12
i=0 aiz

i is defined as
03‖a12‖ · · · ‖a0 ∈ {0, 1}16. A polynomial a(X) =

∑l
i=0 aiX

i ∈ F213 [X] of degree
l is stored in 2(l + 1)-byte as a0‖ · · · ‖al ∈ ({0, 1}16)l+1.

3.1.2 Arithmetics in F213

PALOMA uses the pre-computed tables for multiplication, squaring, square root-
ing, and inversion in F213 .

Multiplication. To store the multiplication of all pairs in F213 , a table of 128MB
(=2 × 226-byte) is required. In order to reduce the size of the table, PALOMA
employs the multiplication of three smaller tables. Every field element a(z) ∈
F213 can be expressed as a1(z)z7 + a0(z) where deg(a0) ≤ 6 and deg(a1) ≤ 5.
So, the multiplication of a(z) = a1(z)z7 + a0(z) and b(z) = b1(z)z7 + b0(z) in
F213 can be computed as follows.

a(z)b(z) mod f(z) =
(

a1(z)b1(z)z14 mod f(z)
)

+
(

a1(z)b0(z)z7 mod f(z)
)

+
(

a0(z)b1(z)z7 mod f(z)
)

+ (a0(z)b0(z)) .

Thus, the multiplication can be calculated using the following three tables
MUL00 : {0, 1}7 × {0, 1}7 → {0, 1}16, MUL10 : {0, 1}6 × {0, 1}7 → {0, 1}16,
and MUL11 : {0, 1}6 × {0, 1}6 → {0, 1}16 for all possible pairs.

MUL00[a0, b0] := a0(z)b0(z) mod f(z),

MUL10[a1, b0] := a1(z)b0(z)z7 mod f(z),

MUL11[a1, b1] := a1(z)b1(z)z14 mod f(z).

Note that (a1(z)b0(z))z7 mod f(z) is computed using the table MUL10.

Squaring, Square root, and Inversion. Tables SQU, SQRT and INV store the
results of the squares, the square roots, and the inverses, respectively, for all
elements in F213 . Note that we define the inverse of 0 as 0.

Table 2 presents the size of pre-computed arithmetic tables.

3.2 Data Size

We determine the size of a public key pk, a secret key sk, and a ciphertext c in
terms of byte strings. Each size in bytes is computed by the following formula.

bytelen(pk) = bytelen( ̂H[n−k:n]) = (n − k)k/8� ,

bytelen(sk) = bytelen(L) + bytelen(g) + bytelen(S−1) + bytelen(r)

= 2n + 2t +
⌈

(n − k)2/8
⌉

+ 32,
bytelen(c) = bytelen(r̂) + bytelen(ŝ) = 32 + (n − k)/8� .
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Table 2. Pre-computed Tables for Arithmetics in F213 used in PALOMA

Table Size (in bytes) Description

MUL00 32,768 (= 214 × 2) a0(z)b0(z), deg(a0), deg(b0) < 7

MUL10 16,384 (= 213 × 2) a1(z)b0(z)z7 mod f(z), deg(a1) < 6, deg(b0) < 7

MUL11 8,192 (= 212 × 2) a1(z)b1(z)z14 mod f(z), deg(a1), deg(b1) < 6

SQU 16,384 (= 213 × 2) a(z)2 mod f(z), deg(a) < 13

SQRT 16,384 (= 213 × 2)
√

a(z) where a(z) = (
√

a(z))2 mod f(z), deg(a) < 13

INV 16,384 (= 213 × 2) a(z)−1 where 1 = a(z)−1a(z) mod f(z), deg(a) < 13

Total 106,496

As stated in Remark 1, the size of a secret key can be 512-bit. However, using
such a key size may adversely affect the decryption speed performance.

Table 3 shows the data size comparison among the NIST competition round
4 code-based ciphers and PALOMA.

The data size of PALOMA is similar to Classic McEliece because of the usage
of SDP-based trapdoor. Compared to HQC and BIKE, the size of a public key
and a secret key is relatively large. However, the size of the ciphertext which is
the actual transmitted value is smaller than HQC and BIKE.

3.3 Speed

PALOMA is implemented in ANSI C. A speed benchmark was performed on
the following two platforms using the GCC compiler (ver. 13.1.6) with the -O2
optimization option:

Platform 1. macOS Monterey ver.12.5, Apple M1, 8GB RAM
Platform 2. macOS Monterey ver.12.4, Intel core i5, 8GB RAM

The results are shown in Table 4 and Table 5. Compared to Classic McEliece, an
SDP-based trapdoor, PALOMA operates faster except for the parameter provid-
ing a 192-bit security. The reason is that the number of correctable errors(= t)
among 192-bit security parameters is 128 in PALOMA compared to 96 in Classic
McEliece.

4 Security

4.1 OW-CPA-secure PKE = (GENKEY, ENCRYPT, DECRYPT)

When evaluating the security of PALOMA, it is important to consider that no
critical attacks on binary separable Goppa codes have been reported thus far.



154 D.-C. Kim et al.

Table 3. Data Size Comparison of Code-based KEMs (in bytes)

Algorithm Security Public key Secret key Ciphertext Key
hqc-128 128 2,249 40 4,481 64
BIKE 128 1,541 281 1,573 32
mceliece348864 128 261,120 6,452 128 32
PALOMA-128 128 319,488 94,496 136 32

hqc-192 192 4,522 40 9,026 64
BIKE 192 3,083 419 3,115 32
mceliece460896 192 524,160 13,568 188 32
PALOMA-192 192 812,032 355,400 240 32

hqc-256 256 7,245 40 14,469 64
BIKE 256 5,122 580 5,154 32
mceliece6688128 256 1,044,992 13,892 240 32
PALOMA-256 256 1,025,024 357,064 240 32

However, for the purpose of security analysis, we assume that the scrambled code
of a Goppa code is indistinguishable from a random code. It is considered difficult
to generate an effective distinguisher for Goppa codes used in PALOMA, as their
rates are all less than 0.8 [10]. Therefore, the most powerful attack considered is
the ISD, which is a generic attack of SDP. Consequently, the security strength
of PALOMA is assessed based on the number of bit operations required for ISD
process.

SDP is defined with a parity check matrix H ∈ F
(n−k)×n
2 , a syndrome s ∈

F
n−k
2 , and a Hamming weight t. We define SDP(H, s, t) as the root set of the

SDP. We also denote the set of all n-bit vectors with a Hamming weight of t as
En

t and represent the zero matrix as 0. It is worth noting that the parameters
n and t of PALOMA are selected to ensure that the underlying SDP possesses a
unique root, and both n and t are even.

4.1.1 Assumptions for Analysis

Deterministic Fisher-Yates Shuffle Based on a 256-Bit String. PALOMA utilizes
the Shuffle to generate Goppa codes, permutation matrices, and error vectors.
(Algorithm 5) The deterministic Shuffle based on a 256-bit input is a modi-
fied version of the probabilistic Fisher-Yates shuffle. The Shuffle satisfies the
following property.
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Table 4. Speed Performance of PALOMA (in milliseconds)

PALOMA-128 PALOMA-192 PALOMA-256
Plat. 1 Plat. 2 Plat. 1 Plat. 2 Plat. 1 Plat. 2

GenKey GenRandGoppaCode 15 26 74 144 93 168
GetScrambledCode 42 61 179 263 211 281
total 64 89 261 423 323 469

Encrypt 0.002 0.003 0.003 0.004 0.003 0.005

Decrypt ConstructKeyEqn 8 12 53 92 53 92
SolveKeyEqn 0.2 0.4 2 3 2 3
FindErrVec 1 2 3 4 4 5
total 9 14 59 100 59 101

Encap 0.03 0.05 0.04 0.07 0.04 0.08

Decap 9 15 59 101 60 101

Proposition 1. Let w ∈ {3904, 5568, 6592, 8192}. If Shuffle([0 : w], r) =
Shuffle([0 : w], r̂) for some r, r̂ ∈ {0, 1}256, then r = r̂.

Proof. Let r = (r0, r1, . . . , r15) and r̂ = (r̂0, r̂1, . . . , r̂15) for 0 ≤ rj , r̂j < 216.
According to the nature of the Fisher-Yates shuffle, in order for the two resulting
arrays to be identical, the following equation must be satisfied.

rj mod 16 ≡ r̂j mod 16 (mod w − j) for j = 0, 1, . . . , w − 2.

When w = 3904, we obtain r0 ≡ r̂0 (mod 3904) and r0 ≡ r̂0 (mod 3888),
resulting in lcm(3904, 3888) = 948672 | r0−r̂0. However, since 0 ≤ r0, r̂0 < 216 =
65536, we have r0 = r̂0. By employing a similar method, we obtain r15 = r̂15.
The same approach applies when w ∈ {5568, 6592, 8192} and yields the same
result.

According to Proposition 1, Shuffle returns 2256 different arrays. PALOMA
assumes that an arbitrarily selected array from the total of w! possible arrays
and an array obtained through Shuffle with an arbitrarily selected 256-bit
input are indistinguishable.

Number of Equivalent Codes. PALOMA defines the support set L as the top n
elements obtained by shuffling F213 using the Shuffle with a 256-bit input.
The next t elements are defined as the roots to the Goppa polynomial g(X).
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Table 5. Comparison between PALOMA and Classic McEliece (in milliseconds)

GenKey Encap Decap

128-bit PALOMA-128 64 0.03 9
mceliece348864 74 0.04 18

192-bit PALOMA-192 258 0.04 58
mceliece460896 211 0.06 42

256-bit PALOMA-256 323 0.04 58
mceliece6688128 517 0.10 82

Therefore, the expected number of equivalent codes among the 2256 Goppa codes
generated using this method is as follows.

2256 ×
(

213

n

)

n!
(

213−n
t

)

t!
213!

=
2256

(213 − n − t)!
≈

⎧

⎪

⎨

⎪

⎩

2−44532, PALOMA-128,
2−24318, PALOMA-192,
2−13117, PALOMA-256.

Due to the expectation values being extremely small for all three parameters
of PALOMA, it is assumed that PALOMA defines the SDP using 2256 distinct
Goppa codes.

Number of t-Hamming Weight Error Vectors. PALOMA uses GetErrVec to
generate an error vector e∗ with a Hamming weight of t. (Algorithm 9) In other
words, based on a 256-bit sequence r∗, it shuffles the array [0 : n] and defines
supp (e∗) as the top t elements, where supp (e∗) is the non-zero position set of a
given vector e∗. The expected value for the number of identical vectors among
the 2256 error vectors generated using this method is as follows.

2256 ×
(

n
t

)

t!
n!

=
2256

(n − t)!
≈

⎧

⎪

⎨

⎪

⎩

2−39933, PALOMA-128,
2−59410, PALOMA-192,
2−72248, PALOMA-256.

Since the expected value for all three parameters of PALOMA is significantly
smaller than 2−256, it is assumed that GetErrVec returns 2256 distinct error
vectors.

Number of Plaintexts. In PALOMA, the plaintext ê of the SDP is generated from
a 256-bit string r∗ through the operations GetErrVec, ROG, and GetPer-
mMat. (Figure 2 (a)) PALOMA assumes that the probability of having differ-
ent 256-bit strings that produce the same plaintext ê through this process is
extremely low and can be disregarded. In other words, PALOMA considers that
there are 2256 possible plaintext candidates.
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4.1.2 Exhaustive Search
The naive algorithm for finding roots of an SDP in PALOMA is an exhaustive
search. The amount of the exhaustive search is O

((

n
t

)

(n − k)
)

in terms of bit
operations. The amount of exhaustive search for the PALOMA parameters is as
follows.

O

((

n

t

)

(n − k)
)

≈

⎧

⎪

⎨

⎪

⎩

O
(

2476.52
)

, PALOMA-128,
O
(

2885.11
)

, PALOMA-192,
O
(

2916.62
)

, PALOMA-256.

PALOMA assumes that its underlying SDP has 2256 candidate roots.
(Section 4.1.1) Each candidate generation requires the operations of GetEr-
rVec, ROG, and GetPermMat. The process of verifying if a candidate is a
root requires t−1 (n−k)-bit additions. The computational cost of the Shuffle,
which is the main operation in GetErrVec and GetPermMat, is negligible
compared to the hash function operation, ROG. Similarly, the computational
cost of t− 1 (n− k)-bit additions is also negligible compared to the ROG opera-
tion. Therefore, the total computational cost of exhaustively searching the root
candidates is O(2256T ) where T is the computational cost of the ROG operation.
Assuming T < 240, generating and verifying the root candidates in PALOMA is
more efficient in terms of computational cost compared to investigating all vec-
tors with a Hamming weight of t. The set of 2256 root candidates can be precom-
puted before the start of the SDP challenge, independent of the public/secret
keys. However, this requires memory of 2256t log2 n� bits.

4.1.3 Birthday-Type Decoding
For a random permutation matrix P ∈ Pn, SDP(H, s, t) and SDP(HP, s, t)
have the necessary and sufficient conditions: e ∈ SDP(H, s, t) if and only if
P−1e ∈ SDP(HP, s, t). Let I := [0 : n

2 ], J := [n2 : n], and ̂H := HP. Birthday-
type decoding transforms SDP until finding the root ê = (êI‖êJ ) := P−1e ∈
SDP( ̂H, s, t) that satisfies wH(êI) = wH(êJ ) = t

2 for a random permutation
matrix P. To find êI and êJ , we check the intersection of TI := {s + ̂HI êI ∈
F

n−k
2 : êI ∈ En/2

t/2 } and TJ := { ̂HJ êJ ∈ F
n−k
2 : êJ ∈ En/2

t/2 }. The probability that
the two sets, TI and TJ , have an intersection for a randomly chosen permutation
matrix P is p =

(

n/2
t/2

)2
/
(

n
t

)

. Therefore, the process of transforming SDP with a
new P must be repeated at least 1/p times. Algorithm 1 shows this attack in
detail.

Since the number of bit computations for calculating ̂HI êI and ̂HJ êJ are
O(
(

n/2
t/2

)

(n− k)), the total amount of computations for the PALOMA parameters
is as follows.

O

(

2
(

n

t

)

(n − k)
/

(

n/2
t/2

))

=

⎧

⎪

⎨

⎪

⎩

O(2245.77), PALOMA-128,
O(2450.81), PALOMA-192,
O(2466.57), PALOMA-256.
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Algorithm 1. Finding a root of SDP: Birthday-type Decoding
Input: H ∈ F

(n−k)×n
2 and s ∈ F

n−k
2 , w and I = [0 : n

2 ], J = [n
2 : n]

Output: e ∈ F
n
2 such that He = s and wH(e) = t

1: while true do
2: P $←− Pn

3: ̂H ← HP
4: T [j] ← null for all j ∈ {0, 1}n−k

5: for êI in En/2
t/2 do � exhaustive search

6: u ← s + ̂HI êI // num. of bit operations = n − k
7: T [u] ← êI

8: end for
9: for êJ in En/2

t/2 do � exhaustive search

10: u ← ̂HJ êJ // num. of bit operations = n − k
11: if T [u] �= null then
12: ê ← (T [u]‖êJ ) � T [u] = êI

13: return Pê
14: end if
15: end for
16: end while

To increase the probability p to a value close to 1 in birthday-type decoding,
define the two subsets I =

[

0 : n
2 + ε
]

and J =
[

n
2 − ε : n

]

for some ε > 0. When
we find e1, e2 ∈ E n

2 +ε

t/2 that satisfy s + ̂HIe1 = ̂HJe2, it cannot be assumed
that (e1‖0n

2 −ε) + (0
n
2 −ε‖e2) is a root. If wH((e1‖0n

2 −ε) + (0
n
2 −ε‖e2)) = t,

then (e1‖0n
2 −ε) + (0

n
2 −ε‖e2) is the root. Therefore it is necessary to include

this discriminant. In this attack, ε is set to a value that makes the probability
p =
(

n/2+ε
t/2

)2
/
(

n
t

)

close to 1. The calculated amount of birthday-type decoding
for the PALOMA parameters is counted as follows.

O

(
2(n − k)

(
n/2 + ε

t/2

))
≈ O

⎛
⎝2(n − k)

√√√√(
n

t

)⎞
⎠ =

⎧⎪⎨
⎪⎩

O(2244.11), PALOMA-128,
O(2448.91), PALOMA-192,
O(2464.66), PALOMA-256.

We consider the computation cost of this approach as a birthday-type decoding
calculation, even though the overall computational complexity decreases by only
about 2 or 3 bits compared to the increase in memory complexity.

4.1.4 Improved Birthday-Type Decoding
By defining two smaller SDPs from the SDP, and obtaining the roots of each
SDP through birthday-type decoding, it is possible to find the root of the SDP
while checking if the root candidate satisfies certain conditions. This is referred
to as improved birthday-type decoding.

Consider H =
(H1
H2

) ∈ F
(n−k)×n
2 as a concatenation of two submatrices,

H1 ∈ F
r×n
2 and H2 ∈ F

(n−k−r)×n
2 , where r ≤ n − k. For the n-bit roots x ∈

SDP
(

H1, s[0:r], t/2 + ε
)

and y ∈ SDP (H1, 0r, t/2 + ε) for H1, if x and y satisfy
H2(x + y) = s[r:n−k] and wH(x + y) = t, then x + y ∈ SDP(H, s, t). Note

that |SDP (H1, s[0:r], t/2 + ε
) | ≈ |SDP (H1, 0r, t/2 + ε) | ≈ ( n

t/2+ε)
2r . Algorithm 2

shows this method in detail.



PALOMA: Binary Separable Goppa-Based KEM 159

Algorithm 2. Finding a root of SDP: Improved Birthday-type Decoding
Input: H ∈ F

(n−k)×n
2 , s ∈ F

n−k
2 , t and r

Output: e ∈ F
n
2 such that He = s and wH(e) = t

1: T [j] ← ∅ for all j ∈ {0, 1}n−k−r

2: for x in SDP
(

H1, s[0:r], t/2 + ε
)

do � birthday-type decoding
3: u ← s[r:n−k] + H2x // num. of bit operations = (t/2 + ε)(n − k − r)

4: T [u] ← T [u] ∪ {x}
5: end for
6: for y in SDP (H1, 0r, t/2 + ε) do � birthday-type decoding
7: u ← H2y // num. of bit operations = (t/2 + ε)(n − k − r)

8: for x in T [u] do // |T [u]| ≈
(

n
t/2+ε

)

2r × 1
2n−k−r

9: e ← x + y // num. of bit operations =

(

n
t/2+ε

)

2r ×
n

(

n
t/2+ε

)

2n−k

10: if wH(e) = t then
11: return e
12: end if
13: end for
14: end for

The number of bit operations in this algorithm is as follows.

4r

√

(

n

t/2 + ε

)

+

(

n
t/2+ε

)

2r

(

(t + 2ε)(n − k − r) +
n
(

n
t/2+ε

)

2n−k

)

.

Choice of ε. When two subsets A and B with the number of elements t/2+ε are
randomly selected from the set [0 : n], the expected value E[|A ∩ B|] is (t/2+ε)2

n .
Therefore, for the roots x and y of each small SDP, E[wH(x + y)] is as follows.

E[wH(x + y)] = E[2(|supp (x) | − |supp (x) ∩ supp (y) |)]
= 2E[|supp (x) |] − 2E[|supp (x) ∩ supp (y) |]

= 2 (t/2 + ε) − 2(t/2 + ε)2

n
.

Set ε to satisfy ε = (t/2+ε)2

n , i.e., ε =
√

n2−2nt+(n−t)
2 . Then E[wH(x + y)] = t.

Choice of r. For e ∈ SDP(H, s, t), the number of (x, y) pairs satisfying e =
x + y is |{(x, y) ∈ (En

t/2+ε)
2 : e = x + y}| =

(

t
t/2

)(

n−t
ε

)

. Therefore, set r to
satisfy 2r ≈ ( t

t/2

)(

n−t
ε

)

to count the number of roots of small SDP accurately.
The required amount of bit operations of improved birthday-type decoding for
PALOMA parameters is as follows.

⎧

⎪

⎨

⎪

⎩

O(2225.45) (ε = 3840, r = 61), PALOMA-128,
O(2398.84) (ε = 5440, r = 125), PALOMA-192,
O(2414.76) (ε = 6464, r = 125), PALOMA-256.

4.1.5 Information Set Decoding
ISD is a generic decoding algorithm for random linear codes. The first phase of
ISD involves transforming the parity check matrix H into a systematic form to
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facilitate the identification of an error-free information set. In the second phase,
error vectors satisfying specific conditions are identified, utilizing a combina-
tion of birthday attack-type searches and partial brute force attacks. Initially
proposed by E. Prange in 1962, ISD has demonstrated improved computational
complexity by modifying the error vector conditions and incorporating search
techniques inspired by birthday attacks [1,5,6,9,11,17,18,20,21,26,28].

Procedure. ISD utilizes Proposition 2, which describes the relationship between
the code C and the scrambled code ̂C of C in terms of the root of SDP.

Proposition 2. Let e ∈ SDP(H, s, t). For an invertible matrix S ∈
F
(n−k)×(n−k)
2 and a permutation matrix P ∈ Pn, we know P−1e ∈

SDP(SHP,Ss, t).

ISD is a probabilistic algorithm that modifies SDP until it finds a root that
satisfies certain conditions. ISD proceeds to the following two phases.

Phase 1. Redefining a problem: Find e ∈ SDP(H, s, t) ⇒ Find ê = P−1e ∈
SDP( ̂H = SHP, ŝ = Ss, t) where SHP =

( Il M1
0 M2

)

is a partially sys-
tematic matrix obtained by applying elementary row operations.

Phase 2. Find ê(= P−1e) ∈ SDP( ̂H, ŝ, t) that satisfies the specific Hamming
weight condition and return e(= Pê). If no root satisfies the condition,
go back to (Phase 1).

Computational Complexity. Let p be the probability that the root ê satis-
fies a specific Hamming weight condition in the modified problem. The com-
putational complexity of the ISD is 1

p × ((Phase 1)’s computational amount +
(Phase 2)’s computational amount). (Phase 1) involves modifying the problem
using the Gaussian elimination. Most ISD algorithms require O((n − k)2n) bit
operations in this phase. ISD has been developed by improving the computational
efficiency of (Phase 2) and the probability p.

We considered the BJMM-ISD to be the most effective ISD because the subse-
quent ISDs proposed after the BJMM-ISD in 2012 only provided minor improve-
ments in specific situations [1]. Consequently, the parameters of PALOMA were
chosen based on the precise calculation of the number of bit operations involved
in the BJMM-ISD. The BJMM-ISD transforms the SDP into a small SDP and
identifies a root of the SDP using birthday-type attacks.

Becker-Joux-May-Meurer. BJMM-ISD is an ISD that applies improved birthday-
type decoding to the partial row-reduced echelon form [1]. Transform H into
the form ̂H =

(

In−k−l H1
0 H2

)

where H1 ∈ F
(n−k−l)×(k+l)
2 and H2 ∈ F

l×(k+l)
2

by applying a partial Rref(row-reduced echelon form) operation for some l(≤
n − k). For I = [0 : n − k − l], J = [n − k − l : n], and L = [n − k − l : n − k],
BJMM-ISD finds the root ê = (êI‖êJ ) of SDP( ̂H = SHP, ŝ = Ss, t) that satisfies
the following conditions.

wH(êI) = t − p, wH(êJ ) = p, êJ ∈ SDP(H2, ŝL, p), êI + êJH1 = ŝI .
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Algorithm 3. Finding a root of SDP: BJMM-ISD
Input: H ∈ F

(n−k)×n
2 , s ∈ F

n−k
2 and t

Output: e ∈ F
n
2 such that He = s and wH(e) = t

1: while true do
2: P $←− Pn

3: ̂H = SHP ← partial Rref(HP) // num. of bit operations = (n − k − l)(n − k)n

4: if ̂HI×I = In−k−l then

5: H1,H2 ← HJ×I ,HJ×L � ̂H =

(

In−k−l H1
0 H2

)

6: ŝ ← Ss

7: for y in SDP(H2, ŝL, p) do // |SDP(H2, ŝL, p)| ≈
(

k+l
p

)

2l � improved birthday-type
decoding

8: x ← ŝI + H1y // num. of bit operations = p(n − k − l)
9: if wH(x) = t − p then
10: ê ← (x‖y)
11: return Pê
12: end if
13: end for
14: end if
15: end while

The process of BJMM-ISD is as follows.

Phase 1. Randomly select a permutation matrix P ∈ Pn. Apply partial Rref
to HP to obtain a partial canonical matrix ̂H =

(

In−k−l H1
0 H2

)

. In this

process, the invertible matrix S satisfying ̂H = SHP can be obtained
simultaneously. If there is no invertible matrix S that makes it a partial
systematic form, (Phase 1) is performed again.

Phase 2. Obtain SDP(H2, ŝL, p) using the improved birthday-type decoding. If
the root does not exist, go back to (Phase 1). If the Hamming weight
of the vector x := ŝI +H1y for y ∈ SDP(H2, ŝL, p) is t − p, return Pê

because it is ê = (x‖y) ∈ SDP( ̂H, ŝ, t). If not, go back to (Phase 1).

Algorithm 3 presents the BJMM-ISD process in detail.
The probability that ê = P−1e satisfies the Hamming weight condition for

e ∈ SDP(H, s, t) in BJMM-ISD is as follows.

Pr[P $←− Pn, (wH(êI) = t − p) ∧ (wH(êJ ) = p)] =

(

n−k−l
t−p

)(

k+l
p

)

(

n
t

) .

Therefore, the calculation amount for the bit operation in the BJMM-ISD is as
follows.

(

n
t

)

(

n−k−l
t−p

)(

k+l
p

)

(

(n − k − l)(n − k)n +
p(n − k − l)

(

k+l
p

)

2l
+ T

)

,

where T := num. of bit operations for SDP(H2, ŝL, p). In this process, ε and r
are set as follows for the computation of SDP(H2, ŝL, p).

ε =

√

(k + l)2 − 2(k + l)p + (k + l − p)
2

, r = log2

((

p

p/2

)(

k + l − p

ε

))

.
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Table 6. Complexity of Several Attacks on PALOMA and Classic McEliece

BJMM-ISD Improved
Birthday-type

Birthday-type Exhaustive
Search

PALOMA-128 2166.21
(l = 67, p = 14) 2225.78 2244.11 2476.52

PALOMA-192 2267.77
(l = 105, p = 22) 2399.67 2448.91 2885.11

PALOMA-256 2289.66
(l = 126, p = 26) 2415.59 2464.66 2916.62

mceliece348864 2161.97
(l = 66, p = 14) 2220.26 2238.75 2465.91

mceliece460896 2215.59
(l = 86, p = 18) 2311.80 2345.58 2678.88

mceliece6688128 2291.56
(l = 126, p = 26) 2416.95 2466.01 2919.32

mceliece6960119 2289.92
(l = 136, p = 28) 2402.41 2443.58 2874.57

mceliece8192128 2318.34
(l = 157, p = 32) 2436.05 2484.90 2957.10

The required amount of bit operations of BJMM-ISD for PALOMA parameters
is as follows.

⎧

⎪

⎨

⎪

⎩

O(2166.21) (l = 67, p = 14), PALOMA-128,
O(2267.77) (l = 105, p = 22), PALOMA-192,
O(2289.66) (l = 126, p = 26), PALOMA-256.

Based on the above results, PALOMA claims that PALOMA-128, PALOMA-192,
and PALOMA-256 have security strengths of 128-bit, 192-bit, and 256-bit, respec-
tively. Table 6 is a comparison of the computational complexity of exhaustive
search, (improved) birthday-type decoding, and BJMM-ISD for PALOMA and
Classic McEliece.

4.2 IND-CCA2-Secure KEM = (GENKEY, ENCAP, DECAP)

In the IND-CCA2 security game, which stands for INDistinguishability against
Adaptive Chosen-Ciphertext Attack, for theKEM = (GenKey,Encap,Decap),
the challenger sends a challenge (key, ciphertext) pair to the adversary, who
guesses whether the pair is correct or not. Here, “correct” means that the pair
(key, ciphertext) is a valid output of the Encap. The adversary is allowed
to query the Decap oracle except the challenge. We say that KEM is IND-
CCA2-secure when the advantage AdvIND-CCA2

KEM = |Pr[A wins IND-CCA2] − 1
2 |

of A is negligible for any probabilistic polynomial-time attacker A. According
to the analysis results in Sect. 4.1, it is assumed that the underlying PKE =
(GenKey,Encrypt,Decrypt) of PALOMA is OW-CPA-secure.

PKE has the following properties. For all key pairs (pk, sk),

(1) (Injectivity) if Encrypt(pk; ê1) = Encrypt(pk; ê2), then ê1 = ê2.
(2) (Correctness) Pr[ê �= Decrypt(sk;Encrypt(pk; ê))] = 0.

The Fujisaki-Okamoto transformation is a method for designing an IND-
CCA2-secure scheme from an OW-CPA-secure scheme in random oracle model.
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Algorithm 4. PALOMA: PKE0, PKE1, and KEM�⊥
1: procedure Encrypt0(pk; r̂; e∗)
2: P,P−1 ← GetPermMat(r̂)
3: ê ← Pe∗

4: ŝ ← Encrypt(pk; ê)
5: return c = (r̂, ŝ)
6: end procedure

1: procedure Decrypt0(sk; c = (r̂, ŝ))
2: ê ← Decrypt(sk; ŝ)

3: P,P−1 ← GetPermMat(r̂)
4: e∗ ← P−1ê
5: return e∗

6: end procedure

1: procedure Encrypt1(pk; e∗)
2: r̂ ← ROG(e∗)
3: c = (r̂, ŝ) ← Encrypt0(pk; r̂; e∗)
4: return c = (r̂, ŝ)
5: end procedure

1: procedure Decrypt1(sk; c = (r̂, ŝ))
2: e∗ ← Decrypt0(sk; ŝ)
3: r̂′ ← ROG(e∗)
4: if r̂ �= r̂′ then
5: return ⊥
6: end if
7: return e∗

8: end procedure

1: procedure Encap(pk)

2: r∗ $←− {0, 1}256

3: e∗ ← GetErrVec(r∗)
4: c = (r̂, ŝ) ← Encrypt1(pk; e∗)
5: κ ← ROH(e∗‖r̂‖ŝ)
6: return κ and c = (r̂, ŝ)
7: end procedure

1: procedure Decap(sk; c = (r̂, ŝ))
2: e∗ ← Decrypt1(sk; c = (r̂, ŝ))
3: if e∗ =⊥ then
4: ẽ ← GetErrVec(r) // r ← sk
5: κ ← ROH(ẽ‖r̂‖ŝ)
6: else
7: κ ← ROH(e∗‖r̂‖ŝ)
8: end if
9: return κ
10: end procedure

There are several variants of the Fujisaki-Okamoto transformation. Using
the above properties, PALOMA is designed based on the implicit rejection
KEM�⊥ = U�⊥[PKE1 = T[PKE0, G],H] among FO-like transformations proposed
by Hofheinz et al. [14]. This is combined with two modules: T: converting OW-
CPA-secure PKE0 to OW-PCA(Plaintext-Checking Attack)-secure PKE1 and U �⊥:
converting it to IND-CCA2-secure KEM as follows.

OW-CPA-secure PKE0 = (GenKey,Encrypt0,Decrypt0)

T−−−−−−−−−−−−−−−→
with a random oracle G

OW-PCA-secure PKE1 = (GenKey,Encrypt1,Decrypt1)

U �⊥−−−−−−−−−−−−−−−→
with a random oracle H

IND-CCA2-secureKEM �⊥ = (GenKey,Encap,Decap).

4.2.1 OW-CPA-secure PKE0

PKE0 is defined with the PKE and GetPermMat of PALOMA as follows.

Encrypt0(pk; r̂; e∗) := (r̂,Encrypt(pk;Pe∗)) where (P,P−1) = GetPermMat(r̂).

Algorithm 4 shows the detailed process of PKE0. As PKE is assumed to be OW-
CPA-secure, it follows that PKE0 is also OW-CPA-secure.

4.2.2 OW-PCA-secure PKE1

The transform T for converting OW-PCA-secure PKE0 to OW-PCA-secure PKE1

is defined by

Encrypt1(pk; e∗) := Encrypt0(pk;G(e∗); e∗), where G is a random oracle.
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Algorithm 4 shows PKE1 constructed by this transformation T and a random
oracle ROG.

For any OW-PCA-attackers B on PKE1, there exists an OW-CPA-attacker A
on PKE0 satisfying the inequality below [14, Theorem 3.1].

AdvOW-PCA
PKE1

(B) ≤ (qG + qP + 1)AdvOW-CPA
PKE0

(A), (1)

where qG and qP are the number of queries to the random oracle ROG and
the plaintext-checking oracle PCO, which can be implemented by re-encryption.
Note that PALOMA cannot implement a ciphertext validity oracle CVO because
it generates error vectors as messages from a 256-bit string. From Eq. (1), if
PKE0 is OW-CPA-secure, AdvOW-PCA

PKE1
(B) is negligible, so we have PKE1 is OW-

PCA-secure.

4.2.3 IND-CCA2-secure KEM�⊥

The transform U�⊥ for converting OW-PCA-secure PKE1 to IND-CCA2-secure
PKE1 is as follows.

Encap(pk) := (c = Encrypt1(pk; e∗),ROH(e∗‖c)).

Algorithm 4 shows KEM�⊥ of PALOMA constructed by using the transformation
U �⊥ and a random oracle ROH .

For any IND-CCA2-attackers B on KEM�⊥, there exists an OW-PCA-attacker
A on PKE1 satisfying the inequality below [14, Theorem 3.4].

AdvIND-CCA2
KEM�⊥ (B) ≤ qH

2256
AdvOW-PCA

PKE1
(A),

where qH is the number of queries to the plaintext-checking oracle. Therefore,
if PKE1 is OW-PCA-secure, AdvOW-PCA

PKE1
(A) is negligible. Consequently, we have

that KEM�⊥ is IND-CCA2-secure.

5 Conclusion

In this paper, we introduce PALOMA, an IND-CCA2-secure KEM based on an SDP
with a binary separable Goppa code. While the components and mechanisms
used in PALOMA have been studied for a long time, no critical attacks have been
found. Many cryptographic communities believe that the scheme constructed
by these is secure. The Classic McEliece, which is the 4th round cipher of the
NIST PQC competition, was also designed based on similar principles [4]. Both
PALOMA and Classic McEliece have similar public key sizes. However, PALOMA is
designed with a focus on deterministic algorithms for constant-time operations,
making it more efficient in terms of implementation speed compared to Classic
McEliece. We give the feature comparison between PALOMA and Classic McEliece
in Table 7.
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Table 7. Comparison between PALOMA and Classic McEliece

PALOMA Classic McEliece

Structure Fujisaki-Okamoto-structure KEM SXY-structure KEM
(implicit rejection) (implicit rejection)

Problem SDP SDP
Trapdoor type Niederreiter Niederreiter
Field Fqm F213 F212 , F213

Linear code C Binary separable Goppa code Binary irreducible Goppa code
Goppa polynomial g(X) Separable (not irreducible) Irreducible
Time for generating g(X) Constant Non-constant
Parity-check matrix H of C ABC BC
Parity-check matrix ̂H of ̂C Systematic Systematic
Decoding algorithm Extended Patterson Berlekamp-Massey
Probability of decryption failure (correctness) 0 0

A primary role of post-quantum cryptography is to serve as an alternative
to current cryptosystems that are vulnerable to quantum computing attacks.
Therefore, we have designed PALOMA with a conservative approach, and thus,
we firmly believe that PALOMA can serve as a dependable alternative to existing
cryptosystems in the era of quantum computers.

Acknowledgements. We are grateful to the anonymous reviewers for their help in
improving the quality of the paper. This work was supported by the Ministry of Educa-
tion of the Republic of Korea and the National Research Foundation of Korea (No.NRF-
2021R1F1A1062305).

A Mathematical Background

In this section, we provide the necessary mathematical background to understand
the operating principles of PALOMA.

A.1 Syndrome Decoding Problem

SDP is the problem of finding a syndrome preimage vector with a specific Ham-
ming weight. The formal definition of SDP is as follows.

Definition 1. (SDP). Given a parity-check matrix H ∈ F
(n−k)×n
2 of a random

binary linear code C = [n, k]2, a syndrome s ∈ F
n−k
2 and t ∈ {1, . . . , n}, find the

vector e ∈ F
n
2 that satisfies He = s and wH(e) = t.

SDP has been proven to be an NP-hard problem due to its equivalence to
the 3-dimensional matching problem, as demonstrated in 1978 [3,15].

Number of Roots of SDP. The preimage vector with Hamming weight less than
or equal to

⌊

d−1
2

⌋

is unique. Generally, in SDP-based schemes, the Hamming
weight condition w of SDP is set to

⌊

d−1
2

⌋

for the uniqueness of root.



166 D.-C. Kim et al.

A.2 Binary Separable Goppa Code

Binary separable Goppa codes are special cases of algebraic-geometric codes
proposed by V. D. Goppa in 1970 [13]. The formal definition of a binary separable
Goppa code over F2 is as follows.

Definition 2 (Binary Separable Goppa code). For a set of distinct n(≤
2m) elements L = [α0, α1, . . . , αn−1] of F2m and a separable polynomial g(X) =
∑t

j=0 gjX
j ∈ F2m [X] of degree t such that none of the elements of L are roots

of g(X), i.e., g(α) �= 0 for all α ∈ L, a binary separable Goppa code of length n
over F2 is the subspace CL,g of Fn

2 defined by

CL,g := {(c0, . . . , cn−1) ∈ F
n
2 :

n−1
∑

j=0

cj(X − αj)−1 ≡ 0 (mod g(X))},

where (X − α)−1 is the polynomial of degree t − 1 satisfying (X − α)−1(X −
α) ≡ 1 (mod g(X)). L and g(X) are referred to as a support set and a Goppa
polynomial, respectively.

Dimension and Minimum Hamming Distance. The dimension k and the mini-
mum Hamming distance d of CL,g satisfy k ≥ n − mt and d ≥ 2t + 1. PALOMA
set the dimension k of CL,g to n − mt and the Hamming weight condition of the
SDP to t to ensure the uniqueness of the root.

Parity-Check Matrix. The parity-check matrix H of CL,g is defined with each
coefficient of the polynomial (X −αj)−1 with degree t−1, and H can be decom-
posed into ABC, defined by

A :=

⎛

⎝

g1 g2 ··· gt

g2 g3 ··· 0

...
...

. . .
...

gt 0 ··· 0

⎞

⎠ ∈ F
t×t
2m , B :=

⎛

⎜

⎜

⎝

α0
0 α0

1 ··· α0
n−1

...
...

. . .
...

αt−2
0 αt−2

1 ··· αt−2
n−1

αt−1
0 αt−1

1 ··· αt−1
n−1

⎞

⎟

⎟

⎠

∈ F
t×n
2m ,

and C :=

⎛

⎜

⎝

g(α0)
−1 0 ··· 0

0 g(α1)
−1 ··· 0

...
...

. . .
...

0 0 ··· g(αn−1)
−1

⎞

⎟

⎠ ∈ F
n×n
2m .

(2)

Since the matrix A is invertible (gt �= 0), BC is another parity-check matrix of
CL,g. Classic McEliece uses BC as a parity-check matrix.

A.3 Extended Patterson for Binary Separable Goppa code

Patterson decoding is the algorithm for a binary irreducible Goppa code, not
a separable Goppa code. However, it can be extended for a binary separable
Goppa code [7,25]. Given a syndrome vector s ∈ F

n−k
2 , the extended Patterson

decoding procedure to find the preimage vector e ∈ F
n
2 of s with wH(e) = t is as

follows. (Note that preimage vector is called an error vector in coding theory)
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Step 1. Convert the syndrome vector s into the syndrome polynomial s(X) ∈
F2m [X] of degree t or less.

Step 2. Derive the key equation for finding the error locator polynomial σ(X) ∈
F2m [X] of degree t.

Step 3. Solve the key equation using the extended Euclidean algorithm.
Step 4. Calculate σ(X) using a root of the key equation.
Step 5. Find all roots of σ(X) and compute the preimage vector e. At this stage,

to ensure resistance against timing attacks, PALOMA uses the exhaustive
search.

In the above procedure, the error locator polynomial σ(X) =
∏

j∈supp(e)(X−
αj) ∈ F2m [X] and σ(X) satisfies the following identity.

σ(X)s(X) ≡ σ′(X) (mod g(X)). (3)

Note that σ(X) satisfying Eq. (3) is unique since the number of errors is t. In
F2m [X], all polynomials f(X) has two polynomials a(X) and b(X) such that
f(X) = a(X)2 + b(X)2X, deg(a) ≤ �t/2�, and deg(b) ≤ �(t − 1)/2�. Thus, if
σ(X) = a(X)2 + b(X)2X, Eq. (3) can be rewritten as follows.

b(X)2(1 + Xs(X)) ≡ a(X)2 s(X) (mod g(X)). (4)

When g(X) is irreducible, s−1(X) and
√

s−1(X) + X exist in modulo g(X).
Patterson decoding uses the extended Euclidean algorithm to find a(X) and b(X)
of the following key equation to generate the error locator polynomial σ(X).

b(X)
√

(s−1(X) + X) ≡ a(X) (mod g(X)), deg(a) ≤ �t/2� , deg(b) ≤ �(t − 1)/2� .

However, if g(X) is separable, the existence of s−1(X) cannot be guaranteed
because g(X) and s(X) are unlikely to be relatively prime.

We define

s̃(X) := 1 + Xs(X), g1(X) := gcd(g(X), s(X)), g2(X) := gcd(g(X), s̃(X)).

Since gcd(s(X), s̃(X)) = gcd(s(X), s̃(X) mod s(X)) = gcd(s(X), 1) ∈ F2m \{0},
we know

g | b2s̃ + a2s
g1|g
==⇒ g1 | b2s̃ + a2s

g1|s
==⇒ g1 | b2s̃

g1�s̃
==⇒ g1 | b2 ⇒ g1 | b,

g | b2s̃ + a2s
g2|g
==⇒ g2 | b2s̃ + a2s

g2|s̃
==⇒ g2 | a2s

g2�s
==⇒ g2 | a2 ⇒ g2 | a.

Therefore, the following polynomials can be defined in F2m [X].

b1(X) :=
b(X)
g1(X)

, a2(X) :=
a(X)
g2(X)

, g12(X) :=
g(X)

g1(X)g2(X)
,

s̃2(X) :=
s̃(X)
g2(X)

, s1(X) :=
s(X)
g1(X)

.



168 D.-C. Kim et al.

Equation (4) can be rewritten as follows.

b(X)2s̃(X) ≡ a(X)2 s(X) (mod g(X))

⇒ b21(X)g1(X)s̃2(X) ≡ a2
2(X)g2(X)s1(X) (mod g12(X)).

Because gcd(g2(X), g12(X)), gcd(s1(X), g12(X)) is an element of F2m , we
know gcd(g2(X)s1(X), g12(X)) ∈ F2m . Therefore, there exists the inverse of
g2(X)s1(X) modulo g12(X), and we have the following equation.

b21(X)u(X) ≡ a2
2(X) (mod g12(X)) where u(X) := g1(X)s̃2(X)(g2(X)s1(X))−1.

Since u(X) has a square root modulo g12(X) (Remark 2), a(X) = a2(X)g2(X)
and b(X) = b1(X)g1(X) are obtained by calculating a2(X) and b1(X) that
satisfy the following key equation using the extended Euclidean algorithm.

b1(X)
√

u(X) ≡ a2(X) (mod g12(X)),
deg(a2) ≤ �t/2� − deg(g2), deg(b1) ≤ �(t − 1)/2� − deg(g1).

Remark 2. Since all elements of F213 are roots of the equation X213 −X = 0 and
g12(X) | X213 − X, we know

√
X = X212 mod g12(X). A polynomial u(X) =

∑l
i=0 uiX

i ∈ F213 [X] of degree l can be written as u(X) = (
∑�l/2�

i=0

√
u2iX

i)2 +
(
∑�(l−1)/2�

i=0

√
u2i+1X

i)2X where √
uj = (uj)2

12
for all j. Thus, the square root

√

u(X) of u(X) modulo g12(X) is

√

u(X) =

⎛

⎝

�l/2�
∑

i=0

√
u2iX

i

⎞

⎠+

⎛

⎝

�(l−1)/2�
∑

i=0

√
u2i+1X

i

⎞

⎠

√
X mod g12(X).

B Pseudo codes for PALOMA

In this section, we provide pseudo codes of the functions used in PALOMA.

Algorithm 5. Shuffling with a 256-bit Seed
Input: An ordered set A = [A0, A1, . . . , Al−1] and a 256-bit seed r = r0‖ · · · ‖r255
Output: A shuffled set A

1: procedure Shuffle(A, r)
2: r̂w ← ∑15

j=0 r16w+15−j2
j for w = 0, 1, . . . , 15 � r̂w ∈ {0, 1, . . . , 216 − 1}

3: w ← 0
4: for i ← l − 1 downto 1 do
5: j ← r̂w mod 16 mod i + 1
6: swap(Ai, Aj)
7: w ← w + 1
8: end for
9: return A
10: end procedure
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Algorithm 6. Generation of a n-bit Permutation with a 256-bit Seed
Input: A 256-bit seed r
Output: An n × n permutation matrix P,P−1

1: procedure GetPermMat(r)
2: [l0, l1, . . . , ln−1] ← Shuffle([0 : n], r) � Alg. 5
3: P ← ∏n−1

j=0 Pj,lj
= P0,l0P1,l1 · · ·Pn−1,ln−1 where Pi,j is the n × n permutation matrix

for swapping i-th column and j-th column.
4: P−1 ← Pn−1,ln−1 · · ·P1,l1P0,l0

5: return P,P−1

6: end procedure

Algorithm 7. Generation of Key Pair
Input: Parameter set (t, n)
Output: A public key pk and a secret key sk

1: procedure GenKey(t, n)
2: L, g(X),H ← GenRandGoppaCode(t, n)

3: S−1, r, ̂H ← GetScrambledCode(H) � ̂H = SHP
4: pk, sk ← ̂H[n−k:n], (L, g(X),S−1, r)

5: return pk and sk
6: end procedure

Input: Parameter set (t, n)
Output: A support set L, a Goppa poly. g(X) and a parity-check matrix H of CL,g

1: procedure GenRandGoppaCode(t, n)

2: r
$←− {0, 1}256

3: [α0, . . . , α213−1] ← Shuffle(F213 , r) � Alg. 5

4: L, g(X) ← [α0, . . . , αn−1],
n+t−1

∏

j=n

(X − αj)

5: H = [hr,c] ← ABC ∈ F
t×n

213
� A,B,C are defined in Eq. (2)

6: hc ← [h
(0)
0,c | · · · | h

(12)
0,c | h

(0)
1,c | · · · | h

(12)
1,c | · · · | h

(12)
t−1,c]

T ∈ F
13t
2 for c ∈ [0 : n] where

h(j)
r,c ∈ F2 such that hr,c =

∑12
j=0 h(j)

r,czj ∈ F213

7: H ← [h0 | h1 | · · · | hn−1] ∈ F
13t×n
2

8: return L, g(X), H
9: end procedure

Input: A parity-check matrix H of C
Output: An invertible matrix S−1, a random bit string r and a parity-check matrix ̂H of ̂C
1: procedure GetScrambledCode(H)

2: r
$←− {0, 1}256

3: P,P−1 ← GetPermMat(r) � Alg. 6
4: ̂H ← Rref(HP)

5: if ̂H[0:n−k] �= In−k then
6: Go back to line 2.
7: end if
8: S−1 ← (HP)[0:n−k]

9: return S−1, r, ̂H
10: end procedure
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Algorithm 8. Extended Patterson Decoding
Input: A support set L, a Goppa polynomial g(X) and a syndrome vector s ∈ F

n−k
2

Output: A vector e ∈ F
n
2 with wH(e) = t

1: procedure RecErrVec(L, g(X); s)
2: s(X) ← ToPoly(s)
3: v(X), g1(X), g2(X), g12(X) ← ConstructKeyEqn(s(X), g(X))

4: a2(X), b1(X) ← SolveKeyEqn(v(X), g12(X),
⌊

t
2

⌋ − deg(g2),
⌊

t−1
2

⌋

− deg(g1))

5: a(X), b(X) ← a2(X)g2(X), b1(X)g1(X)
6: σ(X) ← a2(X) + b2(X)X
7: e ← FindErrVec(σ(X))
8: return e
9: end procedure

Input: A syndrome vector s = (s0, s1, . . . , s13t−1) ∈ F
13t
2

Output: A syndrom polynomial s(X) ∈ F213 [X]

1: procedure ToPoly(s)
2: wj ← ∑12

i=0 s13j+iz
i ∈ F213 for j = 0, 1, . . . , t − 1

3: s(X) ← ∑t−1
j=0 wjXj ∈ F213 [X]

4: return s(X)
5: end procedure

Output: A syndrome polynomial s(X) and a Goppa polynomial g(X)
Input: v(X), g1(X), g2(X), g12(X) ∈ F213 [X]

1: procedure ConstructKeyEqn(s(X), g(X))
2: s̃(X) ← 1 + Xs(X)
3: g1(X), g2(X) ← gcd(g(X), s(X)), gcd(g(X), s̃(X)) � g1(X), g2(X) are monic.
4: g12(X) ← g(X)

g1(X)g2(X)

5: s̃2(X), s1(X) ← s̃(X)
g2(X) ,

s(X)
g1(X)

6: u(X) ← g1(X)s̃2(X)(g2(X)s1(X))−1 mod g12(X)

7: v(X) ← √

u(X) mod g12(X)
8: return v(X), g1(X), g2(X), g12(X)
9: end procedure

Output: v(X), g12(X), dega, degb
Input: a1(X), b2(X) s.t. b2(X)v(X) ≡ a1(X) (mod g12(X)) and deg(a1) ≤ dega, deg(b2) ≤ degb

1: procedure SolveKeyEqn(v(X), g12(X), dega, degb)
2: a0(X), a1(X) ← v(X), g12(X)
3: b0(X), b1(X) ← 1, 0
4: while a1(X) = 0 do
5: q(X), r(X) ← div(a0(X), a1(X)) � a0(X) = a1(X)q(X) + r(X), 0 ≤ deg(r) < deg(a1)
6: a0(X), a1(X) ← a1(X), r(X)
7: b2(X) ← b0(X) − q(X)b1(X)
8: b0(X), b1(X) ← b1(X), b2(X)
9: if deg(a0) ≤ dega and deg(b0) ≤ degb then
10: break
11: end if
12: end while
13: return a0(X), b0(X)
14: end procedure

Output: An error locator polynomial σ(X) and a support set L
Input: An error vector e ∈ F

n
2

1: procedure FindErrVec(σ, L)
2: e = (e0, . . . , en−1) ← (0, 0, . . . , 0)
3: for j = 0 to n − 1 do
4: if σ(αj) = 0 then
5: ej ← 1
6: end if
7: end for
8: return e
9: end procedure
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Algorithm 9 . Encrypt, Decrypt, Encap, Decap, GetErrVec, ROG,
ROH

Input: A public key pk = ̂H[n−k:n] ∈ F
(n−k)×k
2 and a vector ê ∈ F

n
2 with wH (ê) = t

Output: A syndrome vector ŝ ∈ F
n−k
2

1: procedure Encrypt(pk = ̂H[n−k:n]; ê)

2: ̂H ← [In−k | ̂H[n−k:n]] ∈ F
(n−k)×n
2

3: ŝ ← ̂Hê ∈ F
n−k
2

4: return ŝ

5: end procedure

Input: A secret key sk = (L, g(X), S−1, r) and a syndrome vector ŝ ∈ F
n−k
2

Output: A vector ê ∈ F
n
2 with wH (ê) = t

1: procedure Decrypt(sk = (L, g(X), S−1, r); ŝ)
2: s ← S

−1ŝ

3: e ← RecErrVec(L, g(X); s) � Alg. 8
4: P, P−1 ← GetPermMat(r) � Alg. 6
5: ê ← P

−1e

6: return ê

7: end procedure

Input: A public key pk ∈ {0, 1}(n−k)×n

Output: A key κ ∈ {0, 1}256 and a ciphertext c = (r̂, ŝ) ∈ {0, 1}256 × {0, 1}n−k

1: procedure Encap(pk)

2: r∗ $←− {0, 1}256

3: e∗ ← GetErrVec(r∗) � wH (e∗) = t

4: r̂ ← ROG(e∗) � r̂ ∈ {0, 1}256

5: P, P−1 ← GetPermMat(r̂)
6: ê ← Pe∗
7: ŝ ← Encrypt(pk; ê) � ŝ ∈ {0, 1}n−k

8: κ ← ROH (e∗‖r̂‖ŝ) � κ ∈ {0, 1}256

9: return κ and c = (r̂, ŝ)
10: end procedure

Input: A secret key sk = (L, g(X), S−1, r) and a ciphertext c = (r̂, ŝ)
Output: A key κ ∈ {0, 1}256

1: procedure Decap(sk = (L, g(X), S−1, r); c = (r̂, ŝ))
2: ê ← Decrypt(sk; ŝ)
3: P, P−1 ← GetPermMat(r̂)
4: e∗ ← P

−1ê � ê, e∗ ∈ {0, 1}n

5: r̂′ ← ROG(e∗)
6: ẽ ← GetErrVec(r)
7: if r̂′ �= r̂ then

8: κ ← ROH (ẽ‖r̂‖ŝ) � implicit rejection
9: else

10: κ ← ROH (e∗‖r̂‖ŝ)
11: end if

12: return κ

13: end procedure

Input: A 256-bit seed r ∈ {0, 1}256

Output: An error vector e = (e0, e1, . . . , en−1) ∈ F
n
2 with wH (e) = t

1: procedure GetErrVec(r)
2: e = (e0, e1, . . . , en−1) ← (0, 0, . . . , 0)

3: [l0, l1, . . . , ln−1] ← Shuffle([0 : n], r)

4: for j = 0 to t − 1 do

5: elj
← 1

6: end for

7: return e

8: end procedure

Input: An l-bit string x ∈ {0, 1}l

Output: a 256-bit string r ∈ {0, 1}256

1: procedure ROG(x)
2: return LSH("PALOMAGG"‖x)[0:256]

3: end procedure

1: procedure ROH (x)
2: return LSH("PALOMAHH"‖x)[0:256]

3: end procedure
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