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Abstract. With the emergence of 5th generation mobile communica-
tion technology, the demand for Virtual Reality (VR) applications is on
the rise worldwide. As one of the technologies related to visual content
in VR, the quality evaluation of omnidirectional images has become an
important issue. Inspired by the transformer, we propose a novel blind
omnidirectional image quality assessment method. Firstly, we predict the
path that the human eye follows when viewing omnidirectional images
through headsets, and extract the area with the longest gaze duration on
the path as the viewport. Then, to consider the intrinsic structural fea-
tures of each pixel within each viewport, we use the Swin Transformer
to extract viewport features. Finally, to establish a general scene per-
ception and accurately evaluate immersive experiences, we construct a
spatial viewport map for the entire perceptual scene. The graph structure
performs reasoning on the overall relationship based on the spatial per-
ception path. Experimental results demonstrate that our proposed model
outperforms the current state-of-the-art Image Quality Assessment met-
rics, as evidenced by its superior results on two public databases.

Keywords: omnidirectional image - Swin Transformer - natural scene
similarity - blind quality assessment

1 Introduction

With the rapid advancement of social productivity and information technology
in recent years, human perception of real-world scenes is no longer confined to
a limited field of view. This has resulted in a growing global demand for VR
applications [1], and the VR industry is presented with new opportunities and
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challenges. VR technology has revolutionized traditional media by freeing it from
the constraints of traditional screens. With the help of Head Mounted Display
(HMD) [2], users can experience a 360° immersive view and watch videos from
any angle by simply rotating their heads. As a visual imaging technology, it offers
users interactive services that provide an in-depth and immersive experience,
making it the most popular technology for displaying vision without any blind
spots.

However, compared with traditional images, omnidirectional images (OI) [3]
require capturing 360° views and typically demand high resolutions such as 4K,
8K, or higher to satisfy users’ Quality of Experience (QoE). Therefore, such
images are often heavily compressed for transmission and storage purposes [4].
During the process of immersive content acquisition, it is inevitable to encounter
image distortion. As a result, it will lead to a degradation in the quality of the
final image displayed to the user.

At the same time, visual degradation in VR applications can result in a
reduced quality of experience for users. To address this issue, No-Reference
Omnidirectional Image Quality Assessment (NR-OIQA) has been developed
to enable humans to perceive visual distortion in omnidirectional images and
improve the quality of the visual experience. Consequently, designing a feasi-
ble objective quality evaluation algorithm for the omnidirectional images holds
significant practical and theoretical value.

Based on this, we propose a scanpath-oriented deep learning network for blind
omnidirectional image quality assessment. Initially, the scanning path of the
omnidirectional image is employed as a reference to derive the trajectory of the
human eye’s gaze within the head-mounted device. The viewports are extracted
based on this trajectory. Secondly, taking into account the fact that existing
CNN-based OIQA methods are limited by the receptive field and cannot estab-
lish global contextual connections, we employ the Swin Transformer to extract
features for judging viewport quality. Finally, to construct a global correlation of
viewports based on scanning paths, we use a graph-based approach. Notably, we
extract the Natural Scene Statistics (NSS) features from each viewport, which
effectively represents the similarity and correlation between viewports.

Our contributions are listed as follows:

e We propose a novel approach for extracting viewports from omnidirectional
images by leveraging a model of scanning paths. A graph structure is con-
structed, which represents the complete viewing path of the omnidirectional
image. It enables us to simulate the information interaction among different
viewports and model the overall viewing process dynamically.

e We propose employing NSS features to calculate feature similarity and corre-
lation across various viewports, with the objective of constructing an affinity
matrix.

e We propose a novel deep learning model that integrates Swin Transformer
with the graph structure to predict quality scores for omnidirectional images.
This model facilitates both local and global feature interactions within and
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across viewports. Our network outperforms existing Full-Reference and No-
Reference methods on two benchmark databases.

2 Related Works

In this section, we introduce various methods about No-Reference omnidirec-
tional image quality assessment. Then we make an overview of the recent related
works on vision transformers.

2.1 NR-OIQA

NR-OIQA aims to objectively and accurately evaluate visual quality without
reference images. Recently, deep learning technologies promote the development
of NR-OIQA. Kim et al. [5] proposed a CNN-based adversarial learning method,
which is called DeepVR-IQA. They partitioned an omnidirectional image into
patches and employed an adversarial network to estimate their local quality and
weight. Then the weighted quality scores are aggregated to obtain the final score.

Tian et al. [6] utilized a pseudo-reference viewport and employed spheri-
cal convolution to eliminate projection distortion. The final prediction score is
obtained by merging the quality scores from two branches.

From the perspective of mitigating geometric distortion, Sun et al. [7] used
a multi-channel CNN framework to predict the quality score of omnidirectional
images. On this basis, Zhou et al. [8] incorporated a distortion discrimination-
assisted network to promote OIQA learning tasks. However, the inherent differ-
ences between viewpoints as well as the interactive information between them
are being overlooked.

To better illustrate the dependency of various viewports in 360° images, Xu
et al. [9] first introduced graph convolutional networks into OIQA and modeled
the spatial positional relationship of viewports in omnidirectional images. How-
ever, they only consider the spatial position of the viewports in the construction
of the graph but ignore its content characteristics. To this end, Fu et al. [10]
developed an adaptive hypergraph convolutional network (AHGCN) for NR-
OIQA. In addition to the location-based features, the content-based features
are also taken into consideration, which are generated based on their content
similarity.

While the spatial and content characteristics of viewports are taken into
account, the influence of viewport distortion is overlooked. Therefore, we propose
to use NSS features sensitive to distortion to construct the correlation between
viewports with the Swin Transformer. The NSS features are also used in [11,12],
and [13] to achieve high consistency with human perception.

2.2 IQA Based on Swin Transformer

Inspired by the success of the Transformer [14] in various NLP tasks [15], an
increasing number of methods based on the Transformer [16] have appeared
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in CV tasks, including no-reference omnidirectional image quality assessment
tasks. Compared to frequently employed CNN models, the Swin Transformer
introduces a shifted-window self-attention mechanism that facilitates the estab-
lishment of contextual connections. Conversely, CNNs possess restricted recep-
tive fields, which restrict their attention to global features. In the task of IQA,
both local and global quality perceptions are critical. Evaluators of image qual-
ity are sensitive not only to the quality of the current viewport but also to the
previously viewed viewport, as this can affect their overall quality perception.
Inspired by this fact, we use the Swin Transformer to establish local information
interaction within the viewport. Also, a graph structure is used to construct
feature transfer between viewports.

3 Method

In this section, we introduce the proposed OIQA method. Figurel illustrates
the overall architecture. Our method uses a generative model to extract view-
ports from 360° images, producing realistic scanpaths. We implement the visual
viewport interaction based on human eye perception and generate a perception
score.
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Fig. 1. The architecture of our proposed model. Viewports are firstly extracted from
the distorted omnidirectional image in ERP format and input into the feature extrac-
tion module. The semantic features will be sent to the feature interaction network
together with the extracted relevance matrix and regress the final perception score.

3.1 Viewport Extraction

When a 360° image is viewed in a VR device, the visual content is displayed as
a flat section that touches the sphere created by the viewing angle. Also, when
evaluating the quality of a 360° image, viewers look around the 360° image from
multiple perspectives. Based on this, we employ a technique that mimics the
human visual perception process by examining the scanning path data of an
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omnidirectional image as seen through human eyes. We use the model, which is
proposed in [17] to directly process the equirectangular project (ERP) format.
The predicted gaze points are shown in Fig. 1 when viewing the omnidirectional
image in HMD.

Figure 2 illustrates the process of viewport extraction. We set the viewing
angle to 90°, which consists of the FOV of the most popular VR devices. Then,
given a distorted omnidirectional image V; and select N central points to extract
viewports. The viewport sets are denoted as {V;} ;. Then, we obtain N view-
ports covering the 90° FOVs.
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Fig. 2. The process of viewports extraction.

3.2 Graph Nodes Constructed by Swin Transformer

The Swin Transformer utilizes a shifted-window-based local attention computa-
tion method to achieve a hierarchical Transformer architecture. So we use it to
extract the semantic feature. It consists of multiple Swin Transformer blocks.
Figure 3 shows two successive blocks.
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Fig. 3. Swin Transformer Block.

The window-based multi-head self-attention (W-MSA) module and the
shifted window-based multi-head self-attention (SW-MSA) module are employed
in two consecutive transformer blocks. Prior to every MSA module and MLP
layer, a LayerNorm (LN) layer is employed for normalization, and residual con-
nections are applied after each module. Based on such a window division mech-
anism, continuous Swin Transformer blocks can be calculated as:
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Fl= W-MSA(LN(F'™Y)) + F'=1, (1)

F' = MLP(LN(FY)) + F', (2)
FHY = SW-MSA(LN(FY)) + F', (3)
FH*Y = MLP(LN(EFY)) + FH1 (4)

F! and F! denote the output of the Iy, block of the (S)W-MSA and MLP,
respectively. N viewports {V;}Y | are sampled and sent to the Swin Transformer.
The number of blocks in each stage is 2, 2, 6, 2. We represent the feature of N
viewports as V' = {v1,va, -+ ,vn}. The feature of each viewport represents a
node of the graph.

3.3 Graph Edges Constructed by NSS

Considering that the extracted viewport is independent, it cannot simulate the
process of viewing the omnidirectional image. Additionally, there exist variations
in visual distortions across different viewports. We use NSS features that are
crucial to the perceptual quality of OI as the edge of the graph structure to
represent the similarity and correlation between different viewports.

To measure the loss of naturalness in viewports, it is necessary to compute
the local mean subtracted and contrast normalized (MSCN) coefficients. These
coefficients can be used to analyze the statistical features. For each distorted
ERP map and viewports, the MSCN coefficients are calculated by:

Nzl 1\ DZ(Z7J)_M(Zv])
Dig) = — %o

(5)

where ¢ and j represent the spatial coordinates. D= (,7) means the MSCN coef-
ficients. u(i,j) and o (i, j) represent the local mean and the standard deviation.

Then the generalized Gaussian distribution model is employed to model the
statistic feature.

Figure4 shows the difference between the MSCN distribution of different
viewports. It is clear that the FOV information exhibits superior features and a
greater capacity for expressing noise-related features compared to ERP images.

In order to construct viewports’ correlation based on NSS features, we cal-
culate the feature similarity through Eq. (6).

9i * 9m
=TT (6)
lgill - llgmll

Si,m

where i,m € {1,2,---, N}, and g;, g, represent the NSS features of the viewport
¢ and m, respectively. s; ,, denotes the natural feature similarity between two
viewports on a spherical domain.

Considering that the feature similarity between viewports will change with
different distortion types and different distortion levels, we use the average of
feature similarities across multiple viewports as the feature similarity threshold.
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Fig. 4. The MSCN distribution of different viewports and the ERP image.

We calculate N viewports with the most similar NSS features by the following
formula:

1, 8;.m > average (S; m)
A . — ) 21,m i,m
,m (Uza vm) { 0’ Si,m < average (Si,m) (7)
where A; ,, is the affinity matrix representing whether there is information inter-
action between different viewpoints.

3.4 Quality Prediction

With the representation of the node feature vector V= {vy, v, -+ ,un} and the
affinity matrix A, the perception process based on omnidirectional scanning path
is constructed. Each node feature is represented as a 768-dimensional feature
vector to input. And then the quality of the omnidirectional images can be
predicted by the network, which is composed of 5-layer graph convolutions. The
process of interacting and updating the node information can be expressed as:

HHY — ¢ (BN (AHU)W“))) (8)

where A is the adjacency matrix after normalization. The Softplus activation
function f(-) [18] is used with batch normalization BN (-). The resulting feature
matrices H'! are obtained by applying activations to the trainable weight matrix
W'. To match the number of hierarchical feature nodes of the Swin Transformer,
the output dimension of each layer’s feature nodes is 384, 192, 96, 48, 1. We then
obtain the score of each viewport and leverage information from each viewport
to produce accurate quality score Q.

4 Experimental Results

In this section, we provide an introduction to the databases utilized in our exper-
iments, along with pertinent implementation details. We then compare the per-
formance of our network with other metrics on a single and across databases.
Finally, we conduct an ablation study and a cross-database evaluation to demon-
strate the robustness and effectiveness of our model.
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4.1 Databases

Two databases of omnidirectional images are utilized in the experiment: OIQA
Database [19] and CVIQD Database [20].

OIQA Database: The database consists of 16 original images and their corre-
sponding 320 degraded images. The degraded images include JPEG compression
(JPEG), JPEG2000 compression (JP2K), Gaussian blur (BLUR), and Gaussian
white noise (WN).

CVIQD Database: This database includes 16 reference images and 528 cor-
responding distorted images. Three encoding techniques are used to compress
images, namely JPEG, H.264/AVC, and H.265/HEVC.

4.2 Implementation Details

Our model was executed on an NVIDIA GeForce RTX 3090 GPU with PyTorch.
Our model uses Swin-Tiny as the backbone, which is pre-trained on Ima-
geNet [21]. Each viewport image is resized to 256 x 256 and the batch size
is set to 2. We utilize the Adam optimizer. The learning rate is set as 1 x 107°.
The split ratio of the training set and test set in the database is 8:2. To avoid any
overlap between the training and test data, distorted images that correspond to
the same reference image have been assigned to the same set. The training loss
we use is Mean Square Error (MSE) Loss. The final perception score is generated
by predicting the mean score of 20 viewports.

Table 1. Overall performance comparison on CVIQD and OIQA databases. Best per-
formance in bold.

Database CVIQD OIQA

Metric SROCC |PLCC |RMSE |SROCC |PLCC |RMSE

FR-IQA | PSNR 0.6239 1 0.7008 | 9.9599 |0.5226 |0.5812 |1.7005
SSIM [22] 0.8842 1 0.9002 | 6.0793 |0.8588 |0.8718 |1.0238

CPP-PSNR [23] | 0.6265 |0.6871 |10.1448 |0.5149 |0.5683 |1.7193
S-PSNR [24] 0.6449 0.7083 | 9.8564 |0.5399 |0.5997 | 1.6721
MS-SSIM [25] |0.8222 |0.8521 | 7.3072 |0.7379 |0.7710 | 1.3308
WS-PSNR [27] |0.6107 |0.6729 |10.3283 |0.5263 |0.5819 |1.6994
NR-IQA | BRISQUE [12] |0.8180 |0.8376 | 7.6271 |0.8331 |0.8424 |1.1261
DB-CNN |[26] 0.9308 0.9356 | 4.9311 |0.8653 |0.8852 |0.9717
MC360IQA [7] |0.9428 |0.9429 | 4.6506 |0.9139 |0.9267 |0.7854
VGCN [9] 0.9639 |0.9651 | 3.6573 |0.9515 |0.9584 |0.5967
AHGCN [10] 0.9623 0.9643 | 3.6990 |0.9590 |0.9649 |0.5487
proposed 0.9699 |0.9619 | 3.5999|0.9702 | 0.9709 | 0.5292
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4.3 Overall Performance on Individual Databases

We compare our method with the state-of-the-arts on the OIQA and CVIQD
databases. Spearman’s Rank Order Correlation Coefficient (SROCC), Pearson
Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE) are used
to evaluate the performance of our model. The results of our comparison are
presented in Table 1, where we highlight the top performances in boldface. Data
of other methods are all from [9,10]. Our method exhibits superior performance
on both databases when compared to six FR-IQA methods and five NR-IQA
methods. This is attributed to the effective modeling of human perceptual quality
in our proposed approach. In comparison to VGCN and AHGCN on OIQA,
our method not only exhibits superior monotonicity but also achieves higher
accuracy. However, on CVIQD, our model achieved a slightly lower accuracy of
0.9619 when compared to VGCN and AHGCN.

4.4 Cross Database Validation

Table 2. Cross-database performances of the proposed model.

Tested on CVIQD Tested on OIQA
Metric SROCC | PLCC | RMSE | SROCC | PLCC | RMSE
MC360IQA [7] | 0.8629 |0.8886 | 6.5526 | 0.3329 |0.4375|1.9012
VGCN [9] 0.9050 |0.9241|5.4616 | 0.7832 |0.7911 | 1.2934
proposed 0.8589 |0.75107.2613 | 0.8634 |0.8669 | 1.0271

To substantiate the generalizability of our model, we carried out cross-
database experiments using two databases. Specifically, the OIQA database was
employed for training purposes, while the CVIQD database was employed for
testing purposes, and vice versa. Test results are presented in Table 2, indicat-
ing that our model achieves good cross-database performance on OIQA, but
performs poorly on the CVIQD database. This is largely attributed to Swin
Transformer’s local attention mechanism, which calculates attention only on a
portion of the input sequence. This design allows the model to focus more on
relevant information when handling different types of noise, thereby reducing its
sensitivity to noise.

4.5 Ablation Study

Viewports Sampling Strategy: We conducted two experiments to validate
our viewport extraction method. Firstly, we determined the optimal number of
viewports by comparing the SROCC and PLCC metrics with varying numbers
of viewports. Secondly, we compared the effectiveness of our viewport extraction
method with a fixed region approach.
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Fig. 5. The comparison of different number of viewports.

Table 3. The influence of the number of viewports.

5fovs | 10fovs | 15fovs | 20fovs | 25fovs | 30fovs
SROCC | 0.9579|0.9671 | 0.9663 | 0.9702 | 0.9568 | 0.9685
PLCC |0.9527|0.9616 | 0.9691 | 0.9709 | 0.9620 | 0.9686

Figure 5 displays a comparison of various number of viewports. The SROCC
and PLCC values are presented in line charts. Table 3 provides specific perfor-
mance results for each number of viewports. The result reveals that 20 viewports
achieve the highest SROCC and PLCC values. Based on it, we selected 20 view-
ports as the optimal number for our experiments.

Table 4. Performance comparison of different viewport extraction methods.

Database | CVIQD OIQA

Metric SROCC | PLCC | RMSE | SROCC | PLCC | RMSE
Fixed 0.9415 0.9283 | 4.8700 | 0.9530 | 0.9550 | 0.6799
Proposed | 0.9699 | 0.9619 | 3.5999 | 0.9702 |0.9709 | 0.5292

We conducted a comparative analysis between our proposed viewport extrac-
tion method and the fixed area viewport extraction technique to verify its effec-
tiveness. The results, as shown in Table4, indicate that the fixed viewpoint
extraction method is relatively ineffective, while our proposed method demon-
strates superior performance.

The Effect of the NSS Features: To validate the effectiveness of constructing
viewport information correlation using NSS features, we compared our model
without using NSS features, where the model only relied on the Swin Trans-

former. As shown in Table 5, our method demonstrates better performance on
both CVIQD and OIQA databases, especially on the OIQA database, where
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SROCC and PLCC both achieved a over 0.02 improvement. This confirms the
effectiveness of our use of NSS features.

Table 5. Performance comparison with or without NSS features.

Database CVIQD OIQA

Metric SROCC | PLCC | RMSE | SROCC | PLCC | RMSE
Baseline 0.9613 1 0.9599 4.0119 | 0.9449 |0.9505 | 0.6605
Baseline+NSS | 0.9699 | 0.9619 | 3.5999 | 0.9702 | 0.9709 | 0.5292

5 Conclusion

In this article, we present a deep learning model for the evaluation of omni-
directional image quality. We take into account the fact that the quality of a
viewport can have an impact on our perception of subsequent viewports, indi-
cating interdependence between different viewport qualities. Additionally, due to
the inherent differences between viewpoints, our perception of quality may also
vary across different viewports. We utilize Swin Transformer to facilitate the
acquisition of inter-viewpoint information exchange and employ NSS features
to determine the similarity and correlation between different viewpoints. This
approach enables us to not only model local features but also account for global
perception systems, resulting in improved quality regression. Based on experi-
mental results, the proposed model exhibits superior performance compared to
the state-of-the-art approaches.
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