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Abstract. Multi-object tracking (MOT) in remote sensing videos is significant
in many application scenarios. That task in ordinary scenarios has been widely
used in vehicle tracking and monitoring. However, due to the peculiarities of
remote sensing video, many new challenges will be brought to the task. So many
frameworks for ordinary scenarios are inappropriate. In this paper, we propose a
novel network called a multi-scale local cost volume network (MLCVNet) that can
extract multi-scale features and inter-frame motion information. We use a multi-
scale local cost volume module to obtain the object’s displacement information
between current and historical frames, and the historic features will be mapped
into the current features to obtain enhanced features through which objects can be
detected and tracked. Some experiments have been conducted on remote sensing
videos, which are collected from the Jilin-1 satellite, and the results have demon-
strated the effectiveness and robustness of the proposed method. Experimental
results show that our method achieves state-of-art performance.

Keywords: multi-object tracking - remote sensing - motion information - local
cost volume

1 Instruction

MOT in ordinary videos has received widespread attention and research, and many
excellent results have been applied to various scenarios. MOT in remote sensing videos
is even more critical in some applications. Remote sensing satellites can easily observe
large areas of target regions, track vehicle flow, and support smart city transportation.
MOT in remote sensing videos has become an important research topic in remote sensing
image processing. However, compared to ordinary videos, remote sensing videos face
many new challenges: 1) Low discrimination between objects and the background. 2)
High background noise. 3) Small object areas. 4) Lack of detailed features. 5) Cloud
cover.

These challenges pose great difficulties to object tracking in remote sensing videos,
so we require effective methods to overcome them. In this article, motivated by the
TraDeS [1] for MOT in ordinary video, a new MOT framework is proposed, which can
be applied to remote sensing videos for tracking tiny objects.
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The main contributions of this paper are as follows:

1) We propose a multi-scale local cost volume mechanism that could accurately
represent the motion offset of small objects than the baseline.

2) A head representing the direction of object motion is added to the network output
head. The detection branch and tracking branch of output heads are connected to the
not enhanced current feature and final enhanced feature, respectively.

Our proposed MOT method based on MLCVNet is designed to address some chal-
lenges in remote sensing videos. Compared to [1] in remote sensing videos, our MLCV
model can more accurately match the same object between previous and current frames
while effectively reducing computation. Without introducing extra network branches
with excessive computational requirements as in DSFNet [2], the proposed method
can meet the real-time tracking needs of multi-object in remote sensing videos while
performing well. Detailed network architecture will discuss in Sect. 3.

2 Related Works

The concept of object tracking was proposed by Wax N in the 1960s [3] and was applied
to pedestrian tracking. Since then, the field of object tracking has received much attention
from researchers, with new theories and research results constantly emerging and being
innovated. This article is about multi-object tracking, and the current research status will
be briefly described below.

2.1 MOT in Ordinary Video

In the traditional object tracking framework, detection is done by establishing an appear-
ance model to identify the object’s identity, including unique features that distinguish
different objects and are used for subsequent association tracking. Many of the MOT
frameworks that have emerged in recent years are based on deep learning. They are
roughly divided into two types of tracking frameworks: tracking-by-detection (TBD)
and joint detection and tracking (JDT) [4].

The appearance model of an object can be represented by different object attributes,
including color, texture, gradient, motion, and optical flow, to identify the object uniquely.
By extracting a class of features or joint features of the object, it is possible to distinguish
the object from the background and thus distinguish different objects. Many traditional
multi-object tracking frameworks fall into this category [5-7].

Compared to traditional methods, deep learning does not require manual feature
extraction and can obtain richer feature representations, often achieving better results.
DeepSort [8] improves the Sort [9] method that utilizes deep learning. In the object
detection phase, a detection network is used to detect the object. Then the detected
object is passed to a re-identification (RelD) appearance feature extraction network for
feature extraction, followed by the tracking process. The MOTDT [10] framework fully
utilizes the advantages of deep neural networks to address prominent issues in TBD,
such as unreliable detection and intra-class occlusion. The detection part in D&T [11] is
based on the R-FCN fully convolutional network, and the tracking part incorporates the
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tracking ideas based on correlation and regression from single-object tracking methods
into the front-end detection framework, implementing this multi-object tracking method.
In recent years, more and more research has leaned towards one-stage methods,
which only require one network to accomplish object detection and appearance feature
extraction simultaneously. JDE [12] proposes a network model that can integrate object
detection and RelD tasks into one by incorporating the appearance ReID model into
the one-shot detector. FairMOT [13] points out multiple imbalances in general anchor-
based methods and proposes an improvement. FairMOT is a tracking method based on
the anchor-free feature extraction network DLA [14], which adds a ReID branch on top
of the detection task. CenterTrack [15] is an improvement on the CenterNet [16], adding
a branch to the detection output branch to reflect the position movement vector of the
object between two frames, thus implementing multi-object tracking in one network.
TraDeS [1] proposes a new online joint detection and tracking model with tracking
features to assist with end-to-end detection tasks. It infers the object tracking offset
based on cost volume and then uses it to propagate the object features from a previous
moment to improve the current frame’s object detection and segmentation tasks.

2.2 MOT in Remote Sensing Video

Currently, some multi-object tracking frameworks based on remote sensing videos have
been proposed. Du et al. [17] proposed a specific strategy for constructing a more robust
tracker using a kernel correlation filtering (KCF) tracker and a three-frame differencing
algorithm. Guo et al. [18] proposed a correlation filter Kalman filter (CFKF) tracker,
which is a tracking algorithm based on a fast correlation filter (CF) for satellite video
object tracking. Shao et al. [19] proposed a velocity correlation filter (VCF) algorithm
to overcome the problem of insufficient brightness and color features of remote sensing
video objects. Xuan et al. [20] proposed a new motion estimation (ME) algorithm based
on the kernel correlation filtering (KCF) algorithm, which combines Kalman filtering
and motion smoothing trajectory to reduce the boundary effects of the kernel correlation
filtering algorithm.

He et al. [21] proposed a graph-based multi-task reasoning tracking framework,
which models multi-object tracking as a graph feature information fusion process based
on message inference. Xiao et al. [2] proposed a two-stream network that integrates
object motion information and object appearance information, which the authors refer
to as dynamic information and static information, respectively. It was originally used
for object detection tasks in remote sensing videos, but its network can also be used for
multi-object tracking.

3 Network Architecture

The overall architecture of MLCVNet consists of four main parts, as shown in Fig. 1.
During the training process, there are three inputs, the current frame I' at time ¢, the
historical frame I'~7, and the heatmap P'~% of the historical frame.
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Fig. 1. The detailed network architecture includes a DLA-34 backbone, which extracts three
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scales of feature maps fg and 177 from the input frames I’ and I' 7, respectively. These feature
maps are then used in a correlation operation to produce local cost volume Cgy, which is further
processed using a template operation to obtain the offset matrix Oy. The FE module extracts
motion transformation features at three scales. The resulting fusion feature is combined with the
current feature to obtain an enhanced feature map connected to the output branches to produce
the final outputs.

3.1 Multi-scale Local Cost Volume

Firstly, a DLA-34 network was used to extract multi-scale features from the image. The
inputimage size of the backbone is 3 x H; x W;. After passing it, I and I' 7 get three scales

ol
of feature maps, which are f! € Rd *Hs xWs and £1-7, respectively. The down-sampling
Wi

ratios of the feature maps are 2, 4, and 8, denoted as s, where Hf = %, W{' =
The second part is MLCV module. The feature maps f! and f!~" at correspond-
ing scales were first handled by a correlation operation to obtain a local cost volume

C, € RH < W xH{ x W] between the current frame and the previous frame. Specifically,
a correlation operation is performed at each pixel position in the feature map f!, using
a correlation kernel ng y of size k x k centered at the position (xf, yf). Then a search
window of size HY x W¢ centered at the corresponding position in feature map /=7 is
slid and correlated, resulting in a vector fo,yf € RHaxWa of length H Sd X Wsd , which
stores the correlation values of the kernel of the feature f! and all kernels in the window
of the feature f!~7. This vector reflects the matching degree between the object in the
current frame and the possible positions of the object in the previous frame. The process
is shown in Fig. 2.
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Fig. 2. During the correlation operation, a kernel centered at position (x, y) in feature map f’
is slid in a search window at the corresponding position in feature map f/~7. The kernel Kfr,y
correlates with every kernel K; ,_yT, in the search window, and each pair of kernels produces a value

Cryxy-

If we ignore the difference in the scales s, the process of correlation operation is the
same. The value C, , , ;v in the vector is handled by doing an inner product of the two
kernel vectors, which is obtained by the following equation:

t t—tT
Cyxy = Kx,ny,’y, (1)

A maximum value in the vector indicates the highest matching degree between the
two kernels because they represent objects’ partial features at the corresponding positions
in the two frames. So, the highest matching value means these two objects are most likely
to match. The complete correlation operation is performed for all positions in frame f!,
resulting in a local cost volume C. The operation is expressed as:

C = Corr(f', £'77, d’, k) )

where d’ represents the displacement of the search window, d’ = {%J, andd = d’ x

2 + 1. k is the size of the correlation kernel, and the default value is set to 3.

The local cost volume C obtained by the correlation operation is a four-dimensional
matrix with dimensions [1 ,Hy x Wy, Hy, Wf] It needs to be reshaped into dimensions
[1,Hq, Wa, Hf x Wy], and then the maximum value is taken in the second and third
dimensions to obtain the maximum cost volume values Cy € RA>WrxHa and Cyy €
R Wy xWa of each pixel between feature map f' ant the corresponding search window
of =7 in the height and width directions, respectively. Then, using the preset vertical
and horizontal offset templates V e RF *Wr>Ha and H € RH *Wr*Wa  the vectors of the
two templates at position (i, j) are denoted as V; ; € R4 and H;. j € RWa, respectively.
By multiplying the values from the softmaxed cost volume in the two directions, the
position offset vector O;; = [CZV,',]-, Civ}/jHi,j]T with the maximum matching value
from time ¢ to t — T at position (i, j) can be obtained, and the tracking offset matrix
O e R *Wrx2 of all pixels in the feature map can be obtained.

The third part is the feature enhancement module, which is simplification of the
MFW module [1], through which the enhanced feature ffi will be obtained. But our FE
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model works on multi—icale, and multi-scale features will be fused by the IDA model
[14]. After that we get f! at three scales, these features will be fused by IDA model at
last. The final enhanced feature f’ is obtained in Eq. 3.

f' = IDA(f!), 5=2,4,8 (3)

3.2 Motion Direction Head

The output heads, which includes the detection and tracking branches. The detection
branch is similar with [15], while the tracking branch contains a tracking offset head and
a pos head. Each head of the detection branch is followed by a convolutional operation
after the current time feature f’ to predict the corresponding information. The tracking
offset head and pos head output by directly connecting a convolution to the final enhanced
feature f’, which are used to predict the position offset of the object, and the motion
direction of the object, respectively.

For the tracking branch, in order to learn the position offset of the object more
accurately between ¢ and t — 7, some improvements have been made. In the heads of
[1], the enhanced feature ' is connected to both the detection branch and the tracking
branch, which is detrimental to the learning of the tracking offset head and pos head in
the tracking branch. However, in our framework, the enhanced feature is only connected
to the tracking branch to ensure that the MLCV and FE modules can better learn the
enhanced features for object position offset.

For the pos head, which is used to predict the direction of object motion. Because
for remote sensing, the video is captured from a top-down perspective, so the motion
of the object in the video is equivalent to moving on a plane. The enhanced feature
hides motion information of object within it. Therefore, it is considered to output the
direction of object motion in the multi-frames as a header so that the network can learn
the object’s motion information accurately. Specifically, the ground is roughly divided
into eight directions: up, down, left, right, upper right, lower right, lower left, and upper
left. That is, each pixel is represented by a vector of length 8. If an object exists in that
pixel position, the direction index corresponding to the object’s motion direction in that
vector is set to 1, and others are set to 0. As shown in Fig. 3, the object relative to the
origin of the coordinate system in the right-side figure moves in the upper right direction
compared to its position in the left figure.

The size of the pos feature map is 8 x H, x W,, where H, = H;/2, W, = W;/2.
If a real object box b’ = (x{,y},x},y}) is in the image, with center at the position
(cfc, c’v> The vector at the position (Efc, E’V) = ({%J , L%’J) on the feature represents
the motion direction of an object i. For example, in Fig. 4, the motion direction of the
object is upper right, and the vector at the corresponding position in the true label of pos
is pi =1[0,1,0,0,0,0,0, 0]. The loss function of the motion direction header uses the
Mean Squared Error loss, and the loss function is shown in Eq. 4.

1< 2
- PN
Lyos = - 2 (6= ¥) )
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Fig. 3. Anexample to illustrate the ground truth of pos head, the object relative to the origin of the
coordinate system in the right figure moves in the upper right direction compared to its position
in the left figure.

where N is the number of objects in the video frames.

The overall loss of network consists of two head branches together, and the total
loss function can be obtained by summing up the different branches by assigning certain
weights to them.

Liotat = W1Lnear + WaLpox + W3Ly + waLpos &)

where wi, wa, w3, and wy represent weight values for the four losses. Ly, and Ly, are
the detection losses as in [15]. L, is the tracking offset loss as in [1].

4 Experiments

4.1 Datasets and Implementation Details

To validate the performance of the proposed multi-object tracking framework, it is tested
on a remote sensing video dataset. The dataset used in this paper is provided by the
DSFNet, which proposed a method for object detection in remote sensing images, but
the dataset format also supports MOTChallenge multi-object tracking. The videos in
the dataset were captured by the Jilin-1 video satellite, and the training set contains 72
videos, while the test set contains 7 videos. During the training process, some image data
augmentation techniques are applied, including flipping and color space transformation.
The experiment mainly focuses on vehicle-like objects in the video.

Table 1. Detail experimental environments.

Environment Version

Operate system Ubuntul8.04

CPU 12-core Intel(R) Xeon(R) Platinum 8255C
GPU RTX3090 24G

CUDA 10.3

Python 3.8

Pytorch 1.7
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The specific experimental environments are shown in Table 1.

To train MLCVNet, we utilized the Adam optimizer with a batch size of 8 and an
initial learning rate of 1.25 x 10~*. The entire network was trained for 30 epochs before
termination. In the MLCV module, we used a kernel size of 3 x 3 when down-sampling
by a factor of 2 and a search window size of 7 x 7. For down-sampling by a factor of
4, the kernel size was set to 3 x 3, and the search window size was set to 5 x 5. When
down-sampling by a factor of 8, we used a kernel size of 1 x 1 and a search window
size of 3 x 3.

In order to verify the effectiveness of the method proposed in this thesis, some
multi-object tracking frameworks with outstanding performance are selected for com-
parison, including CenterTrack [15], FairMOT [13], DSFNet [2], and TraDeS [1]. The
experimental results are shown in Table 2.

Table 2. Experimental results of each tracking framework on the remote sensing video test set

Method IDs| | MT% ML| FP| FN| IDF11 | MOTA1 |FPS%
CenterTrack | 2618 44% |473% |25.6% 59.6% |249% |11.9% 26
FairMOT 840 148% 259% |37.9% |48.4% |424% |12.8% 22
TraDeS 1869 |21.1% |451% |244% |534% |36.8% |20.2% 16
DSFNet 740 519% |17.6% |233% |254% |70.0% | 50.5% 2
MLCVNet 750 50.7% [13.8% |242% |24.0% 70.7% |51.0% 14

Some frameworks that perform well in regular videos, such as CenterTrack, Fair-
MOT, and TraDeS, rely mainly on object appearance features for learning. This leads
to poor results in remote sensing videos because of some prominent characteristics of
remote sensing videos. The DSFNet framework integrates object motion information
and object appearance information, which the authors refer to as dynamic information
and static information, respectively. It was originally used for object detection tasks in
remote sensing videos, but its network can also be used for multi-object tracking. There-
fore, it performs well in the test set, but due to the addition of a motion information
branch and the output size of its network being consistent with the original image size,
the computational cost of the entire network is very high, resulting in an FPS of only 2
during testing.

Several indicators of MLCVNet have reached the best level, with the MOTA indicator
reaching 51.0%, consistent with the [2]. Because the output feature map of the MLCVNet
network is down-sampled by 2 times, and the motion branch is not introduced, the
computational cost of the overall network is much smaller than that of [2], and its
inference speed reaches 14 frames per second. The results are shown in Fig. 4, with
one complete result image selected for each framework, and the FPS indicator of each
framework is marked in the upper-left corner.
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(a) TraDeS (b) DSFNet (c) MLCVNet

Fig. 4. Tlustration of the FPS results for each framework run on the test set. (b) FPS indicator for
DSFNet is only 2. (c) MLCVNet runs at 14 frames per second.

4.2 Ablation Studies

In order to prove the effectiveness of the three improvement schemes proposed in
this paper, the ablation experiments are now conducted for these different schemes
of the original baseline TraDeS, TraDeS with improved head connection (TraDeS¥*),
improved TraDeS with added MLCV module (TraDeS*+MLCV), improved TraDeS
with added MLCV module and pos head (MLCVNet), respectively, and the results of
the experiments are shown in Table 3.

Table 3. Experimental results of ablation studies

Method IDs MT ML FP FN IDF1 MOTA
TraDeS 1869 |21.1% |451% |244% | 534% |36.8% |20.2%
TraDeS* 935 243% 354% 207% |47.7% 403% | 30.6%
TraDeS*+MLCV | 841 55.4% 10.6% |334% 233% |60.5% |42.5%
MLCVNet 750 50.7% 13.8% |242% 24.0% |70.7% |51.0%

From Table 3, it can be seen that both adding the MLCV module, adding the MLCV
module and pos head to the baseline have improved accuracy, which fully proves the
effectiveness of the MLCV module and pos head.

When adding the pos head to MLCVNet, it is to learn the tracking information of
the object more accurately, but it can also serve as an auxiliary branch to learn detection
information, which can effectively help learn the heatmap head information and improve
the confidence of the learned objects’ information. To verify this idea, the confidence
information of all objects was extracted from the test set videos before and after adding
the pos head to the framework. The confidence values were then divided into intervals
of 0.1 within the range of [0, 1). The number of detected objects within each interval
was counted and the results were plotted, as shown in Fig. 5.
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Fig. 5. The figure shows the change in the distribution of confidence scores of all detection results
obtained when the two tracking frameworks run on the test set before and after adding the pos
head.

The above figure shows that (a) is the result of testing on DSFNet. After adding the
pos branch, the number of low confidence objects in DSFNet has decreased significantly,
and more detection objects with confidence scores above 0.5 are output by the framework.
Figure 5 (b) is the result of testing on the framework proposed in this paper. By comparing
the MLCVNet network with and without the pos branch, it can be seen that the number
of low confidence objects has slightly decreased and the number of objects with scores
above 0.3 has increased. Although the overall effect is not as obvious as in (a), the overall
distribution of confidence scores is also moving towards the high score interval. From
the analysis of the results in Fig. 5 (a) and (b), it can be concluded that the pos branch
proposed in this paper is effective in helping the network learn detection information of
the objects.

5 Conclusion

In this paper, we propose a novel multi-object tracking framework for remote sensing
videos based on the TraDeS framework. We make three improvements to address the
prominent issues in remote sensing videos and achieve good performance in tracking
tiny objects in terms of accuracy and real-time processing. Firstly, we improve the
head connection of the framework, enabling the network to learn better tracking and
detection information separately. Secondly, the MLCV module utilizes the kernel and
local search window mechanism to extract the motion information of small objects
in remote sensing videos more accurately. Lastly, we add a pos head to the tracking
branch of the network’s output head to represent the direction of object motion, which
helps the network to learn more accurate object detection information. The results of
comparative and ablation experiments show that the proposed method is effective and
achieves excellent performance in multi-object tracking for remote sensing videos.
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