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Abstract. Automatically generating realistic and natural high resolu-
tion images from text descriptions is a complicated problem in the cross-
modal research field. Recently, multi-stage conditional generative adver-
sarial networks based on word attention are the mainstream of Text-to-
Image generation. A close examination of these methods reveals two fun-
damental issues. Firstly, the granularity difference between the words and
local image features makes the words cannot accurately express the local
image features. Second, the discriminators cannot extract enough image
information, which will result in poor discrimination effect. In this paper,
we address these issues by proposing an adaptive cross-modal attention
generative adversarial network (ACMA-GAN). Specifically, we design (1)
an adaptive word attention module, which can reform the granularity of
words and mine the context information of words; (2) a feature alignment
module, which uses the pre-trained CNN model to improve the feature
extraction ability of discriminator. Extensive experiments on CUB-200
and MS-COCO datasets demonstrate that our method is superior to the
existing methods.
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1 Introduction

In recent years, adversarial discriminant techniques are widely used in various
fields [1,2,7,8,17–19], especially Text-to-Image generation (T2I) [4,6,9,10,14,
16,20–23]. T2I is based on conditional generation adversarial network (cGANs)
[7,8], which is a variant of generative adversarial networks (GANs) [2]. At
present, T2I methods are mostly based on multi-stage network structure. Each
stage contains a generator and a discriminator to control the generation of images
of a specific size.

It is undeniable that AttnGAN [16] has an inestimable place in the field
of Text-to-Image generation, it is the basis for the vast majority of three-stage
generative models. AttnGAN [16] introduces word attention at both 64 and 128
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resolutions, which is essential to improve the details of the generated images.
A significant problem also arises: whether the word features are at an identical
granularity to the local image features at different resolutions. It is well known
that local image features are pixel-level, whereas the granularity of word features
is significantly higher than pixel-level local image features, and usually a word
corresponds to a set of local feature vectors. Therefore, it is important to effec-
tively reduce the granularity difference between words and local Image features
before using word attention. DM-GAN [23] uses the image features after global
pooling on the intermediate image features as modulation information, then the
word features and image features are weighted and summed through a gating
mechanism to obtain a new word representation, which will be used in word
attention. We believe that the design of DM-GAN [23] still has some shortcom-
ings. Firstly, the global image feature vector and sentence vector should have
similar semantics and granularity. DM-GAN [23] does not explore the possibil-
ity of using sentence vector as modulation information. Secondly, whether the
weighted sum of word feature vector and global feature vector will affect the con-
text information between words. To alleviate these shortcomings, we designed an
Adaptive Word Attention Module (AWAM). In AWAM, we concatenate the sen-
tence feature vector and global image feature vector to the word feature vectors,
and then use a self-attention module to obtain the new words. The new words
constructed by our method can be regarded as a weighted sum of words, sen-
tence and image features, and we not only consider the granularity relationship
between word and local image features, but also take into account the context
information of words.

As we all know, the discriminant ability of discriminator is based on its
ability to extract features, if the discriminator can not extract enough effective
information, it will be difficult to make a good discrimination. However, the dis-
criminators in AttnGAN [16] and DM-GAN [23] are composed of few convolution
and activation operations, so the feature extraction ability is poor. In order to
improve the feature extraction ability of discriminators, we designed a Feature
Alignment Module (FAM). In FAM, We use the excellent image classification
network Inception-v3 model [13] as our feature extraction template, and then
align the image features extracted by discriminator and pre-trained Inception-v3
model [13] at local and global levels. Specifically, we design a feature alignment
loss to gradually reduce the distance of discriminator and Inception-v3 model
[13] during training (Fig. 1).

In summary, the key contributions of our paper are as follows:

• We propose a novel model ACMA-GAN with adaptive cross-modal attention
to generate realistic images.

• We design an adaptive word attention module (AWAM) to reform the gran-
ularity of words. The new words constructed by AWAM preserve the context
information between words.

• A feature alignment loss is proposed to improve the feature extraction ability
of discriminator. To be specific, We use a pre-trained CNN model to force
the discriminator to extract more similar features.
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Fig. 1. The structure of our ACMA-GAN.

• Extensive experiments confirm that our ACMA-GAN outperforms most
advanced methods.

2 Methodology

In this section, we first illustrate the overall structure of our ACMA-GAN, then
analyze the Adaptive Word Attention Module (AWAM) and Feature Alignment
Module (FAM), finally we analyze the loss function of generator and discrimi-
nator in detail.

2.1 Model Overview

Our ACMA-GAN contains a text encoder, an image encoder, a three-stage gen-
erator, and three discriminators. The text encoder and the image encoder are
the pre-trained Bi-LSTM [12] and Inception-v3 [13] models, respectively.

The generator takes random noise, sentence vector and word vectors as input.
Sentence vector is concatenated with noise after a conditioning augmentation
module F ca as the input of the first stage. The output of the previous stage and
AWAM are the inputs for the second and third stages. We use the pre-trained
RNN and CNN models to calculate a cross-modal alignment loss to optimize the
training of generator.

The discriminator contains a feature alignment loss La in addition to the
adversarial loss, and we use the Inception-v3 model [13] to optimize the feature
extraction capability of our discriminator by narrowing the distance of local
features and global features in two CNN models.
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Fig. 2. The pipeline of Adaptive Word Attention Module (AWAM).

2.2 Adaptive Word Attention Module

The previous methods AttnGAN [16] and DM-GAN [23] fail to reduce the gran-
ularity difference between words and local image features, and DM-GAN [23]
neglects the context of words when it rewrite the word embeddings. To address
these problem, we propose an Adaptive Word Attention Module (AWAM). As
shown in Fig. 2, we use global average pooling on the image features to obtain an
image feature vector with the same dimension as the sentence and word vectors,
then we concatenate the image vector, sentence vector and word vectors together,
finally input them into a self-attention Module for rewriting word embeddings.
The self-attention is as follows:

oj = v(
N∑

i=1

βj,ih(xi)),

h(x) = Whx,

v(x) = Wvx.

(1)

where xi represents the content vector before self-attention and oj represents the
content vector after self-attention, βj,i represents the attention score between
the jth and ith content vectors, and Wh and Wv are the weights of the fully
connected layer. βj,i is calculated as follows:
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βj,i =
exp(si,j)∑N
i=1 exp(si,j)

,

si,j = f(xi)T g(xj),
f(x) = Wfx,

g(x) = Wgx.

(2)

where xi and xj represent the ith and jth content vectors, and Wf and Wg are
the weights of the fully connected layer.

The new words after self-attention not only retain the context information
between words, but also reduce the granularity difference between words and
local image features. The new word features and image feature are input into
the word attention module to calculate the word-content feature. Finally, the
original image feature and the word-content feature are used as the input of the
next stage. The word-content feature are computed as follows:

cj =
T−1∑

i=0

βj,iei,

βj,i =
exp(sj,i)∑T−1

k=0 exp(sj,k)
,

sj,i = vj · ei.

(3)

where cj represents the word-content feature vector at the jth pixel position, βj,i

represents the attention score between the local feature at the jth pixel position
and the ith word, vj represents the jth sub-region of the image, and ei represents
the ith word.

In our adaptive word attention module, the new words constructed from
the words, sentence and image information can better play the ability of word
attention. The sentence feature vector and image feature vector constructed by
the self-attention module are discarded in the word attention module, because
their granularity is higher than the local features of the image, using them will
not be conducive to the construction of word-content feature.

2.3 Feature Alignment Module

In order to improve the feature extraction ability of the discriminator and pro-
mote the better performance of the discriminative network, we design a Fea-
ture Alignment Module (FAM). In FAM, we design a feature alignment loss
between the discriminator and the pretrained Inception-v3 model [13] at both
local and global levels. Before the feature alignment, we use convolution opera-
tion to adjust the dimension of local and global features in discriminator, aiming
to project the features of Inception-v3 model [13] and discriminator into a com-
mon space. The feature alignment loss in FAM is calculated as follows:
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LFA
Di

= − [
N∑

i=1

log
exp(γR(xG

i , yG
i ))

∑N
j=1 exp(γR(xG

i , yG
j ))

+
N∑

i=1

log
exp(γR(xG

i , yG
i ))

∑N
j=1 exp(γR(xG

j , yG
i ))

+
N∑

i=1

log
exp(γR(xR

i , yR
i ))

∑N
j=1 exp(γR(xR

i , yR
j ))

+
N∑

i=1

log
exp(γR(xR

i , yR
i ))

∑N
j=1 exp(γR(xR

j , yi)R)
]

(4)

where xG
i and xR

i represent the global and local image features extracted from
discriminator, yG

i and yR
i represent the global and local image features extracted

from pretrained Inception-v3 model, R(·)represents the matching function, and
γ is a smoothing factor.

2.4 Objective Function

Adversarial Loss. As with our baseline AttnGAN [16], we use the cross-
entropy loss as our adversarial loss. The adversarial loss of discriminator is
defined as:

Ladv
Di

= −1
2
[Ex∼pdata

logDi(x) + Ex̂∼pGi
log(1 − Di(x̂))

+ Ex∼pdata
logDi(x, s) + Ex̂∼pGi

log(1 − Di(x̂, s))]
(5)

where x and x̂ represent the real and generated images and s represents the text
condition. The adversarial loss of generator is defined as:

Ladv
Gi

= −1
2
[Ex̂∼pGi

logDi(x̂) + Ex̂∼pGi
logDi(x̂, s)] (6)

Cross-Modal Alignment Loss. The cross-modal alignment loss used on gen-
erator has the same functional template as the feature alignment loss on discrim-
inator, which can motivates the generator to generate semantically consistent
images. It is defined as:

LCMA = − [
N∑

i=1

log
exp(γR(xi, yi))∑N
j=1 exp(γR(xi, yj))

+
N∑

i=1

log
exp(γR(xi, yi))∑N
j=1 exp(γR(xj , yi))

]

(7)

where (xi, yi) is the image-text pair, R(·) represents the matching function
between image and text, γ is a smoothing factor. The cross-modal alignment
loss contains two components, xi represents the global image feature when yi
represents the sentence feature, and xi represents the local image feature when
yi represents the word feature.
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Generator Loss. Based on the adversarial loss Ladv
Gi

, we add the cross-modal
alignment loss LCMA, thus the whole generator loss is defined as:

LG =
N∑

i=0

Ladv
Gi

+ λ1LCMA (8)

Discriminator Loss. Based on the adversarial loss Ladv
Di

, we add the feature
alignment loss LFA

Di
, thus the whole discriminator loss is defined as:

LD =
N∑

i=0

(Ladv
Di

+ λ2L
FA
Di

) (9)

3 Experiments

In this section, we will demonstrate the feasibility and effectiveness of our pro-
posed innovations through comprehensive and rigorous experiments. Firstly, we
introduce the datasets and metrics. Then, we quantitatively and qualitatively
analyzed the superiority of our method. Finally, we verify the generalization
performance of our method through ablation experiments.

3.1 Datasets and Metrics

To demonstrate the capability of our proposed ACMA-GAN, we conduct exper-
iments on CUB [15] and COCO [5] datasets. The CUB dataset contains 200
bird categories with 11,788 images, where 150 categories with 8,855 images are
used for training while the remaining 50 categories with 2,933 images for test-
ing. There are ten text descriptions for each image in CUB dataset. The COCO
dataset includes a training set with 80k images and a test set with 40k images.
Each image in the COCO dataset has five text descriptions. We quantify the per-
formance of ACMA-GAN in terms of Inception Score (IS) [11], Fréchet Inception
Distance (FID) [3], and R-precision [16]. In the testing phase, 30 000 images are
randomly generated.

3.2 Quantitative Results

In this subsection we will analyze the effect of our innovation points in terms
of three metrics: Inception Score [11], FID [3] and R-Precision [16]. As shown
in Table 1, ACMA-GAN obtains the second highest Inception Score and FID
on CUB dataset, slightly behind TIME [6], but obtains the best R-precision.
ACMA-GAN obtains the state-of-the-art results on all metrics for COCO
dataset.

Compared with our baseline AttnGAN [16] on CUB and COCO datasets,
ACMA-GAN improves 11.47% and 24.26% on Inception Score, improves 38.62%
and 28.97% on FID, and improves 11.53% and 9.97% on R-Precision.
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Table 1. Comparing the results of our ACMA-GAN with other advanced methods.
AttnGAN [16] is our baseline model. The bold is best.

Methods Inception Score↑ FID↓ R-Precision↑
CUB COCO CUB COCO CUB COCO

StackGAN [21] 3.70 8.45 51.89 74.05 N/A N/A

StackGAN++ [22] 4.04 8.30 15.30 81.59 N/A N/A

AttnGAN [16] 4.36 25.89 23.98 35.49 67.82 83.53

ControlGAN [4] 4.58 24.06 N/A N/A 69.33 82.43

SEGAN [14] 4.67 27.86 18.17 32.28 N/A N/A

DM-GAN [23] 4.75 30.49 16.09 32.64 72.31 88.56

TIME [6] 4.91 30.85 14.30 31.14 71.57 89.57

ACMA-GAN 4.86 32.17 14.72 25.21 75.64 91.86

The quantitative results show that our ACMA-GAN model has significant
advantages over other state-of-the-art methods in generating high-quality images
and improving image diversity, as well as in maintaining semantic consistency,
especially for COCO dataset of complex scenes (Fig. 3).

3.3 Qualitative Results

By comparing the images generated by ACMA-GAN with those generated by
AttnGAN [16] and DM-GAN [23], qualitative results will indicate the validity
of the generated images from a visual perspective.

As shown in Fig. 4. The text in column 2 gives “This bird is brown and white”,
however the abdomen of the bird generated by AttnGAN [16] is hardly noticeable
as brown, and the abdomen of the bird generated by DM-GAN [23] is completely
white, whereas the bird generated by our method is perfectly consistent with
the semantic of the given text and has good morphology. The text in column 4
contains a description of “a large crowd”, which is not reflected in the images
generated by AttnGAN [16] and DM-GAN [23], while The images generated by
our method reflect the concept of “a large crowd”.

In summary, compared with the mainstream AttnGAN [16] and DM-GAN
[23] our method can better understand the semantics of text descriptions and
then synthesize images with consistent content, and the images generated by our
method contain more well-posed objects and have higher image diversity.

3.4 Ablation Study

In this section, we first quantitatively analyze the use of added information
in AWAM, then quantitatively analyze the proposed Adaptive Word Attention
Module (AWAM) and Feature Alignment Module (FAM), and qualitatively ana-
lyze the differences of word attention between ACMA-GAN and AttnGAN [16].
Finally, we qualitatively analyze the generalization performance of ACMA-GAN.
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Fig. 3. Examples (CUB: 1st–3rd columns), COCO: (4th–6th columns) are generated
by AttnGAN [16], DM-GAN [23] and our proposed ACMA-GAN.

Table 2. The results of using different added information in AWAM.

ID Components IS↑ FID↓ R-Precision↑
SentFea ImageFea

0 - - 4.57 ± 0.05 21.41 70.66 ± 0.69

1 � - 4.69 ± 0.05 16.85 73.12 ± 0.73

2 - � 4.76 ± 0.06 16.56 75.16 ± 0.76

3 � � 4.81 ± 0.04 15.78 75.64 ± 0.54

Added Information. We fine-tune the AttnGAN [16] model and obtain a bet-
ter baseline model. We analyzed in the introduction that DM-GAN [23] only uses
the image features after the global average pooling as the modulation informa-
tion to optimize the semantics of words, which can obtain better word attention
results, but whether the sentence information also has this ability has not been
explored. So we explored the effect of using sentence features and image fea-
tures to obtain new words in the adaptive word attention module. As shown
in Tables 2, when we used sentence features, both Inception Score, FID and R-
Precision were improved, which indicates that the way to optimize the semantics
of words with sentence features. When we use both sentence features and image
features as modulation information to optimize the word semantics, our model
can obtain the best results, which indicates that it is necessary to automati-
cally optimize the word semantics according to the current image features and
sentence features before using word attention, and then we can get the best
attention results.
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Table 3. The performance of AWAM and FAM on CUB dataset.

Architecture Inception Score FID R-Precision

baseline 4.57 21.41 70.66

+AWAM 4.81 15.78 74.78

+FAM 4.83 16.96 74.20

+AWAM+FAM 4.86 14.72 75.64

Effectiveness of AWAM and FAM. As shown in Table 3, when we replace
the word attention module of our baseline model with AWAM, the Inception
Score, FID, and R-Precision are improved by 5.25%, 26.30%, and 5.83%, when
we add the FAM to our baseline, the Inception Score, FID and R-Precision
are improved by 5.69%, 20.78% and 5.01%, these results indicate that both the
AWAM and FAM are effective. The best results are obtained by using both the
AWAM and FAM on our baseline model, which indicates the proposed AWAM
and FAM are mutually beneficial and not in conflict.

Attention Results. Qualitative analysis of word attention is shown in Fig. 4,
where we show the top five words with the highest attention score and mark
them with different colors in the text, and highlight the areas attentioned by
each word in the image. The given text contains three descriptions: “long black
legs,” “brown feathers” and “black beak,” but AttnGAN [16] mistakenly makes
the brown feathers blue, but the generated image by our method is completely
consistent with these three descriptions. The attention areas in AttnGAN [16]
are not match the semantics of the words, which disturbs the generation of the
image. In our method, “leg” and “beak” are accurately matched to the corre-
sponding area, and the word “have” is the public description of “leg”, “feather”
and “beak”, which should be related to the three words in the context of text.
In our attention results, the word “have” noticed two areas “leg” and “beak”,
although not perfectly noticed all the relevant regions, it is also enough to show
that our adaptive word attention can accurately focus on the word-related areas
while maintaining the word context semantics.

Generalisation Ability. As shown in Fig. 5, when we change the partial
description of the bird in the text, our ACMA-GAN can generates the images
of the bird with the corresponding semantics. These results indicate that
our ACMA-GAN is sensitive to the input text, and has good generalisation
performance.



ACMA-GAN 121

Fig. 4. Attention results for AttnGAN [16] and our ACMA-GAN at 128 resolution.

Fig. 5. Experiment of text sensitivity.

4 Conclusion

In this paper, we propose a novel Text-to-Image generation model ACMA-GAN.
We design an Adaptive Word Attention Module (AWAM), which uses both image
features and sentence features to modify the word embeddings. The updated
words can better play the role of cross-modal attention. In addition, a feature
alignment loss is designed to use the pre-trained image classification model to
encourage the discriminator to extract more image features, so as to improve
the feature extraction ability of the discriminator. Extensive experiments on
two common datasets confirm that ACMA-GAN significantly outperforms other
state-of-the-art methods.
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