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Abstract. In recent years, pre-trained visual language models (PVLMs)
have achieved superior performance in many downstream tasks by
extracting comprehensive cross-modal relevance from billions of pieces of
data. Video captioning is a typical topic that aims to generate semantic
texts from video clips, which also benefits from the advances in PVLMs.
However, existing PVLMs only extract holistic features from still images,
neglecting the local and temporal changes in the video appearance, which
impedes fine-grained video understanding. Drawing on this, we propose
to add explicit spatio-temporal semantics to the existing video caption-
ing system by wrapping the detected salient objects over sampled frames,
reflecting thematic events within a video. In particular, an auxiliary
detection branch is designed to collaborate with PVLMs, achieving fine-
grained object awareness. To achieve efficient temporal aggregation, we
further employ the Gated Recurrent Unit (GRU) to extract temporally
ordered cues, compensating for the limited temporal appearance capac-
ity of PVLMs. The experimental results obtained on several benchmark
datasets demonstrate the effectiveness of the proposed solution, with
superior performance compared to the state-of-the-art approaches.

Keywords: Video Captioning · Object Detection · Gated Recurrent
Unit

1 Introduction

Video captioning aims to understand the events in a video, with the ability to
automatically predict captions, which has many practical applications in pat-
tern recognition and computer vision, e.g., video summary, video key detection,
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and blind navigation. A traditional video captioning framework typically first
extracts hand-crafted visual features from a given video clip. After obtaining
feature representations, the video subtitle generation system generates sentences
using predefined templates. The effectiveness of this framework is highly depen-
dent on the predefined templates, while fixed templates always result in fixed
syntactic structures in the generated caption sentences [16]. In recent years, deep
learning has become the mainstream technique for video captioning, similar to
the development of other visual or language tasks. In general, many sequential
learning networks adopt the encoder-decoder architecture to flexibly generate
caption output. The seminal encoder-decoder model is Sequence to Sequence
Video to Text (S2VT) [9] which has two stacked Long Short Term Memories
(LSTMs).

S2VT is the initial deep learning-based framework for the video descrip-
tion task and it is the first to introduce the encoder-decoder structure to the
video description task, which has inspired many subsequent models. For example,
Spatio-Temporal Attention Long Short Term Memory (SA-LSTM) [10] presents
an attention method that combines local and global temporal structures of video
features and considers different motion patterns, which can effectively generate
accurate video captions. Reconstruction Network (RecNet) [24], on the other
hand, is a novel video caption reconstruction network, which not only adopts
video-to-text generation but also explores text-to-video mapping, unifying the
semantic space between the two modalities [5].

Almost all of the above approaches use Convolutional Neural Networks as
video encoders. However, since CNNs are experts in processing visual features,
but lack the power of textual semantic extraction, it is not optimal to imple-
ment video captioning using pure CNNs. To solve this problem, Transformer
methods [1], which construct inter-dependencies between vision and language,
are proposed to provide improved generation capabilities over CNN approaches.
Nevertheless, the task is still far from being solved due to the inconsistency
between video appearance and language cues.

The PVLM has received considerable attention in recent years for bridg-
ing the complex semantic gap between images and texts. It learns large and
sophisticated patterns in a Transformer-like network and has achieved superior
performance in a number of well-known benchmarks [2,3] and competitions. In
principle, the success of PVLM lies in its transferability to the downstream tasks
in terms of preserving the intrinsic discrimination and perception between the
two modalities involved. Despite its power in bridging images and texts, PVLM
is not tailored for video captioning, as it focuses on extracting holistic features
from still images and text [19]. Therefore, the essential issues that need to be
addressed for PVLM-based video captioning are two-fold: firstly, how to explore
the local spatial semantics rather than holistic representations; secondly, how to
perceive temporally ordered appearance variations in videos.

To mitigate the first issue, additional spatial modelling techniques have been
studied accordingly. Yu et al. [20] propose to use a spatial attention mechanism
to focus on local spatial semantics. However, this approach performs poorly



Semantic-Guided Multi-feature Fusion for Accurate Video Captioning 49

when detecting overlapping objects. With the development of target detectors,
some methods attempt to extract local spatial semantics using target detec-
tors. For instance, Zheng et al. [14] use a target detector to detect multiple
object targets and further focus on the interactions between targets to generate
high-quality predicates and verb subtitles. Therefore, we inherit the previous
research methodology, using powerful object detection modules to explore the
comprehensive capacity between holistic and local spatial semantics. To address
the second issue, various designs have been proposed to reflect temporal cues
from input videos. Cho et al. [4] use the GRU model to obtain a temporal rep-
resentation of the cross-frame motion patterns. Zhang et al. [21] further use
bi-directional temporal maps to capture the temporal trajectory of each salient
object as a way to obtain motion relevance cues between video frames. Consid-
ering the absence of temporal representation within video features, in our work,
we utilise a lightweight Gated Recurrent Unit (GRU) to perceive temporally
ordered appearance variations in videos.

To summarise, the main contributions of the proposed method include:

– Local semantics are highlighted by an object detection module. This provides
complementary visual cues for accurate video captioning. A dedicated multi-
feature fusion module is employed to balance the saliency between object
semantics and scenario overview.

– Temporally ordered cues are moderately aggregated via GRU, eliminating
information redundancy among video frames. The temporal order can also
be reflected by GRU, highlighting the potential causality of video data.

– State-of-the-art results are obtained on the MSVD [2] and MSR-VTT [3]
datasets, demonstrating the effectiveness and robustness of the proposed app-
roach.

2 Related Work

Video Captioning Based on CNN and RNN. In the early days, there
are many traditional approaches used to formulate the video captioning task.
In the beginning, Kojima et al. [8] propose a template-based method that pre-
dicts the words represented by specific objects and actions in video frames.
Although straightforward, this approach suffers from the obvious disadvantage
of not being able to generate diverse and flexible video descriptions. To allevi-
ate this limitation, encoder-decoder architecture is adopted for video captioning
to simultaneously predict the sequential output. Venugopalan et al. [9] are the
first to explore the encoder-decoder structure for video captioning. They use
CNN to extract video features from each frame and perform pooling operations
to obtain a global video representation, and then generate the output captions
with an LSTM module. Although this structure can extract descriptive visual
features, it cannot interact visual features with textual features, so it lacks sup-
port from textual semantics. To remedy this shortcoming, Transformer-based
methods are now widely used.
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Transformer Techniques in Video Captioning. The success of Transformer
models in natural language processing tasks has been transferred to the com-
puter vision field in recent years. Due to the powerful attention mechanism,
Transformer architectures are also widely used in the video captioning field.
As LSTM cannot address the long-term dependency in the process of video
encoding, Zhou et al. [1] proposed to use a Transformer instead of LSTM to
extract relevant video features. Furthermore, to highlight the multi-modal prop-
erty, Ging et al. [17] proposed a multi-layer Transformer structure that facilitates
the semantic alignment of visual and textual features in a common embedding
space. The Transformer-based encoder-decoder structure dominates the current
designs, which is also our baseline structure. However, fine-tuning a Transformer
model in the training stage often requires huge computational expenses, which
impedes its practical applications. In order to reduce the computational bur-
den, the use of PVLMs has become the most popular method, with promising
transferability to downstream multi-modal tasks.

Pre-trained Visual-Language Models. PVLMs establish powerful multi-
modal interactions by training on large-volume image-text pairs, bridging the
semantic gap between the vision and language data. In particular, the CLIP
model proposed by Radford et al. uses contrast learning to perform unsupervised
training of images with massive texts. For downstream extensions, Li et al. pro-
pose ALBEF [18], which uses a detector-free image encoder and a text encoder
to encode images and text independently. Specifically, we use the CLIP4Clip
model to extract high-performance visual representations. Although PVLMs pro-
vide relevant connections between visual and language pairs, they tend to focus
on holistic spatial semantics at the expense of neglecting local spatial seman-
tics [23]. Therefore, it is necessary to explore the target local semantics in order
to obtain enhanced perceptions that can promote accuracy and concentration
during video-text alignment.

Utilising Local Semantics. Local target details play an important role in gen-
erating high-quality headlines. In order to perceive local semantics, pre-trained
object detection models, e.g., YOLO [12] and Faster-RCNN [6], have been widely
studied in general computer vision field. In terms of video captioning, there have
also been existing attempts to exploit the detected semantic information. In the
work proposed by Aafaq et al. [13], the pre-trained YOLO object detector is
used to extract the locations and scales of objects. Similarly, Ye et al. [22] used a
pre-trained Faster-RCNN object detector to extract salient objects, with a multi-
level modular network being constructed to effectively analyse the relationship
among these objects, delivering accurate video captioning [26]. Consistent with
the above development, we also aim to balance the local and holistic semantics
of individual detection and PVLMs, respectively.
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3 The Proposed Approach

In order to introduce local semantics and temporal information into the cur-
rent captioning model, our model uses a target detector and a GRU model to
extract local spatial semantics and temporally ordered cues, respectively. Then,
the fusion module is used to fuse the holistic spatial pattern, local semantic
information, and temporal clue. Finally, the Symmetric Cross Entropy (SCE)
Loss [7] is used to guide the training of the model. The details of the overall
structure of the method are shown in Fig. 1.

Fig. 1. Illustration of the proposed network structure that integrates multi-frame global
features and local detection cues, compensating for the incomplete perception of local
and holistic semantics. The fused features are input to the encoder-decoder Transformer
blocks with Symmetric Cross Entropy (SCE) Loss for video captioning.

3.1 Spatial Semantics

To reflect comprehensive spatial appearance, both the holistic and local seman-
tics of a video should be explicitly represented. In our method, twelve frames are
extracted from each video sequence. The holistic spatial semantics of all twelve
frames is obtained by the powerful CLIP4Clip model [25] with freezing parame-
ters, while the object detection module is applied for extracting the local spatial
semantics from the centre frame. In particular, the object detection module is
used to store the locations of local entities in the video frame. Then the features
are extracted from these local spatial regions using the convolutional layers of
ResNet50. Finally, a Multi-layer Perceptron (MLP) module is used to further
strengthen the features and unify the dimensions, so that they can be projected
into the same feature space with other features.

In view of the superior universality, robustness and better performance of the
Faster-RCNN object detector, we use it as our target detector. In this paper,
the Faster-RCNN object detector with freezing parameters is used to detect
the objects in each centre frame. By using the Faster-RCNN, the local spatial
semantics obtained is N × 1024, where N is the number of detected targets,
1024 is the candidate feature dimension on the convolutional layer output. Since
we prefer to obtain more local spatial semantics, the classification threshold
of Faster-RCNN is set to 0.3. Using a lower classification threshold allows the
detector to obtain more objects in a video frame. Even if the lower classification
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threshold results in inaccurate classification results, we can still obtain effective
spatial local semantics. Because we value the spatial local semantics within the
prediction box, we focus on the accuracy of the prediction box rather than
the accuracy of the classification results. By paying attention to both local and
holistic spatial semantics, a more comprehensive representation of video features
can be obtained.

3.2 Temporally Ordered Representations

Despite the holistic and local spatial semantics provided by the above appear-
ance model, temporally ordered cues are currently neglected. The absence of
time-ordered cues may lead to unclear changes of action between objects over
time. To achieve efficient temporal aggregation, we further employ a GRU mod-
ule to emphasise the temporal relevance of text-related holistic spatial semantics
extracted from the Clip4Clip model. Since we train with features extracted by
PVLM, we believe that our features have sufficiently learned the video repre-
sentation, so that additional complex models are not necessary to obtain the
temporal representation. Therefore, we use GRU to obtain temporal cues in
features, taking into account the parsimony of the GRU structure.

In this module, the size of the holistic spatial semantics is set to 12 × 512,
where 12 is the number of frames and 512 is the feature dimension. To unify the
feature dimensions and extract the inter-frame relationship from the 12 video
frames, the size of the temporally ordered representations is 1 × 512 after the
GRU module. Effective temporal series representation can compensate for the
lack of temporal cues in the features and enrich the video feature representation.

3.3 Feature Fusion Method

After obtaining the holistic spatial semantics, the local spatial semantics, and the
temporally ordered representations, it is essential to effectively integrate these
features.

In our design, since the size of the local spatial semantics is N × 1024, which
does not match the dimension of the holistic spatial semantics, a linear projec-
tion layer is used to reduce its dimensionality to N × 512. Then, we cascade
the holistic spatial semantics, the local spatial semantics, and the temporally
ordered representations in the feature dimension to obtain the fused features.
The plus sign indicates that the individual features are combined by concatena-
tion. The characteristic dimension of the fusion is (13+N)×512. Where N is the
number of objects detected by the target detector. The 13 dimensions contain
12 dimensional frame features and 1 dimensional temporally ordered features.

Next, the global average pooling is applied to obtain the global average fea-
tures with the size of 1× 512. Last, the global average features are merged with
the fused features, and the final size of the Transformer input is (14 +N)× 512.
The 14 dimensions contain 12 dimensional frame features, 1 dimensional global
average features, and 1 dimensional temporally ordered features.
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The fusion of multiple feature representations as described above allows for a
comprehensive consideration of global and detailed features, holistic and partial
features, and the incorporation of temporal cues. The complementarity between
multiple features is exploited to obtain a video representation that is more
semantic, less noisy and contains more critical information. To make a long story
short, good features are the key to improving the effectiveness of the model.

3.4 The SCE Loss

Since the video labels are generally noisy and blurred, we use the SCE Loss
instead of the original Cross Entropy (CE) Loss to relieve over-fitting and against
noise with a regular term. The specific approach is to use the SCE Loss to relax
the original strict binary label. We slightly decrease the value of the correct label
from 1 and increase the values of the other categories from 0 to relax the strict
constraint of cross entropy. SCE Loss is a combination of Cross Entropy (CE)
Loss and Reverse Cross Entropy (RCE) Loss. CE Loss and RCE Loss are defined
as follows:

Lce = −
L∑

t=1

P (t) log Q(t) (1)

Lrce = −
L∑

t=1

Q(t) log P (t) (2)

where P and Q are the predictions and real outputs respectively. Lce is the
normal cross entropy loss, Lrce is cross entropy loss of switched labels. The SCE
Loss is defined as:

Lsl = λ1Lce + λ2Lrce, (3)

where λ1 and λ2 are two hyper-parameters.
By smoothing the labels in this way, we relax the original strict classifica-

tion prediction results, so that the predicted captions can be some synonyms
of the ground truth captions, improving the universality and rationality of the
predicted captions.

4 Experimental Results

We evaluate the proposed method on two publicly available data sets, i.e.,
MSVD and MSR-VTT. The used evaluation metrics of MSVD and MSR-VTT
are BLUE@4(B@4), METEOR(M), ROUGE-L(R) and CIDEr(C).
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Table 1. Ablation studies on MSVD and MSR-VTT

MSVD MSR-VTT

Methods B@4↑ M↑ R↑ C↑ Params↓ B@4 M R C Params

Baseline 57.1 40.0 76.8 114.0 81MB 46.8 31.3 64.8 60.1 81MB

Baseline+OD 58.7 40.8 77.7 117.9 81MB 48.0 31.7 65.2 60.7 81MB

Baseline+OD+GRU 59.1 41.0 77.6 119.4 85MB 48.4 31.7 65.5 61.1 85MB

4.1 Ablation Study

In order to verify the effectiveness of the proposed method, we first report the
corresponding ablation analysis. Table 1 reports the performance on MSVD and
MSV-VTT datasets. In general, OD represents the object detection module,
GRU represents the GRU module. Our baseline is the CLIP4Clip model equipped
with holistic spatial semantics. We then test the baseline model with local spatial
semantic features. Finally, we experiment with models with additional temporal
sequence cues.

The impact of the OD module. Compared to the baseline, the use of local
spatial semantics increases the performance in terms of CIDEr by 3.9 and 0.6
on the two data sets. The exploration of local spatial semantics can compensate
for the shortcomings of PVLM in extracting only holistic features from images,
which is the main reason for the improvement of our evaluation metrics.

The impact of the GRU module. By integrating the temporally ordered cues
through GRU, we can further improve the performance by 5.4 and 1.0 in terms
of CIDEr on the two datasets. Due to the particularity of the video task, the
temporal feature transformation in the video is extremely important compared
to the static image feature. Therefore, the GRU module can be used to sense
the appearance change of the temporal sequence in the video, which can further
improve the evaluation index.

In addition, although there are more variables involved in our design, the
increase in parameters is less than 10%. This is mainly due to the fact that the
lightweight GRU module we use does not increase the number of parameters by
a large amount. Given that our baseline is already able to extract valid global
spatial transformations, it is perfectly adequate to use the lightweight GRU
module to compensate for the lack of temporal cues.

We also test two methods to reduce the dimension of local spatial semantics,
Linear and Transformer, respectively. For transformer, we use a layer of trans-
former encoder structure and change the size of its output dimensions. According
to the experimental results in Table 2, leading results can be obtained by directly
using linear projection. Based on this, we believe that the Transformer, which
focuses on strong relationships between features, can support improved visual
semantics. However, the loss of superficial feature details undermines the valid
feature relationships extracted in PVLM. Based on this, the use of the Trans-
former to convert dimensions yields poor results in this paper.
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Table 2. Different methods of dimensionality reduction on MSVD

Methods B@4 M R C

Linear 58.7 40.8 77.7 117.9

Transformer 53.8 38.8 75.5 104.1

4.2 Comparison to State-of-The-Art

To demonstrate our modelling merits, we compare the proposed method with 15
state-of-the-art approaches on MSVD and MSR-VTT benchmarks. The results
are reported in Table 3. As can be seen from the table, on the MSVD dataset,
the performance of the proposed method is only 0.1 lower than that of HMN in
the BLEU@4 evaluation index, while the performance of METEOR, ROUGE-L
and CIDEr is higher than that of the previous optimal methods respectively.
On the MSR-VTT dataset, our method outperforms all other methods on all
evaluation indices.

This is mainly due to the fact that we exploit the sufficient prior knowledge
in PVLM and the use of the target detector and the temporal model to com-
pensate for the lack of local semantic features and temporal cues in PVLM. By
fully integrating multi-scale and multi-angle features, our method is more com-
prehensive and versatile. Its excellent performance in each evaluation index also
confirms the advantages and superiority of the method over other approaches.

Table 3. Comparison with 15 state-of-the-art MSVD and MSR-VTT benchmark meth-
ods. The best results are shown in bold.

MSVD MSR-VTT

Methods Backbone Features Motion Object B@4 M R C B@4 M R C

M3 (CVPR-18) VGG C3D - 51.8 32.5 - - 38.1 26,6 - -

RecNet (CVPR-18) Inception-V4 - - 52.3 34.1 69.8 80.3 39.1 26.6 59.3 42.7

PickNet (ECCV-18) ResNet-152 - - 52.3 33.3 69.6 76.5 41.3 27.7 59.8 44.1

MARN (CVPR-19) ResNet-101 C3D - 48.6 35.1 71.9 92.2 40.4 28.1 60.7 47.1

OA-BTG (CVPR-19) ResNet-200 - Mask-RCNN 56.9 36.2 - 90.6 41.4 28.2 - 46.9

POS-GG (ICCV-19) InceptionResnetV2 OpticalFlow - 52.5 34.1 71.3 88.7 42.0 28.2 61.6 48.7

MGSA (AAAI-19) InceptionResnetV2 C3D - 53.4 35.0 - 86.7 42.4 27.6 - 47.5

GRU-EVE (CVPR-19) InceptionResnetV2 C3D YOLO 47.9 35.0 71.5 78.1 38.3 28.4 60.7 48.1

STG-KD (CVPR-20) ResNet-101 I3D Faster-RCNN 52.2 36.9 73.9 93.0 40.5 28.3 60.9 47.1

SAAT (CVPR-20) InceptionResnetV2 C3D Faster-RCNN 46.5 33.5 69.4 81.0 40.5 28.2 60.9 49.1

ORG-TRL (CVPR-20) InceptionResnetV2 C3D Faster-RCNN 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9

SGN (AAAI-21) ResNet-101 C3D - 52.8 35.5 72.9 94.3 40.8 28.3 60.8 49.5

MGRMP (ICCV-21) InceptionResnetV2 C3D - 55.8 36.9 74.5 98.5 41.7 28.9 62.1 51.4

HMN (CVPR-22) InceptionResnetV2 C3D Faster-RCNN 59.2 37.7 75.1 104.0 43.5 29.0 62.7 51.5

CLIP4Caption (CVPR-21) CLIP4Clip - - - - - 46.1 30.7 63.7 57.7

Ours CLIP4Clip Faster-RCNN 59.1 41.0 77.6 119.4 48.4 31.7 65.5 61.1

4.3 Qualitative Results

We present qualitative results in Fig. 2, from which we can see that the pro-
posed method can generate high-quality captions. The old method often pro-
duced wrong subtitles, see Wrong in Fig. 2, and the wrong place is usually the
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Fig. 2. Qualitative results on MSVD. The images are the sampled frames of two videos.
The image on the right is the feature attention map of the features extracted from
the CLIP4Clip model. The text “GT” represents the ground truth video captions,
“Wrong” represents the wrong video captions generated by the baseline model, and
“Ours” represents our generated captions respectively.

Fig. 3. The heat map relationship matrix between video captions and video features.
The abscissa represents our predicted video captions, where SEP represents the end
character of the predicted captions. The ordinate represents the video frame extracted
from the video. If the text is closely related to the video features, the corresponding
values are large and the colours are bright.

subject, object or verb. Therefore, in our approach, we use different models
to further focus on area objects and the action relationships between objects.
These practices often lead to more accurate subject, object or verb predictions.
See Ours in Fig. 2. In addition, based on the attention heat maps obtained from
our transformer decoder on the right side of Fig. 2, the region of salient objects
can be correctly selected by the proposed method, indicating that the proposed
method can distinguish the objects from their surroundings. More importantly,
our model can also ignore some redundant frames. In the second example, the
proposed method only focuses on the man and the motorbike, rather than the
tire that appears in the first frame.

We also show the heat map relationship matrix between video captions and
video features, as shown in Fig. 3. We choose two examples that match those
shown in Fig. 2. As can be seen in Fig. 3, nouns and verbs are closely related to
video features. This is mainly due to the addition of a target detection model
and a GRU model of perceptual temporal cues to our approach, which focuses
more on regional objects and actions. And, since not all video frames are relevant



Semantic-Guided Multi-feature Fusion for Accurate Video Captioning 57

to the caption, some are redundant and our method is able to focus on the key
video frames and ignore the irrelevant ones. The closest relationship tends to
focus on certain key frames.

5 Conclusion

This paper presents a semantic-guided multi-feature fusion approach for accurate
and robust video captioning. The proposed method harmonises holistic spatial
semantics, local spatial semantics, and temporally ordered representations for
high-performance video captioning. By constructing an effective feature fusion
method, the proposed approach fuses the above features via attention operations,
to obtain comprehensive visual representations of captions. Meanwhile, the SCE
Loss is advocated for training the Transformer model with relaxed supervision.
The proposed method achieves state-of-the-art performance on both the MSVD
and MSR-VTT benchmarks, validating the merits of the method.
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