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Abstract. Generative adversarial networks (GANs) are widely used
for image super-resolution (SR) and have recently attracted increas-
ing attention due to their potential to generate rich details. However,
generators are usually based on convolutional neural networks, which
lack global modeling capacity and limit the performance of the network.
To address this problem, we propose a hierarchical partitioned Trans-
former block to extract features at different scales, which alleviates the
loss of information and helps global modelling. We then design a Trans-
former in residual block to reconstruct more natural structural textures
in SR results. Finally, we integrate the intensify perception Transformer
network with an existing discriminator network to form the intensify
perception Transformer generative adversarial network (IPTGAN). We
conducted experiments on several benchmark datasets, RealSR dataset
and PIRM self-validation dataset to verify the generalization ability of
our IPTGAN. The results show that our IPTGAN exhibits better visual
quality and significantly less complexity compared to several state-of-
the-art GAN-based image SR methods.

Keywords: Image super-resolution · GAN · Transformer · Moderated
self-attention · Intensify perception

1 Introduction

Image super-resolution (SR), which aims to generate a high-resolution (HR)
image from a given low-resolution (LR) image by attempting to recover the miss-
ing information, is a low-level computer vision (CV) task. Since the pioneering
work of SRCNN [5], deep convolutional neural networks (CNNs) have brought
prosperous development to the field of image SR. Peak signal-to-noise ratio
(PSNR) has been used as a measure for various SR networks, but the PSNR met-
ric fundamentally diverges from the subjective evaluation of human observers.
As a result, PSNR-oriented methods tend to produce smoother results without
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sufficient high-frequency details. To address this issue, several perceptual-driven
methods have been proposed to improve the visual quality of SR results. For
instance, the perceptual loss [9] is proposed to optimize SR methods in a feature
space instead of a pixel space.

Generative adversarial network (GAN) consists of a generator network
responsible for generating SR images and a discriminator network that tries to
distinguish between SR images and real HR images. Through the competition
of the generator and the discriminator, the GAN is encouraged to favor images
that look more real. The original GAN [4,7] used a fully-connected network
and was limited to generating small images. One milestone in achieving visually
pleasing results is SRGAN [12]. The basic block of SRGAN is built with resid-
ual blocks and optimized using perceptual loss. With these techniques, SRGAN
significantly improves the overall visual quality of reconstructions compared to
PSNR-oriented methods. DCGAN [19] was the first to scale up GAN using CNN,
which allowed for stable training at higher resolutions and with deeper gener-
ator. ESRGAN [21], as a representative work, proposed a practical perceptual
loss as well as a residual in residual dense block (RRDB) to produce SR images
with convincing visual quality. Since then, using CNNs as GAN backbone in CV
has become a common practice. However, CNNs have a limited receptive field,
which makes it inefficient to process long-range dependencies without passing
through sufficient layers. This can result in a loss of feature information and fine
details, leading to high computational costs and optimization difficulties.

Recently, Transformers have demonstrated effectiveness in global modeling
and have been applied to various CV tasks, such as image classification, object
detection, semantic segmentation and SR. It is important to note that while
Transformer-based networks generally have higher computational complexity
compared to CNNs, the utilization of self-attention in Transformers greatly
enhances the expressive power of the model. The self-attention enables net-
work to model dependencies effectively, allowing it to focus on comprehensive
information. Taking inspiration from the above, we propose a perceptual-driven
Transformer-based GAN, called the intensify perception Transformer generative
adversarial network (IPTGAN), to address the aforementioned limitations and
drawbacks. First, we improve the network structure by introducing the Trans-
former and residual connections to enhance the information flow and better
learn the features of the data. We further introduce hierarchization and par-
tition into different size strategies to the Transformer, allowing for a flexible
receptive field and enabling global modeling. Additionally, we propose a moder-
ated self-attention (MSA) enabling the network to learn more information. The
contributions of our work can be summarized as follows:

• We propose a Transformer in residual block (TRB) that enables the network
to capture more pixel information, resulting in improved result quality. The
TRB is efficient and extensible, it can be easy to integrate into SR networks.

• We propose a intensify perception Transformer network (IPTNet), which is
a generator with excellent scalability. It can be combined with existing dis-
criminators to form GANs, achieving excellent SR results.
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• We propose IPTGAN, a perception-driven yet powerful GAN, to efficiently
address the SISR problem. IPTGAN performs well not only on benchmark
datasets but also on RealSR dataset and PIRM self-validation dataset, achiev-
ing superior visual results compared to several state-of-the-art GAN-based
methods. Furthermore, IPTGAN requires significantly fewer parameters than
ESRGAN, making it more practical in real-world applications.

2 Related Work

2.1 GAN-Based SR Methods

GANs are a class of generative models that are learned through a minimax opti-
mization game between a generator network and a discriminator network. The
GANs have been proven to be competitive in learning mappings among mani-
folds and thus improving local textures. SRGAN [12] was the first to introduce
GAN into SR, where the generator was composed of residual blocks. To enhance
the results, SRGAN employed perceptual and adversarial losses for training.
EnhanceNet [20] and SRFeat [18] utilized multiple loss terms or discriminators
to improve performance. ESRGAN [21] further improved the performance of
SRGAN by proposing RRDB, removing batch normalization layers and employ-
ing the relativistic discriminator [10]. Although the RRDB has demonstrated
effectiveness, it still has a significant number of parameters, resulting in consid-
erable computational costs. BSRGAN [23] is a blind SR method that performs
SR by designing a complex degradation process that mimics real-world con-
ditions. BSRGAN incorporates a pixel alignment technique to correct spatial
distortion and ensure pixel-level matching between the SR image and the HR
image. However, it still faces the issue of over-smoothing in SR images.

2.2 Transformer-Based SR Methods

Transformer was initially developed for natural language processing, researchers
have found that the self-attention in the Transformer effectively models depen-
dencies among data. ViT [6] was the first to introduce the Transformer into
CV by achieving highly competitive ImageNet classification results, treating an
image as a sequence of 16 × 16 visual words. Swin Transformer [15] adopts a
similar idea to ViT, introducing shifted window mechanism to enhance per-
formance. However, it has a high computational complexity, especially for large
input images. SwinIR [13] inherits the Swin Transformer for SR task and achieves
impressive results. However, it also inherits many components that were designed
for high-level CV task, making them redundant and fragmented for SR. Swin
Transformer V2 [14] improves upon the Swin Transformer by using larger win-
dow sizes and a new data adaptive training strategy. However, it involves a more
complex training process and requires additional time and computational costs.
Although Swin Transformer and Swin Transformer V2 did not specifically intro-
duce the Transformer into GANs and SR tasks, they are indeed representative
works in CV.
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3 Methods

As previously stated, our main aim is to enhance the overall perceptual quality
of the SR images. The IPTGAN follows the same principle as the traditional
GAN, where the competition between the two networks enables the generator
to produce images that are more realistic and closer to the ground truths. The
IPTNet is illustrated in Fig. 1.

Fig. 1. The architecture of the proposed IPTNet for IPTGAN.

3.1 Generator

The IPTNet comprises three main components: a shallow feature extraction
module, a deep feature extraction module and an image reconstruction mod-
ule. The shallow feature extraction module includes a convolutional layer, while
the deep feature extraction module consists of multiple TRBs and a convolu-
tional layer. The reconstruction module consists of a upsampling layer and two
convolutional layers.

Transformer in Residual Block. The design of the TRB is inspired by the
RRDB, which has become a classical algorithm in this field by combining mul-
tiple convolutional layers with a dense connection to achieve a deep network
structure. However, the limited receptive field of convolution makes it inefficient
to process long-range dependencies without passing through sufficient layers.
Additionally, training a deep enough network presents significant computational
and time costs. As shown in Fig. 2(a), the TRB consists of three hierarchical
partitioned Transformer blocks (HPTBs) and a residual connection. To avoid
imposing unnecessary burdens on the TRB, we have removed the dense con-
nection, as each HPTB already has two residual connections. By leveraging the
strong modeling capabilities of the Transformer, we can achieve better results
with significantly fewer parameters and layers.

Hierarchical Partitioned Transformer Block. HPTB adopts the classic
Transformer framework. The input features will pass-through layer normaliza-
tion (LayerNorm), hierarchical partitioned moderated self-attention (HPMS)
shown in Fig. 2(b), LayerNorm and multi-layer perceptron (MLP) in sequence.
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Convolutions and previous Transformers extract features at a fixed size. How-
ever, the fixed size is not directly related to the image contents, and it may lead
to the loss of pixel information at the edges of the split blocks. To address this
issue, we divide the input channels into k groups and then into blocks of different
sizes for MSA calculation. Additionally, shifted window machine shifts the win-
dow in a diagonal direction, then extracting the shifted features. This approach
further mitigates the loss of pixel information and facilitates communication
among surrounding pixels, resulting in improved image generation.

Fig. 2. The process of Transformer in residual block. (a) is the Transformer in residual
block. (b) is the hierarchical partitioned moderated self-attention.

Moderated Self-attention. The conventional self-attention in the Trans-
former employs dot-product to measure the similarity between the query vector
(q) and the key vector (k) of a pixel pair. However, this method often produces
extreme values that will lead to attention being disproportionately focused on a
few pixels, resulting in suboptimal reconstructions. In contrast, cosine similarity
is naturally normalized. By leveraging cosine for self-attention, more eased val-
ues can be obtained, offering a more accurate measurement of similarity between
vectors. Unlike the commonly used SoftMax, which is more suitable for classifi-
cation tasks, our approach generates attention values that are better suited for
SR tasks. The proposed MSA calculation can be expressed as follows:

fmsa =
q · k

||q|| × ||k|| · v/τ (1)

In (1), where the τ is a learnable scalar and the v is the value vector. By this
method, the values of MSA are distributed more evenly so that more information
can be noticed and learned.

Self-attention can be time-consuming, especially when dealing with input fea-
ture of large size. To address this issue and enhance network training efficiency,
HPTB incorporates the shared attention mechanism derived from ELAN. This
approach enables network to calculate self-attention only for specific HPMSs,
while the subsequent HPMSs at the same scale can directly reuse the pre-
computed attention values. Consequently, network eliminate two reshapes and
one convolution operations for each self-attention calculation. Although this
method results in a slight reduction in SR performance, the impact is negligible
in light of the substantial reduction in computational costs and time required.
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3.2 Discriminator

It is well-known that pixel-wise PSNR-oriented SR methods often result in over-
smoothed results and fail to adequately recover high-frequency details. The dis-
criminator is trained to discriminate between the generated SR image (ISR)
and the HR image (IHR). We adopt the relativistic discriminator introduced
in ESRGAN, which differs from the standard discriminator in SRGAN. Instead
of estimating the probability of ISR being real and natural like the standard
discriminator, the relativistic discriminator aims to predict the relative realism
between ISR and IHR. This utilization of the relativistic discriminator enables
the generation of sharper edges and more realistic texture details.

3.3 Losses

In order to ensure consistency between the content of ISR and IHR, our IPTGAN
is trained using a combination of multiple loss functions, which can be formulated
as follows:

LG = Lp + λLRa
G + ηL1 (2)

where L1 = EILR
||IHR − ISR||1 denotes the content loss, measuring the 1-norm

distance between IHR and ISR. The Lp represents the perceptual loss proposed
by ESRGAN, while the λ and the η are coefficients used to balance the different
loss terms. In (2), LRa

G is defined as:

LRa
G = −EIHR

[log(1 − DRa(IHR, ISR))] − EISR
[log(DRa(IHR, ISR))] (3)

where DRa refers to the standard discriminator with the relativistic average
discriminator [10]. The EIHR

[·] and EISR
[·] represents the operation of averaging

over all real and fake data within the mini-batch, respectively.

4 Experiments

4.1 Training Details

Following ESRGAN, all experiments are performed with a scaling factor of ×4
between ILR and IHR. We obtain the ILR by bicubic the IHR. For training data,
we utilize the DIV2K dataset [1], which comprises 800 high-quality images. We
train the IPTGAN in RGB channels and augment the training dataset with
random horizontal flips and 90◦ rotations. We evaluate the IPTGAN on several
benchmark datasets: Set14 [22], BSD100 [16], Urban100 [8] and Manga109 [17].
We further test our IPTGAN on RealSR dataset [3] and PIRM self-validation
dataset [2].

The IPTNet is trained using the perceptual loss with λ = 5 × 10−3 and η =
1×10−2. The learning rate is set to 1×10−4 and halved at [50k, 100k, 200k, 300k]
iterations. The window sizes of HPMS are set to 4 × 4, 8 × 8 and 16 × 16. The
shared attention is set to n = 1, i.e., only calculate the first HPMS. We use
Adam [11] and alternately update the generator and discriminator networks until
the model converges. The IPTGAN is implemented using PyTorch on NVIDIA
3080Ti GPU.
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4.2 Quantitative Evaluation

As shown in Table 1, we compared our IPTGAN with three state-of-the-art
GAN-based SR methods, namely SRGAN [12], BSRGAN [23] and ESRGAN [21],
using several public benchmark datasets. Remarkably, despite having signifi-
cantly fewer parameters, IPTGAN consistently outperformed all other methods
in terms of PSNR, structure similarity index measure (SSIM) and perceptual
index (PI). We further compared the IPTNet and IPTGAN on several bench-
mark datasets, the result is shown in Table 2.

Table 1. PSNR/SSIM/PI comparisons of IPTGAN and several state-of-the-art GAN-
based SR methods on several benchmarks at ×4.

Model Param
(K)

FLOPs
(G)

Set14
(PSNR/SSIM/PI)

BSD100
(PSNR/SSIM/PI)

Urban100
(PSNR/SSIM/PI)

Manga109
(PSNR/SSIM/PI)

SRGAN 1547 231 24.21/0.6349/1.31 23.68/0.5990/1.32 –/– –/–

BSRGAN 16697 1835 23.60/0.6295/1.46 23.91/0.6084/1.50 21.55/0.6467/1.63 22.84/0.7529/1.43

ESRGAN 16697 1859 24.17/0.6440/1.25 23.45/0.5975/1.27 21.99/0.6707/1.40 24.93/0.7838/1.02

IPTGAN 8212 596 23.61/0.6468/1.23 23.94/0.6263/1.20 22.52/0.6984/1.34 25.03/0.8061/0.95

Table 2. PSNR/SSIM/PI comparisons of IPTGAN and IPTNet on several benchmarks
at ×4.

Model Set14
(PSNR/SSIM/PI)

BSD100
(PSNR/SSIM/PI)

Urban100
(PSNR/SSIM/PI)

Manga109
(PSNR/SSIM/PI)

IPTNet 24.57/0.6451/1.41 24.98/0.6237/1.45 23.47/0.6955/1.58 26.21/0.8012/1.29

IPTGAN 23.61/0.6468/1.23 23.94/0.6263/1.20 22.52/0.6984/1.35 25.03/0.8061/0.95

4.3 Qualitative Results

We compared our IPTGAN with SRGAN [12], BSRGAN [23] and ESRGAN [21]
on several benchmark datasets. Since SRGAN was not evaluated on Urban100,
we present the comparison graphs separately in Fig. 3 and Fig. 4. As shown in
these figures, the IPTGAN generates more natural and realistic effects such as
stairs, cactus and tiger stripes. The restored images of wolves, fences and holes
exhibit better overall visual consistency with the ground truth. In contrast, other
methods tend to produce images that are either too smooth or too sharp. Results
demonstrate that IPTGAN achieves competitive performance under the same
scaling factor. The PI values also show the SR images generated by IPTGAN
outperform other methods. Noteworthy, the parameters of IPTGAN are signif-
icantly less and achieved SR results that are more consistent with the ground
truth and human visual effects.
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Fig. 3. Visual comparison of IPTGAN with other GAN-based SR methods at ×4. The
best values are in bold faces. Please zoom in for the best view.

Fig. 4. Visual comparison of IPTGAN with other GAN-based SR methods on
Urban100 dataset ×4. The best values are in bold faces. Please zoom in for the
best view.
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4.4 Ablation Study

Fig. 5. Overall visual comparison of the effects of each design in IPTGAN in the
ablation study at ×4. The best values are in bold faces. Please zoom in for the
best view.

Table 3. The ablation experimental results of IPTGAN on several benchmarks at ×4.

Model Set14
(PSNR/SSIM/PI)

BSD100
(PSNR/SSIM/PI)

Urban100
(PSNR/SSIM/PI)

Manga109
(PSNR/SSIM/PI)

single T 22.48/0.5934/1.37 22.67/0.5704/1.37 20.57/0.6193/1.66 22.84/0.7435/1.18

w/o MSA 23.40/0.6291/1.33 23.60/0.6076/1.32 21.74/0.6644/1.56 24.29/0.7861/ 1.07

w/o T 23.56/0.6349/1.27 23.78/0.6172/1.27 22.26/0.6821/1.49 24.77/0.7938/1.00

IPTGAN 23.61/0.6468/1.23 23.94/0.6263/1.20 22.52/0.6984/1.35 25.03/0.8061/0.95

To demonstrate the effectiveness of our design, we conducted several ablation
studies. The Fig. 5 and Table 3 illustrate the impact of each design component in
IPTGAN. As expected, when self-attention employs dot product for calculations
(w/o MSA), the resulting SR images exhibit blurring and artifacts. Similarly,
when the two LayerNorm layers and MLP of HPTB are removed (w/o T), the
SR image becomes oversharpened in certain regions compared to the ground
truth. While the single T indicates simply stacking HPTBs, the reconstructed
results still lack naturalness. This is because the mere stacking of HPTBs fails to
achieve the effect obtained by a set of three HPTBs and a residual connection.
The SR images produced by IPTGAN are visually pleasing, displaying more
natural textures and edges without noticeable artifacts.
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Fig. 6. Visual comparison of IPTGAN with ESRGAN on RealSR dataset and PIRM
self-validation dataset at ×4. The best values are in bold faces. Please zoom in for
the best view.

4.5 Generalization Ability

We evaluated IPTGAN on RealSR dataset and PIRM self-validation dataset,
which are used to evaluate the performance of SR methods in real-world scenar-
ios [2]. These datasets consist of images from various scenes, including natural
landscapes, urban buildings and portraits. Since ESRGAN is also tested on the
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PIRM self-validation dataset, in this section we only show comparisons of the
visual effects with ESRGAN as shown in Fig. 6. Our IPTGAN successfully recon-
structs softer lines in wool, lake surfaces and textile, aligning with the subjective
evaluation of human observers and exhibiting better consistency with the ground
truth compared to ESRGAN. By demonstrating SR results of these challenging
datasets, IPTGAN showcases its enhanced generalization ability and adaptabil-
ity to process real-world images.

5 Conclusion

In this paper, we propose a Transformer-based SR generator that leverages both
the hierarchization and partition into different size strategies, as well as the
moderated self-attention, to enhance pixel-to-pixel communication and make
more information available for learning. The proposed TRB further improves
the performance of the IPTNet. Experimental results show that IPTGAN sur-
passes several state-of-the-art GAN-based SR methods in several benchmark
datasets while utilizing significantly fewer parameters. The generalization ability
test demonstrates the abilities of IPTGAN. Although IPTGAN exhibits promis-
ing results, we acknowledge a limitation where the SR image may lack sufficient
high-frequent details in specific areas. Our future research will focus on enhanc-
ing the network’s capability to generate high-frequent details.
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