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Abstract. Cloud is an important meteorological information in remote sens-
ing applications as it plays a significant role in the Earth’s climate and weather
patterns, but it also brings difficulties to the information extraction from opti-
cal images, especially when the underlying surface features to be analyzed are
obscured. Therefore, cloud detection is an indispensable step in optical remote
sensing image processing. Different from low-spatial resolution images, medium
and high-resolution images contain richer geographical features, and the distribu-
tion of clouds ismore scattered,whichmakes it necessary to enhance the network’s
ability on detailed features extraction. Therefore, the two cascaded U-shape atten-
tion networks (CUA-Net) model is proposed to detect the cloud in Landsat 8
images. In the first U-shape network, the up-sampling layers in path expansion
integrate the information from all previous layers to make full use of multi-scale
features. Additionally, the attention modules in the skip connection are added
to detect the position and edges of cloud accurately. After that, the second U-
shape network is utilized to optimize the preliminary segmentations from the first
network, thus obtaining results closer to the ground truth. In the experiments,
CUA-Net was evaluated on 38-Cloud Dataset and compared with current main-
stream networks, showing significant improvements both on visual effects and
quantitative indicators.
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1 Introduction

Remote sensing images play a vital role in natural disaster detection, agricultural
resources management, environmental monitoring, urbanization surveys and other
research fields. However, a factor that cannot be ignored in optical satellite images is
cloud cover. Cloud can interfere with the remote sensing data by reflecting and absorbing
the electromagnetic radiation, which leads to difficulties in data interpretation. Conse-
quently, it is a crucial part of remote sensingfield to accurately identify the cloud coverage
over images for subsequent applications [1].

Cloud detection methods can be roughly grouped into classical methods and pattern
recognitionmethods [2]. The threshold-basedmethods are the earliest classical methods.
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They mainly analyze individual pixels, such as the automatic cloud coverage evaluation
[3] and Fmask [4], and they can segment cloud from images bymultiple fixed thresholds.
Especially, Sun et al. [5] proposed a general dynamic threshold cloud detection algorithm
to solve the difficultly in fixed thresholds selection. Since those threshold-basedmethods
are easily restricted by the spectrum, theBayesianmethods [6] and texture basedmethods
[7] utilizing the spectral and geometric properties of cloud are proposed to leveragemore
features.Moreover, somemethods based on statistical characteristics [8] are proposed for
thin cloud detection. They mainly take advantage of the physical properties of clouds, so
the results can be obtained quickly with the high-level characteristics of images ignored,
which leads to detection difficulties when facing complex surface environments and
ever-changing clouds.

With the development of computer hardware, pattern recognition technology has
attracted the attentions. Many advanced machine learning methods to identify cloud are
proposed. Among them, the early clustering [9], fuzzy clustering [10, 11] and SVM [12–
14] have formed a mature system, however, the detection accuracy is relatively limited
by their poor performance in large-scale training set. In recent years, artificial neural
networks have emerged as a promising approach for cloud detection due to their ability to
learn complex patterns and feature representations from multitudinous labeled training
data. For example, the U-net [15, 16] uses a completely symmetrical network structure
and skip connections to improve the accuracy of cloud detection with fewer training
samples. MS-UNet [17] combines convolutions of different sizes to extract multi-scale
features, thus identifying cloud of different sizes and shapes. Cloud-Net [18] proposed
by Mohajerani et al. adds the residual structure to U-Net, and achieves superior results
for Landsat 8 images. As time goes on, more advanced networks are proposed, Unet 3+
[19] uses full-scale skip connection to preserve spatial information and fuse features at
different layers. Li et al. proposed global context-dense block U-Net (GCDB-UNet) [20]
to enhance the detection capability of thin cloud. Lu et al. designed a mutual guidance
module (MGM) [21] to solve the problem of rough segmentation boundaries. Although
these methods have been able to detect most of cloud on remote sensing images, the
thin cloud recognition and boundary identification capabilities still need to be further
strengthened especially for medium and high-resolution images such as Landsat 8.

In order to better capture the complex semantic features and precisely segment the
cloud in remote sensing images, the two cascaded U-shape attention networks (CUA-
Net) model is proposed. Its innovations are as follows, (1) it enhances the connection
between the network layers to preserve as much information as possible, (2) it makes
use of the attention module to focus on relevant cloud features and to ignore irrelevant
ones, which can improve the network’s ability of identifying clouds in complex scenes
with varying cloud and background noise, (3) a second U-shape network is designed
to correct the inaccurate information gain from the previous steps. Via these structures,
the features extracted from convolution blocks can be utilized effectively to recover
sophisticated cloud masks and obtain higher accuracy.
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2 Algorithm

The architecture is designed as two cascaded U-shape networks, as shown in Fig. 1. The
first network is used to perform a preliminary segmentation by identifying the possible
cloudy regions of the image. The output of the first network X 1

En is then fed into the
second network, which refines the edges and details by further segmenting the cloudy
regions and removing false detections. After that, the preliminary results X 1

En and the
supplementary information X 1

De are added and convolved once to obtain the final cloud
detection results. The proposed CUA-Net will be introduced separately below.

Fig. 1. The proposed Cascaded U-shape Attention Networks (CUA-Net).

2.1 The First U-shape Network

The first U-shape network consists of a contraction path for feature extraction and an
expansion path for image recovery. The two parts are connected by the attention-based
skip connection, which is used for transferring deep features from the contraction path
to the expansion path to preserve spatial information.

Down-sampling Layer in Contraction Path. The down-sampling layer mainly uses
residual structure shown in Fig. 2. Its branches on the above include two 3 × 3 con-
volutions to extract features from the input. The branches below use a small-scale skip
connection, where the input firstly go through a 1× 1 convolution, and then connected
with itself. Finally, the results of the two branches are summed and put to a maximum
pooling. This structure can avoid the gradient disappearance caused by the deep network,
and make the encoder converge faster. Simultaneously, it allows the network to learn the
residual mapping between the input and output feature maps, which helps to preserve
the low-level features from upper layer.



158 A. Li et al.

Fig. 2. Down-sampling layer in contraction path.

Attention-Based SkipConnection. InU-Net, the skip connections are used to preserve
the features learned from the contraction path and improve the accuracy of segmentation.
However, only layers with same depth are connected in the original U-Net architecture.
To address this limitation, a modified skip connection shown in Fig. 3 is proposed, the
features from all previous layers in the contracting path are concatenated and sent to the
expansion path. In order to make the output from layer X 1

Res, · · ·,X i−1
Res ,X i

Res able to be
connected, multiple self-connections are used to make the dimension of X 1

Res, · · ·,X i−1
Res

as same as X i
Res, and then feature graph size is unified by maximum pooling. After that,

all the i layers are added and input to the subsequent attention module. This modified
skip connection allows the network to capture more fine-grained details and improve
cloud detection accuracy.

Convolutional block attention module (CBAM) [22] is a lightweight attention archi-
tecture composed of channel attention module (CAM) and spatial attention module
(SAM).CAMfocusesmore on the category information. The input imagewill go through
parallel MaxPool layer and AvgPool layer at first, and then pass by a single shared MLP
to extract more comprehensive high-level features. SAM pays more attention on the
spatial location of the target. It applies the average pooling and the maximum pooling
along channel axis, which can effectively strengthen the spatial information.

The attention-based skip connection can preserve features extracted from all layers
in contraction path and pay effective attention on the channel and spatial characteristics
of the target. What’s more, the number of parameters in this structural is small, which
will not bring additional burden to the network.

Up-sampling Layer in Expansion Path. The up-sampling layer in the expansion path
is used to increase the resolution of feature maps while reducing the number of channels,
as shown in Fig. 4. The input X i+1

Up is firstly up-sampled by a deconvolution, then com-

bined with AM i from corresponding skip connection and X i+2
Up ,X i+2

Up , · · ·,X 5
Up from the

lower up-sampling layers. By this way, not only the feature maps in contraction path are
used, the maps in the layers in front of expansion path are also used. Their combination
will go through two convolutions to recover the semantic details and be added to the
deconvolved X i+1

Up . More complex and detailed cloud properties from deep feature maps
can be recovered due to the full use of multi-scale information.

2.2 The Second U-shape Network

The second U-Shape network is mainly utilized to refine the segmentation mask gener-
ated by the first network. Although most of the cloud information can be extracted after
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Fig. 3. Attention-based skip connection.

Fig. 4. Up-sampling layer in expansion path.

the anterior training, thin cloud and fragmentary cloud are easily failed to be detected,
and some highlight surfaces can be mistaken as cloud. Therefore, the second U-shape
network is designed to revise these incorrect detections. It consists of an encoder-decoder
structure with skip connections between them, similar to a four-layer U-net. The differ-
ence is that the bridge layer in the middle takes advantage of dropout function to prevent
the model from overfitting. No extra structures are added to the second network due to
its complementary role and the expectation of lower network complexity.

2.3 Activation Function and Loss Function

ReLU is used as the activation function except from the last layers of the two U-shape
networks and the attention module which has certain definition. It is a piecewise linear
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function that produces an output of zero for negative inputs and a linear output for
positive inputs. By introducing non-linearity, ReLU can avoid the network from gradient
disappearance and overfitting with small cost. Sigmoid is used as the activation function
after X 1

Up and X 1
De to map the output value between 0 and 1, thus determining the

probability that each pixel is cloudy.
Denote the true value as t, the predicted value as p, and the total number of pixels as

N , the loss function used can be denoted as Eq. (1).

Loss(t, p) = 1−
(
1+ β2

) × ∑N
i=1 t(i)p(i) + ε

∑N
i=1 t(i) + β2 × ∑N

i=1 t(i)p(i) + ε
(1)

where i means the i th pixel in the image, β is a constant which controls the weight of
recall relative to precision. In the experiments, β is taken as 2 to give more weight to
recall, making it more suitable for cloud detection datasets where the positive class is
smaller than the negative class. ε is assigned as10–7 to avoid any division by zero.

3 Data and Experiments

3.1 Data and Environment

The experimental data set is 38-Cloud Dataset [18] made by Sorour Mohajerani, includ-
ing 18 scenes for training and 20 scenes for testing, and each scene is cut to 384 × 384
patches. The source of the dataset is Landsat 8 images with the resolution of 30 m, and
their red, green, blue and near-infrared bands are chosen for cloud detection.

The experimentswere performed on aLinux systemwith Python 3.6, configuredwith
GPUversions of Tensorflow1.12.0, Keras2.2.4 and skimage 0.15.0. AQuadro RTX5000
graphics card was used as the driver for training and prediction. The Adam optimizer
with an initial learning rate of 1× 10–4 was used during training, and when the learning
rate was reduced to 1 × 10–8, the training was finished.

3.2 Experiments Results

In order to verify the ability of the proposed CUA-Net, the comparison experiments
and ablation experiments were conducted. The comparison experiments involve the
performance of CUA-Net with state-of-the-art networks. On the other hand, the ablation
experiments were conducted to evaluate the effectiveness of the secondU-shape network
and CBAM in skip connections.

Comparison Experiments. U-net [16], MS-UNet [17], Cloud-Net [18] and Unet 3 +
[19] are selected for comparison, and the experimental results are shown in Fig. 5, where
the black and white refers to the correctly identified clear and cloudy area, respectively,
while the red means it is cloudy but falsely detected as clear, and the blue means it is
clear but falsely detected as a cloudy area.

The visual effects of cloud detection from whole scene image by different meth-
ods are shown in Fig. 5(a). It can be seen that these methods can detect majority of
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Fig. 5. Visual results of cloud detection in comparison experiments.

cloudy area, but U-net, MS-UNet and Cloud-Net have more mistakes, especially for the
highlighted regions in lower right corner. Although Unet 3+ can achieve better results,
the performance on boundaries is still worse and the missing cloud information is more
compared with CUA-Net. Figure 5(b)–Fig. 5(e) is the visual effect of local details, repre-
senting four different types of landcovers: bare land, ice land, vegetation and mountains.
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Results indicate that CUA-Net can achieve better visual effect with less confusion and
more clear boundaries under different surface conditions. For example, in Fig. 5(b) and
Fig. 5(d) covering both thin and thick cloud, all methods can accurately detect the main
cloud, but for edges and details, the results gained from CUA-Net is most consistent
with the ground truth. As for Fig. 5(c) covered with ice and snow, U-net and MS-UNet
have many omissions on the boundary, Cloud-Net and Unet 3 + perform better but
the capability of detail extraction still need to be strengthened, while the CUA-Net can
accurately distinguish between ice land and cloud due to its advantageous structures.
For highlighted ground shown in the above of Fig. 5(e), all the other four methods detect
it as cloud more or less except CUA-Net. Through the visual interpretation, it can be
confirmed that CUA-Net can achieve more detailed edges and superior cloud detection
results than other methods.

To evaluate the cloud detection accuracy more objectively, Precision, Recall, Speci-
ficity, Intersection over Union (IoU), Overall Accuracy (OA) and F1 score are selected
for quantitative evaluation. High precision indicates that the detected cloud is generally
true, while high recall means that the model can detect most cloud. Specificity is used
to measure the negative predictions, IoU to measure the overlap between the predicted
result and ground truth, and OA for the correctly classified instances. F1 score is the
harmonic mean of precision and recall to measure their balance. They are defined as
Eqs. (2)–(7).

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

Specificity = TN

TN + FP
(4)

IoU = TP

TP + FP + FN
(5)

OA = TP + TN

TP + FP + FN + TN
(6)

F1 = 2× Precision× Recall

Precision+ Recall
(7)

where TP (true positive) indicates the total amounts of correctly detected cloud pixels,
TN (true negative) represents the number of correctly detected clear pixels, FP (false
positive) means the amounts of clear pixels incorrectly detected as cloud pixels and the
FN (false negative) on the contrary. The quantitative evaluation results are shown in
Table 1.
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Table 1. Accuracy evaluation results in comparison experiments (%).

Method Precision Recall Specificity IoU OA F1

U-net [16] 78.27 89.73 95.52 72.87 94.32 83.61

Ms-UNet [17] 78.53 89.76 95.14 71.09 94.52 83.77

Cloud-Net [18] 80.80 89.83 96.16 72.70 95.32 85.07

Unet 3 + [19] 87.33 90.68 97.52 79.77 96.13 88.97

Proposed CUA-Net 88.58 91.10 97.80 80.94 96.72 89.82

Table 1 shows that the proposed method achieves higher accuracy than the other four
networks in Precision, Recall, Specificity, IoU, OA and F1, which is consistent with the
judgment of visual interpretation, indicating that the proposed method performs better
in most of remote sensing scenes.

Ablation Experiments. In order to verify the effect of second U-shape network
(denoted as S-UNet) and CBAM in skip connections, we designed four ablation experi-
ments: (1) only the first U-shape network used (denoted as F-UNet only), (2) the second
U-shape network used without CBAM (denoted as+S-UNet), (3) the CBAM used with-
out the second U-shape network (denoted as +CBAM), (4) both the second U-shape
network and the CBAM used (CUA-Net). Their visual effect and accuracy evaluation
results are shown in Fig. 6 and Table 2, respectively.

Cloudy image Ground truth F-UNet only

+ S-UNet + CBAM CUA-Net

Ground Truth

Clear

Cloudy

Predicted Image

Clear

Cloudy

Ground Truth

Cloudy

Clear

Predicted Image

Clear

Cloudy

Fig. 6. Cloud detection visual results of ablation experiments.
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Table 2. Accuracy evaluation results of ablation experiments (%).

Method Precision Recall Specificity IoU OA F1

F-UNet only 82.79 90.09 96.97 74.61 96.18 86.29

+S-UNet 85.87 88.74 97.57 76.47 95.85 87.28

+CBAM 84.66 92.47 96.95 78.49 96.26 88.39

CUA-Net 88.58 91.10 97.80 80.94 96.72 89.82

Comparing the results in groups F-UNet only and+S-UNet combinedwith+CBAM
and CUA-Net, it is found that S-UNet leads to a slight decrease in Recall, but the
Specificity, IoU and F1 scores are higher than the experiments without S-UNet, and the
Precision is remarkably improved. The visual interpretation also shows that the addition
of S-UNet can achieve results closer to the ground truth, as it can be a good complement
to the edges and details for cloud. Comparing the results in groups F-UNet only and +
CBAM combined with +S-UNet and CUA-Net, it can be confirmed that CBAM can
focus well on the attributes and locations of cloud, which can improve the detection
accuracy comprehensively, and reduce the probability of confusing cloudy and clear
area. The overall results show that better cloud detection results can be achieved with
both S-UNet and CBAM.

4 Conclusion

In conclusion, the proposed CUA-Net for cloud detection has shown promising results.
The second U-shape network helps to supplement the details and cloud boundaries, thus
obtaining more refined and truth-related results. The dense connections and the attention
model help the network preserve and focus on important features and suppress irrelevant
features, contributing to higher accuracy. The CUA-Net has been evaluated on 38-Cloud
dataset compared with four representative networks. The results show that it performs
better than other methods in terms of quantitative evaluation and visual effect. Overall,
the proposed method has potential to be applied in remote sensing fields where cloud
detection is essential, and further research can be conducted to optimize the model for
better performance.
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