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Chapter 9
Precise Gene Editing of Cereals Using 
CRISPR/Cas Technology

Pouneh Pouramini and Goetz Hensel

Abstract  Targeted mutagenesis using CRISPR/Cas technology has become rou-
tine in elucidating biological processes or their application in breeding and agricul-
ture. This means that the change to be achieved can be accurately predicted. 
However, knockout of a gene function is not always desirable, as reducing activity 
or affecting a protein domain can influence its properties and, thus, the phenotype. 
This chapter will therefore focus on precise genome modification in temperate  
cereals. The methods used, including some representative examples, are sum-
marised here.

Time is an essential factor to consider in developing new agricultural varieties. 
Since domestication, plant breeders have steadily expanded their toolbox, but estab-
lishing a new cereal variety takes an average of 8–10 years [1]. Developments in 
genome sequencing (barley [2], wheat [3], rye [4]), oat [5], and molecular biology 
methods for genome-assisted breeding (marker-assisted breeding [6]) have pro-
vided tools and techniques for the breeding process that positively influence the 
process and workload.

In this chapter, temperate cereals of the botanical tribe Triticeae (barley, wheat, 
rye, and oats) grown in Europe will be considered. Due to limitations in the avail-
ability of genomic sequences (rye and oat only in the last two years) and the lack of 
efficient transformation protocols, there are currently only reports from barley and 
wheat. These are also among the more essential cereals in Europe in terms of culti-
vated area (FAO Stat). While diploid barley is mainly used for animal feed, beer, 
and whisky, tetra- and hexaploid wheat are essential for pasta and bakery products. 
Oat and rye are the main components of breakfast cereals.

Targeted mutagenesis induced by endonucleases such as TALEN [7] and 
CRISPR/Cas [8] has enabled an incredible number of applications in a wide range 
of species since their first biotechnological application in 2012 [9]. Thus, the results 
have helped many new insights into basic research and show promise for 
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applications. Targeting an organism’s genomic sequence has never been so easy. 
CRISPR/Cas technology is a two-component system in which a target-specific 
guide RNA guides a double-strand-inducing Cas enzyme to the desired location in 
the target genome [8]. The cell’s repair mechanisms then repair the induced double-
strand breaks. A more detailed description of the technology and repair mechanisms 
is described in Chap. 1.

Applications of precise genome editing in plants have been summarised several 
times (for review, see [10–12]). These reach into all areas of modern plant research. 
Starting with pure basic research, i.e., the identification and characterization of 
genes and their phenotypic expressions, the methods are also used to master the 
current challenges of agriculture. Here, agronomic parameters play a similarly 
important role in improving product characteristics. Plants with enhanced resistance 
to fungal or viral pathogens are being developed and tested. Plants should be better 
adapted to changing climatic conditions and thus have better water and nutrient 
utilization. Plants should become heat or drought-tolerant but also be able to grow 
with an increased salt concentration in the soil. There are examples of all these 
experiments in barley and/or wheat (Fig. 9.1). The only publication on applying 
CRISPR/Cas technology in triticale, a cross between wheat and rye, shows its func-
tionality exclusively in protoplasts [13].

Even if the targeted induction of a double-strand break can be carried out pre-
cisely, the result is random. According to previous reports, the most common 

Fig. 9.1  Summary of barley and wheat genes with functions in agronomic features [14–47], gene 
discovery [48–59], product quality [21, 34, 60–74], and abiotic and biotic stress [46, 75–92]
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outcome for CRISPR/Cas9 is a deletion of a few (≤10) nucleotides or the insertion 
of one nucleotide (InDel) [93]. However, it is impossible to predict precisely 
whether loss or insertion will occur, and it is also somewhat random which base is 
inserted. Although there are reports (for review, see [94]) that a certain percentage 
can be predicted using microhomology-dependent repair mechanisms, the outcome 
remains undetermined in most applications.

To achieve a prediction of the mutation result and thus precise genome editing, 
one can consider several possibilities. When using two gRNAs, one gets an exact 
deletion between the two induced double-strand breaks in a part of the mutated 
cells. In this case, the choice of gRNA binding sites can, for example, influence the 
function of a protein domain [49]. By not inducing a knockout, a reduced or altered 
functionality remains, similar to the RNAi effect but is genetically fixed in contrast.

Another possibility is to transfer a repair template with the desired sequence 
simultaneously with the double-strand-inducing reagent. However, the challenge 
here is to bring a sufficient number of repair templates to this site at the time of the 
double-strand break repair. One possibility is the biolistic transfer of the repaired 
DNA [95]. However, this method has all the previously described disadvantages 
that have led to the preferential use of Agrobacteria-mediated transformation [96].

Initial results at the cellular level in barley showed targeted allelic exchange of 
the fluorescence protein GFP. GFP and YFP differ in only one amino acid; thus, 
exchanging two nucleotides causes a change in the emission spectrum [97]. It was 
shown that 3% of the mutant epidermal cells had integrated the non-functional YFP 
fragment in the genome, thus exhibiting a shift in the lambda scan. These results 
were even surpassed when pre-assembled RNP complexes were biolistically trans-
ferred with Cas9 instead of plasmid DNA [95]. Here, it was shown that up to 8% of 
GFP-mutated epidermal cells exhibited such an allelic exchange. A typical applica-
tion for allelic exchange is the creation of herbicide resistance [98]. Since this 
allows the selection of the correctly modified cells, such a method is easier to apply. 
However, the efficiency is expected to be lower if the modification has no selection 
advantage during creation.

An improvement here is the prime editing method [99]. In contrast to the Cas9 
technology, the Moloney Murine Leukemia Virus reverse transcriptase (MLV-RT) 
domain was added to the Cas endonuclease. At the same time, the gRNA was 
extended by the part of the repair template. However, there have been few reports of 
plant applications so far, suggesting that the technology still needs improvement.

To precisely incorporate large DNA fragments in plants, a PrimeRoot-named 
method was recently described [100]. Third-generation PrimeRoot editors use opti-
mized prime editing guide RNA designs, an improved plant prime editor, and supe-
rior recombinases to enable precise large DNA insertions of up to 11.1 kilobases 
into plant genomes. The authors describe using PrimeRoot to introduce gene regula-
tory elements into the rice. Applications in temperate cereals have not yet been 
described.

Base editing (BE) is another technology for the precise modification of genomes 
(DNA) or transcriptomes (RNA) of living cells at single-base resolution (for review, 
see [101]). BEs comprise a catalytically impaired cas nuclease fused with a 
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nucleotide deaminase and sometimes DNA repair proteins. BEs can introduce sin-
gle nucleotide variants at desired sites into the DNA (nuclear or organellar) or RNA 
of both dividing and non-dividing cells. There are two types of BEs – DNA BEs, 
which directly induce targeted point mutations in DNA, and RNA BEs, which con-
vert one ribonucleotide to another in RNA. The currently available DNA BEs can be 
further divided into cytosine BEs (CBEs), adenine BEs (ABEs), C-to-G BEs 
(CGBEs), dual-base editors, and organellar BEs. These categories are discussed 
below [101]. After protoplast testing, C to T substitutions was successfully detected 
in two heterozygous wheat plants [102]. To increase the efficiency, further improve-
ments such as the NLS, crRNA, LbCas12a nuclease, adenine deaminase, and linker 
were undertaken, achieving up to 55% efficiency in stable mutants (TaLOX and 
TaMLO) [103]. In other plants, further improvements, such as placing a N-terminal 
reverse transcriptase–Cas9 nickase fusion performed better in rice than the com-
monly applied C-terminal fusion [104]. In addition, introducing multiple-nucleotide 
substitutions in the reverse transcriptase template stimulated prime editing with 
enhanced efficiency. Additionally, it was shown that using two pegRNAs that 
encode the same edits but target complementary DNA strands highly promotes the 
desired outcome [105].

However, all the previously mentioned methods are still subject to particular 
challenges. These concern all parts of the process, such as selecting, using, and 
transferring appropriate gRNAs and Cas and proteins, general tissue culture, geno-
type dependence, detection of induced mutations, and identification of transgene-
free, etc. homozygous progeny [106]. Further sequencing of genomes and enzyme 
evolution will undoubtedly lead to other plant improvements. It is crucial that the 
plants produced in this way also find use in European agriculture and that outdated 
regulations do not prevent their use.
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