
Environmental Contamination Remediation and Management

Nitish Kumar
Amrit Kumar Jha   Editors

Lead Toxicity 
Mitigation: 
Sustainable 
Nexus 
Approaches



Environmental Contamination Remediation 
and Management 

Series Editors 

Erin R. Bennett, School of the Environment, Trent University, Peterborough, 
Canada 

Iraklis Panagiotakis, Environmental Engineer and Scientist, 
ENYDRON – Environmental Protection Services, Athens, Greece 

Advisory Editors 

Maria Chrysochoou, Department of Civil and Environmental Engineering, 
University of Connecticut, Storrs, CT, USA 

Dimitris Dermatas, School of Civil Engineering, National Technical University of 
Athens, Zografou, Greece 

Luca di Palma, Chemical Engineering Materials Environment, Sapienza University 
of Rome, Rome, Italy 

Demetris Francis Lekkas, Environmental Engineering and Science, University of 
the Aegean, Mytilene, Greece 

Mirta Menone, National University of Mar del Plata, Mar del Plata, Argentina 

Chris Metcalfe, School of the Environment, Trent University, Peterborough, 
Canada 

Matthew Moore, United States Department of Agriculture, National Sedimentation 
Laboratory, Oxford, MS, USA



There are many global environmental issues that are directly related to varying levels 
of contamination from both inorganic and organic contaminants. These affect the 
quality of drinking water, food, soil, aquatic ecosystems, urban systems, agricultural 
systems and natural habitats. This has led to the development of assessment methods 
and remediation strategies to identify, reduce, remove or contain contaminant load-
ings from these systems using various natural or engineered technologies. In most 
cases, these strategies utilize interdisciplinary approaches that rely on chemistry, 
ecology, toxicology, hydrology, modeling and engineering. 

This book series provides an outlet to summarize environmental contamination 
related topics that provide a path forward in understanding the current state and 
mitigation, both regionally and globally. 

Topic areas may include, but are not limited to, Environmental Fate and 
Effects, Environmental Effects Monitoring, Water Re-use, Waste Management, 
Food Safety, Ecological Restoration, Remediation of Contaminated Sites, Analytical 
Methodology, and Climate Change.



Nitish Kumar · Amrit Kumar Jha 
Editors 

Lead Toxicity Mitigation: 
Sustainable Nexus 
Approaches



Editors 
Nitish Kumar 
Department of Biotechnology 
Central University of South Bihar 
Gaya, Bihar, India 

Amrit Kumar Jha 
Krishi Vigyan Kendra Sahibganj 
Birsa Agricultural University 
Ranchi, Jharkhand, India 

ISSN 2522-5847 ISSN 2522-5855 (electronic) 
Environmental Contamination Remediation and Management 
ISBN 978-3-031-46145-3 ISBN 978-3-031-46146-0 (eBook) 
https://doi.org/10.1007/978-3-031-46146-0 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-46146-0


Preface 

Lead is highly persistent in the environment, and because of its continuous use, 
its levels rise in almost every country, posing serious threats. Lead toxicity is an 
important environmental issue. One of the most deadly heavy metals, lead, plays no 
part in biological systems. All living creatures may be adversely affected by its traces 
in the air, soil, water, and biological systems, and its bioaccumulation in the food chain 
is especially dangerous for the health of people and animals. In trace amounts, lead is 
a bluish-gray metal that occurs naturally in the earth’s crust. The available research 
shows that lead accumulates in the environment due to its non-biodegradable nature 
and ongoing use, which has a number of negative impacts including neurotoxicity 
and altered psychological and behavioral development in many organisms. Lead’s 
speciation in soil has a significant impact on its bioavailability and, consequently, its 
toxicity to plants and microorganisms. In order to counteract the poisonous effects 
of lead, numerous plants and microorganisms have evolved detoxifying processes. 

This global environmental problem is well discussed in the book, which also 
suggests interdisciplinary methodology for the mitigation of contamination. There 
are three sections in this book. The first section discusses the various sources and 
locations of lead in soil and plant ecosystems. The second section describes the 
health dangers of lead toxicity. The third section discusses methods for reducing 
lead toxicity and possible uses of current biological technology to address problems. 

We give a general review of lead-polluted areas’ potential for bioremediation using 
fungi, bacteria, or plants. These restoration techniques benefit from being econom-
ical and environmentally beneficial because they use plants to absorb and immobi-
lize pollutants from soil and water, and fungus and bacteria to break them down. 
Phytoremediation is a well-established, well-researched practice with multiple in-
field applications that make use of a wide variety of plant species. Students, educators, 
researchers, and environmental specialists working on lead contamination around the 
world will find this book to be a useful resource. 
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Part I 
Source and Distribution of Lead in Soil 

and Plant Ecosystem



Chapter 1 
Environmental Lead 
Exposure—A Continuing Challenge 

Swarup Debroy, Amitava Paul, and Deep Shikha 

Abstract Lead is one the most abundantly present heavy metal on the earth crest, 
use of which in many can be traced back to 7000–6500 B.C. A low concentration 
of lead can be seen in an optimum range but when the concentration reaches up to 
150–300 ppm in the environment, it can pose a serious threat to individual health. 
In the environment, lead can be found in both organic and inorganic forms with 
inorganic lead being the most predominant. The majority of lead pollution is caused 
by human activity to harvest and exploit the metal. In the early twentieth century, 
industrial workers who were working in painting, smelting, printing, plumbing, and 
other industries were heavily exposed to lead. Due to the use of lead in petrol after 
the invention of motor vehicles at the beginning of the twentieth century, there was 
a significant rise in ambient lead contamination. Brain and spinal cord is the most 
prominent organ among those harmed by lead. Young individual’s intellectual devel-
opment suffers long-lasting negative impacts from low-level chronic Pb exposure. 
Apart from that exposure to lead can have detrimental effects on different organ 
systems of the body. Chronic low-level lead exposure can have a long-lasting effect 
on the well-being of a new generation. The main focus of this chapter is to study the 
distribution, toxicology, and remediation of lead toxicity throughout the decades. 

Keywords Lead · Environment ·Metal · Exposure · Contamination
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1.1 Introduction 

Ever growing development of industries comes with huge drawbacks, including 
water and air pollution and contamination of soil with toxic heavy metals emitted 
from those industries. This significantly deteriorates the quality of life for animals 
as well as for humans. All farm animals get affected by this contamination of the 
environment with heavy metals, because of their natural habit of pasturing in fields 
in the neighbourhood of the emission sources. These elements can be present on the 
body hair and on the skin of an animal and act as exogenous reserves, which can 
go inside of an animal and can get absorbed in the alimentary canal while licking 
their hair and also while grazing on the field. These endogenous reserves of ingested 
heavy metals get distributed to different organs and tissue by blood and get taken 
up by the hair during its growth phase, which subsequently increases the number 
of trace elements in an animal’s body (Kabata-Pendias and Mukherjee 2007). Due 
to their toxicity, endurance, and capability to get absorbed into the body tissues via 
different modes of exposure, heavy metals are among the most harmful pollutants in 
the natural environment. When these toxins accumulate in body tissue more quickly 
than the body can eliminate them, a progressive build-up of the toxins takes place 
(Khudzariet al. 2013). Chronic low-level exposure to heavy metals also can have 
serious health effects just as much as excessive exposure to them. Even though some 
of these exposures and their negative effects are frequently subtle, especially on an 
individual level, the damage can be significant on a population level (Reis et al. 
2007). 

Lead is a silver-grey heavy metal with a melting temperature of 327.5 °C and a 
molecular mass of 207.19. Although this soft metal has good corrosion resistance, it 
is soluble in hot sulfuric and nitric acids. For inorganic lead compounds, the typical 
valence state is +2. Lead sulphide and lead oxides are not very soluble in water, but 
nitrate, chlorate, and chloride salts are very soluble in cold water. In addition, stable 
organic molecules like tetraethyllead and tetramethyllead, as well as organic acids 
like lactic and acetic acids, form salts with lead (WHO 1995). Despite having four 
electrons in its valence shell, lead only readily ionizes two of the electrons. Therefore, 
instead of +4, the typical oxidation state of lead in inorganic compounds is +2. The 
chloride, nitrate, and, to a much lesser extent chlorate, are water-soluble. Although 
the acetate is rather soluble, some of the salts produced with organic acids, such as 
lead oxalate, are similarly insoluble. Physio-chemical properties of lead salts. 

Lead comes under non-essential heavy metals for living organisms, which is 
hazardous to biota even at a minute concentration. Traces of this metal can generally 
be found in the soil with an optimum concentration of 15–40 ppm. But with the 
increase in the concentration of lead up to 150–300 ppm in the environment, it 
can pose a serious threat to individual health (Dikmen et al. 2023). Because of the 
excessive emission from human activities over millennia, it is now impossible to 
accurately estimate the natural concentration of lead in the environment. According 
to multiple researches, natural air-lead concentrations were four to five folds lower 
than today’s atmospheric concentration. Because of it, lead is now considered one of
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the most life-threatening heavy metal presents in the environment by many countries 
(Kazantzis et al. 1989). In the environment, lead can be found in both organic and 
inorganic forms with inorganic lead being the most predominant. The physical and 
chemical form of lead, as well as the size of lead particles, has a direct influence on 
its distribution, absorption into a living organism, sedimentation, and toxicity. 

The first case of occupational lead poisoning was documented around 370 B.C. 
In the early twentieth century, industrial workers who were working in painting, 
smelting, printing, plumbing, and other industries were heavily exposed to lead. In 
1767, several patients were hospitalized at La Charite Hospital in Paris with symp-
toms, which were not recognized then are now showing similarities with those of 
lead poisoning. Evidence showed that all those workers to some extent were exposed 
to lead from their occupational environment (Tong et al. 2000). Lead has been clas-
sified as a possible human and animal carcinogen and has well-documented effects 
on every organ system, including the immunological, reproductive, cardiovascular, 
and renal as well as on teeth and bones. However, the neurological system is particu-
larly susceptible to lead’s effects (White et al. 2007). Lead exposure is thought to be 
harmful and is linked to cognitive impairment, neuromuscular weakness, behavioural 
abnormalities, and hearing deficiencies in both people and animals. No “safe” level 
of lead exposure has been found, nor is there any level of lead that appears to be 
required or advantageous for the body (Flora et al. 2012). In many nations, exposure 
has declined as a result of the elimination of lead from gasoline. Lead has been exten-
sively employed in industries nevertheless and levels are still high in many places 
because of its malleability, resilience to corrosion, and low melting point (Wang et al. 
2012). Deposition of lead in the body tissue differs with the type of tissue and with 
the age group. 80–90% of lead deposition can be seen in the bone of adults, whereas 
about 70% of total lead deposition can be seen in the bone of children. A maximum 
amount of exposed organic lead get absorbed in the body and then may be present in 
different body fluid whereas inorganic lead remain unchanged and excreted through 
urine. 

Children have a particularly high risk of lead poisoning since they absorb 4–5 
times more ingested lead than an adult from a similar source. In addition, due to 
their natural curiosity and age-appropriate hand-to-mouth activity, children often 
swallow lead-containing or lead-coated particles, such as dust, flakes, and contami-
nated soil. Individuals who have pica, a psychological condition that causes excessive 
and persistent cravings for non-food objects, are more likely to pick at and consume 
lead paint from furniture, doorframes, and walls, which increases the risk of expo-
sure. Children in Nigeria, Senegal, and other nations have experienced widespread 
lead poisoning and several deaths as a result of exposure to lead-contaminated soil 
and dust brought on by battery recycling and mining (WHO 2022). 

Recently, the focus on lead poisoning has shifted from adults, highly exposed 
to this heavy metal from industrial effluent to asymptomatic children with minimal 
chronic lead exposure. Since chronic low-level lead exposure can have a long-lasting 
effect on the well-being of a new generation. In this chapter, we are going to discuss 
the development of knowledge on the distribution, toxicology, and remediation of 
lead toxicity throughout the decades of lead study.
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1.2 History of Lead Uses 

Being the first metal to get melted and discovered by humans, a trace of lead was 
found in different ancient ornaments dating back from 7000 to 6500 B.C. (Kazantzis 
et al. 1989). Lead was extensively used during Roman Empire, in their construction, 
cooking utensils, and other day-to-day objects. Lead was utilized by the ancient 
Romans to make water pipes and line baths. Due to its sweet flavour, lead was useful 
in winemaking to balance out the astringent taste of grape tannic acid. Roman upper 
classes consumed a lot of lead-sweetened wine, which can have up to 20 mg of 
lead per litre (Needleman 2004). The use of lead was started in mediaeval times for 
statues, ornaments, cisterns, tanks, gutters, roofs, and coffins. Lead was also used 
in the past to make the strips that connected the pieces of coloured glass in church 
windows. A little statue from Turkey that dates back to 6500 B.C. is the oldest 
known object manufactured by humans that contains lead. Between 3000 and 4000 
B.C. Egyptian pharaohs utilized lead to glaze ceramics. Chinese, ancient Greek, and 
Roman coinage were made of lead 4000 years ago (Smith 1984). Lead poisoning 
has been linked to theories linking the fall of Rome to the Roman aristocracy’s 
concurrent decline in fecundity and rise in psychosis (Gilfillan 1965). Smith (1882) 
reported cases of lead poisoning in the eighteenth century among weavers working 
with lead dichromate-containing dye in a cotton mill with symptoms of Jaundice and 
a blue line on the gums. A stricter regulation of the dyeing of the yarns and the use of 
personal protective equipment by mill workers resulted from an investigation into the 
poisonings, which ultimately eliminated all occurrences of lead poisoning. Due to 
their flexibility and capacity to be moulded into different diameters, in the nineteenth 
century lead has previously been utilized to relieve blockages in the lacrimal and nasal 
ducts. Burridge cites multiple cases of using the consumption of lead acetate in the 
treatment of dysentery and other diarrheal disease (Burridge 1851). Due to the use of 
lead in petrol after the invention of motor vehicles at the beginning of the twentieth 
century, there was a significant rise in ambient lead contamination. Throughout much 
of the century, this led to an increase in the community’s exposure to environmental 
lead (Tong et al. 2000). 

1.3 Lead in the Environment 

The removal of gases and particles from the atmosphere is accomplished by atmo-
spheric deposition. However, it is also a serious environmental issue in numerous 
regions of the world due to worries about natural ecosystem acidification and eutroph-
ication, bioaccumulation of hazardous compounds and metals, effects on biodiver-
sity, animal health, and global climate change. Increased pollutant concentrations in 
the atmosphere caused by human activities result in increased pollutant deposition, 
which has a negative impact on human health, crop yields, and terrestrial and marine 
ecosystems (Pan and Wang 2015). Lead exists in the earth’s crust and is naturally
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found in the environment via a variety of mechanisms such as volcanic emissions and 
geochemical weathering. However, the majority of lead pollution is caused by human 
activity to harvest and exploit the metal (Fewtrell et al. 2003). Lead emissions from 
human activity into the environment can occur directly in the air, water, and soil. 
There is a constant flow of lead between these compartments even though emissions 
into these media may be easily monitored. Particle size has a significant impact on 
where atmospheric lead is found geographically concerning the source of emission. 
A surface, such as plants, soil, bodies of water, man-made surfaces, or the respiratory 
tracts of animals, eventually receives the majority of airborne lead through dry or wet 
deposition processes. Dry deposition occurs either through the impaction of all sizes 
of particles, mainly smaller particles, or the gravitational settling of bigger particles 
(> 10 m). Wet deposition is the outcome of either the build-up of particles by falling 
precipitation or the integration of particles into water droplets within clouds. Most 
of the lead in water is caused by industrial discharges, highway runoff, and sewage 
effluent, with some wet atmospheric lead deposition and direct dry deposition, which 
is more relevant for big bodies of water. The chemical nature of the lead affects how 
it disperses in water. The main causes of lead deposition in soils are the wet and dry 
deposition of atmospheric lead, especially close to the sources of emissions, and the 
discharge of sewage sludge, frequently onto agricultural land (Pattee and Pain 2003). 

Soils are not excellent natural historical archives of contamination because metals 
are dispersed between anthropogenic and geogenic sources, and younger anthro-
pogenic depositions cannot be separated exactly from older depositions. As a result, 
tree rings, peat deposits, and lake/marine sediments, in particular, are better recorders 
of pollution history, frequently dating back thousands of years (Savard et al. 2006). 
Although the historical development of Pb isotopic composition in sediments and 
tree rings is usually comparable, the process of metal acquisition differs. Nonethe-
less, soil humic layers, together with lake and bay sediments and trees, acted as 
effective receptor media for detecting cumulative metal pollution (particularly when 
Pb isotope studies were used), even at sites located a significant distance (N100 km) 
from the contamination source (Komárek et al. 2008). The lead concentration of 
various meals varies greatly, with plant-based foods being the primary source. Total 
diet studies in industrialized countries show a lead intake of 200–300 g per day, while 
values ranging from less than 100 to more than 400 g/day have been recorded. Lead 
solder in cans, dust ingestion by young children, and lead plumbing in places with 
soft-water sources all contribute significantly to daily lead intake. 

Lead as well as compounds can enter the environment at any time throughout the 
mining, smelting, processing, usage, recycling, or disposal processes. Extensive uses 
of lead can be seen in batteries, gasoline additives, cables, solder, pigments, and steel 
products are among the many applications. In countries where leaded gasoline is still 
used, mobile and stationary sources of gasoline combustion account for the majority 
of air pollution. Air pollution is particularly severe in areas near lead mines and 
smelters (WHO 1995). Before the industrial revolution, environmental lead exposure 
to human and animal populations was comparatively minimal, but industrialization 
and large-scale mining have increased this heavy metal exposure. Compared to other 
non-essential elements, lead contamination in the environment significantly affects
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an organism’s livelihood (Tong et al. 2000). As of 2022, Australia had the greatest 
lead deposits in the world, totalling 37 million metric tonnes. Despite having the 
second-largest lead reserves in the world, China was the world’s top lead producer 
in 2022. They generated over two million metric tonnes of lead in that one year. 
Approximately, 12.3 million metric tonnes of refined lead were consumed globally 
in 2021 (Statista 2023a, b). 

In the majority of developed countries, deliberate efforts have resulted in a 
decrease in the ambient lead concentration in recent years, reflecting a decline in 
lead’s commercial use, particularly in petrol. Due to the phase-out of lead in petrol 
and the decrease in ambient exposure to the metal over the past 20 years, blood 
lead levels in the general population in these countries have decreased significantly 
(Tong et al. 2000). In developing nations where there are wide variations in exposure 
sources and pathways, lead continues to be a serious public health issue. 

1.4 Toxicology and Effects of Lead (Pb) Exposure 

A divalent cation, lead, has a considerable affinity for the sulfhydryl groups on 
proteins. Brain and spinal cord are the most prominent organ among those harmed 
by lead. Lead is a diverse toxin that has a variety of targets, but the deformation 
of enzymes and structural proteins is thought to be a major contributor to its toxi-
city. The endogenous opiate system’s development is hampered by lead. There is 
no sign of a threshold as it catalytically and effectively cleaves the ribophosphate 
backbone of tRNA at particular places. Because of its capacity to imitate or compete 
with calcium, lead exhibits several hazardous qualities (Needleman 2004). As per 
Bailey and Kitchen (1985) lead competes with calcium for binding sites on cerebellar 
phosphokinase C at picomolar doses, which alters neural signalling. Because of the 
high lead sensitivity of astrocytes and olegodendrocytes, lead has a significant effect 
on blood–brain barrier and myelin sheath formation. Lead interferes with vascular 
permeability by interfering with collagen formation. 

According to WHO’s 2021 report on the impact of chemicals on Public health, 
lead exposure cost around a million of lives from all the over the world. According 
to estimates, chronic lead exposure is estimated to cause 30% of the total intellectual 
disability, 4.6% of the total cardiovascular diseases and 3% of kidney diseases world-
wide due to its chronic effect on the health. Children’s health may suffer severely 
from lead exposure. Lead damages the brain and spinal cord at high exposure levels, 
resulting in unconsciousness, convulsions, and even death. Children who recover 
from severe lead exposure may nevertheless have behavioural and intellectual prob-
lems. Lead is now understood to induce a spectrum of harm across numerous physio-
logical systems at lower exposure levels that don’t immediately manifest any symp-
toms. Lead, in particular, can have an impact on how children’s brains develop, 
which can lower IQ, change behaviour in the form of increased antisocial behaviour 
and decreased attention span, as well as lower scholastic achievement. Anaemia,
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renal impairment, hypertension, toxicity to the reproductive organs, and immuno-
toxicity are further effects of lead exposure. Lead is thought to have permanent 
impacts on the brain and behaviour (WHO 2023). Numerous instances of anaemia 
have been linked to lead poisoning because lead inhibits the enzymes ferrochelatase 
and porphobilinogen synthase, inhibiting the production of porphobilinogen and the 
integration of iron into protoporphyrin IX, which blocks the synthesis of heme in 
blood or causes defective heme synthesis, leads to microcytic anaemia (Ara and 
Usmani 2015). Lead act as a calcium analogue, which interacts with ion channels, 
which is one of the processes by which it impairs cognition. Lead can disrupt the 
ultrastructure of mitochondrion and cell membrane permeability; replace essential 
elements like Zn, Ca and Fe, and increase the synthesis of reactive oxygen species 
(ROS), in addition to activating some enzyme and non-enzymatic antioxidants. At 
very low dose also lead can have a detrimental effect on living cell. In addition 
to oxidizing intracellular proteins, lipids, and nucleic acids, ROS (H2O2, hydroxyl 
radical, superoxide anion) also cause membrane damage, enzyme deactivation, and 
lipid peroxidation (Zhang et al. 2023). Acute and chronic exposure to lead can have a 
huge impact on the reproductive organs of an individual. In a study comparing infer-
tile and fertile males, lead levels in the blood of infertile men were found to be higher 
(12.5 µ/dl and 6 µg/dl, respectively) (Pant et al. 2003). Epidemiological studies also 
demonstrate elevated blood lead levels in male employees, ranging from 10 to 40 µg/ 
dl, as well as an increased risk of infertility as a result of lead exposure. Another 
study of 4000 male workers with elevated blood levels of lead more than 25 g/dl 
revealed that these individuals had fewer children than the control group (Ganesh 
2023). According to Oehninger (2000), infertility cases involving men account for 
about half of all cases; environmental exposure, particularly occupational exposure 
in developing countries, as well as a lack of awareness of safety precautions while 
working in hazardous environments are the main causes of male-related infertility 
in men. 

Young individual’s intellectual development suffers long-lasting negative impacts 
from low-level chronic Pb exposure (Bellinger and Bellinger, 2006). In their study, 
Bailey and Kitchen (1985) found out that monkeys fed with lead acetate @ new born 
to 200 days of age, their blood lead levels ranged from 3 to 25 µg/dl. They underwent 
a delayed alternation test at the age of 7–8 years, in which the crucial positive stimulus 
was switched. The ability to learn was compromised in treated monkeys, especially 
at longer periods of delay. Epidemiological data show that lead exposure during 
early childhood results in a noticeable loss in cognitive development during the 
subsequent childhood years. Children are more likely to experience negative effects 
from lead exposure than adults because: they consume more lead per unit of body 
weight; they frequently put things in their mouths when they are young, possibly 
increasing their intake of lead; they consume more lead per unit of body weight 
than adults; children have higher physiological uptake rates of lead than do adults; 
young children are developing quickly and have underdeveloped systems, making 
them more susceptible to the effects of lead than do adults (Tong et al. 2000). 

Lead exposure at high levels may result in renal impairment. The same issue 
could arise even from very little lead exposure. Acute and chronic nephropathies are
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the two different forms of impaired renal function. Nuclear enclosing bodies, which 
contain lead protein complexes, and degenerative alterations in the tubular epithelium 
can be used to classify acute nephropathy both visually and functionally, as can a 
mechanism of decreased tubular transport. It may enhance an abnormal secretion of 
amino acids, phosphates, and glucose, a combination known as Fanconi’s syndrome, 
although it is not the cause of protein appearing in the urine. Chronic nephropathy, 
on the other hand, is easier to treat and can result in permanent morphological and 
functional abnormalities characterized by, hypertension, hyperuricemia and renal 
breakdown caused by tubulointerstitial and glomerular abnormalities (Baranowska 
et al. 2012). According to Carmignani et al. (2000)’s review, lead exposure has a 
detrimental effect on both human and animal kidneys, leading to the development 
of renal toxicity due to the stress on the body’s oxidative system that it creates. The 
earlier study, however, revealed that such an impact primarily affects the kidney in 
chronic exposure that becomes clinically significant and that kidney injury does not 
typically occur in asymptomatic/acute situations. Rarely do we find information in 
the literature about how acute Pb exposure causes oxidative stress in an animal’s 
kidney. When compared to other groups, the injection of lead acetate resulted in a 
substantial rise in urea and creatinine levels. According to a recent study by Sharma 
and Singh (2014), exposure to Pb acetate at doses of 10 and 150 mg/kg BW for 
24 h increased the amount of thiobarbituric acid reactive substances (TBARS) in 
the kidneys, which is a sign of lipid peroxidation. In the bones, lead is meant to 
be stored in two compartments. The exchangeable pool situated at the bone surface 
and the non-exchangeable pool found deep within the bone cortex. Lead could move 
to the surface after leaving the non-exchangeable pool because it can easily reach 
plasma from the exchangeable pool and is actively being reabsorbed. Adults’ bones 
contribute between 40 and 70% of the released lead in the blood, according to stable 
lead isotope analysis. Adults keep roughly 85–95% of their lead in their bones, but 
children’s soft tissues contain about 70% of their high quantity of lead (Patrick 2006). 
Age, pregnancy dosage and rate, lead exposure, race, and gestation are only a few of 
the variables that affect how much lead is mobilized and stored in bones. According 
to Al Naimi et al. (2011), administering lead acetate at a dose of 75 mg/kg BW at 20 
and 40 days results in a mild hyperplasia of haemopoietin tissue with megakaryocyte 
proliferation and the appearance of thin trabeculae of calcified cartilage coated by 
a thin coating of bone. In comparison to normal, healthy bones, the mineralized 
cartilage bars that developed as a result of defective osteoclast resorption are wider 
and extend further into the metaphyseal marrow cavity. 

If the damage is too severe, especially to the nervous system’s cells or tissue, 
treatment could not be effective. Following lead exposure, cattle is given calcium 
disodium edentate (Ca-ethylenediaminetetraacetic acid [EDTA]) subcutaneously or 
intravenously for three days. 5% dextrose and a similar amount compartmentalized to 
4 treatments per day were administered subcutaneously to dogs for 2–5 days. After a 
one-week break from the end of the therapy, a second 5-day treatment may be required 
if the clinical indicators don’t go away. There isn’t a suitable veterinary product 
with Ca-EDTA on the market at the moment. Thiamine reduces the amount of lead 
that accumulates in tissues, which can help lessen the clinical symptoms. Thiamine
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and Ca-EDTA therapy appeared to have the most beneficial response (Payne and 
Livesey 2010). It has been demonstrated that the chelating agent succorer (meso 2, 
3-dimercaptosuccinic acid [DMSA]) is effective in both dogs and birds. Compared 
to Ca-EDTA, DMSA has a lot fewer adverse effects. Lead removal from the GI 
tract may benefit from cathartics such a rumenotomy magnesium sulphate. For cases 
exhibiting convulsion episodes, tranquillizers or barbiturates may be administered as 
supportive therapy. The oxidative damage caused by severe lead poisoning may be 
reduced by antioxidant therapy paired with a chelating agent. However, DMSA has 
been utilized in conjunction with antioxidants such N-acetylcysteine. Using endo-
scopically guided forceps, it is feasible to extract the swallowed lead pieces from the 
stomach in chelonian. This should be followed by two weeks of Ca-EDTA therapy 
(Kaneko et al. 2008). 

1.5 Steps to Prevent Lead Exposure 

WHO has listed lead as one of the most 10 hazardous elements presents in the envi-
ronment. Through its website, WHO has made a variety of lead information acces-
sible, including resources for advocacy, technical advice, and information for policy 
makers. In order to provide policymakers, public health authorities, and health profes-
sionals with evidence-based guidance on the steps they can take to protect the health 
of young and adult individuals from lead exposure, WHO has developed guidelines 
on clinical management of lead exposure and is currently preparing guidelines on 
prevention of lead exposure. The Centres for Disease Control and Prevention (CDC) 
has a long-standing obligation to safeguard children against lead poisoning, with the 
elimination of lead exposure among young children as its main objective. The CDC 
has assisted regional health agencies in creating lead poisoning prevention initiatives 
since the early 1970s. Public health organizations have long depended on blood lead 
screening tests to detect exposed individuals because lead exposure does not mani-
fest evident symptoms until after serious harm has already been done. An integrated 
programme to identify and limit sources of exposure and offer case management for 
kids with elevated blood lead levels must include blood lead screening for primary or 
secondary prevention (Ettinger et al. 2019). The Global Alliance to Eliminate Lead 
Paint was established by WHO and the United Nations Environment Programme due 
to the ongoing exposure risk posed by leaded paint in many nations. 

Humanity has long been aware of lead poisoning, which first came to light in the 
eighteenth century during the industrial revolutions. Lead has no known biological 
role in the body, so when it gets inside of you, you risk major health problems that 
could have a deadly outcome.
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Health Risks Linked to Lead Toxicity



Chapter 2 
Effects of Lead: Neurological 
and Cellular Perspective 

Chanchal Singh, Raghubir Singh, and Apoorva Shekhar 

Abstract Lead exposure is a serious public health concern with significant neuro-
logical and cellular effects. This chapter examines the effects of lead on brain devel-
opment, neurotransmitter function, and cellular processes from a neurological and 
cellular perspective. Lead exposure during critical periods of brain development 
can result in structural and functional changes in the brain, leading to cognitive and 
behavioral deficits. Alterations in neurotransmitter function, such as dopamine, sero-
tonin, and glutamate, can contribute to the development of neurological conditions. 
At the cellular level, lead can interfere with mitochondrial function and oxidative 
stress, leading to cell death and inflammation. In addition, lead exposure can have 
long-term effects, contributing to the development of neurological disorders such as 
Parkinson’s disease and Alzheimer’s disease. While the exact mechanisms of lead 
toxicity are still being investigated, effective strategies to prevent lead exposure are 
critical, including reducing lead in the environment, improving screening and reme-
diation efforts, and increasing public awareness of the risks associated with lead 
exposure. 
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2.1 Introduction 

Lead is a toxic heavy metal that has been used for various industrial purposes for many 
years. It has been used in various industrial applications, including paint, gasoline, 
batteries, and solder. Due to its extensive use, it has become a widespread environ-
mental pollutant, posing a significant threat to human health and the ecosystem. It 
is affecting both humans and animals due to its ability to interfere with biological 
processes, particularly those related to the nervous system, the immune system, and 
the cardiovascular system. 

In humans, its exposure can cause a range of health problems, depending on the 
level and duration of exposure. The most significant effects are seen in children, who 
are more vulnerable to lead’s toxic effects than adults (Lidsky and Schneider 2003). 
Lead exposure in children can cause developmental delays, behavioral problems, 
decreased IQ, and an increased risk of neurological disorders such as Parkinson’s 
disease, Alzheimer’s disease, and multiple sclerosis (Bellinger 2004;Wu et al.  2020). 
In adults, lead exposure can cause anemia, high blood pressure, kidney damage, and 
reproductive problems. 

In animals, its exposure has been observed in a variety of animal species, including 
birds, fish, and mammals. In birds, exposure is causing decreased reproductive 
success, impaired immune function, and neurological damage. In fish, exposure is 
a cause for developmental abnormalities, impaired growth, and reduced survival. 
In mammals, lead exposure has similar effects as those seen in humans, including 
neurological damage, reproductive problems, and decreased immune function. 

The lead exposure to multicellular organisms causes widespread systemic changes 
in the body ranging from cellular dysfunctions to molecular alterations. The various 
biochemical processes required for metabolism of carbohydrate, lipids, and proteins 
are significantly affected. In the present, the chapter cellular and neurological 
alterations caused by the exposure of lead has been discussed. 

2.2 Lead Exposure in the Environment 

Lead is present in the environment in various forms, including soil, air, water, and 
food. Human exposure to lead occurs through multiple routes, including inhalation 
of contaminated air, ingestion of contaminated soil or water, and consumption of 
lead-contaminated food. Industrial activities such as mining, smelting, and battery 
manufacturing are the primary sources of lead pollution. Additionally, lead-based 
paints used in houses and buildings can also be a significant source of lead exposure.
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2.3 Adverse Effects of Lead Exposure 

Lead toxicity affects many biological systems, including the cellular and neurolog-
ical systems. Lead toxicity can cause oxidative stress, inflammation, and damage to 
cellular components such as DNA, proteins, and lipids. The nervous system is partic-
ularly vulnerable to lead toxicity, as it can interfere with neurotransmitter signaling, 
neuronal development, and synaptic function (Atchison 1988) The long-term effects 
of lead exposure on the nervous system include decreased IQ, developmental delays, 
and an increased risk of neurological disorders such as Parkinson’s disease and 
Alzheimer’s disease (Liu et al. 2013; Raj et al. 2021). 

2.4 Mechanisms of Cellular and Neurological Effects 

The mechanism by which lead exerts its toxic effects is complex and involves multiple 
mechanisms, including interference with enzymatic activity, oxidative stress, inflam-
mation, and disruption of ion channels and membrane transporters. The exact mech-
anisms by which lead causes its toxic effects can vary depending on the specific 
biological system or process that is affected. Lead also bind to and inhibit enzymes 
such as delta-aminolevulinic acid dehydratase (ALAD), which plays a critical role 
in heme synthesis. It generates reactive oxygen species (ROS), which may leads to 
oxidative stress and damage to cellular components. In the nervous system, lead (Pb) 
interfere with synaptic transmission and disrupt the balance of calcium ions, lead to 
excitotoxicity and neuronal death (Mason et al. 2014). 

2.4.1 Lead Effect: Cellular Perspective 

2.4.1.1 Cellular Effects 

The cellular perspective of lead effects involves understanding how lead interferes 
with cellular functions and signaling pathways, leading to cellular dysfunction and 
damage. Lead can enter cells through various mechanisms, including ion channels, 
transporters, and receptors. Once inside the cell, lead can bind to and disrupt many 
cellular components, including enzymes, proteins, and DNA. One of the primary 
mechanisms by which lead exerts its toxic effects is through the generation of reac-
tive oxygen species (ROS), which can cause oxidative stress and damage to cellular 
structures (Jomova and Valko 2011). Lead can also interfere with calcium signaling, 
which plays a crucial role in many cellular processes, including cell growth, differ-
entiation, and apoptosis. Lead can bind to and inhibit calcium channels, leading to 
altered calcium homeostasis and impaired cellular signaling. This can affect many 
cellular processes, including the activation of signaling pathways, gene expression,
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and apoptosis. Another mechanism by which lead exerts its toxic effects is through 
the disruption of the cytoskeleton, which provides structural support and maintains 
cellular shape. Lead can interfere with the assembly and stability of microtubules and 
actin filaments, leading to altered cellular morphology, impaired cellular migration, 
and altered cellular function. Furthermore, lead can alter cellular signaling pathways, 
leading to aberrant cellular proliferation, differentiation, and apoptosis. Lead expo-
sure has been associated with the activation of many signaling pathways, including 
MAPK/ERK, PI3K/Akt, and JAK/STAT pathways, which can contribute to cellular 
dysfunction and damage. 

2.4.1.2 Cellular Proteins Affected by Lead 

Proteins are large, complex molecules that perform various functions within cells, 
such as catalyzing chemical reactions, transporting molecules, and providing struc-
tural support. Lead exposure can affect many different cellular proteins, leading to 
a range of adverse health effects (Chasapis 2018; GoERING 1993). Here are some 
cellular proteins that can be affected by lead: 

Metallothioneins 

Metallothioneins are small, cysteine-rich proteins that are found in a variety of organ-
isms, including humans. They are particularly abundant in the liver and kidneys, 
where they play an important role in detoxifying heavy metals. Metallothioneins 
bind to metals like lead and cadmium, sequestering them and preventing them from 
causing damage to cells and tissues (Bruno et al. 2016). 

In humans, there are four different metallothionein isoforms: MT-1, MT-2, MT-3, 
and MT-4. MT-1 and MT-2 are the most abundant isoforms and are found in most 
tissues, while MT-3 is primarily expressed in the brain and MT-4 is found in stratified 
squamous epithelia. Lead exposure can increase the expression of metallothioneins 
in the body, as a protective mechanism against the toxic effects of lead. However, 
chronic exposure to lead can deplete the levels of metallothioneins, making the body 
more susceptible to lead toxicity. Metallothioneins are also used as biomarkers of 
heavy metal exposure and toxicity, as their levels can be measured in blood and urine 
samples. 

Enzymes: Lead can bind to enzymes and alter their structure and function, 
inhibiting their ability to catalyze chemical reactions. This can disrupt various cellular 
processes, such as energy metabolism and DNA synthesis. 

Ion channels: Lead can interact with ion channels, which are specialized 
membrane proteins that allow ions to flow in and out of cells. This can interfere 
with the normal flow of ions across the cell membrane, disrupting various cellular 
processes such as signaling and muscle contraction. 

Transporters: Lead can interact with transporters, which are membrane proteins 
that move molecules in and out of cells. This can interfere with the normal transport 
of essential molecules such as nutrients and neurotransmitters, leading to cellular 
dysfunction.
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Receptors: Lead can interact with receptors, which are proteins on the cell surface 
that bind to specific molecules and trigger signaling pathways. This can interfere 
with normal cell signaling and contribute to the development of various diseases. 

Structural proteins: Structural proteins provide support and shape to cells, and 
they also play important roles in cell division, movement, and signaling. Lead can 
interact with structural proteins, such as microtubules and intermediate filaments, 
which provide support and shape to cells. This can disrupt the normal structure 
and function of cells, leading to cellular dysfunction. It can affect various structural 
proteins in cells, which can lead to cellular dysfunction and adverse health effects. 
Here are some examples of structural proteins that can be affected by lead: 

Microtubules: Microtubules are long, hollow tubes made of protein subunits called 
tubulin. They play a critical role in maintaining cell shape and supporting cell divi-
sion, as well as in intracellular transport and signaling. Lead exposure can disrupt 
microtubule structure and function, leading to impaired cell division and transport. 

Intermediate filaments: Intermediate filaments are a diverse group of fibrous 
proteins that provide mechanical strength to cells and tissues. They are particu-
larly important in cells that are subjected to mechanical stress, such as skin cells and 
muscle cells. Lead exposure can disrupt intermediate filament structure and function, 
leading to cellular dysfunction and tissue damage. 

Extracellular matrix proteins: The extracellular matrix (ECM) is a complex 
network of proteins and carbohydrates that surrounds cells and provides structural 
support. ECM proteins, such as collagen and fibronectin, are important in cell adhe-
sion, migration, and signaling. Lead exposure can disrupt ECM protein synthesis 
and organization, leading to impaired cell function and tissue integrity. 

Cytoskeletal proteins: The cytoskeleton is a dynamic network of protein fibers that 
provides mechanical support to cells and helps maintain their shape and organization. 
Cytoskeletal proteins, such as actin and myosin, are particularly important in muscle 
cells and other cells that require movement. Lead exposure can disrupt cytoskeletal 
organization and function, leading to impaired cell movement and function. 

2.4.1.3 Interfering with Enzymes 

Lead can bind to enzymes and disrupt their normal function. This can lead to 
metabolic disruptions and affect cellular processes. Lead can bind to the active site 
of enzymes and inhibit their function, e.g., lead inhibits in vitro creatine kinase and 
pyruvate kinase activity in brain cortex of rats (Lepper et al. 2010). This can disrupt 
normal cellular processes that depend on enzymatic activity, such as metabolism 
and protein synthesis. It can cause changes in the structure of enzymes, which can 
affect their function. This can lead to the formation of misfolded or dysfunctional 
enzymes that can be harmful to the cell. Some enzymes require cofactors, such as 
metal ions or vitamins, to function properly. Lead can interfere with the binding of 
these cofactors to enzymes, leading to decreased enzymatic activity. It can cause
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irreversible damage to enzymes, leading to their inactivation. This can result in a 
loss of enzymatic activity that can have severe consequences for cellular processes 
(Nemsadze et al. 2009). 

2.4.1.4 Disrupting Ion Channels 

Lead can interfere with the function of ion channels, which play a key role in the 
regulation of cellular processes such as signaling and ion transport. It can disrupt ion 
channels in several ways, leading to cellular dysfunction. Ion channels are specialized 
membrane proteins that allow ions to move in and out of cells, playing a critical role 
in various cellular processes such as signaling and ion homeostasis. Ion channels 
can be opened or closed by different mechanisms, and lead can interfere with these 
mechanisms. For example, lead can disrupt the voltage-gating mechanism of ion 
channels, preventing them from opening or closing properly in response to changes 
in membrane potential. It can bind to ion channel proteins, altering their structure 
and function. This can cause the ion channels to become less selective or to conduct 
ions more slowly, leading to cellular dysfunction. The expression of ion channels 
could be altered either by increasing or decreasing their expression levels. This can 
disrupt ion homeostasis and signaling pathways, leading to cellular dysfunction. 

Lead can enter cells through a variety of mechanisms, including passive diffusion 
and active transport. Once inside cells, lead can bind to proteins and interfere with 
cellular processes. For example, lead can bind to calcium-binding proteins and disrupt 
intracellular calcium signaling, which can affect cell growth and differentiation (Wani 
et al. 2015). Lead can also interfere with the transport of other essential metals, such 
as iron and zinc, leading to further cellular dysfunction. 

2.4.1.5 Disruption of Calcium Signaling 

Calcium ions play a critical role in many cellular processes, and lead can interfere 
with calcium signaling by disrupting the function of calcium channels. This can lead 
to a range of cellular dysfunctions, including impaired cell signaling and mitochon-
drial dysfunction (Yang et al. 2020). Calcium ions are involved in the regulation 
of gene expression, and disruption of calcium channels can alter the expression of 
genes within cells. This can lead to abnormal cellular function and contribute to the 
development of various diseases. They play a key role in regulating mitochondrial 
function, and disruption of calcium channels can lead to impaired mitochondrial 
function. This can lead to cellular dysfunction and contribute to the development of 
various diseases. Disruption of calcium channels can lead to excessive accumulation 
of calcium ions within cells, which can trigger cell death. This can contribute to 
the development of various diseases, including neurodegenerative diseases (Lee and 
Freeman 2014) and cardiovascular disease.
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2.4.1.6 Altering Gene Expression 

Gene expression refers to the process by which genes are transcribed into RNA 
and translated into proteins, which play a critical role in various cellular processes 
(Yang et al. 2018). Lead can alter gene expression within cells, which can affect 
the synthesis of proteins and other cellular components, leading to a range of health 
effects. Lead exposure can alter gene expression in various ways, leading to a range 
of adverse health effects. For example, perinatal exposure to lead (Pb) promotes 
Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner 
(Gąssowska et al. 2016). Here are some ways in which lead can alter gene expression: 

Epigenetic modifications: Lead exposure can cause epigenetic modifications, 
which refer to changes in gene expression that are not caused by changes in 
the DNA sequence itself. These modifications can include DNA methylation and 
histone modifications and can lead to changes in gene expression that can persist 
over time. For example, combined exposure of lead and cadmium leads to the 
aggravated neurotoxicity through regulating the expression of histone deacetylase 
(Zhou et al. 2020). 

Alteration of transcription factors: Lead exposure can alter the activity of tran-
scription factors, which are proteins that regulate gene expression by binding to 
specific DNA sequences. This can lead to changes in gene expression that can 
contribute to the development of various diseases. 

DNA damage: Lead exposure can cause DNA damage, which can lead to changes 
in gene expression. This can occur through direct interaction with DNA or indirectly 
through the generation of reactive oxygen species (ROS), which can cause oxidative 
damage to DNA. 

2.4.1.7 Disruption of Signaling Pathways 

Cell signaling refers to the process by which cells communicate with each other to 
regulate various cellular processes, such as growth, differentiation, and apoptosis. 
Here are some ways in which lead can disrupt cell signaling: Lead exposure can 
disrupt signaling pathways within cells, which can lead to changes in gene expression. 
For example, lead can interfere with calcium signaling, which plays a critical role 
in regulating gene expression. Lead exposure can disrupt cell signaling in various 
ways, leading to a range of adverse health effects. 

Disruption of receptor-ligand interactions: Lead exposure can disrupt the interac-
tion between receptors on the cell surface and their ligands, which are molecules that 
bind to the receptors and trigger signaling pathways. This can interfere with normal 
cell signaling and contribute to the development of various diseases. 

Interference with intracellular signaling pathways : Lead exposure can interfere 
with intracellular signaling pathways, which are triggered by receptor-ligand interac-
tions and relay information within the cell. This can disrupt normal cellular function 
and lead to cellular dysfunctions.
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Alteration of second messenger signaling: Second messengers are molecules that 
relay signals from the cell surface to the interior of the cell, where they trigger 
signaling pathways. Lead exposure can interfere with the production or function of 
second messengers, which can disrupt normal cell signaling. 

Disruption of calcium signaling: Calcium ions play a critical role in many 
signaling pathways within cells, and lead exposure can disrupt calcium signaling. 
This can interfere with normal cellular function and contribute to the development 
of various diseases. 

2.5 Lead Toxicity and Blood Cells 

Lead exposure may cause vascular dysfunction in the brain (Olung et al. 2021). Lead 
toxicity can affect various types of blood cells, including red blood cells, white blood 
cells, and platelets, which can contribute to a range of adverse health effects. Lead 
exposure can inhibit the synthesis of heme, a component of hemoglobin, which can 
lead to decreased production of red blood cells and anemia. Lead can also cause the 
formation of abnormal hemoglobin molecules, which are less efficient at carrying 
oxygen than normal hemoglobin. This can further contribute to decreased oxygen 
delivery to the body’s tissues and the development of anemia. Lead exposure can 
suppress the production and function of white blood cells, which play a critical role 
in the immune system’s defense against infections and diseases. This can lead to an 
increased risk of infections and impaired immune function. It can reduce the number 
and function of platelets, which are responsible for blood clotting, which can lead to 
an increased risk of bleeding and bruising. In addition to these effects on blood cells, 
lead toxicity can also lead to other adverse health effects, including neurological 
and developmental effects, reproductive and fertility problems, and cardiovascular 
disease. 

2.6 Lead Toxicity and Hemoglobin 

Lead toxicity can affect hemoglobin, the protein in red blood cells that carries oxygen 
from the lungs to the body’s tissues. Lead exposure can lead to anemia, a condi-
tion characterized by a decrease in the number of red blood cells or a decrease 
in the amount of hemoglobin in the blood. One way that lead exposure can affect 
hemoglobin is by inhibiting the activity of the enzyme delta-aminolevulinic acid 
dehydratase (ALAD), which is required for the synthesis of heme, a component of 
hemoglobin. Without heme, the production of hemoglobin is impaired, leading to 
decreased oxygen-carrying capacity in the blood and anemia. Lead exposure can also 
lead to the formation of abnormal hemoglobin molecules, which are less efficient at 
carrying oxygen than normal hemoglobin. This can further contribute to decreased 
oxygen delivery to the body’s tissues and the development of anemia.
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2.7 Oxidative Stress 

One of the primary cellular effects of lead exposure is oxidative stress. Lead exposure 
can increase the production of reactive oxygen species (ROS), which can damage 
cellular components such as lipids, proteins, and DNA. Studies have shown that 
lead exposure can reduce the activity of antioxidant enzymes, such as superoxide 
dismutase (SOD) and catalase, which help protect cells against oxidative damage 
(Flora 2009). In addition, lead exposure can lead to the depletion of glutathione, an 
important cellular antioxidant (Patrick 2006a, b, c; Gasmi et al. 2022; Paithankar 
et al. 2021). 

2.8 Inflammation 

Lead exposure has also been shown to cause inflammation at the cellular level. Studies 
have shown that lead exposure can increase the production of pro-inflammatory 
cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) (3). 
This can lead to the activation of immune cells and the recruitment of inflamma-
tory cells to affected tissues. Chronic inflammation can contribute to a variety of 
diseases, including cardiovascular disease and cancer (Navas-Acien et al. 2007; 
Taiwo et al. 2018). 

2.9 DNA Damage 

Lead exposure has also been linked to DNA damage at the cellular level. Studies 
have shown that lead exposure can cause single-strand breaks and oxidative damage 
to DNA (Taiwo et al. 2018). In addition, lead exposure can interfere with DNA 
repair mechanisms, leading to the accumulation of DNA damage over time. This can 
increase the risk of mutations and cancer. 

2.10 Suppression of Immune Function 

Lead exposure has been shown to have significant effects on immune cells, including 
both innate and adaptive immune responses. Studies have shown that lead exposure 
can reduce the number and function of immune cells, such as neutrophils, natural 
killer cells, and T cells (Dietert et al. 2004; Wang et al. 2015). Lead exposure has also 
been shown to decrease the production of cytokines, such as interleukin-2 (IL-2), 
interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α), which are 
important for immune function (Koller and Exon 2001; McElvania Tekippe et al. 
2018).
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Here are some of the specific effects: 

(a) Decreased number and function of immune cells: Lead exposure has been 
shown to decrease the number and function of various immune cells, such as 
neutrophils, natural killer cells, and T cells (Dietert et al. 2004; Wang et al. 
2015). 

(b) Suppressed cytokine production: Lead exposure has also been shown to reduce 
the production of cytokines, such as interleukin-2 (IL-2), interferon-gamma 
(IFN-γ), and tumor necrosis factor-alpha (TNF-α), which are important for 
immune function (Koller and Exon 2001; McElvania Tekippe et al. 2018). 

(c) Altered immune cell signaling: Lead exposure can interfere with the signaling 
pathways involved in the activation and differentiation of immune cells (Ahamed 
and Siddiqui 2007; Patrick 2006a, b, c). For example, lead exposure can inhibit 
the activity of the transcription factor nuclear factor-kappa B (NF-κB), which 
is involved in the regulation of cytokine production and immune cell activation 
(Luster et al. 1998; Almutairi et al. 2022). 

(d) Disrupted immune cell communication: Lead exposure can affect the expres-
sion and function of cell surface receptors and signaling molecules, such as toll-
like receptors (TLRs), which are involved in the recognition of pathogens and 
the activation of immune cells (Heo et al. 1996; Rosati et al. 2021). Lead expo-
sure can also affect the production and secretion of signaling molecules, such 
as chemokines and cytokines, which can disrupt the communication between 
immune cells. 

2.11 Lead Effect: Neurological Perspective 

The nervous system is particularly vulnerable to lead toxicity, as it can cross the 
blood–brain barrier and accumulate in the brain, where it interferes with neuro-
transmitter signaling, neuronal development, and synaptic function. Neurological 
perspective of lead effects include its impact on cognitive and behavioral functions 
also. 

2.11.1 Neurodevelopmental Effects in Children 

Public health officials are concerned about lead exposure, particularly in young chil-
dren who are more at risk due to greater hand-to-mouth activity and who only absorb 
about half of an oral dosage of water-soluble lead. The adverse effects of organic 
lead are far greater than that of inorganic lead since it is lipid soluble and impacts 
the cell rapidly. According to meta-analyses, children’s IQ scores drop by 2–3 points 
for every 10 μg/dl increase in blood lead levels, and there is no threshold for lead’s 
negative effects on IQ. A recent study that focuses on the negative impact of lead
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on the executive and attention domains of neurobehavioral function has found find-
ings that are similar to these. Complex mechanisms underlie lead’s ability to cause 
neurotoxicity (Rocha and Trujillo 2019). 

2.11.2 Behavioral and Cognitive Effects in Children 
and Adults 

Lead exposure in early life has long been associated with aggressive, disruptive, and 
erratic conduct that can lead to scholastic failure and expulsion from school (Byers 
and Lord 1943).Children who are exposed to lead may experience cognitive and 
behavioral problems, including hyperactivity, as well as problems with fine motor 
function, hand–eye coordination, and reaction speed. They may also perform less 
well on IQ tests. 

Lead levels in children’s dentin have been linked to unhelpful classroom behavior 
(Needleman et al. 1979). Boys aged 7–11 exhibit self-reported correlations between 
aggression, attentiveness, and delinquency and K-shell X-ray fluorescence (KXRF) 
measurements of lead in the tibia in addition to teacher and parent reports. A cross-
sectional study of 15–24 year olds found that those with blood lead levels between 
1.5 and 10 μg/dL were over 8 times more likely to meet the DSM-IV criteria for 
conduct disorder than those with levels in the lowest detectable range of less than 
0.7 μg/dL. (Braun et al. 2008). Children with attention deficit hyperactivity disorder 
(ADHD) and those exposed to lead have behavioral similarities that are noteworthy 
(Nigg et al. 2008;Rice  2000). In discrimination reversal measures such the Wisconsin 
Card Sorting Test, spatial delayed alternation, go-no-go task, distractibility task, and 
serial reaction tasks, children with ADHD and those exposed to lead show severe 
impairments (Winneke 2011). Low scores on a variety of achievement tests, impul-
sivity, deficits in verbal processing, non-verbal thinking, reading, and arithmetic were 
found to be positively correlated with blood lead levels below 5 μg/dL found in chil-
dren (Canfield et al. 2003). While comparable low amounts of other hazardous heavy 
metals, such as mercury and aluminum, are not associated with ADHD-like effects, 
these effects are visible when blood lead levels are below 10 μg/dL (Ha et al. 2009). 
Blood lead levels below 5 μg/dL are linked to mixed hyperactive-inattentive ADHD 
symptoms, according to the DSM-IV. When compared to kids whose lead levels are 
undetectable, children with lead levels below 5 μg/dL have a more than two times 
higher chance of being diagnosed with ADHD (Froehlich et al. 2009). 

The cumulative nature of lead poisoning in adults showed detrimental effects later 
in life owing to the leaching of lead from bones overtime. Cognitive diseases such as 
Alzheimer’s were found to be positively correlated with lead exposure early in life. 
Research support the idea that early lead exposure has latent cognitive effects that 
manifest later in life as Alzheimer’s disease (Shih et al. 2007). It has been reported 
that older persons with blood lead levels of 3.46 μg/dL had tibia lead levels averaging 
18.7 μg/g, which was a substantially higher cumulative lead level.
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It is important that declines in a variety of cognitive abilities, including as 
language, processing speed, eye-hand coordination, executive functioning, verbal 
memory and learning, visual memory, and visuoconstruction, were strongly 
connected with tibia lead levels but not blood lead levels. Despite the fact that blood 
lead levels were low, steady state and peak blood lead levels were likely high in order 
to induce the elevated amounts of lead in bone yet were not recorded. 

Adults exposed to increased environmental levels of lead were found to possess 
lower cognitive test performances like verbal and visual memory, visuospatial ability, 
attention, and executive functioning (Shih et al. 2007). 

2.11.3 Neuropsychiatric Disorders Associated with Lead 
Exposure 

Various studies have associated lead exposure with multiple psychiatric illnesses 
like schizophrenia, major depressive disorder, mood, anxiety, and general distress 
and cognitive development, which is adversely correlated with BLLs (Bouchard et al. 
2009).People with blood lead levels > 2.1 g/dL had a 2.3-fold increased chance of 
meeting DSM-IV criteria for major depressive disorder and a 4.9-fold increased risk 
of panic disorder compared to people with blood lead levels < 0.7 g/dL. BLLs may 
be low or zero if assessed over the course of 30–40 days after exposure or absorption 
because of dispersion to multiple organs, even though bone lead levels may be higher. 

2.11.3.1 Cognitive Effects 

Lead exposure can cause cognitive deficits, particularly in children, who are more 
susceptible than adults. The cognitive effects of lead exposure include decreased IQ 
scores, impaired attention, memory, and learning abilities. Children with high lead 
levels may also exhibit behavior problems, including hyperactivity and aggression. 
These cognitive deficits are thought to result from lead-induced alterations in the 
developing brain, particularly in the prefrontal cortex, which is responsible for exec-
utive functions, attention, and decision-making (Lanphear et al. 2005; Finkelstein 
et al. 1998). 

2.11.3.2 Behavioral Effects 

Lead exposure has also been associated with behavioral abnormalities, including 
aggression, delinquency, and attention deficit hyperactivity disorder (ADHD). The 
behavioral effects of lead exposure are thought to result from the disruption of the 
dopaminergic system, which plays a critical role in reward, motivation, and mood 
regulation. Lead-induced alterations in the dopaminergic system may contribute to
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the development of behavioral problems by altering the balance between reward 
and punishment signals, leading to impulsive and aggressive behavior (Needleman 
2004). 

2.11.4 Neurological Mechanisms 

Lead exerts its neurotoxic effects by interfering with multiple mechanisms in the 
nervous system, including neurotransmitter signaling, neuronal development, and 
synaptic function (Green and Planchart 2018). Lead can bind to and inhibit calcium 
channels, which are critical for synaptic transmission, leading to impaired neurotrans-
mitter release and altered synaptic plasticity (Maeda et al. 2022). Lead can also disrupt 
the development of neurons, leading to abnormal neuronal migration and dendritic 
growth, which can affect the formation of synapses and neuronal circuits. Addition-
ally, lead can generate reactive oxygen species (ROS), which can lead to oxidative 
stress and damage to cellular components. Oxidative stress can also contribute to 
the disruption of the blood–brain barrier, leading to the infiltration of immune cells 
and the production of pro-inflammatory cytokines, which can further exacerbate the 
neurotoxic effects of lead. 

2.11.4.1 Neurotoxic Effects 

The primary mechanisms by which lead causes neurological damage is through its 
ability to disrupt the function of neurotransmitters, including dopamine, serotonin, 
and norepinephrine (Savolainen et al. 1998). Lead can interfere with the release, 
uptake, and metabolism of these neurotransmitters, leading to dysregulation of the 
nervous system (Guilarte and Miceli 1992; Guilarte et al. 2003). 

Another mechanism by which lead causes neurological damage is through its 
ability to disrupt the development of the nervous system. During critical periods of 
brain development, lead exposure can interfere with the formation and differentiation 
of neurons, resulting in permanent structural and functional changes in the brain 
(Cory-Slechta et al. 1997). Lead can also cause oxidative stress and inflammation in 
the brain, which can lead to damage to neurons and glial cells. Oxidative stress occurs 
when there is an imbalance between the production of reactive oxygen species (ROS) 
and the ability of the body’s antioxidant defense mechanisms to neutralize them. 
Lead exposure has been shown to increase ROS production and decrease antioxidant 
capacity in the brain, leading to oxidative damage (Flora 2009). In addition to these 
mechanisms, lead can also disrupt the blood–brain barrier, which is a protective 
barrier that prevents harmful substances from entering the brain. Lead exposure can 
weaken the blood–brain barrier, allowing lead and other toxins to enter the brain and 
cause damage (Guilarte and McGlothan 1998).
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2.12 Interventions to Mitigate Lead Toxicity 

Several interventions can be implemented to mitigate the adverse effects of lead 
toxicity. Primary prevention strategies include reducing or eliminating exposure to 
lead by reducing the use of lead-containing products, implementing environmental 
regulations, and providing education and awareness programs. Secondary preven-
tion strategies involve identifying and treating individuals with elevated blood lead 
levels through chelation therapy or other medical interventions. Additionally, various 
antioxidants and neuroprotective agents have been investigated for their potential to 
mitigate the effects of lead toxicity on the cellular and neurological systems. 

2.13 Conclusion 

Lead toxicity can cause a range of neurological disorders that can have lifelong 
consequences. These disorders can affect cognitive and behavioral functioning, as 
well as cause more serious conditions such as seizures and encephalopathy. It is 
crucial that steps are taken to reduce exposure to lead, particularly in young children 
who are most vulnerable to its effects. This can include measures such as reducing 
lead in water and soil, removing lead-based paint from homes, and increasing public 
awareness of the dangers of lead exposure. By taking these steps, we can work to 
prevent the neurological disorders caused by lead toxicity and promote healthier 
outcomes for individuals and communities. 
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Chapter 3 
Lead Exposure and Poisoning 
in Livestock and Wildlife 

Deep Shikha, Amitava Paul, Swarup Debroy, and Manish Kumar Verma 

Abstract Lead poisoning in both humans and animals is a serious issue on a global 
scale. Lead toxicity in animals may serve as a sentinel to detect environmental lead 
contamination and related risks to human health. Lead poisoning is more common in 
cattle and dogs (pets) in veterinary medicine. Significant risk factors associated with 
the toxicities include young animals, pica, and higher accessibility to lead. Reduced 
accessibility, selective eating habits, or decreased sensitivity all serve to prevent 
lead poisoning in other animals. It has been recognised for more than a century that 
ammunition, such as bullets or gunshot, can poison wildlife with lead. The most well-
known exposure methods for wildlife are by ingestion of embedded ammunition 
fragments in their diet or direct ingestion of environmental spent lead bullets. A 
possible health risk to humans exists if high tissue lead concentrations in wild animals 
and livestock penetrate the food chain. While there has been significant improvement 
in lowering lead exposure in humans from a variety of sources, improvements in 
lowering lead exposure in wild animals and livestock from a potential source have 
been inconsistent and occasionally ineffectual. A global campaign to minimize the 
use of lead content has arisen as a result of the broad harmful effects of lead on the 
growth, health, reproductive efficiency, and life span of all living organisms. Use 
of non-lead-based paint, switching to nontoxic shot in place of lead shot, and other 
practises could eventually minimize the effects of lead on the environment and health 
of livestock, wildlife, humans in the long run.
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3.1 Introduction 

All living being is poisonous to lead, and there is no safe level of exposure. It is a broad 
toxin that can impair all biological systems, including the heart, bones, intestines, 
kidneys, reproductive, and nervous systems. It also interacts with a wide range of 
physiological and natural processes. Since at least 4200 B.C., lead poisoning has 
been a problem for humans. It has been blamed for contributing to the demise of the 
Roman Empire. Lead is a prevalent toxin of humans, animals, and pets despite today’s 
improved understanding of lead toxicity (National Wildlife Health Center 2016; Paul 
et al. 2021). 80% of all child fatalities from unintentional poisoning are caused by 
the highly dangerous chemical lead and considered as a highly noxious element to 
both humans and animals. It will therefore almost certainly have a negative effect 
wherever it occurs. Due to the highly substantial health risks associated with lead 
toxicities, lead residues in animals must be properly controlled (Sharpe and Livesey 
2006). Cattle are more likely to get lead poisoning due to their highly unselective 
eating habits. They will readily lick industrial grease, chew batteries, and drink 
crankcase oil (Merck Veterinary Manual 2013; Paul et al. 2022a). Cattle of all ages 
can become poisoned with lead, although calf poisoning is more common. Young 
calves are particularly susceptible to lead poisoning due to their natural curiosity, 
active calcium absorption, and the fact that milk and milk substitutes promote lead 
absorption. The most vulnerable livestock are cattle, with calves being the most 
common victims (Waldner et al. 2002; Paul et al. 2022b). However, lead poisoning 
can affect any domestic animal, including dogs, horses, and even birds and/or poultry. 
The least susceptible are pigs. Because cats and dogs have the propensity of licking 
their fur, are particularly vulnerable to lead exposure through soil and dust. 

Since the 1800s, the effects of lead pollution on wildlife have been studied. Histor-
ically the most typical way for wildlife to become exposed was by consumption of 
used old lead shot pellets in wetlands where hunters had discharged large amounts 
of shot. Today’s wildlife biologists are collaborating with hunters and fishermen to 
employ non-lead alternatives to reduce these unnatural deaths, as they are aware of 
a number of exposure paths via which wildlife can consume lead and become sick 
or even die. 

In wild, animals are more likely to come into contact with lead through the remains 
of human activities than through natural sources in the wild. This exposure may result 
from a variety of things, such as contaminated sediment or water, old-building paint, 
mining tailings, industrial or residential usage of lead, such as in wheel weights. But 
most wildlife biologists agree that direct intake of lead from used ammunition or 
abandoned fishing gear is the main way that species become contaminated with lead.
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Wildlife is not thought to be exposed to lead from consuming plants or animals 
that have absorbed lead because lead does not biomagnify. Lead contamination, on 
the other hand, results from direct exposure to lead, which almost often occurs when 
an animal ingests it, either unintentionally when eating something else that contains 
lead or deliberately after mistaking it for a natural material. 

3.2 Lead Contamination in Livestock 

Around the world, domestic animals are frequently poisoned by lead (Pb). Old lead 
acid batteries are the most typical cause of lead poisoning in animals. Battery cases 
degrade and grow brittle over time, making them easy pickings for intrepid cattle. 
They are freely accessible to stock, which readily licks or consumes the lead and 
lead salts that they contain. The main contributors of lead poisoning in cattle are 
old batteries. The main source of lead toxicity is ignorance on the part of humans. 
Lead toxicity is a persistent issue, and considerable effort is put into finding and 
managing affected animals to stop their products from getting into the human food 
chain (Sharpe and Livesey 2006; Waldner et al. 2002). 

Additional sources of lead poisoning in animals include licking and ingesting 
lead-based paint from old paint cans, buildings, or other painted materials, intake 
of ashes left over from burning old painted objects, linoleum, and consuming sump 
oil. Silage contaminated with lead shot, automobile grease and oil filters, caulking, 
putty, and even access to leadlight windows have caused fatal lead poisoning in stock. 
Lead pieces from collars used at pipeline junctions (such as those on major water 
pipe lines) might provide a poisoning risk and are probably the source of fatal lead 
poisoning (Radostits et al. 2007). 

3.2.1 Impacts of Lead on Livestock 

Due to their indiscriminate eating habits, cattle are the species most susceptible to 
lead poisoning. They will happily eat crankcase oil, lick grease from machinery, and 
gnaw on batteries, peeling lead paint, ashes, and pretty much any other possible source 
of lead they might encounter. The reticulum (fore-stomach) of ruminant animals 
frequently becomes lodged with lead and other heavy materials. This presents a 
source from which the bodies of cattle, sheep, and goats can continue to absorb lead. 
Old paint pigments include finely ground, very soluble lead. In comparison to clean 
metallic lead, lead that has been exposed to acidic conditions in batteries and silage 
is quickly absorbed from an animal’s gut and provides a larger danger of poisoning 
(Paul and Sujatha 2022; Waldner et al. 2002). 

Lead poisoning affects cattle of all ages, but calves are more frequently affected. 
Dairy cattle have been found to have the highest incidence. According to estimates,
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each year 150,000 cattle worldwide are exposed to fatal levels of lead, which causes 
at least 20,000 immediate deaths (Radostits et al. 2007; Waldner et al. 2002). 

The risk of lead poisoning may increase in dry weather. Particularly if they are 
low in trace components or minerals, hungry stock may acquire a perverted appetite 
(pica). Hungry animals are also more likely to enter “no-go” areas, such as the area 
around farm sheds or the farm trash dump, where there may be some leftover feed. 
The likelihood that livestock will discover dangers like out-dated batteries increase 
as pasture cover decreases. 

It has been proven that horses can become poisoned by grazing on soil that has 
been tainted with lead shot from traps. The rate and quantity of lead intake, together 
with the age, the form of the lead, the condition of the animal, may all have an 
impact on the uptake and effect on the animal. Ewes that were grazing close to lead 
mining regions experienced spontaneously aborted. In comparison to non-pregnant 
ewes, the lethal lead dose seems to be lower in pregnant ewes. Horses and sheep 
have unintentionally consumed lead through drinking tainted spring or stream water 
or eating tainted grass in the vicinity of a lead smelter and mining region (Radostits 
et al. 2007; Payne and Livesey 2010; Pareja-Carrera et al. 2014). 

3.2.2 Major Sources of Lead on the Farm Premises 

Cattle are frequently involved in accidents during the planting and harvesting proce-
dures when used oil and equipment battery disposal is done improperly. Other sources 
of lead include flora growing close to smelters or on the sides of roadways, paint, 
linoleum, grease, lead weights, lead shot, and polluted vegetation. Lead toxicity is 
commonly encountered in urban settings, and in young infants and small animals lead 
toxicities has been linked to renovation of historic homes painted with lead-based 
paint. 

Due to the pleasant taste of some lead compounds, animals may find sump oil and 
other sources of lead to be appealing. Boredom from confinement and ravenous 
appetites brought on by hunger and phosphorus deficiency may be contributing 
factors. However, predisposing factors are not essential. 

3.3 Lead Contamination in Wildlife 

Although lead exposure in wildlife has been related to lead dispersion from mining, 
coal combustion, battery processing, fuel, and waste incineration, the primary expo-
sure pathway is through direct ingestion of used ammunition or lost fishing gear 
(National Wildlife Health Center 2016). Lead ammunition is referred to be the 
“largest, largely unregulated source of lead intentionally discharged into the environ-
ment” by scientists (Pacelle 2017). Lead ammunition is referred to be the “largest, 
largely unregulated source of lead intentionally discharged into the environment”
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by scientists. For various shooting circumstances, shotgun rounds come in a variety 
of sizes. Depending on the size, a shotgun shell may contain hundreds of pellets. 
Lead pellets have a concentration of lead that is > 95%. Lead is gradually delivered 
into the circulatory system of an animal after a single shotgun pellet penetrates its 
gastrointestinal (GI) system (Moazeni et al. 2014). There is enough lead in a single 
shotgun pellet to result in organ failure and death. (Humane Society of the United 
States 2018; Harrison and Lightfoot 2006; Puschner and Poppenga 2009; Pain et al.  
2014). Through either direct or indirect lead exposure, wildlife is more susceptible 
to lead poisoning. 

3.3.1 Direct Exposure 

When an animal consumes discarded lead ammunition, ammo fragments, broken 
fishing tackle, or any other lead source present in the environment, they are directly 
exposed to lead (Humane Society of the United States 2018; Harrison and Lightfoot 
2006; Puschner and Poppenga, 2009; Pain et al.  2014). Since more than a century 
ago, lead poisoning of wildlife caused by ammunition (gunshot) has been recog-
nised. Birds frequently mistake lead items for seed or grit when they are searching 
for food on the ground (Harrison and Lightfoot 2006). After ingesting spent lead 
ammunition from the environment or ammunition bits entrenched in their food, 
birds suffer lead poisoning. Among wildfowl and terrestrial game birds, particularly 
those with a muscular gizzard that eat grit to help grind their food, consumption of 
spent lead gunshot is common; while among Raptors and scavenger birds, consump-
tion of ammo-fragments embedded birds and mammals killed by people, or their 
discarded remains are commonly seen. Lead pellets may be available for uninten-
tional consumption by ducks in wetlands for up to 25 years or longer, depending on 
the environmental circumstances (Haig et al. 2014). 

3.3.2 Indirect Exposure 

When an animal feeds on another that has consumed lead or been shot with lead 
ammunition, it exposes itself to lead indirectly (Harrison and Lightfoot 2006; 
Puschner and Poppenga, 2009; Pain et al.  2014). Indirect lead exposure has an impact 
on carnivorous animals and scavenger or predatory birds like eagles, vultures, and 
condors (Haig et al. 2014; Pain et al.  2014). The most common known cause of death 
for the critically endangered California condor (Gymnogyps californianus) is lead 
poisoning via scavenging activities. Indirect exposure can also happen when lower 
species like earthworms or water that has been poisoned with lead are consumed (Haig 
et al. 2014; Puschner and Poppenga, 2009). In the environment, lead fishing sinkers 
and ammunition slowly decay and leach into the land and water. The American robin 
(Turdus migratorius) and American woodcock (Scolopax minor) are susceptible to
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lead poisoning through indirect exposure when eating earthworms in areas with high 
environmental lead levels. 

3.3.3 Impacts of Lead on Wildlife 

For millennia, lead (Pb) has been utilised in fishing gear and ammunition. Even 
though lead occurs naturally, it serves no vital biological purpose, and large concen-
trations like those found in ammunition and tackle attribute a number of direct and 
indirect risks to wildlife. Used lead ammo and tackle when consumed by wild animals 
can be harmful and have long lasting effects on the environment. After being biolog-
ically incorporated into plants and invertebrates in the soil, lead is then consumed 
by wildlife. Ingestion of used ammunition and lost fishing gear by reptiles, birds, 
and mammals can have a variety of harmful impacts on individuals. These effects on 
the individual may result from population-level effects in some species, including 
ducks, eagles, condors, doves, and loons. 

Lead is a potentially dangerous non-essential metal that has no counterproduc-
tively advantageous impacts on living things (ATSDR 2007; EFSA 2010). Inorganic 
lead, once ingested by an animal, exhibits non-specific, accumulative metabolic 
effects that are unrelated to the source. The avian taxon is presumably the one that 
is most affected by lead poisoning from ammunition consumption as it has been the 
focus of the most investigation. However, lead’s harmful effects are well documented 
from numerous laboratory and field studies and are roughly similar in all vertebrates. 
Clinical signs of poisoning in birds are typically associated with long-term exposure 
at a level that does not typically cause abrupt loss of biological function or death, 
though death may result. Lethargy, muscle atrophy and loss of fat reserves, anaemia, 
green diarrhoea staining the vent, wing droop, loss of coordination and balance, and 
other nervous indicators such leg paralysis or convulsions are some of the symptoms 
(Krone 2018; De Francisco et al. 2003; Pattee and Pain 2003). Acute exposure to 
high levels of lead, on the other hand, causes birds to die rapidly without any visible 
symptoms. 

Birds that have consumed ammunition or ammunition fragments may have quick 
elimination of lead from the gastrointestinal system with minimal lead absorption, 
retention until complete erosion, solubilisation, and absorption, or any combina-
tion of these outcomes. The bloodstream carries absorbed lead, which is promptly 
deposited into soft tissues like the liver and kidneys, as well as into bone and a bird’s 
developing feathers. In contrast to lead in soft tissues, which has a much shorter 
half-life (weeks to months), lead in bone is retained for a very long time and builds 
up over the length of an animal’s lifetime. Blood lead levels (PbB) remain elevated 
for several weeks or months following exposure. The physiological effects of lead 
in birds have been extensively studied (Pain and Green 2015). There are a variety of
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biological and environmental factors that can increase or decrease a bird’s suscepti-
bility to lead poisoning, and lead sensitivity can vary between different species. Lead 
may have indirect effects in addition to its direct effects on life and welfare. These 
may include an increased risk of contracting infectious diseases, parasite infestations 
(due to lead’s immunosuppressive effects), and a higher risk of dying from a variety 
of other causes, such as being shot and colliding with power lines (Kelly and Kelly 
2005; Ecke et al.  2017), due to lead’s effects on muscular strength and coordination 
(Bedrosian et al. 2012; Pain and Green 2015). 

According to EFSA (2010), there are currently no established “no observed 
adverse effect levels” (NOAEL) or “predicted no effect concentrations” (PNEC) 
for lead in humans, and other vertebrates are expected to experience the same. As a 
result, using tolerable lead exposure criteria requires accepting a certain amount of 
avoidable harm. Lead poisoning has also been thoroughly researched in wildfowl in 
addition to terrestrial birds, including game and predatory species (Beintema 2001; 
Martinez-Haro et al. 2011; Newth et al., 2013; AEWA  2011, Butler et al. 2005; Potts 
2005). 

3.4 Effects of Lead on Aquatic Animals 

Numerous studies have demonstrated that marine creatures, particularly inverte-
brates, have the capacity to absorb metals. Perhaps more than any other group, 
bivalve mollusks like clams, oysters, mussels, and scallops are renowned heavy 
metal concentrators. The related mussel Mytilus galloprovincialis showed similar 
lead absorption efficiency of about 60% in both the laboratory and the field, whether 
it was in the dissolved phase or linked with food. In contrast to dissolve lead, which 
was more likely to initially concentrate in the gill and eventually end up in the shell, 
lead in food initially concentrated in the digestive gland. Scientists found that oysters 
absorbed 277 ppm of lead over the course of 20 weeks in lab studies. Another study in 
oysters shown a concentration ratio, in the animals compared to the water, of 6600. 
The highest lead concentrations were detected in invertebrate organisms living in 
sediments in the Singapore River in Southeast Asia, such as polychaetes, whereas 
the lowest concentrations were found in fish (Fadl et al. 2021; Ali and Ahmad 2014). 

Lead’s toxic effects are easily seen in extremely contaminated places, such as 
mine drainage sites, where there are fewer remaining animals and plants than in 
other sections of their environment. Mining waste with lead that was dumped in 
streams has severely destroyed populations of fish and aquatic invertebrates. Low 
levels of lead act gradually over time with subtle detrimental effects on behaviour 
and/or reproduction that may result in population extinction while high levels of 
lead instantly kill animals. A population that depends on a certain prey species for 
sustenance may also perish as a result of poisoning of the prey species (Al-Balawi 
et al. 2013; Alkahemal-Balawi et al. 2011). 

Different aquatic invertebrate species—those without backbones like worms and 
insects—are more or less sensitive to the effects of lead. The kind of lead (i.e.
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whether it is an organic compound or in ionic form), the amount of it dissolved in 
water, or the water hardness or other mineral composition, all affect the uptake and 
toxicity of lead. Lead levels between 1 and 500 ppb caused the death of aquatic 
snail embryos. 41% of eggs hatched at 100 ppb, although it took 37 days longer than 
expected in development. All of the hatched snail had died after an extra 15 days. 
Typically, mature animals are far more forgiving than young ones. It seems that 
some larger, more complex invertebrates, such adult mollusks (clams, oysters, snails, 
and squid), crabs, may be able to adapt to habitats with high lead concentrations 
(Alkahemal-Balawi et al. 2011; Authman et al. 2015). 

The metallic or inorganic forms of lead do not seem to biomagnify along food 
chains, unlike DDT, PCBs, methyl mercury, and organic forms of lead. Inorganic 
lead does not seem to accumulate at increasing amounts in higher trophic levels, 
according to research from Oklahoma State University and other institutions. The 
top layer of silt in the pond contained 529 parts per million (ppm) of lead, which is 
roughly 40,000 times more lead than the water, which was 13 ppb. Plankton had an 
average lead content of 281 parts per million (ppm) (dry weight); bottom-dwelling 
invertebrates had a level of 37 ppm; and mosquitoes and fish had levels of 11.5 ppm. 
Because of this, lead levels did not increase further up the food chain, even though 
lead was likely eaten by plants and animals, including plankton, which are then fed 
by mosquito fish. Due to their quick absorption, organic lead compounds (such as 
tetraethyl- or tetramethyl-lead) are very hazardous to aquatic life. In comparison to 
inorganic forms of lead, organic forms of lead, such methyl-mercury may be more 
likely to biomagnify in the food web (Alkahemal-Balawi et al. 2011). 

Fish have responded to lead concentrations as low as 7 ppb in a variety of sub-
lethal ways. Gross pollution may result in fish fatalities, whereas sub-lethal toxicity 
may inflict subtle harm to fish populations over longer times and across larger areas of 
the ecosystem as lead concentrations spread and were diluted out. Like invertebrates, 
fish vary greatly in their sensitivity to lead concentrations depending on their species, 
size, and life stage. Lead bioavailability which is significantly influenced by water 
quality also plays a substantial role (Ali and Ahmad 2014). 

Even at lead concentrations at or below the 50 parts per billion previously thought 
to be safe in drinking water for humans, chronic lead exposure to fish may cause 
higher mortality rates, decreased hatching success, and indications of neurotoxicity 
as indicated by higher incidences of black tails (darkening of the caudal area) and 
spinal curvatures. Fish can develop some biochemical lesions that have also been seen 
in humans, such as anaemia, neurotoxicity, haemolytic anaemia, and red blood cell 
stippling. Lower stamina and a reduced ability to swim are observable behavioural 
changes. This may be due to less oxygen delivery and less oxygen exchange at the gill 
surfaces. Some species have been shown to have decreased ion exchange capacity, 
which is essential for osmoregulation (the maintenance of mineral and water balance) 
following exposure to lead. On the other side, damage to the brain structures or 
pathways that control movement may lead to a reduction in swimming ability. Fish 
exposed to lead have experienced prolonged periods of hyperactivity; this may be
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due to disruption of the neurotransmitter activity in the brain that underlies circadian 
rhythms (Alkahemal-Balawi et al. 2011; Authman et al. 2015). 

However, lead exposure is specifically harmful to fish because it can lead to 
overproduction of mucus, which can obstruct the gill’s ability to diffuse gases and 
absorb oxygen from the water and expel carbon dioxide. By interacting with the 
glycoproteins (proteins with sugar groups attached) in mucus, lead may really alter 
the physical properties of this substance. The protective and hydrodynamic resistance 
properties of the mucus may be impacted by these changes, which may have an effect 
on the fish’s capacity to survive (Al-Balawi et al. 2013). 

Lead’s effects are influenced by water quality elements, such as hardness. Lead 
at a concentration of 0.48 ppm inhibited many species of fish from hatching their 
eggs in studies in water with a hardness of 25–40 mg/l (as calcium carbonate). 
Among the fish analysed were bluegill, white sucker, channel catfish, rainbow and 
lake trout, and catfish. Lead levels as low as 0.12 ppm after hatching caused death in 
the larvae. After being transferred to clean water, lead leaves fish far more quickly 
than it does humans, taking 3–4 weeks as opposed to years. But certain symptoms of 
lead exposure may endure even after switching to clean water. Concerningly, tests on 
blood samples from sports fisherman who frequently consume more locally obtained 
fish from the lead contaminated lakes revealed that their lead levels were more than 
40% higher than those of those who did not routinely consume locally caught fish. 
(Alkahemal-Balawi et al. 2011). 

3.5 Lethal Levels of Lead in Animals 

i. Cattle: Chronic lead poisoning can result from intakes larger than 6 mg/kg body 
weight, and acute lead poisoning can result from intakes > 10 mg/kg BW. 

ii. Sheep: Exclusively lambs often experience this condition, and symptoms of 
poisoning start to show at intakes higher than 4.5 mg/kg BW. 

iii. Pigs, Goats, and Rabbits: Are more resilient than sheep or cows in this regard. At 
intakes of 60 mg/kg BW, very modest indications of poisoning start to appear. 
This is the same as 130 µg per dl of blood concentration. 

iv. Horses: Respiratory “roaring” occurs at intakes of 6.4 mg/kg BW. Signs of 
anaemia occur at intakes of 7.4 mg/kg. 

v. Birds and poultry can eat up to 100 mg/kg of feed without showing any signs 
of discomfort. Serious poisoning was caused at levels of 500 mg/kg. 

vi. Dogs and cats: At intakes of 5 mg/kg BW/day, nervous symptoms of poisoning 
start to manifest.
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3.6 Permissible Limits Across Different Media 

The permitted levels of lead in ambient air are 0.05 mg/L for drinking water, 0.75 mg/ 
m3 for sensitive areas (bird sanctuaries), 1.0 mg/m3 for residential areas, and 1.5 mg/ 
m3 for industrial zones (CPCB 1997). Discharge of industrial effluent into inland 
surface waterways is permitted at 0.10 mg/L. These are generally in accordance with 
global standards. 

3.7 Animals as Environmental Indicators 

Determination of lead concentration in animals offers a way to keep an eye on 
probable sources and foresee environmental hazards. Since over 60% of the body 
load of this metal is found in the feathers, using them to measure lead exposure in 
birds is highly effective. 

Animals that have been poisoned in the wild should serve as a reminder of the 
need to limit lead emissions in the environment. It is simple and affordable to monitor 
blood-lead concentrations in dogs and cats. Without subjecting young children to 
testing, the findings help forecast human risk. To assess the danger of lead exposure, 
this monitoring approach might be employed even before a child is brought into 
the house. We as a society have much too frequently used resource and conducted 
our industrial activities in a casual manner. Lead’s harmful effects on ecosystems, 
animals, and plants serve as a warning sign. 

3.8 Clinical Manifestation of Lead Toxicity 

Finding dead livestock, frequently close to a fence or some other obstacle, is 
frequently the first indication of lead poisoning. Where impacted animals have been 
seen, they exhibit symptoms of injury to the CNS. They typically cease grazing 
and become very unresponsive and dull. Animals with acute lead poisoning display 
symptoms such as colic, a stumbling gait, rolling eyes, slobbering, muscle spasms, 
blindness, clumsy attempts to scale obstacles, enhanced susceptibility to environ-
mental stimuli, head pushing, and convulsions. This may be followed by death. 
Muscle spasms, which can affect any region of the body but may be particularly 
obvious around the face, ears, and eyelids, may occasionally accompany these 
symptoms. In some cases, tongue paralysis, circling, and “star-gazing” have also 
been recorded. Animals suffering from prolonged poisoning might display signs of 
recumbency, anaemia, anorexia, and wasting. There could be death and paralysis. 
Acute attacks can occasionally happen while a animal is suffering from prolonged
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poisoning. Horses exhibit dyspnoea. Additionally, gastrointestinal and neurolog-
ical symptoms may coexist. Constipation or diarrhoea could result from the gastro-
intestinal consequences. For any animal exhibiting anxious symptoms, immediate 
veterinarian advice should be sought. Lead poisoning’s symptoms might be mistaken 
for those of other conditions that have neurological effects, including plant poison-
ings, PE (polioencephalomalacia), and metabolic conditions like hypomagnesaemia 
or grass tetany. To stop further losses and choose the right course of action for sick 
animals, a precise early diagnosis is essential. 

3.9 Lead Residues in Animal and Animal Products 

The slaughter of lead-exposed animals for human consumption must wait until 
their tissues conform to food requirements. Even after a stock has recovered from 
lead poisoning, the liver and kidney may still contain unacceptable lead levels for 
several months. First, restrictions on slaughter apply to the affected mob as a whole 
since some exposed animals, even those that do not show signs of poisoning, may 
have absorbed enough lead to leave tissue residues. These restrictions are usually 
confirmed in a written agreement between the stockowner and their Local Land 
Services District Veterinarian. 

Blood tests can be used to distinguish between healthy and ill animals. After 
testing, the majority of the mob is normally exempt from the slaughter ban. Blood 
samples should be collected within 42 days of the most recent lead exposure to ensure 
that all contaminated supplies are identified. The lab or the veterinarian collecting 
the sample may keep it for later examination. 

3.10 Management, Prevention of Lead Contamination 
and Alternatives to Leads 

Prevention is the best cure. A global movement to minimise the use of lead content 
has been launched in response to the increased awareness of the harmful effects of 
lead. In the farm’s garbage can or in the machinery shed, outdated batteries, lead-
based paint, sump oil, and similar materials can all pose a threat to health. Stocks 
are adept at recognising these hazards. Batteries for electric fences and other farm 
machinery must also be kept away from livestock. Where possible, take any outdated 
batteries off your property and dispose of them by taking them to a recycling facility. 
Clean up any materials that have spilled or damaged battery casings. Pica or aber-
rant feeding behaviour in animals will be reduced by good nutrition and consistent, 
regular feeding. Areas used for vehicle maintenance and machinery storage should 
be separate from areas used by livestock. It is best to keep livestock-only areas apart 
from those used for vehicle repair and equipment storage. If your cattle graze land
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that has an easement for a water pipe, an electricity line or a gas line, confirm with 
the relevant authorities that there is no lead danger associated with an installation. 
Look out for these risks when driving stock and “scouting ahead” before moving 
stock onto new territory. 

It is critical that the risky location is well gated and managed to prevent stock 
access if a possible hazard, such as a tip site, cannot be eliminated. Lastly, be sure 
that none of the contractors working on your property leave any old batteries in 
paddocks. Following harvest, cases of lead toxicity increase. Make sure harvesting 
contractors don’t leave used batteries lying around in the pasture where livestock 
will eventually discover them. 

In recent years, there has been a lot of work put into developing, testing, and 
regulating alternatives to lead-based ammunition. Manufacturers have created non-
toxic rifle bullets and ammo that can be used in all modern shotgun gauges without 
risk. There are many non-toxic alternatives for tackle and ammunition, including 
bismuth, steel, tungsten, tin, and bismuth. 

Replacement of lead shot with nontoxic shot, which could decrease the impacts 
of lead shot on the health of animals, human, and the environment, is the only long-
term option for significantly lowering migratory bird losses from lead poisoning. 
Waterfowl, doves, and other species of migratory birds have all been shown to be 
negatively impacted by lead shot. Lead shot also has an effect on upland species, 
such as ring-necked pheasants. Prior to the federal ban on lead shot for waterfowl 
hunting, alternatives to lead shot were not always easy to find. However, steel shot 
in particular is now accessible at a price that is equivalent to lead shot ammunition. 
An improved lead-free alternative is:

. The most popular lead substitute in ammunition (bullets and slugs) is copper, 
which doesn’t fragment, has superior killing power (a wider wound channel), and 
better ballistics.

. Steel is a further enticing substitute for ammunition (shotgun pellets), but since it 
is lighter than lead, heavier loads, and larger propellant charges are required.

. Tungsten, tin, and steel are other alternative materials for sinkers and jigs. Though 
more expensive and 70% heavier than lead, tungsten has grown in favour, espe-
cially for ice fishing. Tin is flexible, less dense than lead, and simple to cast. Steel 
is more durable than lead and generates noise, which attracts fish. 

In order to operate older and historical shotguns safely, nontoxic shot is now also 
available (Cabela’s 2008). Despite costing more than lead, nontoxic alternatives to 
lead shot only add 1–2% to the average hunter’s annual expenses (Scheuhammer and 
Norris 1995). For instance, Schulz et al. (2006) evaluated the waterfowl crippling 
rates before and after nontoxic-shot regulations were implemented in the US. After a 
5-year phase-in period, they found that the application of non-toxic shot limitations 
led to lower crippling rates for ducks and geese.
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3.11 Conclusions 

There is considerable evidence that lead shot has harmful effects on the environment, 
humans, cattle, and wildlife. Ingesting lead shot has injured or killed more than 100 
different bird species, including raptors, ducks, and upland birds. Lead shot has a 
variety of negative impacts on wildlife, including decreased survival, poor physical 
condition, behavioural changes, and impaired reproduction. Even after the shot has 
been removed, lead can still be present in game meat and expose people to it. The 
impacts of lead poisoning to humans, livestock and wildlife are entirely preventable 
by simply switching to non-toxic ammunition, fishing tackle, proper disposal of lead 
equipment like old used batteries, lead-based paint crankcase oil and use of lead free 
paints. There are many different kinds of lead-free ammunition and tackle available, 
most of which are composed of solid copper and serve as secure, accessible, and 
competitive substitutes. When using lead fishing tackle or ammunition, it’s crucial 
to bury any carcasses or remnants that may contain lead to prevent wildlife from 
scavenging them. In addition, any lead that has been released into the environment 
(from ammunition, fishing line or an old battery) needs to be collected and disposed 
of correctly. Lead poses a very substantial risk to human health, hence lead residues 
in livestock and wild animal products must be scrupulously avoided to safeguard 
human health. To address the negative effects of lead on the health of livestock, 
wildlife, humans, and the environment, a comprehensive global approach is urgently 
needed. 
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Chapter 4 
A Systematic Review of Lead Exposure 
on Mental Health 

Jasbir Arora , Anjali Singal, Justin Jacob, Shallu Garg, and Richa Aeri 

Abstract Lead is the most potent and persistent toxic metal found naturally in the 
earth’s crust. Humans are exposed to lead particles through inhalation, ingestion, 
or skin contact, through several sources that influence food, drinking water, soil, 
and air. If this heavy metal enters the body, interferes with the organ systems. US 
Centers for Disease Control and Prevention (CDC) recently declared that no level 
of lead can be considered “safe”. The outcomes associated with lead exposure have 
become more apparent and are an ever-increasing concern across the globe, as a 
plethora of disorders are caused by its contact. Not only adults but young children 
and fetuses are also vulnerable to its toxic effects leading to neurodevelopment and 
kidney-related disorders. This chapter provides insight into the clinical manifestation 
of lead exposure especially the impact on the mental health (neurodevelopment) 
of the fetus, children, and adults, the mechanism of lead-induced neurotoxicity, 
available biomarkers, challenges, mitigation, preventive measures, and therapy for 
lead exposure. Future recommendations to undertake necessary steps to protect the 
population from environmental toxicity have also conversed. 
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4.1 Introduction 

Lead (Pb) is the most potent and persistent toxic metal naturally occurring element 
in the earth’s crust. Lead in the environment in present its inorganic form. A level 
of 0.016 mg/dl of blood lead levels has been observed in pre-industrial humans, 
indicating the minimum contribution of natural sources for adding lead to the envi-
ronment (Ezzati et al. 2004). Most lead exposure occurs through anthropogenic 
activities. Known sources of lead exposure are cigarette smoke, combustion exhaust, 
sewage sludge, fertilizers, mining, Pb-bearing sulfide deposits, Pb additives in petrol, 
Pb water pipes, Pb in paints, toys, etc. (Meyer et al. 2008). These sources influence 
food, drinking water, soil, and air. Drinking water is the major pathway of accu-
mulation of Pb in humans which arises mostly due to the use of lead piping, which 
is still being used in some places (Neeti and Prakash 2013). Other sources of the 
increased level of Pb in water are landfills, electroplating, Au–Ag-Pb–Zn mining, 
etc. (Obeng-Gyasi 2019b). Lead exposure has also been associated positively with 
socio-economic status and smoking (Remy et al. 2019). Humans are exposed to 
lead particles through inhalation, ingestion, or via skin contact. Human fetuses are 
exposed to lead through the placenta (Iwai-Shimada et al. 2019; Rísová  2019; Singh 
et al. 2020). Ingested inorganic Pb is mainly excreted through urine or feces. It has 
been observed that children have a higher tendency of lead exposure than adults, 
which can be explained on a body weight basis (Carrington et al. 2019). 

In adult blood, more than 90% of lead is absorbed by the erythrocytes with a 
half-life ranging from 28 to 36 days. However, some lead from the serum enters the 
soft tissues and is accumulated in the brain, kidney, liver, muscles, bones, and teeth 
over some time. In addition, as the age increases, the reserved pool of lead in the 
bones during calcium deficiency, pregnancy, or menopause is released back into the 
blood. This acts as an endogenous source of lead poisoning to various organs and is 
a major risk (ATSDR 2010; Klotz and Göen 2017; Organization 2019). 

Lead, being a heavy metal, interferes with the organ systems of the body (Mansouri 
et al. 2020). Nowadays, it is very uncommon to find acute cases of lead toxicity 
which usually occurs through occupational exposure or accidental exposure to lead-
containing agents. However, chronic cases of lead poisoning have been seen, as 
determined by elevated levels of blood lead concentration. The six countries Algeria, 
Yemen, Myanmar, North Korea, Iraq, and Afghanistan pose a higher risk of exposure 
because these countries did not follow the international standard of low-lead levels 
in the gasoline till 2013 (Cassleman et al. 2020). However, the developed nations 
took the initiative and banned the lead-containing gasoline and paint which drastically 
decreased chronic lead exposure but, low-level exposure remains a matter of concern 
(Flora et al. 2012). 

Neurotoxicants may be defined as any substance or chemical that alters the regular 
operation and/or compromise adaptability in the central and/or peripheral nervous 
system, either during development or at maturity (Cardenas-Iniguez et al. 2022). 
Approximately, 200 substances can fall under neurotoxicants.
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In the last two decades, lead neurotoxicity has been well recognized. Previous 
norms related to safe levels of lead was restricted to blood lead level < 10ug/dL, 
however, more recently, the US Centers for Disease Control and Prevention (CDC) 
updated and recommended that no level of lead can be considered “safe” (Bellinger 
2018; Betts 2012). In the recent estimation of the global disease burden, lead has 
been ranked 17th to 30th most important contributor to the disability-adjusted life 
years (DALY) (Lim et al. 2012). The outcomes associated with lead exposure have 
become more apparent and are an ever-increasing concern across the globe. Not 
only adults but also young children are vulnerable to its toxic effects leading to 
neurodevelopment and kidney-related disorders (Murata et al. 2009). A plethora 
of disorders are caused by lead exposure. The adverse effects include behavioral 
alterations in children and neuronal developmental disorders in infants, a deficit in 
motor coordination, and cardiovascular disorders. In addition, its chronic exposure 
reduces fertility and causes renal dysfunction, convulsion, or even coma (Lustberg 
and Silbergeld 2002; Weaver et al.  2005). 

A report by WHO (2004) states that in the year 2000, ~ 120 million people 
had blood lead levels between 5 and 10 mg/dl and nearly the same number had 
values > 10 mg/dl. This report further revealed that 90% of these children belong to 
underdeveloped countries. 40% of these children had blood lead concentrations of 
> 5 mg/dl and 50% had blood lead concentrations of > 10 mg/dl (Ezzati et al. 2004). 
A shocking figure of 9.8 million disability-adjusted life years (DALYs) was caused 
by the disease burden from mild mental retardation associated with lead exposure 
(Ezzati et al. 2004). Furthermore, the report of the Global Burden of disease dataset 
2019 confirmed that ~ 800 million children have hazardous levels of lead in their 
bodies. The majority of the cases belong to Southeast Asia and India is the highest 
contributor to it. In India, nearly 275 million children are reported with raised lead 
levels and out of total deaths due to lead poisoning, 26% of deaths are reported in 
India GBD Compare (Metrics IFH Evaluation 2017). 

This chapter provides insight into clinical manifestation of lead exposure espe-
cially the impact on the mental health (neurodevelopment) of the fetus, children, and 
adults, the mechanism of lead-induced neurotoxicity, available biomarkers, chal-
lenges, mitigation, preventive measures, and therapy for lead exposure. There is a 
need to undertake necessary steps to protect the population from environmental toxi-
city, future recommendations for the same have been discussed in the concluding 
part of the chapter. 

4.2 Material and Methodology 

This review paper includes a systematic search in Google scholar, PubMed, and 
MEDLINE. The search was conducted using different keyword strings as ((“Lead 
exposure” OR “Lead toxicity” OR “Lead effects”) AND “Mental health”) on Google 
Scholar, and ((“Lead exposure” OR “Lead toxicity” OR “Lead effects”) AND 
(“Human brain” OR “cognitive” OR “Behavioral problems”)) on PubMed and
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Records identified from: 
Databases (n =12241) 

Duplicate records removed  
(n =3560 ) 

Records screened 
(n =8681 ) 

Records excluded (based on title and 
abstract screening and full length PDF not 
available) 
(n =8254 ) 

Reports assessed for eligibility 
(n =427) 

(n =398) 

Articles excluded which did not meet the 
eligibility criteria: 
1) Only abstracts were available. 
2) The articles which were not in the English 
language. 
3) Some other heavy metals were used, 
except lead. 

Studies included in review 
(n =29 ) 
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Fig. 4.1 PRISMA flow chart illustrating the selection process of the included studies. Source Page 
et al. (2021) 

Medline. The keywords were searched in the title and abstracts of the research papers. 
No criteria was set to select population-based studies. The screening of literature was 
done from 2013 to 2023. The search was confined to English language and included 
data on humans only. Besides the database search, a manual search including the 
reference lists of original articles and previous reviews was also performed. The 
studies based on association or effects of lead exposure, toxicity on humans were 
included for the present paper (Fig. 4.1 PRISMA flow diagram). Out of these, only 
those studies which complied with the inclusion criteria were included. Blogs, private 
websites, and newspaper articles were excluded. A total of 29 studies were screened 
for the review. 

4.3 Lead and Mental Health 

Environmental and occupational lead exposure is a serious public health concern. 
The individuals at high exposure are prone to encephalopathy, anemia, and kidney 
damage. Even the lower doses of exposure can alter the cognitive development in
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children as well as in adults (Fenga et al. 2016). It is well documented that blood 
lead levels are inversely associated with neuropsychological development. It can also 
affect the mental conditions like anger, mood, general distress, schizophrenia, and 
violence (Cassleman et al. 2020). Because of its health risks even at low exposure, 
it has been suggested that there is no safe level of lead exposure. 

4.3.1 Effects on the Fetus 

Human embryonic and fetal growth are the foundation for healthiness and illness 
across the lifespan. The exposure of fetus to lead can have a deep impact on its growth, 
as it can cross the placental barrier and accrues in the tissues of the developing fetus 
(Gundacker and Hengstschläger 2012). BPb level of 10–15 µg/dL in the women of 
reproduction age affects the growing fetus. The exposure events of lead happening 
before the child birth are correlated to various long-term health and behavioral issues 
(Brubaker et al. 2009; Canfield et al. 2005; Cecil et al.  2011). It is assumed that 
intrauterine contact to lead disrupts the development of brain networks before birth. 
Interrupted connectivity in utero may lead to reduction in the integrity of network 
structure, which in turn may result in cognitive deficits linked with neurotoxic insults 
from lead exposure. The fetus exposed to lead deviate from characteristic patterns 
of neurodevelopment as per fetal resting-state functional connectivity (RSFC) MRI 
study. The relatively lesser age-linked rise in cross-hemispheric connections and 
increased connectivity of the superior frontal gyrus and the posterior cingulate cortex 
has been reported in prenatal lead-exposed fetuses (Thomason et al. 2019). 

4.3.2 Cognitive and Behavioral Effects in Children 

There are numerous studies citing the potency of lead to affect the cognition and 
behavior of children. Moreover, different blood lead levels show different types of 
cognitive and behavioral problems. Earlier it was known that blood lead levels at 
10 µg/dL and above can cause cognitive and behavioral problems among children. 
Blood concentrations at or below 10 g/dL resulted in neurophysiological and neurobe-
havioral deficits. It may have an impact on academic performance (Liu et al. 2013) 
distractibility, memory problems, decreased verbal and quantitative scores, impaired 
visual-motor coordination, and longer reaction times (Bellinger 2008; Canfield et al. 
2003a, b; 2004; 2005; Chiodo et al. 2004; Dietrich et al. 1993; Lanphear et al. 
2005; Rocha and Trujillo 2019). However, recent studies found concrete evidence 
of significant damage to the brain at levels below 5 µg/dL. Studies conducted by 
various researchers (Canfield et al. 2003a, b; Chiodo et al. 2004; Lanphear et al. 
2005) showed that children with blood lead levels of below 5 µg/dL are linked 
to impulsivity, deficiencies in verbal processing, non-verbal thinking, reading, and
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arithmetic, reaction time, attention, as well as low scores on a variety of achieve-
ment tests. Simple reaction time, teacher report cards, and neuropsychological tests 
have all shown that children’s attention is interrupted at levels below 3 g/dL (Chiodo 
et al. 2004; Després et al. 2005; Min et al. 2009). Moreover, it has been proved that 
continuous low-level lead exposure leads to cognitive and psychological impairment 
instead high-level exposure results in seizures, commas, and death. 

Generally, lead toxicity is asymptomatic in children. However, children below the 
age of 5 years may show symptoms like poor appetite, lethargy, weight loss, abdom-
inal pain, vomiting, constipation, headache, irritability, tiredness, and nervousness 
(Collin et al. 2022). Anemia is one of the symptoms of lead toxicity and thus, the pale 
color (a result of anemia) of children may signify lead exposure. Children who have 
been exposed to lead may also have learning issues. Lead encephalopathy exhibits 
symptoms like seizures, vomiting, clumsiness, agitation, etc. The symptomatic cases 
of lead poisoning must be treated immediately. 

Table 4.1 illustrating the few works conducted on infants and children for showing 
a positive association of lead exposure and mental health. It is well documented that 
different biomarkers including blood, urine, bone can successfully estimate the lead 
exposure in children. However, most of the studies used blood (venous, umbilical) 
as a choice of biomarker. It is clear from the table that blood lead levels even at 
2.9 µg/L can affect the mental health of children. Rodríguez-Carrillo et al. (2022) 
did not find any association between urine lead concentration (median: 0.42 µg/L) 
and behavioral functions (Rodríguez-Carrillo et al. 2022).

4.3.3 Lead Exposure and Mental Health in Adults 

Around the globe, usage of leaded gasoline was at its peak from 1940 to the early 
1900s. Therefore, it is expected that millions of adults must have lead exposure 
during their childhood phase. Adult lead poisoning in adults is usually brought on by 
the usage of traditional medicine and occupational exposure (Kumar 2009). There 
is an agreement that children exposed to lead suffer from low IQ levels, inattention, 
hyperactivity, and tend to indulge in violence, antisocial behavior, etc., but research 
focused on neurobehavioral functioning in adults gives mixed opinions. However, 
most of the studies found a positive association between lead exposure and psychiatric 
problems in adults (Cassleman et al. 2020). Occupational exposure to lead can affect 
general intellectual performance, processing, attention, visuospatial abilities, and 
motor functions (Fenga et al. 2016). 

Lead encephalopathy is rarely seen in adults but individuals using traditional 
medicines or having occupational exposure to lead may suffer from it (Kumar 2009). 
Generally, high level of lead exposure (occupational) in adults shows symptoms like 
limb and abdominal pain, headache, numbness, tingling in hands and feet, memory 
loss, and mood swings. Abnormal and low sperm count can be a reason for lead 
exposure in men. Women exposed to lead during pregnancy may experience miscar-
riage or deliver a premature baby. Sustained low-level exposure leads to anemia.
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Adults exposed to lead may show aggression (more than normal), hyperactivity, and 
insomnia. Delirium, coma, seizures, numbness, and motor deficits are some other 
symptoms. 

Table 4.2 describes that individuals having blood lead levels even at a level of 
0.6 µg/L can show symptoms of ill mental health in adults. Bone is also used as 
a biomarker for the estimation of long-term exposure of lead in adults. The adults 
having elevated levels of lead may experience psychiatric problems including anxiety, 
fatigue. They may suffer from Alzheimer’s disease schizophrenia and Parkinson’s 
disease.

4.4 Mechanism of Lead-Induced Neurotoxicity 

Of all the organ affected, lead accumulation primarily affects the brain and elicits 
excito-toxicity of the brain, the release of various neurotransmitters, the second 
messenger system, as well as apoptosis. One of the major effects is its function 
to substitute for calcium which results in mitochondrial dysfunction and apoptosis 
cascade leading to neuronal death. Mitochondrial dysfunction results in increased 
reactive oxygen species and activation of programmed cell death (Simons 1986). 
Since various enzymes such as acetylcholine, dopamine, and neurotransmitters are 
dependent on calcium signaling, the substitution with lead alters their activity (Gold-
stein 1993). In addition, lead delays the differentiation of glial progenitors that 
can cause demyelination and hypomyelination. Indirectly, lead also dysregulates 
chemosynthesis with increased production of aminolevulinic acid (ALA) further 
inhibiting the gamma aminobutyric acid receptors (GABA). As a result of this 
cascade, anemia occurs along with a deficit in neurocognitive ability. These symp-
toms might appear immediately or may be delayed with common symptoms including 
reduced intellectual ability, vision loss, and behavioral issues (Hwang 2007; Lidsky  
and Schneider 2006). 

4.4.1 Effects of Lead on Neurodevelopment 

The brain is extremely sensitive to Pb during the developmental period and espe-
cially during the gestational period which is marked by neuronal proliferation, 
migration, and differentiation. Lead exposure adversely affects the developing brain 
even at minute levels (Bellinger 2008; Liu et al. 2014). During early develop-
ment, hippocampal-dependent spatial learning and memory are affected as lead 
exposure alters the NR1 and NR2 subunits and signaling of N-methyl-D-aspartate 
(NMDA) receptors (Guilarte and McGlothan 1998). Additionally, Pb exposure alters 
brain-derived neurotrophic factors (BDNF) (Neal et al. 2010) as well as impairs 
hippocampal LTP via epigenetic modulation through DNA methyltransferases and 
methyl cytosine binding proteins (Schneider et al. 2013). From the animal studies on
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neonatal rats, it is clear that alterations of long-term potentiation (LTP) and paired-
pulse facilitation (PPF) of hippocampal dentate gyrus occurred (Ruan et al. 1998). 
This hippocampal long-term potentiation is an important component of learning as 
well as memory. With lead exposure, the dendritic spines, the crucial structure of 
pyramidal neurons are severely affected. Such changes can cause a reduction or 
loss of learning and memory function. Any deviation in synaptic formation, matu-
ration, or structural alterations is detrimental to the development of the brain. Post-
synaptic neuroligins (NLGNs) are integral proteins that are required for synapto-
genesis, dendritic spine maturation, and its stability. Upon lead exposure, NLGN 
proteins are disrupted and causes altered dendritic spine formation in hippocampus 
(Zhao et al. 2018). In addition, exposure to lead might result in abnormal alteration of 
the synaptic transmission that is often associated with memory impairment. This was 
predicted from a study, where it was observed that PB-exposed rats had decreased 
expression of NR2A and phosphorylated GluR1 causing synoptical morphological 
and functional alterations in the hippocampal CA1 pyramidal neurons that ultimately 
leads to behavioral changes (Wang et al. 2016). From previous studies, it has already 
been established that children with the blood lead concentration of 10 µg/dL are also 
susceptible to intellectual impairment exhibiting low intelligent quotient. Accord-
ingly, each increase of 10 µg per deciliter in the blood results in a significant decline 
in the IQ by 4.6 points which is considered to be a tremendous decline (Canfield 
et al. 2003a, 2003b; Heidari et al. 2022; Lanphear et al. 2005). During fetal develop-
ment, lead can cross the placental membrane. In an assessment of prenatal exposure 
to lead, it has been observed that levels of lead in the cord blood were 1.23 µg/dl 
indicating that during development, lead can effortlessly pass the placental barrier 
and accrue in the blood of the fetus (Jedrychowski et al. 2009; Vigeh et al. 2014). A 
study observed that levels of lead in the first-trimester maternal plasma and whole 
blood can be a predictor of neurodevelopmental disorders in the early stage of life 
(Hu et al. 2006). Interestingly, epigenetic modifications such as DNA methylation are 
known to play a part in hampered neurodevelopment. This was estimated by a study 
wherein trimester-specific maternal blood lead concentrations, DNA methylations 
in umbilical cord blood, and infant neurodevelopmental outcomes were measured 
(Rygiel et al. 2021). 

Moreover, exposure to Pb makes modification in nitric oxide synthase which alters 
the brain vasculature, consequently affecting the serotonergic system and may inten-
sify aggressive behavior (Martínez-Lazcano et al. 2018). So, the neurobehavioral 
dysfunctions and deficits in cognition can be linked to environmental Pb exposure 
(Santa Maria et al. 2019). 

4.5 Available Biomarkers of Lead Exposure 

Biological monitoring measures are important for the evaluation of the toxicological 
agents that might be detrimental to human health and the environment (Berlin et al. 
1982). Biomarker monitors and measures the interaction with the biological system
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and the physical, chemical, or biological agents. Biomarkers give an index of the 
contamination of the biological system and identify the risk factors associated with 
it. A variety of biomarkers exists to determine the toxicity of an element such as 
biological fluids like blood, and urine, and biological tissues such as hair, bone, and 
nail are being tested for lead exposure. Despite this, the difficulty in assessment 
exists due to the complex toxico-kinetics of lead within the tissue. Blood is the 
most common biomarker to assess the levels of ingested/inhaled lead. In humans, 
more than 50% of lead is transferred to the bloodstream upon exposure (DeSilva 
1981). Other biomarkers include bone, teeth, hair, and nail (Barbosa et al. 2005). 
Bone lead levels have been correlated with serum lead levels in adults that confers 
its use as a potential biomarker (Hernández-Avila et al. 1998; Hu et al.  1998). Hair 
is an attractive biomarker for monitoring lead exposure, as it is readily available 
and obtained via non-invasive procedures and is of low cost (Schuhmacher et al. 
1991). Nails have been also used for the detection of chronic exposure of lead due 
to its several advantages. Lead in nail is considered to remain uneffected from the 
metabolic activities of the body and reflects the long-term exposure of lead. In this 
regard, toenails are considered to be superior than fingernails because toenail remains 
less exposed to the other environmental contaminations (Nowak and Chmielnicka 
2000; Takagi et al. 1988). 

4.6 Treatment to Reduce Lead Levels in Human Body 

The most effective treatment available to quickly reduce the blood lead level is 
chelation therapy (Collin et al. 2022). In 1950, the early chelating agent, EDTA, was 
fetched into clinical use as an antidote for lead toxicity. In chelation therapy, which 
is a clinical intervention, chelating agents like calcium disodium ethylene diamine 
tetraacetic acid (CaNa 2 EDTA), Succimer (2,3 meso-dimercaptosuccinic acid or 
DMSA, oral chelating agent, for mild and asymptomatic cases), are administered, 
which in turn binds to Pb and removes it from the different tissues of the body (Hao 
et al. 2013). DMSA being an antioxidant significantly diminishes Pb-induced oxida-
tive stress and apoptosis (Obeng-Gyasi 2019a). Though chelation therapy consider-
ably removes the Pb ions from the body, however, because of the side effects of the 
chelating agents, their use is limited to severe cases of overexposure to heavy metals 
(Aaseth et al. 2015; Kushwaha et al. 2018). Another medical treatment for individuals 
with overt lead intoxication involves decontamination and supportive care (Kosnett 
et al. 2007).
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4.7 Prevention Therapy 

Lead poisoning affects many organs in adults as well as in children. The prevention of 
exposure to lead through the environment is the primary therapy. The most common 
sources of lead exposure in children and adults are air, soil, water, paint chips, candies, 
and toys; some of which can be easily avoided (Collin et al. 2022). Secondary preven-
tion includes regular screening through different biomarkers. Depending upon the 
levels of lead found medical therapies and dietary supplements may help to lower the 
level of lead in the body but cannot remove it completely. The early detection of lead 
poisoning and monitoring of blood lead levels may avoid significant consequences. 
Preventing direct exposure and taking a proper diet rich in natural antioxidants, vita-
mins (Flavonoids), iron may prevent lead build-up in the tissues (Collin et al. 2022; 
Wang et al. 2021). 

4.8 Suggestions and Recommendations 

It has become increasingly evident from the previous data that even a low level of envi-
ronment toxicity to lead can be significantly hazardous to young adolescents leading 
to various mental disorders and intellectual deficits. In addition, it is also responsible 
for various cancers, cardiovascular diseases, kidney disorders, and gastrointestinal 
problems. 

• To prevent the lead toxicity in air, policymakers need to design/ update the laws 
to protect the environment effectively. 

• Efforts have to be made at global levels via formation of administrative policies, 
promoting research in the field, and making stringent laws for monitoring pollution 
levels. 

• Association of lead toxicity and its effects on developing brain resulting in 
behavior and intellectual deficits has been clearly reported. Still, the efforts to 
control its exposure are inadequate both at the national and international levels. 
To prevent various health-related issues due to potential toxins, it is important to 
identify these and restrict their usage before they enter the environment. 

• Various programs could be created at government level to aware public about the 
health hazards to these toxins via distributing pamphlets, pasting posters in public 
places, and by advertisements on television and social media. 

• Also, it is important to educate people on various sources of exposure and routes 
of inhalation. 

• Few suggestions and recommendations for preventing environmental toxicity 
include 

− Industries need to certify that that the raw material used and the final product 
as well as factory emissions are not environment hazardous.
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− It is important to assess the effect of potential toxins on the developing brain 
by various relevant bodies including pollution control boards and agencies 
− The prevalence of mental disorders, intelligence deficits, and learning 
disabilities should be recorded in a national database which needs to regularly 
updated. 

• Longitudinal studies need to be designed to study the effect of different toxins 
on brain at multiple exposure timings as majority of intellect issues are a cumu-
lative effect of chemical and social exposure from fetal life to childhood. There-
fore, neuroimaging at starting from the fetal period to adulthood may help to 
monitor the different stages of brain development and maturation, under various 
environmental conditions. 

• It is important to assess neuropsychological and behavioral aspects of children at 
early ages through standardized instruments. 

4.9 Conclusions 

Previous studies and data’s suggest that lead neurotoxicity may be a contributing 
factor for adverse mental health outcomes, even at levels generally considered to 
pose low or no risk. Thus, no blood concentration of lead is safe; its neurological 
and behavioral effects are thought to be irreversible. WHO has also identified lead 
as one of 10 chemicals of major public health concern needing immediate action 
by Member States to protect the health of workers, children and women. Efforts 
has to be made at the national and international levels to control the lead exposure. 
Adverse behavioral outcomes observed in children with similarly low blood lead 
levels emphasizes the need for considering ways to further reduce environmental lead 
exposures. Therefore, it is important to state the awareness and advocacy surrounding 
the issue of such neurotoxicant exposures in order to influence policy makers that 
can enact legislation to largely mitigate and eliminate these toxic environmental 
exposures. 

References 

Aaseth J, Skaug MA, Cao Y, Andersen O (2015) Chelation in metal intoxication—principles and 
paradigms. J Trace Elements Med Biol 31:260–266 

Abd-Wahil MS, Jaafar MH, Md-Isa Z (2022) Assessment of urinary lead (Pb) and essential 
trace elements in autism spectrum disorder: a case-control study among preschool children 
in Malaysia. Biol Trace Element Res 200(1):97–121. https://doi.org/10.1007/s12011-021-026 
54-w 

ATSDR (2010) Case studies in environmental medicine (CSEM) lead toxicity 
Barbosa F, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) A critical review of biomarkers used for 

monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health 
Perspect 113(12):1669–1674

https://doi.org/10.1007/s12011-021-02654-w
https://doi.org/10.1007/s12011-021-02654-w


4 A Systematic Review of Lead Exposure on Mental Health 67

Bellinger DC (2008) Very low lead exposures and children’s neurodevelopment. Curr Opin Pediat 
20(2):172–177 

Bellinger D (2018) Tetraethyl lead, paints, pipes, and other lead exposure routes: the impact on 
human health 

Berlin A, Yodaiken R, Logan D (1982) International seminar on the assessment of toxic agents at 
the workplace roles of ambient and biological monitoring, Luxembourg, 8–12 December, 1980. 
Int Arch Occup Environ Health 50(2):1258 

Betts KS (2012) CDC updates guidelines for children’s lead exposure. Environ Health Perspect 
120(7):a268. https://doi.org/10.1289/ehp.120-a268 

Brubaker CJ, Schmithorst VJ, Haynes EN, Dietrich KN, Egelhoff JC, Lindquist DM et al (2009) 
Altered myelination and axonal integrity in adults with childhood lead exposure: a diffusion 
tensor imaging study. Neurotoxicology 30(6):867–875 

Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003a) Intellec-
tual impairment in children with blood lead concentrations below 10 µg per deciliter. N Engl J 
Med 348(16):1517–1526 

Canfield RL, Kreher DA, Cornwell C, Henderson CR (2003b) Low-level lead exposure, executive 
functioning, and learning in early childhood. Child Neuropsychol 9(1):35–53 

Canfield RL, Gendle MH, Cory-Slechta DA (2004) Impaired neuropsychological functioning in 
lead-exposed children. Develop Neuropsychol 26(1):513–540 

Canfield R, Jusko T, Kordas K (2005) Environmental lead exposure and children’s cognitive 
function. Rivista Italiana Di Pediatria Ital J Pediat 31(6):293 

Cardenas-Iniguez C, Burnor E, Herting MM (2022) Neurotoxicants, the developing brain, and 
mental health. Biol Psych Global Open Sci 2:223–232 

Carrington C, Devleesschauwer B, Gibb HJ, Bolger PM (2019) Global burden of intellectual 
disability resulting from dietary exposure to lead, 2015. Environ Res 172:420–429 

Cassleman KL, Dorrance KA, Todd AC (2020) Neuropsychiatric implications of chronic lead 
exposure. Milit Med 185(5–6):e914–e918 

Cecil KM, Dietrich KN, Altaye M, Egelhoff JC, Lindquist DM, Brubaker CJ, Lanphear BP (2011) 
Proton magnetic resonance spectroscopy in adults with childhood lead exposure. Environ Health 
Perspect 119(3):403–408 

Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead 
exposure at very low levels. Neurotoxicol Teratol 26(3):359–371 

Chouhdari A, Farnaghi F, Hassanian-Moghaddam H, Zamani N, Sabeti S, Shahrabi-Farahani H 
(2020) Blood lead levels in opium-poisoned children: one cross-sectional study in Iran. Addict 
Health 12(3):159–166 

Collin MS, Kumar Venkataraman S, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RS et al 
(2022) Bioaccumulation of lead (Pb) and its effects on human: a review. J Hazard Mater Adv 
7:100094 

Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J et al (2006) Whole-body life-
time occupational lead exposure and risk of Parkinson’s disease. Environ Health Perspect 
114(12):1872–1876 

DeSilva P (1981) Determination of lead in plasma and studies on its relationship to lead in 
erythrocytes. Occup Environ Med 38(3):209–217 

Després C, Beuter A, Richer F, Poitras K, Veilleux A, Ayotte P et al (2005) Neuromotor functions 
in Inuit preschool children exposed to Pb, PCBs, and Hg. Neurotoxicol Teratol 27(2):245–257 

Dietrich KN, Berger OG, Succop PA, Hammond PB, Bornschein RL (1993) The developmental 
consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment 
in the Cincinnati Lead Study Cohort following school entry. Neurotoxicol Teratol 15(1):37–44 

Ezzati M, Lopez AD, Rodgers AA, Murray CJ (2004) Comparative quantification of health risks: 
global and regional burden of disease attributable to selected major risk factors. World Health 
Organization, New York 

Fenga C, Gangemi S, Alibrandi A, Costa C, Micali E (2016) Relationship between lead exposure 
and mild cognitive impairment. J Prevent Med Hyg 57(4):E205

https://doi.org/10.1289/ehp.120-a268


68 J. Arora et al.

Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 
5(2):47–58 

Garí M, Grzesiak M, Krekora M, Kaczmarek P, Jankowska A, Król A et al (2022) Prenatal exposure 
to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age 
children from Poland. Environ Res 204:112049. https://doi.org/10.1016/j.envres.2021.112049 

Goldstein G (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. 
Neurotoxicology 14(2–3):97–101 

Guilarte TR, McGlothan JL (1998) Hippocampal NMDA receptor mRNA undergoes subunit 
specific changes during developmental lead exposure. Brain Res 790(1–2):98–107 

Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. 
Wien Med Wochenschr 162(9–10):201–206 

Hao P, Han SH, Liu HY, Chandni V, Cai XQ, Zhang YH (2013) Relationship of inflammation and 
endothelial dysfunction with risks to cardiovascular disease among people in Inner Mongolia 
of China. Biomed Environ Sci 26(10):792–800 

Heidari S, Mostafaei S, Razazian N, Rajati M, Saeedi A, Rajati F (2022) The effect of lead exposure 
on IQ test scores in children under 12 years: a systematic review and meta-analysis of case-
control studies. Syst Rev 11(1):106. https://doi.org/10.1186/s13643-022-01963-y 

Hernández-Avila M, Smith D, Meneses F, Sanin LH, Hu H (1998) The influence of bone and 
blood lead on plasma lead levels in environmentally exposed adults. Environ Health Perspect 
106(8):473–477 

Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies 
of chronic toxicity: conceptual paradigms. Environ Health Perspect 106(1):1–8 

Hu H, Téllez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H et al (2006) Fetal 
lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ 
Health Perspect 114(11):1730–1735. https://doi.org/10.1289/ehp.9067 

Hwang L (2007) Environmental stressors and violence: lead and polychlorinated biphenyls. Rev 
Environ Health 22(4):313–328 

Ishitsuka K, Yamamoto-Hanada K, Yang L, Mezawa H, Konishi M, Saito-Abe M et al (2020) 
Association between blood lead exposure and mental health in pregnant women: results from 
the Japan environment and children’s study. Neurotoxicology 79:191–199. https://doi.org/10. 
1016/j.neuro.2020.06.003 

Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N et al (2019) 
Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in 
maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan. 
Environ Health Prevent Med 24:1–11 

Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E et al (2009) Very low 
prenatal exposure to lead and mental development of children in infancy and early childhood. 
Neuroepidemiology 32(4):270–278 

Kadawathagedara M, Muckle G, Quénel P, Michineau L, Le Bot B, Hoen B et al (2023) Infant 
neurodevelopment and behavior in Guadeloupe after lead exposure and Zika maternal infection 
during pregnancy. Neurotoxicology 94:135–146. https://doi.org/10.1016/j.neuro.2022.11.007 

Klotz K, Göen T (2017) Human biomonitoring of lead exposure. Met Ions Life Sci 17:99–121 
Kosnett MJ, Wedeen RP, Rothenberg SJ, Hipkins KL, Materna BL, Schwartz BS et al (2007) 

Recommendations for medical management of adult lead exposure. Environ Health Perspect 
115(3):463–471 

Kumar A (2009) Lead loadings in household dust in Delhi, India. Indoor Air 19(5):414–420 
Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and 

toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ 
Saf 147:1035–1045 

Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC et al (2005) Low-level envi-
ronmental lead exposure and children’s intellectual function: an international pooled analysis. 
Environ Health Perspect 113(7):894–899

https://doi.org/10.1016/j.envres.2021.112049
https://doi.org/10.1186/s13643-022-01963-y
https://doi.org/10.1289/ehp.9067
https://doi.org/10.1016/j.neuro.2020.06.003
https://doi.org/10.1016/j.neuro.2020.06.003
https://doi.org/10.1016/j.neuro.2022.11.007


4 A Systematic Review of Lead Exposure on Mental Health 69

Lidsky T, Schneider J (2006) Adverse effects of childhood lead poisoning: the clinical neuropsy-
chological perspective. Environ Res 100(2):284–293 

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk 
assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters 
in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. 
Lancet 380(9859):2224–2260 

Liu J, Li L, Wang Y, Yan C, Liu X (2013) Impact of low blood lead concentrations on IQ and school 
performance in Chinese children. PLoS ONE 8(5):e65230 

Liu JA, Chen Y, Gao D, Jing J, Hu Q (2014) Prenatal and postnatal lead exposure and cognitive 
development of infants followed over the first three years of life: a prospective birth study in the 
Pearl River Delta region, China. Neurotoxicology 44:326–334 

Lu A-X, Wang S-S, Xu X, Wu M-Q, Liu J-X, Xu M et al (2023) Sex-specific associations between 
cord blood lead and neurodevelopment in early life: the mother-child cohort (Shanghai, China). 
Ecotoxicol Environ Saf 249:114337. https://doi.org/10.1016/j.ecoenv.2022.114337 

Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 162(21):2443– 
2449 

Ma J, Yan L, Guo T, Yang S, Guo C, Liu Y et al (2019) Association of typical toxic heavy metals 
with Schizophrenia. Int J Environ Res Public Health 16(21):4200 

Malavika L, Goyal T, Mitra P, Saikiran G, Sharma S, Sharma P (2022) Risk factors for lead toxicity 
and its effect on neurobehavior in Indian children. Indian J Clin Biochem 37(3):294–302. https:// 
doi.org/10.1007/s12291-021-00995-w 

Mansouri B, Błaszczyk M, Binkowski LJ, Sayadi MH, Azadi NA, Amirabadizadeh AR, Mehrpour 
O (2020) Urinary metal levels with relation to age, occupation, and smoking habits of male 
inhabitants of eastern Iran. Biol Trace Element Res 195(1):63–70. https://doi.org/10.1007/s12 
011-019-01848-7 

Martínez-Lazcano JC, López-Quiroz A, Alcantar-Almaraz R, Montes S, Sánchez-Mendoza A, 
Alcaraz-Zubeldia M et al (2018) A hypothesis of the interaction of the nitrergic and serotonergic 
systems in aggressive behavior induced by exposure to lead. Front Behav Neurosci 12:202 

McFarlane AC, Searle AK, Van Hooff M, Baghurst PA, Sawyer MG, Galletly C et al (2013) 
Prospective associations between childhood low-level lead exposure and adult mental health 
problems: the Port Pirie cohort study. Neurotoxicology 39:11–17 

Metrics IFH Evaluation (2017) GBD compare data visualization. In: IHME. University of 
Washington, Seattle, WA 

Meyer PA, Brown MJ, Falk H (2008) Global approach to reducing lead exposure and poisoning. 
Mutat Res Rev Mutat Res 659(1–2):166–175 

Min MO, Singer LT, Kirchner HL, Minnes S, Short E, Hussain Z, Nelson S (2009) Cognitive 
development and low-level lead exposure in poly-drug exposed children. Neurotoxicol Teratol 
31(4):225–231 

Murata K, Iwata T, Dakeishi M, Karita K (2009) Lead toxicity: does the critical level of lead resulting 
in adverse effects differ between adults and children? J Occup Health 51(1):1–12 

Neal AP, Stansfield KH, Worley PF, Thompson RE, Guilarte TR (2010) Lead exposure during 
synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA 
receptor–dependent BDNF signaling. Toxicol Sci 116(1):249–263 

Neeti K, Prakash T (2013) Effects of heavy metal poisoning during pregnancy. Int Res J Environ 
Sci 2(1):88–92 

Nowak B, Chmielnicka J (2000) Relationship of lead and cadmium to essential elements in hair, 
teeth, and nails of environmentally exposed people. Ecotoxicol Environ Saf 46(3):265–274 

Obeng-Gyasi E (2019a) Lead exposure and cardiovascular disease among young and middle-aged 
adults. Med Sci 7(11):103 

Obeng-Gyasi E (2019b) Sources of lead exposure in various countries. Rev Environ Health 
34(1):25–34 

Organization WH (2019) Preventing disease through healthy environments: exposure to lead—a 
major public health concern (9240037632)

https://doi.org/10.1016/j.ecoenv.2022.114337
https://doi.org/10.1007/s12291-021-00995-w
https://doi.org/10.1007/s12291-021-00995-w
https://doi.org/10.1007/s12011-019-01848-7
https://doi.org/10.1007/s12011-019-01848-7


70 J. Arora et al.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The 
PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. 
https://doi.org/10.1136/bmj.n71 

Remy S, Hambach R, Van Sprundel M, Teughels C, Nawrot TS, Buekers J et al (2019) Intelligence 
gain and social cost savings attributable to environmental lead exposure reduction strategies 
since the year 2000 in Flanders, Belgium. Environ Health 18:1–9 

Reuben A, Schaefer JD, Moffitt TE, Broadbent J, Harrington H, Houts RM et al (2019) Association 
of childhood lead exposure with adult personality traits and lifelong mental health. JAMA Psych 
76(4):418–425. https://doi.org/10.1001/jamapsychiatry.2018.4192 

Rísová V (2019) The pathway of lead through the mother’s body to the child. Interdiscip Toxicol 
12(1):1–6 

Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of 
action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80 

Rodríguez-Carrillo A, Mustieles V, D’Cruz SC, Legoff L, Gil F, Olmedo P et al (2022) Exploring 
the relationship between metal exposure, BDNF, and behavior in adolescent males. Int J Hyg 
Environ Health 239:113877. https://doi.org/10.1016/j.ijheh.2021.113877 

Roy A, Bellinger D, Hu H, Schwartz J, Ettinger AS, Wright RO et al (2009) Lead exposure and 
behavior among young children in Chennai, India. Environ Health Perspect 117(10):1607–1611. 
https://doi.org/10.1289/ehp.0900625 

Ruan D-Y, Chen J-T, Zhao C, Xu Y-Z, Wang M, Zhao W-F (1998) Impairment of long-term poten-
tiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental 
lead exposure in vivo. Brain Res 806(2):196–201 

Rygiel CA, Dolinoy DC, Bakulski KM, Aung MT, Perng W, Jones TR et al (2021) DNA methylation 
at birth potentially mediates the association between prenatal lead (Pb) exposure and infant 
neurodevelopmental outcomes. Environ Epigenet 7(1):5. https://doi.org/10.1093/eep/dvab005 

Santa Maria MP, Hill BD, Kline J (2019) Lead (Pb) neurotoxicology and cognition. Appl 
Neuropsychol Child 8(3):272–293 

Schneider J, Kidd S, Anderson D (2013) Influence of developmental lead exposure on expression 
of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol Lett 
217(1):75–81 

Schuhmacher M, Domingo J, Llobet J, Corbella J (1991) Lead in children’s hair, as related to 
exposure in Tarragona Province, Spain. Sci Total Environ 104(3):167–173 

Simons T (1986) Cellular interactions between lead and calcium. Br Med Bull 42(4):431–434 
Singh L, Anand M, Singh S, Taneja A (2020) Environmental toxic metals in placenta and their 

effects on preterm delivery-current opinion. Drug Chem Toxicol 43(5):531–538 
Takagi Y, Matsuda S, Imai S, Ohmori Y, Masuda T, Vinson J et al (1988) Survey of trace elements 

in human nails: an international comparison. Bull Environ Contam Toxicol 41(5):1258 
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S et al (2021) Lead exposure 

is associated with functional and microstructural changes in the healthy human brain. Commun 
Biol 4(1):912. https://doi.org/10.1038/s42003-021-02435-0 

Thomason ME, Hect JL, Rauh VA, Trentacosta C, Wheelock MD, Eggebrecht AT et al (2019) 
Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human 
fetal brain. Neuroimage 191:186–192 

Tlotleng N, Naicker N, Mathee A, Todd AC, Nkomo P, Norris SA (2022) Association between bone 
lead concentration and aggression in youth from a sub-cohort of the Birth to Twenty Cohort. Int 
J Environ Res Public Health 19(4):2200 

Vigeh M, Yokoyama K, Matsukawa T, Shinohara A, Ohtani K (2014) Low level prenatal blood lead 
adversely affects early childhood mental development. J Child Neurol 29(10):1305–1311 

Wang T, Guan R-L, Liu M-C, Shen X-F, Chen JY, Zhao M-G, Luo W-J (2016) Lead exposure impairs 
hippocampus related learning and memory by altering synaptic plasticity and morphology during 
juvenile period. Mol Neurobiol 53:3740–3752

https://doi.org/10.1136/bmj.n71
https://doi.org/10.1001/jamapsychiatry.2018.4192
https://doi.org/10.1016/j.ijheh.2021.113877
https://doi.org/10.1289/ehp.0900625
https://doi.org/10.1093/eep/dvab005
https://doi.org/10.1038/s42003-021-02435-0


4 A Systematic Review of Lead Exposure on Mental Health 71

Wang Z, Bao J, Wang T, Moryani HT, Kang W, Zheng J et al (2021) Hazardous heavy metals 
accumulation and health risk assessment of different vegetable species in contaminated soils 
from a typical mining city, central China. Int J Environ Res Public Health 18(5):2617 

Weaver VM, Jaar BG, Schwartz BS, Todd AC, Ahn K-D, Lee S-S et al (2005) Associations among 
lead dose biomarkers, uric acid, and renal function in Korean lead workers. Environ Health 
Perspect 113(1):36–42 

Weisskopf MG, Weuve J, Nie H, Saint-Hilaire M-H, Sudarsky L, Simon DK et al (2010) Association 
of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect 118(11):1609– 
1613 

Wen Q, Verheijen M, Wittens MMJ, Czuryło J, Engelborghs S, Hauser D et al (2022) Lead-exposure 
associated miRNAs in humans and Alzheimer’s disease as potential biomarkers of the disease 
and disease processes. Sci Rep 12(1):15966. https://doi.org/10.1038/s41598-022-20305-5 

Winter AS, Sampson RJ (2017) From lead exposure in early childhood to adolescent health: a 
chicago birth cohort. Am J Public Health 107(9):1496–1501. https://doi.org/10.2105/AJPH. 
2017.303903 
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Chapter 5 
Human Health Hazards and Risks 
Generated by the Bioaccumulation 
of Lead from the Environment 
in the Food Chain 

Camelia Bet,ianu, Petronela Cozma, and Maria Gavrilescu 

Abstract Taking into account the significant health concerns generated by heavy 
metals, the assessment of lead exposure from foodstuff consumption is a repre-
sentative topic in the evaluation of human health risk. Human exposure to lead 
is associated to numerous harmful effects, in particular, in children and pregnant 
women. The transfer of lead from soil and water to plants and through food sources 
to humans is the main route of exposure. Bioaccumulation is a dynamic process 
that plays a key role in the uptake of lead from terrestrial and aquatic ecosystems 
and transfer to higher levels of the food chain by biomagnification. Bioaccumulation 
mechanism is governed by the bioavailability, uptake/absorption, bioconcentration, 
and biomagnification. The present study synthetically analyzes the mechanisms and 
processes involved in the accumulation of lead from the abiotic environment and 
the trophic transfer by food webs in order to identify the potential risks generated 
for humans. Also, the study comprehensively surveyed the literature and discusses 
the main methodologies applied for assessing the human health risks generated by 
lead-contaminated food consumption. 
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5.1 Introduction 

In recent years, contamination of soil, air, and water with potentially toxic elements 
(PTEs) especially heavy metals (HMs), is a global environmental concern with impor-
tant implications on human health, mainly due to accumulation in the food chain 
(Tchounwou et al. 2012; Ali et al. 2019; Briffa et al.  2020; Labudda et al. 2022). The 
increased interest of scientist on this topic is a consequence of the fact that this group 
of pollutants presents toxic effects, even at low concentration, non-biodegradability, 
persistence in the environment, bioaccumulation in living organisms (Bharagava and 
Mishra 2018; Ali et al. 2019; Balali-Mood et al. 2021; Uddin et al. 2021; Mitra al. 
2022); also, HMs are considered the most widespread pollutants in the environment 
(Wani et al. 2015; Balali-Mood et al. 2021; Swaringen et al. 2022). 

Lead (Pb) has toxic properties at high concentrations, and the ubiquitous use 
of this element has determined contamination of the environment at global scale, 
generating considerable effects on human health (Nag and Cummins 2022). Human 
exposure to lead has been connected to different sources of industrial, agricultural, 
and domestic applications (Wani et al. 2015; Briffa et al.  2020; Collin et al. 2022). 
Lead is released into environment by both anthropogenic and natural sources (Wani 
et al. 2015; Collin et al. 2022; Nag et al. 2022). The main anthropogenic sources 
of lead are mining processes, metal processing, transport, coal burning, oil burning, 
painting processes, finishing operations, nuclear power plants and power lines, glass 
manufacturing, textile industry, industrial effluents, fertilizers, pesticides, leather 
tanning, car batteries, sewage sludge, lead water pipes, wood preservation, additives 
in pigments and gasoline, and paper processing (Tchounwou et al. 2012; Collin 
et al. 2022; Kumar et al. 2022a, b; Nag and Cummins 2022). According to Aslam 
et al. (2021), lead contamination is expected to increase over the next decade as 
a consequence of widespread use in the automotive industry and electric bicycles. 
However, some authors claim that the releasing into environment of this metal has 
decreased in recent years as a consequence of the reduction of lead in fuels, paints, 
and sanitary pipes (Nag et al. 2022). 

Numerous scientific researches have focused on assessing the effects of lead on 
various species of microorganisms (Borgulat et al. 2021; Tang et al. 2022), plants 
(Sharma and Dubey 2005; Pourrut et al. 2011; Shahid et al. 2011; Aslam et al. 2021; 
Kumar et al. 2022a, b), animals (Zhang et al. 2014; Lee et al. 2019; Latif et al. 2022), 
and humans (Tchounwou et al. 2012; Wani et al. 2015; Nag and Cummins 2022). 

Lead exposure is a concern for all age groups, but children’s exposure is a major 
public health problem, mainly due to the devastating consequences of this metal 
has on growth and development (Wani et al. 2015). According to data reported by 
UNICEF around 1 in 3 children, meaning approximately 800 million, present a blood 
lead levels at or above 5 µg/dL (Ress and Fuller 2020; Wilson et al. 2022). 

Humans exposure to lead is associated to a large number of harmful effects and 
diseases, effects on nervous system as neurodevelopmental problems at children, 
brain injury, neurotoxicity, and cell mortality, kidney failure, cardiovascular diseases, 
oxidative stress, liver effects, skeleton effects, reproductive malfunctions, immune
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system damage, cancer, including mortality (Wani et al. 2015; Tchounwou et al. 2012; 
Manea et al. 2020; Briffa et al.  2020; Collin et al. 2022; Mitra et al. 2022; Swaringen 
et al. 2022). Thus, some authors concluded that exposure to lead generated lethal 
effects on around 540 000 persons at worldwide scale in 2016 (Nag and Cummins 
2022). 

Human exposure to lead can occur through the following pathways by inhalation, 
by ingestion of contaminated food and water and by dermal absorption (Wani et al. 
2015; Nag et al. 2022; Collin et al. 2022). One of the main routes of exposure remains 
the ingestion of lead-contaminated food, which generates adverse health effects on 
children and adults. 

In accordance with the previously presented arguments, the study performed a 
literature synthesis by analyzing the bioaccumulation process of lead and transfer 
along the length of the food chain, analysis carried out from the perspective of 
identifying hazards and risks pose on human health by ingestion of contaminated 
food products. 

The dynamic processes such as the transfer, transport, and accumulation of poten-
tially toxic elements, such as Pb, in different abiotic environments, are directly linked 
to potential hazards and risks pose to human health and ecological receptors. Under-
standing the bioaccumulation mechanisms has important implications in identifying 
the possibilities for human health protection, as well as other organisms in aquatic 
and terrestrial ecosystems exposed to HMs. 

5.2 Bioaccumulation of Lead 

Bioaccumulation is an active biological process, characterized by the increasing in 
the concentration of a toxic compound by uptake from the abiotic environment in 
the tissues of living organisms and then accumulates in intracellular space, where it 
is sequestered by proteins and peptide ligands (Proc et al. 2021; Collin et al. 2022). 

Bioaccumulation is actually the result of several processes such as uptake/ 
absorption and loss, the uptake occurs through breathing but also through the food 
route, while loss occurs through excretion, metabolism, passive diffusion, transfer, 
and growth (Borgå 2013). The accumulation process occurs when the rate of uptake of 
toxic compound is higher than the rate of loss by metabolism or elimination (Choj-
nacka and Mikulewicz 2014; Chormare and Kumar 2022), which usually follows 
first-order kinetics (Savoca and Pace 2021). 

The rate of bioaccumulation is mainly influenced by type of exposed organism 
as well as the physical, chemical, and biological properties of the contaminant, 
environmental conditions, and the food chain (ATSDR 2007). Bioconcentration 
of lead in biota is directly influenced by factors such as age, size, trophic level, 
species, and dietary behavior. Bioaccumulation mechanism is governed by the 
bioavailability, uptake/absorption, bioconcentration, and biomagnification (Collin 
et al. 2022) (Fig. 5.1).



76 C. Bet,ianu et al.

Fig. 5.1 Bioaccumulation 
mechanisms of lead in biota 

Bioaccumulation depends on the binding stability of a chemical substance in the 
cellular compartments of the living organism and the half-life time. From this point 
of view, three categories of bioaccumulative substances are known, substances with 
a fast metabolic half-life, represented by chemical compounds that are degraded in a 
few weeks/days/hours/minutes, slow metabolic half-life, the compound is degraded 
in a few months and unassimilated from the gut (Chojnacka and Mikulewicz 2022). 
Understanding the process of bioaccumulation of metals and metalloids allows the 
assessment of hazards and risk related to their presence in the environment and in 
the food chain (Chojnacka and Mikulewicz 2014). 

The hazards generated to the presence of lead in soil are represented by the transfer 
of the metal in the soil–plant system and bioaccumulation in organs and tissues, and 
the transfer in the food chains. Plants can absorb free lead ions through capillary 
mechanisms or through cellular respiration (Collin et al. 2022). According to the 
ability of superior plants to adapt to presence in their growing environment of the 
toxic metals, plants are categorized in three main categories—indicators, excluders, 
and accumulators (Uddin et al. 2021). Metal indicator plants are represented by 
sensitive species to HMs presence, which can be used as possible bioindicators of 
metals pollution in soil or water (Mganga et al. 2011). The concentration of lead 
in the above-ground tissues of these plants reveals the level of soil contamination. 
While excluder plants include species that tolerate the presence of heavy metals in 
their environment up to a threshold concentration, for these plants, the accumulation 
coefficient is always lower than unit (Labudda et al. 2022). These plants present the 
ability to develop defense mechanisms by blocking the accumulation and transport of 
metal ions through the roots or through efflux pumps. Hyperaccumulators are plants 
with the ability to accumulate high concentrations of different PTEs in their tissues 
without showing significant toxicity effects (Anguilano et al. 2022). Around 720 
plant species are considered to be hyperaccumulators, they are able to accumulate 
high amounts of metal ions (Labudda et al. 2022) in the aerial parts without showing 
toxic effects (Suman et al. 2018). About 25% of the hyperaccumulators identified 
belong to the family Brassicaceae; and a significant number are part of the fami-
lies Steraceae, Euphorbiaceae, Rubiaceae, Fabaceae, Scrophulariacea, Myrtaceae, 
Proteaceae, Caryophylaceae (Suman et al. 2018), many of these families include 
edible species such as vegetables, legumes. 

The criteria for classification hyperaccumulator species have not been empirically 
defined, however, some studies (Rahman Farooqi et al. 2022) reveal that a plant
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can be considered hyperaccumulator for lead if shows an accumulation capacity 
higher than 1000 mg/kg dry weight (Suman et al. 2018). These plants show specific 
physiological mechanisms regarding the uptake, root-shoot translocation process, 
detoxifying mechanisms, sequestration, and bioconcentration of metals in different 
organs (Collin et al. 2022). 

5.2.1 Bioaccumulation of Lead in Crops 

Lead pollution in agroecosystems represents a global environmental issue (Naikoo 
et al. 2019), due to its high toxicity, it is classified as one of the most toxic heavy 
metals in the environment (Abedi et al. 2022; Zulfiqar et al. 2019; Kumar et al. 2020; 
Souahi et al. 2021; Collin et al. 2022). Pb and its compounds persist in soil for long 
periods because form stable complexes, where present for around 150–1500 years 
(Kanwal et al. 2020), resulting in the bioaccumulation in agricultural plants through 
various pathways—water, air, and soil (Kumar et al. 2020), followed by subsequent 
trophic transfer to other trophic levels (Kumar et al. 2022a, b). 

Considering the global interest posed by metals exposure, the evaluation of Pb 
intake from common agricultural products, such as grains, pulses, vegetables, and 
fruits, which are the base of the food pyramid, is representative in order to analyze 
the hazards and risks to humans exposed through food consumption. Several studies 
had been carried out in respect with transport, translocation, the accumulation, and 
toxic effects of lead in various crops such as rice (Oryza sativa) (Ashraf et al. 2015; 
Al-Saleh and Abduljabbar 2017; Thakur et al. 2017), maize (Zea mays) (Gu et al. 
2019; Metanat et al. 2019; Abedi et al. 2022; Hernández-Pitalúa et al. 2022), wheat 
(Triticum aestivum) (Wu et al. 2020; Wang et al. 2011; Souahi et al. 2021), Avena 
sativa (Souahi et al. 2021), barley (Ordeum vulgare) (Souahi et al. 2021), rye (Secale 
cereale), millet (Panicum miliaceum), potato (Solanum tuberosum) (Musilova et al. 
2015; Khan et al. 2017; Raletsena et al. 2023), tomato (Solanum lycopersicum) (Baldi  
et al. 2021), carrot (Daucus carota) (Ngole 2011), broad bean, (Vicia fava) (Shahid 
et al. 2011; Saadaoui et al. 2022), common bean (Phaseolus vulgaris) (Baldi et al.  
2021), onion (Allium cepa) (Jiang et al. 2014), spinach (Spinacia oleracea) (Ali et al.  
2015; Hussain et al. 2021), which are the most representative dietary sources of lead 
accumulation in human body. 

Rice is the most consumed cereal at global scale (Al-Saleh and Abduljabbar 2017), 
thus generating a major interest in this agricultural product regarding the analysis 
of lead accumulation from contaminated soil. In studies carried out in China, near a 
mining site (Huang et al. 2022), the lead concentration determined in rice was 0.11 
± 0.14 mg/kg, and 17% of the samples exceed the maximum concentration limit 
(MCL)—0.2 mg/kg. Norton and co-workers (2014) performed a meta-analysis deter-
mining lead concentration in rice seeds from 13 countries, investigating an impressive 
number of 1578 of rice seed samples. The results showed that all analyzed samples 
contained Pb (mean 0.04–1.85 mg/kg), high levels were determined for samples 
collected from China, followed by Nepal, India, and Sri Lanka, the other samples
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registered a mean value of lead in rice below 0.15 mg/kg. The highest concentrations 
of lead were recorded for samples collected from a site mine impacted, with 27.49 mg 
Pb/kg. However, excluding samples from areas known to be contaminated, only 0.6% 
of samples exceeded the standard for lead level in rice (0.2 mg/kg). Moreover, has 
been shown significant differences in lead accumulation between different varieties 
of rice, thus, the results demonstrated average concentrations of lead in grains ranged 
between 3.5 and 5.1 mg/kg (Liu et al. 2013). 

Other studies reported high Pb accumulation in wheat grains, the registered values 
ranged from 0.015 to 22.6 mg/kg (Wu et al. 2020). Guo et al. (2018) analyzed 16 
varieties of wheat and the results showed values of Pb in roots of 69.65 mg/kg, in 
stems of 4.93 mg/kg, in leaves of 1.90 mg/kg, respectively 0.24 mg/kg in grains, 
exceeding the MCL. Studies performed in Bangladesh showed that content of Pb 
in rice, wheat, and maize exceeded the maximum permissible limits in cereals, the 
highest values were obtained in wheat 4.04 mg/kg, while, rice and maize contained 
2.22 and 1.43 mg/kg (Kumar et al. 2022a, b). Maximum values are linked with high 
concentrations of lead in groundwater (0.06–0.16 mg/L), used for agricultural crops 
irrigation in the investigated area. Sharma et al. (2018) conducted studies in India, 
area Punjab, and showed extremely high concentration of lead in wheat, rice, and 
maize, respectively 16.98, 17.13, and 18.28 mg/kg, the results demonstrating a high 
bioaccumulation potential of lead in crops. 

El-Hassanin et al. (2020) found that Pb accumulation in maize grains was ranged 
from 0.01 to 0.55 mg/kg, samples cultivated in low-quality water-irrigated sites 
exceeded the maximum permissible limits; while, another work determined a level 
of 0.49 mg/kg of lead accumulated in maize grains (Lu et al. 2015). In experimental 
studies carried out in field, the concentration of Pb found in soil, roots, stems, leaves, 
and grains ranged in the following order: 172–551.34, 14.02–26.00, 8.07–14.09, 
4.713–7.100, 0.3133–1.0533 mg/kg, demonstrating the bioconcentration and transfer 
of the toxic compound from soil and accumulation into the organs of maize plants 
(Chiwetalu et al. 2022). 

However, Aslam et al. (2021) estimated that maize plants translocate from roots 
to leaves around 2–5% of the uptake Pb; also the relationship between the amount of 
lead in soil and its effect on maize production has been examined by several papers, 
the exposure at 30 ppm metal concentration recorded a decrease of 76–85% of the 
production (Ghani et al. 2010). 

Studies have shown that the degree of accumulation and translocation in wheat is 
dependent on concentration and bioavailability of metal in soil (Sharma et al. 2018). 
Nevertheless, the mechanism of speciation, translocation, and accumulation of lead 
in grains is not completely understood (Wu et al. 2020). 

A number of studies focused to assess lead contamination in the edible parts of 
plant leaves in different geographical areas, found that average concentration of lead 
varies on the vegetal species, soil pH, bioavailability, soil properties, metal concen-
tration, mobile forms, chemical form, the irrigation water quality, etc. (Musilova et al. 
2015; Najmi et al. 2023). It is well known that vegetables are essential components of 
the human diet, and cultivated on agricultural land contaminated with Pb, accumulate 
high metal by roots or may absorb these metal contaminants at foliar level (Ahmed
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et al. 2022). However, the higher metal accumulation has been observed in leafy 
vegetables, followed by tubers and fruits (Liu et al. 2012; Sulaiman et al. 2020). Pb 
concentrations in Spinacia oleraceae (spinach) leaves were higher than in Daucus 
carota (carrot) tubers, despite the fact that the carrot has a direct root contact with 
the contaminated soil, demonstrating a high translocation rate of lead to the aerial 
part of plant, that may indicate a selective uptake mechanism in the case of spinach 
(Ngole 2011). For example, study conducted by Khan et al. 2017 had investigated 
metal and metalloids concentrations in water, soil, and Solanum tuberosum (potato) 
at three different sites, and the result reveals a concentration of 1.504 mg/kg of Pb 
in tubers. Furthermore, other research (Musilova et al. 2015) describes a significant 
positive correlation between the content of Pb mobile forms in the soil and the rate 
of accumulation in potatoes, and may pose a hazard for human consumption through 
the high content of Pb ions in potatoes (0.244–0.855 mg/kg), exceeding the MCL 
(0.1 mg/kg). 

In leafy vegetables, Brassica chinensis, Amaranthus gangeticus, and Brassica 
rapa, the lead concentration was ranged between 0.03 and 0.05 mg/kg (Sulaiman 
et al. 2020). The average contents of lead in vegetables such as lettuce, radish, mint, 
parsley, and jarjir (Arugula) have indicated values ranged of 0.858–1.175 mg/kg for 
Pb (Najmi et al. 2023). 

According to Nag and Cummins, (2022) metals bioaccumulate in plants in the 
following order of BAFroot > BAFstem > BAFleaf > BAFfruit > BAFseed. This order of 
accumulation in plant organs was confirmed for lead. Several studies (Sharma and 
Dubey 2005; Guo et al. 2018; Usman et al. 2020; Baldi et al. 2021; Collin et al. 
2022) demonstrated that roots are more able to accumulate Pb ions, their subsequent 
translocation to stem and leaf or other parts is highly restricted (Vasile et al. 2021). 
It has been reported that Pb remains predominantly in the roots level (Sharma and 
Dubey 2005; Wu et al.  2020), from the total amount uptake, only 5% of the ions 
are transported to the aerial organs of the plant, the 95% remains accumulated at the 
roots level (Collin et al. 2022). 

Most studies show a low rate of translocation of lead between the roots and the 
aerial part, but taking into account the toxic properties of lead, its presence in edible 
parts of crops is an important factor that may induce important risks to human health 
through dietary exposure. 

5.2.2 The Mechanism of Lead Accumulation 

The mechanism of Pb accumulation in plants is based on the soil–plant relationship. 
Through the root system, plants take up water and nutrients from the soil and along 
with them absorb the free Pb (II) ions which are distributed in the top soil (Collin 
et al. 2022). Two main mechanisms for plant metals uptake are described here: one 
is passive uptake, determined by the membrane concentration gradient, and the other 
one is inducible uptake, determined by the specific substrate (Aslam et al. 2021; 
Schützendübel and Polle 2002). The transport of the absorbed ions is carried out
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through the xylem vessels or in the accompanying phloem cells that support the 
transport from the root system to the aerial parts of the plant, the stem, the leaves. Pb 
transport can be synthesized in this way: soil solution - epidermal cells of the root 
system—xylem vessels—leaves. Pb binds primarily to the root cell wall via esterified 
pectins. Polysaccharides, present in the walls of root cells, have functional groups 
such as –COOH, –OH, and –SH, involved in the binding of heavy metals to the roots; 
these play an important role in avoiding and tolerating metal stress (Rai et al. 2019). 
Under chemical stress conditions, polysaccharides from agricultural crops generate 
changes in the integrity of the cell membrane structure and cell organelles such 
as in chloroplasts and mitochondria, inactivation of enzymes by replacing integral 
components or binding to the sulfhydryl or carboxyl group, and changes in nucleic 
acid conformation (Rai et al. 2019). Transporter proteins play an important role in 
facilitating Pb homeostasis (Aslam et al. 2021). 

Since lead is a non-essential element for plant development, there are no specific 
channels for the uptake and transport of these ions (Collin et al. 2022). The translo-
cation of heavy metals occurs along the up-flowing in xylem vessels that transport 
the dissolved nutrients and discharge into the endoderm (Sharma and Dubey 2005). 

Another pathway of lead accumulation is represented by the foliar absorption 
of lead ions from the contaminated air by transfer through cuticles and stomata, 
then through the endoderm, the ions bind to the cell wall and the plasma membrane 
(Shahid et al. 2017). 

5.3 Trophic Transfer of Lead in the Food Chain 

Trophic transfer of heavy metals in food chains is a topic discussed in relation with 
terms as bioconcentration, metal enrichment, bioaccumulation, biomagnification, 
biodilution, and trophodynamics (Ali and Khan 2019). 

Trophic transfer, named also biotransference (Cardwell et al. 2013; Ali and Khan 
2019), refers to transfer of a toxic compound through the food webs, from a low 
trophic level to the higher level. It is considered that trophic transfer is specific to 
the chemical pollutant-biological species system, meaning that trophic transfer and 
biomagnification can be specific to each trophic chain, and it has been demonstrated 
that there are differences between laboratory and field studies (Cardwell et al. 2013). 

The accumulation process of heavy metals from the abiotic media—soil, sedi-
ments, and water in the body of a living organisms—depends on some factors related 
to the properties of toxic metal (speciation, pH, mobility, bioavailability) as well as the 
complex physiological mechanisms developed by the organisms for the metabolism, 
homeostasis, and detoxification of the contaminant (Ali et al. 2019; Ahmed et al. 
2019). 

The trophodynamics of lead in trophic chain (biomagnification or biodilution) has 
a major importance in assessing the risk pose by metals on biota and humans (Gao 
et al. 2021). Biodilution occurs in long trophic webs, while in short trophic chains, 
the phenomenon of bioamplification of lead occurs, which depends on biological
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species, community structure, environmental conditions, physiological parameters, 
and route of exposure (Griboff et al. 2018; Soliman et al. 2022). 

Biodilution is defined as a decrease of the toxic pollutant concentration with 
increasing trophic position in the food chain (Ali and Khan 2019; Griboff et al. 
2018). It has been established that lead trophodynamics varies in different food webs 
(Gao et al. 2021), in some food chain, lead concentration may biomagnify in biota 
(Rubio-Franchini and Rico-Martínez 2011; Tingson et al. 2019; Wei et al. 2016), 
while in other food chain tends to biodilute significantly (Zhang et al. 2017; Chen 
and Folt 2000; Gao et al. 2021; Hu et al.  2021; Gu et al.  2022). In general, terrestrial 
species show a strong pattern of biomagnification, while aquatic species does not 
follow a particular behavior pattern (Ahmed et al. 2019). 

Plants, the foundation on food chain, represent the primary producers and a 
pathway of exposure to Pb of herbivorous animals (primary consumers), which accu-
mulate Pb and are consumed by organisms located at higher levels (secondary or 
tertiary level). Primary producers represent the critical link in the trophic transfer of 
lead, because they ensure a permanent flow of metal ions between abiotic (soil, water) 
and biotic elements (Fig. 5.2). Thus, the species located on the top of the trophic web, 
including humans, tends to accumulate important levels of toxic substances through 
biomagnification. Life span is an important parameter involved in biomagnification, 
since organisms at higher trophic levels have a longer life span, which generates a 
prolonged period of exposure to toxic compounds, increasing the effects. 

Fig. 5.2 The trophic transfer 
of lead in the food chain.
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5.3.1 Tools for Bioaccumulative Potential Assessment 

Usually, some indices such as bioaccumulation factor (BAF), bioconcentration 
factor (BAC), transfer factor (TF), metal transfer factor (MTF), biota sediment 
accumulation factor (BSAF), biomagnification factor (BMF), and trophic magnifi-
cation factor (TMF) are applied for assessment of the accumulation, concentration, 
and transfer of lead into biota (van den Brink et al. 2015; Sun et al. 2020; Borgå et al. 
2011; Savoca and Pace 2021). Most of these indices show the degree of accumulation 
of lead in living organisms in comparison to the degree of its accumulation in abiotic 
environment. 

Transfer factor (TF), representing the soil-to-plant metal transfer factor, can be 
expressed as the ratio between the concentration of metal in plant and the concen-
tration of metal in soil, and offers the possibility to evaluate mobility of lead from 
soil to plant tissues and organs (Eq. 5.1) (Zhang et al. 2021). 

TF = Cplant/Csoil (5.1) 

where, Cplant and Csoil represent the concentration toxic metal in dry weight vegetal 
tissues and soil, respectively. 

Some terms, bioconcentration factor and biomagnification, are applied in corre-
lation with bioaccumulation. Bioconcentration factor (BCF) is used to evaluate the 
retention of lead in a living organism with the exclusion of dietary intake, only 
through the respiratory route from water in the case of aquatic organisms, or from 
the air in the case of terrestrial organisms. The bioconcentration process is charac-
terized by the situation where the concentration of lead in living organisms exceeds 
its concentration in the abiotic environment (Eq. 5.2) (Chojnacka and Mikulewicz 
2014). 

BCF = Corganism/Cwater (5.2) 

Sometimes these two indices, BCF and BAF, are confused because they have a 
similar way of determination in stationary conditions, but the differences are major 
from a conceptual point of view (Savoca and Pace 2021), considering that BCF 
excludes the dietary exposure pathway. 

Bioaccumulation factor (BAF) is an indicator applied usually to quantify the 
accumulation of toxic metals from the environment by living organisms due to uptake 
through all exposure routes, including transport across the body surface, respiration, 
and ingestion. BAF can be calculated as the ratio between the concentration of a 
specific metal or metalloid in biological tissues and the concentration of the metal in 
the environment (soil, sediments, and water) (Eq. 5.3) (Ali et al.  2019). 

BAF = Corganism/Cabiotic environment (5.3)
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where, Corganism is the lead concentration in the organism tissue and Cabiotic environment 

is the lead concentration in the abiotic medium. 
If the BCF or BAF of aquatic species is greater than 2000 (log10 BAF or log10 BCF 

> 3.3), then the toxic compound is classified bioaccumulative, when the BCF or BAF 
is greater than 5000 (log10 BAF or log10 BCF > 3.7), the compound is considered 
highly bioaccumulative (Savoca and Pace 2021). 

The assessing of metals accumulation in aquatics organisms applied the biota-
sediment accumulation factor (BSAF), expresses as ratio between the contaminant 
concentration in biota and the concentration of the contaminant in the sediments 
(Savoca and Pace 2021), and described by Eq. (5.4). 

BSAF = Corganisms tissue 

Csediment 
(5.4) 

where, Corganism tissue is the organism tissue concentration, Csediment is the sediment 
concentration of toxic (Melake et al. 2023). 

According to Kobkeatthawin and co-workers (2021), the BSAF values are classi-
fied into three main groups: (1) deconcentrator when BSAF has values lower than 1; 
(2) microconcentrator if BSAF has values between 1 and 2, and (3) macroconcentrator 
when BSAF takes values higher than 2. 

Biomagnification factor (BMF) describes the tendency of toxic compound to 
concentrate when it is transferred along the food web, generating a higher concen-
tration into the next trophic level (Córdoba-Tovar et al. 2022). In this way, the species 
on the top of food chain, especially humans, present risks of accumulating higher 
concentration of chemicals by biomagnification in food chain. Studies conducted 
by Huang (2016), Córdoba-Tovar et al. 2022) revealed that in aquatic systems, 
biomagnification is mainly influenced by environmental, ecological, and biological 
parameters. The BMF can be determined with Eq. (5.5): 

BMF = Corganism/Cprey/diet (5.5) 

where, Corganism and Cprey/diet are the metal concentrations in organism and prey or 
food, respectively (Liu et al. 2019; Sun et al. 2020; Chormare and Kumar 2022). 
Considering the definitions of BAF and BCF discussed previously, BMF could also 
be determined according to Eq. (5.6) (Savoca and Pace 2021): 

BMF = BAFpredator/BAFprey (5.6) 

Moreover, estimating the BMF based only on the predator/prey comparison is 
insufficient considering the very complex predator–prey relationships (Sun et al. 
2020). However, it is unknown whether species at all trophic levels are exposed to 
the hazards generated by specific level of pollutants, and is recommended to adjust 
the data by applying trophic magnification factor (TMF) (Madgett et al. 2021). 
TMF measures the biomagnification over the entire food chain or part of it, this 
factor is determined by field measurement, representing a weighted average of BMF
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per trophic levels, and can be determined from the slope of linear regression of 
log10Corganism versus the position n of the target organism in the trophic web, and 
is calculated according to Eq. (5.7) (Zhang et al. 2021). According to Madgett et al. 
(2021), trophic magnification factor assumes that food represents the main route of 
exposure to metals and trophic level is the main driver of bioaccumulation in the 
food chain. 

log10TMF = [
log10(Corganism n) − log10(Corganism 1)

]
/(n − 1) (5.7) 

where, Corganism tissue and Corganism food represent the lead concentrations in organism 
tissue and in food, respectively. 

Values of TMF exceeding 1 reveal the biomagnification of that contaminant along 
the food chain (Conder et al. 2012; Savoca and Pace 2021; Chormare and Kumar 
2022), while a value less than 1 indicates trophic dilution (Sun et al. 2020; 2019; 
Madgett et al. 2021). However, it is recommended that TMF estimates should be 
based on representative statistical analyses, in order to eliminate false positive and 
false negative errors in quantifying the bioaccumulation potential (Conder et al. 
2012). 

5.3.2 Trophic Transfer in the Terrestrial Systems 

In terrestrial ecosystems, soil-to-plants transfer of lead is considered the main route 
for the entry of lead into the food chain, and represents an important pathway of 
exposure of humans (Naikoo et al. 2019). A relevant study assessing the trophic 
transfer of lead and other metal species, was carried out by Angelova et al. (2010), the 
analysis included the chain soil—rapeseed—rabbit, the results showed the transfer 
of metals in rapeseed and later in rabbits fed predominantly with these plants, the 
lead accumulation was primarily realized in the kidneys and liver. The purpose of 
the study was to compare the results for two target groups of animals fed with plants 
harvested at a distance of 0.5 km and respectively, 15 km from the source of metal 
pollution. Interesting is the fact that the Pb bioaccumulation factor found in rapeseed 
plants increased in the following order: stems, leaves, and flowers, indicating a high 
soil-to-plant transfer factor. The study shows that for the vertebrate animals, that 
consume the contaminated plants, the concentration of lead in the liver, kidneys, 
muscles, bones, and blood of rabbits increased in the following order: muscle, blood, 
liver, bones, and kidneys. The results show a direct correlation of the transfer of the 
toxic compounds to tissues and organs at superior trophic levels, in relation to the 
concentration in the soil. Thus, the pollution factors (PF), calculated as ratios of the 
lead levels in the two groups of rabbits, show values between 1.19 and 3.12, the most 
representative effect was observed for bones with a PF equal to 3.12, followed by 
kidneys with PF = 2.80, which is due to the detoxification function of this organ, 
known as the tissues of metal accumulation (Akele et al. 2022; Angelova et al. 2010).
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Another representative way of transferring pollutants to humans is the ingestion of 
animal products (meat and dairy products) contaminated with lead, its accumulation 
in animals such as cows, sheep, goats, and other animals is a source of global concern, 
especially due to the consumption of dairy products mainly in children’s nutrition. 
The analysis of the transfer of lead from the soil to the grass and later in the milk 
for human consumption represents a way to identify and quantify the potential risks 
to human health. Some studies performed near an industrial metallurgical site from 
Peru, indicated average concentrations of lead in soil, grass, and cow milk samples 
of 217.81, 20.09, and 0.58 mg/kg, respectively. The transfer factors calculated for the 
soil to grass/plants system recorded values of 0.095, and for the grass-milk system, it 
had values of 0.031. It should be emphasized that the level of pollutant concentration 
in milk exceeded 29 times the maximum allowed values established at the European 
level (Chirinos-Peinado et al. 2021), representing a serious public health concern. 
This statement is supported by the high concentration in Pb in the investigated area, 
thus it was proven by the fact that 85% of the children had more than 10 mg/dL 
(ranged from 6.17 to 34.53 mg/dL) of Pb in the blood hemoglobin (Astete et al. 
2009), and over 55% had symptoms of lead intoxication. 

Lead transfer has also been studied for other terrestrial food chains that do not 
include humans, such as soil–plant-aphid-ladybird (Naikoo et al. 2019). The results 
demonstrated a bioamplification phenomenon in the soil-to-plants system, with a 
transfer coefficient higher than 1, but at the second trophic level, in aphids, the 
biodilution phenomenon occurred, which was also maintained at the third trophic 
level, respectively, in ladybird. Similarly, transfer of lead in the soil-plant-mealybug-
ladybird beetle trophic chain, showed a large transfer in plants, 2–4 times in the 
soil-to-roots system, but a decrease in Pb transfer coefficients was observed for 
roots-stems and stems-mealybug (Zhang et al. 2017). A study conducted by Dar 
et al. (2017) had evaluated the mustard-aphid-beetle food chain and the results show 
lead mobility in the third trophic level, even though it has usually been proven that 
lead is concentrated predominantly in the root-stem transfer. 

However, it should be mentioned that limited number of studies are available on 
the trophic transfer of lead in terrestrial biota, and in biological systems with complex 
trophic web that include big mammals and predators (Zhang et al. 2021). 

5.3.3 Trophic Transfer in the Aquatic Systems 

The most representative pathway for human health exposure of lead as well as other 
metals is considered fish and seafood consumption (Ahmed et al. 2019; Lee et al. 
2019; Sofoulaki et al. 2019); according to Griboff et al. (2018), accounting over 90% 
of the total exposure, followed by other routes such as skin contact and inhalation. 
Numerous studies have investigated bioaccumulation and trophic transfer of lead 
and other metals to different species of phytoplankton, zooplankton, crustacean, 
mollusks, fish in marine and freshwater ecosystems (Rubio-Franchini et al. 2016; 
Tingson et al. 2019; Lee et al. 2019; Sofoulaki et al. 2019; Gao et al. 2021; Madgett
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et al. 2021; Latif et al. 2022; Hu et al.  2023), the assessment of bioaccumulation in 
fish may be used as bioindicator for water quality evaluation (Mondal et al. 2018; 
Ahmed et al. 2019; Varol et al. 2022). 

Madgett et al. (2021) showed that a large number of physiological and ecological 
parameters are involved in the bioaccumulation and transfer of heavy metals in 
the aquatic environment, such as age and dimension of the species, feeding habits, 
habitat, sex, exposure duration, type of affected tissue, etc. Lead speciation in marine 
aquatic systems is influenced by the presence of carbonates, chlorides, and natural 
ligands. The formation of inorganic complexes with lead depends on the pH of the 
water, the concentration of these complexes is proportional to the total concentration 
of lead in the sediments, generating potential hazards mainly for benthic organisms, 
but also for marine biota (Zuluaga Rodríguez et al. 2015). 

There are three main pathways for lead uptake in fish via skin, gills, and dietary 
(Ali and Khan 2019; Sofoulaki et al. 2019; Latif et al. 2022). Skin and gills are organs 
which facilitate the interaction between soluble forms of lead and the fish body, the 
transfer of ions occurs at gills epithelium level by binding to the negative charged 
sites at the membrane level (Latif et al. 2022). The muscles tissues are the edible 
parts for human consumption and from this point of view, the muscles are the most 
representative organ in the assessment of lead accumulation in fish (Taweel et al. 
2013). Furthermore, some researchers have shown that for marine environments, 
ideal indicators for the bioaccumulation analysis of Cu, Cr, Pb, Zn, Cd, and Ni are 
the tissues from the liver, gills, and muscles (Yin et al. 2018; Gao et al. 2021). 

The exposure of fish to lead may induce toxic effects on membrane structure, 
generate the inflammation of the gut, cause oxidative stresses, neurotransmitter 
malfunction, changes in immunological responses, and other function due to its 
high affinity to red blood cells (Yin et al. 2018; Lee et al. 2019; Hu et al.  2023). 

Studies on the bioaccumulation of lead (Łuszczek-Trojnaret al. 2013) in selected 
tissues of Carassius gibelio (Prussian carp) showed that lead concentrations accu-
mulated in organs ranged from 2.0 to 7.4 mg/kg in the kidney, 3.0 to 5.2 mg/kg 
in the bone, and 4.5 mg/kg into hepatopancreas, by dietary exposure. A high rate 
of bioaccumulation was found at the beginning of the exposure period, the highest 
rates were recorded for muscles, hepatopancreas, intestines, and gills, suggesting a 
potential risk for human health by dietary exposure. Evaluation of the lead depuration 
revealed that the process depends on the type of organ, indicating a high elimination 
rate from soft tissues, while a very low depuration rate was recorded for scales and 
bones. 

In addition, studies carried out under controlled conditions of lead exposure of the 
fish juveniles of some edible species Tor putitora (Mahseer) and Ctenopharyngodon 
idella (grass carp) have demonstrated that an exposure time of 60 days generated a 
predominant bioaccumulation in the following organs: gills > liver > intestine > swim 
bladder > muscle > skin, for both species. Moreover, the omnivorous species bioac-
cumulate higher concentrations of lead (Latif et al. 2022), as the result of the trophic 
transfer at superior trophic level. Ahmed et al. (2019) investigated costal ecosystem 
from Bangladesh in order to assess the bioaccumulation index in six species of 
commercially fishes, used for human consumption, study led to the conclusion that



5 Human Health Hazards and Risks Generated by the Bioaccumulation … 87

among all analyzed metals, lead is found in the highest concentration (13.88 mg/kg) 
and the bioaccumulation factor (BAFs) for Pb had a value of 913.66. 

An extensive study carried out in a marine system, at different trophic levels, the 
food web included bivalves (4), gastropods (3), crustaceans (4), and fishes (6), showed 
that Pb in muscle tissues presents biodilution and Pb trophic magnification factors 
varied between 0.44 and 0.73 (Gao et al. 2021). An investigation of lead transfer 
along a trophic chain composed by four trophic levels: phytoplankton, zooplankton, 
shrimp, and fish; exhibited a concentration of Pb in fish 2–3 times higher than in 
control samples. Trophic level I accumulated metal with a bioconcentration factor 
from 930 to 3630, at the next trophic level in zooplankton, there was recorded a 
significant decrease of metal bioaccumulation, while at level III, from zooplankton 
to shrimp, BAF < 1, thus, at trophic level IV, in fish, Pb presented a BAF > 1.0. The 
high concentration of Pb (> 3 µg/g), distributed throughout the body of shrimps and 
fish, but predominantly in the muscles, leads to the conclusion that lead can generate 
risks for the health of consumers (Soto-Jiménez et al. 2011). 

The biomagnification of lead in fish has been described in the study carried out 
in a freshwater ecosystem, Aras River, Iran, in the trophic chain represented by 
crustacean—fish, the amount of lead in zander muscle (Sander lucioperca) ranged 
between 0.51 and 0.93 µg/g dry weight and the corresponding concentrations in 
amphipods (Gammarus sp.) were 0.40–0.66 µg/g of dry weight. The results displayed 
a direct correlation of heavy metals between amphipods and zanders (Dehghani et al. 
2022). 

Hu et al. 2021 analyzed heavy metals in a food web consisting of the following 
trophic groups aquatic plants, crustaceans, mollusks, and fish, the results showed a 
tendency of Cd, Cr, Cu, and Pb to be efficiently biodiluted with the transition to a 
superior trophic level, presenting values of TMF lower than 1. However, the highest 
concentrations were recorded in mollusks, which are edible species. Moreover, Nasri 
et al. (2017) demonstrated the accumulation of lead by feeding in the species Acan-
thodactylus boskianus and its transfer from aquatic food webs to terrestrial food 
webs. 

Generally, the transfer of HMs, and especially lead, through the food chain and 
the net accumulation in high concentrations in high level trophic species are a major 
issue in aquatic ecosystems and are particularly relevant to human food safety. 

Moreover, understanding of trophic transfer of the metals in complex ecosystems 
is not totally known, the studies carried out use the bioassay method, which is simpli-
fied compared to natural complex systems (Soto-Jiménez et al. 2011). However, these 
studies can contribute to the development of models for human health risk assessment. 

5.3.4 Bioindicators and Biomarkers 

A number of microorganisms, plant, and animal species have been identified to 
have potential to be applied as biological indicators in order to evaluate or monitor 
pollution with certain heavy metals. Bioindicator is a term used to define biological
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species applied as sensitive tool in measuring or prediction of environmental stress, 
in monitoring synergetic and antagonistic effects of chemical pollutants on biota 
(Azzazy 2020; Parmar et al.  2016). Biomarkers and bioindicators are widely used as 
a tool to measure the response to chemical stress factors. 

Species of mosses (Hylocomium splendens), lichens or vascular plants (Phrag-
mites australis, Cyperus rotundus, Eichhornia crassipes, Lygeum spartum, Atractylis 
serratuloides, Gymnocarpos decander) have been considered bioindicators of envi-
ronmental pollution with heavy metals and metalloids, including lead (Ali et al. 2008; 
Parmar et al. 2016; Jiang et al. 2018; Bayouli et al. 2021). Gupta et al. (2019) reported 
that lichen species were used as bioindicators for different isotopes of Pb. Mosses are 
the most used group as bioindicators and bioaccumulators of metal deposition in the 
environment, having a consistent application in the last decades (Jiang et al. 2018). 
The high sensitivity of plants to specific heavy metals reveals that a wide variety of 
plants can be bioindicators of heavy metal pollution in certain ecosystems. 

Acoording to Pal et al. (2023), vascular plants (Helianthus annum, Ficus reli-
giosa), lichen species (Graphis scripta), or invertebrates, insects (Apis mellifera, 
Polistes), and annelids (Hediste diversicolor), starfish, and birds (Passer domesticus) 
are the most common bioindicators for the detection of lead (Pb). Other species are 
indicators of quality; thus, frogs are considered bioindicators indicating changes in 
the environment, being sensitive species (Parmar et al. 2016). It is well known that 
fish have been considered indicator species of heavy metals in aquatic ecosystems, by 
determining some biochemical, haematological, or histological parameters of fish, 
the quality of the aquatic ecosystem can be estimated. Thus, it was found that fish 
Cyprinus carpio is a bioindicator species of Pb in water (Latif et al. 2022). 

Environmental biomarkers include measurable parameters (chemical indicators, 
proteins, genes, etc.) useful to developing models regarding molecular toxicity mech-
anisms in different species of the investigated ecosystem (Azzazy 2020). Biological 
markers have the great advantage that presents the ability to illustrate the indirect 
biotic stress of pollutants, while other categories of analyses fail to achieve this 
goal (Zaghloul et al. 2020). Thus, has been proved that the presence of flavonoids 
and phenolic compounds reveal chemical stress in plants (Mongkhonsin et al. 
2016; Jańczak-Pieniążek et al. 2022), also, the decreasing in the photosynthesis 
process with the decreasing in the chlorophyll pigments content, closing of the 
stomata and the accumulation of reactive oxidative species (ROS) (Krystofova et al. 
2009; Azzazy 2020) show the heavy metal stress in plants. Phenolic compounds in 
plants are involved in scavenging ROS and chelating heavy metals (Michalak 2006; 
Mongkhonsin et al. 2016), a high number of phenolic acids with different capacities 
of action have been identified in plants (Chen et al. 2020). 

In risk assessment, biomarkers can be useful tool for hazard identification and 
exposure assessment. The main benefits of using biomarkers in risk assessment 
summarize all exposure pathway at metal (Filipoiu et al. 2022). Usual human 
biomarkers applied for toxicological assessment are represented by blood, urine, 
nails, and hair. The most reliable biomarkers for human exposure to lead are blood 
lead (Pb-B), urine lead (Pb-U), and plasma lead (Pb-P). Pb-B is the most used 
biomarker and is determined in red cells, with the increase of the value of this
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marker, the values of Pb-U and Pb-P also increase and indicate a recent exposure 
situation (Sakai 2000). 

The results of bioavailability of Pb tests showed that the half-life of Pb is 1 h in 
plasma, approximately 25–35 days in blood, 40 days in soft tissues, and 28 years 
in bones (Alimonti and Mattei 2008; Deshommes et al. 2012; Kumar et al. 2020). 
According to data presented by Kumar et al. (2020), an adult with an average weight 
of 70 kg accumulates an average of 120 mg of Pb, distributed as such 0.2 mg/L in 
blood, 5–50 mg/kg in bones, and 0,2–3 mg/kg in different tissues. 

Some studies reported that the information provided by individual biomarkers 
are limited, therefore, the integrated use of biomarkers with bioindicators is 
recommended for a relevant and reliable assessment (Araújo et al. 2018). 

5.4 Bioavailability of Lead 

5.4.1 Bioavailability of Lead in Soil and Plants 

Currently, the bioavailability of metals in the soil is a useful tool in human health risk 
assessment procedure (Yan et al. 2017). There is no comprehensive and fully accepted 
definition of this concept, however, bioavailability is recognized as a dynamic process 
(Mebane et al. 2020; Deshommes et al. 2012) that includes three stages: the first 
includes processes of a physicochemical nature called the availability of the envi-
ronment, the second includes the process of uptake, represented by the environment 
bioavailability, and the third stage generates physiological changes or accumulation 
processes in organisms, called the toxicological bioavailability (Kim et al. 2015). 

The bioaccumulation in plants is depending on the mobility of lead, and it is 
known that in natural conditions, lead is one of the least mobile metals in soil 
(Rolka and Wyszkowski 2021). The bioavailability of lead in soil depends on several 
factors such as soil reaction, organic matter content, clay minerals content, soil 
particle size, texture, capacity for cation exchange, organic colloids, aluminum and 
iron oxides, soil salinity, carbonates content, organic carbon content, total nitrogen, 
cation exchange capacity, aluminum compounds, the content of sulphate and phos-
phate, redox status, soil microorganisms activity, aeration, presence of amendments 
(Sharma and Dubey 2005; Keran et al. 2008; Ming et al. 2012; Kushwaha et al. 2018; 
Wieczorek et al. 2018; Kumar et al. 2020; Li et al.  2020; Rolka and Wyszkowski 
2021; Vasile et al. 2021; Abedi et al. 2022;Mousavi et al.  2022; Wijayawardena et al. 
2023). 

Generally, Pb present in the soil matrix is strongly bonded to the organic matter 
or colloidal material or can exist in a precipitated form, which reduce the mobility of 
the compound and implicitly decrease the bioavailability for plant roots uptake and 
animals (Sharma and Dubey 2005). 

However, some studies have shown that the bioavailability of Pb in soils is rela-
tively high (Lamb et al. 2009; Oorts et al. 2021), it depends on the lead chemical form,
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thus soils freshly spiked with lead in form of salts indicated a higher bioavailability 
than long-term aged soils (Ming et al. 2012). The most stable forms of Pb in the 
environment are represented by the ionic forms, Pb (II), oxides and hydroxides and 
complexes with Pb oxyanions, under reducing conditions, has been established that 
Pb sulfides are the most stable forms (Vasile et al. 2021), while, Pb (II) is the most 
common and sensitive form of Pb (Mousavi et al. 2022). In the form of complexes, 
lead is immobilized at the soil matrix level, being unavailable for plant uptake and 
transport (Aslam et al. 2021). 

The availability of lead in plants is influenced by the plant factors such as roots 
surface area, roots exudates, the presence of mycorrhizae, and rate of transpiration 
(Sharma and Dubey, 2005; Aslam et al. 2021). In addition, at rhizosphere level, 
the Pb tends to bind to carboxyl groups of the carbohydrates galacturonic acid and 
glucuronic acid in the cell wall, forming a protective barrier of the root system, which 
has the effect of limiting transport to the alloplasts (Sharma and Dubey 2005; Collin 
et al. 2022). It was found that lead moves mainly through the root apoplasts, crosses 
the cortex, and accumulates in the endoderm (Collin et al. 2022). 

Absorption process in the root cells is governed by binding of Pb ions on the 
ion exchangeable sites located in the cell wall and the transport of extracellular 
precipitate, in the form of Pb carbonate that will accumulate in the cell wall (Sharma 
and Dubey 2005). Some authors reported that dicotyledonous plants can uptake 
higher amount of metal in their roots than monocotyledonous plants (Sharma and 
Dubey 2005). 

The presence of other metal species in soil can influence the bioavailability of 
lead in soil, for example, study performed by Kushwaha et al. (2018) demonstrated a 
strong positive correlation between the concentration of Pb and Cd in the soil and their 
bioavailability. In addition, the relationships between metals are complex and further 
research should be performed for assessing the correlations of the metals bioacces-
sibility and for a comprehensive understanding these relationships (Wijayawardena 
et al. 2023). 

5.4.2 Lead Bioaccessibility in Animals and Humans 

Lead bioavailability in relation to animal species and humans refers to the fraction 
actually available and taken up by an organism, while bioaccessibility represents 
the fraction that interacts with dermal contact surface and is potentially available 
to be absorbed and adsorbed by the organism (McGeer et al. 2004; Wijayawardena 
et al. 2023). Absolute bioavailability (ABA) refers to the fraction of an ingested lead 
dose that crosses the gastrointestinal epithelium and is available for distribution to 
tissues and internal organs. Relative bioavailability (RBA) can be calculated as the 
ratio between the absolute bioavailability value of lead in soil and a value of a water-
soluble reference form of lead. ABA and RBA are usually determined by applying 
animal models (EPA 2021).
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In vivo and in vitro measurements were developed to determine the bioavailability 
of lead. In vivo models are considered to be expensive and complex, requiring a long 
time for application, while in vitro models have many advantages, are simply, highly 
reproducible, and easier to be managed, do not involve ethical elements, nevertheless 
may have a high degree of uncertainty. Uncertainties in various measurements create 
difficulties in developing predictability models (Deshommes et al. 2012; Yan et al. 
2017). 

Currently, to estimate the relative bioavailability (RB) of lead in soil, several 
animal models such as rats, mice, rabbits, monkeys, and pigs are used; the method 
is based on determining the Pb concentration in biological fluids (blood) or tissues 
(bones, liver, kidneys), and the measured parameters indicate the absorbed dose of 
metal (Deshommes et al. 2012). The models are indicative because, due to the phys-
iological differences, they cannot supply reliable data regarding the bioavailability 
of Pb for humans (Kumar et al. 2020). 

For in-vitro studies of a series, models for estimating single metal and metalloids 
bioaccessibility were developed and applied over time, such as Relative Bioavail-
ability Leaching Procedure (RBALP), the Solubility Bioaccessibility Research 
Consortium assay (SBRC), Biotic ligand model (BML), Simplified Physiologically-
Based Extraction Test (SBET), Physiologically-Based Extraction Test (PBET), In 
Vitro Gastrointestinal (IVG), In Vitro Digestion Model (RIVM), and the Unified 
BioAccessibility Research Group Europe (BARGE), other applied models are 
Bbiomet, PNEC-pro, and Biotic Ligand Model (BLM) (Kumar et al. 2020; Mebane 
et al. 2020; Wijayawardena et al. 2023. https://arche-consulting.be/tools/lead-chr 
onic-biotic-ligand-model/). 

McGree et al. (2004) claim that mechanistic models for the evaluation of bioavail-
ability, bioaccumulation, and toxicity of metals are more reliable and justified in 
comparison to empirical methods, but require new approaches and studies in this 
direction. A Biotic Ligand Model (BLM) was developed for estimating the toxicity 
of lead in aquatic environment, this includes, in the analysis, the geochemical balance 
of the exposure environment and the relationship with the exposure conditions, as 
well as the characteristics of the exposed organism (biotic ligand). The BLM model 
combines the factors influencing lead speciation in water as well as various abiotic 
parameters (McGree et al. 2004; https://arche-consulting.be/tools/lead-chronic-bio 
tic-ligand-model). Such BLM models have been developed and successfully applied 
for metals from freshwater—aluminum, cadmium, cobalt, copper, nickel, lead, zinc; 
also, for marine ecosystems—copper, nickel, and zinc. 

5.5 Pathways of Human Exposure to Lead 

Lead (Pb), a non-essential metal(loid) for living organisms, can be found in very low 
levels in the Earth crust (around 0.002%), therefore, background levels of Pb can 
be retrieved in soils based on geological sources. However, anthropogenic sources 
have a major role in the increasing of Pb concentrations in soil, mining activities

https://arche-consulting.be/tools/lead-chronic-biotic-ligand-model/
https://arche-consulting.be/tools/lead-chronic-biotic-ligand-model/
https://arche-consulting.be/tools/lead-chronic-biotic-ligand-model
https://arche-consulting.be/tools/lead-chronic-biotic-ligand-model
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being the most significant source of soil HMs contamination (Kumar et al. 2022a, b; 
Nag and Cummins 2022). Due to its properties (corrosion resistant, soft in texture, 
malleable, with good electrical conductivity) (NHMRC 2015; Efanny et al. 2019), 
lead has a large diversity of uses in manufacturing (glass industry, leather tanning, 
paint, metal plating, battery manufacturing). Environmental contamination with Pb 
may also occur during burning of coal, gas emission from vehicles, smelting of 
ores, oil combustion, agricultural practices (fertilizers, pesticides), as well as, from 
industrial and domestic wastes (Efanny et al. 2019; Kumar et al. 2022a, b) (Fig. 5.3). 

General population may be exposed to lead via ingestion (oral consumption of Pb-
contaminated water and food—cereals, vegetables, fruits, fish, eggs, meat), inhala-
tion (direct breathing of Pb-laden dust, particulate matter, tobacco smoke), or dermal 
exposure (contaminated soil and dust) (Kumar et al. 2022a, b) (Fig. 5.3). 

Lead, an toxic, hazardous, and persistent metal was classified as being probably 
carcinogenic to humans (Group 2A) by the International Agency for Research on 
Cancer (IARC), while World Health Organization (WHO) reported it among the ten 
chemicals of major public health threat (Cozma et al. 2019; EFSA 2012; Wang et al. 
2019). Exposure to lead over a short period of time (acute exposure) may induce 
coma, shock, constipation, diarrhea, vomiting, seizures, or even death. Continuous 
exposure to lead across a longer period of time (chronic exposure) may decrease blood 
pressure and mental ability of brain, induce memory loss and anemia, damage kidney, 
liver, and brain and even may cause reproductive problems (to adults) (NHMRC 2015; 
Efanny et al. 2019; Aslam et al. 2021; Zyambo et al. 2022; Hoseini et al. 2023). 

There are several papers reported on the evaluation of heavy metals concentration 
in different contaminated media (air, water, soil) and as a consequence, the presence 
of HMs in different food categories (cereals, fruits, eggs, fish, meat) and not only, is 
investigated. These works are very important to initiate epidemiological studies in 
order to estimate the health risks related to these pollutants. For example, Hoseini

Fig. 5.3 Sources of lead in the environment and pathways to human exposure 
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et al. (2023) analyzed the level of Pb in hen eggs (considering a total of 42 eggs from 
17 major brands), one of the main sources of nutritious food from Iran. The average 
Pb concentration in all samples was 7.16 ± 0.248 µg/kg, being however, lower 
than the maximum permitted levels established by the Joint Food and Agriculture 
Organization of the United Nations/World Health Organization (FAO/WHO) and the 
Institute of Standards and Industrial Research of Iran (ISIRI) (500 µg/kg and 50 µg/ 
kg, respectively) (Hoseini et al. 2023). Di Bella et al. (2021) analyzed, among others, 
the concentration of trace metals (Cd, Pb, Hg) in the muscle tissue of farmed sea bass 
marketed in Sicily (Southern Italy). The mean concentrations of trace metals were as 
follows: 0.031422 µg/g, 0.109931 µg/g, 0.023099 µg/g wet weight for Cd, Pb, and 
Hg, respectively. However, the levels of Cd, Pb, and Hg were lower than the legal 
threshold of trace metals in fish muscle (mg/kg wet weight) established by European 
Commission/European Union and FAO (0.05/0.5 for Cd, 0.3/0.2 for Pb, and 0.5/ 
0.5 for Hg). Baldi et al. (2021) studied the bioaccumulation and translocation of 
lead in seven herbaceous plants (barley, castor bean, common bean, Indian mustard, 
sorghum, spinach, and tomato) grown in urban and peri-urban soil (from Montepaldi 
region, Italy) polluted with lead in different concentrations (300, 650, 1000 mg Pb/ 
kg). Even none of the species were not classified as lead hyperaccumulators, the 
Pb concentration in the edible parts of the plants exceeded the safe limit set by 
FAO/WHO. For example, barley and sorghum accumulated a Pb concentration of 
3.4–30.3 and respectively, 8–27.2 times higher than the maximum allowable safe 
limit (ML) imposed by the Codex Alimentarius. Thus, numerous studies carried 
out in various geographical regions, on basic food categories, have shown that the 
presence of lead was detected in different concentrations, many samples exceeding 
the maximum allowable safe limit (ML), data that are summarized in Table 5.1. Also,  
it is concerning that in infant foods, the lead was identified in high level, in all the 
analyzed data exceeds the MCL (Table 5.1).

It is well known that lead has a poor bioavailability for plants due to its extreme 
insolubility compared to other metals, and as a consequence, only 5% of Pb is trans-
ported into aerial components and 95% remains accumulated in roots (Aslam et al. 
2021; Ros,ca et al. 2021). 

Ahmed et al. (2020) conducted a study to evaluate the potential health risk of 
workers exposed to HMs, from one of the largest plastic companies (from Dhaka 
region, Bangladesh). In this regard, blood samples of the workers were collected 
based on ages and smoking status, considering also the measurement of indoor 
industrial dust samples. The results indicated a tendency of the toxicity of the HMs in 
human blood indicated as below: Pb > Zn > Ni > Cd, while the highest concentration 
level ranges were registered for Pb (14.50–48.00 µg/L). Regarding the concentra-
tion of HMs collected from dust samples, higher concentrations were obtained for 
Pb (47.24 mg/kg) in the pellet manufacturing section and for Cd (4.20 mg/kg) in the 
plastic waste recycling section (Ahmed et al. 2020). In a study performed in Iran, from 
200 subjects (workers exposed to lead), with a mean age of 45.8 ± 11.8 years, from 
which 92% were male, the mean blood lead level (BLL) was 27.77 ± 39.45 µg/dL. 
The final results suggested that people with chronic lead exposure with BLL higher 
than 10 µg/dL are at risk of renal, liver, and hematologic disorders (Nakhaee et al.
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2018). Occupational exposure of adults from Benin City, Nigeria (mechanics, auto 
electricians, petrol attendants etc.) to environmental lead with increased blood lead 
level associated with liver dysfunction was also reported by Onyeneke and Omokaro 
(2016). These results were to be expected because it is well-documented that BLL 
> 10  µg/dL may pose hazardous effects on various human organs (especially in 
case of infants, children, and pregnant woman) (Boskabady et al. 2018; NHMRC 
2015), while for workers in occupational exposure, a BLL > 30 µg/dL is considered 
unsafe (Boskabady et al. 2018). Jusko et al. (2008) noted that children’s intellectual 
ability, including intelligence quotient (IQ), at 6 years of age is affected by blood lead 
concentrations substantially below 10 µg/dL. Lanphear et al. (2005) also concluded 
that environmental lead exposure in children with maximum BLL < 7.5 µg/dL is 
linked to intellectual deficits. 

Average-specific guideline values (e.g. for drinking water quality and air quality 
guidelines, maximum limits in food) developed by international organizations (e.g. 
WHO, FAO/WHO) are now available for several chemicals (WHO 2010). For 
example, the permissible limit of Pb in drinking water was set at 10 µg/L in the 
European Union (WHO 2008; SCHER 2011). Directive 86/278/EEC for Protection 
of the Environment (European Communities Council 1986) limits the level of Pb in 
the agricultural soil between 50 and 300 mg/kg (Nag and Cummins 2022). 

5.6 Lead Human Health Risk Assessment 

Human health risk assessment (HHRA) is a broad evaluation approach based on 
predictive tools, that connects environmental pollution and human health, by char-
acterization and quantification of any possible adverse effects on human health asso-
ciated with their exposure to contaminated media (Jia et al. 2015; Yang et al. 2015). 
HHRA is the first component of risk analysis process followed by risk management 
and risk communication (WHO 2021). Risk assessment involves understanding the 
probability of an adverse effect occurring within a specified time period taking into 
account the amount of chemicals present in the environment (e.g. soil, water, air) or 
in food products (vegetables, fruits); routes of exposure; exposure time; toxicity of 
the chemical substance; category of population exposed/potential receptors (Yang 
et al. 2015; Cozma et al. 2018; Minut et al. 2020). 

HHRA includes five general steps (https://www.epa.gov/risk/human-health-risk-
assessment; Hlihor et al. 2018; WHO  2021): (1) problem formulation (defining the 
scope and the objective of the assessment); (2) hazard identification (stressor iden-
tification including also the examination of available scientific data for a particular 
chemical); (3) evaluation of the dose–response relationship (relationship between 
exposure and effects, considering reference dose (RfD) - the concentration of a 
chemical for which adverse effects on human health are known to occur); (4) expo-
sure assessment (data about the population exposed, chemical sources, magnitude, 
frequency, duration, route of exposure); (5) risk characterization (risk estimation

https://www.epa.gov/risk/human-health-risk-assessment
https://www.epa.gov/risk/human-health-risk-assessment
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and risk description, providing important qualitative or quantitative information for 
decision-making stakeholders). 

The HHRA of metals is usually evaluated considering average daily dose (ADD), 
hazard quotient (HQ), hazard index (HI), and cancer risk (CR), according to USEPA 
(United States Environmental Protection Agency) model. To estimate metals daily 
intake, ADD for non-carcinogenic and carcinogenic is calculated based on the 
following equation (Eq. 5.8) (USEPA  2004; Hlihor et al. 2017, 2018; Taiwo et al. 
2019): 

ADD = 
C × IR × EF × ED 

BW × AT (5.8) 

where: ADD = average daily dose of metal (mg/kg/day); C = concentration of 
metal detected in the sample (mg/kg); IR = ingestion rate (g/day); ED = exposure 
duration (years) = 70 years (average lifetime for carcinogens) and 5 years (for non-
carcinogens); EF = exposure frequency (day/year) = 365 day/year; AT = averaging 
time of life expectancy for adults considered in the study = EF × ED (days); BW = 
body weight of the different age category (children, adolescents, adults) (kg). IR, EF, 
ED, AT, and BW values are standard values according to USEPA. More information 
can be found on USEPA which developed multiple guidance materials on human 
health risk assessment (USEPA 1992, 2004, 2011). 

Depending on exposure pathways, the average daily dose of metal through inges-
tion, inhalation, or dermal contact may be calculated. For each case, there are different 
features that should be considered. Regarding dietary exposure, food ingestion rate 
varies along with the type of food, source of food, and age category. In case of dermal 
exposure, skin adherence factor, dermal absorption factor, and exposed skin area are 
taken into account. More details are presented in the literature (Peng et al. 2017). 

Further, the risk (for non-carcinogenic substances) can be determined by the 
hazard quotient (HQ) which is the ratio of the average daily dose (aADD—for 
acute exposure, cADD—for chronic exposure) to the corresponding reference dose 
(ARfD—acute reference dose, in mg/kg/day or Acceptable Daily Intake (ADI), for 
chronic exposure, in mg/kg/day). 

For cancer risk (CR), the probability of a person to develop cancer, over a lifetime, 
as a result of exposure to a substance that is a potential carcinogen—a cancer slope 
factor, SF, in (mg/kg/day)−1, is considered, which can be extrapolated from the Inte-
grated Risk Information System (IRIS) Database (https://www.epa.gov/iris) (Hlihor 
et al. 2018; USEPA  1998) (Fig. 5.4). ARfD and ADI values for different chemicals 
are available on IRIS database (chemical search task); Agency for Toxic Substances 
and Disease Registry (ATSDR) (https://www.atsdr.cdc.gov/toxprofiledocs/index. 
html); Risk Assessment Information System (RAIS) (http://rais.ornl.gov/tools/profil 
e.php); eChemPortal (https://www.oecd.org/env/ehs/risk-assessment/echemportalg 
lobalportaltoinformationonchemicalsubstances.htm), or INCHEM (http://www.inc 
hem.org/).

Human dietary exposure to trace metals generally originates from the food 
consumption of the population (Di Bella et al. 2021). In this regard, some important

https://www.epa.gov/iris
https://www.atsdr.cdc.gov/toxprofiledocs/index.html
https://www.atsdr.cdc.gov/toxprofiledocs/index.html
http://rais.ornl.gov/tools/profile.php
http://rais.ornl.gov/tools/profile.php
https://www.oecd.org/env/ehs/risk-assessment/echemportalglobalportaltoinformationonchemicalsubstances.htm
https://www.oecd.org/env/ehs/risk-assessment/echemportalglobalportaltoinformationonchemicalsubstances.htm
http://www.inchem.org/
http://www.inchem.org/
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Fig. 5.4 Risk characterization and interpretation

exposure assessment tools and guidelines by food can be found on USEPA database 
(https://www.epa.gov/expobox/exposure-assessment-tools-media-food) (e.g. Inter-
national Programme on Chemical Safety (IPCS); USEPA. (2007)—Framework for 
Metals Risk Assessment; World Health Organization (WHO)—Guidelines for the 
Study of Dietary Intakes of Chemical Contaminants, etc.). 

United States EPA ExpoBox (https://www.epa.gov/expobox/exposure-factors-intera 
ctive-resource-scenarios-tool-expofirst) is an important tool providing a compilation 
of exposure assessment that links guidance documents, databases, templates, refer-
ence materials designed and released by EPA’s Office of Research and Development 
in 2013 (https://www.epa.gov/expobox/basic-information-about-epa-expobox). 

ConsExpo Web (https://www.consexpoweb.nl/) is a tool released in 2016 by National 
Institute for Public Health and the Environment (RIVM) of the Netherlands (WHO 
2021), especially applied for assessing the exposure to chemical substances from 
daily consumer products (industrial chemical and biocides). Also, since 2002, Euro-
pean Food Safety Authority (EFSA) developed risk assessments studies for over 
5000 substances in food and feed (Dorne et al. 2021). OpenFoodTox is a chem-
ical hazard database designed by EFSA, which comprises open source data for 
the chemical compounds characterization (https://www.efsa.europa.eu/en/data-rep 
ort/chemical-hazards-database-openfoodtox), including pesticides, flavorings, nutri-
tional sources, feed additives, contaminants—persistent organic pollutants, marine 
mycotoxin, melamine, heavy metal ions, and metalloids etc. (Dorne et al. 2021). 

European Commission or Member States have previously sent requests to EFSA 
to develop risk assessments on several metals, including lead, cadmium, arsenic, 
chromium, mercury, nickel, and uranium. In 2010, the experts from EFSA published 
a scientific opinion on possible health risks associated to the presence of lead in

https://www.epa.gov/expobox/exposure-assessment-tools-media-food
https://www.epa.gov/expobox/exposure-factors-interactive-resource-scenarios-tool-expofirst
https://www.epa.gov/expobox/exposure-factors-interactive-resource-scenarios-tool-expofirst
https://www.epa.gov/expobox/basic-information-about-epa-expobox
https://www.consexpoweb.nl/
https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox
https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox
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food; cereals, vegetables, and tap water were considered the major routes to lead 
dietary exposure for the majority of Europeans. The experts concluded that: “current 
levels of exposure to lead pose a low to negligible health risk for most adults but 
there is potential concern over possible neurodevelopmental effects in foetuses, 
infants and children” (https://www.efsa.europa.eu/en/topics/topic/metals-contamina 
nts-food). The EU framework on contaminants in food comprises: Regulation 315/93/ 
EEC containing the principles of EU legislation on contaminants in food; Regulation 
EC 1881/2006 establishing the maximum levels for some contaminants in foodstuff, 
including nitrate, mycotoxins, lead, cadmium, mercury, inorganic tin; Regulation EC 
333/2007 comprising the methods of sampling and analysis for the official control 
of the maximum levels of these metals (CR, 2021) (https://www.efsa.europa.eu/en/ 
topics/topic/metals-contaminants-food). Further, the maximum levels of undesirable 
substances in animal feed are provided in Annex I of the EU Directive 2002/32/EC 
(available on https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L 
0032). 

EFSA delivered several information on the levels of trace metals elements (e.g. 
Cd, Pb) detected in a series of foods (e.g. fish, eggs, fruits, vegetables, drinking water, 
alcoholic, and non-alcoholic beverages etc.), from the European market and further, 
estimated human exposure to these chemicals by using individual data available on 
the European food consumption database (Di Bella et al. 2021). In this regard, EFSA 
questioned the value of lead provisional tolerable weekly intake (PTWI) of 25 µg/kg 
b.w., established by European Commission’s Scientific Committee for Food (SCF), as 
being completely non-safe for the population. Moreover, the Joint FAO/WHO Expert 
Committee on Food Additives (JECFA) estimated, for this threshold, a decrease up to 
3 IQ points in children and an increase in systolic blood pressure of almost 3 mmHg 
for adults (Wang et al. 2019). Even though this threshold was withdrawn, there is no 
evidence of other new limit (EFSA 2012; Wang et al. 2019; Koch et al. 2022). On 
the contrary, in 2010, EFSA Panel on Contaminants in the Food Chain (CONTAM) 
reported a scale of values “for the 95% lower confidence limit of the benchmark dose 
of 1% extra risk (BMDL01) for each endpoint” (Koch et al. 2022). These BMDL 
(benchmark dose lower confidence limit, %) values describe the interconnection 
of dietary intake, metal content, and the risk of intoxication associated with health 
problems occurrence (EFSA 2012; Koch et al. 2022):

. For children, a dietary intake of 0.50 µg/kg b.w. per day (BMDL01) was associated 
with developing neurotoxicity effects;

. For adults, a dietary intake of 1.50 µg/kg b.w. (BMDL01) and 0.63 µg/kg b.w. 
(BMDL10) was associated with cardiovascular problems and chronic kidney 
diseases, respectively. 

EFSA recommended the margin of exposure (MOE) approach to evaluate the 
health risks from dietary exposure to lead (Wang et al. 2019). The MOE can be 
defined “as the ratios of the observable effect level (e.g. benchmark dose lower 
bound (BMDL)) on the dose–response curve to the critical effect and the exposure 
level of the population” (Wang et al. 2019) and can be calculated with the following 
formula (Eq. 5.9):

https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food
https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food
https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food
https://www.efsa.europa.eu/en/topics/topic/metals-contaminants-food
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L0032
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L0032
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MOE = BMDL/EXP (5.9) 

where EXP is the daily dietary lead intake (µg/kg b.w./day) being similar with ADD 
(Eq. 5.10): 

EXP = C × IR 
BW 

(5.10) 

The risk is interpreted as follows: the values of MOE < 1 indicates a high health 
risk, while MOE > 1 indicates an acceptably low risk (Wang et al. 2019). 

Koch et al. (2022) assessed the exposure of young Polish adults (man and female) 
to Cd, Pb, Hg, and Ni by dietary intake. From different food categories, water and 
beverages were the main dietary sources of Pb (31% of the total daily intake). Eval-
uating the risk related to dietary exposure to Pb resulted in estimated dietary intake 
of 1.12 µg/kg b.w. for women and 1.02 µg/kg b.w. for men, suggesting a potential 
risk of developing nephrotoxicity in both genders (Koch et al. 2022). Wang et al. 
(2019) applied MOE approach to evaluate health risks of dietary lead exposure of 
the residents (different age groups age group of 3–6, 7–17, 18–59, and 60 years) 
of Guangzhou, China. Rice, leafy vegetables, and wheat flour were the main food 
sources of lead exposure. Considering mean exposure levels, the MOE values for all 
age groups tested were higher than 1, unless preschool children for whom MOE < 1. 
In general, the risk was considered low for Guangzhou population, but however, high 
for young children. Taiwo et al. (2019) evaluated the health risk of Zn, Cr, Cd, Ni, Pb 
in staple foods (beans, maize, rice etc.) by applying USEPA method. Comparative 
to other metals, Pb was below the detection limit in all samples tested. The content 
of metals in food sample decreased in the following order: Zn > Cr > Cd > Ni > Pb. 

Winiarska-Mieczan et al. (2023) conducted a health risk assessment of Polish 
adults exposed to cadmium and lead concentration in drinking instant coffee and 
coffee substitutes. The estimated safety consumption of these beverages by Polish 
adults was performed based on the following parameters: BMDL (%), chronic daily 
intake (CDI), hazard quotient (HQ), and hazard index (HI). Analyzing the content of 
metals from tested beverages, the authors observed that the instant coffee contained 
higher Pb compared to other substances tested (0.089 mg Pb per 1 kg), and more-
over, the level of Pb was higher compared to Cd. Based on their results, the authors 
concluded that consumption of these beverages can be considered safe for the adult 
population. However, taking into account the ability of HMs to accumulate in the 
tissue of living organisms and their long half-life (e.g. more than 10 years in bones 
for Pb), no safe limits of HMs intake may exist (Winiarska-Mieczan et al. 2023). 
Li et al. (2017) have taken into account, in their research, the bioaccessibility of Pb 
in soil when evaluated human health risks associated to this metal. They found that 
bioaccessible contents of Pb were substantially lower compared to total contents. 
Regarding the risk exposure pathway for adults, oral ingestion (76.79%) and inhala-
tion (49.56%) were the predominant routes. Human health risk of population from 
Daye followed USEPA method and considered the exposure to both total content and 
bioaccessible content of Pb. No carcinogenic risk of Pb was obtained, however, HI
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and HQ coefficients for bioaccessible content were lower compared to total content. 
This means that traditional health risk method may overestimate the actual risk (Li 
et al. 2017). 

5.7 Conclusions 

Lead pollution in agroecosystems represents a global environmental issue, due to its 
high toxicity, it is classified as one of the most toxic heavy metals in the environ-
ment. Pb and its compounds persist in soil for long periods of time, bioaccumulate 
in agricultural plants through various pathways—soil, water, and air followed by 
subsequent trophic transfer to other trophic levels. Human exposure to lead occurs 
by different pathways such as inhalation, oral ingestion, and dermal absorption. The 
literature analysis shows that lead has a poor bioavailability for plants due to its 
extreme insolubility, and as a consequence, only 5% of Pb is transported into aerial 
components and a major part 95% remains accumulated in roots, thus limiting the 
transport in the food chain. However, it has been proved that in some food chains, the 
phenomenon of lead biomagnification occurs, while in other food chains, biodilution 
has been observed. Furthermore, it has been found that lead generates considerable 
effects on human health, numerous clinical studies show high levels of BLL for 
children and adults, and the occurrence of various diseases. 

The exposure of lead is a significant public health issue and requires a coherent and 
global approach. Thus, in order to reduce the level of exposure to lead-contaminated 
food, a series of standards regarding the quality of food in terms of maximum allowed 
limit, were developed and applied at the European Union and globally level. These 
are useful tools applied as references, nevertheless, literature studies show that in 
some cases the level of lead in market food exceeds the allowed maximum limits. 

Human health risk assessment involves assessing the probability of an adverse 
effect occurring taking into account the dose of chemicals present in the environ-
ment or in food products, routes of exposure, exposure time, toxicity of the chem-
ical substance, and the exposed population. In this regard, the paper presents and 
discusses some important tools and guidelines for the assessment of exposure and 
risks generated by the presence of lead in food, which were developed by USEPA 
and EFSA and successfully demonstrated the applicability. Public health measures 
should focus on awareness of lead exposure, policies to prevent and reduce lead 
exposure by reducing the applications, and use of the metal and its compounds, and 
by minimizing emissions containing lead. 
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Lukáčová A, Golian J, Massányi P, Formicki G (2014) Lead concentration in meat and meat products 
of different origin. Potravinarstvo 8(1):43–47. https://doi.org/10.5219/334 
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Chapter 6 
Cellular and Neurological Effects of Lead 
(Pb) Toxicity 

Shubham Gudadhe, Sushma Kumari Singh, and Jawaid Ahsan 

Abstract Lead (Pb2+), a naturally occurring common heavy metal found in the 
earth’s crust, replaces other cations in living creatures, disturbing many biological 
processes such as metal transport, energy metabolism, apoptosis, and cell signalling. 
Additionally, it has a significant influence on the central nervous system, specifically 
on the developing brain. It has severe neurotoxic effects on youngsters. Lead can act 
as a calcium ion replacement, crossing the blood–brain barrier and causing damage 
in brain areas, resulting in neurological problems. It possesses genotoxic characteris-
tics and disrupts cellular activity. Neurotoxicity is a major problem, especially in the 
developing central nervous system, where it can cause long-term cognitive, motor, 
and behavioural deficits. Paediatric lead poisoning is more common, and early detec-
tion requires a high level of precision. The molecular processes and cellular effects 
of lead toxicity are discussed in this chapter. The pathophysiology, aetiology, and 
epidemiology of lead exposure are also reviewed in this chapter. It also investigates 
the neuropsychological issues linked with Intelligence Quotient (IQ), memory, exec-
utive functioning, attention, processing speed, language, visuospatial skills, motor 
skills, and effects on mood. The chapter also discusses lead-induced oxidative stress 
and its consequences. It will provide an in-depth understanding of the neuropsycho-
logical effects of lead toxicity at different levels, which will be helpful for its better 
management and finding remedies for the related toxic effects. 
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6.1 Introduction 

Lead (Pb) is considered to be a significant and naturally occurring toxic metal among 
the various heavy metals present in the Earth’s crust. Lead, which has an atomic 
number of 82 and is derived from the Latin word Plumbum, is a prevalent toxic 
substance found throughout various locations (Patra et al. 2011). In ancient times, 
lead was used for several purposes (Maiti et al. 2017). The presence of lead can 
be identified in both living organisms and non-living surroundings. The increase 
in anthropogenic activities and vehicle emissions is primarily accountable for the 
increase in lead concentration within the human body through inhalation, ingestion, 
and dermal contact. In particular, the liver, spleen, and kidney have been recognised 
as significant target areas for lead poisoning. Lead in the form of a toxin generates 
a variety of biochemical, physiological, and behavioural dysfunctions (Bandyopad-
hyay et al. 2014). Lead is one of the most toxic heavy chemicals to people for humans 
and has been for thousands of years. Lead makes us sick when it gets into our bodies 
through food, air, and water because it reacts with biological molecules that contain 
sulphur, oxygen, or nitrogen (Maiti et al. 2017). Lead poisoning is usually found 
when the amount of lead in the blood rises. But short-term exposure to lead can 
cause problems like neurobehavioral and brain damage, memory problems, high 
blood pressure, and damage to the kidneys. The parts and systems of the body that 
are most likely to be affected by high levels of lead are the blood, kidney, reproductive, 
and central nervous systems (Assi et al. 2016). Jalali et al. state that when the amount 
of malondialdehyde (MDA) increases, the activities of erythrocyte superoxide dismu-
tase (SOD) and glutathione peroxidase (GPx) increase along with the total number 
of erythrocytes (Jalali et al. 2017). Rats exposed to lead had a low number of cells, 
lymphocytes, and neutrophils, leading to microcytic anaemia. Chelation treatment 
is generally recommended for low levels of lead poisoning that have caused brain 
damage (encephalopathy). But researchers are still looking at treatments that use 
less medicine but last longer. An important part of treating chronic diseases is deter-
mining how much lead is in the body and what happens when people are exposed 
to low levels of lead in the surroundings (Singh et al. 2017). Heavy metal lead (Pb) 
is a common pollution in the environment, and it has been said to cause poisoning 
in many people (Karri et al. 2016). The detrimental impact of Pb-induced oxidative 
stress on the Central Nervous System (CNS) is widely acknowledged. Exposure of 
rodents to Pb has been found to be associated with persistent alterations in brain-
derived neuronal factor (BDNF), β-amyloid (Aβ) aggregation, and oxidative damage. 
These findings pose significant environmental and public health challenges due to 
their close association with impaired intelligence and growth (Feng et al. 2015; Li  
et al. 2018). 

A research study has shown that developmental exposure to Pb results in an over 
accumulation of Pb in the hippocampus, which is associated with a decline in cogni-
tive abilities that is directly proportional to the dose of Pb (Wei et al. 2022). It is worth 
noting that exposure to environmental insults during developmental stages, specif-
ically prepuberty and adolescence, has a substantial influence on neural plasticity
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and subsequent behaviour in adulthood (Encinas et al. 2006; Sanders et al. 2015). 
Studies have shown that exposure to Pb during early stages of life in animals such 
as rodents and primates can lead to cognitive impairment and a subsequent increase 
in amyloid biomarkers that are relevant to Alzheimer’s disease in later stages of life 
(Bihaqi et al. 2014a; Liu et al. 2014). The presence of increased apoptotic markers 
has been reported in conjunction with the aforementioned condition. The issue of 
childhood lead poisoning persists (Chandramouli et al. 2009). 

6.2 Sources of Lead Exposure 

Lead is a naturally occurring heavy metal that is very poisonous. Lead can be found 
everywhere in nature, but most of it comes from human actions such as mining, 
making things, and burning fossil fuels. There are three distinct forms of lead, namely 
metallic lead, inorganic lead, and lead compounds, also known as lead salts, as well 
as organic lead that contains carbon. Lead in the environment rarely occurs in its 
elemental state but rather in its + 2 oxidation state (Pb2+) in various ores throughout 
the earth. Lead has been found in at least 1272 of the 1684 National Priority List 
(NPL) sites identified by the United States (U.S.) Environmental Protection Agency 
(EPA) (Gerberding and Falk 2005). Lead is one of the most durable heavy metals 
in nature. Groundwater, soil, dust from metal ores, brass plumbing fixtures, several 
industrial activities, folk remedies, burning petroleum, making lead battery, paint 
industries, and mining processes, contaminating food, and certain herbal products 
made with lead are all sources of lead in the environment (Fig. 6.1). People are 
always getting lead from things such as contaminated air, water, earth, house dust, 
and food, as well as by breathing it in. Lead paints and lead chips are the main and 
most common ways for children to get too much lead (Patra et al. 2011). Lead has 
various applications, such as in leaded petrol, paints, ceramics, ammunition, water 
pipes, solders, hair dye, cosmetics, farm equipment, aeroplanes, shielding for X-ray 
machines and in the production of corrosion and acid resistant materials utilised 
in the construction sector (Sanders et al. 2009). Various sources of lead poisoning 
include the production of ammunition, ceramic glazes, circuit boards, caulking, sheet 
lead, solder, certain brass and bronze plumbing, radiation shields, intravenous pumps, 
foetal monitors, as well as specific surgical and military equipment, such as jet turbine 
engines and military tracking systems, among others (Fig. 6.1). Employees are at an 
increased risk of being exposed to lead at different construction locations (Levin 
and Goldberg 2000; Mitra et al. 2017). When taking part in hobbies or activities 
that increase exposure, kids can be exposed to lead-based paint that is peeling or 
flaking or weathered powdered paint. Particularly at risk are kids with pica, which 
is the compulsive, habitual ingestion of non-food substances (Mitra et al. 2017). 
The severity of the toxic reaction depends on a number of things, such as the dose, 
the age of the person exposed, the stage of a woman’s life (children, breastfeeding, 
menopause), the person’s job, the length of time they were exposed, their health and 
lifestyle, and their nutritional status.
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Fig. 6.1 Lead in the environment originates from both synthetic and natural sources 

6.3 Lead Exposure in Humans 

Exposure to lead (Pb) is still a major public health issue around the world. Pb is a toxic 
metal that can be found in the environment because of things like lead mining, battery 
recycling, and the use of lead petrol. Children and pregnant women are especially 
vulnerable to the effects of Pb exposure. The quantification of the exposure of Pb 
and its body burden in human studies is primarily accomplished by measuring the 
measurement of metal concentration in both blood and bone. There is a lack of 
consensus regarding the exposure levels required to elicit the initial symptoms of 
neurotoxicity in individuals who are occupationally exposed. However, the majority 
experts concur that overt neurotoxic effects can manifest at blood Pb levels of 60 μg/ 
dL whole blood. Consequently, it is recommended that workers maintain a maximum 
concentration of approximately 40 μg/dL (CDC 2018). 

But other studies found a link between exposure to lead and changes in thinking 
in workers whose blood lead levels were between 20 and 40 g/dL (Barth et al. 2002; 
Lucchini et al. 2012; Murata et al. 2009). The World Health Organisation says that 
adults who live in communities should keep the amount of lead in their blood below 
10 g/dL. But there does not seem to be a safe amount of exposure to Pb, and levels 
of 1–3 g/dL have been linked to subtle neurotoxic effects (Kosnett et al. 2007). 
The concentration of Pb in bone is believed to be a measure of total exposure. It is 
measured mostly by K-shell X-ray fluorescence spectroscopy in the tibia and patella, 
which are cortical and trabecular bone, respectively. The half-life of Pb in bone is 
reported to be different depending on where it is in the body and on factors like 
age, previous exposure, and other situations that affect bone turnover (Farooqui et al. 
2017). 

According to a study done in China, children’s mean BLL was 4.71 g/dL, with 
41.4% of those having BLLs higher than 5 g/dL (Li et al. 2020).
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6.4 Neuropsychological Effects of Lead Toxicity 

Lead exposure has a wide range of adverse effects on cognitive functioning. Prenatal 
exposure, as assessed by lead levels in umbilical cord blood, has been linked to Cord 
blood, was associated with worse scores on the Bayley Scales of Infant Development 
in the sensorimotor and visuomotor subscales (Koller et al. 2004; McMichael et al. 
1988). Numerous cross-sectional and longitudinal studies on children have demon-
strated that lead exposure reduces children’s overall cognitive functioning, but the 
majority of these studies examine global measures of intellectual functioning rather 
than domain-specific effects. Chronic exposure to lead is more detrimental to cogni-
tive function in adults than acute exposure (Bellinger 2004; Koller et al. 2004; Lidsky  
and Schneider 2003; Needleman 2004). Studies on domain-specific cognitive affects 
are listed below. 

6.4.1 Intelligence 

Most of the time, when children are exposed to lead, their intelligence scores go down. 
Reviewing paediatric cross-sectional studies on brain problems caused by exposure 
to lead, it was found that IQ dropped by three points when blood lead levels went 
from 5 to 20 g/dL and dropped by 5.3 points when blood lead levels went from 5 to 
50 g/dL (Winneke et al. 1996). When lead levels in the blood went from 10 to 20 g/dL, 
there was a pretty consistent link between a drop and a three-point drop (Pocock et al. 
1994; Winneke et al. 1996). Based on these results, it seems that exposing someone 
to lead lowers their intelligence in a way that depends on how much lead they are 
exposed to. Even though it has not been seen as often in adults as it has in kids, some 
adults have shown signs of having less intelligence. The Task Group on the Effects of 
Inorganic Lead of the World Health Organisation’s Programme for Chemical Safety 
(Joint FAO/WHO Expert Committee on Food Additives 2002). After conducting 
a comprehensive analysis of the existing literature, it was determined that human 
intellectual functioning may be negatively affected by blood levels below 25 μg/ 
dL. Furthermore, it was found that for every 10 μg/dL increase in blood lead levels, 
there is a predicted decrease in IQ of 1–5 points. The findings suggest that there 
is a correlation between occupational lead exposure and decreased cognitive and 
intelligence scores in adults, with the effect being dependent on the dosage (Khalil 
et al. 2009). When researchers first looked at the effects of lead on the brain, they 
focused on how it affected the brain as a whole. However, more recent research shows 
that it is important to examine how lead affects the brain in different areas.
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6.4.2 Memory 

Several studies have indicated a decrease in learning and memory performance among 
adults who have been exposed to lead in their occupation. The findings indicate 
that lead exposure has a more pronounced negative impact on cognitive function 
in the elderly population, as evidenced by reduced scores in learning and memory 
tasks, among other cognitive impairments. Specifically, individuals 55 years and 
above appear to be more vulnerable to the deleterious effects of exposure to lead. 
Although older adults are particularly vulnerable, research has also observed reduced 
memory performance in individuals under 55 years of age who have been exposed to 
elevated levels of lead. Subjects exhibited a decline in their ability to recall verbal and 
visual information after exposure to lead (Khalil et al. 2009; Stewart and Schwartz 
2007). There has been constant evidence of lower visuospatial memory scores, which 
suggests that lead exposure affects spatial skills and the ability to remember what you 
see. Lead exposure on the job is also linked to lower visual memory scores, especially 
a delay in remembering a complex figure (Schwartz et al. 2000). Lead exposure has 
also been associated with lower verbal memory scores, which affects instant recall, 
delayed recall, and identification. Chronic contact seems to not only affect both vocal 
and nonverbal memories, but also to cause them to get worse over time. In this group, 
the results on both verbal and nonverbal memory tests kept going down over time. 
This means that long-term contact may cause gradual loss of memory over many 
years (Mason et al. 2014). 

6.4.3 Processing Speed 

Lead poisoning has been shown to slow processing speed, and the results suggest 
that the link is dose-dependent. People exposed to high amounts of lead took longer 
to make decisions and respond. For example, significant slowing down of decision-
making speed and wider gaps in a detection/reaction time task have been found to be 
caused by contact (Winneke et al. 1996). These results also revealed slight deficien-
cies in classification speed and precision during a category search task. Only indi-
viduals with blood lead concentrations of 40 g/dL or higher exhibited these deficits. 
The dose-dependence of neurobehavioral deficits was confirmed by a follow-up 
study with the same participants and testing battery. However, the primary finding of 
both studies was a delayed sensory-motor reaction time, which may have artificially 
hampered overall processing speed (Stollery et al. 1991).
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6.4.4 Executive Functioning and Attention 

Several investigations have demonstrated that occupational exposure to lead 
decreases executive functioning. Impaired executive functioning abilities in 
switching and inhibition tasks (Trails Making Test B and Stroop Task, respectively) 
were also observed in a group with a maximum lead exposure of 20 g/g (tibia bone 
lead measurement). Lower executive functioning scores were also discovered in 
earlier studies employing comparable assessments and scores (Schwartz et al. 2000, 
2005). 

6.5 Cellular Effects of Lead Neurotoxicity 

In recent decades, new information about how lead affects cells and how it works has 
helped us to learn more about its neurotoxicity. Using cellular models of learning and 
memory, researchers have investigated how lead might cause brain problems. A new 
study shows that exposure to lead is bad for the Central Nervous System (CNS), that 
environmental factors make people more sensitive to lead, and that being exposed to 
lead as a child can cause neurodegeneration as an adult. 

As the CNS is the main target of lead poisoning, the brain is the most studied when 
it comes to lead poisoning. Lead neurotoxicity occurs when the CNS is exposed 
to enough lead to change how it normally works and cause damage to the CNS. 
Lead’s direct neurological effects include apoptosis (programmed cell death), exci-
totoxicity, which affects neurotransmitter storage and release and changes neuro-
transmitter receptors, mitochondria, second messengers, cerebrovascular endothelial 
cells, and both astroglia and oligodendroglia. Loss of memory, vision, cognitive and 
behavioural problems, and brain damage/mental retardation are some of the symp-
toms that can show up right away or later (Sanders et al. 2009). Although most of the 
early studies focused on the neurocognitive effects of lead, more recent research has 
shown that higher exposures are linked to morbidities such as antisocial behaviour, 
delinquency, and violence. To explain the mechanism of lead toxicity on the CNS, 
several theories have been put forth (Hwang 2007). 

6.6 Effect of Lead on Signalling Pathways 

The first publication pertaining to lead-mediated oxidative stress was released in 
1965. The present study revealed that certain metals have the ability to increase the 
rate of oxidation of crucial fatty acids. The efficacy of lead as a material during that 
period was reportedly inadequate. Subsequent to a considerable period of time, it was 
noted that lead was responsible for the escalation in lipid peroxidation, as determined 
by the analysis of Malondialdehyde (MDA). The lead-induced lipid peroxidation in
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rat brain was also documented by a number of researchers. A positive correlation 
was found between elevated lead concentration and increased lipid peroxidation, 
similar effect was observed in hepatic tissues as well (Shafiq-ur-Rehman 2003). 
Lead-induced oxidative stress is primarily attributed to cellular membrane and DNA, 
as well as inhibition of key enzymes such as catalase, GPx, SOD, and G6PD, and 
non-enzymatic antioxidant molecules such as thiols (GSH) in mammalian organisms 
(Flora et al. 2008; Valko et al. 2005). 

Several studies have suggested that metal-induced toxicity involves a multifacto-
rial mechanism, as illustrated in Fig. 6.3. Multifactorial mechanisms may be linked 
to various biological processes such as oxidative stress, enzyme inhibition, DNA 
damage, alterations in gene expression, and phenomena such as adventitious mimicry. 
The mechanism of metal-induced generation of free radicals, particularly Reactive 
Oxygen Species (ROS). 

The precise mechanisms underlying lead-induced oxidative stress remain unclear, 
likely due to the limited capacity of lead to undergo rapid valence changes. Lead 
exhibits a propensity for covalent bonding with sulphydryl groups because of its 
electron-sharing affinities. The interaction between lead and GSH is crucial for the 
manifestation of its toxic effects (Hultberg et al. 2001). 

In the context of a signaling pathway, lead acts as a calcium mimic and binds to 
the calmodulin protein (a Ca2+ 134 binding protein) that has been implicated in the 
induction of lead toxicity. The findings indicate that lead binding exhibits a higher 
relative affinity compared to calcium (Kirberger et al. 2013), as illustrated in Fig. 6.2. 
Various mechanisms for lead-mediated oxidative stress have been suggested.

6.7 Lead-Induced Neurotoxicity and Its Mechanisms 
of Action 

One of the most vulnerable parts of the body to lead is the nervous system. In 
general, it damages the nervous system, but it affects children’s brains a lot more. 
Neurotoxicity is also linked to the production of too many free radicals, which can 
change how the brain works. Lead quickly penetrates the Blood–Brain Barrier (BBB) 
and replaces calcium ions, disrupting intracellular calcium regulation in brain cells. 
Long-term lead poisoning in children can cause comas, seizures, and changes in their 
mental state. Several clinical studies have been conducted on the link between lead 
poisoning and the way the brain develops and works (Brochin et al. 2008). Blood 
lead levels are negatively correlated with neurological development and function. 
Lead-poisoned children exhibited abnormal behaviour such as melancholy, aggres-
sion, destruction, social withdrawal, and atypical body movements (Hou et al. 2013; 
Mărginean et al. 2016). 

Neurological differences are mostly caused by the way ions work. When lead 
replaces calcium ions, it becomes able to cross the BBB at a good rate (Fig. 6.3). 
After crossing the BBB, lead builds up in astroglial cells with lead-binding proteins.
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Fig. 6.2 Lead interference with calcium (Ca)-dependent inositol trisphosphate or inositol 1,4,5-
trisphosphate pathway (ER = endoplasmic reticulum)

Lead is more dangerous for growing nervous systems because they do not have 
enough mature astroglial cells. Immature astroglial cells do not have any proteins 
that bind to lead. Lead can easily harm undeveloped astroglial cells and interfere with 
the development of myelin sheaths (Wang et al. 2011). Lead is also moved by Divalent 
Metal Transporter 1 (DMT1), a protein with 12 transmembrane domains that is found 
in capillary cells. DMT-1’s job is to move essential metals, but it also moves toxic 
metals that look like important minerals (Moos et al. 2006). Protein Kinase C (PKC) 
is an enzyme that plays a crucial role in many physiological processes, including 
cell proliferation and brain development, and can be stimulated by subnanomolar 
concentrations of lead ions. 

6.8 Lead Affects Movement of Calcium 

Lead changes the brain and behaviour in complicated ways that are hard to under-
stand. Still, work on cells and molecules has led to a better understanding of how 
lead affects how the brain works. The effects of lead on biological processes that 
rely on calcium are especially important. Calcium is an important ion for neural 
function, such as cell growth and development, the release of neurotransmitters, and 
biochemical reactions inside the cell.
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Fig. 6.3 Effect of lead on central nervous system (CNS) and on expression of interleukin-6 and 
TGF-β1. Lead exposure alters the expression of the genes encoding the cytokines IL-6 and TGF-1. 
Gene expression of cytokines IL-6 and TGF-1 is mediated by the entry of Pb into the cell and 
mobilisation of calcium ions, followed by the cleavage of phosphatidylinositol bisphosphate (PIP2) 
into inositol triphosphate (IP3) and diacylglycerol (DAG). DAG activates PKC, which increases 
the expression of IEG jun and fos genes. The mitogen-activated protein kinase (MAPK) pathway 
is essential for dimerization aphosphorylation of the c-jun and c-fos proteins, which resulted in the 
formation of the nuclear transcription factor AP-1 (activator protein 1) and increased expression 
of IL-6 and 214 TGF-1. Directly, lead increases the activation of PKC, c-fos, and c-jun protein 
expression. Lead’s powerful effect on CNS cells results in neurodegeneration

Lead and calcium are divalent cations that share similarities in terms of their ionic 
charge and size. The capacity of lead to imitate or hinder calcium-mediated impacts is 
fundamental to its biological and behavioural consequences. A less regulated ligand 
in the human body in comparison to calcium. 

A heavy metal that lacks regulation. Lead has the ability to bind to the same sites as 
calcium and can enter the cell via calcium channels. This results in the displacement, 
inhibition, substitution, and/or activation of calcium-dependent processes (Bridges 
and Zalups 2005; Habermann et al. 1983; Kerper and Hinkle 1997). 

The widespread occurrence of calcium in cellular signalling and the crucial signifi-
cance of the spatial and temporal arrangement of calcium signals in cellular operation 
imply that interference with calcium-dependent mechanisms can result in significant 
cellular outcomes. This notion is supported by various studies (Berridge et al. 2003; 
Bootman 2012; Bootman et al. 2001, 2002; Bridges and Zalups 2005). The impact of 
lead on the calcium dynamics of neurons provides insight into numerous extensive 
alterations in brain activity and conduct.
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6.9 Effect of Lead on NMDA Receptor 

Lead is an antagonist of the N-Methyl-d-aspartate receptor (NMDA-R) that operates 
in a non-competitive manner. 

The N-methyl-d-aspartate receptors (NMDA-Rs) are a type of ionotropic receptor 
that is stimulated by the neurotransmitter glutamate. These receptors play a crucial 
role in various physiological processes, such as neural development, neuronal plas-
ticity, learning and memory, and long-term potentiation, which is a physiolog-
ical manifestation of learning (Cory-Slechta et al. 1997; Gilbert and Lasley 2007; 
Hubbs-Tait et al. 2005; Nihei and Guilarte 2001). 

When glutamate binds to NMDA-Rs, calcium flows in through a ligand-gated ion 
channel. This can cause an excitatory post-synaptic potential and has a big effect on 
how neurons work by starting second messenger pathways that depend on calcium. 
The blocking of postsynaptic NMDA-Rs by lead results in the inhibition of activity-
dependent calcium influx. This can subsequently interfere with NMDA receptor-
dependent developmental processes, neural plasticity, learning and memory, as well 
as Long-Term Potentiation (LTP). The induction of LTP is hindered by chronic and 
developmental exposure to lead across a broad spectrum of concentrations, resulting 
in a higher threshold. This phenomenon is linked to compromised learning and 
memory (Lasley et al. 2001; Lasley and Gilbert 2000, 2002; Luo et al. 2011; Nihei 
and Guilarte 2001). Blocking NMDA receptors or other effects of lead on calcium-
dependent processes may have something to do with how well LTP and learning 
work. 

Apoptosis is another thing that happens when NMDA receptors are blocked. This 
is a type of cell death that is planned and caused by a well-known biological process 
(Anastasio et al. 2009; Hansen et al. 2004; Léveillé et al. 2010; Lyall et al.  2009; 
Yuede et al. 2010). During brain growth, apoptosis is usually used to get rid of 
unwanted links and ‘sculpt’ the brain. Pathological apoptosis, on the other hand, 
can happen in some situations. Low amounts of lead during development have also 
been shown to cause apoptosis and mess up brain development in both human and 
zebrafish models by blocking NMDA receptors (Dou and Zhang 2011; Dribben et al. 
2011; Liu et al. 2010). 

Due to the important role NMDA receptors play in many neuro and behavioural 
processes and the fact that lead can block NMDA receptors, knowing how lead affects 
the brain and behaviour depends on these receptors. 

6.10 Effect of Lead on Calmodulin 

Lead also targets calmodulin (CaM), or ‘calcium-modulated protein’, a significant 
intracellular calcium-activated protein (Heizmann and Hunzlker 1991). Calmodulin 
is involved in calcium signalling, neurotransmitter receptors, ion channels, and neural 
plasticity (McCue et al. 2010). Calmodulin possesses four distinct binding sites that
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are naturally bound by calcium ions. Calmodulin exhibits functional activity upon 
complete binding of calcium to all four of its sites (Costa 1998). 

According to several studies (Fullmer et al. 1985; Habermann et al. 1983; Sandhir 
and Gill 1994; Shirran and Barran 2009), at levels that are relevant to physiological 
processes, calmodulin exhibits a higher binding affinity towards lead compared to 
calcium, thereby leading to the activation of the protein. Upon the occurrence of 
this event, calmodulin undergoes activation in a manner that is not consistent with 
normal physiological processes. The signalling of calmodulin undergoes a state of 
tonic activation and becomes independent of external stimuli. The extensive involve-
ment of calmodulin in calcium signalling implies that uncontrolled activation of 
calmodulin can result in various outcomes, including but not limited to the disrup-
tion of signal transduction that is dependent on calmodulin and interference with 
calmodulin-mediated learning and memory (Rocha and Trujillo 2019). 

6.11 Effect of Lead on Protein Kinase C 

Protein Kinase C (PKC) is an intracellular signalling enzyme that is dependent on 
calcium and phospholipids and is involved in diverse cellular functions (Markovac 
and Goldstein 1988). Protein Kinase C (PKC) catalyses the phosphorylation of 
proteins through the transfer of phosphate groups from Adenosine Triphosphate 
(ATP). The regulation of cellular growth and differentiation is reliant on the phos-
phorylation of transport proteins via PKC. The Protein Kinase C (PKC) has been 
found to be involved in cytoskeletal function and signal transduction (Pears 1995). 
Additionally, PKC has been observed to have a significant impact on learning and 
memory, as noted (Van der Zee et al. 1992; Xu et al.  2014). 

Lead replaces calcium in the activation of PKC at a clinically meaningful pico-
molar dose, raising intracellular calcium, and obstructing neurotransmitter release 
(Goldstein 1993). According to Bouton et al. (2001), lead mimics calcium at 
the synaptotagmin site and competes for it with higher affinity than calcium. 
Extended exposure to lead results in elevated PKC activity, which in turn triggers a 
compensatory reduction in activity, potentially through downregulation or decreased 
effectiveness of calcium activity. 

The significance of PKC in calcium-mediated long-term potentiation (LTP) has 
been established. Studies have shown that PKC inhibitors, such as polymyxin B, 
impede the initiation and preservation of calcium-induced LTP (Cheng et al. 1994). 
The negative impact of lead on cognitive abilities such as learning and memory is 
believed to be caused, at least partially, by interference with typical PKC operation. 
Furthermore, the influence of lead on PKC activity has consequences for various 
cellular processes such as cell division, neural communication, neural plasticity, 
and cytoskeletal organisation (Bressler et al. 1999) Additionally, it affects cellular 
proliferation and differentiation (Markovac and Goldstein 1988).
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6.12 Lead as Neurotransmitter Releaser 

Typically, the depolarization of neurons results in the activation of voltage-gated 
calcium channels, thereby facilitating the entry of calcium ions into the presynaptic 
terminal. Upon calcium influx, a series of enzymes are activated, thereby facilitating 
the fusion of the synaptic vesicle with the cellular membrane and subsequent liber-
ation of neurotransmitters. Lead has been found to have a converging impact on 
neurotransmitter release by binding to voltage-gated calcium channels and subse-
quently decreasing the influx of calcium. Furthermore, it has been observed that lead 
engages in competition with calcium for the binding sites of various proteins that 
play a role in the release of neurotransmitters, such as calmodulin, CaM kinase II 
(CaMKII), and synaptotagmin (Bouton et al. 2001; Kern et al.  2000; Westerink et al. 
2002). 

Collectively, these measures lead to a decrease in the discharge of neurotrans-
mitters at the presynaptic terminal. The inhibition of neuronal release of glutamate 
and GABA can be observed at nanomolar concentrations of lead. The perturbation 
of regular neurotransmitter release can result in diverse outcomes for the brain and 
conduct, contingent on the particular neurotransmitter and its placement within the 
brain (Braga et al. 1999). 

6.13 Lead and Neurodegenerative Diseases 

Recent studies offer compelling evidence that lead exposure has detrimental impacts 
on the CNS in both adult and paediatric populations. Lead-induced damage within 
the brain can result in various neurological disorders, including but not limited to 
brain damage, mental retardation, behavioural problems, nerve damage, and potential 
development of Alzheimer’s disease, Parkinson’s disease, and schizophrenia. The 
prefrontal cerebral cortex, hippocampus, and cerebellum are particularly vulnerable 
to such damage. These findings suggest the need for further investigation into the 
potential long-term effects of lead exposure on the brain (Sanders et al. 2009). 

6.13.1 Alzheimer’s Disease (AD) 

Numerous research studies have examined the impact of lead exposure on cogni-
tive abilities and IQ in children. However, investigations into developmental lead 
exposure in non-human primates and rodents have revealed associations with the 
onset of Alzheimer’s disease during the later stages of life. Alzheimer’s disease is 
widely recognised as the prevailing neurodegenerative disorder. The condition is 
distinguished by cognitive decline and dementia, accompanied by brain pathology 
consisting of proteinaceous plaques composed of Amyloid beta (Aβ). The globus
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pallidus, dentate gyrus, temporal cortex, and temporal white matter of postmortem 
human brains affected by Alzheimer’s disease have exhibited significantly elevated 
levels of lead in comparison to control healthy brains of the same age group, as per 
the findings of Haraguchi et al. (2001). The exposure to Pb has been found to raise 
the mRNA of Amyloid Precursor Protein (APP) and the aggregation of Aβ in rats, 
leading to amyloidogenesis and the deposition of senile plaques. Additionally, in 
nonhuman primates who were exposed to lead during infancy, there was an upregu-
lation of APPs (Bihaqi et al. 2014a, b; Wu et al.  2008). Exposed mice to lead across 
the course of different life spans and discovered that there is a window of sensitivity 
to lead toxicity in the developing brain. Cognitive impairment only occurred in mice 
exposed to Pb as newborns, not as adults (Bihaqi et al. 2014a). According to Bihaqi 
et al. (2014a) and Masoud et al. (2016), the exposure of mice to lead during their early 
life stages results in increased expression of tau protein associated with Alzheimer’s 
disease and changes in epigenetic markers linked to the development of the same 
disease (Bihaqi et al. 2014a; Masoud et al. 2016). 

The relationship between lead exposure during infancy and AD is being explained 
by an emerging theory that suggests an epigenetic basis for the increased production 
of proteins relevant to AD and cognitive decline. Exposures experienced during the 
foetal or early developmental stages have the potential to induce epigenetic modifica-
tions in the brain, thereby resulting in gene reprogramming. According to Schneider 
et al. (2013), a study was conducted on rats that were exposed to Pb either in utero 
or in postnatally. The results indicated a reduction in the expression of DNA methyl 
transferase in the hippocampus of female rats that were exposed to Pb. This suggests 
that there may be a decrease in DNA methylation, which could lead to the expression 
of genes that are typically suppressed (Schneider et al. 2013). 

The investigation conducted by Schneider involved the examination of gene 
expression pertaining to DNA methyl transferases, which was carried out at postnatal 
day (Schneider et al. 2013). On the other hand, a study was conducted by Dosunmu 
wherein infant mice exposed to Pb were subjected to genome-wide expression and 
methylation profiling until postnatal day 700. The results showed that a specific 
group of genes, which are typically expressed in aged mice, were repressed. The 
aforementioned genes were found to be implicated in the immune response, metal 
binding, and metabolism. Suppression of their expression resulting from develop-
mental exposure to Pb has been observed to impede the brain’s capacity to counteract 
stressors associated with ageing (Dosunmu et al. 2012). 

6.13.2 Parkinson’s Disease (PD) 

According to research findings, lead has been observed to decrease the production 
of catecholamine as well as synaptic neurotransmission. The decrease in GABA 
(gamma-aminobutyric acid) could be a common factor in all human neurodegenera-
tive disorders caused by unusual levels of calcium inside cells (Błaszczyk 2016). The
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occurrence of oxidative stress resulting from chronic lead intoxication has been veri-
fied through the observation of elevated levels of lipid peroxide in the brain and liver 
of rats. Exposure to lead has been found to diminish dopaminergic neurotransmis-
sion through mechanisms such as mitochondrial dysfunction, oxidative stress, and 
heightened gliofilament expression in astrocytes (Patra et al. 2011). 

Lead toxicity poses a greater risk to children through dietary exposure and can 
result in adverse effects on the nervous system and pica behaviour, as documented 
in literature (Zeng et al. 2016). The study conducted by Loikkanen et al. provides 
evidence that lead has an impact on cellular processes through the regulation of 
calcium and calcium-binding proteins. Additionally, the study suggests that lead 
affects the release and reuptake of various neurotransmitters. The aforementioned 
study indicates that it inhibits the acetylcholine and dopamine releases that are 
dependent on Ca2+ and activity (Loikkanen et al. 1998). 

The hippocampus region of the brain is subject to tau hyperphosphorylation and 
α-synuclein accumulation, which are the primary factors that trigger apoptosis and 
autophagy. This phenomenon has been extensively studied and documented (Zhang 
et al. 2012). The study conducted by Rogers et al. revealed that the APP is a significant 
contributor to lead toxicity via iron regulatory pathways, as observed in human 
dopaminergic SH-SY5Y neuroblastoma cells. 

The involvement of PKC in dopamine transport function and the induction of 
oxidative stress through PKC activation by lead, leading to neurotoxicity, has been 
reported (Rogers et al. 2016). 

Lead is easily able to cross the BBB and binds to sulfhydryl groups, which changes 
anti-oxidant enzymes and raises the amount of lipid peroxidation. In the same way, 
lead poisoning can happen when –ALAD (Delta-aminolevulinic acid dehydratase) is 
stopped from working and too much of its substrate, –ALA, builds up. –ALA quickly 
oxidises to make free radicals and release ferrous ions, which start the process of 
lipid peroxidation (Ashafaq et al. 2016). 

6.14 Conclusion 

The neurotoxic effects of lead exposure and its considerable effects on human 
neuropsychology are discussed here. Pb toxicity can cause the central nervous system 
to suffer from a variety of negative consequences, altering cognitive functioning. 
Lead works by a mechanism that interferes with calcium dynamics, which are crit-
ical to many cellular activities. Lead obstructs calcium’s ability to regulate itself, 
which impairs synaptic transmission and neuronal activity. In addition, mounting 
data point to a possible connection between lead exposure and the emergence 
of neurodegenerative disorders. An increased risk of neurodegenerative diseases 
including Alzheimer’s and Parkinson’s has been linked to chronic lead exposure. 
Complex processes, including oxidative stress, inflammation, protein aggregation, 
and mitochondrial dysfunction, underlie these correlations. It is crucial for public 
health to comprehend lead’s neurotoxic effects and how they affect neuropsychology
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in humans. Reduced lead exposure is essential for preventing neurodegenerative 
illnesses and long-term cognitive deficits in sensitive populations like children. To 
reduce the neurotoxic effects of lead on human neuropsychology, more study is 
required to understand the underlying mechanisms and create efficient preventive, 
early detection, and intervention measures. 
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16-year-old girl: a case report and a review of the literature (CARE compliant). Medicine 95(38) 

Markovac J, Goldstein GW (1988) Picomolar concentrations of lead stimulate brain protein kinase 
C. Nature 334(6177):71–73 

Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. 
BioMed Res Int 2014 

Masoud AM, Bihaqi SW, Machan JT, Zawia NH, Renehan WE (2016) Early-life exposure to lead 
(Pb) alters the expression of microRNA that target proteins associated with Alzheimer’s disease. 
J Alzheimer’s Dis 51(4):1257–1264 

McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the 
regulation of neuronal function. Cold Spring Harb Perspect Biol 2(8):a004085 

McMichael AJ, Baghurst PA, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ (1988) Port Pirie 
Cohort Study: environmental exposure to lead and children’s abilities at the age of four years. 
N Engl J Med 319(8):468–475 

Mitra P, Sharma S, Purohit P, Sharma P (2017) Clinical and molecular aspects of lead toxicity: an 
update. Crit Rev Clin Lab Sci 54(7–8):506–528 

Moos T, Skjoerringe T, Gosk S, Morgan EH (2006) Brain capillary endothelial cells mediate iron 
transport into the brain by segregating iron from transferrin without the involvement of divalent 
metal transporter 1. J Neurochem 98(6):1946–1958 

Murata K, Iwata T, Dakeishi M, Karita K (2009) Lead toxicity: does the critical level of lead resulting 
in adverse effects differ between adults and children? J Occup Health 51(1):1–12. https://doi. 
org/10.1539/joh.K8003 

Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222 
Nihei MK, Guilarte TR (2001) Molecular changes in glutamatergic synapses induced by Pb2+: 

association with deficits of LTP and spatial learning. Neurotoxicology 22(5):635–643 
Patra RC, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its 

amelioration. Vet Med Int 2011:1–9. https://doi.org/10.4061/2011/457327 
Pears C (1995) Structure and function of the protein kinase C gene family. J Biosci 20:311–332 
Pocock SJ, Smith M, Baghurst P (1994) Environmental lead and children’s intelligence: a systematic 

review of the epidemiological evidence. BMJ 309(6963):1189–1197

https://doi.org/10.1039/C4CS00094C
https://doi.org/10.1039/C4CS00094C
https://doi.org/10.1016/S0891-5849(97)00219-0
https://doi.org/10.1016/S0891-5849(97)00219-0
https://doi.org/10.1016/j.envres.2012.08.003
https://doi.org/10.1016/j.envres.2012.08.003
https://doi.org/10.1539/joh.K8003
https://doi.org/10.1539/joh.K8003
https://doi.org/10.4061/2011/457327


144 S. Gudadhe et al.

Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of 
action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80. 
https://doi.org/10.1016/j.neuro.2019.02.021 

Rogers JT, Venkataramani V, Washburn C, Liu Y, Tummala V, Jiang H, Smith A, Cahill CM (2016) 
A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead 
(Pb) neurotoxicity. J Neurochem 138(3):479–494. https://doi.org/10.1111/jnc.13671 

Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead 
exposure: a review. Rev Environ Health 24(1):15–46 

Sanders AP, Claus Henn B, Wright RO (2015) Perinatal and childhood exposure to cadmium, 
manganese, and metal mixtures and effects on cognition and behavior: a review of recent 
literature. Curr Environ Health Rep 2(3):284–294. https://doi.org/10.1007/s40572-015-0058-8 

Sandhir R, Gill KD (1994) Calmodulin and cAMP dependent synaptic vesicle protein phosphory-
lation in rat cortex following lead exposure. Int J Biochem 26(12):1383–1389. https://doi.org/ 
10.1016/0020-711X(94)90181-3 

Schneider JS, Kidd SK, Anderson DW (2013) Influence of developmental lead exposure on expres-
sion of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol 
Lett 217(1):75–81 

Schwartz BS, Stewart WF, Bolla KI, Simon D, Bandeen-Roche K, Gordon B, Links JM, Todd AC 
(2000) Past adult lead exposure is associated with longitudinal decline in cognitive function. 
Neurology 55(8):1144–1150 

Schwartz BS, Lee B-K, Bandeen-Roche K, Stewart W, Bolla K, Links J, Weaver V, Todd A 
(2005) Occupational lead exposure and longitudinal decline in neurobehavioral test scores. 
Epidemiology 106–113 

Shafiq-ur-Rehman (2003) Lead-exposed increase in movement behavior and brain lipid peroxidation 
in fish. J Environ Sci Health Part A 38(4):631–643 

Shirran SL, Barran PE (2009) The use of ESI-MS to probe the binding of divalent cations to 
calmodulin. J Am Soc Mass Spectrom 20(6):1159–1171. https://doi.org/10.1016/j.jasms.2009. 
02.008 

Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides 
in living systems. Front Chem 5:70 

Stewart WF, Schwartz BS (2007) Effects of lead on the adult brain: a 15-year exploration. Am J 
Ind Med 50(10):729–739 

Stollery BT, Broadbent DE, Banks HA, Lee WR (1991) Short term prospective study of cognitive 
functioning in lead workers. Occup Environ Med 48(11):739–749 

Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 
12(10):1161–1208 

Van der Zee EA, Compaan JC, De Boer M, Luiten PG (1992) Changes in PKC gamma 
immunoreactivity in mouse hippocampus induced by spatial discrimination learning. J Neurosci 
12(12):4808–4815 

Wang L, Xu T, Lei W, Liu D, Li Y, Xuan R, Ma J (2011) Cadmium-induced oxidative stress 
and apoptotic changes in the testis of freshwater crab, Sinopotamon henanense. PLoS ONE 
6(11):e27853 

Wei Z, Wei M, Yang X, Xu Y, Gao S, Ren K (2022) Synaptic secretion and beyond: targeting 
synapse and neurotransmitters to treat neurodegenerative diseases. Oxid Med Cell Longev 2022 

Westerink RH, Klompmakers AA, Westenberg HG, Vijverberg HP (2002) Signaling pathways 
involved in Ca2+- and  Pb2+-induced vesicular catecholamine release from rat PC12 cells. Brain 
Res 957(1):25–36 

Winneke G, Lilienthal H, Krämer U (1996) The neurobehavioural toxicology and teratology of 
lead. In: Toxicology—from cells to man: proceedings of the 1995 EUROTOX congress meeting 
held in Prague, Czech Republic, 27–30 Aug 1995, pp 57–70

https://doi.org/10.1016/j.neuro.2019.02.021
https://doi.org/10.1111/jnc.13671
https://doi.org/10.1007/s40572-015-0058-8
https://doi.org/10.1016/0020-711X(94)90181-3
https://doi.org/10.1016/0020-711X(94)90181-3
https://doi.org/10.1016/j.jasms.2009.02.008
https://doi.org/10.1016/j.jasms.2009.02.008


6 Cellular and Neurological Effects of Lead (Pb) Toxicity 145

Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney 
B, Chen D (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile expo-
sure to environmental metal lead (Pb): evidence for a developmental origin and environmental 
link for AD. J Neurosci 28(1):3–9 

Xu C, Liu Q-Y, Alkon DL (2014) PKC activators enhance GABAergic neurotransmission and 
paired-pulse facilitation in hippocampal CA1 pyramidal neurons. Neuroscience 268:75–86 

Yuede CM, Wozniak DF, Creeley CE, Taylor GT, Olney JW, Farber NB (2010) Behavioral conse-
quences of NMDA antagonist-induced neuroapoptosis in the infant mouse brain. PLoS ONE 
5(6):e11374. https://doi.org/10.1371/journal.pone.0011374 

Zeng X, Xu X, Boezen HM, Huo X (2016) Children with health impairments by heavy metals in 
an e-waste recycling area. Chemosphere 148:408–415. https://doi.org/10.1016/j.chemosphere. 
2015.10.078 

Zhang J, Cai T, Zhao F, Yao T, Chen Y, Liu X, Luo W, Chen J (2012) The role of α-synuclein 
and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and 
memory injury. Int J Biol Sci 8(7):935–944. https://doi.org/10.7150/ijbs.4499

https://doi.org/10.1371/journal.pone.0011374
https://doi.org/10.1016/j.chemosphere.2015.10.078
https://doi.org/10.1016/j.chemosphere.2015.10.078
https://doi.org/10.7150/ijbs.4499


Part III 
Sustainable Mitigation Strategies of Lead 

Toxicity



Chapter 7 
Phytoremediation of Lead Present 
in Environment: A Review 

Gisela Adelina Rolón-Cárdenas and Alejandro Hernández-Morales 

Abstract Lead (Pb) is a heavy metal used in various industrial processes, so its levels 
are considerably increased in the soil, sediments, surface water, and groundwater. Pb 
is a non-biodegradable and persistent environmental pollutant that causes toxicity 
in humans, plants, animals, and microorganisms. Phytoremediation is a clean, eco-
friendly, and cost-effective technology to remove Pb from aquatic and terrestrial envi-
ronments. This technology uses plants to remove, immobilize, and contain Pb through 
phytoextraction, phytostabilization, and rhizofiltration. This chapter describes the 
characteristics of plants used in phytoremediation, focusing on the mechanisms 
employed by the plants to assist in the removal or immobilization of Pb. More-
over, it shows the state of the art on phytoremediation assisted by microorganisms 
for enhancing phytoremediation of Pb-polluted soils. 

Keywords Phytoextraction · Phytostabilization · Rhizofiltration ·
Microbial-assisted phytoremediation 

7.1 Introduction 

Lead (Pb) is a soft, malleable, bluish-gray metal located in group IV of the peri-
odic table of elements (Al-Fartusie and Mohssan 2017). Pb occurs naturally in the 
soil at a concentration from 0.002 to 0.2 mg/kg, while in fresh waters, from 0.001 to 
0.010 mg/L, worldwide (Carrillo-Chávez et al. 2006). The presence of Pb in the envi-
ronment can be from natural or anthropogenic sources (Li et al. 2012). The primary 
natural sources of Pb are weathering and erosion of lead-rich rocks, forest fires, and
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volcanic eruptions (Zhang et al. 2019). While anthropogenic Pb results from mining, 
smelting, leaded gasoline combustion, coal burning, and industrial production of 
pigments, lead-acid batteries, cable sheathing, ammunition, alloys, solder, and pipes 
(Ballantyne et al. 2018; Eichler et al. 2015). Both natural and anthropogenic Pb 
sources have caused a significant increase in their levels in the environment (Zhang 
et al. 2019). For example, high Pb concentration has been detected in arable lands of 
Ireland (Nag and Cummins 2022), urban agricultural soils of Cameroon (Aboubakar 
et al. 2021), and in the arable soil in Southwest China (Wu et al. 2018). 

Pb is a non-biodegradable and persistent pollutant that exerts toxic effects on 
plants, animals, and microorganisms at low concentrations (Wong and Li 2004; 
Abdelkrim et al. 2020; Rahman and Singh 2019). Pb ranks second on the list of 
hazardous substances according to the U.S. Agency for Toxic Substances and Disease 
Registry (ATSDR 2022). In humans, Pb causes haematological and cardiovascular 
disorders, kidney dysfunction, gastrointestinal disease, and central nervous system 
damage (Rahimpoor et al. 2020; Khanam et al. 2020; Rahman and Singh 2019). 
Lead also affects brain development in children, causing behavioural changes and 
lowering IQ score (Heidari et al. 2022). 

Different physical and chemical methods have been developed to remove Pb 
from contaminated sites. These methods include soil washing, landfilling, vitrifica-
tion, electrokinetic treatments, surface capping, encapsulation, and soil flushing (Liu 
et al. 2018; Song et al. 2017). Besides, bioremediation has been proposed as an eco-
sustainable alternative for removing natural and anthropogenic Pb from soils, sedi-
ments, surface water, and groundwater (Bala et al. 2022). In this technology, living 
organisms such as bacteria, fungi, microalgae, or plants are used to degrade or trans-
form environmental contaminants into non-toxic forms (Vidali 2001). According to 
the application site, bioremediation techniques have been classified as in situ or ex 
situ (He et al. 2021). In situ techniques are carried out directly at the contaminated 
site, while ex situ techniques are applied outside the contaminated site (Boopathy 
2000). 

7.2 Phytoremediation: Definition and Strategies 

Phytoremediation is an in situ bioremediation technology that uses plants to degrade, 
immobilize, neutralize, and contain environmental contaminants (Wang et al. 2017). 
Phytoremediation has been successfully applied to clean up heavy metals, radionu-
clides, petroleum hydrocarbons, explosives, pesticides, pharmaceutical and personal 
care products (PPCPs) from aquatic and terrestrial environments (Jee 2016; Kurade 
et al. 2021). Plants perform phytoextraction, phytovolatilization, phytostabiliza-
tion, rhizofiltration, phytodegradation, and phytostimulation to remove xenobiotics 
(Alsafran et al. 2022). 

Phytoextraction or phytoaccumulation is used to remove heavy metals and other 
inorganic compounds from soil and sediment to the aerial parts of plants. In this 
process occurs the absorption of contaminants by the plant roots, translocation
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through stems, and their accumulation in shoots and leaves (Mahar et al. 2016; 
Etim 2012). 

Phytostabilization or phytoimmobilization is a strategy in which a plant species 
reduces the mobility of pollutants and decreases its bioavailability for other plants 
or microorganisms (Alsafran et al. 2022). In this strategy, heavy metals and other 
inorganic compounds are adsorbed on root cell walls, absorbed within root tissues, 
or immobilized as non-toxic forms in the rhizosphere through mechanisms including 
sorption, precipitation, complexation, or metal valence reduction (Rai et al. 2021; 
Etim 2012; Yan et al. 2020). 

Rhizofiltration is a hydroponic-based phytoremediation technique that uses plant 
roots to eliminate pollutants from the impacted aquatic environments (Srivastava et al. 
2021). In this strategy, heavy metals and other inorganic compounds are adsorbed or 
precipitated on the root surface or absorbed in the roots (Kristanti et al. 2021). 

Phytovolatilization is a strategy in which plants uptake environmental contam-
inants, transform them into volatile forms, and release them into the atmosphere 
through transpiration (Etim 2012). This process is applied for the treatment of some 
metals and metalloids such as arsenic (As), selenium (Se), and mercury (Hg) (Rai 
et al. 2021). This strategy is controversial because the pollutants are not destroyed 
but transferred to the atmosphere, where they can be redeposited (Mahar et al. 2016). 

Phytodegradation is when plants uptake, store, metabolize or mineralize organic 
contaminants in their tissues (Rai et al. 2021). The phytodegradation process 
requires degrading enzymes involved in various metabolic processes and enzymes 
such as nitrilase, nitroreductase, peroxidase, dehalogenase, oxygenase, and laccases 
(Chatterjee et al. 2013). 

Phytostimulation is a strategy in which plants and microorganisms localized in 
the rhizosphere degrade organic contaminants (Rai et al. 2021). In this strategy, 
plants secrete root exudates and metabolites that stimulate the growth of degrading 
microorganisms (Favas et al. 2014). 

7.3 Phytoremediation of Lead 

Rhizofiltration, phytostabilization, and phytoextraction are the main strategies for 
Pb removal from polluted environments. Phytostabilization and phytoextraction are 
applicable for the remediation of Pb in soils and sediments, while rhizofiltration is 
used for the remediation of surface water, groundwater, and wastewater (Yan et al. 
2020; Otte and Jacob 2006). 

7.3.1 Phytostabilization of Lead 

Phytostabilization reduces the Pb migration from contaminated to non-contaminated 
soils (Alsafran et al. 2022; Bolan et al. 2011). In this process, the immobilization
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of Pb can occur by either adsorption on root cell walls or Pb precipitation in the 
rhizosphere (Ashraf et al. 2015; Arshad et al. 2016). 

The bioavailability of Pb in the soil depends on its speciation, which is influenced 
by various factors such as pH, redox potential, organic matter, sulphur, and carbonate 
contents (Olaniran et al. 2013; John and Leventhal 1995). Besides, plant roots play 
an essential role in the metal and nutrient solubility in the soil (Wenzel et al. 1999). 
The metabolic activity of the plant roots can change the pH, the redox conditions, 
concentrations of Dissolved Organic Matter (DOM), and microbial activity in the 
rhizosphere, which enhance the uptake of nutrients such as iron (Fe), phosphorus 
(P), and zinc (Zn) or immobilize non-essential metals (Li et al. 2021; Seshadri et al. 
2015; Rai et al. 2021). For example, Pelargonium × hortorum L.H. Bailey increased 
the DOM content and acidified the rhizosphere soil in response to Pb (Manzoor et al. 
2020). Root exudation is one of the most critical factors affecting the physicochem-
ical characteristics of the soil (Li et al. 2011b). The root exudates are a mixture of 
metabolites, including sugars, amino acids, and organic acids, produced by plants 
and secreted to the soil (Vives-Peris et al. 2020). These compounds can affect the 
bioavailability of Pb in the rhizosphere (Li et al. 2021; Seshadri et al. 2015). For 
example, the waterlogged (Oenanthe javanica DC.) and yellow melon (Cucumis 
melo L.) roots release citric acid and others organic acids to the rhizosphere which 
form soluble Pb–organic complexes (Liu and Luo 2019; Irias Zelaya et al. 2020). 
Similarly, organic acids secreted by pea plants (Pisum sativumpea L.) favour the 
formation of stable metal complexes in the root region (Austruy et al. 2014). 

Pb precipitates have also been observed in the root of Pelargonium cultivars, 
Indian mustard (Brassica juncea), and two poplar species (Arshad et al. 2016; Yang 
et al. 2021; Shi et al. 2021). In Pelargonium cultivars, Pb precipitates on the root 
surface in the form of αPbO, PbOH+, carbonates, and ferrite derivatives (Arshad et al. 
2016). On the other hand, in the Indian mustard root cells, Pb precipitates as lead 
phosphate Pb3(PO4)2, pyromorphite Pb5(PO4)3(OH, Cl), and other Pb phosphates 
(Yang et al. 2021). Similarly, Populus × canescens and P. nigra precipitate the Pb 
as phosphates and oxalates in their roots (Shi et al. 2021). 

Pb immobilization in the root can be due to the interaction between the heavy 
metal ions and the components of the root cell wall (Krzesłowska 2011). The cell 
wall is the first structure of root cells to come in contact with heavy metals and is 
involved in ions metal binding (Parrotta et al. 2015). The cell wall’s main components 
are polysaccharide such as cellulose, hemicellulose (HC), and pectin which play an 
important role in Pb binding in cell walls (Zhang et al. 2021a; Sumranwanich et al. 
2018). Pb adsorption by different cell wall components has been reported previously 
in tea (Camellia sinensis L.) and Athyrium wardii (Hook.) roots. In the cell wall of 
tea plant roots, the most significant amount of Pb is adsorbed mainly by cellulose and 
lignin (68.42%), followed by pectin (20%) and HC2 (5.26%) (Wang et al. 2015). On 
the other hand, pectin and HC are the primary binding sites for Pb in root cell walls of 
A. wardii (Zhan et al. 2020). The Pb-binding capacity of cell wall polysaccharides is 
attributed mainly to the presence of carboxyl (–COOH) and hydroxyls (–OH) groups 
(Sumranwanich et al. 2018; Wang et al. 2015; Zhan et al. 2020).
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Previous studies have reported that Pb increases the biosynthesis of polysaccha-
rides in some plant species’ root cell walls. For instance, Pb induced pectin and hemi-
cellulose production in root cell walls of tall fescue (Festuca arundinacea Schreb) 
(Zhang et al. 2020), A. wardii (Zhan et al. 2020), Populus × canescens, and P. nigra 
(Shi et al. 2021), which may be a mechanism of tolerance to Pb stress of these plants. 

In the phytostabilization process, the plant roots take up Pb ions or Pb-soluble 
complexes from the rhizosphere and accumulate them internally (Yan et al. 2020). 
The Pb within root tissue can be associated with the cell wall in apoplastic space 
or immobilized intracellularly in vacuoles, limiting Pb translocation from roots to 
shoots (Yan et al. 2020; Rahman et al. 2022; Wierzbicka 1998). 

In signal grass (Brachiaria decumbens), Indian mustard (B. juncea), and 
Neyraudia reynaudiana it have been observed that most Pb precipitates in the cell 
wall as insoluble deposits inside the roots (Kopittke et al. 2008; Zhou et al. 2016; 
Yang et al. 2021). Pb mainly exists as lead phosphate precipitates [Pb5(PO4)3(OH, 
Cl), and Pb3(PO4)2] in the Indian mustard roots cells (Yang et al. 2021). Insoluble 
deposits of chloropyromorphite [Pb5(PO4)3Cl] in root cells have also been observed 
in signal grass (B. decumbens) roots (Kopittke et al. 2008). 

Vacuolar sequestration of Pb in radicular cells limits its translocation within plants 
(Sharma and Dubey 2005). Vacuoles are the largest organelle of plant cells and play 
an essential function in the heavy metal detoxification (Sharma et al. 2016). In this 
organelle, intracellular Pb is stored by complexation with organic acids and sulfur-
rich peptides known as phytochelatins (Zhang et al. 2018; Singh et al. 2017; Zhao 
et al. 2015). In addition to cell walls, the vacuoles are one of the main storage sites 
of Pb in Allium sativum and N. reynaudiana roots (Jiang and Liu 2010; Zhou et al. 
2016). Approximately, 31.2–41.3% of total Pb is stored in the vacuoles of roots A. 
wardii (Hook.) (Zhao et al. 2015). 

7.3.2 Phytoextraction of Lead 

Phytoextraction is a method used to reduce Pb levels in soil and sediments. This 
method requires Pb uptake by plant roots, root-to-shoot translocation, and intracel-
lular compartmentalization of Pb in aerial tissues (Yan et al. 2020). These processes 
are dependent on plant species, variety, genotype, environmental conditions, and Pb 
bioavailability in the soil (Asare et al. 2023). 

The first step in Pb accumulation is the Pb uptake by the root (Gong et al. 2022). 
The Pb ions from the soil are absorbed by the root epidermal cells and can be 
transported inside the root by apoplastic or symplastic pathways (He et al. 2023; Zhou 
et al. 2018). In the apoplastic pathway, Pb in the extracellular fluid is transferred from 
one cell wall to another, whereas in the symplastic pathway, the Pb ions cross the 
plasma membrane and transfer cell to cell through channels called plasmodesmata 
(Pasricha et al. 2021). As Pb is not an essential element, plants do not have a specific 
channel for Pb uptake, so it has been suggested that Pb enter the plant cells via 
channels or transporters for other essential cations (Peralta-Videa et al. 2009; Gong
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et al. 2022). Different proteins have been associated with Pb transport across the 
membrane, such as AtCNGC1 (cyclic nucleotide-gated channel 1), NtCBP4 (Plasma 
membrane Calmodulin-Binding Protein 4), and OsNRAMP5 (Natural Resistance-
Associated Macrophage Proteins 5) (Arazi et al. 1999; Sunkar et al. 2000; Chang et al. 
2022). In tobacco (Nicotiana tabacum) and Arabidopsis thaliana, two cation channels 
for K+ and Ca2+ called NtCBP4 and AtCNGC1, respectively, have been associated 
with Pb uptake across the plant plasma membrane and Pb accumulation (Arazi et al. 
1999; Sunkar et al. 2000). On the other hand, the OsNRAMP5, a divalent metal 
transporter, is associated with transporting intracellular Pb in rice (Oryza sativa) 
roots (Chang et al. 2022). Once inside the root cells, Pb is associated with amino 
acids and organic acids and can be translocated to shoots and leaves by the xylem 
(Gall and Rajakaruna 2013; Pourrut et al. 2013). 

At the shoot level, intracellular Pb is detoxified by metal-binding ligands such as 
phytochelatins and metallothioneins (Mitra et al. 2014; Pourrut et al. 2011; Eapen 
and D’Souza 2005). Phytochelatins (PC) are oligopeptides that contain glutamic acid 
(Glu), cysteine (Cys), and glycine (Gly) [(γ–Glu–Cys)n–Gly (n = 2 − 11)], whose 
synthesis is catalyzed by phytochelatin synthase (PCS) from glutathione (Scarano and 
Morelli 2002; Gupta et al. 2013b). While metallothionein (MT) are low-molecular-
weight proteins (7–10 kDa) with 9–16 cysteine residues that are encoded by a family 
of MT genes (Eapen and D’Souza 2005; Cobbett and Goldsbrough 2002). Previous 
studies have reported that the plants synthesize PC and MT in response to Pb stress. 
For example, it has been observed that Pb exposure induces the synthesis of PC in 
Salvinia minima Baker, Dwarf bamboo (Sasa argenteostriata), and coontail (Cerato-
phyllum demersum L.) (Jiang et al. 2020; Estrella-Gómez et al. 2009; Mishra et al. 
2006), and increases the expression of MT genes in tomato (Lycopersicon escu-
lentum), Bruguiera gymnorrhiza, and rice (O. sativa) plants (Kim and Kang 2018; 
Kisa et al. 2017; Huang and Wang 2009). 

In the cytoplasm of shoot cells, PC and MT binding to intracellular Pb and form 
stable complexes. The PC–Pb complex is finally transported into the vacuole, where 
it is stored (Andra et al. 2009; Inouhe et al. 2012). 

7.3.3 Rhizofiltration of Lead 

Rhizofiltration is a technique used to remove Pb from surface water, groundwater, 
and effluents with low levels of contaminants (Ekta and Modi 2018; Jadia and Fulekar 
2009). Similarly, to the phytostabilization process, in the rhizofiltration, the Pb ions 
can be absorbed within root tissues (Kristanti et al. 2021; Rawat et al. 2012), adsorbed 
by root cell walls (Ho et al. 2021), or immobilized in the root surface (Delgado-
González et al. 2021; Dushenkov et al. 1995). 

In aquatic and wetland plants, iron plaque plays an essential role in the sequestra-
tion of heavy metals in the roots (Tripathi et al. 2014). The Fe plaques are deposits of 
different iron oxides and hydroxides on the root surface (Tripathi et al. 2014; Khan 
et al. 2016). The presence of ferrihydrite [Fe4–5(OH,O)12], lepidocrocite [γ–FeOOH],



7 Phytoremediation of Lead Present in Environment: A Review 155

siderite [FeCO3], and goethite [FeO(OH)] has been observed in the Fe plaques of 
Oenanthe javanica, Phalaris arundinacea, and Vallisneria americana (Liu and Luo 
2019; Hansel et al. 2001; St-Cyr et al. 1993). These Fe (hydr)oxides are result of 
oxidation of ferrous iron (Fe2+) in the rhizosphere by the oxygen loss from the roots, 
and the biological activity of microorganisms (Tripathi et al. 2014; Khan et al. 2016). 
Previous studies have reported that iron plaque can sequester Pb on the root surface 
(Zandi et al. 2022). In rice (O. sativa), the most significant amount of plant taken Pb 
(> 60%) is stored in the iron plaque of the root (Cheng et al. 2014; Ma et al.  2013). 
Similarly, most of the total Pb uptake (50–60%) performed by Phalaris arundinacea 
L. and Carex cinerascens Kukenth. plants was found in the iron plaque, and only 
small amounts was found in roots and shoots (Liu et al. 2015, 2016). The Pb–binding 
capacity of Fe plaques is attributed mainly to the Pb’s specific and high affinity for 
iron (hydr)oxides (Hansel et al. 2001). 

7.3.4 Potential Plants for Phytoremediation of Pb 

The concentration of heavy metals in plants determines the success of phytore-
mediation; therefore, selecting suitable plant species is crucial in phytoextraction, 
phytostabilization, and rhizofiltration efficiency (Yan et al. 2020; Gupta et al. 2013a). 

Hyperaccumulator plants can potentially remove Pb from the soil through 
phytoextraction (Lone et al. 2008). Pb hyperaccumulators are plants able to grow 
in contaminated soils with heavy metals and accumulate more than 1000 mg/kg 
of Pb in aerial organs without show phytotoxicity signs (Sytar et al. 2021; Manara 
et al. 2020). However, Pb hyperaccumulation in plants is uncommon because Pb 
ions are easily precipitated in the rhizosphere, limiting their uptake by roots and 
the translocation to shoots (Baker and Brooks 1989). In the Global Hyperac-
cumulator Database (http://hyperaccumulators.smi.uq.edu.au/collection/), Alyssum 
wulfenianum, Noccaeae rotundifolium subsp. cepaeifolium, Polycarpaea synandra, 
Sesbania drummondii, Armeria maritima var. Halleri, Dactyloctenium aegyptium, 
Microstegium ciliatum, Polygala umbonata, and Spermacoce mauritiana plants, 
belonging to seven families, have been identified as Pb hyperaccumulators (Reeves 
et al. 2018). Although these plants accumulate high concentrations of Pb, hyperac-
cumulator plants are small and present slow growth, which limits their use in the 
phytoremediation process (Saifullah et al. 2009; Yan et al. 2020). 

Different fast-growing crops with high biomass production, like sorghum 
(Sorghum bicolor L.), sunflower (Helianthus annuus L.), and corn (Zea mays) have  
been studied to remove Pb from lead contaminated soil under field conditions (Cheng 
et al. 2015; Zehra et al. 2020; Yuan et al. 2019). Despite the lower concentrations of 
Pb in their tissues, the total metal remotion exerted by these plants can be like levels 
reached by hyperaccumulator plants (Van Slycken et al. 2008). 

Native plants grown on heavy metal contaminated sites are another option for 
Pb remediation. These plant species can survive, grow, and reproduce under metal 
stress better than plants introduced from other environments (Midhat et al. 2019;

http://hyperaccumulators.smi.uq.edu.au/collection/
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Yoon et al. 2006). Several studies have evaluated the phytoremediation potential of 
native plants growing in heavy metal-contaminated sites (Table 7.1). For example, 
Salazar and Pignata (2014) studied the vegetal community growing around a lead 
smelter plant in Argentina. On the other hand, Mahdavian et al. (2017) and Nouri et al. 
(2011) investigated plants colonizing a lead–zinc mining area in Iran. In Marocco, 
Midhat et al. (2019) and Hasnaoui et al. (2020) identified metal-tolerant native plant 
species from three abandoned mining sites and a contaminated site near a Pb/Zn 
mining area, respectively. In these sites, some plants belonging to the Asparagaceae, 
Asteraceae, Brassicaceae, Cucurbitaceae, Cyperaceae, Euphorbiaceae, Fabaceae, 
Gramineae, Lamiaceae, Liliaceae, Resedaceae, and Tamaricaceae families have been 
observed (Table 7.1).

The phytoremediation potential of plants can be estimated using Bioconcentration 
Factors (BCF) and Translocation Factors (TF) (Rolón-Cárdenas et al. 2022). The 
BCF is the ratio between the heavy metal content in the plant roots and the substrate 
(Zou et al. 2012; Lorestani et al. 2011). Various native plant species like Artemisia 
sieberi Besser, Fortuynia bungei Boiss., Astragalus durandianus Aitch. & Baker, 
Mentha longifolia L., and Allium umbilicatum Boiss. have showed BCF > 1 for Pb 
(Table 7.1), indicating the potential of these plants to be used in Pb phytostabilization 
(Lorestani et al. 2013). 

On the other hand, TF is the ratio of heavy metal content in the shoots and the roots 
(Midhat et al. 2019; Lorestani et al. 2011). Values TF > 1 for Pb has been reported 
in different native plants such as Lactuca viminea (L.) J. Presl & C. Presl, Scariola 
orientalis (Boiss.) Sojak, Scolymus hispanicus, Cyperus iria, Juncellus serotinus, 
Euphorbia macroclada Boiss., Echinophora platyloba DC., Paspalum paspaloides, 
Phragmites australis, Reseda alba, and Tamarix ramosissima Ledeb. (Table 7.1). 
This TF value indicates high efficiency in Pb translocation from the roots to the 
shoots and, therefore, their potential to be used in phytoextraction (Midhat et al. 
2019). 

Rhizofiltration uses heavy metal tolerant plants with a fibrous root system and 
large surface areas to ‘filter’ Pb ions in solution (Chatterjee et al. 2013; Nedjimi 
2021). Different aquatic plants have been studied to remove Pb from water through 
rhizofiltration (Kafle et al. 2022). For example, Alternanthera sessilis, Enhydra fluc-
tuans, Pistia stratiotes, Salvinia cucullata, Typha latifolia, and Vetiveria zizanioides 
can remove between 84 and 99% of Pb from solution and accumulate into root and 
shoot (Das et al. 2021; Parven et al.  2022; Veselý et al. 2011; Alonso-Castro et al. 
2009; Singh et al. 2015). Some terrestrial plants such as Indian mustard (B. juncea), 
Cosmos sulphureus Cav., sunflower (H. annuus L.), Iris lactea var. chinensis, and 
Talinum paniculatum are also suitable for rhizofiltration due to they remove high 
amount of Pb from the hydroponic medium and accumulate it in roots and shoots 
(Liu et al. 2000; Aftab et al. 2021; Seth et al. 2011; Han et al. 2008; dos Reis et al. 
2022). 

The plants used for rhizofiltration are first cultivated in hydroponic conditions 
to favour the root system development, later transferred to the contaminated water 
source, and finally harvested when the root of plants are saturated with contaminants 
(Mansoor et al. 2022; Yan et al. 2020).
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Table 7.1 Native plants growing on heavy metal contaminated sites 

Family Plant Pb concentration (mg/kg) Factors References 

Soil Root Shoot TF BCF 

Asparagaceae Asparagus horridus 
L. 

10,813.1 45.2 15.2 0.3 0.004 Midhat 
et al. 
(2019) 

Asteraceae Artemisia sieberi 
Besser 

127.4 345.2 106.2 0.3 2.71 Mahdavian 
et al. 
(2017) 

Asteraceae Bidens pilosa L. 11,936.0 741.0 59.8 0.1 0.06 Salazar and 
Pignata 
(2014) 

Asteraceae Lactuca viminea 
(L.) J. Presl & C. 
Presl 

1077.5 149.2 201.7 1.4 0.14 Midhat 
et al. 
(2019) 

Asteraceae Scariola orientalis 
(Boiss.) Sojak 

1204.0 9017.0 9140.0 1.0 7.49 Nouri et al. 
(2011) 

Asteraceae Scolymus 
hispanicus 

7792.9 798.7 972.7 1.2 0.10 Hasnaoui 
et al. 
(2020) 

Asteraceae Tagetes minuta L. 2645.0 30.7 20.0 0.7 0.01 Salazar and 
Pignata 
(2014) 

Brassicaceae Fortuynia bungei 
Boiss. 

127.0 1720.1 73.0 0.0 13.54 Mahdavian 
et al. 
(2017) 

Cucurbitaceae Citrullus 
colocynthis (L.) 
Schrader 

6156.7 94.4 38.4 0.4 0.02 Midhat 
et al. 
(2019) 

Cyperaceae Cyperus iria 40.8 35.5 54.0 1.5 0.87 Li et al. 
(2011a) 

Cyperaceae Juncellus serotinus 155.0 67.9 91.0 1.3 0.44 Li et al. 
(2011a) 

Euphorbiaceae Euphorbia 
gedrosiaca 

564.9 332.1 52.1 0.2 0.59 Mahdavian 
et al. 
(2017) 

Euphorbiaceae Euphorbia hirta 283.0 30.6 13.9 0.5 0.11 Li et al. 
(2011a) 

Euphorbiaceae Eupatorium 
inulifolium Kunth 

11,936.0 441.0 52.2 0.1 0.04 Salazar and 
Pignata 
(2014) 

Euphorbiaceae Euphorbia 
macroclada Boiss. 

9451.0 3809.0 8095.0 2.1 0.40 Nouri et al. 
(2011) 

Fabaceae Astragalus 
durandianus Aitch. 
& Baker 

241.0 1189.5 137.0 0.1 4.94 Mahdavian 
et al. 
(2017)

(continued)
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Table 7.1 (continued)

Family Plant Pb concentration (mg/kg) Factors References

Soil Root Shoot TF BCF

Fabaceae Hedysarum 
spinosissimum 

6445.1 983.6 253.9 0.3 0.15 Hasnaoui 
et al. 
(2020) 

Fabaceae Lotus corniculatus 12,223.8 1493.0 832.4 0.6 0.12 Hasnaoui 
et al. 
(2020) 

Gramineae Echinophora 
platyloba DC. 

10,426.0 1421.0 10,121.0 7.1 0.14 Nouri et al. 
(2011) 

Gramineae Paspalum 
paspaloides 

186.0 18.0 50.5 2.8 0.10 Li et al. 
(2011a) 

Gramineae Phragmites 
australis 

174.0 1.3 8.3 6.3 0.01 Li et al. 
(2011a) 

Lamiaceae Mentha longifolia 
L. 

58.0 2168.9 125.0 0.1 37.39 Mahdavian 
et al. 
(2017) 

Liliaceae Allium umbilicatum 
Boiss. 

25.0 1257.6 80.0 0.1 50.30 Mahdavian 
et al. 
(2017) 

Resedaceae Reseda alba L. 9535.0 1743.0 703.0 0.4 0.18 Nouri et al. 
(2011) 

Resedaceae Reseda alba 13,487.6 322.7 1607.5 5.0 0.02 Hasnaoui 
et al. 
(2020) 

Tamaricaceae Tamarix 
ramosissima Ledeb. 

10,401.0 130.0 2010.0 15.5 0.01 Nouri et al. 
(2011)

7.4 Microbial-Assisted Pb Phytoremediation 

Soil microorganisms fulfill essential ecosystem processes since they regulate biogeo-
chemical cycles and decompose organic matter to maintain soil fertility (Basu et al. 
2021). Plants establish associations with different types of soil microorganisms like 
bacteria and fungi which contribute to the host adaptation to environmental condi-
tions (Gan et al. 2017; Narula et al. 2012). The rhizosphere is the zone of the 
soil around the plants’ roots where occurs intense biological activity during the 
plant-soil-microorganism interactions (More et al. 2019; Pathan et al. 2020). 

Rhizobacteria and epiphytic bacteria are a broad group of soil bacteria that colo-
nize the area around the roots, and the root surface, respectively (Taulé et al. 2021). 
While the endophytic bacteria colonize the internal plant tissues without causing 
adverse effects on their host plants (Ma et al. 2011).
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Plant-associated microorganisms play an essential role in the metal phytoreme-
diation process. These microorganisms can promote plant growth, reduce metal 
phytotoxicity, modify metal uptake and accumulation in the plant, and increase 
metal bioavailability in soil or water (Ma et al. 2016; Rajkumar et al. 2012). For 
example, two rhizospheric bacteria identified as Bacillus proteolyticus and B. licheni-
formis, increased the biomass of Solanum nigrum plants growing in heavy metal-
contaminated soil, and the total Pb content in roots and shoots (He et al. 2020). Under 
axenic conditions, a rhizospheric arsenic-resistant bacteria also increased Pb concen-
tration in the root of Pteris vittata (Manzoor et al. 2019). An endophytic microbial 
consortium isolated from three native plants increased Pb accumulation in roots and 
shoots of B. juncea, and Pb concentration in sunflower (H. annuus) roots (Pietrini 
et al. 2021). 

In recent years, it has been demonstrated the potential of in situ plant-bacteria 
interaction for promote plant growth under Pb stress and Pb removal from water and 
contaminated sites. In an agricultural field contaminated with Pb and Cd, a consor-
tium of four heavy metals resistant bacteria (Rhizobium leguminosarum, Bacillus 
simplex, Luteibacter sp. and, Variovorax sp.) increased plant length, dry biomass, 
nodule number of Lathyrus sativus plants, and enhance Pb accumulation in roots in 
comparison with uninoculated plants (Abdelkrim et al. 2020). Endophyte bacteria 
Pseudomonas putida RE02 reduced the mortality percentage of Trifolium repens 
seedlings under metal stress and improved Pb uptake by T. repens plants grown in 
heavy metal contaminated tailings (Liu et al. 2021). 

In a constructed wetland, a consortium of five rhizobacteria (Bacillus cereus, 
B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous) 
increased Pb sorption by Scirpus grossus plants from contaminated water (Tangahu 
et al. 2022). 

Bacterial communities can improve growth and tolerance to metal stress in host 
plants by producing phytohormones and enzyme 1–aminocyclopropane–1–carboxy-
late (ACC) deaminase which reduces ethylene production (Kong and Glick 2017; 
Sharma 2021). These bacteria also promote plant growth and favour nutritional 
status by improving the absorption of water and nutritive elements such as nitrogen 
(N), phosphorus (P), and iron (Fe) through mechanisms like nitrogen fixation, P-
solubilization, and siderophores production (Ma et al. 2011; Etesami  2018; Manoj 
et al. 2020). 

Like bacteria, fungi have also been evaluated to increase phytoremediation effi-
ciency. Arbuscular Mycorrhizae (AM) are fungal endophytes that colonize the 
internal root tissues of higher plants (Deng and Cao 2017; Gaur and Adholeya 2004). 
AM fungi have also been shown to promote plant growth under Pb stress and increase 
Pb accumulation in plants. For example, Funneliformis mosseae, Claroideoglomus 
etunicatum, and Rhizophagus intraradices, promote the growth of the soybean 
(Glycine max L.) exposed to 100 and 300 mg/kg Pb, and increase Pb accumulation in 
the roots compared to non-inoculated plants (Adeyemi et al. 2021). F. mosseae inoc-
ulation also increased Pb accumulation in root and dry weights of Bidens parviflora 
under Pb stress (Yang et al. 2022). Similarly, Rhizophagus irregularis increases the
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shoot biomass of Medicago truncatula under Pb stress (800 mg/kg), and enhances 
the Pb concentration and content in its roots (Zhang et al. 2021b). 

Arbuscular mycorrhizae inoculation may increase the Pb tolerance of the host 
plant and accumulation in the roots through immobilization of Pb ions by the root 
cell wall or by the fungal cells (Zhang et al. 2010, 2021c). R. irregularis inoculation 
induced pectin and hemicellulose production in root cell walls of M. truncatula, 
which increases the Pb immobilization (Zhang et al. 2021c). On the other hand, in 
maize (Z. mays) plants inoculated with AM fungi, the most significant amount of Pb 
in roots is localized in the hyphal wall and within fungal cells (Zhang et al. 2010). 

7.5 Conclusion 

Rhizofiltration, phytostabilization, and phytoextraction are the main phytoremedi-
ation strategies for Pb removal from polluted environments. In the phytostabiliza-
tion and rhizofiltration process, the Pb ions can be precipitated in the rhizosphere, 
immobilized on root cell walls, or sequestered on the root surface. In contrast, in 
phytoextraction, the Pb is uptake by plant roots, translocated from roots to shoots, 
and accumulated in aerial tissues. The Pb hyperaccumulator plants, fast-growing 
crops with high biomass production, and the native plants growing on heavy metal 
contaminated sites have been used to remove Pb from the soil, while the aquatic 
and terrestrial plants with fibrous root systems are suitable for Pb removal of surface 
water, and groundwater. The plant-associated microorganisms like bacteria and fungi 
could be used as an alternative to improve the Pb phytoextraction efficiency. 
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Chapter 8 
Application of Nanoadsorbents for Lead 
Decontamination in Water 

Nitish Dhingra 

Abstract Clean water availability is a primary requisite of all living organisms. The 
rapid rise in population has led to significant development and industrial growth all 
over the globe to fulfil the increasing demands. This has resulted in the contamination 
of water bodies due to the release of heavy metals and metalloids caused by sudden 
mine tailings, gasoline, leaded paints, usage of fertilizers inland, animal manures, 
pesticides, sewage sludge, wastewater irrigation, coal, etc. The contamination of 
water bodies has caused severe environmental concerns. As a limited natural resource, 
the water preservation and its quality maintenance are of fundamental importance to 
ensure its availability for future generations. Therefore, eliminating heavy metals and 
other pollutants from contaminated streams is a primary concern due to their ability 
to cause toxic chaos that can affect the metabolism of flora and fauna. However, 
the existing decontamination techniques, such as ion exchange and reverse osmosis, 
suffer many disadvantages; hence, the focus has been shifted to developing novel, 
efficient techniques to remove heavy metals such as lead from the water. Out of 
these, the adsorption based on nanoadsorbents has gained popularity due to its ease 
of operation and cost-effectiveness. This chapter highlights the recent advances in 
water decontamination methods using nanoadsorbents involving carbon nanotubes, 
graphene, polymer-based, metal oxide nanoparticles, zeolites, and nano-clays. 

Keywords Decontamination · Heavy metal · Lead · Nanoadsorbent ·Water 

8.1 Introduction 

There are a few prime necessities for the survival of living beings. Among these, 
access to pure and safe water is one of the most challenging needs for the multifarious 
growth of a nation and a flourishing economy. Earth is popularly termed a blue

N. Dhingra (B) 
Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab 
Agricultural University, Ludhiana, Punjab 141004, India 
e-mail: nitishdhingra@pau.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
N. Kumar and A. K. Jha (eds.), Lead Toxicity Mitigation: Sustainable Nexus 
Approaches, Environmental Contamination Remediation and Management, 
https://doi.org/10.1007/978-3-031-46146-0_8 

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46146-0_8&domain=pdf
mailto:nitishdhingra@pau.edu
https://doi.org/10.1007/978-3-031-46146-0_8


170 N. Dhingra

planet because the water spans about one-third of the entire earth’s surface, of which 
about 97.5% is saline water, while the remaining 2.5% is freshwater. Out of this 
freshwater fraction, about 68.9% of water is available in the form of ice, permanent 
snow, and glaciers. Groundwater accounts for 30.8% of freshwater and only 0.3% is 
easily accessible (UNESCO 2023). The rapid rise in the population level, growing 
industrialization, urbanization, and extensive agriculture practices are contributing to 
the persistent deterioration of the water resources quality, hence becoming a matter 
of grave concern (Kamali et al. 2019; Olvera et al. 2017). Globally, around 1.2 billion 
population lacks access to pure drinking water, around 2.6 billion people struggle to 
meet primary sanitation, and millions of children have died due to communicable 
diseases spread through contaminated water (Kumar et al. 2014a, b; Yamamura et al. 
2011). 

The quantum of usable water is reducing every day due to rapid industrial-
ization, leading to severe environmental pollution and contamination of drinking 
and groundwater due to diverse organic, inorganic, and biological pollutants (Ali 
2014). Figure 8.1 gives an overview of all possible categories of water contami-
nation. Among these pollutants, the pollution caused by heavy metal ions is crit-
ical due to their non-biodegradability and accumulation inside living organism’s 
bodies. Lead (Pb) is one of the highly toxic metals (Shanmugalingam and Murugesan 
2018; Engida and Chandravanshi 2017; Benabdallah et al. 2017). Lead is a natu-
rally occurring metal that often forms compounds in combination with two or more 
elements. It reacts with air and water to produce lead carbonates, lead oxide, or lead 
sulfate. Such compounds can prevent corrosion by acting as a protective barrier. 
Although the occurrence of lead is suggested in nature, anthropogenic activities are 
the primary source of rising lead content in the environment (Shahid et al. 2015). 
Inadvertent exposure to lead can occur in many ways, such as the corrosion of 
pipes or faucets, household plumbing systems containing lead, printing, old paints, 
storage/automobile battery manufacturing, and other industrial waste. These poten-
tial sources result in the introduction of lead at elevated concentrations into the water 
cycle (Salam 2013; Mubarak et al. 2014; Ozlem Kocabas-Ataklı and Yurum 2013; 
Manzoor et al. 2013). Table 8.1 summarizes the standard limits of selected heavy 
metals in drinking water.

Lead released into the air from industrial activities is removed by the rain and 
shifted to soil or surface water. Besides, lead is utilized as a pesticide for vegetable 
and fruit cultivation (Gall et al. 2015). Consequently, humans can be exposed to lead 
through ingestion or skin breaks, resulting in lead accumulation through absorption in 
the blood, bones, and soft tissues. Lead accumulation severely influences the central 
nervous system and can cause short-term memory loss and other neurological, renal, 
gastrointestinal, and cardiovascular disorders. Hence, there is a dire necessity to 
invent decontamination techniques to eradicate heavy metals such as lead from the 
water. 

Conventionally, several physical and chemical techniques are used for water reme-
diation. These include reverse osmosis, chemical precipitation, coagulation or floc-
culation, ion exchange, electrolysis, ultrafiltration, and adsorption. The applicability 
of these techniques depends on various factors. Table 8.2 summarizes various water
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Fig. 8.1 Pictorial representation of the possible categories of water contaminants 

Table 8.1 Reference limit of heavy metal contamination in drinking water (WHO 2017) 

Contaminant Environmental protection 
agency (EPA) maximum 
permissible limit (mg/L) 

Value as per 
WHO 
guidelines 

Ill-effects on human health 

Arsenic 0.01 0.01 Vascular disease, skin 
manifestations, and visceral cancers 

Cadmium 0.005 0.003 Kidney damage, renal disorder, 
human and carcinogen 

Chromium 0.1 0.05 Headache, diarrhea, nausea, 
vomiting, and carcinogenic 

Copper 1.3 2 Liver damage, Wilson disease, and 
insomnia 

Lead 0.015 0.01 Damage the fetal brain, diseases of 
the kidneys, circulatory system, and 
nervous system 

Mercury 0.002 0.006 Rheumatoid arthritis, and diseases 
of the kidneys, circulatory system, 
and nervous system 

Nickel – 0.07 Dermatitis, nausea, chronic asthma, 
coughing, and human carcinogen 

Zinc 5 3 Depression, lethargy, neurological 
signs, and increased thirst
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decontamination techniques along with their advantages and limitations. These tech-
niques are effective but suffer from unavoidable issues such as energy intensive-
ness, high cost, less efficiency, unsustainability, and tediousness, thereby making 
them challenging to execute at the industrial scale (Tahoon et al. 2020). Out of 
various remediation techniques, adsorption is considered an efficient technique for 
reducing pollutants from contaminated water. Studies have shown that industrial 
and agricultural wastes can be utilized to remove various kinds of pollutants from 
synthetic aqueous solutions and industrial wastewater (Nazar et al. 2018; Fazal-ur-
Rehman 2018). The activated carbon, fly ash, crab-shell, zeolite, rice husk, coconut 
shell, commercially activated alumina, and others have been successfully employed 
as adsorbents. However, they suffer from certain limitations, as some of them are 
not cost-effective, whereas some require prior treatment. Moreover, their disposal 
and regeneration are other issues. To overcome these limitations, many adsorbents 
like natural clay, magnetic adsorbents, and nanoadsorbents have been investigated 
recently (Pandey 2017).

8.2 Nanotechnology for Water Remediation 

In the contemporary era, nanotechnology has unfolded as a promising solution in 
diverse sectors involving research and development. Some of these are the agricul-
ture sector (Acharya and Pal 2020), bioanalytical sciences (Keçili et al. 2019), the 
food sector (Palit 2020), and water purification (Puri et al. 2021). With the help of 
technological advances, it is feasible to employ nanoscale materials (<100 nm) in 
addressing water remediation problems owing to their remarkable properties such 
as higher surface-to-volume ratio, effortless functionalization ability for enhanced 
selectivity and affinity, and high sorbent capabilities (Zhang et al. 2019). 

Adsorption is a surface phenomenon and refers to the ability of a solid substance 
to attach to its surface the molecules of gases or solutions with which it is in close 
contact. There may be variations from the micron to nanometer range in the size of 
adsorbent molecules participating in such interactions. The nanomaterials can offer 
a relatively larger surface area for adsorption, yielding higher decontamination effi-
ciency than their bulk counterparts. This process of separating the contaminants with 
nanoscale adsorbents is termed nanoadsorption. Nanoparticles are favored over other 
adsorbents due to their unique features, such as numerous sorption sites, porosity, 
increased specific surface area, surface functionalities, low-temperature modifica-
tion, little intraparticle diffusion distance, and enhanced capabilities for ion binding 
(Singh et al. 2018). In addition, other physicochemical properties like dimensions, 
shape, chemical constitution, physicochemical stability, crystal structure and surface 
traits like roughness, energy, and area also affect the efficiency and properties of 
nanosorbent materials. The reactiveness of nanomaterials could be enhanced by 
reducing the size further, thereby improving the surface area-to-volume ratio. The 
nanoparticle’s toxicity is strongly influenced by the surface charge because it controls 
various characteristics of nanomaterials, including its colloidal behavior, selective
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Table 8.2 Summary of various water decontamination techniques 

Technique Description Advantages Limitations 

Adsorption Formation of a molecular or 
atomic film by accumulation 
of a gas or liquid solute on 
the adsorbent surface 

• Removes most 
pollutants 

• High efficiency, 
cost-effective 

• Easy operation 

• Requires 
regeneration 

• Removal of 
adsorbents from 
the treated water is 
cumbersome 

Chemical 
precipitation 

Precipitation of metal ions by 
the addition of coagulants 
(organic polymers) like lime, 
alum, etc 

• Cost-effective 
• Can remove most 
metals 

• Easy to operate 

• Sludge formation 
• Additional cost for 
sludge disposal 

Coagulation/ 
flocculation 

Addition of a coagulant to 
the water results in the 
formation of small 
aggregates called “flocs” 

• High efficiency 
• Require limited 
investment 

• High operational 
cost 

• Formation of 
sludge 

Electrodialysis An electrical potential 
between two electrodes 
causes the separation of 
cations and anions, leading to 
the formation of cells of 
concentrated and dilute salts 

• High recovery rate 
• Limited pretreatment 
is required 

• Membrane fouling 
occurs 

• High operational 
cost 

• Energy  
consumption 

Ion exchange The ions held by electrostatic 
forces get exchanged with 
the metal ions 

• Faster removal 
• Highly effective 
• Materials are 
regenerated 

• Too  much  
expensive 

• Complete removal 
of ions is not 
possible 

Reverse 
osmosis 

The separation of metal ions 
caused by the dissolved 
solids when external pressure 
becomes greater than the 
internal osmotic pressure 

• Environment friendly 
• Good quality water 

• Removal of 
minerals 

• Time-consuming 
• High  cost  

Ultrafiltration Passage of fluid through a 
semipermeable membrane, 
whereas the suspended solids 
retain on the other side of the 
membrane 

• Possible to remove a 
variety of pollutants 

• Possible to 
regenerate 

• Produces the highest 
quality water 

• Ineffective against 
inorganic 
pollutants

adsorption, integrity of blood–brain barrier, binding of plasma protein, and trans-
membrane permeability. Moreover, the crystalline structure, composition, surface 
coating, and surface roughness also play a critical role in determining the toxicity of 
nanoparticles. 

Based on above-said physicochemical characteristics, a wide variety of nanomate-
rials have been synthesized recently, such as carbon nanotubes, metal oxide nanopar-
ticles, polymeric nanoparticles, and nanowires. The physicochemical properties of 
nanomaterials may also be influenced by intrinsic compositions, inherent surface 
properties, external functional groups attached to nanosorbents, and sizes. The reason
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for such extraordinary properties and behavior of nanosorbents was explained in 
terms of the nature of active sites and their arrangement on the surface of these mate-
rials (Neyaz et al., 2014). Nanoparticles alone are readily oxidized by atmospheric 
oxygen leading to the formation of aggregates in aqueous systems. Therefore, it 
is essential to do surface modification of these nanoparticles to stabilize them and 
subsequently employ them as nanoadsorbents. To eradicate heavy metal pollutants, 
nanomaterials were recently surface-modified to enhance their properties, like effi-
ciency, stability, and adsorption capacity. The performance of nanoadsorbents was 
successfully improved by modifying their surface using various methods. 

8.3 Nanoadsorbents Used for Wastewater Remediation 

With the advent of new technological advancements, a wide range of nanomaterials 
have been synthesized that find applications in various fields and treatments. Some 
of these include nanobots, nanoelectronics, nanofertilizers, nanotubes, nanoparti-
cles, nanowires, quantum dots, etc. Nanomaterials are effectively employed in water/ 
wastewater remediation to eliminate heavy metals and other toxic pollutants because 
of their extraordinary properties, the foremost of which is high absorption capacity. 
The subsequent subsections summarize several general and newly found nanomate-
rials in wastewater remediation, such as carbon nanotubes (CNTs) or carbon-based 
nanoadsorbents, metal-based nanoadsorbents, polymer-based nanoadsorbants, and 
zeolites. 

8.3.1 Carbon Nanotubes 

Carbon nanotubes (CNTs) are macromolecules with cylindrical geometry containing 
carbon atoms organized as a hexagonal lattice in the separations of the tubes with 
ends capped via the support of a semi-fullerene-like structure (Iijima 1991). Their 
classification is primarily based on the carbon atom’s hybridization in the layers of 
CNT. As a result, CNTs can exist as single-walled carbon nanotubes (SWCNTs) and 
multi-walled carbon nanotubes (MWCNTs). The diameter of SWCNT is typically 
close to 1 nm, whereas its length can be several thousand times the diameter. When 
rolled into a seamless cylinder, a single layer of graphite (graphene layer) may form 
SWCNTs. The MWCNTs can be viewed as a queue of compressed SWCNTs with 
variable diameters. The SWCNTs possess diameters in the 0.3–3 nm range, whereas 
the diameters for MWCNTs can reach up to 100 nm. 

Various methods, like arc discharge, chemical vapor deposition (CVD), laser 
ablation, and pyrolysis, can be used to synthesize CNTs. The carbon nanotubes have 
several superior characteristics, such as high adsorption capability, large surface area, 
and tunable surface chemistry, that make them effective in treating heavy metals in 
wastewater. CNTs are unusal because they have multiple distinctive features, such
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as high adsorption capacity, morphology, high permeability, and physicochemical 
properties. The electron donor–acceptor (EDA) interactions are considered as the 
primary adsorption mechanism in CNTs. It is possible to modulate the surface affinity 
of CNTs to a broader spectrum of contaminants in the remediation of wastewater. The 
adsorption capability of CNTs toward heavy metals can be significantly improved 
by introducing functional groups, such as –COOH, –NH2, –OH, onto the surface of 
CNTs through oxidation of CNTs using acids such as HCl, H2O2, HNO3, H2SO4, 
KMnO4, and NaOCl (Kumar et al. 2014a, b). 

CNTs have also been reported to display antimicrobial properties and induce 
oxidative stress in bacteria, causing the removal of cell wall (Das et al. 2018). Carbon 
nanotubes functionalized with silver nanoparticles showed a remarkable ability to 
inactivate microorganisms. Despite the multiple advantages of CNTs, there are some 
areas for improvement in using CNTs. Firstly, the cost associated with CNTs is 
relatively high and hinders their usage at the commercial scale. Still, much work is 
needed to make them cost-effective. Moreover, the isolation of CNTs from the water 
after adsorption is a challenging task. This further adds to the cost associated with 
this remediation technique in addition to causing secondary pollution. Consequently, 
the toxicological investigation of CNTs is also in high demand. 

8.3.2 Graphene Nanomaterials 

Graphene is yet another noteworthy nanomaterial involving carbon. It is the first two-
dimensional atomic crystal used for decontaminating heavy metals from water. Due to 
its remarkable properties like elasticity, electrical conductivity, mechanical strength, 
stiffness, and thermal conductivity, it finds extensive applications in many fields. Two 
kinds of graphene-based nanomaterials, graphene oxide (GO) and reduced graphene 
oxide (RGO) are frequently employed for the remediation of wastewater contam-
inated with heavy metals. Oxidation of graphene yields GO. It possesses various 
functional groups (hydroxyl, carboxyl, epoxide, and carbonyl) containing oxygen, 
driving it a fair candidate for removing heavy metals (Gao et al. 2011). RGO, on the 
other hand, results from the reduction of GO and generally contains higher defects 
compared to pristine graphene. It is possible to readily modify RGO with functional 
groups, such as –OH and –COOH. 

The logic behind graphene-based nanomaterials for heavy metal decontamination 
lies in their ability to offer extensive specific surface areas and other outstanding 
characteristics, such as ample functional groups, highly hydrophilic attributes, and 
high negative charge density. Additionally, several studies have been carried out on 
graphene-based nanocomposites for eliminating heavy metals from water. However, 
separating GO from the aqueous solution is problematic as GO is well dispersed in 
water. A study by Arshad et al. (2018) revealed the synthesis of a novel graphene-
modified absorbent that can tackle this problem. Moreover, studies performed on 
the reusability of the adsorbent showed that Pb(II) removal efficiency remained at
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75–80% even after five operation cycles. However, much of the research on graphene-
based nanomaterials is still immature to be implemented practically for wastewater 
remediation multiple pollutants. 

8.3.3 Polymer-Based Nanoadsorbents 

Traditional adsorbents suffer some limitations, such as deficiency in specificity, low 
recyclability, and less adsorption capacity (Siddiqui and Chaudhry 2017; Burakov 
et al. 2018). Accordingly, multiple organic–inorganic hybrid polymers with more 
robust adsorption capability, better thermal resilience, and higher recyclability have 
been synthesized to resolve the problems of traditional adsorbents (Lofrano et al. 
2016). Polymer-based nanoadsorbent offers a large specific surface area and perme-
able structure. Furthermore, functional groups attached to the surface lead to an 
enhanced binding capability toward heavy metal ions such as arsenic, cadmium, 
lead, and zinc from wastewater and organic dyes (Lofrano et al. 2016; Baruah et al. 
2019). 

Various kinds of polymer-based nanoadsorbents have been synthesized based 
on the material used. Dendrimers are another category of organic polymer-based 
nanoadsorbents containing highly branched and star-shaped macromolecules with 
nanoscale dimensions. 

8.3.4 Hematite (Fe2O3) Nanoparticles 

Studies showed that Pb2+ has the highest affinity toward hematite than other heavy 
metal ions such as Zn2+, Cd2+, and Cu2+ (Shipley et al. 2013). For an initial Pb 
contamination level of 500 µg L−1, 100% decontamination efficiency was achieved 
using hematite nanoparticles with the particle size of 37 nm with different adsorbent 
concentrations of 0.05, 0.1, to 0.5 g L−1 at pH 8.0 and 120 min of contact time. The 
higher adsorbent concentration increased the adsorption rate due to increased metal 
adsorbing sites. 

8.3.5 ZnO Nanoparticles 

Hua et al. (2012) reported that zinc oxide (ZnO) nanoparticles possess high adsorption 
capability for copper metal ions but are equally effective in removing lead ions. Some 
other studies suggest that ZnO nanoparticles result in better remediation of wastew-
ater from heavy metal ions than titanium (Mahdavi et al. 2012). The study reported the 
lead decontamination efficiency of rod-like ZnO nanoparticles having particle size of 
25 nm with homogeneous morphology. As per the reported study, optimum operating
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conditions are pH 6 with 2–3 h of contact time. The sorbent’s (ZnO nanoparticles) 
basic nature (pH 9.2) readily influenced the lead ions possessing positive charge. 
The optimum concentration of adsorbent was observed to be 2 gL−1. The study 
demonstrated that electrostatic attraction and chemisorption were the primary mech-
anisms responsible for the adsorption. An efficiency of 80% was reported, which 
was promising compared to iron oxide and copper oxide nanoparticles. 

8.3.6 Copper Oxide Nanoparticles 

Mahmoud et al. (2021) synthesized copper oxide nanoparticles following a green 
approach and studied their efficiency in eliminating lead, nickel, and cadmium 
from contaminated water. The study demonstrated that decontamination efficiency 
depends on the concentration of nanosorbents and the efficiency enhanced with 
increased doses of nanosorbents. Such a trend is due to the increased number of 
available binding sites on the surface of nanosorbents. The decontamination effi-
ciency was observed to be highest for Pb2+, followed by Ni2+ and the least for Cd2+. 
The optimum removal efficiency of Pb2+, Ni2+, and Cd2+ was observed to be 84, 
52.5, and 18%, respectively, obtained at a pH of 6 for wastewater remediation under 
standard environmental conditions. 

8.3.7 Zeolites 

Zeolites are aluminosilicate minerals composed of silicon, aluminum, and oxygen, 
with a framework structure containing pores, also called molecular sieves, where 
water, alkali, and alkali earth cations may reside. The typical structure of zeolites 
involves a tetrahedral linkage between the silica and aluminum atoms via shared 
oxygen atoms. Zeolites may be both naturally occurring and laboratory-synthesized 
materials. Naturally occurring zeolites are low-cost materials that occur in abundance 
with remarkable ion exchange and sorption properties. Therefore, they are preferred 
over other common cation exchange materials, like organic resins, for removing metal 
cations from wastewater. Zeolites are compatible with current water decontamination 
methods because it is possible to employ them as fixed adsorbents in the form of 
pellets and beads. 

Since the past decades, zeolites have been widely applied in separation and purifi-
cation techniques as adsorbents. Multiple analyses have demonstrated high-silica 
zeolites’ efficacy for removing organic micro-pollutants (OMPs) from wastewater/ 
water (Wasielewski et al. 2018). Nano-zeolites having dimensions varying from 10 
to 500 nm have exhibited exceptional performance in wastewater treatment because 
of their high surface area, water stability, low-cost production and, most notably, 
their affinity with the natural environment (Shepard et al. 2020). Zeolites possess 
electrostatic pores that can trap nanoparticles such as silver ions and exchange them
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with other cations. Various materials having nano-silver, including zeolites, were 
also observed to display antimicrobial behavior to inhibit microbe’s growth due to 
the presence of silver. 

8.3.8 Nano-Clay Adsorbents 

Nano-clay is another excellent candidate for heavy metal elimination from water 
due to its non-toxic nature, low cost, high ion-exchange potential, and abundance in 
nature. Nano-clay finds its origin in the naturally existing clays, primarily composed 
of fine mineral particles. The primary segment of clay minerals is layered silicates, 
made up of silicon and oxygen bonds along with some additional elements. They can 
be seen as 2D single, double, or multilayers placed in a stacked manner, assembled 
by corner-linked silicate (SiO4) tetrahedrons (Kennedy 1990). The lack of chemical 
bonding between different clay geometry layers improves the stacked layers’ adsorp-
tion capacity, resulting in better adsorption. Nano-clay minerals possess extremely 
small molecular size, high porosity, and a large surface area, resulting in better 
reactivity for physical and chemical interactions on the surface of clay minerals. 

Recent studies have demonstrated that nano-clay follows a surface sorption mech-
anism which enables the adsorption of various contaminants from water. Nano-clay 
offers increased specific surface area and higher sorption capacity that furnishes 
chemical and structural stability for the adsorption of organic and inorganic pollu-
tants. The adsorption of pollutants occurs due to availability of charge on the surface 
of nano-clay. A pictorial representation of pollutants adsorption at different loca-
tions of the nano-clay is given in Fig. 8.2. The adsorption of pollutant can proceed as 
surface attachment, edge attachment, inter-laminar spaces, and inter-particle spaces.

8.4 Limitations of Nanoadsorbents 

Although nanoadsorbents display remarkable performance for the remediation of 
water and wastewater owing to their extraordinary physicochemical characteristics, 
they do have certain limitations. One is their ecotoxicity in the treated water, which 
can ruin aquatic ecosystems. Another limitation is the huge price and upkeep asso-
ciated with nanoadsorbents; e.g., CNTs are admiringly efficient as nanoadsorbents 
though they are pretty costly. Therefore, making cost-effective nanomaterials is a 
vital aspect to consider when choosing nanoadsorbents. For instance, photocatal-
ysis, another technique used for water decontamination, can maintain its activity by 
restoring nanoadsorbent materials (Zhu et al. 2019). Some investigations have also 
conveyed the unwanted impacts of nanomaterials caused by adding substances in 
water for its purification; e.g., chlorine mixed with water to eliminate pathogens, 
resulted in the production of cancer-causing by-products (Srivastav et al. 2020). 
Moreover, the small size of nanoparticles enables them to quickly penetrate the
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Fig. 8.2 Pollutants adsorption at different locations of the nano-clay

lymph and blood through epithelial and endothelial barriers. From there, they can 
proceed further into the brain, heart, liver, and other organs and tissues. Addressing 
such issues will enable nanotechnology to furnish the expected results, such as highly 
pure water and low-cost remedies. 

8.5 Conclusions 

To summarize, numerous water decontamination techniques have evolved; however, 
the adsorption-based remediation technique has emerged as the most powerful and 
popular technique. It can be applied to efficiently reduce various kinds of inorganic 
and organic pollutants without significant side effects. On account of their excep-
tional properties, the nanomaterials are broadly utilized to eradicate heavy metals in 
water/wastewater. In this context, nanoadsorbent materials are gaining wider recog-
nition in water remediation due to their extraordinary adsorption potential compared 
to traditional bulk-scale adsorbents. Therefore, nanoadsorbents can be named as 
next-generation adsorbents beneficial for the sanctification of the environment and 
controlling water/wastewater pollution. The chapter presents an overview of using 
nanomaterials as adsorbents either independently or with altered surfaces giving 
supplementary functional groups for more promising sequestration of lead ions in 
wastewater.
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Chapter 9 
Microbial Tolerance Strategies Against 
Lead Toxicity 

Saurabh Gupta, Manjot Kaur, Amrit Kaur, Amanpreet Kaur, 
Ravindra Kumar, Vijay Singh, and Bhairav Prasad 

Abstract Lead (Pb) is a toxic element that is not required for any known func-
tion in living organisms; hence, it is not considered essential. It does not break 
down and will persist in the environment for an undetermined amount of time, 
including in the soil, water, and air. Because PB is the cause of serious health and 
environmental problems, we need to develop remediation solutions that are both 
effective and efficient. Microorganisms that are native to Pb-affected places have 
developed processes that are unique to them to live and even thrive in an environ-
ment that is contaminated with lead. Bacteria protect themselves from lead in many 
different ways, including biosorption, efflux, and the synthesis of metal chelators like 
siderophores and metallothioneins, the production of exopolysaccharides, extracel-
lular sequestration, and intracellular bioaccumulation. Bacteria also produce metal 
chelators like siderophores and metallothioneins. One interesting potential alternative 
for lead contamination removal is the use of microbes. The employment of transgenic 
bacterial strains that possess metal-binding properties, metal chelating proteins, or 
higher metal adsorption ability, along with the utilisation of bacterial activity, such 
as the integration of plant growth-promoting rhizobacteria to enhance Pb resistance, 
exopolysaccharide and siderophores, and metallothionein-mediated immobilisation, 
has the potential to effectively accomplish bioremediation and phytoremediation 
objectives.
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9.1 Introduction 

Heavy metals above 4.5 g/cm3 inhibit biota growth and metabolism (Etesami 2018; 
Li et al. 2019). Due to its tremendous toxicity, Group 14 element lead (Pb) is the most 
heinous of these elements (Sorrentino et al. 2018). Mining, smelting, refining, acid 
industry, battery production, industrial effluent, pesticides, petrol additives, and other 
900 + industries use a lead and its compounds (Mohammadi et al. 2008; Karrariet al. 
2012; Hu et al.  2019). Pb is non-biodegradable, widespread, and persistent in soil, air, 
and water, causing serious environmental issues (Carocci et al. 2016). Agriculture 
using lead-contaminated soil and water raises the danger of lead entering the food 
chain and harming human health and longevity (Ma et al. 2017; Nonget al. 2019; 
Gupta 2020). According to Mielke and Reagan (1998), lead-based paint and soil 
from both anthropogenic and natural sources can cause higher blood lead levels or 
severe lead poisoning in newborns and adults. However, acute toxicity only occurs 
after extensive exposure. Chronic Lead (Pb) poisoning begins around 40–60 g/−1 
blood levels (Flora et al. 2012). Lead is a mutagenic and teratogenic metal that 
causes hypertension, baldness, anaemia (it inhibits porphobilinogen synthase and 
ferrochelatase enzyme activities), dementia, cognitive problems, and death (it is 
an analogue to calcium, and at low concentrations, Pb selectively blocks voltage-
dependent calcium channels; see also Wani et al. 2015; Chen et al. 2015). 

Lead (Pb) damages DNA, protein, and lipids and replaces essential metal ions 
like Zn, Ca, and Fe from enzymes important in microbial development, according to 
Asmusset al. (2000), Hartwig et al. (2002), and Roanne (1999). Because of this, the 
US Environmental Protection Agency (EPA) has classified lead as a contaminant of 
concern (Vilchez et al. 2011), and the WHO advises lead levels in drinking water be 
fewer than 10 g/L (Watt et al. 2000). Thus, Pb(II) clean-up is essential. Pb(II) remedi-
ation methods include activated carbon adsorption, ion exchange, chemical precip-
itation, reverse osmosis, foam flotation, and others. The low Pb(II) concentration 
makes these physicochemical methods expensive and inefficient (Gavrilescu 2004; 
Srivastava and Majumder 2008). Bioremediation of Pb(II)-contaminated wastes is 
promising due to its high removal capacity, eco-friendliness, and cost-effectiveness. 
Microbes tolerate and immobilise Pb(II) well (Akar and Tunali 2006; Cho and Kim 
2003; Sari and Tuzen 2009; Tuzunet al. 2005). These bacteria reduce Pb(II)’s mobility 
and biological toxicity through adsorption/chelating, active transport, extracel-
lular precipitation, intracellular absorption, and biomineralisation (Naik and Dubey, 
2013). Higher Pb concentrations negatively affect photosynthesis, respiration, food 
uptake, enzyme activity, water balance, and plasma membrane integrity (Huang et al. 
2008; Gupta et al. 2009, 2010; Shahid et al. 2014; Mitra et al. 2020). Most of these 
negative consequences are caused by Pb-induced oxidative stress, which accelerates 
oxidation and alters DNA, RNA, protein, and lipid molecules (Chanu and Gupta
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2016; Mittler, 2017; Khan et al. 2018). Redox-driven protein function changes affect 
transcription, phosphorylation, and other cellular signalling processes (Gupta et al., 
2013; Schieber and Chandel, 2014; Reczek and Chandel, 2015). Rhizosphere soil 
is rich in carbon and nitrogen, and plants emit a variety of chemicals that support a 
diverse microbiome (Compant et al. 2010). To survive, microbes must advance and 
root adsorb, link to the root surface via cell surface polymers, propagate into the root, 
infiltrate plant tissues (endophytes), etc. (Wang et al. 2016). Plant-allied microbes 
influence both symbiotic partners’ ability to adapt and thrive in biotic and abiotic envi-
ronments (Gopalakrishnan et al. 2015). Rhizobacteria, endobacteria, and arbuscular 
mycorrhizal fungus (PGPR, EBMF) assist plants to adapt to metal stress in metal-
loaded soil. The PGPR secretes enzymes, phytohormones such as IAA, CK, and GA, 
and heavy metal chelating agents like metallophores, organic acids, siderophores, and 
biosurfactants. These metabolites directly regulate the availability of minerals like 
nitrogen, phosphorus, potassium, calcium, iron, manganese, copper, and zinc, which 
affect plants’ response to HM stress (Glick 2010; Gupta et al. 2015; Ma  2016). Pb 
exposure also endangers microorganisms. Microorganisms have evolved ways to 
grow and operate normally in Pb-contaminated environments. Pb-resistant microor-
ganisms are many, such as Acidithiobacillus ferrooxidans, Citrobacter spp., Bacillus 
pumilus, and Pseudomonas aeruginosa. Thus, Lead (Pb) contamination is a signifi-
cant environmental issue, and bioremediation using Pb-resistant bacterial strains can 
be a promising approach to mitigate its impact. 

9.2 Sources of Lead 

Lead (Pb) is a prevalent naturally occurring constituent of rocks, soils, and particulate 
matter, typically exhibiting concentrations that span from 2 to 200 parts per million 
(ppm). According to Gupta et al. (2020), the release of this substance from rocks 
occurs through natural weathering processes. The Earth’s crust typically harbours Pb 
at an average concentration of approximately 15 mg kg−1. However, it is noteworthy 
that certain rock categories, such as metamorphic and igneous rocks, exhibit elevated 
levels of Pb, whereas sedimentary rocks demonstrate relatively lower levels of Pb 
and related minerals. For instance, potassium and silicate minerals are frequently 
encountered in sedimentary rocks (Lovering 1969). Granites that contain minerals 
with radionuclides, such as allanite, uraninite, thorite, monazite, zircon, xenotime, 
and titanite, have been found to exhibit higher concentrations of Pb (Kushwaha et al. 
2018). Further, Sammut et al. (2010) have reported that lead (Pb) may exist in the 
soil in various forms, including as a free metal, an inorganic complex (with SO4 

2−, 
Cl−, CO3 

2−, or HCO3−), or an organic acid (with humic, amino, or fulvic acids). 
The dispersion of Pb in soils is governed by various processes such as adsorption, 
desorption, ion exchange, precipitation, dissolution, aqueous complexion, biolog-
ical immobilisation, and mobilisation. The processes in question are influenced by 
various regional factors, such as climate, topography, organic matter, soil pH, soil 
type, and biota (Wuana and Okieimen 2011; Amundson et al. 2015; Kushwaha et al.
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2018). The significant rise in environmental Pb concentrations, exceeding 1000 times 
the previous levels, can be attributed to human activities and the excessive utilisa-
tion of materials containing Pb, as stated by Naik and Dubey (2013). Lead-based 
paints, smelting processes, glazed ceramics, and solders are extensively utilised 
across diverse applications. The presence of tetraethyl Pb in gasoline has been found 
to have a notable impact on the release of Pb into the environment. Additionally, the 
use of Pb-containing pesticides, such as lead arsenate, in agricultural and horticultural 
practices has been identified as a source of contamination for both soil and natural 
water sources. Lead, being a non-degradable contaminant, can endure in the environ-
ment and accumulate through processes such as deposition, leaching, and erosion in 
various ecological systems such as soils, aquatic systems, and sediments (Brännvall 
et al. 1999). According to Schock (1990), the primary cause of lead contamination in 
drinking water may be the process of lead leaching from household plumbing systems 
that incorporate lead-containing PVC in the form of pipes, solder, fittings, or service 
connections. Lead may also be released through the detachment of lead carbonate 
deposits from lead pipes and the accumulation of iron silt, which has a propensity to 
accumulate lead, in aged galvanised plumbing systems (Schock 1990). According to 
Cosgrove et al. (1989), it has been demonstrated that soldered connections on copper 
pipework can release significant amounts of lead (210–390 g/l), which can result in 
intoxication among children. Magill et al. (2012) have reported that 210Pb, a beta 
emitter with a half-life of 22 years, is a naturally occurring radioactive isotope of 
lead that is derived from 238U and is ubiquitously present in nature, particularly in 
regions with high concentrations of uranium in the soil and rocks. The concentra-
tion of 210 Pb is influenced by both natural and anthropogenic sources, as reported 
by Cook et al. (2018). Nevertheless, there exists a notable regional escalation in 
210Pb concentration owing to the actions of naturally occurring radioactive mate-
rials (NORMs). Some of the activities that have been identified as potential sources of 
environmental contamination include oil and gas extraction, the generation of waste 
from phosphoric acid production, the utilisation of geothermal energy and fracking 
practices, as well as uranium mining and milling operations. The stable isotopes of 
lead exhibit a significant association with natural radioactivity. It is noteworthy that 
204Pb is the only primordial isotope, while 206Pb, 207Pb, and 208Pb represent the 
terminal points of the three natural decay series, namely 238U, 235U, and 232U, 
respectively (Magill et al. 2012). Consequently, regions that contain minerals with 
high concentrations of U or Th exhibit modifications in both lead concentrations 
and isotopic compositions. Understanding the distribution of metals necessitates a 
comprehension of the distribution of mineral rocks and processing materials (Cook 
et al. 2018).
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9.3 Microbes Play an Important Role in the Migration 
and Transformation of Pb (II) 

The significance of microbes in the cycling of metals and formation of minerals 
in surface environments of the Earth has been widely acknowledged by scholars 
(Lowenstam 1981; Reith et al. 2009). In recent years, there has been a growing body 
of research on the effects of microbes on the transportation and alteration of Pb. 
The research conducted by Smeaton et al. (2009) has demonstrated that Shewanella 
putrefaciens CN32 has the ability to produce intracellular crystalline precipitates that 
exhibit an improved Pb and P mineral phase. Furthermore, this microorganism can 
facilitate the dissolution of Pb-jarosite through dissimilatory Fe reduction, particu-
larly under anaerobic circumneutral conditions. The study conducted by Park and 
Bolan (2013) has shown that Enterobacter cloacae can enhance the solubilisation 
of P and facilitate the immobilisation of Pb, leading to decreased mobility, bioavail-
ability, and toxicity of Pb. This effect is achieved through the release of P from 
insoluble P additions. According to Govarthanan et al. (2013), Bacillus sp. KK1 has 
the ability to transform Pb (NO3)2 into PbS and PbSiO3. Additionally, the presence 
of KK1 bacteria in soil leads to an augmentation of the carbonate fraction, as the 
bacteria are capable of inducing calcite precipitation of Pb. The bacterium Bacillus 
sp. MN3-4, which resides within plant tissues, has been found to possess a remark-
able ability to resist lead toxicity. This is attributed to its capacity to sequester lead 
extracellularly and accumulate it intracellularly via the binding of Pb ions. Addition-
ally, the bacterium has been observed to promote the growth of Alnus firma plants by 
producing plant hormones such as indoleacetic acid and siderophores. These find-
ings suggest that bacteria may have a potential role in mitigating phytotoxicity and 
enhancing Pb accumulation in A. firma plants, as reported by Shin et al. (2012). In 
general, microorganisms have a significant impact on the migration and transforma-
tion of Pb(II) in natural systems, and studying the mechanism of Pb bioremediation 
is of great practical importance. 

9.4 Lead-Resistant Microbes as a Means to Improve 
Phytoextraction 

Bacteria that are associated with plants have a significant impact on the adap-
tation of the host to a dynamic environment. The production of plant growth-
promoting factors, including siderophores, IAA, and 1-aminocyclopropane-1-
carboxylate (ACC) deaminase, by rhizospheric microbial communities has been 
found to enhance plant tolerance against heavy metal toxicity (Miransari 2011; 
Lugtenberg and Kamilova 2009). Current studies indicate that plant endophytes 
could play a significant role in the process of heavy metal phytoremediation. This 
is supported by various research works, such as those conducted by Waranusantigul 
et al. (2011), Deng et al. (2011), He et al. (2009), Jiang et al. (2008), Newman and
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Reynolds (2005), Sheng et al. (2008), and Weyens et al. (2009). According to Jiang 
et al. (2008), the Burkholderia sp. strain of bacteria, which is resistant to heavy 
metals, has been found to notably enhance the biomass of maize and tomato plants. 
Additionally, the strain has been observed to increase the levels of Pb and Cd in plant 
tissue by a range of 38–192%. In a separate instance, the use of multiple diazotrophs 
(nitrogen-fixing bacteria) for co-inoculation with maize has been observed to yield 
superior results in achieving Pb phytoextraction and promoting plant growth and 
biomass as compared to the use of single culture inoculations. According to Arias 
et al. (2010), the utilisation of arbuscular mycorrhiza (AM) fungi has been found 
to enhance the tolerance and accumulation of Pb in mesquite plants. The research 
conducted by Zaier et al. (2010) has demonstrated that Sesuvium portulacastrum, 
a halophytic plant species, exhibits a greater potential for phytoextraction of Pb 
compared to Brassica juncea, which is commonly employed for Pb phytoextraction. 
Additionally, Gisbert et al. (2003) have observed that the seedlings of genetically 
modified plants grown in mining soils with elevated levels of Pb (1572 ppm) accu-
mulate twice the concentration of this heavy metal as compared to the non-modified 
plants. The present study reports that the application of 400 and 800 mg Pb kg1 in 
soil resulted in an increase in Pb uptake from 18 to 46% in the cotton (Gossypium 
hirsutum) rhizosphere. This was achieved through the isolation of Bacillus edaph-
icus (strain NBT) from the rhizosphere of cotton, which was cultured with B. juncea 
L. (Indian mustard). According to Sheng et al. (2008a), strain NBT can synthesise 
IAA, siderophores, and 1-aminocyclopropane-1-carboxylate deaminase. The present 
study reports a significant increase in CaCl2-extractable Pb in soil contaminated with 
heavy metals, after the inoculation of two Cd-resistant bacteria, namely Pseudomonas 
sp. RJ10 and Bacillus sp. RJ16. The observed increase ranged between 69 and 93%. 
According to He et al. (2009), there was a range of 73–79% increase in Pb concentra-
tions in the above-ground tissues of inoculated plants when compared to the control 
group that was not inoculated. Pseudomonas fluorescens G10 and Microbacterium 
sp. G16 was identified as facultative endophytes that were extracted from rape plants 
cultivated in areas with high levels of heavy metal contamination. These endophytes 
exhibited the ability to establish themselves within the rhizosphere soils and internal 
plant tissues. According to Sheng et al. (2008b), the presence of endophytic bacteria 
in the rhizosphere soils and plant tissues of rape may facilitate the growth of the 
plant and the uptake of Pb through various mechanisms such as the production of 
IAA, siderophore, or ACC deaminase or by solubilising Pb in soils. Two endophytic 
bacteria (Q2BJ2 and Q2BG1) that are resistant to Pb and exhibit increased ACC 
deaminase activity were extracted from Commelina communis plants that were culti-
vated on mine tailings containing lead and zinc. The study conducted by Zhang et al. 
(2011) involved rape plants that were grown in quartz sand with a Pb concentration of 
100 mg kg1. The results showed that inoculation with the isolates led to a significant 
increase in above-ground Pb contents, ranging from 58 to 62% in the inoculated rape 
plants as compared to the uninoculated control. The fungal endophytes, specifically 
Mucor sp. CBRF59, were extracted from the roots of rape plants that were cultivated 
in soil that was heavily contaminated with metals. According to Deng et al. (2011),
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the presence of active mycelia from CBRF59 has been observed to enhance the avail-
ability of soil Pb by 77% in Pb-contaminated soils. The study reports that a strain 
of Bacillus bacteria obtained from the cadmium hyperaccumulator Solanum nigrum 
exhibited a high degree of selectivity in absorbing 80% of Pb2+ ions when exposed 
to an initial concentration of 10 mgL1. The observed hormetic response appears to 
be a consequence of an atypically heightened ATPase activity, which is intended to 
furnish energy to facilitate EBL14 and mitigate the deleterious effects of heavy metal 
toxicity by exporting cations, as noted by Guo et al. (2010). According to Guo et al. 
(2010), subcellular fractionation analyses indicate that the majority of Pb uptake by 
cells, approximately 77%, is localised in membrane fractions. Conversely, the cyto-
plasm and cell wall contain only 7.4% and 16.1%, respectively, of the total Pb uptake. 
The colonisation of Vetiver grass with arbuscular mycorrhizal (AM) fungi, specif-
ically Glomus mosseae, has been observed to result in an increase in chlorophyll 
content and a decrease in GSH levels. This suggests that the plant is better equipped 
to withstand stress induced by metal exposure. According to Punamiya et al. (2010), 
the treatment with a concentration of 1200 mg kg1 resulted in the highest observed 
level of Pb in shoot tissue, which was measured at 2179 mg kg1 when adjusted for dry 
weight. Additionally, the inoculation of plants with G. mosseae was found to increase 
the translocation of Pb to the shoot. The findings of hydroponic research indicate 
that the introduction of Ochrobactrum intermedium BN-3 has a notable impact on 
both the biomass and Pb accumulation of Eucalyptus camaldulensis, surpassing the 
results of the control group, which was not inoculated. The findings indicate that 
natural rhizospheric bacteria present on the root surfaces of E. camaldulensis play 
a significant role in enhancing both plant growth and Pb accumulation, as per the 
study conducted by Waranusantigul et al. in 2011. The successful remediation of Pb 
through phytoremediation may be achieved by utilising bacteria with the ability to 
dissolve Pb and enhance the growth of plants in soils that have been contaminated. 

9.5 Mechanisms of Pb (II) Resistance and Bioremediation 
by Microbes 

Numerous microbial species exhibit the ability to mitigate the toxicity of lead. The 
microbes utilise a variety of mechanisms to achieve this, such as extracellular binding, 
intracellular sequestration, active transport, exclusion by forming a permeable barrier 
(such as exopolysaccharide), precipitation, and biomineralisation, as described in 
previous studies (Naik and Dubey 2013; Park et al. 2011b). Figure 9.1, depicting 
the various techniques for immobilising microorganisms, is available for reference 
at the provided location.
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Fig. 9.1 Lead immobilisation mechanism of microbes [1] Extracellular binding of Pb (II) [2] Pb 
(II) immobilisation by exopolysaccharides [3] Pb (II) precipitation [4] Pb (II) biomineralization [5] 
Intracellular Pb (II) sequestration [6] ATP—dependent efflux pump 

9.5.1 Pb (II) Resistance Mechanisms in Microbes 

Microbes, including bacteria and fungi, have developed various mechanisms to resist 
the toxic effects of Pb(II) ions. It’s worth noting that different microbial species have 
evolved distinct ways of resisting Pb(II) toxicity, and that some may use more than one 
strategy at once. Hynninen et al. (2009) found that efflux systems help reduce cation 
buildup in both bacterial and eukaryotic organisms. Bacteria generally have a wide 
variety of resistance mechanisms to heavy metal toxicity. Metal-binding proteins, or 
metallothioneins (MTs) (Naik and Dubey 2013; Naik et al.  2012a, b; Roane 1999; 
Sharma et al. 2006), are synthesised by microorganisms to improve the immobili-
sation of heavy metals and reduce their toxicity. MTs have been found in a variety 
of bacterial species, including Pseudomonas aeruginosa (BmtA), P. putida (BmtA), 
and Synechococcus PCC 7942 (SmtA) (Blindauer et al. 2002; Turner et al. 1996). In 
addition, Roane (1999) reported the detection of a protein in Bacillus megaterium that 
shares properties with an MT protein and displays binding affinity towards Pb(II). 
It has been discovered that certain lead-resistant bacterial strains carry the genes for 
P-type ATPase and phosphatase. To carry ions and tiny organic molecules across the 
cytoplasmic membrane, cells use transmembrane transporters called P-type ATPases, 
which use ATP as an energy source (Apell 2004; Jaroslawiecka and Piotrowska-Seget 
2014; Naik and Dubey 2013). Potentially useful lead-resistance mechanisms have 
been proposed for the bacterium Cupriavidus metallidurans DN440. Hynninen et al. 
(2009) reported that PbrB generates inorganic phosphate, which is then used to store
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Pb(II) as a phosphate salt, while PbrA is in charge of transporting Pb(II) out of the 
cytoplasm. In addition, the exclusion of lead via the development of a permeable 
barrier or the active transfer of Pb2+ may potentially account for microbial resistance 
to lead. 

9.5.2 Pb(II) Bioremediation Mechanisms of Microbes 

The process of microbial biosorption or complexation of Pb(II) is a widely recog-
nised mechanism for bioremediation, as reported by Naik and Dubey (2013) and 
Templeton et al. (2003). The metal ions can be immobilised by the biomass through 
various mechanisms such as surface functional groups, ion exchange, or electrostatic 
adsorption. This leads to a decrease in the toxicity of the metal ions. According to 
Bueno et al. (2008), the process of Pb(II) uptake by Rhodococcus opacus involves the 
participation of COOH, OH, and NH groups, as indicated by the results of FT-IR and 
SEM–EDS analyses. The mechanism responsible for this uptake may be attributed to 
either complexation or electrostatic adsorption. The present study reports the isola-
tion of two distinct bacterial strains, namely Pseudomonas marginalis and Bacillus 
megaterium, from soils contaminated with metals. The study further demonstrates 
that these bacterial strains exhibit resistance to lead and are capable of immobilising 
and sequestering lead through extracellular exclusion and intracellular accumula-
tion mechanisms, respectively. This finding is consistent with the previous study 
conducted by Roane in 1999. According to Edris et al. (2014), the pseudo-first-
order kinetic model applies to the biosorption of Pb(II) onto dead cells of Chlorella 
vulgaris biomass. The maximum adsorption capacity for lead has been determined 
to be 178.5 mg/g. The utilisation of fungi, specifically Saccharomyces cerevisiae and 
Rhizopus arrhizus, is a common practice in the process of Pb(II) biosorption. The 
efficacy of their adsorption capacity is subject to significant influence from factors 
such as pH, initial metal concentration, and temperature, as evidenced by studies 
conducted by Ozer and Ozer (2003) and Sag et al. (1995). The Freundlich isotherm 
model is also applicable to the biosorption process, wherein a metal-tolerant actino-
mycete (strain 723) has demonstrated a remarkable capacity to eliminate lead ions 
(116 mg/g) from wastewater. 

9.5.3 Bioprecipitation and Biomineralisation 

Numerous studies have indicated that bacteria can facilitate the production of insol-
uble Pb compounds with sulphide, hydroxide, and carbonate as a means of mitigating 
the toxicity of Pb (II) (Park et al. 2011b). Furthermore, certain microorganisms can 
facilitate or accelerate the transformation of Pb (II) from its mobile state into highly 
stable and insoluble minerals. Thus, the microorganisms exhibit potential for on-
site remediation of areas contaminated with Pb (II). It is imperative to take into
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account the pathogenic properties and sanitary significance of microorganisms in 
practical scenarios. Bacillus thuringiensis 016 has been identified as a viable and 
secure biosorbent for the conversion of Pb(II) into lead-containing minerals on a 
large scale. This is due to its non-pathogenic properties towards humans, plants, and 
animals, as reported by Chen et al. (2015). According to Govarthanan et al. (2013), 
the Bacillus sp. KK1 isolate has demonstrated a high level of efficacy in the process 
of mineralising active Pb ions into inactive Pb. The resulting precipitation has been 
identified as PbS and PbSiO3. The microorganisms Klebsiella aerogenes, Bacillus 
iodinium GP13, and Bacillus pumilus S3 have been observed to cause precipitation 
of Pb(II) into PbS, as reported by Aiking et al. (1985) and De et al. (2008). Addition-
ally, Bacillus cereus 12-2 has been found to facilitate the transformation of Pb(II) 
into Ca2.5Pb7.5(OH)2(PO4)6 through an enzyme-mediated process, as noted by Chen 
et al. (2016). In addition, studies by Mire et al. (2004) and Naik et al. (2013) have  
shown that Vibrio harveyi and Providenciaalcalifaciens strain 2EA can facilitate the 
transfer of Pb(II) into Pb9(PO4)6. Similarly, Enterobacter sp. and Staphylococcus 
aureus have been found to possess the capacity to precipitate Pb(II) into Pb3(PO4)2, 
as reported by Levinson et al. (1996) and Park et al. (2011a). Pyromorphite, which 
is a Pb mineral found in the Earth’s crust, has a high level of stability. Its chemical 
formula is Pb5(PO4)3X, where X can be F, Cl, Br, or OH. According to various studies 
(Debela et al. 2010; Miretzky and Cirelli 2008; Rhee et al. 2014), pyromorphite has a 
low solubility, with a Ksp value ranging from 1071.6 to 1084.4. According to previous 
research conducted by Henry et al. (2015), Scheckel et al. (2013), and Scheckel and 
Ryan (2002), the synthesis of pyromorphite has the potential to reduce the mobility 
and bioavailability of soil Pb. This is because the stability of pyromorphite is posi-
tively correlated with ageing time, resulting in long-term protection of treated soils. 
Rhee et al. (2014) have provided evidence that various fungi, such as Botryotinia 
fuckeliana, Penicillium sp., Aureobasidum pullulans, and Phomamacrostoma, are  
capable of facilitating the conversion of Pb(II) to Pb5(PO4)3Cl. 

9.5.4 Detoxification of Lead by Microbes 

Biosorption, precipitation, efflux, leaky chelating compounds, extracellular seques-
tration, intracellular bioaccumulation, compartmentalisation, and extracellular 
sequestration are some of the defensive strategies that bacteria have taken to minimise 
the harmful effects of lead (Fig. 9.2). Extracellular sequestration is another strategy 
that bacteria have developed to lessen the harmful effects of lead.

9.5.5 Biosorption 

The cell wall of microorganisms serves as the primary defence mechanism, as various 
macromolecules within the cell wall participate in metal binding, as noted by Fomina
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Fig. 9.2 Schematic diagram showing lead-resistance mechanism in bacteria

and Gadd (2014). The cellular walls of gramme-positive and gramme-negative 
bacteria contain negative ions that can bind with metal cations. This binding process, 
known as biosorption, can impede the entry of heavy metals into the cells by immo-
bilising the metal on the outer surface. This information is supported by Kushwaha 
et al. (2018) and Tiquia-Arashiro (2018). The biosorption process involves the partic-
ipation of various negatively charged groups present on the microbial surface, such 
as carboxyl, hydroxyl, sulfonate, amine, sulfhydryl, and phosphonate. The absorp-
tion of metals by microorganisms is facilitated by diverse mechanisms such as ion 
exchange, chelation, adsorption, and diffusion through cell membranes and walls, 
as reported by Chang et al. (1997). Chang et al. (1997) reported the biosorption of 
lead, cadmium, and copper in an aqueous solution by Pseudomonas aeruginosa in 
a prior investigation. Gabr et al. (2008) conducted research that revealed that the 
immobilisation of lead (Pb2+) by a strain of Pseudomonas aeruginosa, specifically 
ASU6a, is facilitated by the presence of carbonyl, phosphate, hydroxyl, and amino 
groups located on the cell surface. 

Cabuk et al. (2006) reported that the cell surface of “Bacillus sp. ATS-2” contains 
carboxyl and hydroxyl groups, as well as amide and sulphonamide groups, which can 
bind with Pb2+. Cabuk et al. (2007) reported a comparable outcome in the immobil-
isation of Pb2+ through the utilisation of Saccharomyces cerevisiae. The adsorption 
capacity of Pb2+ on the cell surface is strongly regulated by the primary concentra-
tion of lead and the pH. The research conducted by Leung et al. (2000) indicates that
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the process of metal biosorption is positively influenced by an increase in pH levels, 
specifically within the range of 2–6. This finding was observed through experimen-
tation with Pseudomonas pseudoalcaligenes and Micrococcus luteus. The authors 
reported that the highest absorption capacity was observed at a pH of 5, when the 
initial metal concentration was 100 mg L1. Naik and Dubey (2011) conducted a study 
that revealed that P. aeruginosa strain 4EA, which is resistant to lead, was obtained 
from areas that were polluted with automotive waste. The strain was found to be 
capable of tolerating 0.8 mM lead nitrate and exhibited significant lead biosorption, 
with 11% of the cell’s weight attributed to lead. Munoz et al. (2015) reported that 
Klebsiella sp. 3S1, a bacterial isolate, exhibits a maximum capacity of 140.19 mg g1 
dry cell at 25 °C and pH 5. This property renders it a viable and economical biosorbent 
for the remediation of soil contaminated with Pb. Rahman et al. (2019) conducted 
a study that revealed that Staphylococcus hominis strain AMB-2, a bacterium that 
is resistant to lead (Pb) and was obtained from an industrial area, exhibited signif-
icant biosorption of both Pb and Cd from an aqueous medium. Chen et al. (2019) 
reported the expression of a flagellin protein with a high concentration of amino acids 
containing carbonyls, which binds to Pb. The protein exhibits a substantial affinity 
for Pb-binding and plays a crucial role in the molecular mechanisms underlying 
Pb tolerance and biosorption in microorganisms. Similarly, selenium (Se) uptake 
and immobilisation of Bacillus strains (indigenous) studies have been reported in 
seleniferous soil of Punjab, India (Gupta et al. 2022). The aforementioned attributes 
exhibited by bacterial strains that are tolerant to lead indicate their potential suit-
ability as efficacious agents for the process of bioremediation, specifically in the 
context of soil or water that has been contaminated with lead. 

9.5.6 Extracellular Sequestration 

Metal-tolerant bacteria can biosorb using exopolysaccharide (EPS)-mediated immo-
bilisation on the outer surface (Bramhacharie et al. 2007; Arashiro 2018). External 
plastid envelope (EPS) complexes located outside the plastid envelope are composed 
of polyanionic polymers with high molecular weight, including proteins, polysac-
charides, humic acids, lipids, uronic acid, glycoproteins, and nucleic acids. These 
polymers have the ability to bind with cationic metals with different levels of speci-
ficity and affinity, ultimately resulting in the formation of a slime layer surrounding 
the cell (Sheng et al. 2010). Because of its carboxyl, phosphate, amide, and H-bonding 
groups, EPS may be able to sequester heavy metals (Vimalnath and Subramanian 
2018). Roanne (1999), Salehizadeh (2003), Raungsomboonet (2007), Amoozegaret 
(2012), Shamim (2013), Kalita and Joshi (2017), and others have discovered lead-
resistant bacteria binding Pb2+ to EPS. EPS from Azotobacter chroococcum XU1 
adsorbs 22.38 mg/g of Pbat at neutral pH (Rasulovet al., 2013). Acinetobacter junii 
L. EPS adsorbs Pb (Kushwaha et al. 2017). Klebsiellamichiganensis R19, Providen-
ciarettgeri L2, Raoultellaplanticola R3, and Serratia sp. L30 can absorb lead from
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mono- and mixed-metal solutions (Bowman et al. 2018). EPS may help bioreme-
diate lead in biofilms, activated sludge, and granules by fixing cations (Gupta and 
Diwan, 2017). Metals interact with biofilm EPS depending on pH, metal concentra-
tion, organic matter, biomass and protein ratio, metal ion radius, electronegativity, 
cell surface sheath shape, temperature, and ph (Nong et al. 2019). Gabr et al. (2008) 
found that Pb2+ biosorption was better than Ni2+ biosorption because the Pb ion has 
a greater radius (1.20 vs. 0.9). Metal electronegativity affects EPS biosorption (Ping 
et al., 2007). High-electronegativity metals prefer negative organic groups. Bacterial 
capsules may reduce biosorption. Capsulated K. pneumoniae adsorbs heavy metals 
faster than decapsulated C. freundii, regardless of pH and metal concentration (Al-
Garni 2005). Pb biosorption is optimal at 4–7 (Pardo et al. 2003; Al-Garni  2005). 
When developing biosorbents, this is significant because EPSs gradually become 
negatively charged when pH rises, allowing metal cations to be absorbed via carboxyl, 
phosphate, and amino groups (Pardo et al. 2003). A recent study found that EPSs, 
citrate, and oxalate can dramatically alter the surface properties of an acidic ultisol 
(reddish-yellow acid soil) to efficiently mobilise Pb (Nkohetal 2019). Thus, EPSs 
are recommended for remediating Pb-contaminated environmental samples. 

9.5.7 Siderophores as Chelators 

In reaction to the heavy metal stress, microorganisms and monocotyledonous plants 
both release fungi, which are members of the principal class of chelators known 
as siderophores. Siderophores are low-molecular-weight chelating agents (0.2– 
2.0 kDa), and they can mediate iron transport into the cell. In addition, they are 
very effective at binding heavy metals that are found outside the cell. According 
to Rajkumar et al. (2010), the iron receptor protein that is located on the cell’s 
outer membrane is responsible for recognising Fesiderophore complexes (three 
siderophores linked with one Fe3+) and directing their translocation into the cell. 
The presence of lone pair electrons of oxygen and nitrogen atoms on a functional 
group (such as the hydroxamate group) readily improves the functional group’s metal 
chelation capabilities. This makes it possible for the functional group to form a stable 
polycyclic bond with the metals, which is what gives siderophores their chelation 
power. According to Braud et al. (2010), the chelating capacities of the siderophores 
found in P. aeruginosa allow the bacteria to be resistant to a wide variety of toxic 
metals. These metals include Co, Cu, Ni, Pb, and Zn. Additional evidence for the 
increased Pb tolerance via siderophore secretion in Pseudomonas aeruginosa 4EA 
(Naik and Dubey 2011) and P. putida KNP9 (Tripathi et al., 2005) has been obtained. 
According to Burde et al. (2000), an increase in the production of a mutant strain of 
the plant-growth-promoting bacteria Kluyveraascorbata SUD165 was connected to 
lower toxicity of Ni, Pb, and Zn following siderophore treatment.
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9.5.8 Efflux of Metals 

Numerous bacterial species employ a proficient mechanism for eliminating metals 
from their cellular structures. Various microorganisms, such as E. coli (Fan and 
Rosen 2002), Enterococcus hirae (Bissig et al. 2001), Candida albicans (Riggle 
and Kumamoto 2000), and Pseudomonas putida (Adaikkalam and Swarup 2002), 
have been documented to utilise this mechanism as a defence against the detrimental 
effects of metals on their cellular processes. The P1B-type ATPase plays a crucial 
role in the efflux mechanism, facilitating the transmembrane transportation of ions 
and small organic molecules. Metals can undergo transportation via either active 
or passive mechanisms. ABC transporters in the active state and P-type ATPases 
employ the process of ATP hydrolysis to facilitate the transfer of metal ions. The 
passive pathway, as opposed to the active pathway, involves the exclusion of metals 
across the proton gradient through the utilisation of resistance-nodulation cell divi-
sion (RND) proteins, as stated by Ruggerone et al. (2013). The RND proteins have 
been identified as the primary metal extruders, responsible for exporting superfluous 
cations, while the CDF (cation diffusion facilitators) have been classified as the 
secondary metal extruders. The protein classification known as P-type ATPases (Nies 
2003) is composed of two subcategories: the “Cu1+-translocating ATPases,” which 
discharge Cu1+ and Ag1+, and the “Zn2+-translocating ATPases,” which discharge 
Zn2+, Cd2+, and Pb2+, respectively (Hou et al. 2001; Rensing et al. 1999). PbtA is 
a type of ATPase that belongs to the family of ATPases. It is responsible for the 
efflux of Pb and is found in Achromobacter xylosoxidans A8. Furthermore, Kush-
waha et al. (2018) reported that the NreB and CnrT proteins are transporter systems 
that belong to the CHR protein family. Remediation strategies aimed at reducing 
metal concentrations in the environment are not conducive to the efflux mechanism 
of microbial cells due to their ineffectiveness. Transporter and regulatory proteins 
that possess a significant affinity for Pb have the potential to serve as intermediaries 
in the advancement of precise and sensitive Pb sensors, as suggested by Nong et al. 
(2019). The pbrR gene has been established as a crucial genetic element in the devel-
opment of plasmid-based, whole-cell bacterial biosensors for the rapid detection of 
lead-contaminated water, as demonstrated in this particular context (Bereza-Malcolm 
et al. 2016). Lead sensors possess the capability to contribute to lead surveillance 
and identification. Furthermore, due to their biological compatibility, they can be 
conveniently incorporated into biological entities. 

9.5.9 Intracellular Immobilisation of Lead 

Various bacterial species frequently utilise a mechanism that involves the proficient 
expulsion of metallic substances from their cellular structures. Various microorgan-
isms such as Candida albicans (Riggle and Kumamoto 2000), E. coli (Fan and 
Rosen 2002), Enterococcus hirae (Bissig et al. 2001), and Pseudomonas putida
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(Adaikkalam and Swarup 2002) have been reported to utilise this mechanism as 
a defence mechanism against the detrimental effects of metal accumulation within 
their cellular structures. The P1B-type ATPase is a pivotal component of the efflux 
mechanism, enabling the transportation of ions and small organic molecules across 
the cellular membrane. Metals possess the capacity to undergo displacement through 
either active or passive mechanisms. The transfer of metal ions is facilitated by the 
utilisation of ATP hydrolysis in ABC transporters in the active state and P-type 
ATPases. According to Ruggerone et al. (2013), the passive pathway, in contrast to 
the active pathway, employs resistance-nodulation cell division (RND) proteins to 
transport metals against the proton gradient. The RND proteins are recognised as 
the principal metal efflux pumps owing to their capacity to transport excess cations, 
whereas the CDF (cation diffusion facilitators) function as the secondary metal efflux 
pumps. The P-type ATPases, as classified by Nies (2003), can be divided into two 
distinct subgroups. The first subgroup is the “Cu1+-translocating ATPases,” which 
are responsible for releasing Cu1+ and Ag1+. The second subgroup is the “Zn2+-
translocating ATPases,” which are responsible for releasing Zn2+, Cd2+, and Pb2+. 
These subgroups have been extensively studied by Hou et al. (2001) and Rensing 
et al. (1999). PbtA belongs to the ATPase protein family and is accountable for the 
removal of Pb from cells. The aforementioned statement elucidates that the origin of 
the subject in question can be traced back to Achromobacter xylosoxidans A8, and its 
primary function is to act as a Zn2+-translocating ATPase. Kushwaha and colleagues 
(2018) have reported that the transporter systems NreB and CnrT are members of the 
CHR protein family. The effectiveness of remediation strategies in reducing metal 
concentrations in the environment is hindered by their incompatibility with the efflux 
mechanism of microbial cells. Nong et al. (2019) have suggested that transporter and 
regulatory proteins, possessing a significant affinity for Pb, could potentially serve 
as intermediaries in the advancement of accurate and sensitive Pb sensors. Bereza-
Malcolm et al. (2016) conducted a study that demonstrated the crucial role of the 
pbrR gene as a genetic component in the formation of bacterial biosensors that 
employ plasmids to detect lead concentrations in water. This methodology facilitates 
the prompt identification of lead pollution. Lead sensors have the potential to aid 
in the surveillance and identification of lead. Moreover, owing to their biological 
compatibility, they can be conveniently integrated into living organisms. 

9.5.9.1 Role of Multimetal Tolerant Bacteria in Regulating Pb Uptake 
by Plants 

Extracellular enzymes and organic acids secreted by bacteria improve Pb availability 
in soil by dissolving “inaccessible” forms of heavy metal-bearing minerals (Lors et al. 
2004; Drewniake et al. 2017). Bacteria isolated from the naturally contaminated 
heavy metal zone frequently exhibit multimetal tolerance (Pal et al. 2005). Microor-
ganisms resistant to heavy metals play a major role in regulating plant uptake of 
these contaminants. Examples of plants that metal-resistant bacteria boost absorp-
tion include the tomato plant (Solanum lycopersicum) and the rapeseed (Brassica
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napus) (Sarathambal et al. 2017; Sheng et al. 2008). Canola plants treated with 
PGPRPaenibacillus jamilae HTb8 and Pseudomonas sp. GTa5 showed significantly 
increased above-ground biomass and Pb absorption compared to uninoculated canola 
plants, according to research by Zhang et al. (2012). Bacterial isolates from the 
rhizosphere soil of the Mn hyperaccumulator Polygonum pubescense, named Enter-
obacter sp. JYX7 and Klebsiella sp. JYX10 by Jing et al. (2014), was shown to 
increase Cd, Pb, and Zn availability in culture solutions and metal-amended soils 
and to exhibit high levels of multimetal tolerance. Results from a pot experiment 
showed that PGPR, JYX7, and JYX10 significantly increased the growth and Cd, 
Pb, and Zn uptake in Brassica napus by either increasing the bioavailability of those 
metals in soils or by promoting the synthesis of IAA, siderophore, and ACC deami-
nase. Under Pb stress, Pteris vittata’s root and shoot biomass grew by a factor of 2–3, 
while multimetal (particularly As, Cd, and Pb)-resistant Pseudomonas sp. strain PG-
12 dramatically decreased Pb concentrations in the root and shoot. Hynninen et al. 
(2009) and Jarosawiecka and Piotrowska-Seget (2014) both suggest that the bacterial 
efflux transporters PbrA and PbrB are to blame for phosphate-based Pb immobilisa-
tion in bacterial cells, rendering it unavailable for plant uptake. Inoculating Sedum 
plumbizincicolum with the RC6B strain of the multimetal-resistant bacteria Phyl-
lobacteriummyrsinacearum decreased Pb uptake and, hence, Pb buildup in root and 
shoot, as was also shown by Ma et al. (2013). 

9.5.9.2 Multi-mechanisms 

The bioremediation of Pb (II) contamination is indeed governed by several mech-
anisms. These mechanisms work together to facilitate the removal, transformation, 
or immobilisation of Pb (II) ions from the environment. Prior studies have inves-
tigated the mechanism of Pb (II) biosorption by Saccharomyces cerevisiae cells, 
revealing that the elimination of Pb is influenced by both the complexation of Pb (II) 
with surface functional groups and ion exchange (Cabuk et al. 2007). Urrutia and 
Beveridge (1993) have noted that mineral production comprises multiple processes. 
The interaction of metal ions with bacterial surfaces has been observed to exhibit 
a distinct progression from sorption to nucleation and precipitation processes, as 
demonstrated by Warren and Ferris in 1998. The biosorption and complexation 
of metal ions by microbes are believed to be attributed to the surface functional 
groups of these ions, such as carboxyl, phosphoryl, and amino groups. The adsorbed 
metal ions are considered to serve as sites for the nucleation and precipitation of 
minerals. This notion is supported by previous studies conducted by Schultze-Lam 
et al. (1996), Templeton et al. (2003), and Warren and Ferris (1998). Simultaneous 
biosorption and biomineralisation of Pb (II) take place in Burkholderiacepacia, 
leading to an increased accumulation of Pb through the generation of pyromor-
phite [Pb5(PO4)3(OH)] nanocrystals. However, the precise mechanism underlying 
the formation of lead phosphate by B. cepacia remains unclear, as noted by Templeton 
et al. (2003).
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9.5.9.3 Integrated Approach for the Bioremediation of Lead 

The bacteria’s Pb resistance, such as precipitation, extracellular or intracellular 
sequestration, or modification of Pb’s oxidation state (Wang and Chen 2009; Kang 
et al. 2016), may help bioremediate Pb-contaminated soil or water. Plant growth-
promoting rhizobacteria (PGPRs) are being utilised in bioremediation to help plants 
cope with heavy metals and other abiotic stresses (Lucy et al. 2004; Zhuang et al. 
2007) (Fig. 9.3). The indirect pathway stimulates the production of enzymes and 
metabolites like siderophores and ACC deaminase that help plants grow in the pres-
ence of metals, unlike the direct pathway, which involves metal immobilisation and 
biotransformation (Zaidi et al. 2006). Multiple studies have indicated that PGPR 
applied to seeds, soil, or leaves boosts biomass output and plant tolerance to Pb-
contaminated soil, improving phytoremediation (Zulfiqar et al. 2019). Figure 9.2 
shows the integrated Pb bioremediation technique. According to Ma et al. (2013), soil 
nutrients, pH, plant species, and their microbial flora, all have an impact on the plant– 
microbe connection, which affects heavy metal uptake by metalliferous soil plants. 
However, metal-tolerant bacteria associated with hyper accumulators can mobilise 
or immobilise heavy metals by excreting a range of metabolites, which is essential to 
phytoremediation. Bacterial siderophores boost plant iron content, metal mobility,

Fig. 9.3 Integrated approach for remediation of Pb in association with the plant-growth-promoting 
(PGP) microbes in soil
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and bioavailability for metal hyper accumulators (Dimkpa et al. 2008; Braud et al. 
2009). Pseudomonas aeruginosa-inoculated maize under Cr and Pb stress increased 
shoot biomass, metal concentration, and metal transfer factor from root to shoot 
(Braud et al. 2009). Maize’s phytoextraction was enhanced by siderophore-mediated 
metal bioavailability (Braud et al. 2009). Inoculated with a Pb- and Cd-tolerant 
siderophore-producing strain, Phaseolus vulgaris lowered metal uptake (Tripathi 
et al. 2005). Siderophore-producing PGPR has potential for Pb bioremediation due 
to rhizosphere microorganisms’ metal mobilisation, plant species, Pb content, soil 
chemistry, and specific siderophores. To improve phytoremediation with this method, 
one must understand siderophore-producing bacteria’s reactivity to Pbinmultimetal 
polluted areas. Bacteria that solubilise phosphorus to promote plant growth (Azoto-
bacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, 
Microbacterium, Pseudomonas, Rhizobium, and Serratia sp.) are promising agents 
for phytoremediation of heavy metals because they make metals more bioavailable 
in the soil. Pb2+, the more reactive form of soil lead, forms less soluble complexes 
with cations including Cl-, CO3 

2−, SO4 
2−, and PO4−3 and organic ligands such as 

humic and fulvic acids, EDTA, and amino acids (Ahmad 2019). Phosphate-stabilising 
bacteria help plants absorb and remove insoluble Pb compounds. Organic acids 
and H+ acidify soil, releasing phosphorus from insoluble mineral complexes (Kong 
and Glick 2017). The plant-growth-promoting endophytic bacterium Rahnella sp. 
JN6, which solubilises phosphate, increased Cd, Pb, and Zn absorption in aerial and 
root tissue and plant development in canola plants (He 2013). Precipitating heavy 
metals into insoluble complexes reduces their toxicity. Microorganisms precipitating 
lead are unknown. Lead-resistant Bacillus iodinium GP13 and Bacillus pumilus S3 
detected lead sulphide (PbS) precipitation (Deet et al. 2008). Mire et al. (2004) 
reported that Vibrio harveyi precipitates Pb as Pb9 (PO4)6. Same effect with lead-
resistant Providentia alcalifaciens (Naik et al. 2013). The phosphate solubilising 
bacterium E. cloacae become Pb-resistant by immobilising lead as the insoluble lead 
phosphate mineral pyromorphite (Park et al. 2011). Precipitation removes lead from 
polluted soil effectively, cheaply, and environmentally (Naik and Dubey 2013). Indus-
trial discharge (battery plates, paints, ceramics, cables, and weapons), recycling facil-
ities, car manufacturing, and landfill leachate pollute wastewater with lead. Biofilm-
mediated bioremediation cleans metals and treats wastewater safely and effectively 
(Kalita and Joshi 2017). Microbial EPS is widely used in wastewater bioremedia-
tion because they bind metallicions (Pal and Paul 2008). Bacillus sp. ATS-2 binds 
Pb2+ via hydroxyl and carboxyl groups, amide, and sulfonamide (Abuk et al. 2006), 
and EPS flocculation dynamics affect heavy metal removal. Pseudomonas isolate W6 
produces an exopolysaccharide that binds lead more strongly, making it a good option 
for the bioremediation of lead-contaminated wastewater (Kalita and Joshi 2017). 
Due to temperature, pH, redox potential, nutritional condition, moisture, and heavy 
metal chemical composition, bacteria alone cannot be bioremediated (Shukla et al. 
2013). Inorganic fertilisers, biosurfactants, bulking agents, compost, and biochar 
can solve the strain’s low competitiveness and high metal content (Wiszniewska 
et al. 2016). The most promising Pb bioremediation method may be PGPR-mediated 
siderophores. Siderophores increase phytoextraction, which reduces heavy metals in
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the food chain (Gaonkar and Borkar 2017). Siderophores show how bacteria react to 
metals. In Pseudomonas aeruginosa strain 4EA, Pb promotes siderophore synthesis, 
while Cd and Co limit it (Naik and Dubey 2011). Siderophore production increases 
Pb mobility and plant absorption. Siderophores can bind and solubilise Cu, Ni, Zn, 
Pb, Cd, and actinides in multimetal-contaminated environments (Schalk et al. 2011). 
Besides stability, ligand efficiency limits siderophore binding to a metal (Hernlem 
et al. 1999).

9.6 The Strategy for Effective Pb(II) Immobilisation 

The enhancement of Pb(II)-binding proteins, specifically MTs, is a crucial require-
ment for effective immobilisation of Pb(II) and can be achieved through the genetic 
modification of microbes. The utilisation of genetically engineered microorganisms 
is a viable approach for addressing lead contamination in sites that exhibit substan-
tial levels of this toxic metal. This is because molecular techniques have been shown 
to enhance the precipitation of Pb (III), as demonstrated in studies conducted by 
Naik and Dubey (2013) and Park et al. (2011b). Furthermore, it has been demon-
strated by Chen et al. (2003) that genetic engineering can enhance the production of 
metal-binding proteins in bacteria, leading to a 33% increase in Pb(II) sorption. The 
augmented ability of bacteria to biosorb heavy metals is believed to be due to the 
presence of cysteine-containing transport proteins that are associated with the cell 
membrane, as suggested by Chang and Hong (1994). Phosphate solubilizing bacteria 
(PSB) are frequently utilised to facilitate the dissolution of phosphorus, which has 
prompted numerous research endeavours focused on the use of PSB to assist in the 
immobilisation of Pb. The study conducted by Park et al. (2010) demonstrated the 
efficacy of two types of phosphosulfate-reducing bacteria (PSB), namely Pantoea 
sp. and Enterobacter sp., in immobilising Pb (II) present in soil contaminated with 
lead from shooting ranges. The PSB was able to increase the solubility of phosphorus 
from sources that were previously insoluble by producing organic acids. The removal 
of Pb (II) has been investigated using biomass immobilised on host matrices such as 
sodium alginate, silica, gelatin, polyacrylamide, polysulfone, and polyvinyl alcohol. 
These matrices are effective hosts for immobilising or encapsulating cells. Manasi 
et al. (2014) reported that immobilisation of the Halomonas BVR 1 strain in sodium 
alginate results in enhanced efficiency of lead removal. This phenomenon is attributed 
to a physicochemical interaction between the Pb2+ and the sodium alginate beads that 
have been immobilised with the microbe. Furthermore, the immobilised beads can 
be regenerated using a 0.1 M HCl solution. Likewise, the elimination of Pb(II) (CI) is 
facilitated through the immobilisation of fungal biomass (Aspergillus niger) within 
a polysulfone matrix and Bacillus sp. within a silica matrix. Genetic engineering can 
be employed to augment microbes to synthesise specialised Pb(II)-binding proteins, 
including MTs, that are crucial for the effective immobilisation of Pb(II). The utili-
sation of genetically engineered microorganisms is a viable approach for addressing 
lead contamination in sites that exhibit substantial levels of this toxic metal. This is
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because molecular techniques have been shown to enhance the precipitation of Pb 
(III), as demonstrated by previous studies conducted by Naik and Dubey (2013) and 
Park et al. (2011b). Furthermore, it has been demonstrated by Chen et al. (2003) that 
genetic engineering can enhance the production of metal-binding proteins in bacteria, 
leading to a 33% increase in Pb(II) sorption. The augmented capacity of bacteria to 
biosorb heavy metals is believed to be due to the presence of cysteine-containing 
transport proteins that are associated with the cell membrane, as suggested by Chang 
and Hong (1994). Phosphate solubilizing bacteria (PSB) are frequently utilised to 
facilitate the dissolution of phosphorus, resulting in numerous research endeavours 
focused on PSB-mediated lead immobilisation. The study conducted by Park et al. 
(2010) demonstrated the efficacy of two types of phosphosulfate-reducing bacteria 
(PSB), namely Pantoea sp. and Enterobacter sp., in the immobilisation of Pb(II) in 
soil contaminated with Pb. This was achieved through the enhancement of phos-
phorus solubility, which was made possible by the production of organic acids. The 
removal of Pb(II) has been investigated using biomass immobilised on host matrices 
such as sodium alginate, silica, gelatin, polyacrylamide, polysulfone, and polyvinyl 
alcohol. These matrices are effective hosts for immobilising or encapsulating cells. 
Manasi et al. (2014) reported that immobilising the Halomonas BVR 1 strain in 
sodium alginate results in a higher efficiency of lead removal. This is attributed to 
a physicochemical interaction between the Pb2+ and the sodium alginate beads that 
have been immobilised with the microbe. Furthermore, the microbe-immobilised 
sodium alginate beads can be regenerated using a 0.1 M HCl solution. The immo-
bilisation of Bacillus sp. in a silica matrix (Cabuk et al. 2006) and Aspergillus niger 
biomass in a polysulfone matrix (Cabuk et al. 2006) has been found to facilitate the 
removal of Pb(II) (Abuk et al. 2006; Kapoor and Viraraghavan 1998). 

9.7 Transgenic Approach for Lead Bioremediation 

The use of genetic engineering has made it feasible to generate microorganisms with 
the necessary features, such as tolerance to metal stress, overexpression of metal-
chelating proteins and peptides, and the ability to accumulate metals to boost biore-
mediation (Tiquia-Arashiro 2018). This has made it possible to develop microorgan-
isms with the qualities necessary to increase bioremediation. For example, Wei et al. 
(2014) built E. coli with a lead-specific binding protein (PBrR) and the promoter 
region for PbrR from Cupriavidus metallidurans CH34 inserted into it. They also 
included the red fluorescence protein (RFP) in their construct. Because of this, the 
transgenic bacteria were endowed with the ability to selectively adsorb and immo-
bilise lead in a solution that contained a variety of different heavy metal ions. This 
method, as stated by Kuroda and Ueda (2010), lessens the load of toxic metals that 
are carried inside the cells, which results in a greater adsorption capacity. Almaguer-
Cant et al. (2011) found that the efficacy of metal biosorption in transgenic E. coli 
that expressed the mouse metallothionein gene (pMt-Thio) was greatly improved. 
This enhancement was observed for the ions with the charge of Pb2+ as well as
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Cd2+. In a similar vein, it was discovered that genetically engineered E. coli BL21 
(DE3) containing the metallothionein gene CgMT from Corynebacterium glutam-
icum has a much increased capacity for absorbing Pb2+ and Zn+2 when compared to 
non-engineered E. coli BL21 (DE3) (Jafarian and Ghaffari 2017). According to Das 
et al. (2016), a new bacterial strain can be engineered to have specific metal-binding 
properties (either by synthesising metal chelating proteins or by having higher metal 
adsorption ability) by introducing a single gene or operon and/or modifying the gene 
sequences of already-existing genes using molecular techniques. This can be done 
either by modifying the gene sequences of already-existing genes or by introducing 
a new gene. Developing a novel bacterial strain to have certain metal-binding capa-
bilities is one way to achieve this goal. Although there has been a lot of interest in 
the use of transgenic bacteria for the removal of lead due to their effectiveness, low 
cost, and environmentally friendly nature, this technology has not yet been deployed 
outside of the laboratory setting. Instead, you will most frequently come across its 
application within the confines of a managed setting. 

9.8 Future Perspectives 

Both bioremediation and microbiological tactics have shown some promise in the past 
few years as potential methods for cleaning polluted ecosystems of heavy metals. The 
removal of heavy metals from damaged environmental areas could be accomplished 
through the use of bioremediation as a feasible strategy. For instance, Alishewanella 
sp. WH16-1 can decrease the bioavailability of Pb and significantly enhance rice 
biomass in pot experiments of Pb (II)-contaminated paddy soil, since the bacteria 
can effectively remove Pb(II) by forming Fe–Mn oxide-bound, organic matter-bound, 
and PbS precipitate, implying its suitable application of Pb bioremediation in Pb-
contaminated soil (Zhou et al. 2016). Together with many phosphate additions (three 
apatites), the bacteria Alcaligenes piechaudii and Pseudomonas putida have the 
potential to both decrease the bioavailability of lead and increase the amount of lead 
that is immobilised in lead-contaminated soil. The increased level of lead immo-
bilisation may be generated by the kinetics of apatite dissolution. In addition, the 
incorporation of biological apatite into the soil leads to a significant increase in the 
average rate of oxygen consumption, as well as an increase in the density of microor-
ganisms; both of these results point to the significance of microbial activity in the 
metabolic process of the soil (Wilson et al. 2006). Biological apatite is a type of 
calcium phosphate that is naturally occurring in some rocks and minerals. On the 
other hand, biological applications of large-scale Pb(II) removal are still uncommon. 
This is because there are various limitations in the employment of microorganisms 
as a tool for lead bioremediation (Park et al. 2011). Although microorganisms are 
capable of immobilising lead (II) via a variety of distinct mechanisms, the use of 
microbial remediation in real-world settings presents several problems that need to 
be overcome. The expense of microbial treatment, the efficient recycling of lead (II) 
from microorganisms, and the differing biosorption behaviours between simulated
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and real polluted sites are only a few of the problems that need to be overcome. There-
fore, further studies need to explore the immobilisation and bioremediation behaviour 
in lead-contaminated environments. In addition, having an in-depth understanding 
of the process by which microorganisms remove Pb(II) from the environment might 
provide crucial foundational data that can be used in the development of Pb(II) biore-
mediation approaches that are both practical and effective. Further, uses of phosphate 
solubilizing bacteria (Rhizobacteria) may promote growth of many agricultural crops 
under lead toxicity by reducing Pb bioavailability (Hareem et al. 2023), and can also 
help in bioremediation of these toxic elements (Riseh et al. 2023). 
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Chapter 10 
Effect and Responses of Lead Toxicity 
in Plants 

Mamta Rani, Vikas, Rohtas Kumar, Mamta Lathwal, and Ankush Kamboj 

Abstract Heavy metal toxicity is becoming a great concern to living organism due 
to exponential population growth and futile race of development. As one of the latent 
contaminants, lead (Pb) contributes about 10% of the trace metal(oids) pollution. It 
can easily absorb and accumulate in different plants parts but have not any beneficial 
role in cell metabolism. Increase in Pb content in environment is caused by natural as 
well as human activities such as industrial waste, mining, and irrigation by sewage 
water, sewage sludge application, chemical fertilizer, and pesticides. Plants such as 
crops, vegetables, and fruits grown on highly Pb contaminated soil show some toxic 
symptoms that may retard their growth (vegetative and reproductive), reduction in 
photosynthetic rate, seed germination rate blackening of roots, decline in quality, and 
yield of the plants. Lead also affects the activity of various enzymes that play a signif-
icant role in metabolic pathways, i.e., catalase, peroxidase, superoxide dismutase, 
ATP synthase, RuBP carboxylase/oxygenase, APX, AsA, GPX, and ABA. When 
the contaminated produce consumed by living being, it causes many life-threatening 
diseases. In this chapter, the uptake and noxious effects of Pb on photosynthetic rate, 
germination rate, yield, nutrient uptake, accumulation, ultrastructural and oxidative 
damage, carbon metabolism, and alteration in enzymes activities were reported. 

Keywords Lead (Pb) · Heavy metal · Crops · Soil · Human health 

10.1 Introduction 

Lead is recalcitrant, highly pernicious, and non-degradable heavy metal after arsenic 
which contributes 0.002% of Earth’s crust (Zulfiqar et al. 2019). Anthropogenic 
activities including smelting and mining of Pb ores, automobiles, activities, etc.,
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released excessive amounts of Pb into the environment that causes harmful effects 
on environment and human health and also known as protoplasmic poison (Hadi and 
Aziz 2015; Lathwal et al. 2023). Pb intake in human should not exceed 25 μg kg−1 

of human body per week. In soil, Pb content may occur up to 10 ppm, but for human 
being, acceptable permissible range is 0.003 and 0.005 mg/l (Agrawal 2009; WHO  
2017; Gaur et al. 2021). 

The various forms of lead are present in soil which can be differentiated by their 
bioavailability, mobility, and toxicity. Bioavailability can be defined as the concentra-
tion available for absorption by living organisms such as plants, humans, and animals 
which is strictly related to the metal chemical form. However, in soil, the chemical 
forms of lead is affected by various processes such as ion exchange; precipitation and 
dissolution; complexation; absorption and desorption; immobilization and biolog-
ical mobilization by plants. Lead accumulation contaminates the food by interfering 
with soil and roots. Absorption of Pb may vary from species to species, but absorbed 
Pb is mainly accumulated in roots, and only a small fraction is transported to the 
aerial tissue (Collin et al. 2022). As a result, root vegetables like potato, carrot, 
radish, and sweet potatoes may contain highest level of Pb (Collin et al. 2022) and 
leafy vegetables like lettuce and Swiss chard absorbed least Pb content (Aponte 
et al. 2020). Pb contamination had stimulatory effect on soil enzymatic activities and 
microbial biomass at low concentration but inhibitory effect at higher level. High Pb 
content causes increase in membrane permeability, changes in the catalytic activities 
of various enzymes, decline in content of photosynthetic pigments, disruption of 
nutrition mineral balance, inhibition on biomass production and plant growth, and 
alters the genes. In a study, Liu et al. (2009) reported more than 1310 genes were 
altered in response to Pb treatment in Arabidopsis. Moreover, in plants, Pb-induced 
excess reactive oxygen species (ROS) have been detected (Reddy et al. 2005). Some 
plants have tolerance to the high level of Pb contamination; they complete their 
life cycle without showing any stress symptoms and accumulate > 1000 ppm of 
Pb content in their plant biomass which are known as hyper-accumulators. Over 
400 hyper-accumulating plant species from all over the world can accumulate high 
concentrations of metals from contaminated soils. 

10.2 Sources of Lead (Pb) 

Pb have various sources as natural processes such as rock weathering, volcanic 
eruptions, forest fires, and soil-forming or can be originated from anthropogenic 
processes such as fertilizer applications, industrial waste, smelting, and sewage 
disposal (Fig. 10.1). Pb is persistent and non-biodegradable in nature and found 
in ionic form such as Pb (II) in soil at low pH, but at higher pH, it is found in more 
stable form.
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Fig. 10.1 Sources of Pb in environment 

10.3 Absorption and Accumulation of Pb in Plants 

Absorption of Pb depends upon many factor such as forms of Pb in soil, water and 
air, soil pH, organic matter, chelating agents, plant type, and concentration of Pb 
in soil. In soil, Pb acts as a weak Lewis acid which imparts an intense covalent 
character to majority of ionic bonds it forms. Owing to this intense chemical binding 
with colloidal and organic materials, it is suggested that only a tiny portion of the 
lead in soil is soluble, and consecutively available for plant uptake (Kopittke et al. 
2008a, b; Punamiya et al. 2010). Solubility of Pb in soils having pH ranged from 
5.5 to 7.5 is regulated by carbonate and phosphate precipitates. Pb may exist as 
free metal ion, organic ligands (e.g., amino acids, humic acids, and fulvic acids) 
and complexed with inorganic constituents (e.g., HCO3−, CO3 

2−, SO4 
2−, and Cl−). 

Anthropogenic sourced lead generally accumulates primarily in the surface layer 
of soil, and its concentration decreases with depth which makes it challenging to 
calculate the bioavailable amount of Pb (Cecchi et al. 2008). Availability of Pb to 
plants primarily depends on soil conditions. The Pb in soil is adsorbed according to 
Langmuir adsorption isotherm and pegged to soil pH in the range of 3.0–8.5 (Lee 
et al. 1998). Soil pH significantly helps in retention and uptake of lead from soil. 
At acidic pH, lead is present as free ionic species while lead is principally found as 
lead carbonates and phosphates at high pH which are insoluble in nature. When soil 
pH was below 5.2 ± 0.2, solubility of lead increases and significantly increased its
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availability to plants (Martınez and Motto 2000). Kushwaha et al. (2018) reported 
negative correlations between the pH and total lead concentration in all the horizons 
of soil except horizon deficit of Fe and Al oxides and clay. The alteration of pH may 
be the indirect consequence of microbiological activity which in turn controls the 
reduction and oxidation of iron, and manganese. Sauve et al. (1998) found that at 
highly acidic pH, 30–50% of soluble lead exists in ionic (Pb2+) and in ion pairs form 
(e.g., PbSO4), but increasing the pH from 3 to 6.5 leads to decrease in solubility of 
Pb, and when pH increase from acidic to alkaline (6.5–8), formation of organo-Pb 
complexes was increased, and finally at neutral pH, 80–99% of lead predominantly 
occurs in the form of organic complexes. Thus, it can be concluded that at acidic pH, 
the mobility and bioavailability of lead are increased which ultimately enhance its 
uptake by plants and further cause toxic effects on living beings after consumption. 

In another study when plants grown in Pb contaminated soil, plants absorbed more 
Pb content at low pH compared to high pH or alkaline soil, but the effect was not 
accurately measured somewhat due to differing amounts of organic matter (Kush-
waha et al. 2018). In soil, 80–90% humic substances are present which contributed 
as total organic carbon. Degradation of plant residue generated three-dimensional 
interlinked, aromatic polymers known as humic acids. These units have functional 
groups like carbonyl which have free electron pair and are available for the coordi-
native binding with Pb which completes the coordinative sphere of Pb. Thus, it is 
the most significant reaction for Pb adsorption by humus. Binding of Pb is found to 
be directly proportional to pH and inversely proportional to ionic strength (Xiong 
et al. 2013). Similar notion was observed by Ahmed et al. (2019) that atmospheric 
lead remains in the upper 2–5 cm of undisturbed soils with 5% organic matter at 
pH ≥ 5 while insoluble organic lead complexes are formed in having organic content 
at pH 6–8. When the amount of organic matter is low in soil and pH is 6–8, it leads 
to precipitation of Pb with carbonate and phosphate ions or form complexes with 
hydrous oxide. These organic lead complexes are solublized and become available 
for plant uptake at pH 4–6. Pb was mainly accumulated in vascular bundles and 
humic acid transport the Pb content vascular bundles to shoot and in young stem (Xu 
et al. 2018). 

Ethylenediaminetetraacetic acid (EDTA) as chelating agent is introduced to 
achieve the remarkable improvement in Pb concentration in shoot. It has great ability 
to form complex with Pb (Kroschwitz 1995). The large size of Pb particles renders 
their passage through casparian strip of root endodermis tissue. Formation of complex 
with EDTA simultaneously reduced their size and increased its solubility (Vassil et al. 
1998). Chelation of Pb provides it an escape route from the precipitation with phos-
phates and carbonates and aids to avoid binding to cell wall in cation exchange process 
(Jarvis and Leung 2002). Moreover, the transport of solutes from parenchyma cells 
and vascular cylinder to vessels and tracheids of xylem is intensively selective active-
carrier based and thus prevents the transport of charged Pb particles (Raven et al. 
1999). However, Pb chelate complex has better chances to get transported through 
this route. 

Labile forms (Pb2+, PbOH+ and PbCO3) constituted a major portion of lead input 
from the washout of the atmospheric deposits, whereas particulate or bound forms
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of lead were dominant in urban runoff and ore mining. The abundant forms of Pb in 
sediments are lead sulfates, lead carbonates, and lead sulfides, and in surface waters, 
the concentrations of dissolved lead are low. In air, the main Pb compounds present 
are tetra methyl lead and tetra ethyl lead, which are used as gasoline antiknock 
additives. These are only present in immediate proximity of anthropogenic sources 
(Pattee and Pain 2003). 

Type of plant or plant species plays very crucial role for the uptake of Pb from air, 
water, and soil. Plant should have tolerance to Pb contamination, strong and vast root 
system, and large biomass production. Rani et al. (2023) reported that bamboo has 
the potential to remediate the heavy metal contaminated soil due to their special char-
acteristics such as large biomass production, ability to uptake large amount of heavy 
metal, resistant to abiotic and biotic stresses, large CO2 sequestration, and world-
wide distribution. The plants which absorbed Pb from atmosphere have different plant 
morphology and plant physiology. Barber et al. (2004) opined that plant factors such 
as leaf surface area, leaf longevity, functional type, and cuticular structure may affect 
the air-vegetation transfer. Little (1978) and Madany et al. (1990) demonstrated that 
leaves having rough and hairy surface tend to accumulate remarkably more lead 
(up to 10 times) compared to smooth leaves. Rao and Dubey (1992) also stressed 
the role of leaf morphological factors such as trichome density and length, and 
stomatal index on the efficiency of dust collection by plants. Downey leaves have 
high affinity for heavy metal from atmosphere (Godzik 1993). Lead particles from 
atmosphere in the form of lead sulfide (PbS) are caught in tiny folds of leaf and 
get deposited on the leaf surface and undergo oxidation resulting in the formation 
of secondary Pb-containing compounds such as PbO, PbSO4, and PbCO3. These 
secondary Pb particles penetrate inside the leaf through two possible routes. Firstly, 
Pb-containing nanoparticles noticed in the stomata may enter in the apoplasm as 
solid compounds and particles were identified beneath the cuticle membrane (Uzu 
et al. 2010). Secondly, lead formed from the dissolution of primary particles may 
diffuse through aqueous pores of stomata and cuticles along the hydrophilic pathway, 
causing necrosis augmented with lead. 

10.3.1 Translocation of Lead: Soil to Root 

Adsorption/Absorption by plant roots is the major mechanism of transfer of lead 
from soil to plant system. Roots of plants are actively engaged in the absorption of 
lead present in solution (Sharma and Dubey 2005; Uzu et al. 2009). The process 
of lead uptake by plants may occur in two steps. In the first step, lead present in 
soil is chemically adsorbed on the outer layers of radicular cortex which consists of 
rhizoderm and collenchyma/parenchyma tissues. This is achieved by binding of lead 
to polysaccharides of the rhizoderm cell surface and carboxyl groups of mucilage 
uronic acid as demonstrated by Kushwaha et al. (2018). Kopittke et al. (2007), Ginn 
et al. (2008), Meyers et al. (2008), Uzu et al. (2009), and Krzesłowska et al. (2009, 
2010) also observed the same trend in Vigna unguiculata, Festuca rubra, Brassica
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juncea, Lactuca sativa, Funaria hygrometrica, respectively, under Pb which was 
adsorbed on the surface of root. After being adsorbed to roots surface, lead gains 
entry into root system through passive absorption along with water. 

At molecular level, the determination of exact mechanism of lead migration from 
soil to plant root system demands further exploration. There is limited detail in 
literature regarding the mechanisms of Pb transport into root cells; however, a number 
of possible pathways have been purposed by several scientists. It is well established 
that lead is non-selectively absorbed (Hirsch et al. 1998). Transportation of adsorbed 
lead on the root surface has to pass through plasma membrane of root-cell. This 
can be achieved by the assistance of ionic channels/transporters. The most well-
known transport pathway of these cationic channel is Ca-channels which is widely 
documented and reported by several researchers such as Marshall et al. (1994) and 
Huang et al. (1996) who isolated right-side-out plasma membrane vesicles from 
the roots of corn and wheat plants and identified a voltage gated Ca-channel in the 
plasma membrane of their root cells. Activity of these voltage gated Ca-channels 
was substantially suppressed by Pb in the plasma membrane of wheat crop either 
by blocking them or by migrating preferentially with respect to Ca2+ through them 
as established by Monferrán and Wunderlin (2013). This conclusion was concreted 
with the findings of Wang et al. (2007) which observed a surge in Pb accumulation 
with depleting Ca content in roots of maize and accredited it to stronger interaction 
with the transporting proteins such as calmodulin where it can compete with Ca2+ 

and bind to Ca2+ binding sites on the transmembrane transporting proteins. 

10.4 Accumulated Pb Distribution in Plant Parts 

Pb content in different plant organs tend to accumulate in the following order: seeds < 
inflorescence < leaves < root. The application of Pb to the foliar in Phaseolus vulgaris 
resulted higher content of Pb in roots than the control, indicating that the Pb was 
absorbed by leaves and translocated within to roots of the plant (Feleafel and Mirdad 
2013). In an another study, Nicklow et al. (1983) observed that vegetable crops show 
different Pb concentration in different parts such as root peel of beets accumulate 
highest (90 ppm) and lowest in the root (23 ppm) while turnip had the highest Pb 
concentration in leaf and lowest in root peel. Burzynski (1984) reported that Pb was 
accumulated in roots (93–96%) predominantly and partially in hypocotyle (4–7%) 
in cucumber seedlings. Spinach, coriander, cabbage, lettuce, and cauliflower had Pb 
concentration in the following order: leaves > stem > roots, but in reddish, the lead 
content followed the different trend, i.e., roots > stem > leaves (Farooq et al. 2008). 
Root had a significant ability for lead accumulation as compared to stem and shoot. In 
contrast with the control, Pb accumulation increased by 10.15–40.04, 30.21–185.16, 
30.61–97.62 times in shoot, stem, and root (Yongsheng et al. 2011). In Brassica 
napus, Pb was mainly accumulated in roots at flowering and physiological maturity 
stage (Ferreyroa et al. 2018).
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10.4.1 Intracellular Localization of Pb (in Cell Wall, Vacuole, 
and Cell Membrane) 

It has been deduced from the ultrastructural investigations that Pb is mainly amassed 
in intercellular space, vacuole, and cell wall, while minor deposits have been observed 
in other cell organelles such as dictyosome, dictyosome derived vesicles, and endo-
plasmic reticulum. About 90% of the adsorbed Pb is deposited in cell wall and vacuole 
(Wierzbicka and Antosiewicz 1993). Plants take up free Pb ion either by capillary 
action or from atmospheric air through cellular respiration. A well-developed root 
system of the plants takes up divalent Pb ions with the nutrients from the soil and also 
get absorbed passively and transported through xylems and unloads in the endoderm 
(Engwa et al. 2019). 

The atmospheric Pb was absorbed via cuticle and stomata present in the surface 
of leaves. Absorbed Pb causes the chlorosis in leaves reaching to the endodermis 
region and bound to the cell wall and plasma membrane. Endodermal cells act as a 
barrier for the transport of Pb such as apoplastic and symplastic pathway. Casparian 
strip block the apoplastic pathway and then Pb can only translocate through symplast 
pathway. And the role of this barrier in leaf cell vacuole is only to restrict the transport 
of Pb (Collin et al. 2022). 

10.4.1.1 Within Cell Walls 

Cell wall serves as a site of Pb accumulation in the form of insoluble lead complexes 
such as lead phosphate complex (Lane and Martin 1982; Zegers et al. 1976) and 
prevents the entry of Pb into cytoplasm. The mechanisms employed in restricting the 
movement of high levels of lead in the cells of the tolerant clone demands further 
exploration (Qureshi et al. 1986). Plant cell walls contains abundance of divalent 
and trivalent cation binding compounds which contain functional groups like –OH, 
–COOH, and –SH. Phenolics, proteins, amino acids, and polysaccharides are the 
most significant compounds. The ability of these compounds to bind trace metal 
ions such as Pb is highly dependent on the number of these functional groups present 
in them (Pelloux et al. 2007). The amount of polysaccharides presents in cell wall 
which are abundant in carboxyl groups principally determines the binding capacity of 
cell wall. Homogalacturonan is one of the four major polysaccharide domains which 
constitute pectin. Those fractions of homogalacturonan which have low degree of 
methyl esterification contain free carboxyl which binds the Pb2+ (Dronnet et al. 1996; 
Fritz 2007). Binding of Pb2+ to pectin in cell wall renders it metabolically inactive. 
Gall et al. (2015) said that cell wall form the first barrier for the entry of heavy 
metal for the cell which plays significant role in detoxification mechanism. Under 
transmission electron microscopy, Islam et al. (2007) reported that in Elsholtzia argyi 
main organ of the Pb accumulation was cell wall. 

Another mechanism by which cell wall protects internal cell organelles from Pb2+ 

ion exposure is by separating sequestered Pb deposits in it from plasma membrane
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through a callose layer which metal ions are unable to penetrate; thus, it essentially 
acts as a barrier against intrusion of Pb2+ into the protoplasm (Hall 2002; Patra et al. 
2004). Thus, endocytosis of sequestered Pb returning into cell wall with compounds 
of cell wall provides a robust safeguard to plant cells (Krzeslowska et al. 2010). 
Thickening of cell walls occurs to aid in restricting the trace metal ion uptake into 
the plants (Probst et al. 2009). This change in cell wall morphology is induced by 
raise peroxidase activity and lignification of cell wall (Liu 2012). The amount of 
trace metals entering the protoplast is reduced chemically by thickened cell walls 
by binding trace metals to the negatively charged substances, synthesizing lipid 
compounds and callose to introduce physical barrier against immigration of ions and 
function as a compartment as well for the accumulation of trace metals. Xu et al. 
(2018) showed that Typha orientalis when grown under hydroponic Pb stress resisted 
the Pb-induced damage by the isolating the Pb content in the cell wall. 

10.4.1.2 Inside Vacuoles 

Vacuole is an important membrane-bound cell organelle which plays a key role in 
detoxification of cytoplasm by sequestrating the metal ion, thus imparting the toler-
ance to plant against lead (Seregin and Ivanov 2001). Sahi et al. (2002) has established 
the existence of this mechanism in leguminous shrub Sesbania drummondii which 
procures the globular deposits of Pb in vacuoles. First, Pb ions from the external solu-
tion may enter endoplasm reticulum closely linked to the apoplast. The Pb particles 
which had entered the cytoplasm is firstly gathered into membrane-bounded vesicles 
followed by their subsequent sequestration within the vacuole, evidently through 
exocytosis (Koppitke et al. 2008). Inside the vacuole, two types of compounds are 
present (i) Compounds of organic acids such as malate and oxalate which have 
high affinity for Pb ions, and (ii) the compounds that interact with heavy metals to 
form low-soluble complexes which causes predominate localization of Pb in this 
organelle (Krotz et al. 1989; Mazen and El Maghraby 1997). Moreover, the intro-
duction of heavy metal ions inside cytoplasm triggers the synthesis of metal binding 
peptides through the induced expression of the gsh1, gsh2, and MT genes which 
forms metal peptide complex and transported to vacuole (Vögeli-Lange and Wagner 
1990, 1996; Seregin and Ivanov 2001). These vacuoles are called Pb-sequestering 
vacuoles which specifically function to entrap cytosolic Pb which is transported to 
them via specific intracellular mechanisms (Meyers et al. 2008). Pb-sequestering and 
non-sequestering vacuoles can lie side by side. Exposure to heavy metal prompts the 
production of additional vacuoles particularly to store toxic metals. This is evident 
from the observations made by Sridhar et al. (2005) in a conventional transmission 
electron microscopy (TEM) study of B. juncea root which indicated a rise in the 
number of vacuoles in the cortical and epidermal cells of roots following exposure 
to Cd and suggested the existence of a similar mechanism active in the root tips 
of B. juncea against Pb exposure. The sequestration of Pb and Cd in vacuoles is 
an energy-requiring process (Salt and Rauser 1995). Jiang et al. (2019) studied the 
effect of lead on cell and found that Pb is strategically translocated from cell wall to
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vacuole to avoid the damage caused to sensitive parts of cell such as mitochondria 
and protoplast and provide extra space to cell wall under tolerance strategy. 

10.4.1.3 Within Cell Membrane 

The plasma membrane functions as a living barrier of the cell to uninterrupted 
influx of Pb ions across the cell membrane through diffusion (Jiang and Liu 2010). 
Membrane transport systems located in cell membrane are an integral component of 
mechanisms which involves uptake, accumulation and removal of heavy metals from 
the cell. These mechanisms ensure protection against heavy metal toxicity by main-
taining the optimum concentration of heavy metals inside cell required to perform its 
normal functions (Malecka et al. 2008). Strange and Macnair (1991) suggested that 
cell membrane is the site of primary tolerance mechanism against toxicity of heavy 
metal. Transmission electron microscopy and X-ray microanalysis of root sections 
of hyper-accumulator shrub Sesbania drummondii by Sahi et al. (2002) established 
the localization of Pb granules in plasma membrane. This can be attributed to the 
large number of functional groups present in cell membrane (Gardea-Torresdey et al. 
2001). Accumulation of Cu in root apoplast at cell membrane deters its entry into 
cytosol (Ernst et al. 1992). Wojcik and Tukiendorf (2003) observed this mechanism 
in Arabidopsis thaliana plants. Root ultrastructural studies conducted by Islam et al. 
(2007) detected the dispersion of fine Pb particles across cell membrane. On being 
exposed to high concentration of heavy metal ions, there is induction of constitutive 
altercations in the structure of plasma membrane (Ernst et al. 1990). The enfolding’s 
of plasmalemma produce certain vesicles which accumulate Pb inside them and deter 
the dissemination of free Pb ions in cytoplasm, thereby confining them to minimal 
space (Jiang and Liu 2010; Clemens 2006). 

10.5 Effects and Responses of Plants Under Pb Stress 

Metal phytotoxicity occurs when metals take up by plants from roots and transported 
to various parts of shoot. Excessive Pb concentration causes deleterious effects in 
plants such as decline in photosynthetic rate, chlorophyll synthesis, affects the Calvin 
cycle, closing of stomata by creating deficiency of CO2, growth inhibition which 
is connected with cell division, let down mineral nutrition and water balance and 
enzyme activities (Fig. 10.2). It also brings the changes in lipid composition and 
chlorophyll b content (Kumar and Rai 2007; Collin et al. 2022). There is some unex-
pected possible mechanism such as changes in the permeability of the cell membrane, 
reaction to sulfhydryl groups with cations, possible attraction for phosphate groups 
and active groups of ATP and ADP (Hadi and Aziz 2015). Spraying of various 
rates of Pb on tomato plant causes the leaves margins burning, bending of branches 
and sudden decrease in flowers (El-Shebiny 1989). Apart from these, Pb toxicity
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enhanced the production of reactive oxygen species (ROS) which cause the oxida-
tive stress in the plant cell. Plants activate their antioxidant system to prevent the 
oxidative damage by ROS enzymatically and non-enzymatically. These antioxidants 
(superoxide dismutase. peroxidase, catalase, glutathione reductase, and ascorbate 
peroxidase) appears to play a pivotal role in combating oxidative stress. Ashraf et al. 
(2017) reported that under Pb conditions photosynthetic pigment destructions, induc-
tion of oxidative stress with increased production of H2O2, MDA, protein produc-
tion, and soluble sugar. Fazeli et al. (1991) study found that the Pb only affects the 
growth of tomatoes, and the content of Vitamin C remains constant. Mishra et al. 
(2006) found decreased level of sucrose in vegetables due to inhibition of carbo-
hydrate synthesis. Pb reduced the plant height, number of leaves, and dry matter of 
sunflower plants at higher concentration (Hung et al. 2014). Blackberry plant’s leaves 
have 4.5 folds higher Pb concentration than the fruits, and blackberry contains 71% 
of the Pb exceeding the WHO threshold by 29 times. The consumers are at high risks 
who take 100 g fresh blackberries which consist 8.51 mg Pb (Collin et al. 2022). 
Opeolu et al. (2010) reported less number of flowers under high concentration of 
Pb in sunflower, and histological changes in leaves such as thin blade leaf, minified 
xylem and phloem in vascular bundle, and reduction in diameter of xylem vessels 
were observed in soybean under Pb contamination (Hadi and Aziz 2015). Table 10.1 
presents the effects of different Pb concentration on crops and vegetables. 

Fig. 10.2 Effects of Pb on plants
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Table 10.1 Effects of Pb on some crops and vegetables 

Plant species Pb concentration Effects on plants References 

Helianthus 
annuus 

300, 600, and 
900 mg/kg 
0.5, 1, 1.5, 2, 2.5, 
3, 3.5, 4, 4.5, and 
5 mM  

Reduction in shoot and root 
length, fresh weight and dry 
weight, Chl a and Chl b, 
carotenoid contents, and matter 
stress tolerance index were less 
as well 

Azhar et al. (2006) 
and Saleem et al. 
(2018) 

Brassica juncea 0.25, 0.50, and 
0.75 mM 

Lower dry weight, shoot and 
root length, total chlorophyll 
and carotenoid level. Water 
content and relative water 
content were enhanced 

Kohli et al. (2017, 
2018a, b) 

Lactuca sativa 20 mg/l 
500 μM 

Delayed in germination, 
significant decline in dry and 
fresh weight of plants and 
reduction in carotenoids, Chl a 
and Chl b content 

Ður -dević et al.  
(2008) and  Silva  
et al. (2017) 

Hordeum vulgare 100 and 200 μM Reduction in shoot length, root 
length, fresh weight, and dry 
weight 

Arshad et al. (2017) 

Oryza sativa 100 μM 
400, 800, and 
1200 ppm 
500 and 1000 μM 

Decrease in shoot, root lengths, 
fresh and dry weights, gas 
exchange parameters, and 
decrease in Chl a and Chl b, 
total chlorophyll, and carotenoid 
as compared to control 

Chen et al. (2017), 
Ashraf et al. (2017) 
and Verma and 
Dubey (2003) 

Triticum aestivum 100 μM 
40 and 60 ppm 
1.5, 3, and 15 mM 
0.05, 0.1, 0.5, and 
1 g/L  

Reduction in dry weight, fresh 
weight, shoot length, and root 
length and number of tendrils. 
Low total chlorophyll, Chl a, 
and Chl b. Dose-dependent 
reduction in growth, fresh 
weight, dry weight, and 
germination percentage 

Tripathi et al. (2016) 
and Lamhamdi et al. 
(2010) 

Brassica juncea 25, 50, and 
100 μM 

Reduced growth in terms of 
percentage, germination, shoot 
length, root length, fresh weight, 
dry weight total chlorophyll, and 
carotenoid 

Pratima and Pratima 
(2016)

(continued)
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Table 10.1 (continued)

Plant species Pb concentration Effects on plants References

Gossypium 
hirsutum 

25, 50, and 
100 μM 
500 μM 

Steep decline in biomass of leaf, 
stem and root in plants. Decline 
in plant height, root length, leaf 
area, and number of leaves per 
plant. Reduced content of Chl a, 
Chl b, total chlorophyll, and 
carotenoid content and gradual 
retardation in levels of, stomatal 
content, net photosynthetic rate, 
and transpiration rate. Changes 
in leaf morphology, viz. length, 
width, and petiole size, were 
reduced 

Bharwana et al. 
(2013, 2014, 2016) 

Brassica juncea 
L. 

32, 100, 200, 400, 
and 800 ppm 
50 mg/L 

Seed germination and survival 
were reduced. The number of 
leaves, root, shoot and branches 
length, fresh weights, and dry 
weights were declined reduction 
in photosynthetic indices 

Kaur et al. (2013) 
and John et al. 
(2012) 

Brassica napus L. 33, 100, 200, and 
400 μM 

Lowered root length and 
tolerance index 

Mosavian and 
Chaab (2012) 

Vigna mungo 25, 50, 75, 100, 
and 150 ppm 
9, 10, and 11 mg/L 

Reduction in percentage 
germination, lengths of root and 
shoot, and the number of leaves. 
Similarly, reduction in dry 
weight, fresh weight, leaf area, 
and number of nodules were 
also observed 
Plant height, fresh and dry 
weights, chlorophyll, and 
carotenoid content also get 
reduced 

Kumar and 
Jayaraman (2014) 
and Gupta et al. 
(2006) 

Arachis hypogea 
(cultivar K6 and 
K9) 

100, 200, 400, and 
800 ppm 

Pb-induced reduction in 
biomass, and growth in term of 
shoot and root length 

Nareshkumar et al. 
(2015) 

Vigna unguiculata 200 ppm 
0.025, 0.050, 0.1, 
0.15, 0.2, 0.3, 0.4, 
0.5, 1, 1.5, and 
2.50 mM 

Growth was drastically lowered. 
Reduction in shoot and root 
growth, fresh mass of roots, and 
shoot was also low 

Ojwang et al. (2015) 
and Kopittke et al. 
(2007) 

Pisum sativum 0.25 mg/L Reduction was observed in 
number of tendrils, plant height, 
and leaf length, whereas in the 
number of leaves and leaf width 
got increased 

Ghani et al. (2015) 

Vigna radiata 25, 0.05 and 
0.3 mM 

Seed length and percentage 
germination were reduced 

Hassan and 
Mansoor (2014)

(continued)



10 Effect and Responses of Lead Toxicity in Plants 223

Table 10.1 (continued)

Plant species Pb concentration Effects on plants References

Zea mays L. 1, 25, 50, 100, 
200, and 500 mM 
10, 20, and 30 ppm 

Germination percentage and 
seedling growth in terms of root 
and shoot length were reduced 
significantly. Similar reduction 
in fresh and dry weight of 
seedlings, root and shoot growth 
got inhibited. Decline in level of 
total chlorophyll 

Hussain et al. (2013) 
and Ghani (2010) 

Raphanus sativus 2.5 mM Decline in fresh weight, dry 
weight, and plant height reduced 
net photosynthetic rate and total 
chlorophyll content 

Anuradha et al. 
(2011) 

10.5.1 Germination 

Germination of the seed marks the beginning of plant life. Many researchers have 
reported the adverse effect of Pb on germination such as such as rice, Pinus helipensis, 
Phaseolus vulgaris, and Pisum sativum (Mukherji and Maitra 1976; Nakos 1979; 
Wierzbicka and Obidzińska 1998). Mukherji and Maitra (1976) reported that 60 mM 
lead acetate lowered the activity of protease and amylase by about 50% in rice 
endosperm. The lead which enters through symplastic pathways leads penetration 
into the seed embryos and delays the germination by disrupting the activity of 
protease and α-amylase enzymes. These enzymes are released from aleuronic layer 
into the endosperm and scutellum epithelial cells, and its function is to hydrolyze 
the storage protein into metabolizable sugars to nourish the germinating plant (Tan-
Wilson and Wilson 2012). Lead disrupts their functioning by binding at their active 
site and leading to inhibition of seed germination and growth (Sengar et al. 2008). 

Seed coats exhibit selective permeability to Pb ions, but during imbibition of 
seeds, their permeability varies and become highly permeable to lead. The varia-
tion in selective permeability is a consequence of chemical and physical processes 
due to hydration of seed coats. Selective permeability is the function of both living 
and dead cells containing substances like lipids and tenins and increases with the 
reduction in water uptake as the final stages of imbibitions approach. Mrozek and 
Funicelli (1982) observed the inhibitory action of Pb in seed germination of Spartina 
alterniflora by altering their selective permeability and suggested the alteration in 
dormancy mechanism in halophyte seeds which aid these seeds to avoid adverse 
salinity conditions. In rice seedlings, 14–30% of the germination and 13–45% devel-
opment reduced which adversely affects the length of radical and hypocotyls under 
high Pb concentration (1 mM) (Gidlow 2015). Other scientists also reported the 
similar result regarding the inhibition of germination by the Pb in Hordeum vulgare, 
Oryza sativa, Zea mays, and Pinus halepensis (Collin et al. 2022). Pb interferes with 
metabolic process like protease and amylase enzyme activity that ultimately leads to 
decrease in seed germination. Inhibition of ATPase/ATP synthase enzyme results into
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decreased ATP production which is necessary for the growth of seedlings (Mench 
et al. 1987). When the seeds were incubated in Pb salts, their level of saturated 
fatty acid decreased and level of unsaturated fatty acid increased (18:3). Synthesis 
of DNA, RNA, and protein was decreased with increased concentration of Pb in the 
embryo axis and endodermis of the germinating rice seedlings (Wierzbicka 1987). 

10.5.2 Photosynthetic Indices 

The toxicity of Pb ions has a negative impact on photosynthetic rate. Reduction in 
photosynthetic rate may be due to the distortion in structure of chloroplast, reduction 
in the production of chlorophyll and carotenoids, impeded functioning of the enzymes 
involved in the Calvin cycle, crippled transport of electrons, and dearth of CO2 which 
surfaced from the closing of stomata. Rebechini and Hanzely (1974) experimented 
with the Ceratophyllum by demersem plants by growing them in an aqueous solution 
containing lead nitrate and observed well-defined alterations in the fine structure of 
chloroplast. A substantial fall in grana stacks and stroma content was observed along 
with elimination of starch grains. Stefanov et al. (1995) also noticed a modifica-
tion in the lipid composition of thylakoid membranes as a result of Pb treatment. 
Uptake of elements like Fe and Mg by plants is critical for chlorophyll synthesis and 
thus adversely affects the formation of chlorophyll pigment when disturbed by Pb 
(Akinci et al. 2010). Owing to its intense affinity toward protein N- and S-ligands, 
it heavily impairs the photosynthetic machinery (Ahmed and Tajmir-Riahi 1993). 
Acceleration of chlorophyllase activity causes enhancement in chlorophyll degrada-
tion in Pb-treated plants. The adverse effect of Pb treatment on Chlorophyll-b is more 
pronounced compared to chlorophyll-a (Vodnik et al. 1999). Donor and acceptor sites 
of PSII, PSI, and cytochrome b/f complex are affected by Pb. PS I electron trans-
port is less prone to inhibition by Pb than PS II (Mohanty et al. 1989; Šeršeň et al.  
1998). It also leads to the dismantling of oxygen releasing extrinsic polypeptide of 
PS II and removal of Cl, Ca, and Mn from oxygen-evolving complex (Rashid et al. 
1991). The application of Pb reduces photosynthesis indirectly by prompting stomata 
closure (Bazzaz et al. 1975). This reduction in carotenoid and chlorophyll content 
of seedlings and cuttings under high concentration of Pb stress can be regarded as 
a response of the plants specifically to the metal stress, which resulted in photosyn-
thesis inhibition and chlorophyll degradation (Gajewska et al. 2006). In ryegrass, the 
content of total Chl, Chl a, Chl b, and Car markedly decreased under the Pb treatment 
by 40.50, 44.16, 28.25, and 51.11%, respectively, in compared with control (Bai et al. 
2015). In shoots, the Pb exposure decreased the K, Mg, Fe, Zn, and Cu content by 
59.50, 18.51, 43.07, 28.73, and 46.85%, whereas enhancement is observed in Ca 
content by 92.78% in comparison with control (Bai et al. 2015). Pb at lower concen-
tration enhances the anthocyanin content in Brassica napus but decreased at higher 
level of Pb concentration (Fatemi et al. 2021). Several study revealed that Pb toxicity 
has decreased the photosynthetic pigment in many plant species such as Brassica 
napus (Kanwal et al. 2014). In Pisum sativum, Rodriguez et al. (2015) reported
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that chlorophyll A and chlorophyll B concentration increased with elevated level of 
Pb and reach maximum at 1000 mg kg−1. Hordeum vulgare under hydroponic Pb 
condition showed toxic symptoms such as change in chloroplast morphology and 
decreased number of thylakoids damage to chloroplast directly inhibits photosyn-
thesis and adversely affects the growth and development of the plants (Legocka et al. 
2015). Pb reduces the photosynthetic pigments (Chl a and Chl b) of bean and pea 
seedlings (Hameed et al. 2010). It can be caused due to the impaired uptake of essen-
tial elements such as Mg and Fe or due to reduced leaf size (Feleafel and Mirdad 
2013). Chlorophylase (Chlase) and Mg-Dechelatase (MDCase) involved mainly in 
the destruction of chlorophyll, and their activity was stimulated under Pb stress. The 
net photosynthetic rate declines significantly in Davidia involucrata with increasing 
Pb concentration and maximum at Pb 200 mg/kg (Yang et al. 2020). 

10.5.3 Growth 

Contamination of lead in soil impairs the early plant growth. Hadi and Aziz (2015) 
attributed the poor germination of seeds and retarded growth in seedlings due to toxic 
effects of Pb on chlorophyll synthesis, cell division, root growth, and transpiration. 
Pb has harmful ramifications on growth of radish plants as observed by Tomulescu 
et al. (2004). When Jiang and Liu (2010) investigated Pb-induced changes in cell after 
2–3 days of Pb exposure, they found that Pb caused the loss of endoplasmic reticulum, 
dictyosome and cristae, and the mitochondrial structure of root meristematic cells, 
and damaged biological membranes. The excess migration of Pb in roots declined 
root growth and facilitated the loss of apical dominance leading to a decline of 
10% in the fresh biomass of plants as a result of Pb activity in roots and shoot, 
respectively, at 0.3 and 0.07 μM concentration (Kopittke et al. 2007). Pb toxicity 
leads to expansion of interphase stage of mitosis which reduced cell division leading 
to decreased plant growth (Patra et al. 2004). Pb caused a remarkable decline in 
the sprouting, seedling development, and growth in wheat, and inhibitory effect 
was also observed in Jatropha curcas (Dey et al. 2007; Shu et al. 2012). Even low 
concentration of Pb suppresses the growth of roots as well as aerial parts of the plants 
and detrimental effects on growth of the roots are observed than other plant parts 
(Kopittke et al. 2007; Liu et al. 2008). 

Toxicity of lead leads to abnormalities in root morphology and structure as 
swollen, short, and stubby roots that exhibit a rise in the number of secondary roots 
and their length (Kopittke et al. 2007). As a result of Pb contamination, a reduc-
tion in the elongation of Mesquite (Prosopis sp.) roots was observed by Arias et al. 
(2010). The most obvious symptoms of growth retardation such as fewer, smaller, 
and brittle leaves having dark purple dorsal surfaces are clearly visible at extreme 
level of Pb toxicity (Islam et al. 2007). Overall, compromised nutrient metabolism, 
photosynthesis, and plant water relations leading to inhibition of plant growth occur 
as a result of Pb toxicity (Kopittke et al. 2007; Alsokari and Aldesuquy 2011). Toxic 
effects of Pb are different on the basis of its concentration, duration of exposure,
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affected species, and stage of growth in plants (Gupta et al. 2009; Gul et al. 2019). 
High application of Pb (1000 and 5000 μg/g) in soil causes the reduction in root and 
shoot growth, ceased seedling growth, very thin stems, and small leaves in radish 
plant (Khan and Frankland 1983). Pb concentration significantly undermined starch 
solubility in endosperm and α-amylase activity in seeds in rice (Gautam et al. 2010). 
In seedlings of wheat, Pb causes reduction in seed germination, reduction in macro 
(Na, Ca, Mg, K, and O) and micronutrients (Fe, Cu, and Zn) biomass shoot and root 
elongation in comparison of control (Lamhamdi et al. 2011). Decrease in Cu and K 
concentration in maize cultivar was observed under higher level of lead contamination 
(Rizwan et al. 2018). 

10.5.4 Crop Productivity 

The most widely notable manifestation of Pb toxicity is detention of the photo-
synthetic carbon fixation which leads to declined crop productivity (Singh et al. 
2010). Lead interferes with the synthesis of plastoquinone, carotenoids, and func-
tioning of electron transport chain and retardation of enzymatic activities vital for 
CO2 fixation as stomatal and non-stomatal constraints are accountable for carbon 
fixation (Mishra et al. 2006; Chen et al. 2007; Qufei and Fashui 2009). Lead stress 
curtailed the photosynthetic activity of sunflower plants as a consequencely affect 
the biosynthesis of chlorophyll which ultimately leads to reduction in plants biomass 
production (Mukhtar et al. 2010). Oxidative stress, synthesis and activity of chloro-
phyllase enzyme got promoted due to Pb toxicity which ultimately leads to decline 
in the rate of photosynthesis as a result of chlorophyll degradation (Liu et al. 2008). 
Furthermore, under Pb stress, there is also a significant reduction in the activities of 
delta-aminolevulinic acid dehydratase (ALAD) and ferredoxin NADP+ reductase, 
which impedes chlorophyll synthesis (Gupta et al. 2009). Dissociation of chloro-
phyll is a four step reaction, and the final products include phytol, Mg, and a primary 
product of porphyrin rings. Although, level of toxicity differs among plant species, 
and usually it is more intimately related to Chl b than Chl a: however, decline in 
photosynthetic activity is more vulnerable to Pb stress than content of photosyn-
thetic pigments (Xiong et al. 2006). Kosobrukhov et al. (2004) analyzed the extent 
of structural changes and photosynthetic activity of plants grown in soil contaminated 
with Pb and observed a decline of 40–50% in stomatal conductance. Romanowska 
et al. (2006) ascribed disrupted photosynthesis under Pb stress to depletion in leaf 
area, total chlorophyll contents, vascular bundles, and CO2 influx due to ill-function 
of stomatal closure. Qufei and Fashui (2009) stated that addition of Pb in leaves 
of duckweed destroyed secondary structure of photosystem II and constrained the 
absorption and transfer of energy among numerous enzymes. It alters the actions of 
photosystem I and photosystem II in Pisum sativum. The rate of electron transport 
during hill reaction and halted cyclic and non-cyclic photophosphorylation got slow 
down due to Pb exposure (Romanowska et al. 2008). The catalysis of Melvin Calvin 
cycle enzymes is also affected by Pb toxicity (Chen et al. 2007). Exposure to Pb
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also significantly affects ATP content and respiration of plants. Pb exposure chiefly 
disturbs the activity of ribulose-bisphosphate carboxylase responsible for regulating 
the assimilation of CO2 in C3 plants, devoid of affecting the oxygenase activity 
(Assche and Clijsters 1990). Parys et al. (1998) documented a considerable rise in 
CO2 concentration in leaves of pea on being exposed to Pb(NO3)2 accrediting it to 
increased respiration with a simultaneous fall in photosynthesis. It was divulged by 
Romanowska et al. (2002) that photorespiration in this case remains constant and 
elevated respiration under Pb exposure is related to mitochondrial respiration (dark) 
only. The dark respiration instigated by Pb was observed in protoplast of barley 
and pea leaves (Romanowska et al. 2002, 2005, 2006). Furthermore, invigoration of 
respiration was linked with high ATP generation in mitochondria, raising the demand 
for more energy in order to cope up with the Pb toxic effects. 

The decline in grain yield of crops under Pb stress can be accredited to poor 
nutrient uptake, incomplete carbon fixation as a result of stomatal and non-stomatal 
constraints, plant water relations, and escalated oxidative damage. Gu et al. (1989) 
reported a significant impact of Pb contamination in soils on productivity (grain and 
biological yield) of rice. Rehman et al. (2017) also documented 25–30% decline in 
the grain yield of wheat due to lead toxicity. Misra et al. (2010) perceived a marked 
decline in the economic yield of sugarcane crop grown under Pb stress. Decline in 
productivity of various crops is determined by Pb concentration in soil as argued by 
Codling et al. (2016) and Hussain et al. (2006) noticed a reduction of 28–32% and 
24% in the economic yields of potato and mash bean, respectively. In maize seedlings, 
Pb stress causes a general reduction of macro- and micronutrient contents especially 
of K, Ca, and Mn which was observed (Wang et al. 2007). In seedlings and cuttings 
of ryegrass, photosynthetic rate (Pn) manifests a related trend of abrupt decrease as 
noted for conductance (Cond) and transpiration (Tr). Pn, Cond, and Tr were found 
to be comparatively less in leaves of seedlings than leaves of cuttings under lower 
Pb concentration, but an opposing trend is seen under high Pb concentration. The 
severely damaged thylakoid membrane of stroma and grana caused sharp reduction 
in rate of photosynthesis. In a study, Bai et al. (2015) observed the parallel change of 
Cond, and Pn in peanut leaves that reinforced the changes in Pn could be allocated 
to the changes in Cond. 

Chatterjee et al. (2004) planted three variety of rice (Xinagyaxiangezhan, 
Meixiangezhan-2, Basmati-385) in Pb contaminated soil and found reduction in 
yield in the following order 69.12%, 58.05%, and 46.27% respectively. Reduction in 
grain yield may be due to the decrease in chlorophyll in leaves, carotene, sugars and 
Fe, Mn, Cu, and Zn. Moreover, the effects of Pb toxicity on germination, yield, and 
growth of different crops depend on time and concentration and also fluctuate with 
prevailing growth conditions and plant species. Ma et al. (2021) reported inhibition 
of grain yield of fragrant rice under soil Pb stress. Xian (1989) reported decrease 
in yield of kidney beans at high concentration of Pb. With the increasing concen-
tration of Pb, pods per plant, seeds per pod, as well as total protein content of pea 
plant decreased in Sorial and Abd El-Fattah (2001) study. In spinach, ribulose-bis-
phosphate carboxylase/oxygenase activity was inhibited even at low concentration
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of 5 μM Pb concentration (Vallee and Ulmer 1972). Pb is known as most potent 
metal ion for the inhibition of chloroplastic ATP synthetase/ATPase activity. 

10.5.5 Biomass 

Plants grown in contaminated soil, especially in high concentrations of Pb (1500 mg/ 
kg), had dramatically lower biomass, almost 60% compared with the control plant 
(Fatemi et al. 2021). The plants heave lower biomass when grown in Pb contaminated 
soil which is about 60% of control plant biomass. The Pb exposure inhibited the 
growth of ryegrass seedlings compared with control, and the reductions of plant 
height, fresh mass, dry mass, root volume, and root/shoot ratio were 35.77, 18.28, 
55.18, 54.12, and 34.62%, respectively (Bai et al. 2015). Pb toxicity causes decline 
in biomass in B. napus and coriander (Fatemi et al. 2020a, b). Growth of coriander 
was decreased under Pb toxicity (Fatemi et al. 2021). Sidhu et al. (2016) reported 
that root and shoot biomass increased under Pb stress but declined at 29 mg kg−1 Pb 
concentration in Cronopus didymus. Xu et al.  (2018) observed that under Pb stress 
tea plants show poor biomass production loss of photosynthetic pigment reduction 
in total caffeine, free amino acid but increased catechin concentration. Compared to 
the control in tea plant under Pb stress, 17–65% root biomass, 3–50% stem, 20–73% 
leaves biomass were reduced that significantly affects the yield of the tea plants. 
Chrysanthemum indicium has caused significant reduction in root (32.7 mg kg−1) 
and shoots (41.3 mg kg−1) biomass with 50 mg kg−1 Pb concentration. However, 
minimum application of Pb can promote the growth of the plant for some extent 
(Mani et al. 2015). 

10.5.6 Antioxidant Enzymes 

The production of hydrogen peroxide, superoxide, and hydroxyl radical increased 
when plants are exposed to heavy metals stress. The possible reason behind this 
phenomenon can be that the heavy metal stress reduces the capability of plants 
to assimilate carbon and escalate influx of photosynthetic electrons to molec-
ular oxygen. Antioxidants rapidly scavenge reactive oxygen species that damaged 
the proteins, lipids, and pigments (Bhaduri and Fulekar 2012). ROS is collective 
term used for hydrogen peroxide, superoxide radical, hydroxyl radical, and singlet 
oxygen generated at the time of heavy metal stress (Devi and Prasad 1998). Lipids, 
nucleic acids, amino acids, and proteins got damaged which leads to irreversible 
metabolic dysfunction and cell death (Luna et al. 1994). The antioxidant system got 
activated to cope and repair the damage (Shu et al. 2012). A variety of mechanisms 
to deal with ROS effects in cellular compartments has been evolved by the plants. 
This is generally coped up through the production of various anti-oxidative enzymes, 
such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) (Wang
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et al. 2007). Pb exposer shows simulative effects on electrolytes leakage H2O2 level 
MDA content and activity of antioxidant (SOD, CAT, APX, GPX, GR), but at higher 
concentration SOD, CAT, H2O2, and MDA declined in Cronopus didymus (Sidhu 
et al. 2016). SOD, POD, and CAT were up-regulated compared to the control in maize 
seedlings (Wang et al. 2007). The activity of SOD and POD decreased in Elsholzia 
argyi after addition of Pb (Islam et al. 2007). SOD activities increased, but POD 
activities decreased under Pb stress in S. japonica which indicated that antioxidant 
system behaved differently in different plant species (Zhong et al. 2017). Ascorbate 
peroxidase participates in the detoxification of H2O2 into water and oxygen with the 
consumption of ascorbic acid. Glutathione reductase catalyzes the GSSH to GSH, 
and both these helps the plant cell to increase the antioxidants level under the metal 
stress (Qureshi et al. 2007). Proline not only regulates the osmotic potential of the 
cell but also plays a great role in the removal of reactive oxygen species and protects 
the cell membrane by maintaining structural stability and proton pumps from Pb 
toxicity (Cai et al. 2022). 

10.5.6.1 Superoxide Dismutase (SOD) 

SOD, a metallo-enzyme present in different cellular compartments, can catalyze the 
dismutation of O2

− into H2O2 and O2, and subsequently H2O2 can be effectively 
scavenged by CAT and POD. The first step of ROS generation is superoxide forma-
tion, superoxide radicals (precursor of the other ROS) (Bhaduri and Fulekar 2012). 
Ashraf et al. (2017) found that SOD was the initial of scavenger of reactive oxygen 
species in rice under soil Pb stress. Heavy metal ions can increase the activity of SOD 
in oat and rice (Luna et al. 1994; Verma and Dubey 2003). Heavy metals may also 
decrease or not affect at all the SOD activity (Reddy et al. 2005). SOD activity of 
seedlings culminated at higher metal concentrations than those of cuttings of ryegrass, 
suggesting that SOD has better protection against oxidant damage. The decrease by 
46.74% in shoots and by 55.99% in roots of SOD activity in ryegrass plant after 
Pb treatment has been observed (Bai et al. 2015). Multiple SOD genes encoding 
at least three Fe-SODs, three Cu–Zn-SODs, and one Mn-SOD had been reported 
in Arabidopsis (Bhaduri and Fulekar 2012). SOD increased but not dramatically in 
B. napus under various concentration of Pb (Fatemi et al. 2021). 

10.5.6.2 Peroxidase (POD) 

H2O2 is utilized in the oxidation of various organic and inorganic substrates by 
peroxidase. Guaiacol acts as electron donor when utilized by peroxidase in vitro 
known as guaiacol peroxidases. A strong increase in POD activity has been observed 
in response to Pb was reported in rice, A. thaliana and Zea mays (Verma and Dubey 
2003; Wang et al. 2007). However, POD activity has been inhibited due to heavy 
metals which has also been observed in oat leaves (Luna et al. 1994). POD activity 
increased by approximately 2.26 times in comparison with controls at 3 mM of Pb
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concentration in seedlings. The activity of POD is high at lower concentration in 
comparison with higher concentration, in seedlings and cuttings of Jatropha curcas. 
POD participating in lignin biosynthesis can build up a physical barrier against 
toxic heavy metals. A physical barrier can be build up against toxic heavy metals 
by participation of POD in lipid biosynthesis indication that seedlings are more 
efficient in avoiding damage than cuttings (Shu et al. 2012). POD activity significantly 
increased in Brassica napus by 47% at the Pb level 1500 mg kg−1 (Fatemi et al. 2021). 

10.5.6.3 Catalase (CAT) 

CAT is a universal heme-containing and oxidoreductase enzyme that decomposes 
H2O2 to water and molecular oxygen, and acts as one of the key enzymes implicated 
in the removal of toxic peroxides. Generally, CAT activity gets stimulated under 
heavy metal stress. Shu et al. (2012) reported that at higher concentration, CAT 
activity is less in comparison with lower concentration. When seedlings had exposed 
to high Pb stress, CAT activity in leaves was quite high. CAT activity in both roots and 
shoots of the Pb-treated ryegrass plants increased significantly compared to control 
(Bai et al. 2015). CAT activity get stimulated up to 500 mg kg−1 of Pb while show 
decline trend at higher concentration in B. napus (Fatemi et al. 2021). 

10.5.6.4 Ascorbate Peroxidase (APX) 

Ascorbate peroxidase is an important peroxidase which is ubiquitously present in 
plants. APX is universal housekeeping protein in the chloroplasts and cytosol of plant 
cells. Ascorbate work as a substrate and believed to scavenge excess H2O2 formed 
in plant cells under both stress and normal conditions (Bhaduri and Fulekar 2012). 
The ascorbate-free radical is the product of oxidation of ascorbate which got reduced 
back to dehydroascorbate with NADPH as the electron donor by the enzyme mono-
hydroascorbate reductase (Asada et al. 1996). Several scientists reported increase 
in ascorbate peroxidase activity in response to air pollutants specially with O3 in 
several species such as in wheat spinach, pumpkin, and Picea abies (Tanaka et al. 
1985; Bender et al. 1994; Ranieri et al. 1996; Sehmer et al. 1998). The Pb stress also 
increased the H2O2 content in comparison of control by 181.86% in leaves and by 
235.95% in roots of ryegrass plant (Bai et al. 2015). 

10.5.7 Malondialdehyde (MDA) 

When plants are subjected to oxidative stress, malondialdehyde is the term used 
to measure lipid peroxidation because it is a final product of the peroxidation of 
membrane lipid. Lipid peroxidation enhancement indicates that Pb and/or IAA 
caused oxidative stressin maize seedlings (Wang et al. 2007). Shu et al. (2012)
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reported that the MDA contents of cuttings in rye grass increased about 100.91%, 
while in seedlings the increment is about 108.81% for seedlings at a highly toxic 
Pb level compared to the control. In B. napus, MDA content increased up to 
1000 mg kg−1 Pb concentration after that downward trend was observed (Fatemi 
et al. 2021). Excessive proline in the body may also participate in the clearance of 
reactive oxygen species and effectively keeping the MDA content low in aromatic 
rice and sunflowers under soil Pb stress (Liao et al. 2021). At different Pb concen-
tration (500–2500 μM) in culture medium, there is an increase in MDA and H2O2 

content in roots of wheat (Kaur et al. 2012). Similarly, in Maize and rice, the MDA 
content increased in respect of duration of exposure and dose (Thakur et al. 2017). 

10.5.8 Protein 

A large number of enzymes having sulfhydryl groups get inhibited at different sites 
when exposed to metal stress resulting in deleterious effects in the normal protein 
formation and folding pathways. According to Shu et al. (2012), the increase in 
protein content has been observed while the protein content decreased in leaves of 
seedlings in ryegrass plants. Soluble proteins can decrease the osmotic potential of 
the cell to ensure extracellular turbulence and stability (Jiang et al. 2019). 

10.6 Conclusion 

Pb pollution is a leading and common cause for stress in plants. The plants are 
adversely affected in terms of growth and physiological activities. To overcome the 
stress, plants evolutionally develop antioxidants system. When plants are under stress, 
a surge in free radical species observed which enhanced the activity of enzymatic 
and non-enzymatic antioxidants. The antioxidant system helps in maintaining the 
cell components structural integrity. This chapter detailed the Pb sources, impact and 
distribution in different parts, overall growth of the plants, and antioxidants activity in 
plants under Pb stress. Recently, world population and industrialization are growing 
exponentially which causes increase in food demand and at the same time reduction in 
cultivable land. Future agriculture requires stress-tolerant varieties, and to develop 
these varieties, the comprehensive knowledge of antioxidant system in plants is 
obligatory. Despite the advances in understanding of synthesis of antioxidants under 
Pb pollution, the detailed study on biochemical interaction of antioxidants and Pb is 
required.
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cell wall thickenings formation—a response of moss protonemata cells to lead. Environ Exp 
Bot 65(1):119–131 

Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski H, Woźny A (2010) Lead deposited in 
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Chapter 11 
Physico Chemical and Biological 
Treatment Techniques for Lead Removal 
from Wastewater: A Review 

Simmi Goel 

Abstract The release of untreated industrial effluent loaded with heavy metals espe-
cially lead ions seems to have adverse effects on various components of ecosystem. 
A variety of physicochemical methods for the treatment of lead-contaminated water 
have been used on a commercial level. But these methods are having a lot of limi-
tations like reduced efficiency, costly due to input of a load of chemicals and not 
environment friendly. In lieu of this, major focus is given on the use of biological 
methods especially biosorption for treatment of industrial effluent. In this review, 
various sources and health effects of lead-contaminated water has been given. A 
variety of physiochemical methods for the treatment of industrial wastewater and 
also limitations have been discussed. Significance of various biological methods 
over other conventional treatments including the use of agricultural waste, plant- or 
animal-based sorbents and enlisting the list of microbes like bacteria, fungi and algae 
as sorbents for treatment of lead waste water including their mechanism of action 
have been reviewed. The factors which need to be optimized for maximum removal 
of lead ions to increase the efficiency of treatment have also been discussed. 

Keywords Lead contamination · Biosorption · Bioremediation · Biomass ·
Industrial effluent · Sorbents · Optimized parameters ·Wastewater treatment 

11.1 Introduction 

A large number of electroplating industries discharge untreated wastewater into the 
ecosystem. The easy absorption of heavy metals in humans resulted due to their 
high dissolution capability in water. These heavy metals once released into envi-
ronment their concentration increases with each trophic level resulted in bioaccu-
mulation. Consumption of heavy metal–contaminated water beyond the permitted
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level results in serious health disorders. The heavy metal–contaminated wastewater 
when discharged untreated in the environment resulted in the ecosystem degradation. 
The various manmade activities like batteries manufacturing, automobile industries, 
mining activities, leaching of ores, agricultural inputs in the form of chemicals are 
the major contributors of heavy metals into the ecosystem. These are difficult to 
degrade under natural conditions, altering the bio-geochemical cycles, disturbance 
of ecological diversity and ultimately destroying the whole ecosystem (Chug et al. 
2022). Once these metals enter into the food chain, there occurs a huge concentration 
rise with each successive trophic level. The consumption of heavy metal–contam-
inated water causes kidney infections, respiratory dysfunction and cardiovascular 
imbalance and carcinogenic in acute cases. The industries release a large amount 
of heavy metal–loaded wastewater, among which lead (Pb) seems to be the major 
toxicity contributor released from metal finishing, electroplating and paint manufac-
turing, leaching, battery operations, etc. Lead once discharged persists into environ-
ment for a long period due to its non-biodegradable nature (Raut et al. 2015). Lead 
is discharged naturally from leaching of ores and also due to major human source 
like exhaust fumes of automobiles from where lead gets accumulated on the surface 
of road side vegetation or deposited within soil particles and ultimately through rain 
water enters into the rivers and ground water. Lead enters in human body through 
contaminated drinking water and accumulated in bones causing neurotoxicity and 
carcinogenicity (Biela and Sopikova 2017). Once lead is ingested in human body, it 
acts as metabolic poison resulted in inhibiting various enzymatic actions (Lo et al. 
1999). In addition, the intake of lead-contaminated water can cause infections in 
kidneys, nervous breakdown and dysfunction of reproductive organs, heart, liver 
and brain (Naiyaa et al. 2009). In adults, lead poisoning can cause neurological 
disorders resulting in weakness, irritation, poor attention span, headaches, muscle 
cramps, memory loss and hallucinations and ultimately death. Lead ions (Pb2+) can 
cause mental retardation, kidney damage, anaemia, central nervous system dysfunc-
tion, alters haemoglobin production, reproductive failure and gastrointestinal tract 
infections. The lead particles released in atmosphere get deposited on the surface of 
fruits, vegetables, soil and groundwater adversely affecting the health of especially 
the pregnant women and young children (Ghosal et al. 2021). In lieu of all these 
facts, there seems to be an urgent need to develop effective treatment technologies 
for the removal of Pb from water and wastewater to keep the safety and protection 
of human health and environment. 

11.2 Sources of Lead 

Major sources of lead are acid battery manufacturing, metal plating and finishing, 
mining operations, battery services, ammunition, tanneries, petroleum refining, 
tetraethyl lead manufacturing, paint industries, use of heavy metal–loaded chemicals 
in agricultural fields, pigment manufacture, coal combustion power plants, ceramic 
and glass usage, printing and photographic activities, lead water pipes (Goel et al.



11 Physico Chemical and Biological Treatment Techniques for Lead … 245

2005; Momcilovic et al. 2011). Other contributors of lead used to be the exhaust 
gases of automobiles, which ultimately accumulate on the surface of crops growing 
alongside roads, entering the food chain, retained in water droplets in atmosphere and 
released in form of rains leading to the contamination of surface water and ground-
water bodies. The surface and groundwater lead contamination also occurs due to 
the accidental leakages from rusting of the water pipes and waste water from the 
ferrous metallurgy operations, batteries discharge and glass manufacturing industry 
(Pitter 2009; Biela and Sopikova 2017). 

11.3 Effects of Lead Exposure 

The consumption of lead-contaminated water can severely affect the functioning of 
kidneys, liver, brain, nervous disorders, reproductive failure, hypertension ultimately 
leading to illness or death of individuals. Fatal exposure to lead-loaded wastewater 
can cause reproductive failures and foetus loss resulting in abortions. Exposure to 
lead ions (Pb2+) can also cause mental retardation, kidney failure, anaemia, retards 
the functioning of central nervous system, haemoglobin production, reproductive 
failure and gastrointestinal infections. Lead particles released in air contaminate 
the agricultural food by depositing on surface of fruits, vegetables, soil and water. 
Other health effects of lead exposure are uneasiness, irritable behaviour, loss of focus/ 
concentration, migraines, muscular tremors, abdominal cramps, infections in kidney, 
hallucinations and memory loss. (WHO 2011; Biela and Sopikova 2017). Some of 
essential ions can be displaced or substituted from their cellular locations resulting in 
retardation of functioning of enzyme, polynucleotides and essential nutrient transport 
systems due to consumption of mercury and lead-contaminated water. Additionally, 
these also resulted in the denaturation and inactivation of enzymes and alters the 
integrity of cellular and organelle membranes (Zhang et al. 2016). In lieu of all 
these adverse effects, a very minute concentration of lead in drinking water seems 
to be highly toxic and so there is a strong need for developing an efficient removal, 
environment friendly and economical treatment technology (Mahmoud et al. 2012; 
Ghosal et al. 2021). 

Atmospheric lead particles get deposited on vegetation and absorbed within 
aquatic organisms (Jamali et al. 2009), finds its way to enter the human body through 
the food chain. The lead contaminated soil alters the physiological, morphological 
and biochemical characteristics of plants by making their availability in the roots, 
stems, leaves and fruits through contaminated soil. Other severe threats of exposure to 
lead resulted in carcinogenesis, teratogenesis and gene mutations in humans (Wendt 
and Lee 2010). All these threats diverted the attention of scientists and researchers 
to explore effective and economical methods to remediate lead (Pb) pollution from 
wastewater (Jing et al. 2021a, b). 

The intake of lead (Pb) through contaminated fruits, vegetables, water etc., causes 
anaemia, renal infections, nervous breakdown and ultimately death. Excessive intake
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leads to hepatic and renal failure, respiratory infections, reproductive disorders, capil-
lary damage, gastrointestinal irritation and central nervous system irritation, nausea, 
encephalopathy, severe migraine and vomiting, learning disability, mental disor-
ders, hyperactive behaviour, muscular tremors, liver cirrhosis, dysfunction of thyroid 
gland, sleep disorders, weakness, schizophrenia (Kale et al. 2018). Heavy metal 
intake can cause allergies, carcinogenic, organ damage, impairs growth and devel-
opment due to their persistent or non-biodegradable nature. Overall lead poisoning 
can cause anaemic behaviour, kidney disorder, brain disorder and even death in 
extreme poisoning situation (Acharya et al. 2013; Singha and Das 2015). According 
to WHO, the acceptable safe limit of lead in drinking water is 0.01 g/L. 

11.4 Methods for the Removal of Lead from Wastewater 

The common modes for the removal of lead (Pb) from contaminated wastewater 
include physical methods such as ultra-filtration, coagulation, flocculation, adsorp-
tion, membrane filtration, floatation, reverse osmosis and ion exchange and chem-
ical methods include neutralization, solvent extraction, chemical precipitation and 
electrochemical treatment. 

Among these methods, adsorption seems to be highly effective and economical 
mode. The commonly used adsorbents for wastewater treatment are silica gels, acti-
vated alumina, metal oxides and hydroxides, zeolites, clay minerals, synthetic poly-
mers, and carbonaceous materials, such as activated carbon and molecular carbon 
sieves. 

11.4.1 Adsorption 

The adsorption capacity of hydroxyapatite nanorods and chitosan nanocomposite 
was assessed for the removal of lead ions from aqueous solution in a batch mode of 
experimentation (Mohammad et al. 2015). 

11.4.2 Chemical Precipitation 

Chemical precipitation is based on the reaction of heavy metals with added chem-
icals resulting in the formation of insoluble precipitates in the form of hydroxides, 
sulphides, carbonates which can further separated by filtration. Addition of caustic 
soda increases the precipitation of dissolved lead (Pb) from wastewater in the form 
of solid metal hydroxide particles. Various coagulants and flocculants are added to 
increase their particle size so that these can be easily removed in the form of sludge. 
The precipitates can be further separated using sedimentation or filtration techniques.
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Various parameters which need to be optimized for increasing the efficacy of lead 
removal are low pH, temperature, content of lead ions, contact time, presence of 
other ions and charge of ions (Ahluwalia and Goyal 2007). 

11.4.3 Ion Exchange 

This method is based on the ion exchange capacity of various cations or anions like 
zeolites or resins to remove the metal ions in the solution. The method is based on 
the concept of attracting soluble ions from the liquid phase and their transition to the 
solid phase, commonly used method in water treatment industry. 

Ion exchange resins have the property of absorbing cations or anions from an 
electrolyte solution and release other ions with the same charges into the solution in 
an equivalent amount. Strong acid cation or weak acid cation or anion resins are used 
for lead removal. For example, the positively charged ions in cationic resins such 
as hydrogen and sodium ions are exchanged with positively charged ions, such as 
nickel, copper, zinc, copper, silver, cadmium, gold, mercury, lead, chromium, iron, 
tin, arsenic, selenium, molybdenum, cobalt, manganese and aluminium ions in the 
solutions. The negative ions in the resins such as hydroxyl and chloride ions can be 
replaced by the negatively charged ions such as chromate, sulphate, nitrate, cyanide 
and dissolved organic carbon. 

11.4.4 Coagulation–Flocculation 

This process is based on the capacity of the electrostatic bonding between heavy metal 
and coagulant–flocculants agents to form multi-charged polynuclear complexes. The 
commonly used metal coagulants to hydrolyse the metal ions are aluminium sulphate, 
aluminium chloride, ferric sulphate, ferrous sulphate, ferric chloride, hydrated lime 
and magnesium carbonate. Various flocculating agents are added to the wastewater 
to increase the particle size. These flocculated large sized particles can be easily 
removed by filtration, straining or floatation. Naturally occurring cactus juice can be 
effectively used as a bio-flocculant to reduce chromium concentration in wastewater. 

11.4.5 Membrane Separation 

The method depends on the efficacy of permeable barriers to remove contaminants 
by passing wastewater through porous membranes under pressure. The variations 
in the pore size of membranes allow certain particles to easily pass through while 
retaining others based on principle of size exclusion. The commonly used membrane
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separation techniques like ultra-filtration, nano-filtration and reverse osmosis can be 
utilized for heavy metal removal from wastewater (Chaemiso and Nefo 2019). 

11.4.6 Ultra-Filtration 

This method is based on the efficiency of membrane permeability to separate heavy 
metals, macromolecules and suspended solids from wastewater on the basis of the 
pore dimensions and molecular weight of the impurities. Various water-soluble poly-
mers can be added which can bind metal ions resulting in the formation of macro-
molecular complexes by producing metal ions free effluent. An integrated and hybrid 
approach of using metal-binding polymers in combination with ultra-filtration to 
remove heavy metals from aqueous solution was investigated by various researchers 
(Qasem et al. 2021). 

11.4.7 Reverse Osmosis 

The method of reverse osmosis is based on the concept of applying forced pressure to 
solution resulted in the retaining of the solute particles and allows the pure solvent to 
pass through the membrane. The type of membrane in reverse osmosis is semiperme-
able in behaviour. It allows the selective passage of pure solvent but not for metals, 
i.e. solute particles. The semipermeable membranes used for reverse osmosis have a 
dense barrier layer in the polymer matrix where most of the separation occurs. 

11.4.8 Electrodialysis 

The method of electrodialysis involves the passage of various ionic species through 
ion exchange semipermeable membrane under the action of electric potential. The 
membranes are made of thin sheets of plastic and selective for either positively 
charged or negatively charged ions. Anions move towards anode and cations move 
towards cathode. One of the modifications of this is cation-selective membranes 
with negatively charged matter, which rejects negatively charged ions and allows 
positively charged ions to flow through. Selective membranes are fitted between the 
electrodes in electrolytic cells and under continuous electrical current, the associated 
ion migrates, allowing the recovery of lead ions (Qasem et al. 2021). Various factors 
like flow rate of ions, voltage and temperature affect the efficiency of removal.
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11.4.9 Electro-Coagulation 

This method is based on the use of electrical current to remove suspended solids, 
tannins, dyes and dissolved metals especially lead ions from wastewater. When 
these ions and other charged particles are neutralized with ions of opposite elec-
trical charges provided by electro-coagulation system, they become destabilized and 
precipitated in a stable form (Arbabi et al. 2015; Hunsom et al. 2005; Rahman et al. 
2015). 

Factors need to be controlled for maximum removal of lead ions: 

i. content of lead in effluent, acidic or alkaline conditions, temperature, flow rate. 
ii. Organic and inorganic load of effluent. 
iii. Cost investment and the maximum permissible limits as set by government 

agencies. 

Limitations: These physicochemical methods are not cost-effective and possess 
certain disadvantages like sludge production, low metal ions removal efficiency, 
energy consumption and low selectivity which limits their usage especially in small-
scale industrial treatment plants. Moreover, these techniques are too expensive on 
large scale or commercial level and also dangerous for constant monitoring as these 
cannot completely treat the wastewater (Siddiquee et al. 2015; Tarekegn et al. 2020). 

Physicochemical methods used for the removal of heavy metal ions from wastew-
ater are often ineffective if the concentration of heavy metals is very low. The heavy 
metals present in dissolved form in wastewater cannot be separated using physical 
methods. The methods for heavy metal removal like chemical precipitation, chem-
ical oxidation, ion exchange, membrane separation, reverse osmosis, electro dialysis 
are not very effective, non-economical and require high energy input. These are also 
associated with generation of toxic sludge, disposal of which makes it expensive and 
non-eco-friendly in nature (Kale et al. 2018). 

11.5 Biological Methods for Lead Removal 
from Wastewater 

In view of all these facts, sorption seems to be an effective and economical method 
for the removal of heavy metals especially lead from wastewater (Kale et al. 2018). 
The sorbents used for the removal of pollutants can be of chemical or biological 
origin. Out of these biological sorbents like viable or non-viable microbes or plant-
or animal-based products proved to be an attractive alternative over the chemical 
sorbents due to their better efficacy, easy availability, economical and pollution-free 
approach (Table 11.1). The technique of using biological originated sorbents for the 
removal of pollutants is known to be biosorption or bioremediation (Fig. 11.1).

The various features of biosorption including low capital investment, metal speci-
ficity, increased efficiency, no sludge generation, no need of chemical additives,



250 S. Goel

Table 11.1 List of various biosorbents for lead removal from wastewater 

List of biological 
sorbents 

Examples 

Agricultural 
sorbents 

Rice husk, saw dust, peanut husk, wheat bran, groundnut husk, banana 
pith, cork powder, corncob, coir pith, sugar beet pulp, hazelnut shell, 
jackfruit, maize cob or husk, rice straw, coconut shell, sawdust of walnut 
tree, almond hulls, sugarcane bagasse, maize husks, shea butter seed husks, 
coconut fibre, sugar beet pulp, nut shells 

Sludge sorbent Activated sludge, sewage sludge, alum sludge 

Plant-based 
sorbent 

Stem, leaves, roots, vegetable and fruit peels, Pomegranate peel, cork, bark, 
sunflower stalk, tree sawdust, seaweeds, lichen, pine barks, tea leaves, plant 
tissues, date stones, grape fruit peel, peat and nut shells, coconut shells, 
rice husk, tea waste, peanut hulls, almond shells, peach stones, citrus peels 

Animal-based 
sorbent 

Egg shells, shells from aquatic animals 

Source (Shartooh et al. 2014; Reddad et al. 2002; Saeed et al. 2005; Chockalingam and Subramanian 
2006; Montanher et al. 2005; Khan et al. 2004; Lu et al. 2008; Husoon 2011; Kale et al. 2018; 
Chowdhary et al. 2022)

recovery of biosorbent and metal make it highly reliable and effective mode of treat-
ment (Volesky 1994). The usage of crop and forest waste including agricultural 
wastes as sorbents not only allows for sustainable waste utilization, but also helps 
to remove toxic heavy metal ions from wastewater (Liu et al. 2018; Jin et al. 2020; 
Zhang et al. 2021). The use of waste biomass materials, including cotton stalks and 
grapefruit peels (Trakal et al. 2014; Fu et al.  2021; Shartooh et al. 2014), as precursors 
to process various activated carbon adsorbents to remove toxic heavy metals from 
wastewater is an active area of research. 

11.5.1 Mechanism of Biosorption 

The mechanism of sorption of heavy metal ions using microbes includes two path-
ways. First is the initial passive and rapid uptake which occurs via surface adsorption 
on the cell wall components and polysaccharides. Second is the further active and 
slow uptake which occurs through the membrane transporting metal ions within the 
cells. 

Various mechanisms involved in the process of biosorption are as follows:

. Toxic states of heavy metals can be transformed into non-toxic states by alkylation 
or various redox reactions. The availability of metals depends upon the dissolution 
capacity and movement which further depends on their valency and anionic or 
cationic form of metals. For example, hexavalent form of chromium is more toxic 
and hazardous than its trivalent form.
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Methods for 
treatment of Lead 

contaminated 
wastewater 

Biological Methods 

Bacterial 
Remediation 
Fungal 
Remediation 
Algal Remediation 
Agricultural 
waste/ Crop 
waste/ Biological 
waste 
Phytoremediation 
(plants) 
Activated Sludge 

Ultrafiltration 
Coagulation 
Flocculation 
Adsorption 
Membrane 
filtration 
Floatation 
Reverse osmosis 
Ion exchange 

Physical methods 

Chemical Methods 

Neutralization 
Solvent Extraction 
Chemical 
Precipitation 
Electrochemical 
Treatment 

Fig. 11.1 Flowchart enlisting various methods for the removal of lead from wastewater

. Passive sorption is metabolism-free process, in which metals bind to functional 
groups present on the cell surface through electrostatic attraction, precipita-
tion, surface complexation, ion exchange and physical adsorption. The factors 
including temperature, ionic strength, concentration and type of the sorbate and 
sorbent, state of biomass: suspension or immobilized and the presence of other 
anion and cations in the growth medium controls the efficacy of the removal of 
metal ions from wastewater.
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. Active sorption is the metabolism-dependent intracellular uptake of heavy metals 
within the living cells within cytoplasm. Heavy metals are removed from wastew-
ater by binding with metal-binding proteins or metallothioneins as low molecular 
mass cysteine-rich proteins, and metallochaperones present within the bacterial 
cell. 

. Various parameters which need to be optimized are pH, temperature, salinity, 
media composition, biochemical and physiological features or genetic variability 
of biomass and toxicity of metals towards biosorbents. A variety of microbial 
strains like Cyanobacteria, Pseudomonads and Mycobacteria have the ability to 
synthesize metal-binding proteins which can be further used for the removal of 
zinc, copper, cadmium, mercury and lead (Thi Pham et al. 2022). 

. The removal of metal ions can also be carried out by a complex mechanism 
of releasing EPS like proteins, DNA, RNA and polysaccharides resulting in the 
slippery layer on the outside of the cell wall. These further retard the penetration 
of metals within the intracellular environment. Stenotrophomonas maltophilia, 
Azotobacter chroococcum and Bacillus cereus possess the ability to secrete EPS. 
Bioremediation efficiency by this mechanism relies on the type and amount of 
carbon source available and other abiotic stress factors like pH, temperature and 
the growth phase of each bacterium. 

. The functional groups like carboxyl, phosphonate, amine and hydroxyl groups 
present in the cell walls of bacteria are able to bind heavy metal ions present in 
the wastewater and their further removal. The efficacy of biosorption depends on 
the diversity of cell wall structures. Gram-positive bacteria have been shown to 
contain a high sorption capacity because of their thicker peptidoglycan layer. 

Biosorption is commonly used for the removal of lead and chromium from indus-
trial effluent. It involves the use of viable or non-viable microbes for pollutants 
removal from aqueous solutions and industrial wastewater. Most commonly used 
biosorbents for the removal of heavy metals from industrial effluent are microbial 
biomass (Volesky and Holan 1995), and biological wastes like peat and nut shells, 
coconut shells, rice husk, tea waste, peanut hulls, almond shells, peach stones, citrus 
peels, (Reddad et al. 2022; Saeed et al. 2005; Khan et al. 2004; Chockalingam and 
Subramanian, 2013). These biosorbent materials are economical, high sorption effi-
cacy, metal specificity, no sludge generation, regeneration and metal ion recovery 
(Tunali et al. 2006) and environmentally safer to use (Husoon et al. 2013). The pres-
ence of various functional groups like carboxyl, hydroxyl, sulphate, phosphate and 
amino groups in biological sorbents further assist in binding of metal contaminants 
from wastewater (Fig. 11.2).
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Fig. 11.2 Flowchart showing the mechanism of biosorption by microbial biomass 

11.5.2 Factors Affecting the Efficacy of Sorption of Metals 
Contaminants: (Shartooh et al. 2014; Yarkandi et al. 
2014; Dehagni et al.  2023) 

. pH, Temperature, moisture, 

. shaking speed, incubation time, aeration, 

. initial concentration of metal and chemical nature of each contaminant, chemical 
state of the site or availability and affinity between site and metal or binding 
strength, 

. chemical characteristics of metal like ionic potential, ionic radius, ionic stability 
limit, 

. amount of biosorbent, size of the biomass, number of sites of biosorbent material, 
the accessibility of sites, 

. interaction between different metallic ions and ionic strength, 

. toxicity of the pollutants to viable microbial cell (Regine and Volesky, 2000), 

. shaking or stationary conditions.
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11.5.3 Biological or Agricultural Waste as Biosorbent 
for the Removal of Lead from Wastewater 

Banana peel was successfully used as biosorbent for the lead ions removal from 
an aqueous solution, and the impact of varying operational conditions in a batch 
mode was investigated. The maximum lead removal was observed at 98.146% under 
optimized conditions of lead concentration 100 mg/L, pH 5, amount of sorbent 0.55 g 
and sorbent size 75 µm (Afolabi et al. 2021). 

Certain researchers showed the maximum adsorption efficiency of banana peels 
for chromium, cadmium and lead and considered it as the inexpensive household 
waste (Ajmi et al. 2018). 

Biochar prepared from agricultural, animal and wood residues proved to be effi-
cient sorbent for lead removal owing to the binding of various functional groups like 
phenol, carboxyl and hydroxyl to metal ions. While modified clays such as mont-
morillonite, bentonite, kaolinite, vermiculite, polymeric hydrogels are mostly used 
for the removal of lead and mercury from wastewater (Aranda and Rivas 2022). 

Various agricultural wastes like stems, roots, fruit peels, rinds, saw dust, husks, 
hulls, dried leaves, fruit shells and seeds have been efficiently used to remove metal 
contaminants from synthetic solutions (Sun and Shi 1998; Al-Asheh and Duvnjak 
1998; Meunier et al. 2003; Sekhar et al. 2003; Wang and Qin 2005). 

The peels of grapes were also used to remove lead, copper and zinc from factory 
wastewater. The fresh fruit peels, dried small pieces and powdered peels were tested 
for treatment of heavy metal–loaded wastewater by optimization of various param-
eters like pH, temperature and exposure time, concentration of metal contaminants. 
The highest removal efficiency was for lead metal as compared to copper and zinc. 
The Fourier transform infrared spectroscopy analysis (FTIR) studies illustrated that 
hydroxyl, carboxyl and carbonyl groups were the major binding sites for Pb, Cu and 
Zn ions removal using grape fruit peels (Shartooh 2012). 

Maize cob was used as sorbent for lead ions removal from synthetic solution. 
Batch mode of sorption studies were performed under well-optimized experimental 
conditions of 500 ppm concentration, 2.5 g dosage, 400 min exposure time, 400 rpm 
agitation speed and 5 pH. The efficiency of removal for Pb (II) ions was 95% using 
maize cob as adsorbent, and studies can be further extended for the treatment of 
metal-contaminated wastewater (Muthusamy and Murugan 2016). 

Activated carbon prepared from leaves of medicinal plant Militia ferruginea was 
utilized efficiently for the removal of Pb (II) ions from wastewater. The maximum 
adsorption of lead was more than 97% from industrial effluent at 3 h of contact time 
for 4.0 g of adsorbent and at pH of 4.0. The amount of lead ion adsorbed per gram of 
the adsorbent increased with decreasing concentration of Pb2+ ions. The percentage 
of adsorption had increased with the increasing temperature (Mengistie et al. 2008). 

Undaria pinnatifida was immobilized in sodium alginate beads and further utilized 
efficiently for the removal of Pb(II) ions from wastewater. To understand the mech-
anism of sorption, the resulting biosorbent was characterized by Fourier trans-
form infrared spectroscopy (FTIR) and scanning electron microscopy coupled with
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energy-dispersive X-ray spectroscopy (SEM–EDS). The effect of various conditions 
on Pb (II) ion removal efficiency such as temperature, pH, ionic strength, time and 
underlying biosorption mechanisms was also observed (Namkoong et al. 2022). 

11.5.4 Bacteria as Biosorbent for the Removal of Lead 
from Wastewater 

Positively charged metal ions can be easily removed by Gram-positive bacteria having 
higher electronegative charge density which might be due to the presence of teichoic 
and teichuronic acids linked by phosphodiester bonds which are further attached 
to peptidoglycan layer in the cell wall. The presence of various functional groups 
having oxygen, nitrogen, sulphur or phosphorus in bacterial cells are responsible for 
metal ion removal from wastewater (Redha 2020) (Table 11.2). 

Bacterial proteins were utilized for the treatment of lead-contaminated wastewater. 
Lead oxide nanoplates were synthesized by interactions, and the removal of lead 
ions was confirmed using various advance techniques of inductively coupled plasma 
analysis, X-ray spectroscopy and X-ray diffraction (Ghosal et al. 2021).

Table 11.2 Examples of microbial biosorbents for lead removal from wastewater 

Microbial 
biosorbents 

Examples 

Bacteria Bacillus sp., Pseudomonas sp., Arthrobacter sp., Alcaligenes sp., 
Azotobacter sp., Rhodococcus sp., Acinetobacter sp. and  
methanogens Pseudomonas putida, Pseudomonas aeruginosa and Escherichia 
coli, Bacillus thuringiensis, Streptomyces sp., Cellulosimicrobium funkei, 
Lactiplantibacillus plantarum, Cellulosimicrobium sp., Methylobacterium sp., 
Aerobacillus pallidus, Arthrobacter viscosus, Klebsiella pnuemoniae„ 
Rhodotorula sp., Bacillus megaterium, Vibrio parahaemolyticus, Klebsiella sp, 
Staphylococcus epidermidis, Oceanbacillus profundus, Micrococcus luteus, 
Flavobacterium, Enterobacter, Acinetobacter sp., Micrococcus luteus, Bacillus 
subtilis, Aspergillus niger and Penicillium sp 

Fungi Aspergillus sp., Penicillium sp., Rhizopus sp., Mucor sp., Alternaria sp., 
and Cladosporium sp, A. ferrooxidans and A. thiooxidans, Desulfovibrio 
desulfuricans, Coprinopsis atramentaria, A. niger, Rhizopus oryzae, 
Saccharomyces cerevisiae, Penicillium chrysogenum, Candida sphaerica 

Yeast Hansenula polymorpha, S. cerevisiae, Yarrowia lipolytica, Rhodotorula 
pilimanae, Pichia guilliermondii, and  Rhodotorula mucilage 

Algae C. vulgaris, Gelidium amansii, Phormidium ambiguum, Porphyra leucosticte, 
Spirogyra sp., Sargassum muticum, Chlorella miniate and Spirulina platensis 

Source (Thi Pham et al. 2022; Kumar and Goyal 2009; Kareem and Anwar 2020; Amasha and Aly 
2019; Olusola and Aransiola 2015; Rao and Bhargavi 2013; Sheba and Nandini 2016; Villegas et al. 
2018; Iram and Abrar 2015; Rastogi et al. 2019; Aracagok 2022) 
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A continuous column treatment setup was developed in up-flow anaerobic sludge 
blanket reactor (UASB) loaded with anaerobic sulphate-reducing bacteria and used 
for the continuous removal of lead and mercury ions from wet flue gas desulfuriza-
tion (FGD) wastewater. Lead and mercury were removed in the form of sulphides 
and gets accumulated in sludge. The reactor was operated under various optimized 
experimental conditions at metal loading rates of 9.2 g/m3d Pb (II) and 2.6 g/m3d Hg  
(II) for retention time of 50 days. The UASB reactor removed 72.5 ± 7% of sulphite 
and more than 99.5% of both Hg(II) and Pb(II) and found to be very efficient for 
the treatment of metal-contaminated wastewater (Zhang et al. 2016). In another 
similar study, lead was removed from sulphide-rich effluent using sulphate-reducing 
bacteria in the form of lead sulphide precipitate. The whole treatment was performed 
in UASB reactor in a continuous mode with initial feeding load of effluent containing 
45–50 mg/L concentration of lead ions. The maximum lead removal 85–90% was 
achieved in UASB reactor (Hoa et al. 2007). 

The efficiency of metal tolerance and accumulation of about 164 isolated 
heterotrophic bacterial strains was studied especially for lead, cadmium and zinc. 
The metal tolerance studies of all the isolated bacterial isolates showed that about 
45% of the total isolates showed very high tolerance of greater than 6000 µg/ml 
towards lead ions as compared to cadmium and zinc towards which bacterial strains 
have comparatively low tolerance. Further, one of screened bacterial strain Bacillus 
sp. was found to be more efficient in the bioaccumulation of lead ions (Varghese et al. 
2012). 

11.5.5 Fungi as Biosorbent for the Removal of Lead 
from Wastewater 

Many metal-tolerant fungal strains were isolated from sewage sludge and industrial 
wastewater especially tolerant towards lead, cadmium, chromium and nickel. These 
isolated fungal strains were characterized through various morphological, biochem-
ical and genetic identification tests. The identified and screened fungal strains were 
Aspergillus foetidus, Phanerochaete chrysosporium, Aspegillus awamori, Rhizopus 
sp., Aspergillus flavus, Trichoderma viridae which were further used for the removal 
of different metals from wastewater. The screened fungal strains were found to 
tolerate and ability to grow up to 400 ppm concentration of cobalt, lead, cadmium, 
chromium, copper and nickel metal ions. All the above-mentioned fungal strains 
have the remarkable efficacy to be used as biosorbent for the removal of cobalt, lead, 
cadmium, chromium, copper and nickel metal ions from wastewater and industrial 
effluents (Dwivedi et al. 2012). 

The efficacy of non-viable biomass of Penicilluim sp. was estimated for the 
removal of lead ions from synthetic solution. All the treatments were done in the 
batch mode under optimized conditions of 10 mg/l lead ion concentration, 1 g/l 
biomass dosage, 2 h of exposure time and found to achieve 78.03% removal of lead
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ions. The mechanism of sorption found out the involvement of carbonyl, methylene, 
phosphate, carbonate and phenolic groups in removal of lead ions from industrial 
effluent (Rastogi et al. 2019). 

The efficiency of fungal biomass Aspergillus neoalliaceus for sorption of lead ions 
as a function of pH, biomass dosage, contact time and initial lead concentration was 
studied. The removal of lead ions with Aspergillus neoalliaceus followed Langmuir 
isotherm and pseudo-second-order kinetic models compared to other used models 
(Aracagok 2022). 

The pre-treated biomass of Aspergillus niger was found as an efficient sorbent 
for the removal of heavy metals especially lead and nickel from wastewater. The 
various optimized experimental conditions for maximum removal of lead and nickel 
were pH of 7 and 6 and equilibration time for maximum biosorption at 5 h and 
8 h, respectively. In the presence of co-ion lead, the percentage removal of nickel 
was 92% which was greater than using the single metal system removal (Rao and 
Bhargavi 2013). 

The agricultural waste edible fungi residue was found to adsorb 76.34% of Pb (II) 
ions from wastewater. All the treatments were performed under optimized experi-
mental conditions of 483.83 mg/L of lead ion concentration, 4.99 g/L of fungi residue 
at pH of 5.89. The FTIR characterization of fungi residue both before and after treat-
ment confirmed the involvement of various functional groups which controlled the 
sorption of heavy metals (Jing et al. 2021a, b). 

11.5.6 Algae as Biosorbent for the Removal of Lead 
from Wastewater 

The various factors like the presence of functional groups, high surface area and 
high binding capacity in algae make it an efficient sorbent for the removal of heavy 
metal ions especially lead ions from wastewater. This might be due to the presence 
of chitin, polysaccharides, proteins and lipids in cell wall of algae resulting in higher 
biosorption ability (Davis et al. 2003). In the first rapid extracellular passive sorption, 
heavy metals are adsorbed over the cell surface by not involving cellular metabolism. 
The various factors like bioavailability of metals, availability of metal-binding groups 
on the algal cell surface, metal uptake and storage efficiency of algal cells determine 
the efficacy of sorption. Biosorption can be carried out by both viable and non-viable 
biomass. Algae can either exchange metal ions with calcium, magnesium, sodium or 
potassium ions or form complex with the functional groups on the surface of algal 
cell. Contaminants can easily bind to the surface of algae due to the presence of 
polysaccharides, lipids and proteins. The presence of sulphate, carboxyl, amino and 
hydroxyl groups in the cell wall of microalgae makes it suitable as the binding site 
for the pollutants. Heavy metals can also be transported across the cell membrane 
within the cytoplasm or organelles through an active uptake and can be carried out 
by viable biomass only and also dependent on cellular metabolism. This process
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is also known as slow intracellular active accumulation and requires energy for the 
accumulation of heavy metals inside the microalgal cells. 

Various self-defence mechanisms of gene regulation, complexation, ion exchange, 
chelation, produce reducing agents or anti-oxidants and cause heavy metal immobi-
lization enhances the efficiency of algae to fight against the toxicity of heavy metal 
ions (Chugh et al. 2022). 

The algae Chlorella vulgaris has the ability to remove various heavy metals, espe-
cially lead and cadmium in one metal solution system (Moustafa and Idris 2003). 
The mechanism of sorption revealed that the removal of lead occurs in two consec-
utive steps, the first is the adsorption on its surface followed by fixation. The algae 
was able to remove 60% lead and 65% cadmium efficiently from synthetic solution 
(Dhokpande and Kaware 2013; Sonali et al. 2013). 

Sludge-based adsorbent was prepared by ferric activation through pyrolysis and 
further used for the sorption of lead ions from aqueous solution. The ferric-activated 
sludge-based adsorbent showed a favourable porous structure development and lead 
ions removal with the maximum sorption capacity of 42.96 mg/g (Yang et al. 2019). 

11.6 Conclusions 

This review article summarizes the various sources of heavy metal contamination 
along with the hazards of especially lead-contaminated wastewater, their current 
physiochemical treatments and their limitations. This review also highlighted the 
biosorption technology used for the treatment of lead-contaminated wastewater along 
with the in-depth knowledge of major mechanisms involved through which biosor-
bents remove metals from wastewater. Furthermore, a brief discussion on the effect 
of lead contamination on various components of ecosystem and remediation of heavy 
metals using an elaborated list of biosorbents has been reviewed. To make this biore-
mediation technique more efficient and successful, recent advancements, challenges 
and strategies to carry out in the future have been explored. The need of biosorp-
tion, factors affecting sorption, utilization of biological waste as biosorbents has 
been detailed. It has been concluded from detailed literature survey that the use of 
biosorbents seems to be a more promising alternative for the removal of lead ions 
from wastewater as compared to the other conventional methods of treatment. These 
biosorbents can be either plant- or animal-originated or microbial biomass. Microbial 
sorbents can be used in form of live or dead biomass, more economical, pollution 
free, easily availability and regeneration ability, effectively utilized for continuous 
treatment in columns for industrial waste treatment.
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Chapter 12 
Antioxidant Defense: Key Mechanism 
of Lead Intolerance 

Manish Kumar Verma, Amitava Paul, and Moon Roy 

Abstract Lead (Pb) is a toxic heavy metal that can have significant adverse effects 
on human and animal health, especially when exposure occurs at high levels or 
over prolonged periods. The harmful health effects of lead are well-documented, 
and even low-level exposure can be dangerous. Its contaminated natural sources are 
mining and smelting operations, paints containing lead, paper and pulp, petrol and 
explosives, as well as the dumping of sewage sludge that has been enriched with lead 
from municipal sewage systems. The reproductive, neurological, immunological, 
cardiovascular, and other systems as well as developmental processes are negatively 
impacted by its interactions with biomolecules. Pb reacts with the sulfhydryl groups 
on enzymes to decrease their activity at the cellular level. Reactive oxygen species 
(ROS) are known to be produced more frequently as a result of oxidative stress caused 
by lead. Antioxidants defenses to lead toxicity may constitute different strategies. 
The first step is to either prevent lead from entering the cell by excluding it or to 
bind lead to the cell wall and other ligands, such as organic acids, amino acids, and 
glutathione, to render them harmless at the initial stage of lead entrance. One of the 
main detoxifying pathways for Pb is cell wall binding. Secondary defense system 
constitutes several antioxidants to fight against increased ROS production caused by 
lead. 
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12.1 Introduction 

An antioxidant is a chemical that effectively inhibits the activity of a pro-oxidant 
while simultaneously generating low- or non-toxic by-products. Indeed, a broader 
definition of antioxidant was suggested by Halliwell et al. (1995), as “any substance 
that when present at low concentrations, compared to those of an oxidizable substrate 
significantly delays or prevents oxidation of that substrate”. Thus, by this theory, only 
those chemical agents that are capable of defending the biological target from damage 
are referred to as antioxidants (Galano and Reiter 2018). This defense may be based 
on a number of mechanisms, such as prevention of production and scavenging activity 
against reactive oxygen species (ROS)/reactive nitrogen species (RNS), metal chela-
tion, reducing power, antioxidative enzyme action, and the suppression of oxidative 
enzymes (Lü et al. 2010; Truong et al. 2018; Pisoschi et al. 2021). Human and 
animal body cell naturally maintains a balance between the quantity of free radicals 
it produces and the antioxidants that shield it from harmful consequences. Amounts 
of antioxidant components are frequently found under typical physiological settings 
may not be enough to completely neutralize free radicals produced (Bhattacharya 
2015). It follows that adding antioxidants to our diet will help us to prevent from 
hazardous illnesses. Therefore, a rise in concern regarding “Natural antioxidants” 
made from herbal materials in the food sector and in preventative medicine increased 
drastically. Because of this, antioxidants are growing in popularity across the globe 
(Khan et al. 2019). Antioxidants are natural or synthetic substances that protect or 
delayed cell death. Antioxidants are naturally found in many foods, including fruits, 
vegetables, and medicinal herbs. They are also available as dietary supplements. 
Antioxidants examples include lutein, lycopene, selenium, beta-carotene, vitamin 
(A, E, and  C), etc. (Yadav et al.  2016). Antioxidants had an increasing interest due 
to their role in protecting food and medicinal products against oxidative decaying. It 
also protects against pathological alteration related to oxidative stress in the cell or 
body. Antioxidant is also referred to as “a substance that either directly scavenges 
ROS, indirectly up-regulates antioxidant defenses, or inhibits ROS production.” By 
delaying the lipid peroxidation process, which is the major cause of cell toxicities 
and the degradation of pharmaceutical and food items during manufacturing and 
storage, antioxidant chemicals can scavenge free radicals and also extend shelf life 
(Li et al. 2016; Ali et al. 2020). Nutritional antioxidant molecules can be used in 
food systems to delay lipid peroxidation and secondary lipid peroxidation products 
formation, helping to preserve the texture, flavor, and color of the food items during 
storage (Domínguez et al. 2019). The amino acids reduction, interaction of lipid-
derived carbonyls with proteins and oxidation of protein that cause change in protein 
function are further processes that antioxidants help with (Hu et al. 2017). 

Lead is the most important harmful heavy metal in the environment. Its use 
dates back to historic times due to its important physico-chemical properties. It 
is a broadly dispersed, serious, and hazardous chemical that are harmful to the envi-
ronment worldwide (Khan et al. 2021a, b). It is hard to give up because of its impor-
tant characters like corrosion resistance, malleability, ductility, softness, and low
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conductivity. Its non-biodegradable nature and continuous use increases the risks 
associated with its presence in the environment (Velvizhi et al. 2020). Human and 
animal exposure to lead and its derivatives primarily appear in lead-related profession 
with a various sources such as lead-containing petrol, industrial activities such as lead 
smelting and its combustion, boat construction, pottery, lead-based pigments, book 
printing, painting, battery recycling, grids, arm industry, and lead-containing pipes. 
Lead affects almost all of the body’s organs (Nath et al. 2019). Chronic exposure of 
lead in low concentration induces a various behavioral, physiological, and biochem-
ical dysfunctions. Its harmful effect is not well understood, and several mechanisms 
have been suggested to explain it. These theories of mechanism of toxicity include 
disturbances in the, demyelization of nerve tissues, inactivation of several enzymes, 
and mineral metabolism. Nervous system is commonly affected by lead exposure 
in both man and animals. However, the effect of the toxicity level is more in chil-
dren than adults. This is due to softer tissues of organ than adults. Both human and 
animal adults exposed for a long time may perform poorly on a number of cognitive 
tests that measure how well their nervous systems are functioning (Boskabady et al. 
2018). Due to their increased susceptibility to Pb, new born and young children may 
suffer with decreased IQ, behavioral issues, and learning difficulties. Prolonged Pb 
exposure has been linked to high rise of blood pressure and anemia, primarily in both 
young and old people. Exposure to high levels of lead, which resulted in mortality, 
was found to be associated with serious brain and kidney damage in man and animals 
(Reuben 2018). Greater level of chronic Pb exposure in male decreased fertility and 
in females during pregnancy may causes miscarriage. Lead intoxication frequently 
causes blood disorders and nervous system damage. It is due to the disturbance of 
antioxidant and pro-oxidant balance by generation of ROS. It is likely that a number 
of radical scavenging enzymes maintain a threshold level of ROS in the cell in order 
to maintain proper cell signaling. However, if the level of ROS increases above the 
specified threshold level, a rise in the formation of ROS resulting excessive signaling 
to the cell and directly damage components of essential signaling pathway (Adwas 
et al. 2019). Additionally, ROS can permanently harm important macromolecules. 
The main cytosolic low molecular weight sulfhydryl molecule, protein-bound thiol 
and non-protein thiol, works as a cellular reducing and protecting reagent against 
a variety of hazardous chemicals, including the majority of inorganic pollutants, 
through the –SH group (Briffa et al. 2020; Elsayed et al. 2016). Therefore, the first 
line of defense against oxidative stress is often thiol. Antioxidants have been found 
to play major role in the detoxification of Pb against oxidative stress. 

12.2 Mechanism of Lead Toxicity 

Since ancient times, metallic Pb and its organic and inorganic salts have been known 
and used extensively. Pb concentrations greater than 0.6 μM are related with health 
issues. Lead can alter proteins, interfering with their capacity to carry out enzymatic 
processes or change functioning by binding with cellular components. Nucleic acid
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Fig. 12.1 Molecular targets of lead and their mechanism affected by lead exposure 

deterioration and causing of oxidative stress are two more processes (Szymanski 
2014). Numerous cellular functions are impacted by lead exposure, and each one 
of these effects may, in part, be responsible for the clinical signs of lead poisoning. 
Each mechanism’s involvement may vary with degree of exposure and involvement 
kind of cell (Fig. 12.1). 

12.2.1 Oxidative Stress 

Oxidative stress is two sided, and the maintaining of a physiological amount of 
oxidant challenge, also known as oxidative stress, is essential for regulating essential 
life process through redox signaling, whereas excess oxidative stress damages or 
alter biomolecules (Sies et al. 2017). The ROS are continuously produced in aerobic 
organisms’ cells as by-products of a variety of metabolic processes, such as respi-
ration and the body’s own anabolic and catabolic pathways. However, under typical 
circumstances, the antioxidant enzymes functioning and the creation of low molec-
ular weight antioxidant molecules maintain the quantities of different ROS at safe 
levels (Tretter et al. 2021). Imbalance in between generation and scavenging of ROS



12 Antioxidant Defense: Key Mechanism of Lead Intolerance 267

leads to oxidative stress. Basically, either increased ROS generation or a compro-
mised ROS detoxification system can cause such an imbalance. Overproduction 
of free radicals under oxidative stress causes inflammation, apoptosis, and damage 
components of cells and tissue. ROS targets proteins, nucleic acids, and lipids which 
can result in changes, damage, and deactivation (Bhatti et al. 2022). Free radicals are 
short lived, neutral, and unstable chemical species normally associated with an odd/ 
unpaired electron. They are highly reactive if paired up with odd electron and form 
stable configuration. They are able to damage the healthy cells causing them to lose 
their structure and normal physiological functions (Taghavi and Moosavi-Movahedi 
2019). Increased ROS generation in brain cells is thought to be one of the main 
contributors to the emergence of degenerative nervous disorders like Alzheimer’s 
and Parkinson’s. Its interaction with oxyhemoglobin has caused the generation of 
ROS in red blood cells (Wojtunik-Kulesza et al. 2019). 

12.2.2 Interactions with Proteins 

Previous researches confirm that lead can directly interfere with proteins functions 
by ionic displacement or by binding cysteines thiol groups, competing for binding 
with ion transporters or metal-dependent enzymes of natural ligands (Bridges and 
Zalups 2005). 

12.2.2.1 δ Aminolevulinic Acid Dehydratase (ALAD) 

δ Aminolevulinic acid dehydratase (ALAD) enzyme is a main target of lead poisoning 
in human, animals, and plants. It is also known as porphobilinogen synthase or ALA 
dehydratase, or aminolevulinate dehydratase encoded by the ALAD gene in humans 
(Qader et al. 2021). ALAD catalyzes two molecules of δ-aminolevulinic acid by 
asymmetric condensation to form the porphobilinogen in the presence of Porpho-
bilinogen synthase. Porphobilinogen is precursor of cobalamins, plant pigment 
chlorophylls, cytochromes, and blood-heme (Dailey et al. 2017). The ALAD func-
tion depends on the binding of divalent zinc cation (Zn2 +) in human, animal, fungal, 
and bacterial ALADs as well as magnesium (Mg2 +) in enzymes of plant (Spencer 
and Jordan 2008). Basically ALAD is expressed in all the cell types in animal but is 
strongly expressed in liver and red blood cells (Phillips 2019). ALAD is frequently 
utilized as a biomarker of lead exposure due to its sensitivity to lead. Increased 
concentration of ALAD’s substrate, -aminolevulinic acid (-ALA), is mainly because 
of the decrease in enzymatic activity of ALAD (Cid et al. 2018). By enolization 
and auto-oxidation at normal physiological pH, which leads to the creation of a 
superoxide anion, or by linked oxyhemoglobin oxidation, an accumulation of -ALA 
results in the formation of ROS (Miazek et al. 2022). The integrity of the DNA may 
potentially be impacted by the accumulation of -ALA. It has been demonstrated 
that the by-product of -ALA oxidation known as 4,5-Dioxovaleric acid which has
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alkylating properties capable of altering guanines (Gonçalves et al. 2020). Gamma-
aminobutyric acid (GABA) and ALAD have structural resemblance due to which
-ALA can bind to GABA receptors in the nervous system easily contributing to their 
oxidative degradation resulting in nervous system disorder (Hurkacz et al. 2021). 

12.2.2.2 Calcium-Binding Proteins 

Calcium acts as a second messenger and key component in the cell. It mainly depends 
on the large number of heterogeneous actions of calcium-binding proteins (CBP) 
which is capable of binding of the calcium ion in their specific domains. Calmodulin 
is multifunctional calcium-binding second messenger protein sensitive to alterations 
in cellular calcium ion concentration which is expressed in all eukaryotic cells, i.e., 
affected by lead exposure (Filadi et al. 2017). Lead binds to calmodulin with a higher 
affinity than calcium ions, although not all lead and calcium-binding sites are the 
same. Lead binds to the calcium-binding sites at low level, which may cause calmod-
ulin to become activated (Kasten-Jolly and Lawrence 2018). However, greater lead 
levels bind with the linker region, changing its structural configuration and blocking 
CaM target proteins interactions, and it also displaces calcium from two of its binding 
sites (Garza et al. 2006). Thus, the concentration of lead may affect how lead affects 
calmodulin-dependent pathways. Lead may be the cause of hyperactivation at low 
concentrations (de Souza et al. 2018). Lead is also a potent activator of calcium/ 
phospholipid-dependent protein kinase C and an inhibitor of the voltage-gated Ca2 + 

and K+ channels, two proteins linked to many brain activities such as memory and 
learning (Reyes Gaido et al. 2023). 

12.2.3 Effects of Lead on DNA 

Pb has a genotoxic effect that affects the integrity of molecular proteins in addition 
to causing oxidative stress and interacting with protein function. It has long been 
known that lead and its derivatives can cause mutations. Pb can alter the chromatin 
by affecting DNA methylation in addition to the direct and indirect consequences 
(Jeena and Pandey 2021). 

12.2.3.1 Oxidative Damage 

The oxidative damage DNA for a very long period recognized as a serious threat for 
cells, due to its major toxicological effect such as aging and carcinogenesis. Every 
component of the DNA, including deoxyribose, nucleobases, and phosphodiester 
linkages, can be targeted by ROS, which can hydrolyze the phosphate-sugar backbone 
or modify bases (Cadet et al. 2017). 8-oxo-adenine, 5-hydroxyuracil, and thymine 
glycol are likewise quite carcinogenic, according to research on the effects of other
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oxidized DNA nucleobases. This implies how developmental disruptions brought on 
by lead may have consequences over time that promotes neurodegeneration (Klaunig 
and Kamendulis 2004). 

12.2.3.2 Base Adducts 

Polyunsaturated fatty acids in phospholipids are major target of oxygen radicals 
inside the cell (Shchepinov 2020). The oxidation of lipids results in a variety of 
extremely reacting chemicals, a few of which can react with the side chains of amino 
acids in proteins and bases in nucleic acids, in addition to having an impact on the 
integrity of cell membranes. According to research, endogenous DNA damage is 
mostly caused by lipid peroxidation (Juan et al. 2021). Malondialdehyde is most 
common by-products formed by lipid peroxidation and is commonly used as a sign 
of lead exposure (Moazamian et al. 2015). Low quantities of Malondialdehyde, a by-
product of the prostaglandin production pathway, are visible in the cells when there 
is no stress (Wali et al. 2020). By creating exocyclic adducts with bases, elevated 
amounts of malondialdehyde and other aldehydes from lipid oxidation can cause 
DNA damage and resulting in mutations (Tudek et al. 2017). 

12.2.3.3 DNA Methylation 

DNA methylation is an inherited epigenetic marker in which DNA methyltransferases 
irreversibly transfer a methyl group at the C-5 position of the DNA cytosine ring 
(Mancia 2022). Gene expression is highly dependent on the epigenetic alterations 
of chromatin. One of the essential heritable markers is methylation of cytosines 
producing 5-methylcytosine (m5C) in the DNA. The epigenetic changes in chromatin 
have a significant impact on gene expression. Cytosines methylation forms in 5-
methylcytosine which is the DNA base cytosine that regulates gene transcription. 
It is also essential epigenetic marker in the DNA (Breiling and Lyko 2015). DNA 
methylation has a role in the control of chromatin structure, genomic imprinting, 
and the regulation of gene expression (Szymanski 2014; Yang et al. 2022). For 
the creation, establishment, and maintenance of cell identity, proper methylation 
patterns are essential. It was established that exposure to lead linked with altered 
DNA methylation state (Sun et al. 2022). 

12.2.3.4 Effects of Lead on RNA 

The impact of Pb exposure on the integrity of RNA molecules remains a primarily 
unexplored territory. The understanding of the various functions carried out by both 
types of nucleic acids in the cell is one of the causes of this (Zoidis et al. 2018). DNA 
is the genetic information’s storage; any damage to it must be immediately repaired 
to prevent mutations that could compromise the cell’s viability or proper functioning
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(Pedroza-Garcia et al. 2022). The effects of RNA damage do not appear to have 
as great an influence on cellular processes as those of DNA damage. If the DNA’s 
information is still intact, damaged RNA can be retrieved by the proper transcripts 
(Herbert 2020). On the other hand, unlike DNA, RNA molecules are more vulnerable 
to damage molecule from ROS created at the time of oxidative stress because certain 
of its bases are not involved in the construction of structural configuration and are 
greater accessible than paired bases inside the double helix of DNA (Cannan and 
Pederson 2016; Juan et al. 2021). 

12.3 Coping Mechanism of Antioxidants Enzymes 
from Lead 

One of the most important substances for preventing ROS damage to cell components 
is glutathione (GSH), a tripeptide made up of three amino acids glutamate, histidine, 
and cysteine. Protein disulfide linkages are converted to cysteines by glutathione 
utilizing the sulfhydryl group of the cysteine as a proton donor. Glutathione undergoes 
this transformation into glutathione disulfide (GSSH), which has undergone oxida-
tion. Using NADPH as a proton source, glutathione reductase transforms glutathione 
disulfide into glutathione (Cheng et al. 2021). Glutathione oxidation helps in detox-
ification of ROS. Lead has a double impact on the glutathione concentration. Its 
exposure causes decreased glutathione levels and elevated GSSH levels (Hasanuz-
zaman et al. 2018; Haridevamuthu et al. 2022). While glutathione and its glutathione 
reductase emerge to be the primary targets of Pb, its exposure also affects other 
enzymes involved in detoxification of ROS, which results in higher amounts of free 
radicals in the cell (Valko et al. 2016). Additionally, lead exposure has been linked 
in a dose–response manner to alterations in the concentrations and action of antiox-
idant enzymes. These enzymes include glutathione peroxidase (GPx), catalase, and 
superoxide dismutase (SOD), expressions of which were found to be changed in the 
body (Guru et al. 2021). 

SOD is particularly valuable as an antioxidant because it is helpful in preventing 
cellular damage. The superoxide radical anion (O2

−), which is produced by the 
transfer of one electron to molecular oxygen, serves as the substrate for SODs (Ifeanyi 
2018). Both the direct harm to biological macromolecules and the production of 
additional reactive oxygen species are caused by it. SODs act as a key function 
in the cells defense against oxidative stress because they keep superoxide radical 
concentrations at low levels (Ighodaro and Akinloye 2018). 

Glutathione-S-transferases (GSTs) also known as provide defense against oxida-
tive stress. Alterations in GST activity following lead exposure are discussed. 
GSTs are a family of cytosolic enzymes that detoxify lead by conjugating them to 
glutathione. Glutathione is essential for the regular physiological activities (Awasthi 
et al. 2017).
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Catalase is an antioxidant that decomposes hydrogen peroxide into water and 
oxygen. It is a common enzyme in almost all living organisms exhibited to oxygen 
that catalyzes the breakdown of hydrogen peroxide. It is an essential enzyme to 
protect the cell from oxidative harm by ROS. Hydrogen peroxide acts as a substrate 
for a specific reaction which creates highly free radicals. Catalase performs a major 
role in the defense mechanisms of cellular antioxidants by decreasing the hydrogen 
peroxide accumulation. The role of catalase in the protection of body cells and tissues 
from oxidation has been thoroughly investigated. Over-expression of catalase makes 
the cells more resistant to hydrogen peroxide toxicity and oxidative-mediated damage 
(Lobo et al. 2010; Kabel 2014). 

12.4 Non-enzymatic Antioxidants Mechanisms 

Antioxidant ascorbic acid is present in both animals and plants cells, but as it cannot 
be synthesized by humans, it must be consumed through food. ROS can be reduced 
as well as neutralized. By eliminating the intermediates of free radical oxidation 
and interacting with the lipid radicals, vitamin E has been proven to protect cell 
membranes against oxidation. By eliminating singlet oxygen, beta-carotene has 
strong antioxidant qualities and can fight from free radicals. They can be found 
in grains, spinach, carrots, tomatoes, milk, butter, liver, egg yolk, and egg white 
(Foyer 2017; Zaaboul and Liu 2022; Sarker et al. 2022). 

12.5 Natural Antioxidants Protection 

Natural antioxidants protective effect has received more attention from damage 
caused by free radicals. Flavonoids have an essential role in protecting body cells from 
oxidative damage. Green vegetables, fruit, red wine, tea, and cocoas are among the 
many foods that contain flavonoids (Khan et al. 2021a, b). Flavonoids are present in a 
large variety of foods and drinks and have many biological functions of antioxidation 
is well known. By neutralizing reactive species, natural antioxidants strengthen the 
body’s own antioxidant defenses against ROS (Guven et al. 2019). The antioxidant 
activities of phenolic compounds are related to various mechanisms, like hydrogen 
donation, scavenging of free radical, metal ion chelating, singlet oxygen quenching, 
and acting as a substrate for superoxide and hydroxyl radicals (Pisoschi and Pop 
2015; Behera and Senapati 2023).
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12.6 Conclusion 

The above literature concludes that lead causes oxidative stress resulting in irre-
versible damage in cellular components that responsible for propagation of many 
diseases such as cardiovascular problems like high blood pressure, atherosclerosis, 
stroke, neurological diseases, allergic diseases, hepatitis, and development of cancer. 
Antioxidant reduces ROS formation and scavenging free radicals. 
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Chapter 13 
Biotechnological Approaches 
in Remediation of Lead Toxicity 
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Sneha, Bhairav Prasad, and Vijay Singh 

Abstract Rapid industrialisation, modern farming methods, and other anthro-
pogenic activities increase the amount of toxic heavy metals in the atmosphere, 
leading to a profoundly toxic influence on all forms of life. The health and safety 
of humans are not the only things threatened by this type of heavy metal pollution. 
Heavy metal pollution causes neurological issues in children because it is mutagenic, 
endocrine, carcinogenic, and teratogenic. Because of this, addressing heavy metal 
pollution needs to be a priority. Cost, labour intensity, changes in soil characteristics, 
and disruption of natural microflora are just some of the problems with the various 
physical and chemical procedures employed for this goal. However, phytoremedia-
tion is an improved approach to the issue. The term “phytoremediation” refers to the 
practise of using plants and the microorganisms found in soil to mitigate the harmful 
effects of pollution. It is widely accepted because of its novelty, low cost, efficiency, 
little environmental impact, and use of solar energy. It is true that a lot of research is 
being done on phytoremediation right now. For use in phytoremediation, scientists 
are looking into new, highly effective metal hyperaccumulators. Plants’ mechanisms 
of metal absorption, transport, sequestration, and tolerance are being studied with 
molecular techniques. 
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13.1 Introduction 

Industrial wastes contain heavy metals such as Cd, Cu, Ni, Co, Zn, and Pb, which 
are found in drinking water, and it is well known that municipal treatment plants are 
not well developed to remove heavy metal residues (Malik 2003). Lead is found in 
aquatic and terrestrial ecosystems due to a variety of anthropogenic causes (Selvi 
et al. 2019). Any metallic element with a relatively high density that is harmful at low 
concentrations is referred to as a heavy metal. Lead is a hazardous heavy metal with 
an atomic number of 82, a molecular weight of 207.2, a density of 11.34 g/cm3, and a 
melting point of 621.43 F (Kumar et al. 2020). Lead is expected to contribute roughly 
10% of overall heavy metal pollution (Collin et al. 2022). Lichens were employed as 
a bio-indicator to compare different Pb isotopes across time (Gupta et al. 2019). Pb 
and Pb compounds, for example, have been recognised as key hazardous chemicals 
in 47% of the 1219 superfund sites now on the USEPA’s National Priorities List (Liu 
and Zhao 2007). Lead has been employed throughout history because of its physio-
chemical qualities such as softness, malleability, weak conductivity, and corrosion 
resistance (Wani et al. 2015). Lead is most commonly used in the preparation of 
leaded gasoline, industrial processes such as lead smelting and combustion, pottery, 
boat building, lead-based paintings, lead-containing pipes, battery recycling, the arm 
industry, book printing, and many other applications (Wani et al. 2015) (Fig. 13.1).

Due to the propensity of lead to leach into canned foods, the food canning 
industry is also a significant source of lead exposure (Kumar et al. 2020; Collin 
et al. 2022). Lead (Pb) contamination in air, soil, and water resources has been 
linked to natural processes, including geochemical weathering, marine spray emis-
sions, volcanic activity, and the remobilisation of sediment, soil, and water from 
mining areas (Ali et al. 2022). Today, remediation of heavy metals (lead) is a global 
priority as they cannot be destroyed, are toxic and unsuitable for bio-treatment, their 
bioaccumulation and bioaugmentation by the food chain can disrupt the normal phys-
iological functions of humans, and even trace amounts are lethal (Anju 2017). Lead 
is non-biodegradable by nature, meaning that it cannot be degraded, and it accumu-
lates in the environment, causing damage to humans, plants, and animals (Ye et al. 
2002). About 20–70% of the lead that is ingested is absorbed by the body (Kumar 
et al. 2020). As a result, ingestion is the primary route of lead exposure for humans. 
In addition, lead is used as a pesticide during the cultivation of vegetables and fruits 
(Gall et al.  2015). It affects every organ in the human body and is responsible for 
reproductive effects, respiratory effects, neurological effects, birth defects, cancer, 
and anaemia, among others. Aside from this, expectant women and children are at 
greater risk from lead exposure because it inhibits foetal development in the early 
stages (Wani et al. 2015) (Fig. 13.2).

Lead (Pb) can be harmful to both macro and microorganisms due to its ability 
to directly impact biochemical and physiological processes, hinder growth, degrade 
cell organelles, and inhibit photosynthesis (Ahmadpour et al. 2012; Din et al. 2023). 
According to Malik (2003), traditional physico-chemical methods for metal remedi-
ation, such as chemical oxidation, reduction, precipitation, adsorption, electrolytic
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Fig. 13.1 Sources of lead pollution

recovery, and ion exchange, have been deemed costly, unsuitable, and constrained. 
In recent years, there has been a significant focus on biotechnological methods 
aimed at occupying ecological niches, as evidenced by the growing interest in 
this area (Malik 2003). Various methods have been devised by biotechnologists 
to facilitate the destruction of PB. These methods include physical, chemical, and 
biological approaches. Of these approaches, biological methods have been found 
to be the most cost-effective, efficient, and environmentally friendly (Anju 2017). 
The process of utilising natural and recombinant microorganisms or plants for the 
purpose of eliminating environmental toxic pollutants is known as bioremediation. 
This approach is widely acknowledged for its cost-effectiveness and eco-friendliness 
(Mosa et al. 2016). Various defence mechanisms have been evolved by microorgan-
isms to cope with heavy metal stress. These mechanisms include transport across cell 
membranes, biosorption to cell walls, entrapment in extracellular capsules, precipi-
tation, complexation, and oxidation–reduction reactions (Rai et al. 1981; Macaskie 
and Dean 1989; Huang et al. 1990; Avery and Tobin 1993; Brady and Duncan 1994; 
Krauter et al. 1996; Veglio et al. 1997). Their capacity to uptake heavy metals from
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Fig. 13.2 Exposure to chemicals and their effects on human health

aqueous solutions has been demonstrated, especially in cases where the concentra-
tion of metal effluent ranges from below 1 to approximately 20 mg/l. Furthermore, 
biological methods for metal remediation possess the capability to manage diverse 
physico-chemical parameters present in effluents, exhibit selectivity towards targeted 
metals, and are cost-effective. These factors have stimulated a comprehensive inves-
tigation of biological approaches for the elimination of metals. Plants exhibit the 
requisite genetic, biochemical, and physiological attributes to position themselves 
as the preeminent option for the remediation of soil and water pollutants. Phytore-
mediation is a well-known process that involves the utilisation of plants for the 
purpose of extracting, sequestering, or decontaminating Pb or other heavy metal 
contaminants (Kavamura and Esposito 2009). The focus of this review centres on 
the accomplishments of biotechnological techniques and practises in the areas of 
environmental conservation, detoxification, and lead elimination. The present review 
article delves into the latest developments and potential prospects concerning bio-
and phytoremediation of toxic Pb from contaminated water and soil.
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13.2 Bioremediation 

Bioremediation is the process of utilising natural organisms, such as bacteria, plants, 
or their derivatives, to break down contaminants into less toxic forms. The util-
isation of bioremediation as a means of eliminating pollutants has emerged as a 
feasible approach that is both ecologically sustainable and economically advanta-
geous. Bioremediation is based on the fundamental principles of altering redox reac-
tions, modifying pH, utilising diverse complexation reactions to either increase or 
decrease solubility, and the process of adsorption or uptake of a substance from the 
surrounding environment (Smith et al. 1994). The process of utilising both recombi-
nant and naturally occurring microorganisms to eliminate hazardous pollutants from 
the environment is commonly referred to as bioremediation. The microorganisms 
possess the ability to modify the oxidative state or organic complex of heavy metals 
(Xu et al. 2010). Further, the efficacy of microorganism-mediated remediation is 
primarily influenced by the microbe’s ability to withstand heavy metal exposure, 
which can be induced either autonomously or in response to metal-induced stress 
(Naz et al. 2016). Moreover, the aforementioned approach is considered to be a finan-
cially prudent and ecologically conscientious tactic (Flathman and Lanza 2010;Mosa  
2016). There exist two distinct categories of bioremediation techniques: in-situ biore-
mediation and ex-situ bioremediation, which are differentiated based on the location 
of the remediation process. The term “ex situ” pertains to the intentional relocation 
of polluted substances to an alternative site with the aim of improving biocatalysts, 
as stated (Prasad et al. 2010). Conversely, when the remediation process is executed 
at the actual location of the contamination, it is referred to as in situ (Vidali 2001; 
Saadoun and Al-Ghzawi 2005). The use of in-situ bioremediation techniques presents 
certain benefits, notably the absence of the need for excavation of the soil that has been 
contaminated. The aforementioned approach offers a volumetric modality of reme-
diation that effectively addresses both dissolved and solid forms of contaminants. 
Accelerated in-situ bioremediation has been observed to have a shorter duration for 
treating sub-surface pollution in comparison with pump-and-treat processes. There 
exists a potential for the complete conversion of organic contaminants into benign 
compounds such as carbon dioxide, water, and ethane. The method can be considered 
cost-effective due to the limited amount of disruption to the site. Despite its advan-
tages, this method is subject to certain limitations, which are described below. The 
complete transformation of certain contaminants into benign substances may not be 
achievable in certain locations. In cases where transformation ceases at an interme-
diate compound, it is possible for the intermediate to exhibit greater toxicity and/or 
mobility than the parent compound. Additionally, certain recalcitrant contaminants 
may not be susceptible to biodegradation. Improper application of injection wells 
can lead to blockage caused by an excessive proliferation of microorganisms, which 
is attributed to the introduction of nutrients, electron donors, and electron acceptors. 
The presence of high concentrations of heavy metals and organic compounds has 
been observed to impede the activity of indigenous microorganisms. The process
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of in-situ bioremediation typically necessitates the acclimatisation of microorgan-
isms, which may not occur in situations involving spills and recalcitrant compounds. 
Further, ex-situ bioremediation offers several advantages, including its applicability 
to a broad spectrum of heavy metal pollutants. Its suitability can be readily assessed 
through data obtained from site investigations. Furthermore, biodegradation is more 
pronounced in a bioreactor system than in solid-phase systems due to the greater 
manageability and predictability of the contaminated environment. 

The primary constraint associated with ex-situ bioremediation pertains to its inap-
plicability for heavy metals. Numerous techniques have been developed over the 
years, including biosorption and bioaccumulation. 

13.2.1 Biosorption 

Utilising natural organisms, such as bacteria, plants, or their derivatives, to transform 
pollutants into less hazardous forms is known as bioremediation. Utilising bioreme-
diation to get rid of contaminants is now recognised as a workable strategy that is both 
environmentally responsible and profitable. The basic principles of bioremediation 
are changing redox reactions, modifying pH, using various complexation reactions 
to either increase or decrease solubility, and the process of adsorption or uptake of 
a substance from the environment. Bioremediation is the term used to describe the 
process of using recombinant and naturally occurring microbes to remove dangerous 
contaminants from the environment (Smith et al. 1994). According to Xu et al. 
(2010) research, microbes can alter the oxidative state or organic complex of heavy 
metals. Further, the microbe’s capacity to endure heavy metal exposure, which can 
be induced either autonomously or in response to metal-induced stress, has a signifi-
cant impact on the effectiveness of microorganism-mediated remediation (Naz et al. 
2016). In-situ and ex-situ bioremediation are two distinct categories of bioremedi-
ation techniques that differ according to where the remediation process is taking 
place. According to Prasad et al. (2010), “ex situ” refers to the deliberate removal of 
contaminated materials to a different place with the objective of enhancing biocat-
alysts. In contrast, the remediation procedure is referred to as “in situ” when it is 
carried out at the actual site of the contamination (Vidali 2001; Saadoun and Al-
Ghzawi 2005). Utilising in-situ bioremediation techniques has some advantages, 
chief among which is the avoidance of the need to remove contaminated soil from 
its original location. The method described above provides a volumetric remediation 
mechanism that successfully handles both dissolved and solid types of pollutants. It 
has been found that accelerated in-situ bioremediation can cure sub-surface contam-
ination more quickly than pump-and-treat procedures. Organic pollutants have the 
ability to be completely transformed into harmless substances like carbon dioxide, 
water, and ethane. Due to the little site interruption, the procedure might be regarded 
as cost-effective. This approach has some drawbacks despite its benefits, which are 
detailed below. It might not be possible to completely turn some toxins into benign 
compounds in some environments. When a compound’s transformation stops at an
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intermediate stage, it is feasible for the intermediate to be more poisonous or mobile 
than the parent substance. Additionally, biodegradation might not be possible with 
some stubborn pollutants. Due to the entry of nutrients, electron donors, and electron 
acceptors, improper application of injection wells might result in blockage brought 
on by an excessive growth of microorganisms. High quantities of organic chemicals 
and heavy metals have been proven to inhibit the activity of local microorganisms. 
In instances involving spills and resistant substances, the acclimatisation of microor-
ganisms—which is normally required for the in-situ bioremediation process—may 
not take place. Additionally, because the polluted environment is easier to control and 
anticipate in a bioreactor system than it is in a solid-phase system, biodegradation 
is more pronounced in the latter. Ex-situ bioremediation’s main drawback has to do 
with the fact that it does not work for heavy metals. Over the years, many methods 
have been developed, including biosorption and bioaccumulation. 

13.2.2 Biosurfactants 

Biologically active chemicals, also known as biosurfactants, have been shown to be 
effective in the removal and detoxification of heavy metals (Bachmann et al. 2014; 
Akbari et al. 2018). This has been accomplished by employing biosurfactants. Surfac-
tants are typically amphiphilic chemicals that are used to solubilise, complexate, 
desorb, and mobilise pollutants into liquid solutions (Liu et al. 2017). This makes it 
possible for bacteria to recover and reuse the pollutants (Liu et al. 2017). According 
to research conducted by Mulligan et al. (2014) and Mao et al. (2015), biosurfactants 
find widespread application in a variety of industries, including the pharmaceutical 
industry, the petroleum industry, the cosmetics industry, the detergent industry, the 
paint industry, the food industry, and bioremediation. The biosurfactants are regarded 
as potential candidates for bioremediation because of their ionic nature, low toxicity, 
strong emulsifying activity, multi-functionality, surface activity, and compatibility 
with the environment (Das et al. 2017; Akbari et al. 2018). 

13.2.3 Bioaccumulation 

13.2.3.1 Metallophytes 

Metallophytes are plants that can tolerate high metal concentrations due to a unique 
biological mechanism (Whiting et al. 2004). They are typically endemic to their 
native metalliferous soils and have the biological mechanisms to resist, tolerate, or 
even thrive there (Baker et al. 2010). The most likely developed as a result of the 
natural selection of metals by plants, which may have genetic roots (Whiting et al. 
2002). Populations and organisms within the same population may exhibit some 
quantitative genetic variations in this ability (Pollard et al. 2002). The length of
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exposure to metals governs the degree of specialisation of the metal resistance trait 
(Whiting et al. 2004). The ability of metallophytes to tolerate extremely high metal 
concentrations makes them ideal for use in site restoration following mine closure 
as well as in the rehabilitation and replanting of mines and metal-contaminated sites 
(Anju 2017). According to the concentration of metals found in their tissues, plants 
can be classified as accumulators, excluders, or indicators (Baker 1981). The majority 
of these metallophyte taxa (referred to as “excluders” by Baker 1981) are able to 
tolerate particular metals in the substrate by physiologically limiting metal entry 
into the root and/or their transport to the shoot. However, a small number of species 
have highly specialised biological mechanisms that allow them to accumulate, or 
even hyperaccumulate, metals in their shoots to levels that can exceed 2% of their 
dry weight (Pollard et al. 2014). Hyperaccumulator(s) are naturally able to absorb 
metals at levels that are 50–500 times greater than those of typical plants (Lasat 
2000). A plant that grows naturally and has leaves that contain a metallic element 
at a concentration higher than a certain threshold is known as a hyperaccumulator 
(Anju 2017). Greater potential for metal uptake, quicker root-to-shoot transloca-
tion of metals, and greater effectiveness in metal sequestration and detoxification 
in above-ground plant parts are the primary characteristics that set hyperaccumula-
tors apart from non-accumulators (Rascio and Navari-Izzo 2011). The production 
of phytochelatins, peptides that bind metals and protect metal-sensitive enzymes by 
sequestering them, is thought to be the mechanism underlying plants tolerance to 
metals (Zenk 1996; Cobbett 2000; Hall  2002). In one growing season, the cultiva-
tion of Silene vulgaris and Armeria maritime resulted in a statistically significant 
decrease in Pb (Ciarkowska and Hanus-Fajerska 2008). 

13.3 Phytoremediation 

The term “phytoremediation” refers to both plant-based bioremediation technologies 
as well as the relatively new technology known as “phytotechnologies.“ Phytotech-
nologies have only been in use for a relatively short period of time (Azadpour and 
Matthews 1996; Garbisu et al. 2002; Singh et al. 2003; Paquin et al. 2004; Shah 
and Nongkynrih 2007; Padmavathiamma and Li 2007). It is a developing alternative 
to the restoration of contaminated sites. Plants have the potential to decrease the 
detrimental impacts that heavy metals will have on the environment in the future 
(Ahmadpour et al. 2012). They can do this by preventing pollutants from travelling 
via the air or poisoning groundwater. This is a reference to the practise of using 
healthy vegetation to cleanse polluted groundwater and soil. However, in order to 
choose plants that are suitable for this approach, some characteristics need to be satis-
fied. These requirements include metal tolerance, a high bioaccumulation factor, and 
a short life cycle (Kavamura and Esposito 2009). Even though the idea of employing 
metal-accumulating plants to remove heavy metals and other chemicals was first 
introduced in 1983, the practice has really been going on for the past three hundred 
years (Henry 2000). The phytoremediation is a viable alternative technology that is
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beneficial to the environment and may be used to restore degraded soils that have 
been contaminated with metals (Ali et al. 2013a, b; Sidhu et al. 2017a, b). In certain 
circumstances, mechanical conventional cleanup treatments, which usually involve 
significant capital expenditures, additional labour, and energy-intensive procedures 
(Cunningham et al. 1995), can be supplemented or replaced by phytoremedia-
tion. Phytoremediation can also be used in conjunction with traditional mechan-
ical cleanup treatments. According to Erakhrumen (2007), phytoremediation is also 
referred to as green remediation, botano-remediation, agro-remediation, and vegeta-
tive remediation. All of these terms refer to the same process. According to Pivertz 
(2001), this approach to cleaning up polluted environments is not only friendlier to 
the natural world but also more financially feasible and aesthetically pleasing. The 
plant that is employed in the phytoremediation approach needs to have a sizeable 
capacity for metal absorption, accumulation, and strength in order to cut down on 
the length of time that the treatment takes. The plant species T. rotundifolium has the 
ability to remove 4000 kg/ha from the 8200 mg/kg concentration by the whole part of 
the plant (Cunningham and Ow 1996), while the plant species Euphorbiacheradenia 
has the ability to remove approximately 13,249 kg/ha of Pb from the 13,500 mg/kg 
lead concentration by the shoots of the plant (Chehregani and Malayeri 2007). There 
are several different ways in which plants can clean up or remediate contaminated 
environments. The need to wait for new plant communities to recolonise the land is 
eliminated thanks to phytoremediation, which, in addition to being more sustainable 
for the environment and economically practical, is also more environmentally benign. 
According to the fate of the contaminant, phytoremediation encompasses a variety of 
strategies. These strategies include phytoextraction/phytoaccumulation, phytodegra-
dation, rhizodegradation/phytotransformation, and phytofiltration/phytostabilisation 
(Ali et al. 2013a, 2013b; Mahar et al. 2016). Each of these strategies has a unique 
mechanism of action, and they are utilised for the cleanup of metal ions (Anju 2017). 

13.4 Phytostabilisation 

Phytostabilisation, also known as in-place activation, is the process of using plants 
to localise toxins in order to decrease human exposure to those contaminants. In 
most cases, soil treatments are carried out with the intention of producing contam-
inant species that are insoluble. Phytoimmobilisation is an additional name for this 
process (Shao et al. 2022). According to Padmavathiamma and Li (2007), this mech-
anism does not include the removal of heavy metals; rather, the metals are simply 
stabilised by collecting inside root zones. The mobility of heavy metals in soils can 
be halted by the roots of metal-tolerant plants and the bacteria that are associated 
with those roots. This can be accomplished through sorption by the roots, complex-
ation or metal valence reduction in the rhizosphere, and precipitation (Shao et al. 
2022). Heavy metal-tolerant plants are used to reduce the mobility and bioavail-
ability of heavy metals in the environment. This helps to reduce the risk of further 
environmental degradation (Pulford and Watson 2003; Erakhrumen 2007). Heavy
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metal-tolerant plants do this by immobilising or preventing the migration of heavy 
metals to groundwater or their entry into the food chain. 

13.5 Phytoextraction 

In the field of “green technologies,” the method of phytoextraction, which is a form 
of phytoremediation, has the benefit of not being a harmful approach and is widely 
used (Robinson et al. 2003). Phytoextraction is a type of phytoremediation. The 
mobility and bioavailability of heavy metals in soil, which exist in different fractions 
(1), free metal ions and soluble metal complexes in the soil solution (2), metal 
ions occupying ion exchangeable sites and adsorbed on inorganic soil constitutes 
are readily available to plants, particularly in the rhizosphere. Their speciation, the 
characteristics of the soil, and the capacity of concentrated plant species to absorb 
and uptake metals are just a few of the facts that need to be considered. According to 
Anju (2017), hyperaccumulation is a method that can be utilised in phytoremediation 
for the removal of heavy metals like lead. Hyperaccumulators are specialised plant 
species that have a BCF value that is larger than one (Cluis 2004). These plants are also 
responsible for long-term, continuous phytoextraction and have the physiological 
potential to collect metals during the regular growth cycle (Salt and Baker 2000). 
According to Ernst (1996) and Schmidt (2003), two of the most important elements 
that determine whether or not a phytoextraction system is successful are the capacity 
of plants to accumulate metals in their tissues and the level of metal concentration in 
the soil solution. The BCF or A factor and the TF factor are the factors that determine 
how effective phytoextraction is. According to Zhuang et al. (2007) and Zayed et al. 
(1998), the bioconcentration factor, or BCF, is determined by calculating the ratio of 
the initial concentration of metals in the external environment to the concentration of 
metals in plant tissues at the time of harvest. (B.C.F. = C harvested tissue/CC soil; C 
harvested tissue = target metal concentration in the harvested plant tissue; C soil = 
target metal concentration in the soil) “B.C.F.” According to research by Radulescu 
et al. (2013), a plant may be an accumulator if its BCF is greater than 1, free from 
effect if its BCF is equal to 1, or an excluder if its BCF is less than 1. The ability of 
a plant to transport metal from its roots to its shoots is measured by a factor called 
T.F., which stands for the translocation factor. According to Padmavatiamma and Li 
(2007), the formula for calculating it is as follows: T.F. = C shoot/CC root, where C 
shoot represents the target metal concentration in plant shoots, and C root represents 
the target metal concentration in plant roots. When these figures are multiplied by 100, 
one obtains the percentage of BCF and T.F. that is present. Wilson and Pyatt (2007), 
as well as Zacchini et al. (2009), found that, according to Ahmadpour et al. (2010), the 
species of plant known as J. curcas has the potential to be used for phytoextraction of 
lead from polluted locations (Ginochhio et al. 2004). Pollutant-accumulating plants 
take in significant quantities of trace elements from the substrates through their roots. 
These elements are then translocated to and accumulated in the plant’s aerial or above-
ground harvestable biomass, such as its shoots, leaves, and other parts of the plant. For
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phytoextraction to be successful, plants need to be able to hyperaccumulate Pb, but 
they also need to be fast-growing, biomass-producing, herbivore-resistant, tolerant 
of nutrient-poor soil, and easy to harvest (Karenlampi et al. 2000; Garbisu et al. 
2002; Punshon et al. 1996). Pb tends to concentrate in the roots more than the aerial 
portions of the plants due to specific obstacles that restrict the flow of metals from 
the roots to the aerial parts of the plants (Ahmadpour et al. 2012). However, species 
like Thlapsi caeruslescens, which are known as hyperaccumulators, produce less 
above-ground biomass but accumulate Pb to a greater extent (Dickinson et al. 2009; 
Rozas et al. 2006). Most methods of metal phytoextraction have two key drawbacks: 
the bioavailability of the target metals (Pb) and the tendency of diverse plants to 
store heavy metals within their above-ground biomass (Raskin and Ensley 2000). 
Metal phytoextraction (and plant growth) may be aided by soil microorganisms that 
coexist with plant roots (Shilev et al. 2001). Though no plant is currently known 
that fully fits the criteria of an ideal plant for phytoextraction (Anju 2017), a rapidly 
growing non-accumulator plant could be genetically changed and/or designed to 
accomplish the innovative qualities of an ideal plant for phytoextraction. Numerous 
supplementary methods, including genetically altered plants for phytoremediation, 
microbe-assisted phytoremediation, and induced phytoextraction, have been studied 
around the world to boost this method’s efficacy (Anju 2017). 

13.5.1 Induced Phytoextraction 

This technique is also referred to as assisted or enhanced phytoextraction in some 
circles. According to Prasad and Freitas (2003), chelating compounds can be used to 
mobilise heavy metals in situations where the availability of the metals in the substrate 
is insufficient for the active root to absorb and transport the metals. According 
to Grčman et al. (2001), ethylene diamine tetraacetic acid (also known as EDTA) 
was mixed with the plant species in order to increase the amount of lead that was 
extracted. In addition, EDTA is the most widely used chelating agent since it is effec-
tive, readily available, and relatively inexpensive (Lestan et al. 2008). According to 
Anju (2017), the ability of chelators to mobilise metals is contingent on a number 
of factors, including the metal-to-ligand ratio, the formation constants of metal-
ligand complexes, the species of metals and their distribution among the soil frac-
tions, the pH of the soil, and the presence of competing cations. Other chelating 
compounds that may be utilised include trans-1,2-cyclohexylenedinitrilotetraacetic 
acid (CDTA), diethylenetriaminepentaacetic acid (DTPA), methylglycine diacetate 
(MGDA), nitrilotriacetic acid (NTA), and so on (Anju 2017). The use of microbial 
metabolites has various advantages over the use of chelating chemicals, including the 
fact that they are biodegradable, less toxic, and have several other benefits (Rajkumar 
et al. 2012;Ma et al.  2011). Microbial metabolites can be created in situ in rhizosphere 
soils. Microbe-assisted phytoremediation is a technique that involves the employ-
ment of microorganisms in conjunction with plants for the purpose of phytoextrac-
tion (Anju 2017). According to Anju (2017), both microorganisms and plants have
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developed a wide variety of resistance mechanisms, both active and accidental, to 
protect themselves from being poisoned by heavy metals. According to Glick (2012), 
bacteria that stimulate plant development could be free-living, involved in symbiotic 
partnerships, or endophytic. According to Anju (2017), rhizospheric microbial activ-
ities have the potential to improve the efficacy of phytoremediation in either a direct 
or indirect manner. There are two ways in which rhizospheric microbial activities 
might boost phytoremediation, the first of which is directly and the second of which 
is indirectly. According to Glick (2010), direct mechanisms are directly responsible 
for the bioavailability of heavy metals, the final accumulation of heavy metals by 
plants, and the solubilisation of heavy metals. In contrast, the microbes confer plant 
tolerance to metal stress through an indirect method and/or boost plant development, 
increase plant biomass, and prevent phytopathogens from suppressing plant growth, 
all of which contribute to phytoremediation (Anju 2017). A wide variety of species, 
such as fungi, yeast, bacteria, and plants, secrete siderophores as a response to low 
iron levels and to assist in the assimilation of Fe (Anju 2017). Siderophores are low-
molecular-mass (400–1000 Daltons) coordination molecules. Siderophores have the 
ability to form stable complexes with heavy metals such as lead and trivalent iron 
(Neubauer et al. 2000; Gadd 2010; Glick and Bashan 1997; Schalk et al. 2011); these 
complexes can then be taken up by cells. Rhizospheric PGPB is responsible for the 
majority of the production of siderophore. Under conditions of environmental stress, 
such as a lack of nutrients or high levels of heavy metals, rhizospheric PGPB show 
their best growth and siderophore production activities. According to Rajkumar et al. 
(2010), this fact confers on them an especially high degree of utility for phytoremedi-
ation purposes. Studies that have been conducted recently (Dimkpa et al. 2008; Braud 
et al. 2009; Dimkpa et al. 2009a, b; Carrillo-Castaeda et al. 2003) have focused on 
the effects of SPB inoculation on metal uptake by hyperaccumulators. According to 
Braud et al.’s 2009 research, the bacteria Pseudomonas aeruginosa, which produces 
rhizospheric siderophore, raised the concentration of bioavailable lead in the rhizo-
sphere, making it easier for maize to take up the element. Siderophores are respon-
sible for a significant portion of both the mobilisation and accumulation of metals. 
Because of this, it is believed that the presence of bacteria in the rhizosphere that 
create siderophores is necessary for heavy metal phytoextraction (Ma et al. 2011; 
Rajkumar et al. 2010; Dimkpa et al. 2009a, b; Braud et al. 2009). 

13.6 Phytofiltration 

The process of using plants to filter pollutants out of polluted water or aqueous waste 
streams is known as phytofiltration (Dushenkov et al. 1995; Salt et al.  1998). The 
various plant parts, such as roots, seeds, and plant shoots, can be used as filters that 
absorb, precipitate, and concentrate toxic heavy metals in order to filter polluted 
water containing heavy metal Pb (Anju 2017). The use of roots as a phytofilter is 
known as rhizofiltration; seedlings are known as blastofiltration; and excised plant 
shoots are termed caulofiltration (Rozas et al. 2006; Mesjasz-Przyby et al. 2004).
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In the case of Pb, the rhizofitration technique is used because Pb is accumulated 
in roots. Garlic with Brassica oleracea has a removal efficiency of 0.02% at higher 
concentrations (Kumar et al. 2020). 

13.7 Phytodegradation 

According to Ahmadpour (2012), another name for this process is phytotransforma-
tion. Phytodegradation is the process of using plants and microorganisms to adsorb, 
metabolise, and breakdown an organic pollutant (Burken and Schnoor 1997). Using 
plant roots in conjunction with other microbes, this technique can remove lead from 
soil that has been contaminated with lead (Garbisu and Alkotra 2001). 

13.8 Physical Remediation 

According to Yao et al. (2012), physical remediation is the act of halting or reversing 
the harm done to soil by the use of physical technologies such as thermal treatment, 
replacement, isolation, and soil. Soil replacement: Soil replacement is a process 
that involves using a large amount of uncontaminated soil to mix with or cover 
the surface of contaminated soil. Some examples of soil replacement techniques 
include surface capping, land filling, and encapsulation. This method requires a large 
quantity of uncontaminated material. The removal of dirt is an option that should 
be reserved for places that have extremely contaminated soil and restricted space 
due to its high cost and the amount of labour it requires. Additionally, it is able 
to efficiently lower the concentration of pollutants. The installation of barrier walls 
will help to separate the pollutant from the surrounding area, contain it, and prevent 
it from leaving the site. Impermeable physical barriers comprised of steel, cement, 
bentonite, and grout are utilised for the purposes of capping, vertical confinement, and 
horizontal containment, respectively. This strategy of soil isolation or containment 
was adopted to decrease the migration of heavy metals into the earth (Jainkaite and 
Vasarevicius 2005). Although this method is not a direct remedial process, it was 
used to accomplish this goal. 

13.9 Chemical Remediation 

Chemical reagents, reactions, and principles are used to remove contaminants 
in a method known as chemical remediation (Song et al. 2017). Solidification/ 
stabilisation, vitrification, soil flushing, soil washing, and electrokinetics (EK; 
Jankaite and Vasarevicius 2005) are the principal remediation technologies. In order 
to lessen the mobility of Pb contaminants, solidification or stabilisation technology
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is typically applied by mixing contaminated soils with reagents or materials. While 
stabilisation involves chemical reactions to lessen contaminant mobility, solidifica-
tion involves the physical encapsulation of contaminants in a solid matrix made of 
cement, bitumen, asphalt, and thermoplastic binders. By forming metal phosphates, 
bone meal additions (finely ground, poorly crystalline apatite, Ca10(PO4)OH2)) have 
the potential to immobilise polluting metals in soils and decrease metal bioavail-
ability (Hodson et al. 2000). A variety of cost-effective and environmentally friendly 
waste resources have been reported, only to immobilise metals in contaminated soils 
but also to improve soil quality, such as lime-based agents (Lim et al. 2013), calcined 
oyster shells (Yong et al. 2010), eggshells (Soares et al. 2015), waste mussel shells 
(Otero et al. 2015), and calcined cockle shell (Islam et al. 2017). By combining 
the contaminated soil with glass-forming precursors, heating the mixtures until they 
liquidise, and then cooling the liquid to produce an amorphous homogeneous glass, 
it is possible to solidify or stabilise materials using the vitrification, or molten glass, 
method that requires thermal energy (1400–2000 °C) (Yao et al. 2012). Chemical 
bonding and encapsulation are the two main ways that lead can be immobilised in the 
glass matrix (Navarro 2012). The main element in the immobilisation of heavy metals 
in contaminated soils is the heating temperature of the vitrification process. The vitri-
fication process’s effective additives may enhance the encapsulation of contaminants 
and their potential for leaching (Guo et al. 2006). According to the US EPA (2006), 
washing and flushing the soil with water or a suitable washing solution are effi-
cient remediation techniques for removing contaminants from the soil. To achieve 
optimal heavy metal removal, washing agents such as water (Dermont et al. 2008), 
saponin (Maity et al. 2013), chelating agents (Jiang et al. 2011), surfactants (Sun 
et al. 2011), and low-molecular-weight organic acids (Almaroai et al. 2012) have  
been reported to be effective on stimulating the desorption of contaminants in soils. 
According to Lestan et al. (2008), ethylene diamine tetraacetic acid (EDTA) is the 
most effective chelating agent for removing heavy metals from contaminated soils. 
Low biodegradability, high metal removal efficiency, availability of appropriate recy-
cling techniques, and reduced effects on soil microorganisms and enzyme activity 
are some of the benefits of EDTA (Qiao et al. 2017). 

A recently created technique called EK remediation can successfully clean up 
heavy metal-polluted soils. This technique uses a direct electric current to remove 
heavy metals from the soil’s matrix through a variety of mechanisms, including elec-
tromigration, electroosmosis, electrophoresis, and electrolysis (Jankaite and Vasare-
vicius 2005). Chelates are also used to increase the EK’s effectiveness in contami-
nated soils. Song et al. (2017) examined the effect of various chelating agents (EDTA, 
ethylenediaminedisuccinic acid, nitrilotriacetic acid, and citric acid) in boosting EK 
efficiency in order to examine the mobility of heavy metals (As, Cd, Cr, Cu, Ni, 
Pb, and Zn). To overcome the drawback of flushing technology in fine soil, some 
researchers have combined flushing and EK in two ways: in series and integration. 
According to Kim et al. (2008), the addition of a pump to EK flushing remediation 
increased the effectiveness of removing Co2+ and Cs+ from the contaminated soil. A 
two-stage EK washing technique was studied by Ng et al. (2014) for the remediation 
of Pb-contaminated soil. Kim et al. (2015) decontaminated uranium-contaminated
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soil using a full-sized serial washing-EK separation apparatus. Flushing that has been 
improved by electrochemistry is known as electrochemical flushing. 

13.10 Genetically Engineered Plants for Enhancement 
Phytoremediation 

In recent years, scientists have focused increasing attention on plants’natural ability 
to filter out harmful chemicals in the air. The ability of plants to tolerate, remove, and 
breakdown contaminants has been successfully enhanced by the use of genes from 
microorganisms, plants, and animals. Transgenic plants were able to overcome the 
phytotoxic effect of nitroaromatic pollutants by expressing certain bacterial genes, 
leading to increased elimination of these compounds. Increased metabolism and 
the elimination of various organic pollutants and herbicides are the results of the 
overexpression of the mammalian gene encoding cytochrome P450. Efforts have been 
made to improve phytoremediation of metal pollution by employing genes involved 
in absorption and detoxification. Plants engineered with DNA from bacteria were able 
to detoxify mercury and selenium. Endophytes, bacteria that live inside plants, have 
been used to promote pollution clearance and boost the plant’s tolerance to ordinarily 
phytotoxic substances. When plants were inoculated with the herbicide-degrading 
bacteria, they developed resistance to the herbicide. Toluene-degrading bacteria were 
found to help plants endure normal phytotoxic doses of the chemical while also 
producing fewer emissions, according to another study. Research on transgenic plants 
and the application of symbiotic endophytic microbes in plant tissues have both 
shown promise as methods for improving phytoremediation, and both developments 
are discussed here. 

13.11 Conclusion 

The removal of heavy metals is a worldwide priority. Phytoremediation, and in partic-
ular phytoextraction, is gaining popularity as a viable green strategy for dealing with 
heavy metal contamination due to its many advantageous qualities. The use of plant 
growth promotion (PGP) bacteria, phytoremediation by acylates, and phytoremedi-
ation by microorganisms have been the main topics of research on how to clean up 
polluted plants and get their useful parts out. Bacteria tend to improve the solubility 
and bioavailability of heavy metals directly via microbial biosurfactants, organic 
acids, siderophores, redox processes, and biomethylation, which maximises the effect 
and potential of this technique. In addition, PGPB produces growth-promoting chem-
icals, which aid in phytoremediation in a roundabout way. Improved plant tolerance
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and metal accumulation can also be achieved by the application of genetic engi-
neering, which allows for the controlled expression of genes from specific microor-
ganisms, plants, and animals. Recognise and understand the molecular developments 
and triumphs that boost the efficiency of phytoremediation. Today, phytoextrac-
tion mining and phytoremediation for heavy metals are both technically feasible 
and commercially available. The search for genetic components responsible for the 
hyperaccumulation of specific heavy metals prevalent in our environment, including 
those in the air, water, and soil, is continuous and developing. It is time to shift from 
a concentration on knowledge to one on action. 
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Chapter 14 
Oxidative Stress in Lead Toxicity 
in Plants and Its Amelioration 

Neetu Jagota, Swapnil Singh, Harleen Kaur, Ravneet Kaur, 
and Ashish Sharma 

Abstract Heavy metals, also known as trace elements, are hazardous even at low 
concentrations and are becoming a growing issue in many countries, including India. 
Human activities ranging from agriculture to mining to power generation in power 
plants are the major sources of heavy metals in environment. Lead (Pb) is the second 
most harmful environmental toxin after arsenic, and its deposition in the environment 
is steadily increasing due to anthropogenic activity. Pb significantly harms plants, 
affecting their morphophysiological and biochemical traits, such as irregular cell 
division during mitosis, subordinate growth of seedlings, and chlorosis. The latter 
changes the biochemistry of fruits and flowers, which negatively affects the rate 
of photosynthetic activity. Pb also damages nutrient interactions, photosynthesis, 
respiration, oxidative damage, and antioxidant defence mechanisms in various plant 
species. Soil remediation methods, such as biochar supplements and phytoremedia-
tion technology, can help address Pb-contaminated soils. Hyperaccumulating plants 
have developed molecular processes that enable their use in environmental bioreme-
diation. However, efficacy of these methods still needs to be evaluated by rigorous 
research activities, and new ecologically acceptable remediation techniques need to 
be developed to reduce lead toxicity. 

Keywords Toxicity · Heavy metals · Environment · Plants · Anthropogenic 
activities · ROS · Lead 

14.1 Introduction 

For living, a healthy form of life on the planet, air, water, soil, and the whole envi-
ronment is an essential component since pollutants can hazard the health of citizens. 
Simply due to the sheer number of heavy metals released into the environment as 
a result of anthropogenic activities, it has led to the environmental contamination
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by either directly or indirectly interacting with these hazardous chemicals (Sajid 
et al. 2018). Heavy metals are particularly dangerous environmental toxins for the 
ecosystem due to their chronic toxicity, non-biodegradability, and environmental 
bioaccumulation (Valdés et al. 2014). The health of people is significantly threat-
ened by the biomagnification and transfer of heavy metals through food chains (Liu 
et al. 2018). Heavy metals contaminate the soil at low concentrations; they are the 
most hazardous elements that is affecting the environment of plants, animals, and 
humans because they are not biodegradable elements (Wang et al. 2020). In some 
circumstances, high concentrations of heavy metals affect the ecosystem and are 
directly linked to environmental contamination. 

14.1.1 Heavy Metals 

HMs are natural metals and metalloid elements with a high atomic weight that are 
abundantly available on earth. It is the high relative density and toxicity of heavy 
metals that makes them significant pollutants (Wang et al. 2020). With atomic densi-
ties of 4 g/cm3 or higher, or five times or more than H2O, even modest concentrations 
of heavy metals are toxic (Ferrey et al. 2018). Heavy metal toxicity has increased 
in recent years for nutritional, ecological, and environmental reasons because of its 
chronic toxicity and non-biodegradability (Valdés et al. 2014). Heavy metals are also 
observed as trace elements since they exist in a variety of environmental matrices 
in trace concentrations (ppb range to less than 10 ppm) (Kabata-Pendia 2001). The 
general collective term of heavy metals mentions any metallic compound that has a 
toxic nature even in the low concentrations with greater atomic density (Lenntech 
2004). In contrast to their density, the heavy metals’ chemical characteristics have 
the most of an impact. Lead (Pb), cadmium (Cd), nickel (Ni), cobalt (Co), iron (Fe), 
zinc (Zn), chromium (Cr), arsenic (As), silver (Ag), and the elements of the platinum 
group are examples of heavy metals. Most heavy metals are dispersed throughout 
rock formations. One of the major issues is that industrialization and urbanization 
have enlarged the number of heavy metals that people create and release into the 
environment. Heavy anthropogenic activities, including industrial production and 
use, domestic and agricultural use of metals and metal-containing compounds, phar-
maceuticals, mining, foundries and smelters, and other metal-based industrial oper-
ations, are some of the sources of heavy metal pollution on the planet (Srivastava 
et al. 2018). Heavy metals are more readily available in soil and aquatic habitats 
than in the atmosphere as particles, where they are scarcer. The toxicity of heavy 
metals in plants varies with plant species, the particular metal, concentration, chem-
ical form, soil composition, and pH because many heavy metals are regarded to be 
essential for plant growth. Some of the heavy metals, like Cu and Zn, either possess 
a catalytic property, like the prosthetic group in metalloproteins, or act as cofactors 
and activators of enzyme processes, like in the case of the complex between the 
enzymes and the substrate metal (Lin and Mark 2012). These crucial trace metal 
elements participate in electron transfer, redox reactions, and structural processes
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in the metabolism of nucleic acids. Metal-sensitive enzymes can become very toxic 
when exposed to certain heavy metals, such as Cd, Hg, and As, which can lead to 
the death of organisms. Highly toxic elements like Hg, Ag, Pb, and Ni are catego-
rized as class B metals under the category of non-essential trace elements under a 
distinct categorization of metals based on their coordination chemistry (Nieboer and 
Richardson 1980). Because some of these heavy metals are bio-accumulative, they 
cannot be easily metabolized and do not degrade in the environment. These metals 
are ingested at the consumer level after being absorbed at the primary producer level, 
where they accumulate in the ecological food chain. Due to the sedentary nature of 
plants, the roots are the primary site of interaction for heavy metal ions. In aquatic 
environments, the entire plant body is exposed to these ions. Heavy metals are also 
straight absorbed into the leaves as a result of particles that are deposited on the foliar 
surfaces. 

The physiology and biochemistry of both plants and animals are impacted by 
the important heavy metals. They play important roles in a variety of oxidation– 
reduction reactions and are necessary building blocks for a number of vital enzymes 
(WHO/FAO/IAEA 1996). Despite the fact that evidence suggests that heavy metals 
had an impact on plants’ biological systems at higher concentrations, these effects 
had an effect on cell membranes, mitochondria, lysosomes, endoplasmic reticulum, 
nuclei, and several enzymes involved in metabolism, detoxification, and damage 
repair (Wang and Shi 2001). Non-essential metals are those that exhibit high levels of 
bioaccumulation and have no known biological functions. These substances include 
gold (Au), indium (In), lead (Pb), lithium (Li), mercury (Hg), nickel (Ni), antimony 
(Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), gallium 
(Ge), and germanium (Ge) (Chang et al. 1996). The heavy metals with the biggest 
effects on the environment and the survival of the majority of species are mercury 
(Hg), arsenic (As), nickel (Ni), cobalt (Co), copper (Cu), cadmium (Cd), chromium 
(Cr), zinc (Zn), mercury (Hg), silver (Ag), iron (Fe), and platinum (Pt) (Rahman and 
Singh 2019). There are three classes of metals and metalloid ions. The first category 
contains metals that can be harmful even in small levels, such as lead, cadmium, and 
mercury. Whilst zinc, cobalt, copper, iron, and selenium are amongst the necessary 
metals that are only poisonous over a specific quantity in the body and are employed 
in several chemical or biochemical processes, bismuth, indium, arsenic, thallium, 
and antimony are amongst the less dangerous metals (Odobasic et al. 2019). 

14.1.1.1 Essential Heavy Metals 

According to Reeves and Baker (2000), both plants and animals harbour a require-
ment for a variety of heavy metals, in which significant micronutrients, including Fe, 
Zn, Mn, Cu, Co, Ni and Mo as well as other heavy metals whose uptake exceeds the 
needs of the plant and has detrimental effects, are frequently found in rhizosphere and 
are also taken up by the plants (Monni et al. 2000). Many of these heavy metals like 
Zn and Fe are physiologically important in both plants and animals. Essential heavy
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metals provide the following two main purposes: involvement in redox reactions and 
direct involvement as a component of many enzymes, respectively. 

14.1.1.2 Source of Heavy Metals 

Inorganic elements form the part of basic requirement for all groups of organ-
isms including animals, plants, and humans, which can be divided into major and 
minor elements based on their concentration taken up and required by the organism. 
However, minor elements (also called trace elements) comprises both essential and 
optional substances (Blaser et al. 2000). In the recent times, one of the major 
causes of heavy metal toxicity are the anthropogenic activities. Some examples of 
HMs’ natural origins include wind-borne soil debris, forest fires, volcano eruptions, 
biogenic processes, and marine salt (Muhammad et al. 2011). Along with these, 
agricultural activities are the major anthropogenic contributor to the concentration 
of heavy metals in environment. Field procedures, such as use of sewage and indus-
trial wastewater for irrigation and application of fertilizers and pesticides, are the 
major contributor of heavy metals in environment (Srivastava et al. 2018). Fertilizers 
with trace amounts of heavy metals are significant contributors to these pollutants 
in our diet. Poor management of industrial waste, traffic pollution, lead (Pb) use as 
fuel antiknock, aerosol cans, metallurgy and smelting, sewage discharge, and the 
use of construction materials are examples of anthropogenic practices that contam-
inate HMs (Srivastava et al. 2017). Mercury (Hg) is released into the atmosphere 
by a number of sectors, including the production of pharmaceuticals, the preserva-
tion of paper and pulp, agriculture, and the production of chlorine and caustic soda 
(Ibrahim et al. 2019). Cadmium is present in soils, rocks, coal, and mineral fertil-
izers to varying degrees. Many products, including batteries, pigments, textiles, and 
metal coatings, use cadmium (Cd) in electroplating (Saini and Dhania 2020). The 
increased environmental pollution of HMs is caused by all of these actions. The pres-
ence of heavy metals in the environment is caused by a number of different sources, 
including atmospheric sources, agricultural sources, industrial sources, residential 
effluent, and other sources. Both man-made and natural processes can lead to heavy 
metal pollution. Agriculture and various enterprises like mining and smelting have 
contaminated large parts of the earth (Fig. 14.1).

14.1.1.3 Heavy Metals Toxicity 

Due to the massive arrangement of cells that heavy metal poisoning can affect, 
negative effects naturally appear in the cells that are first exposed to the metal or 
those that absorb it fastest. Heavy metals disrupt ionic equilibrium and enzyme 
function in physiological processes requiring specific organs such as nutrition intake 
by the roots. Then, these impacts can be observed in a wider range of processes that 
include germination and growth of the plants, photosynthesis, primary metabolism, 
and reproduction that are all vital processes in plants. Toxicity of heavy metals in
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Sources of 
heavy metals 

in the 
environment 

Natural Sources 
• Volcanic eruption. 

• Forest fire. 
• Wind blown dust 

particales. 
• Gas exchange in sea. Agricultural Sources 

• Agricultural waste 
water,pesticide , 

fertilizers, fungicide 
and herbicide 
application. 

• Sewage , sludge and 
Fly ash. 

Industrial Sources 
• Chemical wastes  

• Mining , Metal smelting 
and refining. 

• Coal and fossil fuel 
plants and its refining. 

Home effluents 
• Use of batteries, 

inorganic and organic 
wastes 

• Biomass burning.  
• E-wastes  

Atmospheric Sources 
• Mercury, lead and 

Cdmium are of greatest 
concern in the 
atmosphere. 

• Other metals also 
pollute to the 

environment like 
lead,nickel ,copper etc. 

Other Sources 
• Biomedical wastes.  
• Landfills and fossil 

fuel burning . 

Fig. 14.1 Sources of heavy metals

plants is usually manifested by chlorosis and rolling of leaves followed by necrosis; 
low biomass production leading to stunted growth followed by senescence and death. 

For HMs harmfulness, there are four main mechanisms that explain why plants 
become hazardous to heavy metals: 

(a) Creating oxidative stress and altering the permeability and integrity of cell 
membranes: Numerous heavy metals, either directly or as a result of their 
toxicity to cells, result in the generation of ROS which harms the plant cells, 
including H2O2,O2, and OH, e.g. via increasing lipid peroxidation and inhibiting 
the action of water channel and transporter proteins. The latter limits membrane-
dependent processes, such as electron flow in mitochondria and chloroplasts, 
by altering the structure, fluidity, and stability of the membrane. To counteract 
ROS, antioxidant enzymes like SOD, APX, GPX, CAT, and GSR are triggered. 

(b) Sulfhydryl group reaction (–SH): Due to their high affinity for –SH groups, 
heavy metals bind to structural proteins and enzymes that contain them
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(Schützendübel and Polle 2002). This may disrupt enzyme-mediated redox 
control, catalytic activity, and proper folding (Hall 2002). 

(c) Similarity to biochemical functional groups: For instance, As (V) in arsenate 
competes with phosphate, a micronutrient, in numerous cellular processes. 
Phosphate is replaced by arsenate in ATP, which causes the unstable complex 
ADP–As to form and obstruct cell energy flow (Meharg and Hartley-Whitaker 
2002). 

(d) Enzyme activity can be compromised when heavy metal ions displace other 
metal ions from their active sites, leading to the loss of essential cationic cofac-
tors. For example, cadmium (Cd) has been shown to replace cofactors such as 
copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in superoxide dismu-
tase, a critical enzyme involved in antioxidant defence. Similarly, the removal 
of ionic cofactors from signalling proteins, such as calmodulin and transcription 
factors, can result in the formation of aberrant proteins that may interfere with 
gene expression and disrupt homeostatic systems for essential metal ions. This 
can lead to the release of free ions, such as Cu and Fe, which can cause oxidative 
damage through Fe/Cu-catalyzed Fenton reactions (Roth et al. 2006; DalCorso 
et al. 2008). 

14.1.2 Lead (Pb) 

Pb is a typical HM found in earth crust, which belongs to the periodic table’s class 
IVA, has a high atomic weight, and has a stable oxidation state (Pb2+) that produces a 
divalent ion. Pb is a naturally occurring heavy metal with an atomic weight of 207.2 
(Arias et al. 2010). When a metallic piece of lead is exposed to air or water, minute 
layers of lead compounds develop, such as oxides and carbonates, shielding it from 
further attacks: This metal is resistant to corrosion. Because of its ease in shaping 
and moulding as well as its corrosion resistance, it has been extensively utilized for 
centuries. Lead comes in three varieties: metallic, inorganic, and organic. Instead of 
its elemental form, lead is present in the form of ores in its oxidized state Pb2+ in the 
environment. But due to its persistent nature, lead finds its way into air, water, soil, 
and dust (Patrick 2006). In addition, trace amounts of lead can be found in coal, oil, 
and wood. However, the majority of lead released into the environment comes from 
anthropogenic sources, as opposed to natural sources such as volcanoes, wind-blown 
dust, and erosion. Lead exists in the atmosphere in the form of particles and can be 
removed through precipitation or gravity settling. The solubility of lead compounds 
in water is affected by various factors, including pH, hardness, salinity, and the 
presence of humic substances. Water that is soft and acidic has a higher solubility 
of lead. The soil and sediment serve as lead sinks, and due to its high adsorption 
capacity, it tends to accumulate in the upper soil layers and does not penetrate deeply 
into the subsoil or groundwater (Rabinowitz 2017). 

Lead (Pb) is a harmful element that is widely distributed in soil, and it is one 
of the most common heavy metals produced by human activities such as mining,
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smelting, fuel and explosive use, and the discharge of municipal sewage sludge 
that has been enriched in Pb. Pb and Cd are considered to be amongst the most 
hazardous substances to human health as they are readily taken up by plants and 
can easily enter the food chain. Symptoms of lead poisoning in plants are similar to 
those caused by other heavy metal toxicities, including chlorosis, growth inhibition, 
and in severe cases, death. Pb uptake by roots leads to slower growth and altered 
branching patterns. Lead toxicity negatively affects plant morphology, growth, and 
photosynthetic processes, resulting in stunted growth, reduced biomass of roots and 
shoots, disrupted mineral uptake, inhibited cell division, and impaired photosynthesis 
(Sharma and Dubey 2005; Maestri et al. 2010). 

14.1.2.1 Source of Lead 

Lead can be introduced into the environment by a variety of mechanisms that include 
mining and smelting activities for lead ore, manufacturing of lead containing prod-
ucts, burning of coal and oil, and incineration of waste (Zheng et al. 2011). Use of 
many products that contained lead has been banned so as to prevent environmental 
pollution by lead, and some of these products were leaded petrol, lead-based paints, 
and lead-based herbicides. These previous applications create a legacy of increased 
lead concentrations in the environment because lead does not decay. Figure 14.2 
shows a list of a variety of anthropogenic and natural processes that contributed to 
the environmental pollution of Pb.

14.1.2.2 Lead’s Effects on Plants 

Physiological and Biochemical Processes 

According to Munzuroglu and Geckil (2002), Pb is known to negatively impact a 
number of aspects of plants (Fig. 14.3), including the rate at which seeds germinate, 
the growth of seedlings, the mass of dry roots and shoots, photosynthesis, respira-
tion, the relationship between plants and water, mineral nutrition, and a number of 
enzymatic activities (Table 14.1). At larger dosages and over a longer period of time, 
Pb effects are inherently more distinct. However, even a modest amount of metal can 
trigger a number of biological reactions (Gomes 2011).

The damaging effects of lead on plants can be manifested in the form of various 
symptoms that include chlorosis and necrosis on the leaf surface and senescence of 
the leaf followed by restricted growth. At increasing concentrations, seeds become 
significantly more sensitive to germination. During the plantlet stage, when roots are 
more vulnerable to this action, root and shoot growth is also suppressed. Lead can 
also impact the plant by inhibiting the ability of the roots to take up nutrients and also 
be blocking the movement of nutrients such as Fe, Zn, Ca, and P inside plants (Xiong 
1997). Hence, there exists sufficient evidence to confirm that lead can significantly 
impact physiological and metabolic activities in plants (Gomes 2011).
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Urban soil waste, 

Fertilizer and 
Pesticides. 

Fig. 14.2 Causes of lead pollution in the environment. Both natural and anthropogenic activities 
have contributed to the environmental lead pollution

Plant Growth Germination 

Chlorosis, a quick slowing of root growth, stunted plant growth, and a darkening of 
the root structure are all apparent signs of lead toxicity. Too much lead can eventually 
result in toxic chemicals that stop seeds from germinating, slowing down seedling 
growth, and lowering the length, tolerance index, and dry mass of roots and shoots. 
Even at micromolar concentrations, lead exposure can harm plant germination and 
growth (Kopittke et al. 2007). Even uncertain amounts of Pb2+ substantially delays 
germination (Islam et al. 2007). Moreover, lead exposure in plants severely restricts 
seedling growth and sprouting (Gichner et al. 2008). 

High levels of lead in plant roots can lead to increased inhibition, as noted by Liu 
et al. (2008). Other signs of lead toxicity include short, twisted, and stubby roots, as 
well as increased number of secondary roots per unit length, as reported by Kopittke 
et al. (2007). Furthermore, exposure to lead can reduce plant biomass, leading to 
significant growth retardation, fewer and smaller leaves, and dark purplish abaxial 
surfaces, as observed by Gupta et al. (2009). 

According to Gopal and Rizvi (2008) and Islam et al. (2008), the detrimental 
effects of lead on plant growth may be attributed to altered nutrient metabolism and 
interrupted photosynthesis. Gupta et al. (2009, 2010) also found that the degree of 
lead toxicity on plant growth is often dependent on the dose and time of exposure.
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Fig. 14.3 Lead toxicity effects on the plant

Nonetheless, low levels of lead exposure may still have an impact, and growth inhi-
bition does not necessarily equate to a reduction in biomass (Yan et al. 2010). More-
over, different plant species may have varying responses to lead toxicity; for example, 
hyperaccumulators are naturally more tolerant of lead poisoning than sensitive plants 
(Arshad et al. 2008). It was also shown that in lead-spiked soil, the performance of 
sorghum was severely affected in terms of germination index, plumule and radical 
length, vigour index, and tolerance index (Osman and Fadlallah 2023). 

Photosynthesis 

Lead toxicity has a negative impact on the rate of photosynthesis due to decreased crop 
productivity (Singh et al. 2010). Plants exposed to lead ions show decrease in photo-
synthetic rate as a result of reduced chloroplast ultrastructure, constrained chloro-
phyll, plastoquinone, and carotene synthesis, hindered electron transport, impeded 
Calvin cycle enzyme activity, and a CO2 deficit as a result of stomatal closure (Qufei 
and Fashui 2009). Thylakoid membrane lipid content is also altered by lead treatment
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Table 14.1 Growth stages in different plant species that are most affected by lead excess 

Plant name Pb concentration Lead effect References 

Spartina alterniflora 10 ppm Inhibit seed 
germination 

Morzck and 
Funicclli (1982) 

Pinus halepensis 1500 ppm Inhibit seed 
germination 

Nakos (1979) 

Oryza sativa 10−1 M Inhibit protease and 
amylase 

Mukherji and 
Maitra (1976) 

Glycine max 300 μM Early seedling growth 
inhibition 

Huang et al. (1974) 

Zea mays 250 μg Pb/g of soil Early seedling growth 
inhibition 

Miller et al. (1975) 

Hordeum vulgare 100–1000 μm Early seedling growth 
inhibition 

Stiborova et al. 
(1987) 

Solanum lycopersicum, 
Solanum melongena 

600 ppm Early seedling growth 
inhibition 

Khan and Khan 
(1983) 

Fabaceae 2.0 ppm Early seedling growth 
inhibition 

Sudhakar et al. 
(1992) 

Allium porrum 10−5 M Prevented leaf growth 
and root and stem 
elongation 

Gruenhage and 
Jager (1985) 

Hordeum vulgare, 
Raphanus sativas 

0.01 mM Prevented leaf growth 
and root and stem 
elongation 

Juwarkar and 
Shende (1986) 

Sesamum indicum 0.04–1.9 mM Prevention of root 
expansion 

Kumar et al. (1992) 

Pisum sativum 1.0 mM Irregular radial 
thickening in roots, 
endodermis cell walls, 
and cortical 
parenchyma 
lignification 

Paivoke (1983) 

Beta vulgaris 0.5 M Decrease in growth 
and chlorosis 

Hewilt (1953) 

Lactuca sativa; 
Daucus carota 

5 mg/l Reduction in growth Baker (1972) 

Picea abies 0.5 μm Secondary root 
development and 
emergence are 
extremely delicate 
processes 

Godbold and 
Kettner (1991)

(continued)
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Table 14.1 (continued)

Plant name Pb concentration Lead effect References

Zea mays 200 μm Changes the root 
meristem’s 
microtubule network 
structured, causing the 
branching zone to be 
shorter and the lateral 
roots to emerge more 
compactly and close 
to the root tips 

Eun et al. (2000) 

Cucumis sativus, 
Glycine max 

10−5 to 2 × 10−4 M Nitrate reductase and 
glutamine synthetase 
activity inhibition 

Sharma and Dubey 
(2005) 

Brassica juncea 1000 μm Prevent the growth Zaier et al. (2010) 

Zea mays, Pisum 
sativum 

400 mg kg−1 Root, shoot, and leaf 
growth; drastically 
reduced fresh and dry 
biomass 

Cimrin et al. (2007) 

Glycine max 40 mg dm−3 The vascular bundles’ 
xylem and phloem 
were diminished, the 
leaf blades became 
thin, and the diameter 
of the xylem vessels 
was also decreased 

Elzbieta and 
Minoslawa (2005) 

Solanum lycopersicum, 
Pisum sativum, Zea 
mays, Paspalum 
distichum, Cynodon 
dactylon, Lycopersicon 
esculentum, Ipomoea 
aquatica, Phaseolus 
vulgaris and Lens 
culinaris 

400 mg kg−1, 1  × 
10−7 mol dm−3, 
40 mg l−1, 1%, 600 μm, 
250 ppm 

Deleterious impact on 
the growth 
development, 
fresh–dry biomass, 
and growth tolerance 
index of roots, shoots, 
and leaves 

Cimrin et al. 
(2007), Kevresan 
et al. (2001), Shua 
et al. (2002), Jaja 
and Odoemena 
(2004), Gothberg 
et al. (2004), 
Haider et al. (2006) 

Hordeum vulgare, 
Elsholtzia argyi, 
Spartina alterniflora, 
Pinus halepensis, 
Oryza sativa, and Zea 
mays 

400 μm, 20,000 μg/g, 
2.5 mg dm−1, 0.05%, 
250 μg/g 

Preventing the 
germination of seeds 

Islam et al. (2007), 
Baker (1981), 
Wierzbicka (1987), 
Tomulescu et al. 
(2004), Sengar 
et al. (2009) 

Oryza sativa 0.5 μm Germination of rice 
seeds reduction 

Gidlow (2015) 

Raphanus 
raphanistrum 

0.05% The negative effects of 
Pb on plant 
development in the 
early stages 

Tomulescu et al. 
(2004)

(continued)
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Table 14.1 (continued)

Plant name Pb concentration Lead effect References

Prosopis juliflora 100 mg L−1 The root’s length is 
severely suppressed 

Arias et al. (2010) 

Allium sativum 10−5 M Injured plasma 
membrane, 
deep-coloured nuclei, 
loss of cristae, 
endoplasmic reticulum 
and dictyosome 
vacuolization, and 
swelling of the 
mitochondria 

Jiang et al. (2010) 

Honey mesquite 100 mg L−1 Inhibited root 
elongation 

Arias et al. (2010) 

Helianthus annus L. 10−6 M Deeply coloured 
nuclei, damaged 
plasma membranes, 
lack of cristae, 
endoplasmic reticulum 
vacuolization, and 
dictyosomes that are 
swollen within the 
mitochondria 

Kastori et al.  
(2008) 

Allium cepa 1–1000 mM A reduction in the rate 
of mitosis in root cells 

Patra et al. (2004) 

Vicia faba 1–1000 mM Increased interphase 
length and decreased 
mitotic length, 
prolonging the cell 
cycle 

Patra et al. (2004)

by damaging the working enzymes that are involved in the carbon dioxide fixation 
during photosynthesis (Mishra et al. 2006; Qufei and Fashui 2009). Lead prevents 
the production of chlorophyll by preventing plants from absorbing vital nutrients like 
magnesium and iron. It damages the photosynthetic machinery because it is attracted 
to protein N- and S-ligands (Islam et al. 2007). 

Lead exposure has harmful effects on plants because it increases oxidative stress 
and chlorophyllase activity, which hastens the destruction of chlorophyll (Liu et al. 
2008). According to reports, lead treatment has a greater impact on chlorophyll b than 
chlorophyll a (Harpaz-Saad et al. 2007). Lead impacts (PS I) have been observed at the 
cytochrome b/f complex, photosynthesis 1, and photosynthesis 2 donor and acceptor 
sites. It is generally accepted that PS II electron transport during photosynthesis 2 is 
more susceptible to lead suppression than PS I electron transport.
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Respiration 

Photosynthetic plants exposed to lead (Pb) experience negative effects on their 
composition of adenosine triphosphate (ATP) and respiration. Whilst the impact 
of Pb on respiration has been mainly studied in relation to leaves, its effects on 
roots are not yet known. According to Assche and Clijsters (1990), Pb has no effect 
on the oxygenase activity of C3 plants, but it does affect the assimilation of CO2 

by ribulose bisphosphate carboxylase. Divalent cations such as Pb, Zn, Cd, and Ni 
bind to mitochondrial membranes and interfere with electron transport, which can 
lead to phosphorylation decoupling, as noted by Romanowska et al. (2006). Pb has 
been found to inhibit the Hill reaction and photophosphorylation in spinach chloro-
plasts, with a more significant impact on cyclic photophosphorylation than non-cyclic 
photophosphorylation (Romanowska et al. 2008). The adhesion of Pb to membranes 
has various physiological effects. Mitochondria from Pb-treated pea leaves oxidize 
substrates such as glycine, succinate, and malate more rapidly than mitochondria 
from untreated pea leaves, according to Romanowska et al. (2002). 

Plant–Water Relation 

Turgor pressure is another major plant component that is affected by Pb stress 
(Rucińska-Sobkowiak et al. 2013). Pb decreases the plant’s closed cell wall’s flexi-
bility, which lowers the guard cells’ turgor pressure (Pinho and Ladeiro 2012). Sugar, 
amino acids, and other chemicals necessary for sustaining the cell’s turgor pressure 
are reduced in plants exposed to Pb (Barceló and Poschenrieder 1990). Moreover, 
Pb toxicity has been linked to the increased production of ABA in plants, leading to 
stomatal closure and reduction in transpiration rate (Atici et al. 2005). Water relations 
in a number of crop plants have been reported to be affected by Pb excess (Sharma 
and Dubey 2005). Plants with higher stomatal densities can withstand such effects 
(Elzbieta and Minoslawa 2005). Respiration via the leaves is also impeded in plants 
under Pb stress due to the accumulation of a waxy coating (Elzbieta and Minoslawa 
2005). 

Effects on Nucleic Acid 

Genotoxic agents, also referred to as mutagens, are substances that harm cell’s DNA 
or other genetic material whether it occurs inside the nucleus or outside the nucleus. 
One such mutagen is Pb, which makes people develop cancer (Shahid et al. 2011). It 
disrupts the spindle fibres during mitosis by functioning as a potent toxin (Patra et al. 
2004). The disruption of the cytoskeleton and nucleus, DNA strand breakage, the 
formation of micronuclei, chromosomal abnormalities, variability in simple sequence 
repeats, and depolymerization of microtubules are only a few of the negative conse-
quences of Pb in plant cells (Kumar et al. 2017). Low concentrations of Pb do not 
affect mitosis, although they do cause some abnormalities, such as chromosome
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breakage, damage to central DNA segments during meiotic division, and the emer-
gence of micronuclei (Shahid et al. 2011). Pb can attach to either DNA or proteins 
when it enters the nucleus (Małecka et al. 2008). Pb interferes with DNA replication 
and repairs when it binds to DNA. Unless it binds to bare DNA, it has no direct 
genotoxic effects. Enzymes responsible for polymerizing nucleotides during DNA 
synthesis also have their conformation disturbed, which has an impact on how they 
function (Pourrut et al. 2011). Cenkci et al. (2010) has demonstrated the influence of 
Pb on the consistency of the template DNA strand in Brassica rapa using the RAPD 
assay. 

Lipid Peroxidation and Oxidative Stress 

Chloroplasts produce reactive oxygen species (ROS) as a by-product of normal 
cellular metabolism, which includes hydrogen peroxide (H2O2), hydroxyl radicals 
(•OH), and superoxide radicals (O2 

•−). These ROS are also produced as a result of 
exposure to environmental pollutants. Hydrogen peroxide is capable of crossing cell 
membranes and has a direct impact on cell signalling (Pitzschke et al. 2006). The 
generation of ROS causing oxidative stress in plant cells is a characteristic of harmful 
heavy metals, such as Pb (Grover et al. 2010). Once cellular antioxidant reserves 
are depleted, ROS can quickly attack and damage various types of biomolecules, 
including nucleic acids, proteins, and lipids (Yadav 2010). These attacks can cause 
metabolic dysfunction and cell death. Pb is known to significantly alter the lipid 
composition of many cell membranes, including those containing polyunsaturated 
fatty acids and esters that are highly susceptible to ROS (Gupta et al. 2009; Yan et al. 
2010). ROS can destroy the lipid bilayer by removing the hydrogen from unsatu-
rated fatty acids, resulting in the production of sensitive lipid radicals and aldehydes 
(Mishra et al. 2006). Redox enzyme activity has been observed to decrease in the 
presence of sufficient Pb (Lamhamdi et al. 2013). Pb significantly modifies the lipids 
of the plasma membrane, resulting in an abnormal cell structure (Gupta et al. 2009; 
Grover et al. 2010; Yan et al. 2010). Pb-induced modifications to lipid content and 
K+ ion seepage have been documented in Z. mays (Małkowski et al. 2002). Pb ions 
increase the levels of unsaturated fatty acids whilst reducing the amount of saturated 
fatty acids in several plant species (Singh et al. 2010). 

14.1.2.3 Lead in Oxidative Stress: Activation of Reduced Oxygen 
Forms and Resulting Metabolic Harm 

Molecular oxygen creates oxygen free radicals when it receives electrons from 
other molecules. Various intracellular activities that consume oxygen produce super-
oxide (O2

−) or hydrogen peroxide (H2O2). Hydroxyl radicals (–OH), which can be 
produced even by relatively unreactive substances, are believed to cause the majority 
of oxidative damage in biological systems (Halliwell and Cutteridge 1990). Mishra 
et al. (2007) hypothesized that Pb produces reactive oxygen species (ROS) and
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increases the activity of antioxidant enzymes in plants. ROS generated due to oxida-
tive stress in plant cells can inhibit photosynthetic activity, decrease ATP synthesis, 
cause lipid peroxidation, and damage DNA (Ruley 2004). The production of ROS is 
one of the primary impacts of heavy metal stress, and it damages cell membranes, 
nucleic acids, and chloroplast pigments (Tewari et al. 2002). Heavy metal stress in 
plants produces several ROS, including the superoxide anion (O2

−), singlet oxygen, 
hydroxyl radical (OH), and hydrogen peroxide (H2O2). However, when these ROS 
are produced in higher concentrations, they can be extremely harmful. An imbal-
ance between the production of excess ROS and the antioxidative enzyme activity, 
which includes enzymatic antioxidants such as superoxide dismutase (SOD), cata-
lase (CAT), ascorbate peroxidase (APX), and peroxidase (POX), may result in exces-
sive ROS production in heavy metal-stressed plants (Jiang et al. 2010). In stressed 
plants, superoxide dismutase scavenges the superoxide radical (O2

−) and converts it 
to hydrogen peroxide (H2O2) (Reddy et al. 2005). Catalase immediately scavenges 
H2O2, producing H2O and O2. Ascorbate peroxidase and other peroxidases can scav-
enge H2O2 indirectly by combining it with other antioxidant molecules (Yingli et al. 
2011). Plants have several mechanisms for adapting to changes in the concentration 
of heavy metals in polluted environments by altering their levels. Heavy metal accu-
mulation in plants exceeds the capacity of plant tissues to detoxify, making them toxic 
(Zhang et al. 2007). In another study, increase in CAT and SOD activity has been 
correlated with the decrease in electrolyte leakage, MDA, and H2O2 content in wheat 
plants when treated with biochar to control lead toxicity (Mahmood et al. 2023). 
In another study, supplementation of maize crop with sugarcane bagasse biochar 
resulted in significantly improved growth of plants even under 800 mg Pb kg−1 soil 
(Rassaei 2023). 

14.1.2.4 Plant Defence Mechanisms Against Lead Toxicity 

Different mechanisms have been observed in plants that are used for prevention from 
lead toxicity. Some of the more effective ones include selective absorption of metals, 
sequestration at root level, sequestration at cell wall, or production of antioxidants. 
Non-enzymatic antioxidants like glutathione, ascorbic acid, and proline and enzy-
matic antioxidants like glutathione reductase, superoxide dismutase, catalase, etc. 
have commonly been reported to be produced by the plants. Also, species, dosage 
exposed to, and circumstances of exposure are important determinants of plants 
response to lead excess. 

Passive Mechanisms 

Lead interacts with cellular elements and thickens cell walls even when tiny levels 
of lead enter root cell membranes (Krzesłowska et al. 2010). Pectin, a cell wall 
component, can form complexes with lead and prevent its entry into the cell, thereby
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protecting plant cells against damage by lead excess (Jiang and Liu 2010). Krzes-
lowska et al. (2009) reported that binding of lead to JIM5-P creates a physical barrier 
to prevent lead access to the plasma membrane in F. hygrometrica protonemata. 
However, it was also reported that lead bound to JIM5-P can be picked up and taken 
into cell by endocytosis (Krzesłowska et al. 2010). 

Inducible Mechanism 

Detoxification by excretion of metal ions by specific transporters is also an important 
mechanism (Maestri et al. 2010). Lead resistance was simultaneously mediated by 
a number of ATP-binding cassette carriers, including AtATM3 and AtADPR12 at 
ATP-binding sites in Arabidopsis (Cao et al. 2008). Although it has not been proven, 
this detoxification procedure might help remove lead. According to transcriptome 
research, lead-mediated expression of these carriers’ genes was observed (Liu et al. 
2009). Heavy metal detoxification and plant metal homeostasis are both considered to 
depend heavily on cellular sequestration (Maestri et al. 2010). Vacuoles (Meyers et al. 
2008), dictyosome (Malone et al. 1974), endoplasmic reticulum (Wierzbicka et al. 
2007), or plasmatubules (Vadas and Ahner 2009) are only a few of the compartments 
in plant cells where the lead is concealed. 

Plants contain non-enzymatic antioxidants such as cysteine and glutathione. 
When exposed to lead toxicity, Arabidopsis thaliana increases its cysteine content, 
whilst glutathione protects the plant by neutralizing lead-induced ROS. Glutathione 
is also involved in the formation of phytochelatin, a protein essential for heavy 
metal detoxification and homeostasis. These phytochelatins are mainly involved 
in detoxification of cadmium, arsenic, lead, mercury, copper, and zinc (Seregin 
and Kozhevnikova 2023). The activation of glutathione genes, such as glutathione 
synthetase, glutathione peroxidase, glutathione reductase, and glutamylcysteine 
synthetase, is triggered by lead exposure. Glutathione can also boost proline 
accumulation, which can decrease protein and membrane damage caused by stress. 

GSH was found to be essential for lead detoxification even without the presence 
of PCs, according to Gupta et al. (2010). PCs and metallothioneins are metal-binding 
ligands in plant cells that are cysteine-rich proteins that bind heavy metals. PCs are 
low molecular weight, metal-binding proteins that are vital for plants to detoxify 
metals as they can form mercaptide interactions with various metals. These thiols 
protect plant cells from oxidative damage and are produced by phytochelatin synthase 
(PCS) from GSH, with the typical structure of (-glutamyl-cys)nGly, where n = 2–11. 
Lead increases PC production and activates PCS, which has been hypothesized to 
play a role in the cellular detoxification and accumulation of several metals, including 
lead. The mechanism that directs the movement of the lead–PC complex through the 
tonoplast is still unknown. Gisbert et al. (2003) demonstrated that lead and Cd toler-
ance and absorption were significantly increased when a wheat gene (TaPCS1) coding 
for phytochelatin synthase was induced and overexpressed in Nicotiana glauca.
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14.1.2.5 Antioxidant Enzymes 

ROS-scavenging system is inherent to the plants that deals with the increased ROS 
content and protects the cells against oxidative damage (Gupta et al. 2010). However, 
lead excess may block or inhibit the activity of enzymes involved in the process 
(Table 14.2) (Singh et al. 2010). Lead typically has inactivation constants between 
10 and 5, which means that in this range, inhibition of enzymatic activities can be up 
to 50%. In general, lead blocks enzymatic activity (Seregin and Ivanov 2001). The 
lead inhibits the enzyme because of its affinity for the –SH groups of the enzyme 
(Gupta et al. 2009). More than 100 enzymes can be inhibited in this manner including 
many important enzymes such as ribulose-1,5-bisphosphate carboxylase oxygenase 
and nitrate reductase. Lead can also modify the tertiary structure of the enzymes by 
interacting with the active site of the enzyme. Lead can also be bound to protein-
COOH groups to produce the same outcome (Gupta et al. 2010). Lead and metalloid 
enzymes also interact. Plant’s ability to take up minerals can also be affected by 
lead, particularly for zinc, iron, and manganese. Lead and other divalent cations 
can perform the same function as ALAD in inactivating enzymes as these metals 
(Cenkci et al. 2010). Lead exposure also affects ROS, which has an effect on how 
proteins behave (Gupta et al. 2010). Additionally, lead exposure is known to increase 
the activity of numerous enzymes (Table 14.2), whilst the precise mechanisms are 
still understood. Several studies have reported that lead can increase the activity of 
certain enzymes by altering gene expression or inhibiting enzyme inhibitors (Seregin 
and Ivanov 2001). In response to metal toxicity, antioxidant enzymes are respon-
sible for scavenging ROS produced in excess. One of these enzymes is superoxide 
dismutase, which is a metalloenzyme present in various cell compartments and is 
considered the first line of defence against oxidative stress (Mishra et al. 2006). It 
maintains steady-state levels of superoxide radicals by catalyzing the dismutation of 
two superoxide radicals into H2O2 and oxygen (Gupta et al. 2009). The swift removal 
of H2O2 is necessary to prevent oxidative damage. The APX enzyme of the ascor-
bate–glutathione cycle or the GPX and CAT enzymes of the cytoplasm and other cell 
compartments accomplish this (Mishra et al. 2006). GSH and glutathione reductase 
play an established role in the H2O2-scavenging process in plant cells through the 
Halliwell–Asada enzyme pathway (Piechalak et al. 2002). Additionally, an increase 
in the concentration of their substrates may activate antioxidant enzymes, rather than 
a direct reaction with lead (Islam et al. 2008).

14.1.2.6 Uptake, Translocation, and Accumulation of Lead 

The amount of lead that dissolves in the soil and the ease with which plants may 
reach it can depend on a plant’s root surface area, root exudates, transpiration pull, 
mycorrhizal connections in the rhizosphere, and the variety of root types it generates 
(Davies 1995). The roots, which receive lead exposure initially, have the potential 
to store lead or act as a conduit for the export of lead ions from the soil to the 
aboveground plant parts (Fangmin et al. 2006). Resting, the mechanisms for the
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Table 14.2 Effect of lead on the enzymatic activity in different plants species 

Species of plants Enhance of enzyme 
activity 

Reduction of enzyme 
activity 

References 

Taxithelium 
nepalense 

APX, GPOX, CAT Choudhury and Panda 
(2004) 

Cicer arietinum SOD, CAT, POD, GR, 
GST 

Reddy et al. (2005) 

Macrotyloma 
uniflorum 

SOD, CAT, POD, GR, 
GST 

Reddy et al. (2005) 

Ceratophyllum 
demersum 

SOD, GPX, APX, CAT, 
GR 

SOD, GPX, APX, CAT, 
GR 

Mishra et al. (2006) 

Helianthus 
annuus 

GR CAT Garcia et al. (2006) 

Kandelia candel SOD, POD, CAT Zhang et al. (2007) 

Bruguiera 
gymnorrhiza 

SOD, POD, CAT Zhang et al. (2007) 

Potamogeton 
crispus 

SOD, POD, CAT SOD, CAT Hu et al. (2007) 

Cassia 
angustifolia 

SOD, APX, GR, CAT Qureshi et al. (2007) 

Raphanus sativus POD, ribonuclease CAT Gopal and Rizvi (2008) 

Elsholtzia argyi CAT SOD, GPX Islam et al. (2008) 

Wolffia arrhizal CAT, APX Piotrowska et al. (2009) 

Lathyrus sativus APX, GR, GST Brunet et al.  (2009) 

Zea mays SOD, CAT, POD Gupta et al. (2009) 

Jatropha curcas SOD, POD, PAL Gao et al. (2009) 

Najas indica SOD, GPX, APX, CAT, 
GR 

Singh et al. (2010) 

Sedum alfredii SOD, APX, POD Gupta et al. (2010) 

Spinacia 
oleracea L. 

SOD, CAT, POD Lamhamdi et al. (2010) 

Gossypium 
hirsutum 

SOD, GPX APX, CAT Bharwana et al. (2013) 

Oryza sativa SOD, GPX, APX, CAT, 
GR 

GR, CAT, MDA Rao et al. (2018) 

Triticum 
aestivum 

SOD, LOX, GPX and 
APX 

CAT Navabpour et al. (2020) 

Brassica juncea 
L. 

SOD, POD, GST, GR 
CAT, DHAR 

Singh et al. (2020) 

Brassica 
chinensis L. 

CAT, SOD, APX Ji et al. (2022) 

Lead can either activate or inhibit the activity of several enzymes 
POD Superoxide dismutase; APX ascorbate peroxidase; GPX guaiacol peroxidase; CAT catalase; 
GR glutathione reductase; AsA ascorbic acid; GST GSH S-transferase; GSH glutathione; POD 
peroxidase
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Uptake, transloaction and accumulation of Pb in plants 

Lead waste from the environment 

Lead mixes with the soil nutrients 

Conduction of lead into shoot system 

Transfer of lead through xylem 

Lead accumulated in plant vacuole 

Absorption of lead in leaves of plant 

Fig. 14.4 Schematic flow chart to the build-up of lead concentration in a plant species 

absorption, transport, and storage of poisonous metals in plants whose chemical 
characteristics mimic those of vital nutrients are identical to those for the uptake 
of micronutrients from the soil. The same mechanism is used for Pb uptake (Hseu 
et al. 2010). However, as depicted in Fig. 14.4, there are a variety of variables that 
influence the lead uptake from the soil. These variables include the pH of the soil, the 
amount of organic matter in the soil, redox processes, and plant-derived chelating 
agents that solubilize the micronutrients in the rhizosphere. 

Bioaccumulative Potential 

Through absorption, bioavailability, bioconcentration, and biomagnifications, the 
bioaccumulation process occurs. Importer complexes construct a translocation 
channel via the lipid bilayer during bioaccumulation, a metabolically active process 
by which living things take up HM in their intracellular space. Proteins and peptide 
ligands may sequester the HM once it has entered the intracellular environment (i.e. 
storage system as plants). 

Uptake and Translocation of Lead 

Plants can take in free Pb ions from the atmosphere through cellular respiration or 
capillary action (Sharma and Dubey 2005). Once lead is absorbed from the polluted 
soil by the highly developed root systems of plants, it is transported through the xylem 
channels (Engwa et al. 2019). This movement occurs in upward flow before being
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released into the endoderm along with other dissolved nutrients (Sharma and Dubey 
2005). Furthermore, metal ions from polluted air can pass through the cuticle and 
stomata of plant leaves, leading to chlorosis. These metal ions then bind to the cell 
wall and plasma membrane in the endodermis (Engwa et al. 2019). The endodermal 
cells serve as a physical barrier to lead transfer, with the Casparian strip limiting 
the apoplast pathway. The remaining Pb ions can only be translocated through the 
symplast channel, and as they pass through the leaf cell vacuole, the barrier’s job is 
to decrease the lead concentration during transport. The leftover Pb ions passively 
move and accumulate before joining with organic or amino acids in the transpiration 
stream to form a lead complex. These lingering Pb ions participate in photosynthesis 
as ions (Rahimzadeh et al. 2017) and enter the transpiration stream, passing through 
the intercellular spaces of the mesophyll. 

14.1.2.7 Amelioration of Accumulation Lead in Plants 

Phytoremediation 

Heavy metal-contaminated soils can be cleaned up using a variety of phytoreme-
diation approaches (Fig. 14.5). Here, we focus on the different types often used 
phytoremediation methods for removing heavy metals from soil: phytostabilization, 
phytoextraction, and phytovolatilization, etc (Table 14.3).

(i) Phytostabilization: It employs vegetation to lower the soil’s bioavailability of 
heavy metals. 

(ii) Phytoextraction: It comprises using plants to remove heavy metals from the 
soil. 

(iii) Phytovolatilization: Using plants to absorb heavy metals from soil and release 
them as volatile chemicals into the environment. 

(iv) Phytofiltration: It employs with two phytoremediation methods, namely 
rhizodegradation and phytodegradation, which destroy organic pollutants 
(Marques et al. 2009). Here, we concentrate on the four most popular 
phytoremediation techniques, i.e. phytostabilization, phytoextraction, phyto-
volatilization and phytofilteration—for cleaning up soil exhibiting heavy metal 
contamination. 

Phytostabilization 

Phytostabilization is a technique that utilizes metal-tolerant plant species to immo-
bilize heavy metals and reduce their bioavailability, thereby lowering the risk of 
these metals entering the food chain and settling into the ecosystem (Marques et al. 
2009). This process can be achieved through heavy metal precipitation, a reduction 
in metal valency in the rhizosphere, absorption and sequestration within root tissues, 
or adsorption onto root cell walls (Gerhardt et al. 2017). Plant growth also plays a
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(v) 

Phytovolatization 

Phytofiltration 

Phytodegradation 

Phytostabilization 

Phytoextraction 

Bioavailability of the contaminants gets reduced. 

The contaminants can be made to accumulate in plant tissues. 

Volatilization of pollutants. 

Absorption and Adsorption of pollutants from water. 

Degradation of organic contaminants. 

Fig. 14.5 Conceptual schematic representation of different methods used for amelioration of lead

crucial role in preserving soil health in areas with heavy metal contamination, and 
the resulting plant cover can help prevent the spread of heavy metal-bearing soil 
fragments by wind and stabilize heavy metals underground, limiting their leakage 
into groundwater (Mench et al. 2010; Kumar and Singh 2023). 

One advantage of phytostabilization over phytoextraction is that it does not require 
the disposal of hazardous biomass (Wuana and Okieimen 2011). However, the selec-
tion of the appropriate plant species is critical for effective phytostabilization. Plants 
must be tolerant to the conditions caused by heavy metals to be effective, and large 
root systems are necessary for immobilizing heavy metals, stabilizing soil structure, 
and reducing soil erosion. Additionally, plants should be capable of producing a 
significant amount of biomass and growing rapidly to establish a vegetative cover 
on the site quickly. Furthermore, the plant cover must be easy to maintain in outdoor 
situations (Marques et al. 2009). 

Phytoextraction 

Utilizing plants to move and collect contaminants in their aboveground biomass by 
absorbing them from soil or water is known as phytoextraction (Jacob et al. 2018).
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Conflicting to phytostabilization, which only temporarily retains heavy metals that 
still remain underground, phytoextraction is a long-term approach for eliminating 
heavy metals from polluted soil. Therefore, it is more suited for commercial appli-
cation. Heavy metal phytoextraction involves the following steps: (a) heavy metal 
mobilization in the rhizosphere, (b) heavy metal absorption by plant roots, (c) the 
movement of heavy metal ions from plant roots to aerial portions, and (d) heavy 
metal ion compartmentalization and sequestration in plant tissues (Ali et al. 2013). 

Careful plant species selection is necessary for effective phytoextraction. The 
following characteristics should be present in the plant species utilized for phytoex-
traction: (a) strong tolerance for heavy metals’ harmful effects; (b) high extraction 
capacity and high quantities of heavy metals accumulating in aboveground compo-
nents; (c) rapid development and substantial biomass production; (d) a profusion of 
shoots and a deep root system; (e) good environmental sensitivity; (f) great capacity to 
flourish in arid conditions; simple cultivation and harvest; and (g) extremely resilient 
to illnesses and pests (Seth 2012; Ali et al. 2013). 

The following characteristics of the plant species utilized for phytoextraction 
should be present: (a) strong tolerance for heavy metals’ harmful effects; (b) high 
extraction capacity and high quantities of heavy metals accumulating in aboveground 
components; (c) rapid development and substantial biomass production; (d) a profu-
sion of shoots and a deep root system; (e) good environmental sensitivity; (f) a 
powerful capacity to flourish in subpar soils; simple cultivation and harvest; and (g) 
extremely resilient to illnesses and pests (Seth 2012; Ali et al. 2013). 

Plants that accumulate extraordinarily high amounts of heavy metals in their 
aboveground parts and do not show the symptoms of toxicity are called “hyperaccu-
mulators” (Van der Ent et al. 2013). Up to 100 times, more heavy metals have been 
reported in natural hyperaccumulators in comparison to non-accumulating species 
under similar conditions (Rascio and Navari-Izzo 2011). More than 45 angiosperm 
families like Brassicaceae, Fabaceae, Euphorbiaceae, Asteraceae, Lamiaceae, and 
Scrophulariaceae have been reported to include around 450 hyperaccumulating plant 
species (Suman et al. 2018). These species include permanent trees and shrubs as 
well as annual herbs (Dushenkov 2003). Some species, like Sedum alfredii, can 
hyperaccumulate more than two elements, including Zn, Pb, and Cd (Yang et al. 
2002). 

Phytovolatilization 

Phytovolatilization is a process where plants uptake pollutants from the soil, convert 
them into less toxic volatiles, and release them into the atmosphere through transpira-
tion. This technique can be effective in detoxifying heavy metals such as Se, Hg, and 
As, as well as organic pollutants (Mahar et al. 2016). Brassicaceae family members, 
such as Brassica juncea, are particularly efficient in this process (Banuelos et al. 
1993). Unlike traditional phytoremediation methods, phytovolatilization does not 
require plant harvesting and disposal since heavy metal contaminants are removed 
from the site and disseminated as gaseous components. However, it is essential to
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conduct a risk assessment before deploying this technique in the field. Although 
phytovolatilization reduces the amount of contaminants in the soil, some pollutants 
may remain in the environment, as they are still present in the air. Additionally, rain-
fall may redeposit them in the soil (Vangronsveld et al. 2009). Therefore, it is crucial 
to evaluate the potential risks of this technique before implementing it. 

Phytofiltration 

The use of plants to decontaminate polluted surface waters or waste waters is called 
as phytofiltration (Mesjasz-Przybyłowicz et al. 2004). Uptake and/or adsorption of 
heavy metals on root surface in a response to alteration of rhizosphere pH by the action 
of root exudates is categorized under rhizofiltration (Javed et al. 2019), lowering the 
flow of heavy metals into groundwater even more. In order to prepare the plants for 
rhizofiltration, hydroponically grown plants must first be placed in clean water for 
development of root system and then relocated to polluted water. After this acclima-
tion step, the plants should be transferred to the contaminated location for removal 
of heavy metals. After the process is complete, the roots of these plants should 
be gathered and discarded (Wuana and Okieimen 2011). Dense root system, high 
biomass production, and resistance to heavy metals are some prerequisites for any 
plant to be used for rhizofilteration. Rhizofilteration can be done with either aquatic 
or terrestrial plants. Wetland water remediation typically uses aquatic plants, such 
as hyacinth, Azolla, duckweed, cattail, and poplar, due to their high accumulation 
of heavy metals, high tolerance, or rapid growth and high biomass output (Hooda 
2007). Compared to aquatic plants, terrestrial plants like Indian mustard (B. juncea) 
and sunflower (H. annuus) have longer and hairier root systems. They also clearly 
exhibit the capacity to acquire heavy metals during rhizofiltration (Rezania et al. 
2016; Dhanwal et al. 2017). 

Genetic Engineering 

Genetic engineering is a promising technique for improving a plant’s ability to 
phytoremediate heavy metal contamination by transferring foreign genes from other 
organisms, such as bacteria, plants, or animals, into the target plant’s genome. 
Compared to traditional breeding, genetic engineering is faster and allows the transfer 
of desired genes from hyperaccumulators to incompatible plant species (Marques 
et al. 2009). However, modifying multiple genes to improve heavy metal detoxifica-
tion and accumulation is complex and time-consuming, and there are safety concerns 
regarding the field testing of genetically modified plants. 

To guide gene selection for genetic engineering, it is crucial to understand how 
plants acquire and tolerate heavy metals. Heavy metal tolerance is often measured 
by the efficiency of oxidative stress defences since heavy metals can cause excessive 
ROS formation and oxidative stress. Therefore, overexpressing genes involved in
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the antioxidant system is a popular strategy for increasing heavy metal tolerance 
(Koźmińska et al. 2018). 

To improve heavy metal absorption, translocation, and sequestration, genes 
involved in these processes can be transferred and overexpressed in target plants 
(Mani and Kumar 2014; Das et al. 2016). This includes genes encoding members 
of the ZIP, MTP, MATE, and HMA families of metal ion transporters. Addition-
ally, encouraging the production of metal chelators through genetic engineering can 
increase heavy metal bioavailability, uptake, and translocation. This can be achieved 
by overexpressing genes for natural chelators (Wu et al. 2010; Ghuge et al. 2023). 

However, if genetic engineering is not practical, other techniques must be 
employed to improve plant performance in phytoremediation. For instance, hyper-
accumulators with high heavy metal tolerance and accumulation capacities can 
be bred with fast-growing, high biomass plants to produce high quantities of 
biomass. Furthermore, understanding the mechanisms of heavy metal detoxifica-
tion and accumulation can help identify and select plants that are more efficient at 
phytoremediation. 

Use of Plant-Associated Microbes 

Another important strategy for phytoremediation is the use of plant-associated 
microbes for the improvement of plant performance. The microbial community 
present in the rhizosphere can directly improve plant’s fitness by improving their 
capacity to tolerate heavy metals (Fasani et al. 2018) (Table 14.3). It has been estab-
lished that rhizobacteria that encourage plant growth have a substantial potential to 
improve the efficacy of phytoremediation. The absorption and transport of heavy 
metals by plants can both be enhanced by PGPR. Additionally, it can increase a 
plant’s resistance to heavy metals and shield plants from infections (Ma et al. 2011). 
This is made possible by the production of many chemicals, including organic 
acids, siderophores, antibiotics, enzymes, and phytohormones (Ma et al. 2011). 
One of the beneficial products of plant growth-promoting rhizobacteria (PGPR) 
is the production of the enzyme ACC deaminase which can degrade the ethylene 
precursor 1-aminocyclopropane-1-carboxylate (ACC) (Glick 2014). The presence 
of ACC deaminase can reduce ethylene synthesis and promote plant growth, leading 
to increased biomass production and enhancing the efficiency of phytoremediation 
and heavy metal uptake (Huang et al. 2004; Arshad et al. 2007). Moreover, PGPR 
can also produce bacterial auxin (IAA), which stimulates the formation of lateral 
roots and root hairs, further promoting plant growth and phytoremediation (Glick 
2010; DalCorso et al.  2019). 

Another useful microbial community in phytoremediation is arbuscular mycor-
rhizal fungus (AMF). AMF can expand the absorptive surface area of plant roots 
by forming an extensive hyphal network in the rhizosphere, thus enhancing water 
and nutrient uptake as well as heavy metal bioavailability (Gohre and Paszkowski 
2006). In addition, AMF can produce phytohormones that aid in phytoremediation 
and promote plant growth (Vamerali et al. 2010).
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14.2 Conclusion 

Heavy metals are necessary for the biological and physiological processes of plants, 
including the synthesis of chlorophyll, secondary metabolites, stress tolerance, and 
the biosynthesis of nucleic acids and proteins. However, in specific concentrations 
that vary from species to species, these metal elements can become poisonous to 
plants, obstructing electron transport and producing ROS and free radicals, which 
cause oxidative damage to cellular components. Nonetheless, plants have enzymatic 
and non-enzymatic mechanisms, including CAT, POD, APX, SOD, and others, to 
activate the cell and support it in adjusting its metabolism to metal stress. These metals 
primarily come from emerging industrialized regions and human activities that harm 
ecosystems by dumping sludge that has not been properly processed. Phytoreme-
diation, phytostabilization, phytoextraction, phytovolatilization, and phytofiltration 
are some ameliorative techniques that can be employed to remediate metals and 
prevent pollution in the environment, lessening the effects of heavy metals. Lead, 
the main inorganic contaminant emerging amongst heavy metals, damages the soil 
and atmosphere. The build-up of lead from the soil in the various parts of plants 
and living things has a negative impact on physiological and metabolic processes 
since it contains non-essential elements for plants. Lead build-up in the intercellular 
gaps slows down plant activity. Once it enters the plants through the soil, roots, and 
leaves, it affects their metabolic processes and stunts growth and crop yield. The 
amelioration methods produce improved crop types with lower levels of toxicity and 
oxidative stress in the plants. 
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