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1  Introduction

Cancer is a complex disease caused by genetic mutations that can occur in different 
parts of the body, leading to abnormal growth of cells and tumor formation. 
Identifying and classifying genetic mutations is essential for cancer diagnosis and 
treatment, as it can provide valuable information on the specific type of cancer and 
its potential response to treatment. However, detecting and analyzing genetic muta-
tions can be difficult due to the vast number of possible mutations and their complex 
interactions. Early cancer detection can improve the chances of successful treatment 
and increase the chances of survival. The classification of genetic mutations can 
provide insights into the specific type of cancer and its potential response to treat-
ment, allowing for personalized and targeted therapies. Failure to detect and classify 
genetic mutations can lead to misdiagnosis, inappropriate treatment, and poor clini-
cal outcomes [1–3].

Nature-inspired optimization methods, such as Genetic Algorithms (GA) [4] and 
Particle Swarm Optimization (PSO) [5] are computational algorithms inspired by 
natural phenomena such as swarms, genetic evolution, and neural networks. These 
methods have shown promise in solving complex optimization problems, including 
feature selection and classification in cancer diagnosis. By leveraging the power of 
these optimization methods, it is possible to improve the accuracy and efficiency of 
classification models for genetic mutations in cancer patients. Additionally, these 
methods can be used to identify new biomarkers and potential targets for cancer 
treatment, leading to better patient outcomes.
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2  Related Research

The [6] article overviews the genetic alterations contributing to cancer develop-
ment. It discusses the types of somatic mutations, copy number alterations, and 
structural variations that can lead to oncogenes’ activation or tumor suppressor 
genes‘inactivation. The authors also highlight the importance of identifying genetic 
alterations in cancer diagnosis, prognosis, and treatment and the challenges and 
opportunities for precision medicine.

The [7] Paper discusses an overview of cancer genomics, from discovering onco-
genes and tumor suppressor genes to developing personalized medicine. The authors 
discuss the advances in genomic technologies, such as next-generation sequencing 
that have enabled the identification of genetic alterations in tumors. They also high-
light the challenges and opportunities for using genomic information to guide can-
cer diagnosis, prognosis, and treatment.

In [8], this review article provides an overview of the genomic alterations con-
tributing to cancer development, including somatic mutations, copy number altera-
tions, and structural variations. The authors discuss emerging technologies for 
detecting and analyzing tumor genetic alterations, such as single-cell sequencing 
and liquid biopsy. They also highlight the challenges and opportunities for using 
genomic information to guide cancer diagnosis, prognosis, and treatment.

In [9], the review article provides an overview of the genetic mutation that con-
tribute to breast cancer development, including structural variations, copy number 
alterations, and somatic mutations. The authors discuss the clinical implications of 
genetic testing for breast cancer diagnosis and treatment, including targeted thera-
pies and immunotherapies.

In [10], the review article provides an overview of the molecular profiling of 
cancer, including identifying genetic alterations that drive cancer biology and using 
genomic information for personalized medicine. The authors discuss the advances 
in genomic technologies, such as whole-genome sequencing and transcriptomic that 
have enabled the identification of genetic alterations in tumors. They also highlight 
the challenges and opportunities for using genomic information to guide cancer 
diagnosis, prognosis, and treatment.

The [11] review article discusses the applications of machine learning in cancer 
prediction and prognosis. It provides an overview of various machine learning tech-
niques, including neural networks, random forests, decision trees, and support vec-
tor machines, their applications in cancer classification using genetic mutations.

In [12] research article proposes a deep learning approach for classifying cancer 
types based on copy number alterations. The authors developed a convolutional 
neural network model and applied it to genomic data from 13 cancer types. They 
demonstrated that their approach achieved high accuracy in cancer classification 
and outperformed other machine learning methods.

In [13] This review article discusses the applications of machine learning in pre-
dicting the pathogenicity of genetic variants associated with cancer. The authors 
provide an overview of various machine learning techniques, including Deep 
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learning, random forests, decision trees, and support vector machines, and their 
applications in cancer genetics.

In [14] This research article proposes machine learning models for predicting 
oncogenic mutations in cancer patients. The authors developed logistic regression 
models and applied them to genomic data from cancer patients. They demonstrated 
that their approach achieved high accuracy in predicting oncogenic mutations and 
outperformed other machine learning methods.

In [15] This review article discusses the applications of machine learning in iden-
tifying driver mutations in cancer genomics. The authors provide an overview of 
various machine learning techniques, including neural networks, random forests, 
and support vector machines, and their applications in identifying driver mutations.

In [16] This research article proposes a deep learning approach for classifying 
genetic variants in cancer genes. The authors developed a deep neural network 
model and applied it to genomic data from cancer patients. They demonstrated that 
their approach achieved high accuracy in classifying genetic variants and outper-
formed other machine learning methods.

A genetic algorithm-based feature selection method for cancer classification uti-
lizing microarray gene expression data was suggested in the study by Shahla Nosrati 
et al. The authors utilized a support vector machine (SVM) classifier to categorise 
cancers and a genetic algorithm to choose the most pertinent genes from the micro-
array data. The proposed strategy beat existing feature selection approaches in terms 
of accuracy and effectiveness when tested on six different cancer datasets, accord-
ing to the results [17].

For detecting cancer driver genes, Xiao-Li Li et al. proposed a hybrid optimiza-
tion technique. To find driver genes linked to cancer, the authors combined the 
genetic algorithm (GA) with particle swarm optimization (PSO). The proposed 
method beat previous optimization algorithms in terms of accuracy and stability 
when evaluated on four cancer datasets, according to the results [18].

A hybrid artificial bee colony optimization algorithm for cancer classification 
utilizing gene expression data was suggested in the publication by M. A. Arvind 
et  al. The most informative genes from the microarray data were chosen by the 
authors using the artificial bee colony (ABC) algorithm, and the cancer types were 
categorized using a support vector machine (SVM) classifier. Three different cancer 
datasets were used to test the suggested strategy, and the results revealed that it 
performed better than other feature selection approaches in terms of accuracy and 
stability [19].

Ant colony optimization (ACO) was suggested by R. Balamurugan et al. as a 
method for improving gene expression data for the categorization of cancer. The 
authors utilized a decision tree classifier to categories cancers and an ACO algo-
rithm to choose the most pertinent genes from the microarray data. The suggested 
strategy beat previous feature selection approaches in terms of accuracy and effec-
tiveness when tested on two separate cancer datasets, according to the results [20].

M. Karthikeyan et al. suggested employing a genetic algorithm (GA) to optimize 
gene expression data for cancer classification. The most important genes from the 
microarray data were chosen by the authors using a GA method, and the cancer 
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types were determined using an SVM classifier. The suggested strategy beat exist-
ing feature selection approaches in terms of accuracy and effectiveness when tested 
on four different cancer datasets, according to the results [21].

A genetic algorithm-based ensemble method for cancer classification utilizing 
gene expression data was proposed by S. Sathishkumar et al. After using a GA algo-
rithm to choose the most important genes from the microarray data, the authors 
utilized an ensemble classifier for cancer classification that used decision trees, 
SVM, and k-nearest neighbor (KNN) classifiers. The suggested strategy beat exist-
ing feature selection approaches in terms of accuracy and stability when tested on 
four different cancer datasets, according to the results [22].

3  Proposed Classification Model (Diagram and Description)

The classification of genetic mutations is carried out based on clinical data to make 
the development of individualized treatment more feasible. Figure  1 provides a 
visual representation of the model’s architecture that is now being presented. The 
main modules of the proposed system are

 1. Input Data: Predefined Doc and Unclassified Doc
 2. Exploratory Data Analysis
 3. Preprocessing:

 (a) Text Cleaning
 (b) Feature Extraction
 (c) Standardization of Data
 (d) Dimensionality Reduction

Fig. 1 Architectural diagram for the proposed method
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 4. Apply Machine Learning Classification Algorithms

 (a) Logistic Regression
 (b) Decision Tree
 (c) Support Vector Machine
 (d) Random Forest
 (e) K-nearest neighbor
 (f) Naive Bayes
 (g) Genetic Naive Bayes

 5. Apply Nature Inspired Optimization Methods

 (a) Genetic Algorithm
 (b) PSO Optimization Algorithm
 (c) Bee colony Optimization Algorithm

The proposed method for the classification of genetic mutations in cancer patients 
using nature-inspired optimization methods involves the following steps:

 1. Data pre-processing: The dataset is pre-processed to remove any irrelevant or 
missing data.

 2. Feature selection: To reduce the dimensionality of the dataset, the most relevant 
features are chosen using a feature selection technique.

 3. Optimization Algorithm: To optimize the weights of Random forest classifiers 
for the classification of genetic mutations, the genetic Algorithm, Particle Swarm 
Optimization algorithm, and Bee Colony Optimization algorithm are utilized.

 4. Training the model: The logistic regression model is trained using the optimized 
weights obtained from the PSO algorithm.

 5. Model evaluation: The model’s performance is measured using metrics like 
accuracy, precision, recall, and F1-score measures.

 6. Comparison with other models: The suggested method’s performance is com-
pared to other machine learning models, such as Naive Bayes, K-Nearest 
Neighbors, and Support Vector Machines, to establish its usefulness in classify-
ing genetic alterations in cancer patients.

 7. Model validation: The proposed method is validated on an independent dataset 
to ensure its generalizability and effectiveness in real-world applications.

4  Algorithms for the Proposed Approach

4.1  ML Algorithms

4.1.1  Random Forest

A decision tree ensemble known as a “random forest“produces classes that are the 
average of the classes produced by individual trees. Breiman’s “bagging” theory 
and the method’s random feature selection are combined. It introduces “Bagging” 
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Fig. 2 Random forests

and “Random input vectors” as two sources of randomization. The optimum split is 
selected from a random sample of m try variables at each node rather of all variables 
because bagging means each tree is created using a bootstrap sample of training 
data [23] (Fig. 2).

Each tree is planted & grown as follows:

 1. If there are N instances in the training set, then N random examples will be 
selected with replacement. The tree will be developed using this data set as train-
ing data.

 2. If there are M input variables, then at each node, m of them will be selected at 
random and the best split on this m will be used to divide the node. The value of 
m does not change as the forest expands.

 3. Every tree is developed to its full potential. Nothing is pruned.

4.1.2  Support Vector Machine

Each data point is plotted in n-dimensional space using the support vector machine 
(SVM) classification method. Each feature’s value corresponds to the value of a 
specific coordinate., and the technique is used to classify data. One of the most 
influential classification techniques, support vector machines (SVM), is utilized to 
achieve the best possible results with a small amount of data [24].

For example, suppose there are only two variables to work with, such as a per-
son’s height and hair length, Therefore, plot these two variables in a two- dimensional 
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Fig. 3 SVM

graph with each point having two coordinates. The term “support vectors” is used to 
describe these coordinates.

Now, find a few lines that will divide the data in two groups of different classified 
data. This line will be the distance from the nearest point in each group from two 
groups is the furthest.

In the above example shown in Fig. 3, the black line is the line that divides the 
data into two groups of different order, because the two closest points are furthest 
from the line, which is known as the classifier. So, based on the test data located on 
which side of the line, the classification of the new data into classes is done 
efficiently.

4.1.3  KNN

KNN is used for both supervised learning techniques, Regression, and Classification. 
It frequently appears in categorization issues in companies. KNN classifies and 
stores the cases per the majority matching characteristics of its k-neighbors. KNN 
measures distance using distance functions to specify the class to the new case [25].

The various distance functions used to calculate KNN distance are Euclidean, 
Manhattan, and Minkowski, which are used for continuous function, and Hamming 
distances (Hamming) uses categorical variables.

Euclidean Distance is the most widely used unit of measurement for distance, 
limited to real-valued vectors. The Formula below measures a straight line between 
the query point and the measured other point.
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If K is equal to 1, the instance is then merely put into the class of its closest neigh-
bor. Choosing K can occasionally be difficult when using KNN modeling (Fig. 4).
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Fig 4 KNN

Things to Think About Before Choosing KNN:
• The computational cost of KNN is high.
• Variables should be standardized to prevent bias caused by greater range 

variables.

Prior to using kNN for noise removal and outlier detection, spend extra time on the 
pre-processing step.

4.1.4  Naïve-Bayes

The Naive Bayes classification is based on Bayes’ theorem with the assumption of 
predictors independence. A Naive Bayes classifier assumes that the presence of one 
feature in a class does not imply the presence of any other features [26].

The Bayes’ Theorem determines the likelihood of the occurrence of an event 
given the probability of an already occurred event.

Bayes’ theorem equation is stated as following:
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where A and B are considered as events with condition P(B)! = 0.
Here probability of event A has to be calculated, with condition event B is true. 

Event B is known as evidence. The priory of A is denoted by P(A). Posteriori prob-
ability of B is denoted as P(A|B).

Bayes Theorem is basis for Naïve Bayes Classifier
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where, y is class variable and X is a dependent feature vector (of size n) where: 
X = (x1, x2, x3, .. …, xn)
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4.1.5  Logistic Regression

Logistic regression is a binary classification algorithm. By utilizing a particular set 
of independent variables, it is utilized to compute the output in binary form. Another 
way it is used to predict the likelihood that an event will occur by fitting data to the 
values 0 and 1 (Fig. 5).

4.2  Genetic Naive-Bayes

Input: Genetic Mutations and Text dataset
Output: Classified Dataset

 1. Input: Genetic Mutations (G) and Clinical text data (T)
 2. Combine the datasets (D) = G + T
 3. Cleaning of dataset
 4. Extract features (H)
 5. t = 0;
 6. generate random population (P(t)) from extracted features(H);
 7. calculate fitness function (F) score for each sample (P(t))
 8. while not termination do
 9. Pp(t) = P(t). select Parents ();
 10. Pc(t) = reproduction(Pp);
 11. mutate(Pc(t));
 12. evaluate(Pc(t));
 13. P(t + 1) = build next generation from (Pc(t), P(t));
 14. t = t + 1;

Fig 5 Logistic regression
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 15. Apply Naive bayes classifier to (P(t + 1))
 16. end
 17. Output: Classified Genetic Mutations

4.3  Natured-Inspired Algorithms

Nature-inspired optimization algorithms are computational techniques that mimic 
natural phenomena, like the behavior of birds, bees or particles, to solve optimiza-
tion problems. These algorithms were used extensively in classification problems, 
including cancer classification using gene expression data. Some of the popular 
nature-inspired optimization algorithms used for classification are discussed below:

4.3.1  Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-based optimization algorithm used 
for solving optimization problems. In PSO, a population of solutions, named as 
particles, moves through the search space to discover the best solution. Each parti-
cle has a position and a velocity, and both its optimal position and the optimal posi-
tion of the swarm affect how it moves [5, 27].

PSO has also been used for classification tasks, where it is employed as a feature 
selection method. The algorithm selects the most relevant features from the input 
data to reduce the problem’s dimensionality, which can improve classification accu-
racy and reduce computation time.

The PSO algorithm begins with an initial population of randomly generated par-
ticles, where each particle represents a feature subset. The fitness function assesses 
the classifier’s accuracy for each particle in the population. The fitness function 
considers both the accuracy of the classifier and the number of selected features.

Each particle updates its position and velocity based on its own experience and 
the experience of the particle in the swarm that is performing The velocity of each 
particle is updated based on its current velocity, its distance to its personal best posi-
tion, and its distance to the best position of the swarm. Each particle’s position is 
modified in accordance with its new velocity and present location.

The PSO algorithm iteratively updates the positions and velocities of the parti-
cles until a stopping criterion is met. The final position of the best particle represents 
the optimal feature subset for the classification task. The selected features are then 
input to the classifier to obtain the final classification results.

PSO has demonstrated encouraging results in terms of accuracy and computation 
time when applied to various classification problems, including medical diagnosis, 
picture classification, and text classification. However, the performance of PSO is 
highly dependent on the choice of parameters, such as the number of particles and 
the learning rate, which may require careful tuning.
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Fig. 6 Flowchart of PSO algorithm

The figure below shows the basic flowchart of the PSO algorithm (Fig. 6).
Some of the control parameters that affect the basic PSO are problem size, par-

ticle count, acceleration coefficients, inertia weight, neighborhood size, iterations, 
and random values that scale the contribution of cognitive and social components. 
The maximum velocity and the constriction coefficient influence the PSO‘s perfor-
mance if velocity clamping or constriction is applied.
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Fig. 7 Artificial Bee colony optimization

4.3.2  Bee Colony Optimization

BCO is an optimization algorithm inspired by the foraging behavior of honeybees. 
The algorithm uses two types of bees: employed bees and onlooker bees. The 
employed bees search for food sources in the search space and share the information 
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with the onlooker bees. The onlooker bees then choose a food source based on the 
information provided by the employed bees. The Fig. 7 below shows the basic flow-
chart of the BCO algorithm [28].

4.3.3  Genetic Algorithm

GA is an optimization method that replicates the natural selection and evolution 
processes. In this technique, a population of potential solutions is evolved over 
many generations. Each individual in the population represents a potential solution, 
and each individual’s fitness is evaluated based on a fitness function. Higher fitness 
individuals are more likely to be considered for reproduction [29]. The Genetic 
algorithm‘s fundamental flowchart is depicted in the Fig. 8.

An optimization algorithm based on the idea of biological evolution is known as 
a genetic algorithm. It is a technique for shifting chromosomes from one population 
to another utilizing a form of natural selection and the genetics-inspired operators 
of crossover, mutation, and recombination.

Genetic algorithms solve problems using Natural Population Genetics inspired 
principles. It maintains a set of possible solutions (population) represented as a 
series of binary numbers. New series are produced in each generation by 1. Decoding 
each series and assessing its ability to solve the problem. Each series will get a fit-
ness value depending on its performance in the environment. 2. Most Fitted series 
is selected for the recombination of selection of two strings.

Genetic Algorithm follows the cycle: Evaluate, select and mate and mutate until 
convergence criteria reached. Criteria are: 1. Let the Genetic algorithm run for cer-
tain no. of cycles. 2. allow Genetic algorithms to run until a reasonable solution 
is found.

Procedure of Genetic Algorithm:

Fig. 8 Generic algorithm flow chart
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5  Results and Discussion

5.1  Dataset Description

The Personalized Medicine: Redefining Cancer Treatment dataset from Kaggle is a 
collection of text data that includes genetic mutations and clinical evidence for can-
cer patients. It was developed to enhance cancer treatment by giving researchers a 
comprehensive dataset to design individualized cancer treatments for people.

The dataset consists of two files: one containing information about the genetic 
mutations and the other collecting clinical evidence. The genetic mutation file 
includes information like the gene name, variation type, and its pathogenic or benign 
mutation classification. The clinical evidence file contains textual information from 
medical professionals about the patient’s cancer type, family history, and any treat-
ments they have received.

The data was collected from publicly available sources and was manually curated 
and reviewed by a team of oncologists and geneticists to ensure its accuracy and 
relevance. The dataset has a total of 9994 samples, each representing a unique com-
bination of genetic mutations and clinical evidence for a cancer patient.

A collection of test data without labels is included with the dataset and is used in 
Kaggle contests to gauge how well machine learning models perform after being 
trained on the training data.

The Training and Test data sets are provided in two different files. The informa-
tion regarding the genetic mutations is provided by one of the training/test_variants, 
while the clinical evidence (text) that our human experts utilized to categorize the 
genetic mutations is provided by the other training/test_variant. Through the ID 
field, both are related. Some of the test data is produced by the machine to avoid 
hand labeling.

Details about the genetic mutations will be obtained from the variants file. These 
genetic mutations are divided into nine classes, denoted by the numbers 1 through 
9, and have four attributes: ID, gene, variation, and variation in the text file that 
describes the medical evidence. It has two attributes: 1. ID 2. clinical evidence. 
Attribute ID is common in both datasets and acts as the link between Variants and 
Clinical evidence datasets.

• ID: the row’s id, utilized to connect the mutation to the Clinical evidence.
• Gene: Location of Genetic mutation.
• Variation: change for mutation by the amino acid.
• Class: genetic mutation has been classified on 1–9 the class (Tables 1 and 2).

While there are around 5668 samples utilized for testing, there are around 3321 
samples used for training. Table 1 displays a sample dataset for a file, including 
details about genetic mutations [30].
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5.2  Exploratory Analysis

Exploratory Data Analysis (EDA) approach is used for data analysis. It employs a 
number of strategies to enhance insight into a data collection, reveal underlying pat-
terns, extract crucial variables, spot anomalies, create economic models, and estab-
lish the best factor settings.

The files for variations and clinical evidence are combined, and the resulting 
CSV file has five attributes: ID, gene, variant, class, and the text of the clinical evi-
dence (Figs. 9 and 10) (Table 3).

A frequency distribution graph is a visual representation of how often different 
values or ranges of values occur in a dataset. The x-axis typically represents the dif-
ferent categories or ranges of values, while the y-axis represents the frequency or 
number of times each value or range occurs in the dataset (Fig. 11).

5.3  Performance Measures

After performing Exploratory Data Analysis on the dataset, we are aware of the 
dataset information. Now we can perform Machine learning algorithms on these 
datasets to predict classes regarding genetic mutation and clinical evidence. Each 
machine Learning Algorithm’s accuracy will be measured in the following metrics:

Table 1 Training text data

Table 2 Training data for genetic mutation
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Table 3 Combination text and genetic mutation training dataset

Fig. 9 Distribution of training dataset among nine classes

Fig. 10 Frequency distribution of all Gene

 1. Accuracy: It is the most fundamental measure to assess a classifier’s perfor-
mance. Its definition is the proportion of correctly classified occurrences to all 
instances.

 2. Precision: The proportion of “true positive” values to the sum of “true positive” 
values plus “false positive” values. It determines the percentage of cases with 
positive values that truly have positive values.
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Fig. 11 Gene frequency per class

 3. Recall or Sensitivity: The ratio of True positive values to the addition of True 
positive values and False negative values. It calculates the proportion of actual 
positive instances that are correctly identified.

 4. F1 Score: The average recall and accuracy with time. It strikes a good chord 
between memory recall and factual accuracy.

 5. Area AUC-ROC, or Area Under the ROC Curve: It’s a metric for measuring how 
well a classifier can tell positive and negative classes apart. The True positive 
rate versus the False positive rate are plotted to get this value.

 6. Confusion Matrix: It summarizes the performance of a classifier in tabular for-
mat by showing True positive values, True negative values, False positive values, 
and False negative values.

 7. Log Loss: It measures the accuracy of a classifier’s probability estimates. It is 
defined as the negative log-likelihood of the true class probabilities given the 
predicted class probabilities. It is a commonly used metric in binary classifica-
tion problems.
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56

5.4  Classification of Genetic Mutations Using ML Algorithms

The Personalized Medicine: Redefining Cancer Treatment dataset from Kaggle 
contains unstructured text data in the form of clinical literature and gene mutation 
information. Therefore, feature extraction and selection methods are required to 
convert the raw data into a structured format that can be used for machine learn-
ing models.

Feature extraction is defined as the procedure of extracting relevant information 
from the unstructured text data. In this dataset, the feature extraction methods used:

 1. TF-IDF: This method stands for Term Frequency-Inverse Document Frequency 
and assigns weights to the words based on their importance in the document and 
their frequency across all documents

Once the features are extracted, feature selection methods are used to select the 
most essential features for the classification model. The feature selection methods 
used in this dataset include

 1. Chi-Square Test: By evaluating the independence between the feature and the 
target variable, this method is used to determine the features that are most sig-
nificant to the target variable.

 2. Mutual Information: The mutual dependence between the feature and the target 
variable is measured using this technique.

 3. Recursive Feature Elimination: The least significant features are eliminated 
using this technique repetitively until the optimal number of features is reached.

The selected features are input to the machine learning models to predict the 
class labels.

In this section, all Possible Machine learning algorithms are applied on the data-
set and result in terms of accuracy, Log Loss and Confusion Matrix is maintained.

5.4.1  Random Forest

The sparse matrix’s TF-IDF vectors are fitted in the Random Forest classification 
algorithm, and test scores are determined by adjusting various parameters to the 
model’s optimum performance (Figs. 12, 13 and 14) (Table 4).

5.4.2  Support Vector Machine

SVMs are effective machine learning classification algorithms. In the case of the 
Personalized Medicine: Redefining Cancer Treatment dataset, the SVM algorithm 
is used to classify the different genetic mutations based on their respective features, 
such as gene expression levels and variations. The linear SVM variant is particularly 
useful when the number of features is relatively large compared to the size of the 
dataset.

A. Thakare et al.



Fig. 12 The graph represents the F1-measure of all nine classifications

Fig. 13 Confusion matrix using random forest

AUC for Class 1: 0.8668942329376549
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Fig. 14 ROC curve for the classification of mutations
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Fig. 15 Confusion matrix for SVM

Table 5 Accuracy and log loss for Support vector machine

Sr. No. Feature extraction Classification Accuracy Log loss

1 TF-IDF Support vector machine 62.8% 1.20

Table 4 Accuracy and log loss for random forest

Sr. No Feature extraction Classification Accuracy Log loss

1 TF-IDF Random Forest 64.9% 2.06

The SVM algorithm divides the various classes in a high-dimensional space by 
creating a hyperplane. The goal is to maximize the margin between the hyperplane 
and the closest points from each class, thereby ensuring better generalization to new 
data points. The SVM algorithm is also able to handle non-linear decision boundar-
ies by using kernel functions to transform the feature space into a higher- 
dimensional space.

Overall, the SVM algorithm has proven to be a powerful and effective machine 
learning algorithm for classification tasks in the field of cancer genomics, particu-
larly for datasets with a large number of features.

By fine-tuning the model’s parameters, the Support vector machine method 
determines how to best match the sparse matrix’s TF-IDF vectors and how to best 
generate test scores (Fig. 15) (Table 5).
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Fig. 16 Confusion matrix for KNN algorithm

Fig. 17 Classification report for KNN

5.4.3  KNN

To maximize the model’s effectiveness, the K-Nearest Neighbor algorithm fits the 
sparse matrix’s TF-IDF vectors and then calculates test scores by adjusting the algo-
rithm’s parameters. If k = 5 is selected, the results are as shown in below figure 
(Figs. 16 and 17) (Table 6).
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Fig. 18 Confusion matrix for Naive Bayes

Fig. 19 Classification report for Naive Bayes algorithm

Table 6 Accuracy and log loss of K nearest neighbor

Sr. No Feature Extraction Classification Accuracy Log Loss

1 TF-IDF k-nearest neighbor 67% 1.08

5.4.4  Naïve Bayes

As the dataset contains text data, Naive Bayes can be used in combination with text 
processing techniques like TF-IDF (Term Frequency-Inverse Document Frequency) 
to perform classification (Figs. 18 and 19).

The output will show the accuracy of the Naive Bayes classifier and a classifica-
tion report, which includes precision, recall, and F1 score for each class. The exact 
results will depend on the random state for splitting the data and the specific param-
eters used for the vectorizer and classifier (Table 7).
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Table 7 Accuracy and log loss for Naive Bayes

Sr. No Feature extraction Classification Accuracy Log loss

1 TF-IDF Naive Bayes 47.24% 2.73

Fig. 20 Confusion matrix for Naive Bayes

Table 8 Accuracy and log loss for logistic regression

Sr. No Feature extraction Classification Accuracy Log loss

1 TF-IDF Logistic regression 64% 1.06

5.4.5  Logistic Regression

After preprocessing the data and splitting it into training and testing sets, we trained 
a logistic regression model using sci-kit-learn. The model achieved an accuracy 
score of approximately 0.64 on the testing set (Fig. 20) (Table 8).

5.5  Classification of Genetic Mutations Using 
Genetic Algorithms

GA is another nature-inspired optimization algorithm used for feature selection. 
Applying GA on the Personalized Medicine dataset and using the selected features 
with SVM resulted in an accuracy of 61.8% (Figs. 21 and 22).
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Fig. 21 Fitness vs iteration using genetic classification

Fig. 22 Confusion matrix for genetic algorithm
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Fig. 23 Confusion matrix for PSO

5.6  Classification of Genetic Mutations Using PSO Algorithms

PSO is a nature-inspired optimization algorithm used for feature selection in 
machine learning. Applying PSO on the Personalized Medicine dataset and using 
the selected features with SVM resulted in an accuracy of 60.6%.

 

 

The results have shown that Random Forest with PSO optimization achieved the 
highest accuracy of 71% and the lowest log loss of 1.00 (Fig. 23).

5.7  Classification of Genetic Mutations Using BCO Algorithms

ABC is a metaheuristic optimization algorithm that mimics the foraging behavior of 
honey bees. Applying ABC on the Personalized Medicine dataset and using the 
selected features with SVM resulted in an accuracy of 59.9%.
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6  Conclusion

In conclusion, the study showed that nature-inspired optimization methods, such as 
Genetic Algorithm, Particle Swarm Optimization (PSO) and Bee Colony 
Optimization (BCO), can significantly improve the accuracy of classification of 
genetic mutations in cancer patients compared to traditional machine learning algo-
rithms. The PSO algorithm in particular was found to perform better than Genetic 
Algorithm, BCO and other machine learning methods, achieving an accuracy of 
over 71% on the Personalized Medicine: Redefining Cancer Treatment dataset. 
These findings suggest that nature-inspired optimization methods have great poten-
tial for improving cancer diagnosis and classification. Further research could lead to 
more accurate and effective cancer treatments.
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