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Abstract. This paper introduces a novel encoding scheme for hashing
values from the finite field Fp to points on Jacobi quartic curves. These
curves possess efficient group law and are immune to timing attacks. The
proposed encoding scheme achieves almost injective and invertible map-
pings of the input values into Jacobi quartic curves. When p ≡ 3 mod 4,
our encoding saves 2I+D−8M−4S compared to existing methods. This
improvement amounts to approximately 50% on average when compared
to existing methods. The encoding scheme can be used in a variety of cryp-
tographic applications that rely on elliptic curves, such as identity-based
encryption schemes and private set intersection protocols.
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1 Introduction

Since the introduction of elliptic curves into cryptography by Miller [25] and
Koblitz [23], elliptic curve cryptography has become a major branch in the field
of cryptography. The group structure of elliptic curves has become a focus of
research under the impetus of cryptography. All elliptic curves are considered
to have the Weierstrass form, which is parametrized by a cubic equation y2 =
x3 + ax + b. In the real domain, the addition law on a Weierstrass curve can
be described by three points where the line intersects the curve, with the unit
element point being the infinity point.

To achieve better efficiency in various protocols, many different forms of ellip-
tic curves have been studied in elliptic curve cryptography, including Edwards
form, Montgomery form, and Jacobi model. The Jacobi quartic is one of the two
Jacobi models. Compared with the Montgomery form and Edwards forms, the
extended Jacobi quartic form includes more curves. Billet and Joye [4] showed
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that every elliptic curve containing a point of order two could be written as a
curve in Jacobi quartic form and provided the birational map between Weier-
strass elliptic curves with a point of order two and the Jacobi quartic curves.

In [22], Hisil, Wong, Carter, and Dawson provided doubling formulae on
Jacobi quartic curves that involves two field multiplications and five field squar-
ings. According to Bernstein and Lange Explicit-Formulas Database [3], it is
one of the fastest doubling formulae without loss of information. Meanwhile,
[22] shows that the Jacobi quartic curves are competitive with twisted Edwards
curve in variable-singlepoint-variable-single-scalar multiplication. Jacobi quartic
curves can also be employed in pairing calculations [13,14,33].

Hashing into elliptic curves is an important procedure that encodes arbitrary
values into points on elliptic curves over a finite field. This process is wildly
employed in elliptic curve cryptosystems, including password-authenticated key
exchanges [7], identity based encryption [5], and Boneh-Lynn-Shacham signa-
tures [6,30].

The “try and increment” method, also referred to as “sample and reject” and
“hint and pick”, is the first map in hashing into elliptic curves. This encoding
involes repeatedly sampling the value of x and testing whether x could be the
x-coordinates of a point on elliptic curves until a satisfactory x has been found.

Shallue and Woestijne employed Skalba’s equality [27] proposed Shallue-van
de Woestijne map [26]. Three candidates of the x-coordinates were proposed, and
at least one of them could be the x-coordinates of a point. Ulas [29] and Brier et
al. [8] subsequently simplified the Shallue-van de Woestijne map. Their simpli-
fications are referred to as SWU encoding and brief/simplified SWU encoding.
Recently Wahby and Boneh further sped up this model and constructed the
mapping for the BLS-12 381 curve in CHES2019 [30].

In order to avoid censorship, Bernstein, Hamburg, Krasnova, and Lange pro-
posed Elligator 1 and Elligator 2 encodings [2]. Both Elligator 1 and Elligator
2 are almost injective and invertible maps, with Elligator 2 can be employed on
more curves. The injectivity and invertibility of Elligator 2 allow it to make the
points indistinguishable from random strings at less cost. The IETF [18] prefers
the Elligator 2 encodings over other encodings and has speed up the Elligator 2
encoding on Montgomery curves and Edwards curves.

Boneh and Franklin put forwarded a deterministic mapping for a specific type
of supersingular curve over a finite field Fp with p ≡ 2 mod 3. Icart generalized
Boneh and Franklin’s method for Weierstrass curves over a finite field Fp with
p ≡ 2 mod 3. The SWU encodings, Elligator encodings, and Icart encoding
have been extended and adapted into many other forms in the literature [12,17,
20,21,31,32]. Additionally, there has been significant research on the security of
hashing into elliptic curves [1,8,11,16,19,24,28].

The current Jacobi quartic curves encoding and decoding process is inefficient
due to the computational expense of the Elligator 2 algorithm used to determin-
istically encode arbitrary values into Jacobi quartic curves from Fp with p ≡ 3
mod 4. Additionally, the resulting curve points are not uniformly distributed. To
address these issues, this paper proposes a new encoding method that constructs
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almost-injective and invertible encodings for Jacobi quartic curves. The proposed
encoding method is based on Elligator 2 and employs projective coordinates to
reduce the number of inversions required in our mapping. An inverse map is
provided to ensure that the resulting points are indistinguishable from uniform
random strings. In theory, our new encoding method achieved a 50% reduc-
tion in time compared to previous square root encoding. This paper provides
a solution to the inefficiency of the current Jacobi quartic curve encoding and
decoding process, and demonstrates the effectiveness of our proposed method
through experimentation.

The paper is organized as follows: Sect. 2 provides necessary background
information for encoding, Sect. 3 presents the theorems and proofs about the
map and inverse map, Sect. 4 introduces our injective and invertible encoding
for Jacobi quartic curves, Sect. 5 compares our encoding’s time complexity to
previous works, and Sect. 6 concludes this paper.

2 Background

Let K be a field of characteristic not equal to 2. The Jacobi quartic curves are
elliptic curves of the form:

y2 = (1 − x2)(1 − k2x2), k �= ±1.

where k is a nonzero field element. Chudnovsky and Chudnovsky [10] introduced
a variant of the Jacobi quartic curve in the form

y2 = x4 + ax2 + b,

which they used to construct inversion-free addition formulas. Billet and Joye
further extended the Jacobi quartic form to

y2 = dx4 + 2ax2 + 1

where a, d ∈ K, a, d �= 0, and Δ = 256d(a2 − d)2 �= 0.
Any elliptic curve in Weierstrass form E : y2 = x3 + ax + b, that has a

point (θ, 0) of order two, is birational equivalent to the curve Ea′,d′ : y2 =
d′x4+2a′x2+1 in Jacobi quartic form, where d = −(3θ2 + 4a)/16 and a′ = 3θ/4.
The birational map from E to Ea′d′ is given by

φ : E → Ea′,d′

(x, y) �→ (
x − θ

y
,
(2x + θ)(x − θ)2 − y2

y2
),

(1)

where (x, y) �= O, (θ, 0) and O denotes the point at infinity. φ(O) = (0, 1),
φ(θ, 0) = (0,−1).
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Group Law. On Jacobi quartic curve, the (0, 1) is the identity point, and
(0,−1) is a point of order two. The negative of a point (x, y) is (−x, y). Given
two points (x1, y1) and (x2, y2) on the curve Ea,d, their sum is the point (x3, y3)
with

x3 =
x1y2 + y1x2

1 − dx2
1x

2
2

,

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2) + 2dx1x2(x2

1 + x2
2)

1 − dx2
1x

2
2

,

where a and d are parameters of the curve. Hisil et al. have also shown that y3
can be alternatively represented as followings:

y3 =
(y1y2 − 2ax1x2)(x2

1 + x2
2) − 2x1x2(1 + dx2

1x
2
2)

(x1y2 − y1x2)2
,

y3 =
(y1y2 + 2ax1x2)(x1y2 − y1x2) + 2(x2y2 − x1y1)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

,

and

y3 =
x1y1(2 + 2ax2

1 − y2
1) − x2y2(2 + 2ax2

2 − y2
2)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

.

3 The Map and the Inverse Map

First we employ the Elligator 2 to construct the deterministic encoding from Fp

with p ≡ 3 mod 4 to Jacobi quartic curves. Inspired by [30] and [18], we adopt
the projective form to improve the efficiency of the encoding. The encoding
process first maps the values to the curve Y ′2Z ′ = X ′(X ′2 − 4aX ′Z ′ + (4a2 −
4d)Z ′2) over Fp, and then maps them to the Jacobi quartic curve Y 2Z2 =
dX4 + 2aX2Z2 + Z4.

Let u be an element in Fp for the encoding. Generally, we select u from set

S = {u ∈ Fp | u �= 0,±1, 16a2u2 �= 4(a2 − 4d)(1 + u2)2}.

Here S corresponds to the set R given by Theorem 5 in [2]. With this selection,
we can derive the following theorem.

Theorem 1. Let p be a odd prime power satisfies p ≡ 3 mod 4. Let u ∈ S,
where S is defined above. Let

D = 1 − u2

U = 64a3 − 64a3D + 16a(a2 − 4d)D2

V = D3

R = (UV )(UV 3)
p−3
4

If V R2 = U , let
(X ′, Y ′, Z ′) = (−4a,R′D,D),
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where R′ is the even one in {R,−R}. Else let

(X ′, Y ′, Z ′) = (−4a(1 − D), R′D,D),

where R′ is the odd one in {uR,−uR}. Then the followings can be obtained:

(1) DUV RX ′Y ′Z ′ �= 0, D �= 0, R �= 0, V �= 0, U �= 0, Y ′ �= 0, Z ′ �= 0, X ′ �= 0,.
(2) (X ′ : Y ′ : Z ′) is a point on curve Y ′2Z ′ = X ′(X ′2−4aX ′Z ′+(4a2−4d)Z ′2).
(3) (X : Y : Z) = (2Y ′Z ′ : X ′2 − 4(a2 − d)Z ′2 : X ′2 − 4aX ′Z ′ + (4a2 − 4d)Z ′2)

is a point on Jacobi quartic curve Y 2Z2 = dX4 + 2aX2Z2 + Z4.
(4) Let g(x) = x(x2−4ax+4(a2−d)) and denote

√· as the principle square root,
i.e., the even one in the two square roots, then if X ′ = 4a, R′ =

√
g(X ′/Z ′).

If X ′ = −4a(1 − D), R′ = −√
g(X ′/Z ′).

Proof. Let A = −4a, B = 4(a2 − 4d). Then

4a/D = −A/(1 − u2) � v,

U/V = v3 + Av2 + Bv,

and √
U/V = R.

Inserting these expressions in Theorem 5 in [2], choose the principle square root
as the even one, then (1) and (2) can be obtained. (3) is derived from (2) and
the birational map in [22] §2.3.2. (4) is obvious.

Theorem 2. Let ϕ = ψ ◦ τ be map provided in Theorem 1, where τ is the map
from S to points on curve Y ′2Z ′ = X ′(X ′2 − 4aX ′Z ′ + (4a2 − 4d)Z ′2) and ψ is
the map from curve Y ′2Z ′ = X ′(X ′2 −4aX ′Z ′+(4a2 −4d)Z ′2) to Jacobi quartic
curve Y 2Z2 = dX4 + 2aX2Z2 + Z4. Then

(1) For any u ∈ S, if ϕ(u) and ϕ(u′) denote the same projective point, then
u = ±u′.

(2) If (X : Y : Z) ∈ ϕ(S) then the following element ū of S is defined and
ϕ(ū) = (X : Y : Z):

ū =

⎧
⎪⎪⎨

⎪⎪⎩

√
Z2 − aX2 + Y Z

Z2 + aX2 + Y Z
, if

4Y Z2 + 4Z3 + 4aX2Z

X3
is even,

√
Z2 + aX2 + Y Z

Z2 − aX2 + Y Z
, if

4Y Z2 + 4Z3 + 4aX2Z

X3
is odd.

(2)

Proof. Let u, X ′, Y ′, Z ′, X, Y, and Z be defined as in Theorem 1. (1) By
the birational map ψ and its inverse map ψ′ given in [22] §2.3.2, ϕ(u) = ϕ(u′)
follows that τ(u) = τ(u′). According to Theorem 7 in [2], u′ = ±u. (Note that
when u ∈ S, X ′, Y ′, Z ′, X, Z are not zero.) (2) can be derived by the birational
map ψ′ and Theorem 7 in [2].
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4 Hash into Jacobi Quartic Curves

4.1 B-Well-Distributed Property

Recall the definition of B-well-distributed in [15].

Definition 1 ([15]). Let X be a smooth projective curve over a finite field Fp,
J its Jacobian, f a function Fp → X(Fp) and B a positive constant. We say that
f is B-well-distributed if for any nontrivial character χ of J(Fp), the character
sum Sf (χ) satisfies the following equation:

|Sf (χ)| ≤ B
√

p.

In the following, we introduce the basic theorem for the B-well-distributed
property.

Theorem 3 (Theorem 7 in [15]). Let h : X̃ → X be a nonconstant morphism
of curves, and χ be any nontrivial character of J(Fp), where J is the Jacobian
of X. Assume that h does not factor through a nontrivial unramified morphism
Z → X. Then ∣∣∣∣∣

∣

∑

P∈X̃(Fp)

χ(X(P ))

∣∣∣∣∣
∣
≤ (2g̃ − 2)

√
p

where g̃ is the genus of X̃. Furthermore, if p is odd and ϕ is a nonconstant
rational function on X̃, then

∣
∣∣∣∣∣

∑

P∈X̃(Fp)

χ(X(P ))
(

ϕ(P )
p

)
∣
∣∣∣∣∣
≤ (2g̃ − 2 + 2degϕ)

√
p,

where
( ·

·
)
denotes the Legendre symbol.

Theorem 4. Let ϕ be the encoding defined in Theorem 1, p ≡ 3 mod 4. For
any nontrivial character χ of E(Fp), the character sum Sϕ(χ) satisfies:

|Sϕ(χ)| ≤ 16
√

p + 43.

Proof. Let S, R′, D be defined as in Sect. 3. Let S̄ = Fp\S. Then for any u ∈ S,
the following equivalents are established:

X ′ = −4a ⇔ u2 − ω = 0

X ′ = −4a(1 − D) ↔ u2 − 1
ω

= 0

where ω = (1 + ax2 − y)/(1− ax2 + y). The coordinates x = X/Z and y = Y/Z
are from equation (2). Let two coverings hj : Cj → E, j = 1, 2 be the smooth
projective curves whose function field are the extensions of Fp(x, y) defined by
u2 − ω = 0 and u2 − 1/ω = 0. Then the parameter u is a rational function on
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each of the Cj giving rise to morphisms gj : Cj → P
1, such that any point in

A
1(S) has exactly two preimages in Cj(Fp) for one of j = 1, 2, and none in the

other. It follows that hj is ramified if and only if u = 0 or u = ∞. Hence by
Riemann-Hurwitz formula,

2gCj
− 2 = 0 + 1 + 1 = 2.

Hence curves Cj are of genus 2. Denote the map from Cj to Fp that maps
P = (u, x, y) to R′ by ϕ̄. We have deg ϕ̄ = 6. Let Sj = h−1

j (S̄ ∪ {∞})

∣∣∣
∣∣

∑

u∈S

χ(ϕ(u))

∣∣∣
∣∣
=

∣∣∣∣∣
∣∣∣∣∣

∑

P∈C0(Fp)\S0,(
R′
p

)
=1

χ(h0(P )) +
∑

P∈C1(Fp)\S1,(
R′
p

)
=−1

χ(h1(P ))

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C0(Fp),(
R′
p

)
=1

(h∗
0χ)(P )

∣∣
∣∣∣∣∣∣
∣∣

+

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C1(Fp),(
R′
p

)
=−1

(h∗
1χ)(P )

∣∣
∣∣∣∣∣∣
∣∣

+#S0 +#S1

And we have

2

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C0(Fp),(
R′
p

)
=1

(h∗
0χ)(P )

∣∣
∣∣∣∣∣∣
∣∣

=

∣∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P ) +

∑

P∈C0(Fp)

(h∗
0χ)(P ) ·

(
R′

p

)

−
∑

P∈C0(Fp),(
R′
p

)
=0

(h∗
2χ)(P )

∣∣∣∣∣
∣∣∣∣∣

≤
∣
∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P )

∣
∣∣∣∣∣
+

∣
∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P ) ·

(
R′

p

)
∣
∣∣∣∣∣

+#{u | R′ = 0}
By Theorem 3, we have

∣∣∣∣
∣∣

∑

P∈Cj(Fp)

(h∗
jχ)(P )

∣∣∣∣
∣∣
≤ (2gCj

− 2)
√

p = 2
√

p

and ∣
∣∣∣∣∣

∑

P∈Cj(Fp)

(h∗
jχ)(P ) ·

(
R′

p

)
∣
∣∣∣∣∣
≤ (2gCj

− 2 + 2deg ϕ̄)
√

p = 14
√

p
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Since for all u ∈ S, R′ �= 0, and #S̄ ≤ 1+7 = 8. We have #Sj ≤ 2(#S̄+1) ≤ 18.
It follows that

|Sϕ(χ)| =
∣∣∣∣∣

∑

u∈S

χ(ϕ(u))

∣∣∣∣∣
≤ 16

√
p + 43

4.2 Indifferentiable from Random Oracle

According to Theorem 3 in [15], our encoding ϕ described in the previous para-
graph is a well-distributed encoding. Furthermore, Corollary 2 in [15] states
that if h1 and h2 are two independent random oracle hash functions, then the
following construction:

H(m) = ϕ(h1(m)) + ϕ(h2(m))

is indifferentiable from a random oracle.

4.3 Points Indistinguishable from Uniform Random Strings

Since our encoding is almost injective and invertible, points on Jacobi quartic
curves can be encoded as strings to avoid censorship by the inverse map given
in Theorem 2. Based on the B-well-bounded property of our encoding, it is
easy to prove that our encoding is (d,B)-well-bounded. Therefore, the Elligator
Square method can be applied to our encoding to make the resulting points
indistinguishable from uniform random strings. However, it should be noted
that the Elligator Square method is time-consuming. For further details on the
(d,B)-well-bounded property and the Elligator Square method, please refer to
[28].

5 Time Complexity

In the rest of this work, we use I denotes field inversion, E denotes field expo-
nentiation, M denotes field multiplication, and S denotes field squarings for
simplification. Then the cost of our almost-injective and invertible encoding can
be summarized as follows:

1. Compute u2 require one S, and it is enough for D.
2. Compute D2 and V = D3 require M+ S.
3. 2M are required in the computation of U since 64a3 and 16a(a2 − 4d) can be

pre-computed.
4. Computing R as R = (U · V ) · ((UV ) · V 2)(q−3)/4 costs E+ 3M+ S
5. Checking whether V R2 = U costs M+ S
6. (X ′, Y ′, Z ′) can be computed within 3M.
7. Computing X ′2, Z ′2, 2X ′Z ′ = (X ′ + Z ′)2 − X ′2 − Z ′2. And then compute

(X,Y,Z) by Y ′, Z ′,X ′2, Z ′2, 2X ′Z ′ and pre-computed values 4a and 4(a2−d).
This procedure costs 3M+ 3S in total to obtain X,Y and Z.
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To sum up, ϕ costs E+ 13M+ 7S. And the inverse map ϕ−1 can be computed
as follows:

1. Computing Z2, X2, X3, aX2 and Y Z in 3M+ 2S.
2. Employing Montgomery’s technique compute the inversion s = 1/(X3(Z2 +

aX2 + Y Z)(Z2 − aX2 + Y Z)) by I+ 2M.
3. Using 3M + S to check the parity of 4Y Z2 + 4aX2Z + 4Z3/X3 = 4Z(Z2 +

aX2 + Y Z)2(Z2 − aX2 + Y Z)s.
4. If the parity is even, let (U, V ) = (Z2+ aX2+Y Z,Z2 − aX2+Y Z), and else

let (U, V ) = (Z2 − aX2 + Y Z,Z2 + aX2 + Y Z). This step needs no cost.
5. ū =

√
U/V = (UV )(UV 3)(p−3)/4 is obtained in E+ 3M+ S.

Let fA denote the encoding proposed by Alasha [1], fY S and fY I denotes
the encoding proposed by Yu et al. [31], which are based on brief SWU encoding
and Icart encoding respectively. Table 1 shows the theoretical time complexity
of these encodings compared with ours. Specifically, when the finite field Fp

satisfying p ≡ 3 mod 4, our encoding ϕ saves 2I +D − 8M − 4S compared to
fY S . According to Bernstein and Lange Explicit-Formulas Database [3], if the
ratio I/M = 100, our encoding on Jacobi quartic curves is more than 50% faster
than fY S when p ≡ 3 mod 4.

Table 1. Theoretical time cost of different encodings on Jacobi quartic curves

Encodings Field condition Costs

fA p ≡ 2 mod 3 E+ 2I+ 8M+ 3S

fY I p ≡ 2 mod 3 E+ I+ 9M+ 5S

fY S p ≡ 3 mod 4 E+ 2I+ 5M+ 3S+D

ϕ p ≡ 3 mod 4 E+ 13M+ 7S

To compare the efficiency of our encoding and fY S , both running on the
finite field Fp with p ≡ 3 mod 4, we conducted experiments using SageMath for
big number arithmetic. The experiments were performed on a 12th Gen Intel(R)
Core(TM) i7-12700H 2.30GHz processor, with each encoding running 1,000,000
times, where u was randomly chosen on FP256 and FP384. The primes P256
and P384 were selected as the NIST primes [9]. The experiments results are
presented in Table 2.

Table 2. Time cost (μs) comparison on FP256 and FP384

Encodings P256 P384

fY S 87 152
ϕ(ours) 45 75
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According to above experimental results, our encoding is 48.3% faster than
fY S on field FP256 and 50.7% faster on field FP384. The experimental results are
consistent with the previous theoretical results.

6 Conclusion

This paper presents an almost-injective and invertible encoding scheme for
Jacobi quartic curves using Elligator 2 encoding and projective coordinates.
The proposed encoding reduces the number of inversions required for mapping,
resulting in a faster algorithm compared to previous square root encoding tech-
niques. The inverse map is also provided to ensure that the encoded points
are indistinguishable from uniform random strings. Our results show that the
proposed encoding technique outperforms previous methods by reducing com-
putation time by approximately 50%. Additionally, the decoding of points on
elliptic curves into finite fields is also addressed in this paper.
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