
Almost Injective and Invertible Encodings
for Jacobi Quartic Curves

Xiuxiu Li1,2,3, Wei Yu1,2,3(B), Kunpeng Wang1,3, and Luying Li1,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, Beijing, China

yuwei@iie.ac.cn, yuwei_1_yw@163.com
2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing 100878, China
3 School of Cyberspace Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. This paper introduces a novel encoding scheme for hashing
values from the finite field Fp to points on Jacobi quartic curves. These
curves possess efficient group law and are immune to timing attacks. The
proposed encoding scheme achieves almost injective and invertible map-
pings of the input values into Jacobi quartic curves. When p ≡ 3 mod 4,
our encoding saves 2I+D−8M−4S compared to existing methods. This
improvement amounts to approximately 50% on average when compared
to existing methods. The encoding scheme can be used in a variety of cryp-
tographic applications that rely on elliptic curves, such as identity-based
encryption schemes and private set intersection protocols.

Keywords: Jacobi quartic curves · Injective and invertible encoding ·
Inverse map · B-well-distributed

1 Introduction

Since the introduction of elliptic curves into cryptography by Miller [25] and
Koblitz [23], elliptic curve cryptography has become a major branch in the field
of cryptography. The group structure of elliptic curves has become a focus of
research under the impetus of cryptography. All elliptic curves are considered
to have the Weierstrass form, which is parametrized by a cubic equation y2 =
x3 + ax + b. In the real domain, the addition law on a Weierstrass curve can
be described by three points where the line intersects the curve, with the unit
element point being the infinity point.

To achieve better efficiency in various protocols, many different forms of ellip-
tic curves have been studied in elliptic curve cryptography, including Edwards
form, Montgomery form, and Jacobi model. The Jacobi quartic is one of the two
Jacobi models. Compared with the Montgomery form and Edwards forms, the
extended Jacobi quartic form includes more curves. Billet and Joye [4] showed

Supported by the National Natural Science Foundation of China (No. 62272453,
U1936209, 61872442, and 61502487).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yung et al. (Eds.): SciSec 2023, LNCS 14299, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-45933-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45933-7_8&domain=pdf
https://doi.org/10.1007/978-3-031-45933-7_8

128 X. Li et al.

that every elliptic curve containing a point of order two could be written as a
curve in Jacobi quartic form and provided the birational map between Weier-
strass elliptic curves with a point of order two and the Jacobi quartic curves.

In [22], Hisil, Wong, Carter, and Dawson provided doubling formulae on
Jacobi quartic curves that involves two field multiplications and five field squar-
ings. According to Bernstein and Lange Explicit-Formulas Database [3], it is
one of the fastest doubling formulae without loss of information. Meanwhile,
[22] shows that the Jacobi quartic curves are competitive with twisted Edwards
curve in variable-singlepoint-variable-single-scalar multiplication. Jacobi quartic
curves can also be employed in pairing calculations [13,14,33].

Hashing into elliptic curves is an important procedure that encodes arbitrary
values into points on elliptic curves over a finite field. This process is wildly
employed in elliptic curve cryptosystems, including password-authenticated key
exchanges [7], identity based encryption [5], and Boneh-Lynn-Shacham signa-
tures [6,30].

The “try and increment” method, also referred to as “sample and reject” and
“hint and pick”, is the first map in hashing into elliptic curves. This encoding
involes repeatedly sampling the value of x and testing whether x could be the
x-coordinates of a point on elliptic curves until a satisfactory x has been found.

Shallue and Woestijne employed Skalba’s equality [27] proposed Shallue-van
de Woestijne map [26]. Three candidates of the x-coordinates were proposed, and
at least one of them could be the x-coordinates of a point. Ulas [29] and Brier et
al. [8] subsequently simplified the Shallue-van de Woestijne map. Their simpli-
fications are referred to as SWU encoding and brief/simplified SWU encoding.
Recently Wahby and Boneh further sped up this model and constructed the
mapping for the BLS-12 381 curve in CHES2019 [30].

In order to avoid censorship, Bernstein, Hamburg, Krasnova, and Lange pro-
posed Elligator 1 and Elligator 2 encodings [2]. Both Elligator 1 and Elligator
2 are almost injective and invertible maps, with Elligator 2 can be employed on
more curves. The injectivity and invertibility of Elligator 2 allow it to make the
points indistinguishable from random strings at less cost. The IETF [18] prefers
the Elligator 2 encodings over other encodings and has speed up the Elligator 2
encoding on Montgomery curves and Edwards curves.

Boneh and Franklin put forwarded a deterministic mapping for a specific type
of supersingular curve over a finite field Fp with p ≡ 2 mod 3. Icart generalized
Boneh and Franklin’s method for Weierstrass curves over a finite field Fp with
p ≡ 2 mod 3. The SWU encodings, Elligator encodings, and Icart encoding
have been extended and adapted into many other forms in the literature [12,17,
20,21,31,32]. Additionally, there has been significant research on the security of
hashing into elliptic curves [1,8,11,16,19,24,28].

The current Jacobi quartic curves encoding and decoding process is inefficient
due to the computational expense of the Elligator 2 algorithm used to determin-
istically encode arbitrary values into Jacobi quartic curves from Fp with p ≡ 3
mod 4. Additionally, the resulting curve points are not uniformly distributed. To
address these issues, this paper proposes a new encoding method that constructs

Almost Injective and Invertible Encodings for Jacobi Quartic Curves 129

almost-injective and invertible encodings for Jacobi quartic curves. The proposed
encoding method is based on Elligator 2 and employs projective coordinates to
reduce the number of inversions required in our mapping. An inverse map is
provided to ensure that the resulting points are indistinguishable from uniform
random strings. In theory, our new encoding method achieved a 50% reduc-
tion in time compared to previous square root encoding. This paper provides
a solution to the inefficiency of the current Jacobi quartic curve encoding and
decoding process, and demonstrates the effectiveness of our proposed method
through experimentation.

The paper is organized as follows: Sect. 2 provides necessary background
information for encoding, Sect. 3 presents the theorems and proofs about the
map and inverse map, Sect. 4 introduces our injective and invertible encoding
for Jacobi quartic curves, Sect. 5 compares our encoding’s time complexity to
previous works, and Sect. 6 concludes this paper.

2 Background

Let K be a field of characteristic not equal to 2. The Jacobi quartic curves are
elliptic curves of the form:

y2 = (1 − x2)(1 − k2x2), k �= ±1.

where k is a nonzero field element. Chudnovsky and Chudnovsky [10] introduced
a variant of the Jacobi quartic curve in the form

y2 = x4 + ax2 + b,

which they used to construct inversion-free addition formulas. Billet and Joye
further extended the Jacobi quartic form to

y2 = dx4 + 2ax2 + 1

where a, d ∈ K, a, d �= 0, and Δ = 256d(a2 − d)2 �= 0.
Any elliptic curve in Weierstrass form E : y2 = x3 + ax + b, that has a

point (θ, 0) of order two, is birational equivalent to the curve Ea′,d′ : y2 =
d′x4+2a′x2+1 in Jacobi quartic form, where d = −(3θ2 + 4a)/16 and a′ = 3θ/4.
The birational map from E to Ea′d′ is given by

φ : E → Ea′,d′

(x, y) �→ (
x − θ

y
,
(2x + θ)(x − θ)2 − y2

y2
),

(1)

where (x, y) �= O, (θ, 0) and O denotes the point at infinity. φ(O) = (0, 1),
φ(θ, 0) = (0,−1).

130 X. Li et al.

Group Law. On Jacobi quartic curve, the (0, 1) is the identity point, and
(0,−1) is a point of order two. The negative of a point (x, y) is (−x, y). Given
two points (x1, y1) and (x2, y2) on the curve Ea,d, their sum is the point (x3, y3)
with

x3 =
x1y2 + y1x2

1 − dx2
1x

2
2

,

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2) + 2dx1x2(x2

1 + x2
2)

1 − dx2
1x

2
2

,

where a and d are parameters of the curve. Hisil et al. have also shown that y3
can be alternatively represented as followings:

y3 =
(y1y2 − 2ax1x2)(x2

1 + x2
2) − 2x1x2(1 + dx2

1x
2
2)

(x1y2 − y1x2)2
,

y3 =
(y1y2 + 2ax1x2)(x1y2 − y1x2) + 2(x2y2 − x1y1)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

,

and

y3 =
x1y1(2 + 2ax2

1 − y2
1) − x2y2(2 + 2ax2

2 − y2
2)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

.

3 The Map and the Inverse Map

First we employ the Elligator 2 to construct the deterministic encoding from Fp

with p ≡ 3 mod 4 to Jacobi quartic curves. Inspired by [30] and [18], we adopt
the projective form to improve the efficiency of the encoding. The encoding
process first maps the values to the curve Y ′2Z ′ = X ′(X ′2 − 4aX ′Z ′ + (4a2 −
4d)Z ′2) over Fp, and then maps them to the Jacobi quartic curve Y 2Z2 =
dX4 + 2aX2Z2 + Z4.

Let u be an element in Fp for the encoding. Generally, we select u from set

S = {u ∈ Fp | u �= 0,±1, 16a2u2 �= 4(a2 − 4d)(1 + u2)2}.

Here S corresponds to the set R given by Theorem 5 in [2]. With this selection,
we can derive the following theorem.

Theorem 1. Let p be a odd prime power satisfies p ≡ 3 mod 4. Let u ∈ S,
where S is defined above. Let

D = 1 − u2

U = 64a3 − 64a3D + 16a(a2 − 4d)D2

V = D3

R = (UV)(UV 3)
p−3
4

If V R2 = U , let
(X ′, Y ′, Z ′) = (−4a,R′D,D),

Almost Injective and Invertible Encodings for Jacobi Quartic Curves 131

where R′ is the even one in {R,−R}. Else let

(X ′, Y ′, Z ′) = (−4a(1 − D), R′D,D),

where R′ is the odd one in {uR,−uR}. Then the followings can be obtained:

(1) DUV RX ′Y ′Z ′ �= 0, D �= 0, R �= 0, V �= 0, U �= 0, Y ′ �= 0, Z ′ �= 0, X ′ �= 0,.
(2) (X ′ : Y ′ : Z ′) is a point on curve Y ′2Z ′ = X ′(X ′2−4aX ′Z ′+(4a2−4d)Z ′2).
(3) (X : Y : Z) = (2Y ′Z ′ : X ′2 − 4(a2 − d)Z ′2 : X ′2 − 4aX ′Z ′ + (4a2 − 4d)Z ′2)

is a point on Jacobi quartic curve Y 2Z2 = dX4 + 2aX2Z2 + Z4.
(4) Let g(x) = x(x2−4ax+4(a2−d)) and denote

√· as the principle square root,
i.e., the even one in the two square roots, then if X ′ = 4a, R′ =

√
g(X ′/Z ′).

If X ′ = −4a(1 − D), R′ = −√
g(X ′/Z ′).

Proof. Let A = −4a, B = 4(a2 − 4d). Then

4a/D = −A/(1 − u2) � v,

U/V = v3 + Av2 + Bv,

and √
U/V = R.

Inserting these expressions in Theorem 5 in [2], choose the principle square root
as the even one, then (1) and (2) can be obtained. (3) is derived from (2) and
the birational map in [22] §2.3.2. (4) is obvious.

Theorem 2. Let ϕ = ψ ◦ τ be map provided in Theorem 1, where τ is the map
from S to points on curve Y ′2Z ′ = X ′(X ′2 − 4aX ′Z ′ + (4a2 − 4d)Z ′2) and ψ is
the map from curve Y ′2Z ′ = X ′(X ′2 −4aX ′Z ′+(4a2 −4d)Z ′2) to Jacobi quartic
curve Y 2Z2 = dX4 + 2aX2Z2 + Z4. Then

(1) For any u ∈ S, if ϕ(u) and ϕ(u′) denote the same projective point, then
u = ±u′.

(2) If (X : Y : Z) ∈ ϕ(S) then the following element ū of S is defined and
ϕ(ū) = (X : Y : Z):

ū =

⎧
⎪⎪⎨

⎪⎪⎩

√
Z2 − aX2 + Y Z

Z2 + aX2 + Y Z
, if

4Y Z2 + 4Z3 + 4aX2Z

X3
is even,

√
Z2 + aX2 + Y Z

Z2 − aX2 + Y Z
, if

4Y Z2 + 4Z3 + 4aX2Z

X3
is odd.

(2)

Proof. Let u, X ′, Y ′, Z ′, X, Y, and Z be defined as in Theorem 1. (1) By
the birational map ψ and its inverse map ψ′ given in [22] §2.3.2, ϕ(u) = ϕ(u′)
follows that τ(u) = τ(u′). According to Theorem 7 in [2], u′ = ±u. (Note that
when u ∈ S, X ′, Y ′, Z ′, X, Z are not zero.) (2) can be derived by the birational
map ψ′ and Theorem 7 in [2].

132 X. Li et al.

4 Hash into Jacobi Quartic Curves

4.1 B-Well-Distributed Property

Recall the definition of B-well-distributed in [15].

Definition 1 ([15]). Let X be a smooth projective curve over a finite field Fp,
J its Jacobian, f a function Fp → X(Fp) and B a positive constant. We say that
f is B-well-distributed if for any nontrivial character χ of J(Fp), the character
sum Sf (χ) satisfies the following equation:

|Sf (χ)| ≤ B
√

p.

In the following, we introduce the basic theorem for the B-well-distributed
property.

Theorem 3 (Theorem 7 in [15]). Let h : X̃ → X be a nonconstant morphism
of curves, and χ be any nontrivial character of J(Fp), where J is the Jacobian
of X. Assume that h does not factor through a nontrivial unramified morphism
Z → X. Then ∣∣∣∣∣

∣

∑

P∈X̃(Fp)

χ(X(P))

∣∣∣∣∣
∣
≤ (2g̃ − 2)

√
p

where g̃ is the genus of X̃. Furthermore, if p is odd and ϕ is a nonconstant
rational function on X̃, then

∣
∣∣∣∣∣

∑

P∈X̃(Fp)

χ(X(P))
(

ϕ(P)
p

)
∣
∣∣∣∣∣
≤ (2g̃ − 2 + 2degϕ)

√
p,

where
(·

·
)
denotes the Legendre symbol.

Theorem 4. Let ϕ be the encoding defined in Theorem 1, p ≡ 3 mod 4. For
any nontrivial character χ of E(Fp), the character sum Sϕ(χ) satisfies:

|Sϕ(χ)| ≤ 16
√

p + 43.

Proof. Let S, R′, D be defined as in Sect. 3. Let S̄ = Fp\S. Then for any u ∈ S,
the following equivalents are established:

X ′ = −4a ⇔ u2 − ω = 0

X ′ = −4a(1 − D) ↔ u2 − 1
ω

= 0

where ω = (1 + ax2 − y)/(1− ax2 + y). The coordinates x = X/Z and y = Y/Z
are from equation (2). Let two coverings hj : Cj → E, j = 1, 2 be the smooth
projective curves whose function field are the extensions of Fp(x, y) defined by
u2 − ω = 0 and u2 − 1/ω = 0. Then the parameter u is a rational function on

Almost Injective and Invertible Encodings for Jacobi Quartic Curves 133

each of the Cj giving rise to morphisms gj : Cj → P
1, such that any point in

A
1(S) has exactly two preimages in Cj(Fp) for one of j = 1, 2, and none in the

other. It follows that hj is ramified if and only if u = 0 or u = ∞. Hence by
Riemann-Hurwitz formula,

2gCj
− 2 = 0 + 1 + 1 = 2.

Hence curves Cj are of genus 2. Denote the map from Cj to Fp that maps
P = (u, x, y) to R′ by ϕ̄. We have deg ϕ̄ = 6. Let Sj = h−1

j (S̄ ∪ {∞})

∣∣∣
∣∣

∑

u∈S

χ(ϕ(u))

∣∣∣
∣∣
=

∣∣∣∣∣
∣∣∣∣∣

∑

P∈C0(Fp)\S0,(
R′
p

)
=1

χ(h0(P)) +
∑

P∈C1(Fp)\S1,(
R′
p

)
=−1

χ(h1(P))

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C0(Fp),(
R′
p

)
=1

(h∗
0χ)(P)

∣∣
∣∣∣∣∣∣
∣∣

+

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C1(Fp),(
R′
p

)
=−1

(h∗
1χ)(P)

∣∣
∣∣∣∣∣∣
∣∣

+#S0 +#S1

And we have

2

∣∣
∣∣∣∣∣∣
∣∣

∑

P∈C0(Fp),(
R′
p

)
=1

(h∗
0χ)(P)

∣∣
∣∣∣∣∣∣
∣∣

=

∣∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P) +

∑

P∈C0(Fp)

(h∗
0χ)(P) ·

(
R′

p

)

−
∑

P∈C0(Fp),(
R′
p

)
=0

(h∗
2χ)(P)

∣∣∣∣∣
∣∣∣∣∣

≤
∣
∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P)

∣
∣∣∣∣∣
+

∣
∣∣∣∣∣

∑

P∈C0(Fp)

(h∗
0χ)(P) ·

(
R′

p

)
∣
∣∣∣∣∣

+#{u | R′ = 0}
By Theorem 3, we have

∣∣∣∣
∣∣

∑

P∈Cj(Fp)

(h∗
jχ)(P)

∣∣∣∣
∣∣
≤ (2gCj

− 2)
√

p = 2
√

p

and ∣
∣∣∣∣∣

∑

P∈Cj(Fp)

(h∗
jχ)(P) ·

(
R′

p

)
∣
∣∣∣∣∣
≤ (2gCj

− 2 + 2deg ϕ̄)
√

p = 14
√

p

134 X. Li et al.

Since for all u ∈ S, R′ �= 0, and #S̄ ≤ 1+7 = 8. We have #Sj ≤ 2(#S̄+1) ≤ 18.
It follows that

|Sϕ(χ)| =
∣∣∣∣∣

∑

u∈S

χ(ϕ(u))

∣∣∣∣∣
≤ 16

√
p + 43

4.2 Indifferentiable from Random Oracle

According to Theorem 3 in [15], our encoding ϕ described in the previous para-
graph is a well-distributed encoding. Furthermore, Corollary 2 in [15] states
that if h1 and h2 are two independent random oracle hash functions, then the
following construction:

H(m) = ϕ(h1(m)) + ϕ(h2(m))

is indifferentiable from a random oracle.

4.3 Points Indistinguishable from Uniform Random Strings

Since our encoding is almost injective and invertible, points on Jacobi quartic
curves can be encoded as strings to avoid censorship by the inverse map given
in Theorem 2. Based on the B-well-bounded property of our encoding, it is
easy to prove that our encoding is (d,B)-well-bounded. Therefore, the Elligator
Square method can be applied to our encoding to make the resulting points
indistinguishable from uniform random strings. However, it should be noted
that the Elligator Square method is time-consuming. For further details on the
(d,B)-well-bounded property and the Elligator Square method, please refer to
[28].

5 Time Complexity

In the rest of this work, we use I denotes field inversion, E denotes field expo-
nentiation, M denotes field multiplication, and S denotes field squarings for
simplification. Then the cost of our almost-injective and invertible encoding can
be summarized as follows:

1. Compute u2 require one S, and it is enough for D.
2. Compute D2 and V = D3 require M+ S.
3. 2M are required in the computation of U since 64a3 and 16a(a2 − 4d) can be

pre-computed.
4. Computing R as R = (U · V) · ((UV) · V 2)(q−3)/4 costs E+ 3M+ S
5. Checking whether V R2 = U costs M+ S
6. (X ′, Y ′, Z ′) can be computed within 3M.
7. Computing X ′2, Z ′2, 2X ′Z ′ = (X ′ + Z ′)2 − X ′2 − Z ′2. And then compute

(X,Y,Z) by Y ′, Z ′,X ′2, Z ′2, 2X ′Z ′ and pre-computed values 4a and 4(a2−d).
This procedure costs 3M+ 3S in total to obtain X,Y and Z.

Almost Injective and Invertible Encodings for Jacobi Quartic Curves 135

To sum up, ϕ costs E+ 13M+ 7S. And the inverse map ϕ−1 can be computed
as follows:

1. Computing Z2, X2, X3, aX2 and Y Z in 3M+ 2S.
2. Employing Montgomery’s technique compute the inversion s = 1/(X3(Z2 +

aX2 + Y Z)(Z2 − aX2 + Y Z)) by I+ 2M.
3. Using 3M + S to check the parity of 4Y Z2 + 4aX2Z + 4Z3/X3 = 4Z(Z2 +

aX2 + Y Z)2(Z2 − aX2 + Y Z)s.
4. If the parity is even, let (U, V) = (Z2+ aX2+Y Z,Z2 − aX2+Y Z), and else

let (U, V) = (Z2 − aX2 + Y Z,Z2 + aX2 + Y Z). This step needs no cost.
5. ū =

√
U/V = (UV)(UV 3)(p−3)/4 is obtained in E+ 3M+ S.

Let fA denote the encoding proposed by Alasha [1], fY S and fY I denotes
the encoding proposed by Yu et al. [31], which are based on brief SWU encoding
and Icart encoding respectively. Table 1 shows the theoretical time complexity
of these encodings compared with ours. Specifically, when the finite field Fp

satisfying p ≡ 3 mod 4, our encoding ϕ saves 2I +D − 8M − 4S compared to
fY S . According to Bernstein and Lange Explicit-Formulas Database [3], if the
ratio I/M = 100, our encoding on Jacobi quartic curves is more than 50% faster
than fY S when p ≡ 3 mod 4.

Table 1. Theoretical time cost of different encodings on Jacobi quartic curves

Encodings Field condition Costs

fA p ≡ 2 mod 3 E+ 2I+ 8M+ 3S

fY I p ≡ 2 mod 3 E+ I+ 9M+ 5S

fY S p ≡ 3 mod 4 E+ 2I+ 5M+ 3S+D

ϕ p ≡ 3 mod 4 E+ 13M+ 7S

To compare the efficiency of our encoding and fY S , both running on the
finite field Fp with p ≡ 3 mod 4, we conducted experiments using SageMath for
big number arithmetic. The experiments were performed on a 12th Gen Intel(R)
Core(TM) i7-12700H 2.30GHz processor, with each encoding running 1,000,000
times, where u was randomly chosen on FP256 and FP384. The primes P256
and P384 were selected as the NIST primes [9]. The experiments results are
presented in Table 2.

Table 2. Time cost (μs) comparison on FP256 and FP384

Encodings P256 P384

fY S 87 152
ϕ(ours) 45 75

136 X. Li et al.

According to above experimental results, our encoding is 48.3% faster than
fY S on field FP256 and 50.7% faster on field FP384. The experimental results are
consistent with the previous theoretical results.

6 Conclusion

This paper presents an almost-injective and invertible encoding scheme for
Jacobi quartic curves using Elligator 2 encoding and projective coordinates.
The proposed encoding reduces the number of inversions required for mapping,
resulting in a faster algorithm compared to previous square root encoding tech-
niques. The inverse map is also provided to ensure that the encoded points
are indistinguishable from uniform random strings. Our results show that the
proposed encoding technique outperforms previous methods by reducing com-
putation time by approximately 50%. Additionally, the decoding of points on
elliptic curves into finite fields is also addressed in this paper.

References

1. Alasha, T.: Constant-time encoding points on elliptic curve of different forms over
finite fields (2012)

2. Bernstein, D., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve
points indistinguishable from uniform random strings, pp. 967–980 (2013). https://
doi.org/10.1145/2508859.2516734

3. Bernstein, D., Lange, T.: Explicit-formulas database (2020). http://hyperelliptic.
org/EFD/

4. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp.
34–42. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44828-4_5

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8_13

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

7. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_12

8. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7_13

9. Chen, L., Moody, D., Regenscheid, A., Randall, K.: Draft nist special publica-
tion 800-186 recommendations for discrete logarithm-based cryptography: elliptic
curve domain parameters. Technical report, National Institute of Standards and
Technology (2019)

https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
http://hyperelliptic.org/EFD/
http://hyperelliptic.org/EFD/
https://doi.org/10.1007/3-540-44828-4_5
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13

Almost Injective and Invertible Encodings for Jacobi Quartic Curves 137

10. Chudnovsky, D., Chudnovsky, G.: Sequences of numbers generated by addition in
formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4),
385–434 (1986). https://doi.org/10.1016/0196-8858(86)90023-0

11. Chávez-Saab, J., Rodríguez-Henrquez, F., Tibouchi, M.: SwiftEC: Shallue-van de
Woestijne indifferentiable function to elliptic curves (2022). https://eprint.iacr.
org/2022/759

12. Diarra, N., Sow, D., Khlil, A.Y.O.C.: On indifferentiable deterministic hashing into
elliptic curves. Eur. J. Pure Appl. Math. 10, 363–391 (2017)

13. Doss, S., Kaondera-Shava, R.: An optimal Tate pairing computation using Jacobi
quartic elliptic curves. J. Comb. Optim. 35(4), 1086–1103 (2018). https://doi.org/
10.1007/s10878-018-0257-y

14. Duquesne, S., Fouotsa, E.: Tate pairing computation on Jacobi’s elliptic curves.
In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 254–269.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_17

15. Farashahi, R., Fouque, P.A., Shparlinski, I., Tibouchi, M., Voloch, J.: Indifferen-
tiable deterministic hashing to elliptic and hyperelliptic curves. IACR Cryptol.
ePrint Arch. 2010, 539 (2010). https://doi.org/10.1090/S0025-5718-2012-02606-8

16. Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves. J.
Math. Cryptol. 3(4), 353–360 (2009)

17. Farashahi, R.R.: Hashing into hessian curves. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6_17

18. Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing to
elliptic curves. Internet-Draft draft-irtf-cfrg-hash-to-curve-13, Internet Engineering
Task Force (2021). https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-
curve-13

19. Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic
hash functions to elliptic curves. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATIN-
CRYPT 2010. LNCS, vol. 6212, pp. 81–91. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14712-8_5

20. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto–Naehrig curves.
In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 1–17.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_1

21. He, X., Yu, W., Wang, K.: Hashing into generalized huff curves. In: Lin, D., Wang,
X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 22–44. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-38898-4_2

22. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited.
In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 452–468.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_31

23. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
24. Koshelev, D.: Indifferentiable hashing to ordinary elliptic F_q-curves of j = 0

with the cost of one exponentiation in F_q. Designs Codes Cryptogr. 90 (2022).
https://doi.org/10.1007/s10623-022-01012-8

25. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X_31

26. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.
1007/11792086_36

https://doi.org/10.1016/0196-8858(86)90023-0
https://eprint.iacr.org/2022/759
https://eprint.iacr.org/2022/759
https://doi.org/10.1007/s10878-018-0257-y
https://doi.org/10.1007/s10878-018-0257-y
https://doi.org/10.1007/978-3-642-36334-4_17
https://doi.org/10.1090/S0025-5718-2012-02606-8
https://doi.org/10.1007/978-3-642-21969-6_17
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-13
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-13
https://doi.org/10.1007/978-3-642-14712-8_5
https://doi.org/10.1007/978-3-642-14712-8_5
https://doi.org/10.1007/978-3-642-33481-8_1
https://doi.org/10.1007/978-3-319-38898-4_2
https://doi.org/10.1007/978-3-642-02620-1_31
https://doi.org/10.1007/s10623-022-01012-8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/11792086_36

138 X. Li et al.

27. Skałba, M.: Points on elliptic curves over finite fields. Acta Arith. 117(3), 293–301
(2005)

28. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5_10

29. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. arXiv
Number Theory (2007)

30. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-381
elliptic curve. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 154–179 (2019)

31. Yu, W., Wang, K., Li, B., He, X., Tian, S.: Hashing into Jacobi quartic curves. In:
Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 355–375. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_20

32. Yu, W., Wang, K., Li, B., He, X., Tian, S.: Deterministic encoding into twisted
Edwards curves. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723,
pp. 285–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-
0_18

33. Zhang, F., Li, L., Wu, H.: Faster pairing computation on Jacobi quartic curves
with high-degree twists. In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014.
LNCS, vol. 9473, pp. 310–327. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27998-5_20

https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-319-23318-5_20
https://doi.org/10.1007/978-3-319-40367-0_18
https://doi.org/10.1007/978-3-319-40367-0_18
https://doi.org/10.1007/978-3-319-27998-5_20
https://doi.org/10.1007/978-3-319-27998-5_20

	Almost Injective and Invertible Encodings for Jacobi Quartic Curves
	1 Introduction
	2 Background
	3 The Map and the Inverse Map
	4 Hash into Jacobi Quartic Curves
	4.1 B-Well-Distributed Property
	4.2 Indifferentiable from Random Oracle
	4.3 Points Indistinguishable from Uniform Random Strings

	5 Time Complexity
	6 Conclusion
	References

