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Preface

6th IFIP International Conference on Internet of Things
(IFIP IoT 2023)

The rapid evolution of technology has led to the development of the Internet of Things
(IoT), a network of physical objects that are embedded with sensors, software, and
network connectivity, enabling them to collect and exchange data. The IoT is trans-
forming our digital landscape, and the IFIP Internet of Things (IFIP-IoT) 2023 con-
ference is a crucial platform for scholars, researchers, and practitioners to come
together, share ideas, and advance this transformative field.

This edited book is a compilation of cutting-edge research and developments pre-
sented at the IFIP-IoT conference. The conference serves as a dynamic hub where
experts from diverse backgrounds come together to explore the multifaceted aspects of
IoT, from its technological foundations to its far-reaching implications for society,
industry, and beyond.

The chapters in this book are a testament to the collaborative spirit of the IFIP-IoT
community. They offer insights into the latest innovations, challenges, and opportu-
nities in IoT, covering a wide array of topics, including IoT architectures, security and
privacy, data analytics, edge computing, and applications in various domains. These
contributions not only reflect the state of the art in IoT research but also provide
valuable perspectives that pave the way for future breakthroughs.

The IFIP-IoT Conference is an annual IFIP event dedicated to IoT research, inno-
vation, and applications, emphasizing the multidisciplinary nature of IoT. IoT
encompasses topics from network protocols and embedded systems to analytics,
machine learning, and social, legal, ethical, and economic considerations, enabling
services in e-health, mobility, energy, manufacturing, smart cities, agriculture, and
more. Security, privacy, and societal aspects are essential in IoT deployment. IFIP-IoT
covers these diverse areas, seeking papers showcasing technical advancements,
research, innovation, pilot results, and policy discussions. Contributors include
researchers, users, organizations, ICT industry experts, authorities, and regulators.

IFIP-IoT welcomed full and short paper submissions, with full papers being original
and unpublished elsewhere. Poster presentations were limited to student papers. The
conference program featured keynotes, plenary talks, tutorials, technical sessions,
special sessions, expert panels, a research demo session (RDS), and a student research
forum (SRF). New tracks like “SRF” and “RDS” aimed to enhance event participation.

The paper submission guidelines include an 18-page limit for full papers, which
applied to both regular and special sessions, as well as an 8-page limit for short papers,
applicable to any session, including SRF and RDS. To ensure a thorough review
process, we implemented a four-tier review mechanism within EDAS, consisting of
TPC-Chairs, Track Chairs, TPC members, and dedicated reviewers. We took measures
to address conflicts of interest by appointing multiple TPC chairs and multiple track



chairs for each track. Additionally, we imposed a limit of 2 papers maximum for PC
members. SRF encouraged student first-author papers with an 8-page limit, while RDS
papers also had an 8-page limit and may or may not feature student first authors. It’s
important to note that TPC members were permitted to co-author papers with their
students in both SRF and RDS. Furthermore, our conference included Regular tracks/
sessions that accept submissions from any authors, as well as Special Sessions/Tracks
proposed by established researchers, with submissions received by invitation.

The IFIP-IoT conference had six regular tracks, each focusing on a different aspect
of IoT:

• Hardware/Software Solutions for IoT and CPS (HSS): This track covered the
design, development, and implementation of hardware and software solutions for
IoT and cyber-physical systems (CPS).

• Electronics and Signal Processing for IoT (ESP): This track focused on the use of
electronics and signal processing techniques for IoT applications.

• Artificial Intelligence and Machine Learning Technologies for IoT (AMT):
This track explored the use of artificial intelligence (AI) and machine learning (ML)
technologies for IoT applications.

• Cyber Security/Privacy/Trust for IoT and CPS (SPT): This track addressed the
security, privacy, and trust challenges of IoT and CPS systems.

• IoT or CPS Applications and Use Cases (APP): This track presented case studies
and applications of IoT and CPS technologies.

• Networking and Communications Technology for IoT (NCT): This track
focused on the networking and communication technologies used in IoT systems.

Leading IoT experts from around the globe proposed special sessions on cutting-
edge IoT topics. These session organizers then invited other established researchers to
submit papers to their sessions. We are pleased to announce that the following special
sessions took place and contributed excellent research papers to the IFIP-IoT 2023
conference:

• AI and Big Data for Next-G Internet of Medical Things (IoMT): This special
session explored the use of AI and big data for the next generation of IoMT
systems.

• Blockchain for IoT-Driven Systems (BIoT): This special session examined the
use of blockchain for IoT-driven systems.

• Edge AI for Smart Wearables (EAW): This special session focused on the use of
edge AI for smart wearables.

• Energy-Aware Security for IoT (EAS): This special session addressed the
security challenges of IoT systems, with a focus on energy efficiency.

• IoT for Smart Healthcare (SHC): This special session explored the use of IoT for
smart healthcare applications.

• IoT for Wearables and Smart Devices (IWS): This special session focused on the
use of IoT for wearables and smart devices.

• Metaverse for IoT (MIoT): This special session examined the use of the metaverse
for IoT applications.
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• Security by Design for IoT (SbD): This special session discussed the importance
of security by design for IoT systems.

• Technologies for Smart Agriculture (TSA): This special session explored the use
of IoT technologies for smart agriculture.

In addition to the regular tracks and special sessions mentioned earlier, we intro-
duced two sessions to support graduate students, early career researchers, and ongoing
projects through short papers:

• Student Research Forum (SRF): This session was designed to provide valuable
opportunities for research scholars and graduate students. Presentations in this
session were in a concise oral or poster format.

• Research Demo Session (RDS): Authors in this session had the chance to show-
case live demonstrations and hardware prototypes of their research.

We are grateful to the authors who contributed their expertise to this volume, and we
commend their dedication to advancing the field of IoT. We would also like to
acknowledge the reviewers whose insightful feedback ensured the quality and rigor
of the included chapters.

We hope that this edited book will serve as a valuable resource for researchers,
educators, policymakers, and industry professionals alike, fostering a deeper under-
standing of IoT and inspiring further innovation in this transformative domain. As the
IFIP-IoT conference continues to evolve and grow, we look forward to witnessing the
continued impact of this vibrant community on the ever-expanding Internet of Things.

Deepak Puthal
Saraju Mohanty

Baek-Young Choi
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Abstract. Due to recent developments in vehicle networks (VNs), more
and more people want their electric cars to have access to sophisticated
networking features and perform a variety of advanced activities. Sev-
eral technologies are installed in these autonomous vehicles to aid the
drivers. Cars have unquestionably become smarter as we’ve been able to
install more and more gadgets and applications on them. As a result,
the security of assistant and self-drive systems in automobiles becomes a
life-threatening concern, since hostile attacks that cause traffic accidents
may infiltrate smart cars. This research provides a technique based on the
Graph Neural Network (GNN) deep learning (DL) model for detecting
intrusions in VNs. This model can recognize attack patterns and clas-
sify threats accordingly. Experimentation utilizes car-hacking datasets.
These files include DoS attacks, fuzzy attacks, driving gear spoofing, and
RPM gauge spoofing. The car-hacking dataset is converted into image
files, and the GNN model provided works with the newly produced image
dataset. The findings of comparing our model to DL models indicate that
our GNN model is superior. In specific, the test case scenarios may iden-
tify abnormalities with respect to detection F1-score, recall, precision,
and accuracy to ensure accurate detection and identification of potential
false alarm concerns.

Keywords: Intrusion Detection System · Internet of Vehicles ·
Internet of Things · Deep Learning Techniques · Graph Neural Network

1 Introduction

With the emergence of self-driving vehicles and Vehicle to Everything, automo-
biles are wirelessly linked to a variety of gadgets. Automobiles are susceptible
to malicious attacks that may result in major traffic accidents. Several intrusion
analysis and detection approaches have been offered to alleviate these difficulties.
The Controller Area Network (CAN) is an essential component of a connected
car and is susceptible to malicious attacks. These attacks can be carried out
by hackers who use various techniques to exploit vulnerabilities in the vehicle’s
systems. The attack includes DOS attack, Fuzzy attack, Spoofing attack, etc. In
c© IFIP International Federation for Information Processing 2023
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all cases, in-vehicle intrusion attacks [1] can have serious consequences, including
loss of control over the vehicle, compromise of sensitive data, and potentially life-
threatening situations. It is important for vehicle manufacturers to take steps to
secure their systems and protect against these types of attacks.Figure 1 shows
the general scenario that is carried out by hackers to inject cyber-attack in vehi-
cles. Because of this, a lot of researchers have tried to come up with reliable
ways to find and analyze attacks. In the identification of the potential attacks,
a number of IDS based on Many classification approaches are proposed by dif-
ferent authors which include the use of machine learning (ML) methods such
as support vector machine (SVM), decision tree (DT), naive Bayes classifier
(NB), logistic regression (LR), and deep convolutional neural network (CNN)
[2–5]to detect network attacks. Current machine learning approaches for detect-
ing attacks on moving cars often utilize cyber threat studies that pair routing
data with potential attack profiles derived from behavioral analysis techniques
including packet collecting, feature comparisons, and packet filtering. In order
to classify potential attacks, determine the true nature of the attack, identify
the attacked ECU, and initiate countermeasures, routing data of CAN devices
is used. Hence, security administrators have turned to DNN approaches such as
LSTM, RNN, and CNN to identify complex threats from a variety of vectors.
In most cases, deep CNN provides a novel approach to enhancing the accuracy
of threat identification in network intrusion detection (NID) and decreasing the
occurrence of false positives (FPR). Nevertheless, a single base classifier doesn’t
adequately fit the data distribution, either because of an excessive amount of
bias or an excessive amount of variance [5].

Fig. 1. In vehicle intrusion attack by hacker
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Although existing approaches are very effective at detecting attacks, they do
not account for the inherent uncertainty in such endeavors. It requires a signifi-
cant investment of time and effort from humans to label the data set, and there
has to be a very large number of training examples used by these conventional
approaches for ML and DL. DL-based approaches have been developed to man-
age a variety of challenging graph issues related to networks. GNN is a kind of
DL-based model that operates on graph data. Zhou cui et al. have made exten-
sive use of them. [7]Successful development of GNNs was motivated by CNNs,
the state-of-the-art models for many machine vision applications. CNNs are able
to extract multi-scale spatial characteristics via their filters, which may subse-
quently be merged to create high-quality representations. CNN, however, has a
hard time learning from and mining graph data. Authors Jing et al. According
to Zhou Cui et al., the ML community has attempted to apply the efficacy of
CNNs to graphs as Euclidean data structure is a unique form of a graph. [7]

The typical representation of a node in a GNN is its weighted sum of the
representations of its neighbors. This procedure will provide the nodes with more
data and a more accurate representation of themselves if the signal is sufficiently
consistent in reference to the underlying network. The states held by GNNs,
which are connectionist models, are able to get information from their neighbors
at any distance. According to Zhang et al., [8], they have been used to simulate
the interdependence of graphs in a variety of graph-based tasks, which include
node classification, edge prediction, edge clustering, node clustering, and graph
classification.

In this study, we used GNN to deal with a wide range of classification prob-
lems related to threats. The most important things this work has done are:

– We give a detailed review of existing DL models and suggest a new framework
for effective cyber-attack detection in vehicle networks using CNN and GNN
techniques.

– We suggest a method for transforming data that can turn vehicle network
traffic data into images so that different cyber-attack patterns are easier to
spot.

– We test the proposed method on a benchmark cyber-security dataset for car
hacking that includes both data from inside the car and from outside it.
We then compare the model’s performance to that of other state-of-the-art
methods.

The rest of the paper is organized as follows; In the Sect. 2, we present a literature
review of ML, DL, and graph network modes. In Sect. 3 the detailed proposed
system is discussed which includes text-to-image conversion of dataset and DL
models namely CNN and GNN design pipeline. In Sect. 4, we review research
on the theoretical and empirical outcomes and analyses of CNNs and GNNs, as
well as related research efforts. We finish with the suggested system in Sect. 5
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2 Literature Review

2.1 Traditional IDS

Most of the traditional ways to find intrusions are based on statistical analysis
[9], threshold analysis [10], and signature analysis [11]. While these techniques
are effective at revealing malicious traffic behavior, they need the input of expert
knowledge from security researchers. This renders their predetermined rules and
limits mostly useless. In addition, this “experience” is really simply a description
of the hitherto unquantifiable behavior of hostile traffic. Because of this, these
methods can’t be easily adapted to the Internet of today, which has a lot more
network data and more unpredictable network attacks.

2.2 IDS Based on Machine Learning

By using machine learning, it has now become possible to categorize and group
network traffic for safety purposes. Simple machine learning methods were tried
out by early researchers, including k-nearest neighbor (KNN) [12], self-organizing
maps (SOM) [14] and SVM [13]to solve classification and clustering problems in
other fields. These algorithms worked well on DARPA, NSL-KDD, KDD99, and
other intrusion detection datasets. These datasets aren’t up to date, which is a
shame. Moreover, they have normal data and data about attacks that are too
simple. It is hard to simulate the highly complex network environment of today
with these datasets. As our work in this study shows, it is difficult to achieve
optimal results by applying traditional algorithms when the new malicious traffic
dataset is passed.

2.3 IDS Based on DNN

Most of the time, the ML algorithm’s performance is usually affected by the
way data is displayed. [15]. The author uses a DNN approach called represen-
tation learning (or “feature learning”) to discover the underlying causes of data
variation. Spectral clustering and DNN methods are combined by Ma et al.
[16] to identify suspicious actions. Niyaz et al. [17] employed deep belief net-
works to create a flexible and effective IDS. Yet, these studies construct their
models to acquire representations from user-created traffic characteristics. The
entire potential of DNN is not being used. The detection rate, accuracy, and
false alarm rate may all be increased by using an enhanced traffic feature set, as
shown by the work of Eesa et al. [18]. As in Natural language processing (NLP)
and computer vision [19], it should be able to obtain characteristics directly from
raw traffic data.

CNN and RNN are the two DNN models that are used the most often. The
CNN feeds on the raw data without any pre-processing. It has few parameters
and requires little input data, thus there’s no need for image reconstruction or
feature extraction. In the field of image recognition, CNNs have been shown to
work very well [20]. CNNs can do well with certain types of network traffic and
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protocols if they are trained quickly. Fan and Ling-zhi [21] used a multilayer
CNN to get very accurate features. The convolution layer was connected to the
sampling layer below, and this model did better on the KDD99 dataset than
traditional detection algorithms like SVM. But CNN can only look at one input
package at a time; it can’t look at information about timing in a given traffic
scenario. In a real attack traffic scenario, a single packet is just normal data.
When a lot of packets are sent at once or in a short amount of time, this packet
is considered to be malicious traffic. In this situation, the CNN doesn’t work,
which could mean that a lot of alerts are missed.

2.4 IDS Based on Graph-Based Deep Learning Algorithms

Text categorization is a significant NLP issue that has existed for a while. In the
traditional way of classifying texts, bag-of-words features are used. When a text
is shown as a graph of words, you can better understand the meaning of words
that aren’t next to each other or that are far apart. Peng et al. [22] Using a
graph-CNN-based DL model to initially turn texts into graphs of words. Niepert
et al. [23] then utilize graph convolution operations to combine the word graphs.
Zhang et al. [24] suggest that text be encoded using the Sentence LSTM. They
think of the whole sentence as a single state that is made up of sub-states for
each word and a state for the sentence as a whole. They use global sentence-level
representations for operations like grouping objects. Using these techniques, a
phrase or piece of writing may be seen as a network of word nodes. When Yao
et al. [25] construct the corpus graph, they see words as nodes and documents.
To understand how words and documents are embedded in the corpus graph,
they employ the Text GCN. Text categorization may also have difficulty with
sentiment analysis, for which Tai et al. [26] propose a Tree-LSTM method.

3 Proposed System

In this study, we provide an Analytical Model for In-Vehicle NID. In order to
anticipate the stability of NID once suspicious network flows have been gathered,
the proposed NID model employs the GNN model with fine-tuned parameters.
The three steps of the process for classifying behavior are displayed in Figure 2
together with the general structure of the model: (1) Pre-processing of data, (2)
Text to Image Conversion, (3) applying DL-based model (CNN and GNN) (4)
model validation and performance analysis.

3.1 Data Pre-processing

First, data sources like the HCRL Car-Hacking dataset were used to get the
training sample data [27]. The HCRL dataset has about 4 million messages from
30 to 40 min of CAN traffic. For our plan, we used the driving gear from this
set to test DoS attacks, spoofing attacks, etc. In each of these attacks, messages
were attacked for one out of approximately 25 IDs. So, only messages that had
these IDs were looked at.
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Fig. 2. Proposed System Architecture

• Step 1. Dataset Cleaning. In the IDS experiment, the whole Car-hacking
dataset was chosen because it was a large enough sample to test how well
the proposed GNN classifier worked. To get a good look at how well the
model works, we rebuilt the experimental data set to create five major types
of attacks, including Controller Area Network (CAN). The dataset has both
normal traffic and traffic that was injected as an attack. There are four kinds
of attacks: flooding, spoofing, replaying, and fuzzing. To reduce the training
data samples, duplicate messages are removed.

• Step 2. Normalization. In the car-hacking dataset, all the fields were
thought of as symbolic features. We first changed the symbols for the net-
work packets. Then, attack categories of flags were turned into numbers (1–5)
based on the different types of attacks. Normal traffic was given the number
‘0’ through a process called “one-hot encoding” (Fig. 3).

Fig. 3. Original dataset sample [27]
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3.2 Dataset Generation (Text to Image Conversion)

Normalizing the data is the first step in the process of transforming it. Con-
sidering the values of pixels in an image range from 0 to 255, so the scale for
network data should also range from 0–255. Quantile normalization is one of the
ways that data values can be changed so that they all fall in the same range. We
used quantile normalization in the proposed framework because it is very good
at handling outliers. Using the quantile normalization approach, feature distri-
butions are transformed into normal distributions, and the values of the features
are recalculated based on the normal distribution. Hence, most of the values
for the variables are quite near to the median values, which makes it simple to
handle any outliers [15]. Upon the completion of the normalization process, the
data is next divided into chunks according to the timestamps and sizes of the
features included within the network traffic datasets. Figure 4 shows the steps
that are taken to get the feature map from the dataset. These steps are feature
extraction and normalization. Each segment of 27 consecutive samples from the
Car-Hacking dataset, which includes 9 significant features are converted into
an image with the form 28283 and a total of 243 feature values. As a result,
each altered image is now a three-channel, square, color image (RGB). Figure 5
demonstrates the stark differences between the feature maps created by malware
and by legitimate applications utilizing the HRCL dataset.

Fig. 4. steps to generate feature map of car-hacking dataset

Fig. 5. Feature map (image) generated by car-hacking dataset.
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3.3 Training Phase

In this step, the data from the experiment were split into train and test sets.
The training set had 80% of the data, but the testing set only had 20 % of
the data. Also, the training and testing set had both attack files and regular
files. During the model training phase, the CNN and GNN models were used
to correctly group cyber threats into different categories. In the experiment, the
fine-tuned CNN and GNN were taught to find network intrusions by looking
at how collected samples behaved. The model was assessed using the softmax
function, and the learning rate was changed using the cross-entropy function to
lower the classification error and hasten training.

3.4 Validation Phase

During the model validation phase, the CNN classifier and the proposed GNN
classifier were used to compare how well the trained model worked. After the
training of the basic classifiers, the results were merged using the training data
taken from different subsets at random. At long last, a meta-classifier was edu-
cated to categorize the dangers posed by the samples. In practice, the choice
of hyperparameters has a big effect on how DL models are trained and how
well they can classify data. During the validation phase, the batch size, weight
matrix, and epochs were set based on the results of the learning phase.

• Step 1. CNN Classifier
CNN classifier for images involves a number of steps, including data col-
lection, preparation, model architecture design, training, validation, testing,
optimization, and deployment. The success of each of these processes is essen-
tial to the overall success of the final model, thus each step in the procedure
needs to be carefully monitored. The below section describes the CNN (2D)
used in the classification of in vehicle network intrusion.

CNN is a modified version of a deep neural net that works by looking at
how pixels near each other relate to each other. At first, it uses randomly
defined patches as input, and then it changes those patches as it learns. Dur-
ing training, the network uses these changed patches to forecast and confirm
the outcome during testing and validation. The convolutional layer, the fully
connected layer, and the pooling layer are the three primary layers of a CNN,
as shown in Fig. 6. The first layer figures out what the neurons that are
linked to local areas are sending out. Each one is worked out by multiplying
the weights by the area. The network determines the width and height of a
filter, and the depth of the filter is the same as the depth of the input. Sub-
sampling is another important transformation that can be used in different
ways (max pooling, min pooling, and average pooling) depending on what is
needed. The user can choose the size of the pooling filter, which is usually
an odd number. The pooling layer is in charge of reducing the number of
dimensions of the data, which is a good way to avoid overfitting. For effective
classification, the output is sent to a fully connected layer after employing a
convolution and pooling layer combination.
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• Step 2. GNN Classifier
Graph Convolutional Networks have been introduced by Kipf et al. [15] at
the University of Amsterdam. GNNs are a type of DL algorithm used for
processing data that has a graph structure. The adjacency matrix is a key
component of GNNs, as it encodes the structure of the graph. Here are the
steps involved in using a GNN for car-hacking dataset (images) classification:
1. Construct a graph representation of the image: In order to use GNNs, we

first represented the image as a graph. We have achieved this by repre-
senting each pixel in the image as a node in the graph and then connecting
it with adjacent pixels with edges.

2. Graph Construction: The next step is to construct the graph using
an adjacency matrix. The adjacency matrix represents the connections
between the nodes in the graph. In the case of image data, we use a 2D
grid graph with edges connecting adjacent pixels.

3. Data Normalization as per Kipf & Welling et al. [15].

mN(u) =
∑

vεN(u)

hv√|N(u)|N(v)| (1)

4. Neural Network Architecture: For layer architecture generation we have
used Graph Convolutional Neural Networks (GCNs).

5. Feature Extraction: Use the GNN to obtain features from the graph. Here
the features extracted are the pixel values, edges, and pixel gradients.

6. Classification: Finally, use the extracted features to classify the images.
This is done by using a fully connected layer.

7. Tuning: To improve the performance of the model we have adjusted the
hyperparameters of the model, such as learning rate, number of hidden
layers, and regularization parameters.

The detailed proposed GNN architecture used is shown in Figure 7.

4 Result and Discussion

A Implementation Details
We do a number of tests to find out how well the proposed model works.
We made the size of the node representation 28 and used images made from
the text as input data. In other experiments, we also change the size of the
features. The size of the training batches is set to 64, and the Adam optimizer
is used to train the model. The Adam optimizer is a replacement for stochastic
gradient descent as an optimization algorithm for training DL models.

B Dataset Description
The dataset of car-hacking is used for experimental evaluation [6] which
includes Spoofing the drive gear, fuzzy attack, DoS attack, and spoofing the
RPM gauge. Currently, every dataset has 300 message injection invasions.
The average incursion lasted for 3 to 5 s, and the total CAN traffic for each
dataset was 30 to 40 min. We converted the car-hacking text dataset into an
image (28 *28) and gives a label to each image.
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Fig. 6. Proposed fine-tune CNN model for classification of car-hacking dataset

Fig. 7. Proposed fine-tune GNN model for classification of car-hacking dataset
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C Performance Parameters
In this paper, detecting intrusions in a vehicle network is a multiclass problem,
and the result of the detection is a DOS attack on the vehicle network. We use
the F1-score, precision, recall, and accuracy as evaluation metrics to figure
out how well our proposed model works. In the confusion matrix, the variables
TP, FP, TN, and FN stand for the following: true negative (TN), true positive
(TP), false negative (FN), and false positive (FP).
we used the below formula for the calculation;
Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
(2)

Precision (PRE):

PRE =
TP

TP + FP
(3)

Recall (REC):

REC =
TP

TP + FN
(4)

F1 -Measure (F1):

F1 = 2 ∗ PRE ∗ REC

PRE + REC
(5)

D Result Analysis
We used the proposed GNN classifier to ensure that the prediction accuracy
of a DL learning classifier, like GNN, is better than that of other DL classi-
fiers. This was done to prove that the developed model was good at making
predictions. In this study, the model parameters for binary classification on
GNN and CNN were set using a 10-fold cross-validation scheme.

Table 1 provides the fine-tuned parameters for two classifiers: the CNN
Classifier and the GNN Classifier. The CNN Classifier uses ReLU as the acti-
vation function and employs the Adam optimizer with a batch size of 64. It
undergoes 25 epochs during fine-tuning. On the other hand, the GNN Clas-
sifier uses ReLU and Tanh as the activation function, and it uses SGD as the
optimizer with a batch size of 28. Similar to the CNN Classifier, it also under-
goes 25 epochs during fine-tuning. These fine-tuned parameters help adapt
the pre-trained models to specific tasks, leading to improved performance and
accuracy.
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Table 1. Tuning Parameters for CNN and GNN

Parameters CNN Classifier GNN Classifier

Activation Function Relu Relu/Tanh

Optimizer adam SGD

Batch Size 64 28

Number of Epoch 25 25

Fig. 8. Performance comparison graph of CNN (a) accuracy graph (b) loss graph.

Fig. 9. Performance comparison graph of CNN (a) accuracy graph (b) loss graph.

Table 1 shows the parameters that can be used to fine-tune the DL classifier.
Figure 8 shows a comparison of the accuracy and loss graphs of CNN algorithms
with hyperparameters that have been fine-tuned.

Figure 9 shows the accuracy and loss graph comparison of CNN algorithms
with fine-tuning of hyperparameters. Figure 9 shows the accuracy and loss graph
comparison of GNN algorithms with fine-tuning of hyperparameters. GNN gives
better accuracy compared to CNN as can be seen in Fig. 10
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Fig. 10. Accuracy and F1-Score comparison graph of CNN and GNN

5 Conclusion

The use of DL techniques (CNN) and proposed graph-based techniques (GNN)
for attack detection in in-Vehicle Network systems has shown promising results.
With the increasing use of connected vehicles, the security of these systems is
paramount to ensure the safety of passengers and prevent malicious attacks.
We have used the car-hacking dataset in experiments where we have converted
text data into image data and passed it to the proposed classifier. Models such
as CNNs, GNN have been employed to identify different types of attacks in
vehicle network systems, such as DoS attacks, fuzzy attacks, spoofing the drive
gear, and spoofing the RPM gauge with the data stream. These models analyze
large amounts of data in real time, detect anomalous behavior, and provide
accurate predictions with high accuracy rates. We achieve an accuracy of 95 %
using the GNN classifier with fine-tuning of hyperparameters. Future research
should concentrate on enhancing these models’ scalability and efficiency, as well
as inventing new ways for detecting complex threats in real-time.
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Abstract. TinyML technology, situated at the intersection of Machine
Learning, Embedded Systems, and the Internet of Things (IoT), presents
a promising solution for a wide range of IoT domains. However, achieving
successful deployment of this technology on embedded devices necessi-
tates optimizing energy efficiency. To validate the feasibility of TinyML
on embedded devices, extensive field research and real-world experiments
were conducted. Specifically, a TinyML computer vision model for people
detection was implemented on an embedded system installed in a turn-
stile at a Federal Institute. The device accurately counts people, moni-
tors battery levels, and transmits real-time data to the cloud. Encour-
aging results were obtained from the prototype, and experiments were
performed using a lithium battery configuration with three batteries in
series. Hourly voltage consumption analysis was conducted, and the find-
ings were illustrated through graphical representations. The camera sen-
sor prototype exhibited a consumption rate of 1.25 V per hour, whereas
the prototype without the camera sensor displayed a more sustainable
consumption rate of 0.93 V per hour. This field research contributes to
advancing TinyML applications and enriching studies regarding its inte-
gration with IoT and computer vision.

Keywords: tinyml · iot · embedded systems · computer vision

1 Introduction

The Internet is a global network that connects millions of computers [1]. Its
technological advancement has brought significant transformations to society,
with impacts on both the public and private sectors, as well as social, political,
and economic contexts [2]. According to the “Digital: Global Overview Report”
study, published in April 2023, the number of active users worldwide reached
5.18 billion, representing approximately 63% of the global population. The report
indicates a significant increase in the number of internet users worldwide over
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the past decade, with a doubled growth rate. Based on this trend, it is expected
that this number will continue to grow in the coming years [3]. It is believed that
the growth potential of the internet is moving towards a pervasive computing
ratio [4].

With the advancement of the Internet and the potential for growth of con-
nected objects, the term Internet of Things (IoT) has emerged over the years.
IoT is a network in which “things” or devices embedded with sensors are inter-
connected through private or public networks. These devices can be remotely
controlled to perform specific functionalities, and information can be shared
through the networks using communication protocols. Smart things or devices
can range from simple accessories to large machines, all equipped with some type
of sensor [5].

This technology is increasingly present in everyday life. There are various
application solutions in the development of IoT. For example, in smart homes,
we have the Smart Home, which includes security systems and smart energy
applications. In the context of intelligent transportation, we find fleet tracking as
an example. In the field of smart healthcare, we have the surveillance of patients
with chronic diseases. Finally, we can mention Smart City projects with real-time
monitoring solutions, such as parking availability and smart street lighting” [6].
“A recent example occurred in the city of Christchurch, New Zealand, after an
earthquake in 2011. The city was rebuilt and took the opportunity to implement
a Smart City solution, installing sensors that collect real-time data on various
aspects, from traffic flow to water quality. This provided greater urban efficiency
and productivity, along with relatively low implementation costs for these IoT
devices [7].

These intelligent solutions mentioned above, connecting so many ‘things,’
lead us to a new generation, an evolution of IoT called Internet of Things 2.0
(IoT 2.0), which involves data inference with artificial intelligence in devices,
sensors, and actuators. IoT 2.0 will be a key to the digital transformation of
an internet-connected society, aiming to generate intelligence from devices and
enable real-time data sharing” [8]. “One of the possibilities for the use of Internet
of Things 2.0 is Tiny Machine Learning1 (TinyML). This technology involves the
use of machine learning on low-cost and low-power microcontrollers that have
limitations in memory and storage. In other words, extremely small devices
execute machine learning models” [9]. “TinyML emerges with the purpose of
addressing the challenges of memory and storage, enabling analysis of sensor data
on the device and involving hardware, algorithm, and software considerations
[10].

A recent application developed using TinyML technology is capable of detect-
ing precise alcohol concentrations through temperature, humidity, and alcohol
sensors on a low-power, small-sized microcontroller, resulting in high latency.
This embedded device collects data and implements a machine learning model,
processing the data directly on the device during testing. The study used Google
Colab to build a TinyML model, with the assistance of a micro-library called

1 https://www.tinyml.org/home/.

https://www.tinyml.org/home/
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TensorFlow Lite. The objective of this study was to improve the accuracy in
alcohol detection, considering the variation in environmental conditions [11].

1.1 The Problem and Proposal of the Study

Over the past few decades, there has been dedicated research effort towards
improving embedded technologies for use in resource-constrained environments
on the internet” [12]. “A successful implementation of IoT requires, among other
desirable requirements, efficient power consumption by embedded devices, which
is particularly important in the IoT application field. With the recent emergence
of TinyML, this technology offers a potential application for IoT, standing out
for its use of machine learning on small-scale embedded devices operating with
limited battery resources and requiring optimization. This study can contribute
to exploring and providing innovative solutions for the use of TinyML in the
development of future applications [13].

The study of energy consumption, among other factors, is of great interest
to the TinyML community, aiming for better development and improvement of
this technology” [14]. “Embedded devices typically consist of a microcontroller
with a processing unit connected to sensors. These sensors, responsible for data
collection, can affect the battery life, especially when it comes to camera sensors.
In this work, a camera sensor will be used, which poses a significant challenge for
embedded systems. While the literature on TinyML demonstrates the possibility
of using this technology in building IoT devices, in my research, I have not
found studies that provide practical support in a real IoT scenario, utilizing
TinyML and exploring its energy behavior. Therefore, this research aims to
test the viability of TinyML as a sustainable device for IoT, analyzing battery
consumption and durability, as well as proposing techniques and methods to
enhance its performance [15].

However, in practice, in a case study and field test research, what would
be the performance of this embedded device with TinyML technology? What
would be the battery consumption of the device when operating in a specific
application? What would be the durability of the device when operating in a
real network? What would be the operational availability profile of the TinyML
device? External environmental factors such as sunlight and rain, would they
hinder its usefulness and application? Would the energy consumption results be
significant?

Currently, researchers and experts are working on enhancing TinyML-based
IoT for devices. One recommended device for this purpose is the microcontroller
(MCU), which offers an increasingly popular option due to its affordability, con-
venience, and portability“ [16]. “This work aims to contribute to the advance-
ment of future studies on TinyML in these intelligent IoT devices, providing
beneficial indicators and identifying areas for improvement. An example is the
evaluation of device durability in a real-world environment.

As mentioned earlier, the integration of machine learning (ML) into IoT
devices aims to reduce the demand for memory, storage, and processing power,
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with the goal of reaching a broader audience and offering new options for per-
sonal and professional services and applications. According to the reviewed lit-
erature, the purpose of this study is to conduct a case study of a ready-made
computer vision solution, implementing it on an embedded device using TinyML
technology and applying it in an IoT scenario. Real-time data will be captured
through a camera sensor and stored in the network. Subsequently, an energy
feasibility study will be conducted, analyzing the lithium battery consumption
of the embedded device and investigating its behavior and utilized techniques.
Furthermore, improvements will be proposed and presented through results and
graphs. By the end of this work, it will be possible to evaluate whether the solu-
tion meets the project’s expectations and demands, as well as provide insights
for future research.

1.2 Limitations and Objectives of the Prototype

The prototype that will be developed has certain limitations aimed at delimiting
the scope of the field test research in its development and evaluation. These
limitations are as follows:

Limited Functionality: The prototype is designed to demonstrate a specific
set of features and functionalities. It may not cover the full range of capabilities
that can be achieved in a fully developed system. Therefore, the limitation of
functionality will be that of the proposed people counting feature and its battery
level.

Scale and Scope: In a real IoT network, there are millions of devices and
various IoT gadgets. However, due to the project being conducted by a single
person, the IoT network will be limited, with few available gateways, resulting in
a reduced statistical significance compared to a more robust application. With
that said, the prototype is typically built on a smaller scale and may not be rep-
resentative of full-scale deployment. It focuses on addressing specific objectives
and may not cover all possible scenarios or use cases.

Performance Constraints: Due to the nature of the prototype, there may be
performance constraints in terms of speed, accuracy, or efficiency. These limita-
tions are taken into account during the design and evaluation process. In this
project, these constraints include the available budget and the use of a limited
number of devices, restricted to those available for the field test. This will also
affect the coverage of the IoT network space that will be utilized.

Validation and Verification: The prototype aims to validate and verify the
feasibility of certain concepts or technologies. It may not be a fully validated
and verified solution ready for commercial deployment.

Time and Labor: This work will address only a single TinyML application,
with only two researchers involved in the research. Therefore, the established
time limit for completing the master’s project must be respected.

The overall objective of this work is to evaluate the feasibility of TinyML
technology in embedded devices in an intelligent IoT scenario. To achieve this,
specific objectives include selecting an embedded intelligence application in IoT
devices, along with the corresponding technologies; integrating an embedded
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intelligence application solution using TinyML; developing an information con-
troller to send and store data in a computer network; choosing the proposed field
test environment and planning the validation of the selected embedded devices;
and publishing and comparing the results obtained from the smart devices.

1.3 Related Works

According to [17], billions of devices connected to the IoT are powered by bat-
teries. The IoT is applied in various areas such as Smart Cities, Smart Energy,
and Smart Environment. The performance of these areas relies on the optimized
use of battery life, which becomes a challenge. As mentioned by [18], it is crucial
to understand in detail the charge and energy consumption of battery-powered
devices.

In Fig. 1, a comparison of active energy consumption is presented between
traditional Machine Learning (ML) devices and those supported by TinyML. On
the horizontal axis, we have the NDP100 (consumption of 150 uW) and Cortex-
M7 (consumption of 23.5 mW) devices, which belong to the TinyML system,
while the RasPi 4 (consumption of 3.4 W) and 6049GP-TRT (consumption of
2000 W) belong to the MLPerf systems. By analyzing the vertical axis, we can
conclude that TinyML systems can have up to four times less energy consump-
tion compared to state-of-the-art ML systems, representing a significant energy
saving.

Fig. 1. A comparison of active energy consumption between ML systems and those
supported by TinyML [19].

According to the study by Khan et al. [5], TinyML has the capability to
run computer vision models. The study highlights research in Machine Learning
(ML) and computer vision across various domains, divided into different fields.
The research fields include Weather Forecasting, Agriculture, Medical Sciences,
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Professional Sports, and Facial Recognition, each representing 6%. The fields of
Industries, Professional Sports, and City Traffic Levels have a representation of
12% each, while Biological Sciences and Human Activity are the most represen-
tative fields, each with 19%.

Regarding ML applications in computer vision, it is observed that they have
been successfully used in various areas such as weather forecasting, biological
sciences, expression reading, food security, species classification, sports, traffic
flow monitoring, and predictive maintenance in industries. Some areas, such
as biological sciences, human activity interpretation, traffic management, and
professional sports, are emerging. The study concluded that object detection,
classification, and prediction are the most frequently performed tasks in com-
puter vision with ML. All these areas mentioned in the research can be applied
in the context of the Internet of Things (IoT), emphasizing the importance of
studies on energy efficiency in this field.

The study by Jolly et al. [18] addresses the end-of-life behavior of batteries
in IoT devices. The study utilizes measurements from the battery of the IoT
device Keysight X8712A at different voltage levels. It was observed that the
charge consumption varies as the voltage decreases, providing valuable insights
for optimizing battery life.

Several strategies to extend battery life are presented, such as disabling
non-essential features, reducing sensor measurement frequency, minimizing data
transmission, and alerting users when the battery level is low. These measures
aim to improve customer satisfaction and add value to IoT devices.

Overall, these studies highlight the importance of energy management and
conservation in IoT devices, offering insights and strategies to optimize energy
consumption and extend battery life. This is crucial for the performance and
efficiency of these devices, providing benefits to end-users.

2 Method

To achieve the objectives of this work and assess the energy availability and
behavior of TinyML technology in IoT devices using a computer vision model,
this chapter discusses the materials and methods that will be employed. It begins
by describing the methods, which include field research and the project devel-
opment flow, followed by an explanation of how the TinyML application was
developed. Lastly, the materials and technologies used in the development of
this work will be presented in detail.

2.1 Study Design

The project will be applied in an empirical case study research. Conducting
experimental research is widely used to study software and protocol design for
IoT use cases. These experiments can be used to verify or even refute theories
or simulations of the researched model, which is a crucial point for the test
we will use through case studies. In addition to the initial project, suggestions
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and improvements for its study will be proposed in this work. Regarding field
research, guidance is provided on how to conduct field research with market-
oriented research lessons, which can be divided into four activities: choosing
what to study, whom to study with, conducting the research, and elaborating
the results [20]. Based on these four activities, we have chosen what to study and
whom to study with, focusing on the energy efficiency of a pre-trained computer
vision TinyML model. Some changes were made to the code, using appropriate
tools for inference on embedded devices and applying it in a real IoT scenario,
which was tested at the Federal Institute of Espirito Santo. After conducting
the research, the results were elaborated and discussed. Various different tools
are used for experimental research in IoT systems, including the implementation
of the approach itself, software platforms, frameworks, and hardware. Addition-
ally, tools are used to schedule, execute, control, and evaluate the necessary
experiment [21].

Defining the field research methodology for the prototype to run its experi-
ment in the case study, there is a flow to be followed before developing ML to
TinyML. The following flowchart in Fig. 2 addresses each stage of the develop-
ment flow of the chosen ML model until its implementation on an embedded
device. The first stage is “Choose a model,” which will be an existing applica-
tion model for computer vision in the TensorFlow Lite version. The next stage
is “Convert the model,” but this work does not aim to convert the Tensor-
Flow model to the lite version, as the lite version of the model has already been
selected, skipping this part. In the third stage, “Perform inference with the model
on the microcontroller,” a custom framework will be used for this procedure to
bring intelligence to the embedded system. Finally, we have the optional last
stage, “Optimize your model.” In this stage, the model was customized to count
people, aiming to have a computer vision application to verify the battery’s via-
bility. In the optimization development stage, the C++ language was used, and
then the model inference was executed on the microcontroller through a Linux
terminal [22].

Fig. 2. Flowchart of the work development [22].

2.2 Prototype Development

In this section, we will describe the development of the prototype. Firstly, among
the various existing TinyML models, it was recommended to conduct an exper-
iment that involves the use of a camera sensor, which is a critical aspect in
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IoT. Therefore, a TinyML computer vision model was chosen that detects peo-
ple using the camera sensor. The code was optimized to count the number of
people once the detection is performed, and this technology was inferred in the
embedded system. The entire process, from model selection to inference on the
embedded system, will be detailed. The study of the lithium battery’s perfor-
mance over time is achieved through a voltage divider, and the development of
another controller that retrieves information about the people count and current
battery level, and sends the data over the network to be saved in a non-relational
database.

TinyML Model for Computer Vision: The Espressif platform provides
resources for application developers to realize their ideas, particularly for IoT
applications. Therefore, it was chosen for development in this work along with
the TinyML model. Before selecting the TinyML computer vision model, it is
necessary to install and configure the ESP-IDF framework. The programming
guide can be found on the Espressif website [23], as referenced. According to
the documentation, a few prerequisites need to be installed, such as CMake
and Ninja build tools. To obtain the chosen model, Git needs to be installed for
cloning. The framework will be operated through the command line of the Linux
Ubuntu 20.04 LTS operating system, which was the latest stable version at the
time of development. The ESP-IDF framework was also installed via the Linux
terminal, and version 4.1 (release version) was used [24].

The first step involves installing the aforementioned prerequisites. The second
step is to install ESP-IDF, followed by the third step, which is setting up the
tools. In step 4, the environment variables are set up, and then the TinyML
project with computer vision can be developed.

The directory structure includes a term called “Component,” where function-
alities can be implemented. In this project, the chosen model comes pre-installed
and configured with the esp32-camera component (for accessing the camera sen-
sor) and the tflmicro library (TFL library for microcontrollers). The model is
no longer located in the original directory developed on the TensorFlow Lite
GitHub repository [25].

The model detects people through the camera sensor. The author added
a counter during the detection process and activated a digital output pin to
communicate with the ESP8266 board. After optimizing the code, the project
is built, flashed, or monitored directly from the terminal [26]. Now, the model is
ready to be used practically in a real-world environment.

Data Controller for Network Transmission: For the data controller for
network transmission, the Arduino IDE was used to develop the code. When
the computer vision application detects and counts a person, the output pin on
the ESP32-CAM signals this by activating an LED, indicating that a person
has been detected. This information is then sent to the ESP8266. In addition
to obtaining a people count, this microcontroller also includes a voltage divider
to calculate the level of the lithium battery, with the value obtained from an
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analog pin. Furthermore, a second count was implemented in the prototype to
track the duration of its operation while the battery powers the entire system.
The ESP8266 microcontroller sends the data through its Wi-Fi connection to a
gateway for further transmission on the network [27].

2.3 Materials and Technologies

In this section on Materials and Technologies, we discuss the hardware compo-
nents used to assemble the prototype, the software tools utilized for application
development, and the complementary accessories that, when combined with the
hardware and software, form the complete prototype.

ESP32-CAM: The ESP32 CAM board is a low-cost microcontroller equipped
with Wi-Fi and camera sensor, ideal for projects involving computer vision, IP
cameras, and video streaming. Supporting both OV2640 and OV7640 cameras,
along with built-in flash, it has a low-power 32-bit CPU and a clock speed of
160MHz. It has various built-in sleep modes and a CAM SRAM board, enabling
easy implementation of low-power projects. Its Wi-Fi connectivity allows for
live data visualization with high-quality, real-time images. Encoding can be done
using the FTDI cable or the Module B (also called shield), which provides a micro
USB port for easier microcontroller programming, as well as additional hardware
protection. With all these features, the ESP32 CAM board is an excellent option
for IoT projects and others that require a microcontroller with computer vision
capabilities [28]

ESP8266: In the proposed project, the NodeMCU is used to capture the battery
level at the time of person detection, total people count, and the runtime of the
application. The NodeMCU is a low-cost microcontroller that runs firmware
on the ESP8266 WiFi SOC, developed by Espressif Systems. This hardware is
an opensource platform and can be worked with IoT due to its features. The
NodeMCU is based on the ESP-12 module and has 16 digital I/O pins and
one analog pin. Additionally, it has Wi-Fi connectivity features and operates
at a voltage of 3.3V. Using the Wi-Fi connection, it sends this data through a
gateway to the network, where the database receives them in real-time, allowing
them to be viewed through a computer or smartphone [28]

Framework ESP-IDF: According to Espressif’s official documentation, the
Espressif IoT Development Framework (ESP-IDF) is an application development
framework intended for the Systemon-Chips (SoCs) of the ESP32, ESP32-S, and
ESP32-C series. The use of ESP-IDF allows the configuration of the software
development environment for hardware based on the ESP32 chip, as well as
enabling the modification of the board on which the application will be used. It
is possible to customize the menu of sensors and applications, as well as build
and update the firmware on an ESP32 board according to the specific needs of
the project [29].
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Firebase Realtime Database: Developed by Google, Firebase Realtime
Database is a cloud-hosted database. Data is stored as JSON and synchronized
in real time. For each connected client, the data is available and remains visible
even when the app is offline. It allows for the creation of cross-platform appli-
cations for Arduino, Apple, Android, and JavaScript. All clients share a single
instance of the Realtime Database and receive automatic updates with the latest
data received. The cloud database is a NoSQL, non-relational database, where
there is no direct mapping of classes to the database. In this work, we collect
battery level and people count information through sensors, with the objective of
gathering data from these sensors and sending the information over the internet
to a cloud server. Hence, Firebase was a suitable choice [30].

3 Case Study

For the assembly of the prototype, in each case study, all the hardware com-
ponents were mounted on a sturdy clipboard material using wires and screws
to provide additional stability. In addition to some parts, hot glue was used
for enhanced protection. A protoboard was used, along with jumpers, to inter-
connect the microcontrollers and the 18650 lithium batteries, which power the
system. Diodes and resistors were also utilized.

Fig. 3. Prototype Work Plan 1
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Fig. 4. Prototype Work Plan 2

For the computer vision application, a system capable of recognizing people
through a camera sensor was chosen. With the model inferred in the embed-
ded system, the code was modified to count the number of people detected and
activate an output port indicating that the person was detected. Firstly, the
application detects and counts people through a camera sensor using artificial
intelligence. Then, the controller sends the data over the network and stores
it in a non-relational database. With this system, it is possible to monitor the
presence of people in a given space and collect valuable information for analy-
sis and decision-making [14]. The TinyML system and the control system are
interconnected through a protoboard, while the lithium battery provides all the
necessary power for the system. As shown in Fig. 3 we can see how the first pro-
totype was assembled, using a single battery module. From there, improvements
were made for a second prototype, as shown in Fig. 4 where a case with three
batteries in series and a voltage regulator were used to power the circuit at 5 V.

3.1 Results and Discussion

To generate the results, we selected the Federal Institute of Esṕırito Santo (IFES)
as the field research location. IFES is an academic center that offers courses rang-
ing from technical programs to doctoral degrees. Currently, it has 22 campuses,
with a total of 1300 professors and 36,000 students. Among these campuses, we
chose the Serra Unit to install the prototype. According to information from the
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Academic Records Coordination (CRA) and the General Coordination of Peo-
ple Management (CGGP), the Serra Campus has 1679 students and 180 staff
members, including permanent, temporary, and reinstated personnel. In terms
of physical space, the Serra Campus consists of 09 blocks, with a total land area
of 150,000 square meters. The prototype was installed at the entrance, near the
turnstiles, where there is a higher flow of people accessing the Serra Campus
[31].

With the data collected from the non-relational database, using the high-level
language Python [32] and the Google Colaboratory (Colab) tool [33], graphs were
plotted to visualize the proposed study. Each 18650 model battery used in the
prototype has a capacity of 3000mAh and a current rating of 30A.

Fig. 5. Prototypes cycle - Axis x(People) / Axis y(Battery Level)

First Prototype: In this prototype, we used a single 18650 battery connected
to the lithium charger module. Since the circuit requires 5V, the battery has
4.2V, but the module circuit has a 5V output, which can power the prototype
circuit this way. As can be seen in the left of the image as shown in the Fig. 5
281 people were detected on the x-axis, and on the y-axis, the battery level
consumed. The cycle detected a total of 281 people in a time of 2 h and 21 min.
In the next prototype, we will use a multimeter to obtain more research data on
battery power consumption during circuit use.

Second Prototype: In this prototype, three 18650 battery models were used,
connected in series through a battery case, allowing an output of up to 12V. To
power the circuit, a voltage regulator was used to convert the 12V voltage to
5V. Two tests were performed, one with the camera sensor module connected
to detect people, and another without the camera sensor module to compare
battery consumption. A graph was also generated to analyze the consumption
of the three batteries over a six-hour interval, which was the maximum time the
circuit with the camera sensor module was able to support, generating significant
results.
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Without Camera Sensor Module: In this test, no people were detected, so
it was not necessary to generate a counting graph. However, in to the right of
the image as shown in the Fig. 5, a graph of the voltage consumption of the
batteries in series without the camera sensor module was presented. On the x-
axis, we have a time interval of up to 6 h, and on the yaxis, the initial voltage
of the 3 batteries, allowing for visualization of their behavior. Battery 3 had
its consumption changed between 4 and 5 h of prototype use, a longer time
compared to the graph in Fig. 6. All batteries were measured every hour using
a multimeter. Initially, when the circuit began to be powered, the

Without Camera Sensor Module: In this test, no people were detected, so
it was not necessary to generate a counting graph. However, in Fig. 6, a graph
of the voltage consumption of the batteries in series without the camera sensor
module was presented. On the x-axis, we have a time interval of up to 6 h, and
on the yaxis, the initial voltage of the 3 batteries, allowing for visualization of
their behavior. Battery 3 had its consumption changed between 4 and 5 h of
prototype use, a longer time compared to the graph in Fig. 6. All batteries were
measured every hour using a multimeter. Initially, when the circuit began to be
powered, the three batteries in series totaled 11.86 V. In the end, the batteries
presented a total voltage of 5.58 V.

Fig. 6. Batteries with camera sensor - X-axis(Hours)/Yaxis(Battery voltage)
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Final Considerations: Firstly, it is important to highlight that accurately
measuring the consumption of a lithium battery is a challenge that has been
addressed by various researchers, such as [Kravari et al. 2017] and [Jolly 2019].
To overcome this difficulty, we used a multimeter to obtain more precise measure-
ments from prototype 2, allowing for a more accurate analysis of the consumption
of the TinyML model in conjunction with the circuit and microcontrollers. In the
first test with prototype 1, no significant changes were observed in its behavior,
as shown in the graph of Fig. 4. The proposed TinyML model has a relevant
accuracy for people detection. However, the objective of this work was not to
precisely measure people detection, but rather to evaluate how TinyML, in con-
junction with a computer vision application, behaves in the context of IoT in
terms of battery consumption. Thus, our focus was to present data on the lifes-
pan of the lithium battery that powers the entire embedded device. Considering
that a 3000 mAh, 30 A model 18650 lithium battery has a maximum voltage of
4.2 V and a minimum of 3.7 V, we analyzed two different cases with prototype 2.
In the first case, where the camera sensor was used, the batteries in series started
with 11.81 V and ended with 4.31 V after 6 h of use, totaling a consumption of
7.5 V, or 1.25 V/h. In the second case, where the camera sensor was not used, the
batteries started with a total of 11.86 V and ended with 6.28 V after 6 h, totaling
a consumption of 5.58 V, or 0.93 V/h. These data indicate that the camera sen-
sor has a significant energy expenditure in a computer vision application with
machine learning. Based on the results obtained, we can conclude, according to
[Banbury et al. 2020], that TinyML presents much higher energy efficiency in
microcontrollers with low processing, memory, and storage. Compared to large-
scale machine learning models, this experiment would be unfeasible. Although
the application serves its functions for several hours, improvements can be pro-
posed to further increase the battery life in an IoT scenario. An interesting
solution to this problem was presented by [Srinivasan et al. 2019], who pro-
pose energy management and conservation strategies. Thus, we suggest some
improvements in future works for this study.

4 Conclusion and Future Work

Although existing literature on TinyML points to its potential use in IoT devices,
no studies were found that prove its energy viability in this field test con-
text. Given this gap, the present study was developed with the aim of evalu-
ating the energy viability of intelligent IoT sensors using TinyML for computer
vision applications in a real-world environment. TinyML technology emerges as
a promising solution to reduce memory, storage, and computational processing
in IoT devices. Additionally, computer vision applications in IoT environments
have significant potential in various areas, as indicated by previous studies in
this work, both in the IoT and computer vision scenarios. Field research con-
ducted at a Federal Institute revealed the voltage expenditures of the prototype
and allowed for the identification of improvements to advance the use of TinyML
technology. To increase battery life in application usage, for future studies, it is
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suggested to add an Arduino Uno that receives 12 V and supplies 5 V to the
microcontroller, along with the data to be sent every 10 min in deep sleep mode.
During this period, the data controller enters a low-power state. Another sugges-
tion is to power the circuit through a solar kit to prolong the life of the lithium
battery. These ideas of disabling resources in the microcontroller during spe-
cific time intervals, such as Wi-Fi, which consumes high energy, are mentioned
in related works. With these improvements and suggestions for future work,
a longer battery life is expected, contributing to the advancement of TinyML
technology in the field of IoT.
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Abstract. The deployment of highly parameterized Neural Network
(NN) models on resource-constrained hardware platforms such as IoT
edge devices is a challenging task due to their large size, expensive com-
putational costs, and high memory requirements. To address this, we
propose a Simulated Annealing (SA) algorithm-based NN optimization
approach to generate area-optimized hardware for multilayer perceptrons
on IoT edge devices. Our SA loop aims to change hidden layer weights
to integer values and uses a two-step process to round new weights
that are proximate to integers to reduce the hardware due to opera-
tion strength reduction, making it a perfect solution for IoT devices.
Throughout the optimization process, we prioritize SA moves that do
not compromise the model’s efficiency, ensuring optimal performance in
a resource-constrained environment. We validate our proposed method-
ology on five MLP benchmarks implemented on FPGA, and we observe
that the best-case savings are obtained when the amount of perturba-
tion (p) is 10% and the number of perturbations at each temperature
(N) is 10,000, keeping constant temperature reduction function (α) at
0.95. For the best-case solution, the average savings in Lookup Tables
(LUTs) and filpflops (FFs) are 24.83% and 25.76%, respectively, with an
average model accuracy degradation of 1.64%. Our proposed SA-based
NN optimization method can significantly improve the deployment of
area-efficient NN models on resource-constrained IoT edge devices with-
out compromising model accuracy, making it a promising approach for
various IoT applications.

Keywords: Machine learning · Edge-AI · Metaheuristic · Smart
Embedded systems · FPGA · Optimization

1 Introduction

Deep Neural Networks’ success has been largely attributed to the construction
of highly complex larger neural networks (NNs). The excessive parameterization
of these NNs results in extremely accurate models. This enables these models
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to perform more effectively and accurately across a range of applications, such
as image classification [12], object detection, etc. However, this also significantly
raises the cost of their use in terms of resource utilization. These highly param-
eterized NN models require massive computational costs and memory require-
ments, making distribution more difficult. Larger NN models also take longer
to run and necessitate more hardware resources. This is really a serious concern
when designing a NN hardware model for resource-constrained environments for
real-world applications.

The surge in the use of IoT edge devices because of their portability,
lightweight, and low power requirements [8,11] demands an efficient NN hard-
ware model. Hence, there is a great demand for lightweight, compressed ver-
sions of these NN models that can be easily deployed for IoT applications such
as home automation, healthcare, automobiles, transportation, etc. As a result,
researchers are focusing on designing lightweight, compressed NN models with
high accuracy. Some of the research topics that have been studied include prun-
ing, quantization, knowledge distillation, the co-design of NN architecture and
hardware, and efficient NN model architecture design [6]. There are still a ton
of untapped research areas that can be immensely useful for creating efficient
compressed NN models for research-constrained environments.

We propose a metaheuristic algorithm, SA based NN optimization method-
ology to build an energy-efficient, lightweight, and compressed NN hardware
model for resource-constrained environments. In our proposed methodology, we
fine tune the micro-architectural parameters (neuron weights) of the hidden layer
of the MLP. We consider a single hidden-layer MLP for this work. The fine-
tuning procedure is carried out in two parts. The SA algorithm is customized to
generate an optimized MLP model. A subset of hidden layer neuron weights is
used for perturbation in the custom-modified SA algorithm. During the pertur-
bation, the generated weights whose values are close to integer are rounded to
the next-nearest integer value. Once the optimized MLP model is generated, we
apply hardware optimization approaches to further compress it. We use opera-
tor strength reduction techniques such as bit shifting for replacing multiplication
operations for all the weights whose values are 1 and multiple of power of 2, (2m,
where m is the indices). We prune down all the weight with 0 values. We also
simplify multiplication operations of the weights whose values are multiple of
power of (2m+1) and (2m+2) using the multiplier strength reduction and addi-
tion operations. This results in an optimized, lightweight, and compressed MLP
model. Based on an estimation of the hardware resources utilized by a single
unit of the IEEE-754 single-precision FP32 multiplier and adder architecture,
we evaluate the performance of our hardware MLP model inference architec-
ture. The hardware resource utilization of a single unit of a multiplier and an
adder is 60 LUTs and 51 LUTs, respectively.

In our initial exploratory research [9], we conducted three different exper-
iments where we kept the constant value of α at 0.95, p at 10 %, and varied
the value of N from 100 to 10,000. Our results showed that there was a notable
increase in the savings of LUTs and FFs as N increased. On the most favorable
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outcome, we attain an average savings of 24.45% in FFs and 25.51% in LUTs.
Furthermore, in our subsequent research work [10], we conducted twelve different
experiments where we kept the value of p constant at 10% and varied the values
of α and N from 0.80 to 0.99 and 100 to 10,000, respectively. We also performed
resizing of the registers to decrease the memory requirements for storing all inte-
ger weights, which resulted in significant savings in FFs, area, and power when
implementing an ASICs based design. For area, FFs, and power, the optimal
scenario yields savings of 27.53%, 27.71%, and 27.28%, respectively.

In this paper, we extend upon our preliminary research by investigating how
the values of p and N affect the results when α is held constant at 0.95 and
also simplifying the multiplication operations of the integer weights to further
save the memory. We perform an extensive experiment to validate our NN model
using five well-known classification datasets. Twelve different experimental obser-
vations have been performed using different perturbation amounts, p of hidden
layer neuron weights. For each p, we conduct different experiments by varying
the number of iterations, N , used in the custom-modified SA algorithm. The
values of N used in this work are 100, 1,000, and 10,000, respectively, for all
the datasets. We find the best optimal solution for each of the five classification
datasets with p = 10% and N = 10,000. Overall, we observe an average savings
of 24.83% in LUTs and 25.76% in FFs as compared to the regular NN model.
These experiments are performed to validate our proof-of-concept. The experi-
mental findings show promising results that can be further explored to design a
much more complex NN model.

The rest of the paper is structured as follows: Sect. 2 presents background
on NN and multilayer perceptron (MLP), SA, and an overview of the exist-
ing literature. Section 3 presents our proposed methodology. Section 4 reports
experimental comparisons and outcomes along with a discussion of the findings.
Finally, we present the conclusion and potential future perspectives in Sect. 5.

2 Background and Related Work

In this section, we review the contemporary works on NNs, simulated annealing,
and related work to design efficient NN models.

2.1 Neural Networks and Multilayer Perceptron

Neural networks mimic the activity of the human brain, enabling AI, machine
learning, and deep learning systems to spot patterns and solve common issues.
These networks, also known as “artificial neural networks” are subfields of
machine learning. These networks have nodes that are interconnected and
arranged in layers. In general, they have three layers: an input layer, single
or multiple hidden layers, and an output layer. The term “Multilayer Percep-
tron” refers to a fully connected multilayer neural network. Figure 1 shows an
MLP with a single hidden layer. Each of these layers computes and passes on
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the values to the next layer, which is calculated using Eq. 1.

Hi =
n∑

i=1

xi ∗ wi + bi (1)

The nodes, or neurons, are assigned a weight W and a threshold, and after
performing the necessary computation, they are forwarded further [4,13]. The
hidden layers are computationally heavy, and all the neurons are connected to
all the layers in the previous layer and the subsequent layers, to be called fully
connected layers.

x1

x2

x3

Input layer

h1

h2

h3

Hidden layer

y1

y2

Output layer

Fig. 1. A 3-input 2-output Multilayer Perceptron

2.2 Simulated Annealing

The simulated annealing algorithm is a global search optimization method
inspired by the metallurgical annealing process. It is a technique used to solve
unconstrained and constrained optimization issues. The fundamental approach
for implementing this analogy to the annealing method consists of generating
randomized spots in the proximity of the current optimal point and evaluating
the problem functions there [14]. In ML, this algorithm can be used to determine
the optimal features during the feature selection procedure by simulating this
process. If the value of a cost function is less than its current best value, the point
is accepted, and the best function value is adjusted. The point is accepted or
refused based on whether or not the function value is greater than the best value
found to date. In contrast to other local search algorithms, simulated annealing
performs admirably even when applied to non-linear objective functions, whereas
those other algorithms are unlikely to do so. It utilizes randomization as a com-
ponent of its search process. The probability of accepting poorer answers is large
at the beginning of the search algorithm and reduces as it progresses, allowing
the algorithm to first identify the global optima region, escape the local optima,
then proceed to the optima itself.

2.3 Related Work

Several works have been published in the literature to build a lightweight, com-
pressed version of NN models. Hu et al. [7] proposed a NN model compres-
sion technique called the one-shot pruning-quantization method (OPQ) that
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solves the compression allocation analytically using weight parameters that have
already been trained. This method avoids the need for manual tuning or iterative
optimization. Unstructured and structured pruning are the two main subcate-
gories of pruning methods. Lee et al. [15] presented an unstructured pruning
approach that prunes the unimportant weights of a NN once during initializa-
tion before training. Similarly, Park et al. [18] presented a simple unstructured
magnitude-based pruning method that extends the single-layer optimization to
a multi-layer optimization. A structured pruning-based general framework for
compressing the NN based on neuron importance levels is presented in [21].
Lin et al. [16] proposed a structured pruning based global and dynamic prun-
ing (GDP) approach to prune unnecessary filters for CNN acceleration. A shift
operation-based spatial information collection strategy as an alternative to spa-
tial convolutions is presented in [20]. In this method, end-to-end trainable shift-
based modules are created by combining shifts and point-wise convolutions. Some
of the works that have been studied regarding optimizing the micro-architecture
and macro-architecture of NN for designing efficient NN model architectures are
presented in [17].

3 Proposed Work

This section gives an overview of our proposed work. We present a metaheuristic
algorithm-based optimization technique for designing efficient inference hard-
ware models for NNs.

3.1 SA Algorithm-Based NN Optimization

We propose a NN optimization method for developing a fine-tuned and com-
pressed NN model based on the SA algorithm. The optimization methodology
that we develop focuses mainly on fine-tuning the micro-architectural elements,
such as neuron weights, of the hidden layers of MLP networks. We apply the
fine-tuning process in two steps. First, we created an optimized and compressed
MLP model using the custom-modified SA algorithm. Then, we apply the dif-
ferent hardware optimization techniques. We apply operator strength reduction,
implemented using bit shifting, to handle the multiplication operations for mul-
tiples of power of 2 (2m, where m is the indices). We meticulously prune the
hidden layer neurons, which consist of weights with 0 values to slim the over-
all parameters of MLP. We also reduce the multiplication operations of all the
hidden layer neurons consisting of weights with value 1. We further simplify the
multiplication of the weights with values as multiples of (2m + 1) and (2m + 2)
using operator strength reduction and addition operations. Figure 2 illustrates
the hardware optimization process.
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Fig. 2. Illustrations of the hardware optimization process. a) Pruning of the terms
with W = 0 b) Removal of the multiplier operator with W = 1. c) Multiplier strength
reduction for weight with value as of form 2m using bit shifting operations. d) Simpli-
fication of the multiplication of weights with value as a multiple of (2m + 1) using bit
shifting operation. e) Simplification of the multiplication of the weight with value as a
multiple of (2m + 2) using bit shifting operation and an adder operator.

The Algorithm1 depicts our proposed SA algorithm-based MLP optimization
method. The details of the proposed approach are described as follows:

– First, we prepare the training dataset, D, along with the pre-trained single-
layered MLP model with weights, W and biases, B. The pre-trained MLP
model contains its parameters in IEEE-754 single-precision FP32 format.

– The SA algorithm’s various parameters are subsequently initialized. As a
starting point, we choose the random solution along with the starting anneal-
ing temperature Tinit, and the temperature reduction function, α. The start-
ing annealing temperature is kept at 100. As we run the SA algorithm, the
temperature T decays with α, which is given by T = α * T .

– Then, we select the specific percentage, (perturbation amount (p)) of the
hidden layer neuron weights, Wp for the perturbation of all the neuron weights
of the hidden layer, Wh at random, where Wp ⊆ Wh.

– We also specify the number of iterations, N , before running the SA algorithm.
Once the SA algorithm is run, we perturb each neuron’s weight of the hidden
layer at random in each iteration of the training. The Wp is proportional to
the T in our proposed methodology.

– For each iteration, the analysis of the newly generated hidden layer neuron
weights, W

′
is performed. If some of the W

′
are proximate to the integer

value, we round them to the nearest neighbor integer.
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Algorithm 1. Our proposed methodology optimization process

Input: A pre-trained IEEE-754 FP32 single hidden layered MLP model with W
weights, B biases and training dataset, D.
Output: Optimized MLP model
1: Select the initial random solution, starting annealing temperature, Tinit and
temperature reduction function, α.
2: Select a specific % p of the hidden layer neuron weights, Wp at random to perturb
all the weights, Wh of the hidden layer neurons. � Wp ⊆ Wh

3: N ← Number of iterations
4: While T > Tfinal do
5: for each iteration i in N do
6: repeat
7: Perturb each neuron weight of the hidden layer random. � Wp ∝ T

8: Train the MLP model and generate new hidden layer neuron weights, W.
′

9: if some of the W
′
values are ≈ integer then

10: Round them to the proximate integer value.
11: Measure the predictive performance.
12: if performance criteria are met then
13: Accept W

′
and the solution.

14: else
15: Calculate acceptance probability, P (acceptance).
16: Generate random number, R. � R ∈ [0, 1]
17: if R > P (acceptance) then
18: Reject W.

′

19: else
20: Accept W

′
and the solution.

21: end if
22: end if
23: end if
24: until all the datasets from D are selected.
25: end for
26: Reduce the T . � T = α * T
27: end

– Then the predictive performance is calculated in terms of the accuracy of the
model. If there is an increase in the predictive performance, we accept the
newly generated hidden layer neuron weights, W

′
and the solution. If not, we

compute the acceptance probability, P (acceptance).
– After calculating the acceptance probability, generate a random number,

R ∈ [0, 1]. If R is greater than P (acceptance), we discard the W
′

else we
accept the W

′
and the solution. The equation of the acceptance probability,

P (acceptance) is given by:

P (acceptance) =
{

exp(−ΔC/T ), if ΔC ≥ 0 (2)
1 if ΔC < 0 (3)
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where, ΔC = new cost function - old cost function.
The chances of accepting a worse solution decrease as the number of iterations
increases. The smaller the temperature, the lower the acceptance probability.
Additionally, the larger the ΔC, the lower the acceptance probability.

– Once the number of iterations reaches the maximum number of iterations,
Nmax we reduce the T by a factor of α. Again, the model is trained for
N until the model converges to an optimal solution or the final annealing
temperature reaches Tfinal.

For this proposed work, the value of α is kept constant at 0.95. To verify our
proof-of-concept, we extensively run the experiments for three different pertur-
bation amounts: p = 5%, 10%, 15%, and 20%, in order to generate the optimal
MLP model. With each perturbation amount, we run the experiment using three
different iteration values: N = 100, 1,000, and 10,000.

Once the training is complete, we obtain the optimal neuron weights for the
hidden layer of the optimized MLP model. The hidden layer neuron weights are
further fine-tuned using pruning and hardware optimization techniques. All the
weights with 0 values are pruned away. The weights with value 1 and 2m are
further reduced using operator strength reduction. This reduces the number of
multiplication operators. Additionally, we further reduce the multiplication of
the integer weight values which are multiples of the form (2m + 1) and (2m +
2) by the application of bit shifting and addition operations. This reduces the
neural parameters of the hidden layer of the MLP model. This contributes to
a substantial decrease in the memory footprint and computational cost of the
MLP model. As a result, a lightweight, effective, and efficient condensed MLP
model that is suitable for edge-AI devices is generated.

Table 1. MLP model configurations.

Dataset MLP
Configurations

# of
Parameters

Iris 4-4-3 35
Heart Disease 13-10-2 162
Breast Cancer Wisconsin 30-10-2 332
Credit Card Fraud Detection 29-15-2 482
Fetal Health 21-21-3 528

4 Experimental Results

In this section, we discuss the experimental flow and findings to evaluate our
proposed method. We evaluate our proposed method using five well-known clas-
sification datasets, i.e., Iris [5], Heart Disease [3], Breast Cancer Wisconsin (Diag-
nostic) [19], Credit Card Fraud Detection [2], and Fetal Health Classification [1],
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respectively. The experiment flow for this work consists of training the classifi-
cation datasets using contemporary methods by randomly dividing the training
and testing data in an 80:20 ratio to generate the MLP model. In the proposed
work, we train all the datasets using a single hidden layer MLP. Once the MLP
model is generated, we use the same parameters as the pre-trained MLP model
along with the dataset as an input to the custom-modified SA algorithm. After
running the SA algorithm for several iterations, the optimized version of the
MLP model is obtained.

We evaluate our hardware MLP model inference architecture based on an
estimation of the hardware resources utilized by a single unit of IEEE-754 single-
precision FP32 multiplier and adder circuit architecture. The Xilinx Vivado
v.2019.2 tools is used to synthesize the single unit of an IEEE-754 single-
precision FP32 multiplier and adder for the Virtex R©-7vx485tffg1157-1 FPGA.
The resource consumption of a single unit of a multiplier and adder is 60 LUTs
and 51 LUTs, respectively. We also evaluate the accuracy of the SA-optimized
MLP model using both training and testing datasets.

The model configuration of single hidden layered MLP for five different clas-
sification datasets is shown in Table 1. The Iris dataset consists of 150 data
instances. The MLP configuration for the Iris dataset [5] consists of 4 input
layer units, 4 hidden layer units, and 3 output layer units. The Heart Disease
dataset [3] consists of 1025 instances, and its MLP configuration is 13 input
layer units, 10 hidden layer units, and 2 output layer units. The Breast Cancer
Wisconsin (Diagnostic) [19] consists of 569 instances and its MLP configuration
is 30 input layer units, 10 hidden layer units, and 2 output layer units. The
Credit Card Fraud Detection dataset [2] consists of 284,807 instances, and its
MLP configuration is 29 input layer units, 15 hidden layer units, and 2 output
layer units. Similarly, the Fetal Health Classification dataset [1] consists of 2,126
instances, and its MLP configuration is 21 input layer units, 21 hidden layer
units, and 3 output layer units.

Table 2. Optimized MLP model configurations for the best case solution with p =10%
and N = 10,000

Dataset # of
Parameters

# of parameters
rounded
to integers

(%) of
parameters
rounded

Iris 28 7 20%
Heart Disease 136 26 16%
Breast Cancer
Wisconsin

271 61 18%

Credit Card
Fraud Detection

370 112 23%

Fetal Health 417 111 21%
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We conduct extensive experiments to evaluate the efficacy of our proposed
methodology by comparing our SA-optimized MLP model with the regular MLP
model. The evaluation of the optimized MLP model is based on the reduced
number of LUTs and FFs required as compared to the regular MLP model.
We perform a total of 12 experiments by making variations in the perturbation
amount p of the hidden layer neurons’ weight parameter along with the number
of iterations N to execute the custom-modified SA algorithm for generating
the optimized model that is suitable for resource-constrained environments. The
temperature reduction function, α is kept at 0.95 for all the experiments. The
perturbation amounts p used in this experiment are 5%, 10%, 15%, and 20%,
respectively. For each p, we execute the SA algorithm for 100, 1,000, and 10,000
iterations, respectively. Figures 3 and 4 compare savings (%) in terms of LUTs
and FFs between the regular and the SA optimized model with variation in p
and N .

Fig. 3. Comparison of LUTs savings (%) vs. N , varying the p between regular model
and SA-optimized model for different datasets.

Fig. 4. Comparison of FFs savings (%) vs. N , varying the p between regular model
and SA-optimized model for different datasets.

After thorough experimentation on five classification datasets using our pro-
posed method for generating optimal MLP models, we note the following find-
ings: We observe that increasing p does not aid in generating the optimal MLP
model after a certain point. We find the best optimal solution for each of the
five classification datasets with p = 10% and N = 10,000. The best case savings of
LUTs and FFs observed with p = 10% and N = 10,000 are presented in Fig. 5(a)
and 5(b), respectively. We observe savings of 42.94% (LUTs) and 43.19% (FFs)
for the Iris dataset. For the Heart Disease dataset, the savings are 16.34% (LUTs)
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and 19.58% (FFs). For the Breast Cancer Wisconsin (Diagnostic), we observe
savings of 20.83% (LUTs) and 20.08% (FFs). For the Credit Card Fraud Detec-
tion dataset, we record savings of 20.65% (LUTs) and 22.21% (FFs). Lastly,
for the Fetal Health dataset, we achieve savings of 23.49% (LUTs) and 23.77%
(FFs). Furthermore, we also observe that the savings in terms of LUTs and
FFs increase with the increase in N in our proposed approach. Although it
takes more time to run the experiment with a higher N , it generates an opti-
mal solution. Figure 5(c) shows the plot of time vs. N , with p = 10%. Table 2
shows the optimized MLP model configurations for all the datasets when p =
10% and N = 10,000 (best case). We also analyze the accuracy of each of the
MLP models generated using our proposed approach. Table 3, 4 and 5 presents
the accuracy comparison between the regular and SA optimized models with
α = 0.95 and p = 10%. We find that the variation in accuracy of the best solution
produced using our proposed methodology is on average −1.64% as compared
to the regular MLP model’s accuracy.

Fig. 5. Best case plots: when p = 10% (a) FFs saving vs. N . (b) LUTs saving vs. N .
(c) Time vs. N .

Table 3. Accuracy comparison between the regular & SA optimized models with α =
0.95, p = 10%, and N = 100.

N = 100
Dataset Accuracy (%)

Regular
model

Accuracy (%)
SA optimized
model

Gain/Loss (%)
in accuracy

Iris 96.67 95.48 −1.19
Heart Disease 98.83 96.09 −2.74
Breast Cancer
Wisconsin

98.70 95.88 −2.82

Credit Card
Fraud
Detection

96.82 95.98 −0.84

Fetal Health 96.06 94.78 −1.28
Average −1.77
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Our experimental findings show promising results as compared to the regular
MLP model. This shows that our proof-of-concept proposed SA algorithm-based
MLP optimization approach might be suitable for generating optimized MLP
models. As the generated MLP models contain fewer parameters than the regular
MLP model, they are lightweight, compact, and energy efficient. Hence, they
might be well suited for resource-constrained environments such as IoT edge
devices.

Table 4. Accuracy comparison between the regular & SA optimized models with α =
0.95, p = 10% N = 1,000.

N = 1,000
Dataset Accuracy (%)

Regular
model

Accuracy (%)
SA optimized
model

Gain/Loss (%)
in accuracy

Iris 96.67 94.22 −2.45
Heart Disease 98.83 96.11 −2.72
Breast Cancer
Wisconsin

98.70 95.55 −3.15

Credit Card
Fraud
Detection

96.82 95.39 −1.43

Fetal Health 96.06 95.12 −0.94
Average −2.14

Table 5. Accuracy comparison between the regular & SA optimized models with α =
0.95, p = 10% N = 10,000.

N = 10,00
Dataset Accuracy (%)

Regular
model

Accuracy (%)
SA optimized
model

Gain/Loss (%)
in accuracy

Iris 96.67 95.81 −0.86
Heart Disease 98.83 95.67 −3.16
Breast Cancer
Wisconsin

98.70 95.43 −3.27

Credit Card
Fraud
Detection

96.82 96.14 −0.68

Fetal Health 96.06 95.83 −0.23
Average −1.64
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5 Conclusions

In this work, we propose an SA algorithm-based MLP optimization approach to
build a lightweight, energy-efficient, and compressed hardware MLP model. We
finetune the micro-architectural parameters (weights) of the single hidden layer
of MLP to generate the optimized model. The hardware optimization techniques
are further employed to generate the optimum compressed MLP hardware model.
Utilizing five well-known datasets, we conduct comprehensive experiments to
confirm our proposed methodology. Experimental observations demonstrate that
our proposed method produces superior results in terms of hardware resource
(LUTs and FFs) reductions when compared to the regular NN model. For all
the datasets, we find the best optimal solution when the p = 10% and N =
10,000. The purpose of this research work is to validate our proof-of-concept.
In subsequent research work, we will investigate generating highly optimized
compressed NN models with the SA algorithm by varying both the weight and
bias parameters of the NN. We will employ a more complex NN, consisting of a
large number of hidden layers, to produce optimized compressed NN models on
practical hardware platforms.
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Abstract. Sensing and transferring data are critical and challenging tasks for
space missions, especially in the presence of extreme environments. Unlike ter-
restrial environments, space poses unprecedented reliability challenges to wire-
less communication channels due to electromagnetic interference and radiation.
The determination of a dependable channel for exchanging critical data in a
highly intemperate environment is crucial for the success of space missions. This
paper proposes a unique Machine Learning (ML)-based multi-stratum channel
coordinator in building the Resilient Internet of Space Things (ResIST). ResIST
channel coordinator accommodates a lightweight software-defined wireless com-
munication topology that allows dynamic selection of the most trustworthy chan-
nel(s) from a set of disparate frequency channels by utilizing ML technologies.
We build a tool that simulates the space communication channel environments
and then evaluate several prediction models to predict the bandwidths across a set
of channels that experience the influence of radiation and interference. The exper-
imental results show that ML-prediction technologies can be used efficiently for
the determination of reliable channel(s) in extreme environments. Our observa-
tions from the heatmap and error analysis on the various ML-based methods show
that Feed-Forward Neural Network (FFNN) drastically outperforms other ML
methods as well as the simple prediction baseline method.

Keywords: Network Management · Machine Learning · Internet of Things ·
Reliability · Software-defined Wireless Communication

1 Introduction

Sensing is the basis for the monitoring and operation of various space vehicles, satel-
lites, payloads, CubeSats, surface exploration systems, ground testing systems, space
habitats examinations, etc. The necessity lies in a wide range including i) physical sens-
ing for temperature, humidity, and pressure inside or around rocket modules, ii) chemi-
cal sensing of crew capsule or space habitats, mold, mildew, or other airborne bacteria,
iii) crew health monitoring on vital signs and sleep behavior, etc. So, this sensing and
transmitting data reliably and efficiently are integral parts of the National Aeronautics
and Space Administration (NASA)’s recent vision for private astronaut missions, the
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commercial destination to lower-earth orbit, sustainable demand of in-space manufac-
turing, production, or development of a commercial application, etc. [17]. But, the space
environment poses unique and extreme challenges such as radiations from solar events
and cosmic rays, extreme temperatures (both hot and cold according to the location
relative to the Sun), and the absence of the insulating atmosphere of the earth which
could lead this detection and transmission work more unreliable and challenging. Due
to this reliability concerns over the harsh operational environment [6,8], most of the
data transfer in space-related projects is mainly transferred through heavy and bulky
wire-line communication as shown in Fig. 1. Those wire-line communications lead to
many issues such as heavy and spacious spacecraft, inflexible sensor placement, and
high project costs.

Recently, many researchers [6,8,18] have been working on wireless communication
and sensor networking technologies in space subsystems. In addition, recent progress
in communication technology such as effective channel coding and modulation tech-
niques, more significant storage ability, reduced size and expenditure of devices, and
ultra-fast processing abilities broaden the scope of using wireless technology in outer
space area [7]. When the wireless technology’s resilience would be enhanced and
ensured, the benefits of wireless sensors and communication networks in space applica-
tions will be tremendous including reduced weight and cost of spacecraft, easy deploy-
ment of sensors with better area usage, flexible sensor placement along with data gather-
ing from challenging areas and simplification of the Assembly, Integration, and Testing
(AIT) process.

Fig. 1. Wire-lines inside of International Space Station (ISS)-Courtesy of NASA [2]

For facilitating the benefits of transferring sensor data in space environment through
wireless medium, this paper proposes a reliable wireless communication mechanism
named the Resilient Internet of Space Things (ResIST) for space sensor and data trans-
fer applications. We build a unique Machine Learning (ML)-based multi-stratum chan-
nel coordinator, which employs a software-defined wireless communication approach,
allowing dynamic selection of the most reliable channel(s) from a set of divergent fre-
quency channels for direct transmission. Expanding the traditional Radio Frequency
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Fig. 2.ML-SDC in ResIST framework

(RF) spectrum levels of wireless communication, we propose to exploit multi-stratum
electromagnetic (EM) spectra channels that exhibit different physical characteristics
such as RF, infrared (IR), visible lights (VL), etc. Instead of transmitting multiple
channels simultaneously (redundancy-based resilience), we explore ML technologies
to track many potential channels and accurately decide on the reliable channel(s). As
illustrated in Fig. 2, a ML-based Software-defined Coordinator (ML-SDC) monitors the
quality of a large number of adjacent electromagnetic frequency channels and dynami-
cally selects the best medium for direct reliable data transmission. We investigate sev-
eral prediction models, including Exponentially Weighted Moving Average (EWMA)
- the baseline, Feed-Forward Neural Network (FFNN), AlexNet, and Convolutional
Neural Networks (CNN or ConvNet), to substantiate the coordination-based dynamic
selection method’s feasibility in space communication. To the best of our knowledge,
this study is the first work that dynamically uses diverse EM spectrum bands of dif-
ferent characteristics beyond RF. We first build a simulator that generalizes and gen-
erates wireless communication channel conditions by introducing various electromag-
netic interference according to temporal and spectral burstiness of radiations in space
environments. Then, we implement various ML methods to choose reliable and high
bandwidth channels according to the simulated channel conditions. We evaluate the
accuracy of ML methods along with a baseline for predictions of reliable channels. Our
goal is to explore the feasibility of ML for wireless space communication by finding fast
and effective ways to yield high-accuracy predictions of transmission capacity even in
extreme, high-interference environments where unpredictable, seemingly random pro-
cesses are involved. Our experimental results show that ML-prediction technologies
in wireless space communication are feasible and we can improve the reliability and
scalability of the wireless communication system in the presence of high interference
by dynamically switching communication channels in the basis of the ability to ren-
der bandwidth availability predictions across all channels. Our observations from the
heatmap and error analysis of the implemented methods show that FFNN performs bet-
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ter than the baseline method, EWMA, and two other MLDL-based (i.e., AlexNet and
ConvNet).

The rest of the paper is organized as follows. Section 2 discusses related works in
this subject. We have provided a brief idea of ML and DL methods that have been used
in this work in Sect. 3. Our observation and evaluation results are described in Sect. 4.
Finally, Sect. 5 concludes the work.

2 Related Work

We discuss some notable work related to ML-based wireless communication in this
section as Machine Learning (ML) or Deep Learning (DL) methods have gained signif-
icant attention in terrestrial wireless communication for their data-driven pattern recog-
nition capability in physical layer operations, including channel estimation and detec-
tion, channel encoding and decoding, modulation recognition, etc. [23].

Sumathi et al. represent the channel selection method for cognitive radio networks
in [20], where they utilize the machine learning algorithm the support vector machine -
SVM for best possible channel selection for the secondary user with maximum through-
put using transmitted and received power, the data rate, the maximum vacancy time
and the service time. A deep learning-based partially overlapped channel assignment
(POCA) method for wireless SDN-IoT system is proposed in [22]. Bitar et al. in [5]
mention the identification method of sensing wireless ISM band in a heterogeneous
environment with a deep convolutional neural network with improved accuracy. Tang
et al. in [21] propose a deep learning-based prediction algorithm to forecast future
traffic load and congestion in a network with a partial channel assignment algorithm
and intelligently allocate channels to each link in the SDN-IoT network. Authors in
the article [14,26] proposed a dynamic resource allocation and multiple access control
(MAC) protocol method for a heterogeneous network with deep reinforcement learn-
ing. As for wireless resource management for space communications. Authors in [25]
propose a deep learning technique called long short-term memory (LSTM) network for
anticipating the spectrum accessibility of cognitive aerospace communication networks
without prior knowledge of the user activities. Ferreira et al. in [9] propose a hybrid
algorithm for radio resource management for cognitive space communication network
where they integrate multi-objective reinforcement learning, and a deep neural network,
which significantly reduces the cost of spending time and resources on learning action-
performance mapping. Kato et al. in [13] proposed an ML-based solution to address
different problems on a Space-Air-Ground Integrated Network (GIN) and evaluated a
deep learning-based method to improve traffic control performance. Authors in [24]
presented the performance of deep learning model for the channel estimation and sig-
nal detection in orthogonal frequency-division multiplexing (OFDM) systems, which
can perform better for addressing channel distortion and identifying the transmitted
symbols rather than conventional methods.

There have been several studies on channel selections for wireless cellular net-
work related. Kato et al. in [13] proposed an ML-based solution to address differ-
ent problems on a Space-Air-Ground Integrated Network (GIN) and evaluated a deep
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learning-based method to improve traffic control performance. Studies in [11,16] con-
sider resource handover issues for multi Radio Access Technology (multi-RAT) net-
works, traffic flow prediction, and enhance the results of network planning tools by
utilizing various deep learning methods and their results demonstrate that deep learning
can be promising aspects on those aspects. Authors in [12] proposed a deep learning-
based channel estimation technique where they came about a channel learning scheme
using deep auto-encoder, which learned the channel state information (CSI) and min-
imize the mean square error (MSE) of the channel estimation for wireless energy
transfer. Authors in [19] formulate channel rank measurement (CRM) metric data-
set for normal-equation-based supervised machine learning algorithm (NEC algorithm)
which performs channel rank estimation (CRE) of any channel based on average packet
receive and instantaneous values of RSSI. Bai et al. in [4] propose a channel charac-
teristics prediction mechanism based on machine learning (ML) algorithm and convo-
lutional neural network (CNN) for three-dimensional (3D) millimeter wave (mmWave)
massive multiple inputs multiple outputs (MIMO) indoor channels. Authors in [15,27]
proposed a learning-based channel estate information (CSI) prediction method for 5G
wireless communication where they pointed out several important features like fre-
quency band, location, time, humidity, weather, and temperature, etc. that affect the CSI
and after that, they designed a learning mechanism with the integration of CNN (convo-
lutional neural network). Huang et al. in [10] proposed a big data and machine learning-
enabled wireless channel model framework based on artificial neural networks (ANNs),
including feed-forward neural network (FNN) and radial basis function neural network
(RBF-NN). They leveraged the input parameters like transmitter (Tx) and receiver (Rx)
coordinates, Tx-Rx distance, and carrier frequency, while the output parameters are
channel statistical properties, including the received power, root mean square (RMS)
delay spread (DS), and RMS angle spreads (ASs).

Our work differs from the above-mentioned work as we have focused on generat-
ing channel conditions with electromagnetic interference similar to the space or harsh
environment. We have leveraged ML techniques to predict reliable and high band-
width channels among the multi-dimensional and heterogeneous channel conditions
with a software-defined approach. Our model is not dependent on any specific proto-
col, medium, or channel, rather it can predict or choose the most effective and feasible
one through available bandwidth prediction of the channel. By focusing on the physical
channel condition rather than protocol or technology, our model ensures the reliability
and effectiveness of the channel selection/prediction process in extreme environmental
conditions dynamically.

3 Prediction Methods in ML-SDC

This section presents our ML-based Software-defined Coordinator (ML-SDC) archi-
tecture and describes the channel prediction models used for this work. ML-SDC is a
middleware residing below the wireless protocol layer and above multi-stratum com-
munication channels to coordinate channel registration as a software-defined module.
ML-SDC also maintains the registered channel’s real-time status and selects the best-
performing channel dynamically to the spatiotemporal dimension. We investigate sev-
eral prediction models including ExponentiallyWeightedMoving Average- the baseline
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algorithm, FFNN, AlexNet, and CNN, for supporting the coordination-based dynamic
selection method’s feasibility in space communication. ML-SDC’s coordination meth-
ods coexist in the middleware as running models and can be picked dynamically based
on performance. We will first go with the prediction approach of EWMA and then go
through the mathematical and parametric definitions of different layers and their control
function. Table 1 summarizes the various notations used in the mathematical formula-
tions of this paper.

Table 1. Summary of Notations

Symbols Descriptions

St Newly observed sample value

α Sample Weight parameter

w Weight matrix

x Input activity

a Output activity

f Activation function

Ek A simple loss function

s The number of pixels moved upon each application

p the number of zeroes used to pad the borders

m,n,u,v,g,h Dimension of Matrices

γ,β Additional parameters for normalized input

EWMA is a dynamic approach that averages each channel’s sequence of measure-
ments through iterative, single-time step updates. It can identify the ‘prediction’ for
each channel using its previous prediction (EWMAt ), a newly observed sample value
(St), and a weight parameter α (= 0.125 as this can be user defined) as shown in Eq. (1).

EWMAt+1 = (1−α)EWMAt+αSt (1)

ML-SDC adopts each ML-based model, including FFNN, AlexNet, and CNN (or
ConvNet) using different numbers, combinations, and layers in the form of objects
imported from Keras framework [1]. Each layer of neural network have a specific math-
ematical structure, the corresponding gradient to train the parameters, the theoretical
advantages and pitfalls. The layer types are dense or fully-connected, two-dimensional
convolution, max pooling, and batch normalization. We do not alter bias terms for the
benefits of simplicity.

A dense or fully-connected layer refers to a layer consisting of a weight matrix
w ∈ R

m×n, which is multiplied by an input vector x ∈ R
m before a nonlinear activation

function f is applied to yield an output a ∈R
n. Multidimensional input is flattened by a

concatenating operation, which is a straightforward operation. The activation function
used for each fully-connected layer in all neural networks tested was the widely-used
Rectified Linear Unit (ReLU), defined as fReLU(z) =max(0,z). If we let w(i) denote the
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weight matrix of the ith dense layer, then we may write the activity a(i)k of the kth neuron
of this layer as presented in Eq. (2).

a(i)k = fReLU(z
(i)
k ), z(i)k =

m

∑
j
w(i)

jk x
(i)
j (2)

For demonstration purposes, if we apply the chain rule for partial derivatives and

assume a simple loss function of Ek = 0.5(a(l)k − tk)2, where a
(l)
k is the activity of the

kth neuron in the last (lth) layer and tk is the corresponding target value. We can obtain
the gradients for this layer as shown in Eq. (3).

∂Ek

∂w(l)
jk

=
∂Ek

∂a(l)k

∂a(l)k
∂z(l)k

∂z(l)k
∂w(l)

jk

=

{
(a(l)k − tk)x

(l)
j if z(l)k > 0,

0 if z(l)k ≤ 0
(3)

A two-dimensional convolution (Conv2D) layer refers to a layer consisting of an
array of two-dimensional kernels, or filters, each denoted w(i) ∈ R

u×v where u and
v are the dimensions chosen for the filters and i is the index of the filter. Filters typi-
cally operate on input images consisting of multiple frequency channels, giving them an
additional dimension with a size equal to the number of channels. However, since our
two-dimensional input images only contain one color channel, this additional dimen-
sion has been omitted for simplicity of presentation. These filters are first convolved
or multiplied at each index of the two-dimensional input image x ∈ R

g×h, where g and
h are the width and height of fully connected resolution in pixels before a nonlinear
activation function is applied. Again, the activation function used for each convolution
layer in all networks tested is fReLU. The activity of the entry in the j-th row and k-th
column of the feature map resulting from the application of the ith filter at index (l,m)
of the input image is presented in Eq. (4).

a(i)jk = fReLU(z
(i)
jk ), z(i)jk =

u

∑
q

v

∑
r
w(i)
qr xl+q−1,m+r−1 (4)

A max-pooling layer refers to a layer with a pool size (u,v) specifying the dimen-
sions of a window over which the max function is applied to extract the most relevant
features. The activity of the entry in the jth row and kth column of the output feature
map (a jk) resulting from the application of the max function over a pooling window at
index (l,m) of the two-dimensional input feature map x ∈ R

g×h is shown in Eq. (5).

a j,k =max
{
xl,m,xl,m+1,xl+1,m, . . . ,xl+u−1,m+v−1

}
(5)

Both convolution and max-pooling layers have variable stride (s, the number of
pixels moved upon each application of a filter) and zero-padding (p, the number of
zeroes used to pad the borders of the image before filters are applied). They determine
the size and shape of the output layer depending on the input’s size and shape. Given
an input feature map x ∈R

g×h, a kernel / pool size (u,v), we define the size (q,r) of the
resulting output feature map y ∈ R

q×r as shown in Eq. (6).

q=
g−u+ ple f t + pright

shorizontal
+1, r =

h− v+ ptop+ pbottom
svertical

+1 (6)
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We use a batch normalization layer, batch norm, to fix each scalar input’s means
and variances to the next layer independently via a normalization step across a given
mini-batch of training inputs. We accelerate and regularize the training of deep neural
networks by reducing internal covariate shift. During training, the batch norm step is
immediately followed by scaling and shifting operation with two additional parameters
γ and β for each normalized input to approximate the mean and variance, respectively.

FFNN can be distinguished from other neural networks like AlexNet and ConvNet,
as there is no cycle between the nodes. Values are straightly propagated forward through
a set of layers. FFNN’s input is 20-time steps over 200 channels, and it results in a single
prediction for each channel’s next bandwidth measurement. FFNN has three layers,
including output, with 4000, 500, and 200 neurons in order. There is a batch norm layer
between the second and third layers. Each layer uses a ReLU as its activation and zeros
as its bias initializer. ReLU, defined as fReLU(z) = max(0,z), is useful as it only gives
non-zero outputs if the input is greater than zero. Each layer’s weights use a He Normal
(He-et-al) initializer [3], which draws samples from a normal distribution centered on
zero. FFNN has trained three epochs at a time.

4 Evaluations

We evaluate the effectiveness of ML-prediction technologies which can improve wire-
less communications system’s reliability in the presence of high interference. For that,
system will dynamically switch communication channels by using the ability to render
bandwidth availability predictions across all channels. We have conducted the heat map
and error analysis of the implemented methods for these objectives.

First, we build a wireless communication channel simulator for space environments
that have large scale spectrum channels and with flexible channel interference models.
Using the simulator, we create a data-generation model with a specified set of assump-
tions, which provide a new bandwidth measurement for each channel on-demand. These
assumptions are defined in Table 2. We define another set of assumptions for modeling
the inference to generate a pulse of interference to propagate through the measurement
model’s time-steps and channels. We consider the maximum strength of the interfer-
ence as uniform random between 0 to 1 and the number of time-steps for which the
interference pulse lasts as uniform random between 1 and 500. We have considered the
drop-off the rate at which the interference decreases as it propagates across neighboring
channels is 0.8. These assumptions are defined in Table 3.

Second, EWMA, FFNN, AlexNet, and ConvNet are employed to analyze and com-
pare several predictive models’ performance properly. We have implemented those pre-
dictive models with the input signal shown in Fig. 3a, which shows how the radiation
impacts bands of spectrum. It presents the heatmap representation of the actual gener-
ated input signals for 200 sample channel measurements (in Y) over simulation time
(in X). The channel reliability is presented in the color range from green to black (i.e.,
Greener means better signal with less error, and darker means low-reliability channels).
Figure 3b shows the heatmap representation of the output predicted signal from EWMA
model with α = 0.125 for the given input signal. We can observe that the predicted out-
put channels have less similarity to the actual input signal level. However, one of the
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Table 2. Assumption Parameters for Data Modeling

Assumption Parameters Values Notes

The number of channels 200 –

The maximum capacity of
each channel

100 –

Background interference 0.2 the uniform-random background
noise of each channel

Observation window size 200 the number of previous time-steps to
keep in memory

The maximum duration of
interference

500 measurements –

Measurement frequency 1 for sequential time steps and at
least window_size+maxduration+1
to ensure independent and identically
distributed observation windows

the number of new measurements to
take upon each call

Interference probability 0.25 a fixed probability that a new pulse
of interference begins upon a given
measurement

Dropoff ad jacent = 0.8∗original the factor by which interference
pulses propagate geometrically from
given channel to its adjacent
channel(s)

Table 3. Assumption Parameters for Interference Modeling

Assumption Parameters Values Notes

Amplitude uniform random between 0 and 1 the maximum strength of the
interference

Duration uniform random between 1 and 500 the number of timesteps for which
the interference pulse lasts

Dropoff 0.8 the rate at which the interference
decreases as it propagates across
neighboring channels

ML-based models, the FFNN in Fig. 3c, exhibits that the output signal pattern highly
matches the fundamental input signal level. AlexNet in Fig. 3d and ConvNet in Fig. 3e
show better matching patterns than the EWMA model but less accurate results than
FFNN with revealing different detection capabilities. For example, ConvNet can accu-
rately predict the signal level, whereas AlexNet can detect the edge of some interference
bursts but shows significant errors on the actual signal level.

Third, we conduct a Mean Absolute Error (MAE) calculation using the same gen-
erated test set. We calculate MAE by summing the absolute value of the difference
between each channel’s predicted bandwidth and the same channel’s actual bandwidth
at each point in time. The sum is then divided by the total number of predictions, which
can be calculated by the number of channels multiplied by the number of time-steps in
the test set. The models with a lower MAE are considered to have better performance.
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Fig. 3. Heatmap Representation of Signals: 200 consecutive samples
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As summarized in Table 4, the simulation results show that FFNN has the least MAE
(3.12) followed by ConvNet’s MAE (5.08), which is much better than other approaches.
The MAE results align with the previous heatmap representations.

Table 4. Model performance for 2K consecutive time steps across 200 channels(20K training
examples, where applicable)

Estimation Model MAE Testing Time Training Time (s)

EWMA (Alpha = 0.125) 10.82 0.69 s N/A

FFNN 3.12 0.27 s ∼3 per epoch

ConvNet 5.08 0.71 s ∼20 per epoch

AlexNet 16.24 0.91 s ∼44 per epoch

Forth, we also present each model’s prediction performance inMAE using Probabil-
ity Distribution Function (PDF) and Cumulative Distribution Function (CDF). The PDF
is generated by sampling each model’s predictions’ absolute error floor (integer-valued)
across the entire test set. Then, it counts the frequency of each integer value in each
model’s sampled errors. These results are L1-normalized (by dividing the frequency of
each integer-valued error by the total number of predictions) to produce proper proba-
bility distributions representing each error’s relative frequency. When a PDF of a model
concentrates on the lower error probability, it performs better than a model with a PDF
where most observations are either distributed evenly or focused away from zero error.
We also generate the CDF by iterating through the PDF (sorted from zero to max abso-
lute error) and replacing each relative frequency with the sum of relative frequencies.
The CDF visualizes and calculates the probability that the absolute error falls within
a specific range of values. A model with a CDF with a high positive slope towards
zero error and a vanishing slope further away from zero error is the better-performing
model. Additionally, if the slopes are compared between the two models, the higher
CDF values model is better. We have trained the prediction models with an extensive
training dataset (20K independent and identically distributed training examples) and
ran many sets of tests and validations. As shown in Fig. 4a, the MAE results show that
FFNN, followed by the ConvNet, performs 3 to 5 times better than other models and
the error is half less than the EWMA (with alpha = 0.125). Our test results show that
AlexNet performs the worst. Additionally, As presented in Fig. 4b, the CDF of both the
ConvNet and FFNN had the steepest slopes near zero, but FFNN has the higher values
overall. One significant difference between ConvNet and FFNN is that the latter had
a much smaller maximum absolute error than the former. It is consistently generated
predictions with a calculated MAE, which is larger than the EWMA by about 45%, and
over four times higher MAE than FFNN. Overall, our experimental results show that
AlexNet is the worst performer according to the PDF and CDF analysis.
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Fig. 4. Error Analysis for 2K time steps across 200 channels

5 Conclusion

We have introduced the Resilient Internet of Space Things (ResIST) by building a
Machine Learning (ML)-based software-defined coordinator (ML-SDC), which accom-
modates a dynamic selection of the most reliable channel(s) from a set of divergent
frequency channels. We have conducted a feasibility study of using ML technologies
for wireless space communication in extreme or unreliable environments. We have
explored several channel prediction models (such as EWMA, FFNN, AlexNet, and Con-
vNet) and showed a comparative study for the effectiveness of those models. The exper-
imental results show that ML-prediction technologies can improve wireless communi-
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cations’ reliability and effectiveness in imprinting environments. As our ML design is
employed at the physical EM layer, the proposed ML-SDC is not dependent on spe-
cific protocols or communication technology and can work in an efficient, effective,
and most of all reliable manner. Our observations from the heatmap and error analysis
show that FFNN drastically outperforms the baseline method (EWMA), AlexNet, and
ConvNet. This work will shed light on wireless communication capability in space to
reduce bulky and heavy wirelines, thus significantly decreasing the spacecraft’s weight
while facilitating reliable communication among many onboard sensors and devices.
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Abstract. Cloud computing is a concept introduced in the information technology
era, with themain components being the grid, distributed, and valuable computing.
The cloud is being developed continuously and, naturally, comes up with many
challenges, one of which is scheduling. A schedule or timeline is a mechanism
used to optimize the time for performing a duty or set of duties. A scheduling
process is accountable for choosing the best resources for performing a duty. The
main goal of a scheduling algorithm is to improve the efficiency and quality of the
service while at the same time ensuring the acceptability and effectiveness of the
targets. The task scheduling problem is one of the most important NP-hard issues
in the cloud domain and, so far, many techniques have been proposed as solutions,
including using genetic algorithms (GAs), particle swarm optimization, (PSO),
and ant colony optimization (ACO). To address this problem, in this paper one of
the collective intelligence algorithms, called the Salp Swarm Algorithm (SSA),
has been expanded, improved, and applied. The performance of the proposed
algorithm has been compared with that of GAs, PSO, continuous ACO, and the
basic SSA. The results show that our algorithm has generally higher performance
than the other algorithms. For example, compared to the basic SSA, the proposed
method has an average reduction of approximately 21% in makespan.

Keywords: Cloud Computing · Task Scheduling · Salp Swarm Algorithm

1 Introduction

Today, modern computing methods have attracted the attention of researchers in many
fields such as cloud computing, artificial intelligence, and machine learning by using
techniques including artificial neural networks in building air quality prediction models
that can estimate the impact of climate change on future summer trends [1]. A compu-
tational science algorithm is used in this article to determine the schedule of duties in
the cloud.

Cloud computing has brought about the availability of tools that provide extensive
computing resources on the internet platform. Users can submit their requests for various
resources, such as CPU, memory, disk, and applications, to the cloud provider. The
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provider then offers the most suitable resources, which meet the user’s requirements and
offer benefits to the resource owners, based on the price that they can afford to pay [2].
In cloud computing, the main entities are users, resource providers, and a scheduling
system whose main body has been proposed for the users’ tasks and timeline strategy
[3].

Cloud computing consumers rent infrastructure from third-party providers instead of
owning it. They opt for this to avoid extra costs. Providers typically use a “pay-as-you-
go” model, allowing customers to meet short-term needs without long-term contracts,
thus reducing costs [4].

Behind the numerous benefits of cloud computing, there are many challenges too.
The most important is the task scheduling problem or resource allocation to the users’
requests. The targets of task scheduling in cloud computing are to provide operating
power, the optimal timeline for users, and service quality simultaneously. The specific
targets related to scheduling are load balance, service quality, economic principles, the
best execution time, and the operating power of the system [5]. Cloud computing has
three timelines: resources, workflow, and tasks. Resource scheduling involves mapping
virtual resources to physical machines. Workflow scheduling ensures the orderly flow
of work. Task scheduling assigns tasks to virtual resources. Task scheduling methods
can be concentrated or distributed, homogeneous or heterogeneous, and performed on
dependent or independent tasks.

Task scheduling in cloud computing has two types based on the characteristic of the
tasks:

• Static: In static scheduling, the tasks reach the processor simultaneously and are
scheduledon accessible resources. The schedulingdecisions aremadebefore reaching
the tasks and the processing time after doing the entire run of duty is updated. This
type of scheduling is mostly employed for tasks that are sent continuously [6]; and

• Dynamic: In dynamic scheduling, the number of tasks, the location of the virtual
machines, and the method for resource allocation are not constant, and the input time
of tasks before sending them is unknown [6].

Scheduling the mechanism of dynamic algorithms compared to static algorithms
is better but the overhead of the dynamic algorithm is quite significant [7]. Dynamic
scheduling can be done in two ways; in batch and online modes. In batch mode, the
tasks are lying in a line, gathered in a set, and after a certain time, scheduled. In the
online mode, when the tasks reach the system, they are scheduled [6].

The task scheduling problem in cloud computing focuses on efficiently distribut-
ing tasks among machines to minimize completion time [8]. Proper task arrangement
has numerous benefits, including reduced energy consumption, increased productiv-
ity, improved distribution across machines, shorter task waiting times, decreased delay
penalties, and overall faster task completion [9].

The task scheduler plays a crucial role in efficiently scheduling computing actions
and logically allocating computing resources in IaaS cloud computing. Its objective is to
assign tasks to the most suitable resources to achieve specific goals. Selecting an appro-
priate scheduling algorithm is essential to enhance resource productivity whilemaintain-
ing a high quality of service (QoS). Task scheduling involves optimizing the allocation
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of subtasks to virtual servers in order to accomplish the task schedule’s objective. This
area of research continues to receive significant attention [10].

Efficient task planning in cloud computing is essential to minimize fetch time, wait-
ing time, computing time, and resource usage. Task scheduling is crucial for maxi-
mizing cloud productivity, meeting user needs, and enhancing overall performance. Its
primary goal is to manage and prioritize tasks, reducing time and preventing work fail-
ures while meeting deadlines. Task scheduling optimizes the cloud computing system
for improved calculation benefits, high performance, and optimal machine output. The
scheduling algorithm distributes work among processors to maximize efficiency and
minimize workflow time [11].

The rest of this paper is organized as follows: Sect. 2 covers related work; Sect. 3 pro-
vides details of theSDSAoptimization algorithm;Sect. 4 describes our proposedmethod,
including the expansion and improvement of the salp algorithm; Sect. 5 focuses on the
algorithm’s target, the fitness function; Sect. 6 presents the results of our simulation;
and, finally, Sect. 7 contains the conclusions of our work.

2 Related Works

Ghazipour et al. [12] have proposed a task scheduling algorithm so the tasks existing
in the grid are allocated to accessible resources. This algorithm is based on the ACO
algorithm,which ismixedwith the scheduling algorithm right to choose so that its results
are used in the ACO algorithm. The main goal of their article is to minimize the total
finish time (makespan) for setting up tasks that have been given [12].

In their research on task scheduling in cloud computing, Sharma and Tyagi [13]
examined nine heuristic algorithms. They conducted comparative analyses based on
schedulingparameters, simulation tools, observationdomain, and limitations. The results
indicated the existence of a heuristic approach that satisfies all the required parameters.
However, considering specific parameters such as waiting time, resource utilization, or
makespan for each task or workflow individually can lead to improved performance.
[13].

In 2019, Mapetu et al. [14] researched the “binary PSO algorithm for scheduling
the tasks and load power in cloud computing”. They introduced a binary version of the
PSO algorithm named BPSO with lower complexity and cost for scheduling the tasks
and load power in cloud computing, to minimize waiting time, and imbalance degree
while minimizing resource use. The results showed that the proposed algorithm presents
greater task scheduling and load power than existing heuristic algorithms [14].

Saeedi et al. [15] studied the development of the multi-target model of PSO for
scheduling the workflow in the cloud areas. They proposed an approach for solving
the scheduling problem considering four contrasting goals (i.e., minimizing the cost,
waiting time, energy consumption, and maximizing reliability). The results showed
that the proposed approach had a better performance compared to LEAF and EMS-C
algorithms [15].

Zubair et al. [10] presented an optimal task scheduling method using the modified
symbiotic organisms search algorithm (G_SOS) and aimed to minimize the makespan
of the tasks, costs, response time, and imbalance degree, and improve the convergence
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speed. The performance of the proposed method using CloudSim (a simulator tool) was
evaluated and according to the simulation results, the proposed technique has better
performance than the SOS and PSO-Simulated Annealing (PSO-SA) in terms of the
convergence speed, cost, imbalance degree, response time, and makespan. The findings
confirm the suggested G_SOS approach [10].

Rajagopalan et al. [16] introduced an optimal task-scheduling method that combines
the firefly optimization algorithm with a genetics-based evolutionary algorithm. This
hybrid algorithm creates a powerful collective intelligence search algorithm. The pro-
posed method excels in minimizing the makespan for all tasks and quickly converges
to near-optimal solutions. The results demonstrated that this hybrid algorithm outper-
formed traditional algorithms like First in, First Out (FIFO) and genetics. However, a
potential drawback of this method is the increased overload resulting from the sequential
use of two algorithms [16].

3 SSA Optimization Algorithm

This section briefly describes the SSA optimization algorithm proposed by Mirjalini Al
which is an extension of the standard SSA algorithm [17]. salps are a type of Salpidae
family and have a transparent and barrel-shaped body. Their bodies are very similar to
jellyfish. They still move the same as jellyfish, and water is pumped from the middle of
the body as a motive force to move forward [17]. The shape of salp is shown in Fig. 1(a).

The biological study of these animals is just starting because it is so difficult to
capture them and maintain them in laboratories. One of the most intriguing habits of
salps is their tendency to swarm. The salps commonly form a chain in the deep oceans.
This chain is shown in Fig. 1(b). Although the primary cause of this behavior is unknown,
some researchers think that it is carried out through quick coordinated movements and
searches to achieve improved movement [17].

Fig. 1. (A) Illustration of a salp. (B) Salp chain structure. [17].

To model mathematically the salp chains, first, the population is divided into two
groups: leaders and followers. The leader is in front of the chain, while the remaining
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are considered the followers. As seen from their names, the leader guides the group and
the followers follow each other [17].

Like other techniques based on the swarm, the location of salps in a search space is
n-dimensional, where n is the number of variables in a problem and known; therefore,
the location of all salps is stored in the two-dimensional matrix x. Also, it is assumed
that a food source, F, exists in the search space as a swarm target [17].

Equation 1 has been proposed for updating the location of the leader as follows:

x1j =
{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0

Fj − c1
((
ubj − lbj

)
c2 + lbj

)
c3 < 0

(1)

where x1j shows the location of the first salp (leader) in the j dimension, Fj is the location
of the food source in the j dimension, ubj identifies the upper boundary of the j dimension,
lbj identifies the lower boundary of the j dimension, and c1, c2 and c3 are randomnumbers
(between 0,1) [17].

Equation 1 shows that the leader just updates its location according to the food
source. The c1 the constant is the most important parameter in the SSA because it
creates a balance between exploration and detection and is defined as Eq. 2:

c1 = 2e
−

(
4l
L

)2
(2)

Here, l is the current iteration and L is the maximum iteration.
The parameters of c2 and c3 are the random numbers which are uniformly produced

in the range [0.1]. They determine if the latter location in the j dimension should be
infinite positive or infinite negative, as well as determine the step size.

To update the followers’ location, Eq. 3 is used (Newton’s law of motion):

xij = 1

2
at2 + v0t (3)

If i ≥ 2, xij shows a salp follows the i location in the j dimension, t is the time,

and v0 is the initial velocity; a = vfinal
v0

and v = x−x0
t . Since the time is iterated in the

optimization, the difference between the iterations is equal to 1 and, considering v0 = 0,
this relation is expressed as Eq. 4.

xij = 1

2

(
xij + xi−1

j

)
(4)

Here, i ≥ 2 and xij shows a salp follows the i location in the j dimension.
The salp chains can be simulated by Eqs. 1 and 4. In the SSA model, the followers

follow the salp leader. The leader also moves towards the food source; therefore, if
the food source is substituted for the global optimization, the salp chain automatically
moves towards it. However, there is a problem that global optimization is unknown in
the optimization problems. In this way, it is assumed that the best solution obtained so
far is the global optimum, which is assumed as a food source for following the salp
chain.
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The pseudo-code for the SSA algorithm is shown in Fig. 2 [17]. This figure shows
that the SSA algorithm begins the global optimum by starting several salps at random
locations. Then, each fitting related to the salps are calculated and the location where
they have acquired the best fitting is allocated to the variable F as a food source followed
by the salp chain. Meanwhile, the value of c1 constant is updated by Eq. 2. For every
dimension, the location of the leader is updated by relation 1 and that of the followers
by Eq. 4. If each salp goes out of the search space, they are returned to the border again.
All the mentioned stages except for the initial value are iterated till consent is obtained.

The computing complexity of the SSA algorithm is considered
as O(t(d ∗ n + Cof ∗ n)) where t shows the number of iterations, d is that of variables
(dimension), n is that of solutions, and Cof is a target cost of the function.

Initializes the salp population xi (i = 1,2, ..., n) considering ub and lb 
While (end condition is not satisfied) 
Calculate the fitness of each search agent(salp) 
F= the best search agent(salp) 
Update c1 by Eq. (2) 

for each salp (xi) 
If (i==1) 

Update the position of the leading salp by Eq. (1) 
else 

Update the position of the, follower salp by Eq. (4) 
end 

end 
Amend the salps based on the upper and lower bounds of variables. 

end 
returnF

Fig. 2. Pseudo-code of the salp swarm algorithm. [17].

4 Proposed Method

Our proposed method for scheduling the tasks of the virtual machines in the cloud
computing area uses an optimized SSA based on the fitness function. First, a set of
random answers created is assigned as the initial population. Each member of this set
is called a salp. In the first stage, the fitness of salps produced randomly is calculated
by the target function and the best slap is chosen among all salps and its location is
determined by the location of the food source. In the following, the salps move towards
the food source until they achieve the best food source (i.e., solution). In this algorithm,
each salp is represented as a solution that moves for searching based on a mechanism in
the problem space. In the suggested method, the salps are divided into two groups, the
leaders and the followers. One group of salps named leader salps updates its location
according to the food source and tries to move towards the existing food source and
discover a better solution. If they find a better solution than the existing food source, the
location of the leader salp is considered as its new location. The group salps follow each
other, and if they discover a better solution for the food source location, the location of
the salp follower is considered the new location of the food source.
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4.1 The Task Scheduling Problem in the Cloud Area

The task scheduling problem in the cloud is allocating the settings of tasks to a set of
sources. We have assumed a set of n tasks, T = (T1.T2.T3. · · · .Tn), and of m sources,
which are virtual machines in targeted source research, V = (V1.V2.V3. · · · .Vm). The
set of T includes the tasks which should be scheduled. Each task should be processed
by virtual machines so that the completion time of all tasks is minimized as much as
possible.

The main goal of task scheduling is to allocate optimally to the sources so that the
lowest completion time of the tasks (i.e., makespan) and the lowest cost is obtained. The
makespan shows the total required time for implementing all the tasks. The main goal
of our research is to minimize the makespan using the modified SSA.

4.2 The Proposed Coding Method

Assume that an array of 200 tasks exists and each task has a value between 1–15. For
example, if the second value of this array is 4, it shows that task 2 has been allocated to
the virtual machine 4 and, if the seventh value of the array is 14, it means that, task 7 has
been allocated to the virtual machine 14. Similarly, all the tasks T1 to T200 are allocated
to virtual machines V1–V15. In Fig. 3, an example of allocating tasks to virtual machines
is depicted.

Fig. 3. Allocation of tasks to virtual machines.

In the suggested algorithm, solutions are shown by a salp chains. Each solution of
the suggested algorithm is shown by an array of natural numbers. The locations of all
salps are stored in a 2-dimensional matrix named x. For instance, in a problem with n
tasks and m virtual machines, the rows of a two-dimension matrix are considered as the
number of the salp population. It means that the location of each salp is restored in a
row of a matrix. The columns of the matrix are equal to n. Also, the content of each cell
of the array shows the virtual machine number, which can be a number between 1 to m.
Figure 4 shows an example of a salp.

Fig. 4. An example of a salp.

To begin thework, this salp can be produced as a desired numberwhere this number is
the same as the primary population of the algorithm that is adjusted. First, the population
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is randomly generated and stored in a two-dimensionalmatrixwhere its rows are identical
to the number of salps and its columns equal to those of tasks identified for the scheduling.

After generating the primary population of salps in the range of the problem answer,
the fitness of all salps is assessed by all salps and the salp with the best fitness is
determined. In this algorithm, it is assumed that a food source named F exits in a search
space as a swarm target that all salps try to move towards it.

In the first stage of this algorithm, the location of the best generated salp (the best
solution) is considered as the food source.

In the next stage of this algorithm, the salps are divided into two groups of leaders and
followers. The number of salps is considered as the leader salp group and the remaining
as the follower one. In the proposed algorithm, 50% of salps are considered as the leader
group and the remaining 50% as followers. The location of the leader group is updated
by Eq. 5.

xij = Fj + αRandn( ) (5)

where xij is the location of the leader salp, i, Fj the location of the food source in the j
dimension,α the constant of the randommoving step in the range of [0, 1] that is adjusted
by the targeted problem, and Randn( ) a random number with a normal distribution and
determines a random step with a normal distribution for the leader group. Equation 6
updates the location of the follower group.

xij = 1

2

(
xij + xi−1

j

)
+ c1Randn( ) (6)

where xij is the location of the follower salp i in the j dimension. The constant c1 creates
a balance between the exploration and discovery by generating an adaptive step, and this
constant decrease consistently during the iterations; so, it leads to higher discovery in
the first iterations and higher exploration in the end iterations if the algorithm, Randn( )

is a random number with a normal distribution and determines a random step with this
distribution for the leader group. The parameter c1 is defined in Eq. 7 and is updated in
each iteration.

c1 = 2e
−

(
4l
L

)2
(7)

Here, l is the current iteration and L the maximum of iterations.
In each iteration of the algorithm, after updating, first, the location of each salp is

explored; if each salp goes out of the search space, it returns to the borders. Next, its
fitness has been assessed based on the target function; if its fitness has been better than
that of the food source, the location of the desired salp has been substituted for that of
the food source.

It is noted that in the substitution of the salp location for the food source, there is a
difference between the leader group and the follower group when swapping. In the case
of the leader group, even if the fitness of the leader salp and food source are identical,
the location of the leader salp is substituted for the food source, because the salps with
equal fitness have different locations, and this mechanism is an effective alternative for
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diversifying a search space, releasing from the local optimum, as well as discovering
accurately surrounding the existing food source.

Based on this, the population of the leader group updated its location using the
location of the food source. When the location of each leader salp group is substituted
for that of the food source, the latter group has updated its location using the new location
of the food source. Figure 5 depicts the algorithm’s pseudo-code of the optimized SSA.

The stages of the algorithm until reaching the end are continued. In the proposed
algorithm, the condition for finishing the algorithm is the number of iterations.

Initializes the salp population xi(i = 1,2, ... , n) considering ub and lb
Calculate the fitness of each search agent(salp) from the fitness function.
F= the best search agent(salp) 

Initialize α 
While (end condition is not satisfied) 

Update c1 by Eq. (7)
For each salp (xi)

If (i<=N* 0.5) 
Update the position of the leading salp by Eq. (5) 
Amend the sales based on the upper and lower bounds of variables.
Calculate the fitness of the leading salp from the fitness function. 

If (the fitness of the leading salp <= the fitness of the F)
F= position of the leading salp 
End If 

else 
Update the position of the follower salp by Eq. (6)
Amend the salps based on the upper and lower bounds of variables. 
Calculate the fitness of the follower salp from the fitness function.

If (the fitness of the follower salp < the fitness of the F) 
F= position of the follower salp 
End If 

End If 
End For 

End While 
returnF

Fig. 5. The pseudo-code of the modified SSA.

5 Fitness Function

The main goal of this research is to minimize the makespan, one of the most important
targets for the task scheduling problem in the cloud areas. An example of task samples
and task sizes is given in Table 1 and another is shown in Table 2 for virtual machines
and the processor speed as individual values.

Table 1. An example of the tasks and their size.

Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Size 18 15 19 24 33 41 22 12 30 16 13 32

We aim to reduce the completion time of tasks in this research. This time duration is
the longest completion time among virtual machines. If we consider Ti as the task size
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Table 2. An example of virtual machines and their speed.

Virtual machine number 1 2 3 4 5

Processor speed 3.4 2.4 3.2 1.8 2.2

of i and Cj as the processor speed of the virtual machine j, we can obtain the makespan
i from Eq. 8.

texe(i.j) = Ti/Cj (8)

According to the allocated tasks for each resource and the length of desired tasks,
there has been a completion time for tasks relative to the processor speed of the virtual
machine for each of them.

For instance, assume that the tasks T3, T6, T10, T8 are allocated to virtual machine 2,
the makespan of each task delivered to virtual machine 2 can be calculated as follows:

texe(3.2) = 19

2.4
= 7.9 texe(6.2) = 41

2.4
= 17.1

texe(10.2) = 16

2.4
= 6.7 texe(8.2) = 12

2.4
= 5

So, the completion time of tasks calculated on virtual machine 2 is:

tcomplete(2) = 7.9 + 17.1 + 6.7 + 5 = 36.7

Similarly, the times for all virtual machines can be computed from the assigned tasks.
The longest completion time of tasks amongst that for all virtual machines is calculated
by Eq. 9:

Makespan = Max
{
tcomplete(j)

}
1 ≤ j ≤ m (9)

In Eq. 9, tcomplete(j) shows the completion time of tasks allocated to the virtual
machine j. Minimizing Eq. 9 (i.e., the completion time of all tasks (makespan)) is the
main target of this research.

6 Simulation and Results

In this section, the performance of the proposed algorithm (Modified salp Swarm Algo-
rithm) is evaluated for solving the task scheduling problem in the cloud area and com-
pared with other algorithms such as Standard salp SwarmAlgorithm (SSA), Ant Colony
Optimization (ACOr), Particle SwarmOptimization (PSO), andGeneticAlgorithm (GA)
in multiple scenarios [17]. MATLAB software has been used for simulation. The param-
eters and their initial values of the compared algorithms have been given in Table 3 and
their description in Table 4. The simulation was run for four scenarios with parameters
shown in Table 5 and the findings of each scenario are depicted in Fig. 6 using associated
the chart.



72 H. Jamali et al.

Table 3. Parameters and the initial values of the compared algorithms.

Algorithm Parameters and the initial values of the algorithms

GA nPop = 40, MaxIt = 500, pc = 0.8, pm = 0.3, mu = 0.02, nc = 32, nm = 12,
beta = 8, RWS = 0

PSO nPop = 40, MaxIt = 500, C1 = 2, C2 = 2, w = 0.7

ACO nPop = 40, MaxIt = 500, nSample = 40, q = 0.9, zeta = 0.1

SSA nPop = 40, MaxIt = 500

Modified SSA nPop = 40, MaxIt = 500, α = 0.19

Table 4. Description of parameters used for comparing the algorithms.

For all MaxIt = Maximum Number of Iterations nPop = Population Size

GA Pc = Crossover Percentage nc = Number of Offsprings (Parnets)
pm = Mutation Percentage nm = Number of Mutants mu = Mutation Rate
beta = Roulette Wheel Selection (RWS) Pressure RWS = 0 or 1

PSO c1 = Personal Learning Coefficient w = Inertia Weight c2 = Global Learning
Coefficient

ACOR nSample = Archive Size, q = Intensification Factor (Selection Pressure) zeta
= Deviation-Distance Ratio

Modified SSA α = Random step coefficient

Table 5. Parameters of the scenarios.

Scenario The number of virtual machines The number of tasks

First 10 150-200-250-300

Second 15 150-200-250-300

Third 20 150-200-250-300

Fourth 25 150-200-250-300

In the experiments, all algorithms used a number of 40 primary populations and a
maximum of 500 iterations. Each scenario was run 20 times to obtain the results. The
primary objective was to examine and minimize the makespan measure across different
scenarios.

The results of our simulation study using an Modified Salp Swarm Algorithm
(MSSA) for scheduling cloud computing tasks have been analyzed and compared with
other well-known optimization algorithms, specifically the Standard salp Swarm Algo-
rithm (SSA), (ACOr), (PSO), and (GA). The simulation results demonstrate that the
proposed MSSA algorithm outperforms other algorithms in terms of task completion
time.



A Schedule of Duties in the Cloud Space 73

Table 6. Data results of the first scenario.

No. of Tasks
Algorithm

300 250 200 150

SSA 308.00 258.34 212.50 156.15

ACOr 282.69 236.85 192.44 144.69

PSO 275.05 230.64 186.71 139.91

GA 271.71 226.82 184.80 138.48

Average 284.36 238.16 194.61 144.80

STD 16.4148 14.07 12.68 8.014

MSSA 269.80 225.39 182.41 136.09

Average
Improvement in MSSA

5.40% 5.66% 6.68% 6.40%

Fig. 6. Performanceoutput for the four scenarios, comparingMSSAwith other algorithms;MSSA
shows lower calculation amount, which is desirable as lower values indicate improved efficiency
in minimizing makespan for cloud computing task scheduling.

As shown in Table 6, the MSSA algorithm achieved an average completion time
that was 5.40%, 5.66%, 6.68%, and 6.40% better than the average completion time
of SSA, ACOr, PSO, and GA, respectively. Furthermore, the standard deviation of the
MSSA algorithm was lower than that of other algorithms, indicating more consistent
performance. The findings of this study provide valuable insights into the efficiency
of different optimization algorithms for scheduling cloud computing tasks. The MSSA
algorithm has shown substantial potential in reducing task completion time and improv-
ing the overall performance of cloud computing systems. Therefore, it can be concluded
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that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in
real-world scenarios.

7 Conclusion

The results from the stated scenarios show that the proposed algorithm had better per-
formance compared to the other algorithms to solve the task scheduling problem in all
four scenarios of cloud computing.

The results show that the makespan is reduced by increasing the number of virtual
machines and vice versa. They also indicate that the optimized salp swarm algorithm
has increased performance compared to the basic one. The outputs of all scenarios were
similar and the MSSA is better in all case. As a result, the suggested method has shown
better performance in all scenarios to solve the task scheduling problem in the cloud
computing domain.

In addition, the findings of this study provide valuable insights into the efficiency
of different optimization algorithms for scheduling cloud computing tasks. The MSSA
algorithm has shown substantial potential in reducing task completion time and improv-
ing the overall performance of cloud computing systems. Therefore, it can be concluded
that the MSSA algorithm can be a useful tool for scheduling cloud computing tasks in
real-world scenarios.

Overall, while the study’s results demonstrate the effectiveness of the MSSA algo-
rithm in reducing task completion time and improving the overall performance of cloud
computing systems, it is important to consider the limitations and scope of the study’s
findings. Future work could explore alternative performance metrics, evaluate the algo-
rithm’s robustness and scalability, and investigate its suitability for different cloud
computing scenarios.
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Abstract. This paper presents a novel approach for efficiently run-
ning convolutional neural networks (CNNs) on Internet of Things (IoT)
edge devices. The proposed method utilizes threshold-based pruning
to optimize pre-trained CNN models, enabling inference on resource-
constrained IoT and edge devices. The pruning thresholds for each layer
are iteratively adjusted using a range-based threshold pruning technique.
The pre-trained network evaluates the accuracy of the pruned model and
dynamically adjusts the pruning thresholds to maximize accuracy. The
effectiveness of the proposed approach is validated on the widely-used
LeNet benchmark network, with MNIST, Fashion-MNIST, and SVHN
datasets. Our experimental results show that for the MNIST dataset, we
can prune 62–64% of weights for an accuracy loss of 1–4%. Similarly,
for Fashion-MNIST, we can prune around 64% for an accuracy loss of
around 2.92%, and for the SVHN dataset, we can prune around 55% of
weights for an accuracy loss of 1.7% on average, saving resources.

Keywords: Convolutional Neural Networks · IoT edge devices ·
Threshold-based pruning · Resource optimization

1 Introduction

In recent years, the field of artificial intelligence (AI) has made remarkable
strides, with deep learning techniques, particularly convolutional neural net-
works (CNNs), leading the way. CNNs have played a pivotal role in achieving
state-of-the-art results in image classification, object detection, and computer
vision tasks. However, their computational complexity and memory requirements
present challenges for deploying them on resource-constrained devices like mobile
phones and embedded systems.

Optimizing CNNs for hardware has become increasingly crucial as these net-
works grow in complexity and size. The substantial computational and mem-
ory demands of CNNs make it difficult to deploy them on devices with limited
resources such as smartphones, embedded systems, and IoT edge devices. Hard-
ware optimization techniques can significantly reduce the computational require-
ments and memory usage of CNNs, making them more viable for deployment on
resource-constrained devices.
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The benefits of optimizing CNNs for hardware are manifold, including faster
inference times and lower energy consumption. Faster inference times are particu-
larly important for real-time applications like autonomous vehicles and robotics,
where rapid decision-making is critical. Similarly, lower energy consumption is
desirable for such applications as it can extend battery life and reduce overall
ownership costs.

Optimizing CNNs for hardware is crucial for making deep learning more
accessible and feasible for a wider range of applications and devices. By reduc-
ing computational requirements, improving energy efficiency, and reducing costs,
optimized CNNs have the potential to enable new possibilities and benefits for a
range of fields from healthcare to education to entertainment. Ongoing research
endeavors are required to devise inventive techniques that maximize CNN per-
formance on resource-constrained devices, driving advancements in hardware
optimization and facilitating a broader deployment of CNNs in real-world sce-
narios [8,11].

Another important aspect of optimizing CNNs for hardware is the need for
efficient memory management. In addition to reducing the size of the network,
memory management techniques can be applied to optimize memory usage dur-
ing the training and inference process. For example, techniques such as data
augmentation and batch normalization can reduce the memory usage of the
CNN during training. During inference, techniques such as model compression
can be used to further reduce the memory requirements of the network [4].

Our proposed approach presents a novel technique called range-based thresh-
old pruning for optimizing convolutional neural networks (CNNs). Traditional
pruning methods rely on fixed threshold values, which may not effectively cap-
ture the weight distribution within each layer. In contrast, our approach lever-
ages the weight ranges present in each layer to determine the pruning threshold
dynamically. By profiling the weight matrix of a pre-trained CNN, we calculate
the maximum weight value for each layer. This maximum weight serves as a
reference for normalizing the pruning threshold. We then iteratively adjust the
threshold for each layer based on its weight range, selectively pruning weights
below the threshold. We have used profiling on multilayer perceptron (MLP)
networks to find the least sensitive neurons to prune in [7]. The key advantage
of range-based threshold pruning is its fine-grained control over the pruning
process. By considering the weight ranges, we can preserve important network
information while removing unnecessary weights. This leads to improved network
efficiency and reduced memory footprint, making CNN models more suitable for
deployment on resource-constrained devices. Our experimental results demon-
strate the effectiveness of range-based threshold pruning. We evaluate our app-
roach on the widely used LeNet5 network, pruning each layer individually. The
results show that our method achieves significant weight reduction while main-
taining high accuracy on three benchmark datasets, MNIST, Fashion-MNIST,
and SVHN datasets.

Fine-grained pruning refers to the ability to selectively prune individual
weights based on their importance or contribution to the network. Instead of
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using a fixed threshold that applies uniformly to all weights, our approach takes
into account the weight ranges to determine the optimal pruning threshold for
each layer. This allows us to remove less important or redundant weights while
preserving the critical ones. This makes the network more efficient and suitable
for deployment on devices with limited resources, such as mobile phones or IoT
edge devices, where computational power and memory capacity are constrained.

2 Background and Related Work

The background section provides a comprehensive introduction to several key
aspects related to our study. We begin by discussing Convolutional Neural Net-
works (CNNs), which are widely utilized in various computer vision tasks. Next,
we delve into different pruning methods, which aim to optimize CNNs by remov-
ing redundant weights or connections. We then focus on the LeNet-5 network,
a well-known CNN architecture often used as a benchmark in pruning research.
Finally, we highlight previous works that specifically address pruning techniques
applied to LeNet-5 for the purpose of enhancing its efficiency and inference per-
formance. This background information sets the foundation for our proposed
approach of pruning and optimizing LeNet-5 for efficient inference.

2.1 Convolutional Neural Networks

CNNs (Convolutional Neural Networks) are a form of neural network utilized
frequently for image and video recognition tasks. CNNs are composed of numer-
ous layers, each executing a distinct operation on the input data. Figure 1 shows
the architecture of a generic CNN with 8 layers. The first layer is a convolutional
layer that applies filters to the input image to generate a set of feature maps.
The following layers may include pooling layers, which downsample the feature
maps, and fully connected layers, which classify or implement regression on the
features. Backpropagation is commonly used to train Convolutional Neural Net-
works (CNNs), which modifies the network’s weights to minimize the difference

Fig. 1. Architecture of a traditional convolutional neural network.
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between predicted outputs and actual labels. This training process typically uti-
lizes massive image datasets with labels. CNNs have applications in domains such
as natural language processing, speech recognition, recommendation systems,
and biomedical image analysis, in addition to computer vision. In tasks such
as sentiment analysis, language translation, speech recognition, and biomedical
image classification, CNNs have demonstrated promising findings. CNNs’ abil-
ity to automatically acquire hierarchical representations from input data makes
them applicable to tasks and domains beyond computer vision. In addition to
computer vision, CNNs have applications in disciplines such as natural language
processing and drug discovery. In Sect. 1, we discussed the significance of prun-
ing CNNs as a hardware optimization technique. However, additional techniques
exist to improve the hardware performance of CNNs, and we will examine these
techniques in the following sections.

– Quantization: This involves reducing the precision of the weights and acti-
vations of the network. For example, using 8-bit integers instead of 32-bit
floating point numbers can significantly reduce the memory requirements and
improve the speed of the network [2,16,21].

– Pruning: Pruning convolutional neural networks (CNNs) involves removing
redundant weights from the neural network, which can significantly reduce
the network’s size and computational requirements. Pruning is one of several
techniques used to optimize CNNs for hardware implementation, and it has
been shown to be effective in reducing the hardware requirements of CNNs
while maintaining their accuracy and performance [6].

– Weight sharing: This method reduces the memory requirements of convolu-
tional neural networks (CNNs) by sharing the weights of multiple neurons. By
reducing the number of unique weights stored in memory, weight sharing can
considerably reduce the memory bandwidth requirements of CNNs, allowing
them to be implemented more efficiently on resource-constrained devices [3].

– Hardware-specific optimizations: The network’s architecture and algorithms
require being configured to the hardware platform it will be implemented on.
For instance, the network’s speed and efficiency can be substantially increased
by employing specifically designed hardware for convolutional operations [5].

Efficient memory management is also crucial when optimizing CNNs for hard-
ware. Techniques such as data augmentation and batch normalization can be
used to reduce memory usage during training, and model compression can be
utilized during inference to further reduce memory requirements [4]. Overall,
these methods can significantly improve the efficiency and performance of CNNs
when implemented on hardware devices with limited resources, such as embed-
ded systems or mobile devices.

2.2 Pruning CNNs

Neuron pruning is a technique in deep learning that aims to enhance the effi-
ciency of a neural network by reducing the number of neurons. The aim is to
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enhance the network’s resource efficiency to enable its operation on hardware
that uses fewer processing units.

There are several methods for pruning neurons, including pruning by weight,
pruning by connections, and pruning by neurons themselves. Weight pruning
entails eliminating low-weight neurons. Connection pruning entails the complete
elimination of neuronal connections. Neuron pruning entails the elimination of
complete neurons from the network. Neuron pruning offers numerous advantages
for hardware optimization by reducing the number of neurons in a network can
decrease its computational cost, enabling it to operate more efficiently on hard-
ware with restricted resources. Efficient resource utilization is crucial in IoT
devices and edge computing due to limited hardware resources. Neuron pruning
can enhance model accuracy by removing noise and overfitting, while also reduc-
ing computational expenses. Pruning neurons that have minimal contribution to
the model’s accuracy could improve the accuracy by allowing the remaining neu-
rons to solely concentrate on the crucial features of the input data. It enables
the development of optimized and precise models that can operate efficiently
on resource-constrained hardware. Structured pruning and unstructured prun-
ing are two common methods for pruning CNNs. Here is an overview of each
method:
– Structured pruning involves removing entire neurons or groups of neurons

from the network. This method is called “structured” because the weights
being pruned are part of a larger structure, such as a filter or a channel. By
removing entire structures from the network, structured pruning can signifi-
cantly reduce the network’s size and computational requirements [1].

– Unstructured pruning involves removing individual weights from the network.
This method is called “unstructured” because the weights being pruned are
not part of a larger structure. By removing individual weights from the net-
work, unstructured pruning can achieve a higher degree of compression than
structured pruning [13].

It is possible to further divide structured pruning into three distinct approaches:
1. Channel Pruning is the process of removing channels from a convolutional

layer based on their importance scores. Channel pruning can be especially
efficient because it can eliminate a large number of parameters with minimal
or no loss of precision.

2. Filter pruning entails deleting whole filters, which are clusters of weights that
each correspond to a particular output feature map. It is possible for filter
pruning to be more precise than channel pruning, but this may necessitate
more granular importance scoring.

3. Layer Pruning is the removal of entire layers from a network, which can be
effective in lowering the computational cost of deep networks. However, layer
pruning can be hazardous, as removing crucial layers can significantly degrade
network performance.

The choice of approach depends on the particular application and hardware lim-
itations, both structured and unstructured pruning can reduce the size and com-
putational cost of CNNs. Unstructured pruning is better suited for cases where
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the network has a large number of redundant weights that can be removed with-
out affecting the network’s performance. This is because unstructured pruning
allows for greater flexibility in removing individual weights, while structured
pruning involves removing entire neurons or groups of neurons from the net-
work. Structured pruning is better suited for cases where the network has a
large number of redundant structures, such as filters or channels [1,10].

2.3 LeNet-5

Fig. 2. LeNet5 architecure.

LeNet-5 is a historic CNN architecture that played a pivotal role in the
development of deep learning and the modern artificial intelligence landscape.
While it may not be the most advanced CNN architecture available today, it
remains an important benchmark in the field and a testament to the power of
convolutional neural networks for image-processing tasks [9]. Figure 2 shows the
architecture of the network. The LeNet-5 architecture consists of seven layers:

1. Input layer: This layer receives the input image, which is typically a 32 × 32
grayscale image.

2. Convolutional layer: This layer applies six 5 × 5 filters to the input image,
producing six feature maps. The filters have a stride of 1 and are padded with
zeros to preserve the spatial dimensions of the input.

3. Pooling layer: This layer performs subsampling on each of the six feature
maps produced by the previous layer. It uses 2 × 2 filters with a stride of 2,
reducing the spatial dimensions of each feature map by a factor of 2.

4. Convolutional layer2: This layer applies 16 5 × 5 filters to the feature maps
produced by the previous layer, producing 16 new feature maps.

5. Pooling layer2: This layer performs subsampling on each of the 16 feature
maps produced by the previous layer, using the same 2 × 2 filters with a
stride of 2.

6. Fully connected layer (FC): This layer flattens the output of the previous layer
into a 120-dimensional vector and applies a fully connected neural network
with 120 hidden units.

7. Fully connected layer (FC): This layer flattens the output of the previous layer
into an 84-dimensional vector and applies a fully connected neural network
with 84 hidden units.
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The LeNet-5 architecture has been the subject of extensive research and exper-
imentation over the years, with many researchers exploring new and innova-
tive ways to optimize its performance for various tasks and hardware platforms.
In addition, researchers have explored the use of different activation functions,
such as ReLU and sigmoid, to improve the performance of the network. Some
researchers have even experimented with the use of hybrid activation functions,
which combine the strengths of multiple activation functions to achieve bet-
ter results. We use the ReLU activation function in our network. LeNet-5 is
extensively utilized in numerous applications, including handwritten digit recog-
nition, object detection, and facial recognition. A notable application of LeNet-5
is the recognition of handwritten characters, such as postal codes on letters and
checks dataset [14]. The architecture of LeNet-5 served as the basis for many
other CNNs, including AlexNet, VGGNet, and ResNet, and has had a signif-
icant impact on the evolution of modern CNNs. LeNet-5 can be implemented
in the Internet of Things applications requiring efficient and accurate image
recognition.

LeNet-5 can accurately classify and analyze medical images, such as X-rays
and MRI scans, for quicker and more precise diagnosis. By using the power of
deep learning, LeNet-5 can solve difficult image recognition tasks quickly and
accurately [9].

2.4 Related Work

In this section, we provide an overview of the related work in the field of opti-
mizing convolutional neural networks (CNNs). Numerous techniques, including
model compression, weight pruning, and quantization, have been proposed to
boost the performance of CNNs. ADMM-NN is a framework for joint weight
pruning and quantization of deep neural networks that use ADMM, a technique
to solve non-convex optimization problems with combinatorial constraints. It
achieves significantly higher pruning ratios than the state-of-the-art, with 85×
and 24× pruning on LeNet-5 and AlexNet models, respectively, and 1,910× and
231× reductions in overall model size on these two benchmarks when combining
weight pruning and quantization. The framework also prioritizes convolutional
layer compression and accounts for hardware performance overhead. Addition-
ally, ADMM-NN performs hardware-aware DNN optimizations, which take into
account computation reduction, energy efficiency improvement, and hardware
performance overhead due to irregular sparsity. This is achieved through a con-
cept of break-even pruning ratio, which is the minimum pruning ratio of a spe-
cific layer that results in no hardware performance degradation. Furthermore,
ADMM-NN achieves these results without accuracy loss and has shown highly
promising results on other representative DNNs such as VGGNet and ResNet-
50. Overall, ADMM-NN presents a robust and efficient solution for DNN model
compression for hardware implementation [17].

You et al. [20] propose a Reconfigurable Sparse convolutional Neural Network
accelerator design (RSNN) that combines software and hardware optimizations
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for sparse CNN computation on FPGAs. The proposed design includes an effi-
cient sparse dataflow for convolution, a load balance-aware pruning method,
a kernel merging technique, and an efficient reconfigurable hardware accelera-
tor design. RSNN achieves high performance on Xilinx Zynq ZC706, with 87.7
GOPS for AlexNet and 112.8 GOPS for VGG16. It is significantly more efficient
than previous dense FPGA accelerator designs and even more efficient than
sparse accelerators like NullHop. Salama et al. [18] proposed a pruning method
to compress neural networks by removing entire filters and neurons according to
a global threshold across the network without pre-calculation of layer sensitiv-
ity. The method has been proven viable by producing highly compressed models,
including VGG-16, ResNet-56, and ResNet-110 on CIFAR10 and ResNet-34, and
ResNet-50 on ImageNet. Additionally, the method compresses more than 56%
and 97% of AlexNet and LeNet-5 respectively. They prune the network and
retrain iteratively to reach the pruned model, and they find that it results in a
network with more activated neurons.

3 Proposed Method

On a pre-trained CNN network, we propose a threshold-based optimization.
The seven layers of the LeNet network are described in Sect. 2. The methodol-
ogy involves a systematic process for determining the optimal pruning threshold
and selectively pruning weights based on their magnitude. The pre-trained net-
work evaluates the precision of the pruned model on the test set and adjusts
the pruning threshold. We profile the weight matrix of a pre-trained CNN to
identify the maximum weight value for each layer. This maximum weight value
serves as a reference point for normalizing the pruning threshold. We calculate
the normalized threshold by dividing a threshold value by the layer’s weights
maximal weight value as shown in Eq. 1.

Thresholdnormalized =
Threshold

Max(weightmatrixlayer)
(1)

To identify the optimal threshold, we profile the weight matrix of a pre-
trained CNN and calculate the weight range within each layer. By analyzing
the weight distribution, we iteratively adjust the threshold, gradually increasing
it until the desired level of accuracy is achieved or a heuristically set threshold
value is reached. The absolute values of the weights below the threshold are set to
zero, effectively pruning them. This iterative process is performed layer by layer,
in a top-down fashion, allowing fine-grained control over the pruning procedure.
To evaluate the effectiveness of our approach, we measure the sparsity achieved
through pruning. Sparsity refers to the percentage of pruned weights compared
to the total number of weights in the network. A higher sparsity value indicates
a greater reduction in network size and computational requirements. Through
experimental evaluations on benchmark datasets, MNIST, Fashion-MNIST, and
SVHN, we demonstrate the efficacy of range-based threshold pruning in achiev-
ing significant weight reduction with low loss in accuracy. The Eq. 2 calculates
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the sparsity of a pruned neural network, which represents the percentage of
weights that have been pruned or set to zero compared to the total number of
weights in the network. The LeNet contains two convolution layers and three
fully connected layers with prunable parameters.

Sparsity =
Number of Pruned Weights

Total Number of Weights
∗ 100% (2)

Figure 3 depicts the steps involved in the pruning procedure. We load the
pre-trained model and assign a set of initial threshold values to each layer of the
model. Set a maximum weight value for each layer and normalize the threshold
by dividing it by the maximum weight. While the accuracy of the pruned model
on the test set is greater than a predetermined stop accuracy threshold, carry
out the steps below for each layer:

1. Load the pre-trained model.
2. Profile the weight matrix of the model.
3. Calculate the optimal threshold for pruning by normalizing the threshold

value.
4. Iterate through each layer of the model:

a Prune weights below the normalized threshold by setting them to zero.
b Evaluate the accuracy of the pruned model on a test set.

5. Check if the accuracy falls below a predetermined stop accuracy.
a If yes, stop pruning for the current layer freeze the pruning threshold for

the current layer and proceed to the next layer.
b If no, continue pruning for the current layer.

6. If the current layer is the final layer in the network, cease pruning and proceed
to the next layer. If not, proceed to prune the current layer.

7. Increase the threshold value and repeat the pruning process for the current
layer.

8. Once all layers have been pruned, return the pruned model and the optimal
threshold values for each layer.

9. Evaluate the accuracy of the optimized model and compare it to the accuracy
of the original model.

The novelty of the proposed method lies in the approach of range-based thresh-
old pruning for optimizing convolutional neural networks (CNNs). Traditional
pruning approaches often use fixed threshold values, which may not represent
the weight distribution inside each layer properly [12]. The proposed method,
on the other hand, dynamically sets the pruning threshold based on the weight
ranges inside each layer. By profiling the weight matrix and calculating the
optimal threshold for each layer, the method achieves fine-grained pruning and
maintains important network information while removing unnecessary weights.
In addition, the iterative adjustment of the pruning threshold and the use of
a stopping condition ensure that the pruning process is optimized to strike a
balance between model size reduction and preservation of accuracy. Overall, the
novelty of the proposed method lies in its adaptive and data-driven approach to



Layer-Wise Filter Thresholding Based CNN Pruning 85

Fig. 3. Flowchart for proposed model based on range-based optimization.

threshold-based pruning, which effectively exploits the weight ranges within each
layer and provides a systematic method for optimizing the efficiency of CNNs
while keeping the loss in accuracy minimal. The goal of profiling is to understand
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the characteristics of the weights in each layer, which can aid in determining an
appropriate pruning threshold. By analyzing the weight range and distribution,
it becomes possible to set a threshold that effectively prunes unnecessary or less
important weights while preserving important network information. The profil-
ing step helps in making informed decisions about the pruning threshold and
contributes to the overall effectiveness of the pruning process.

4 Experimental Results

In this section, we present the experimental setup and results of our study. Our
experimentation focuses on evaluating the effectiveness of the threshold-based
optimization technique on the LeNet-5 network using three different datasets:
MNIST, CIFAR10, and SVHN. The pretrained network is implemented and
trained using the PyTorch framework [15] on a cloud computing platform. The
pretrained network is the baseline model we make comparisons against.

To assess the performance of the proposed approach, we conduct multiple
experiments where the network is trained independently on each dataset. The
threshold-based optimization process is applied to each baseline model, and the
resulting models are evaluated based on their accuracy and network sparsity.
Sparsity represents the ratio of pruned weights to the total number of weights
in the network. Higher sparsity values indicate a more substantial reduction in
network size and computational demands.

4.1 MNIST (Modified National Institute of Standards
and Technology) Dataset

The MNIST dataset is a widely used benchmark for evaluating machine learning
algorithms, particularly those focused on image recognition and classification. It
consists of 60,000 training images and 10,000 testing images of handwritten digits
from 0 to 9. Each image is grayscale and has a resolution of 28×28 pixels. CNNs
have achieved remarkable performance on the MNIST dataset, with some models
achieving error rates as low as 0.23%. The MNIST dataset is a useful benchmark
for evaluating machine learning algorithms new deep-learning architectures and
optimization techniques [5,9].

Table 1, shows the results of optimizing the LeNet-5 network on the MNIST
dataset for five different models trained. The network has 61,706 trainable
parameters. We observe that for the average optimal threshold, we can prune
at least 60% of the prunable parameters, which are weights for an accuracy loss
of 1–5%. Table 2, shows the optimization results for one model in detail, we can
see the number of weights pruned for each layer and compare them to the num-
ber in the baseline model. The results highlight the importance of finding an
optimal pruning threshold that strikes a balance between model size reduction
and maintaining acceptable accuracy. Table 1 provides information about the
pruning threshold, the number of weights in the baseline model, and the num-
ber of weights pruned for each layer of a neural network. In the fully connected
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Table 1. Optimization results for Lenet with MNIST dataset.

Exp # # weights %
weights
pruned

accuracy (%)
in regular
model

avg threshold
pruned
model

accuracy
(%) in
pruned
model

loss (%)
accuracy

1 39,073 63.32 98.95 0.5 95.61 3.34
2 39,620 64.21 98.90 0.5 97.87 1.03
3 39,252 63.61 99.15 0.5 98.08 1.07
4 38,654 62.64 98.77 0.5 97.16 1.61
5 39,879 64.63 98.73 0.51 95.46 4.24

layer 1 (FC1) layer, 32,160 weights are pruned of 48,000, resulting in a sparsity
of approximately 67%. This means that around 67% of the weights in the FC1
layer have been pruned, leading to a sparse network representation. We use the
optimal pruning thresholds to calculate the average optimal threshold, and a
total of 39,973 weights are pruned out of the initial 61,706 weights, demonstrat-
ing a significantly sparser matrix. Figure 4 showcases the impact of pruning on
accuracy for different layers of the MNIST dataset. It compares the accuracy of
the original model with the pruned model as each layer undergoes pruning. The
plot demonstrates that applying dynamic pruning to the CNN model leads to
accuracy changes in each layer. It is evident that the pruning thresholds have
a more pronounced impact on the fully-connected layers (FC1, FC2, and FC3)
compared to the convolutional layers (Conv1 and Conv2). The plot depicts a
steeper decline in accuracy for the fully-connected layers as the pruning thresh-
old increases, signifying their higher sensitivity to pruning. Conversely, the con-
volutional layers demonstrate a more gradual decrease in accuracy, indicating
their relative resilience to changes in the pruning threshold.

Table 2. Optimization results for Lenet with MNIST dataset for one model.

layer name optimal pruning threshold # weights in baseline model # weights pruned

conv1 0.67 150 100

conv2 0.67 2,400 1,608

fc1 0.67 48,000 32,160

fc2 0.30 10,080 5,541

fc3 0.30 840 564

Total avg = 0.48 61,706 39,973

4.2 FASHION-MNIST

The Fashion MNIST dataset is a collection of images of clothing items, designed
as a replacement for the traditional MNIST dataset. It consists of 70,000
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Fig. 4. Change in accuracy for each layer during pruning: comparison between the
original model and the pruned model on the MNIST dataset.

grayscale images of 10 different categories of clothing, including t-shirts, dresses,
and shoes. The images are 28×28 pixels and are divided into a training set of
60,000 images and a test set of 10,000 images. The Fashion MNIST dataset has
also been used as a testbench for evaluating new techniques for data augmenta-
tion, network architecture, and training algorithms [19].

Table 3. Optimization results for Lenet with FASHION-MNIST dataset.

Exp # # weights % weights
pruned

accuracy (%)
in pruned
model

threshold
regular model

accuracy (%) in
proposed model

loss (%)
accuracy

1 34,160 70.90 89.63 0.44 87.39 2.24

2 28,907 65.07 89.67 0.41 87.24 2.43

3 28,237 63.56 89.15 0.38 87.11 2.04

4 30,218 68.02 89.98 0.41 86.76 3.22

5 25,976 58.47 89.02 0.32 85.34 3.68

Table 3 presents the results of optimizing the LeNet-5 network on the Fashion-
MNIST dataset for five different models. The network has a total of 62006 train-
able parameters, and we can see that the optimal pruning thresholds for each
model differ. We observe that, for the average optimal threshold, we can prune an
average of 65% of parameters, which are the network weights. The correspond-
ing loss percentages range from 2.04% to 3.68%, suggesting a slight trade-off
between accuracy and loss.
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In Table 4, we present the optimization results for one model in detail, includ-
ing the number of weights pruned for each layer and a comparison to the baseline
model. We observe that the weights pruned for each layer vary, indicating that
the optimal pruning threshold for each layer is different. This observation is sup-
ported by the results presented in Fig. 5, where we see the change in accuracy
for each layer of the model for different average optimal threshold values.

To calculate the average optimal pruning thresholds, we use the values
obtained for all models, and the results are presented in Table 3. Figure 5 illus-
trates the change in accuracy for each layer during the pruning process of the
proposed model on the Fashion-MNIST dataset. It is worth noting that, with the
highest average optimal threshold value of 0.48, the accuracy drops drastically at
the first convolution layer. The analysis of the graph shows that as the pruning
threshold increases, there is a gradual decrease in accuracy for each layer.

Table 4. Optimization results for Lenet with FASHION-MNIST dataset for one model.

layer name optimal pruning threshold # weights pruned # weights baseline model

conv1 0.4 79 150

conv2 0.4 1,272 2,400

fc1 0.4 16,282 30,720

fc2 0.35 5,147 10,080

fc3 0.15 150 840

total 34,160 44,426

average threshold 0.48

4.3 SVHN Dataset

The Street View House Numbers (SVHN) dataset is a large-scale dataset of
house numbers in Google Street View images. It consists of over 600,000 digit
images, each of which is a cropped and resized section of a larger image. The
digits range from 0 to 9 and are presented in a variety of fonts, styles, and
sizes [14]. The SVHN dataset has become a popular benchmark for evaluating
machine learning models for image recognition tasks, particularly those focused
on digit recognition. It is often used as a more challenging alternative to the
MNIST dataset, as it contains more variability in terms of digit appearance,
background complexity, and image quality. SVHN is a real-world image dataset
that is ideal for developing machine learning and object recognition algorithms.
It requires minimal data preprocessing and formatting.

The dataset is available in two formats:

1. Original images with character-level bounding boxes.
2. Similar to MNIST, 32×32 images centered around a single character.



90 L. K. Kalyanam et al.

Fig. 5. Change in accuracy for each layer during pruning: comparison between the
original model and the pruned model on the Fashion-MNIST dataset.

Table 5. Optimization results for Lenet with SVHN dataset.

Exp # # weights % weights
pruned

accuracy (%)
in pruned
model

avg threshold
model

accuracy (%)
in proposed
model

loss (%)
accuracy

1 23,106 52.01 88.37 0.4 87.0 1.37

2 33,783 54.48 88.34 0.4 85.46 2.88

3 31,351 50.56 88.69 0.4 86.72 1.97

4 33,779 54.48 88.37 0.35 87.08 1.29

5 36,166 58.33 87.54 0.4 86.34 1.2

We use the format in 32×32 image sizes because LeNet-5 has an input size of
32×32.

Table 5 shows the results of optimizing the LeNet-5 network on the SVHN
dataset for five different models. The network has 62006 trainable parameters.
We observe that, for the average optimal threshold, we can prune at least 50%
of the prunable parameters (which are weights) for an accuracy loss of 1–3%.
Table 6 shows the optimization results for one model in detail, including the
number of weights pruned for each layer and a comparison to the baseline model.
We use the optimal pruning thresholds of all models to calculate the average,
which is presented in Table 5. In Fig. 6, we see the change in accuracy for each
layer of the model for different average optimal threshold values. We observe that,
for the highest average optimal threshold of 0.42, accuracy drops drastically at
the first convolution layer.

Figure 6 illustrates the relationship between the pruning threshold and the
accuracy of the pruned model for different layers in the SVHN dataset. Some
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layers exhibit a more gradual decline in accuracy, while others show a steeper
decline. This suggests that different layers contribute differently to the overall
model performance and have varying degrees of sensitivity to weight pruning.

Fig. 6. Change in accuracy for each layer during pruning: comparison between the
original model and the pruned model on the SVHN dataset.

Table 6. Optimization results for Lenet with SVHN dataset for one model.

layer name optimal pruning threshold # weights pruned # weights baseline model

conv1 0.4 180 450

conv2 0.4 960 2400

fc1 0.4 19,200 48000

fc2 0.35 7,308 10080

fc3 0.15 166 840

total 36,166 62006

average threshold 0.34

In the experimental section, we evaluated the proposed pruning approach on
the MNIST and Fashion-MNIST datasets using LeNet-5 architecture. Through
the iterative pruning process, we achieved significant reduction in the number of
weights while maintaining relatively high accuracy. The results demonstrate the
effectiveness of the proposed method in reducing model complexity and compu-
tational requirements without sacrificing performance.
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5 Conclusions and Future Work

For resource optimization of CNNs on hardware for IoT and edge applications,
we proposed a range-based threshold pruning approach on LeNet and conducted
experiments to compare the results on three different datasets: MNIST, Fashion-
MNIST, and SVHN. Through our experiments, we observed that we can prune a
significant portion of the weights while still maintaining a relatively small accu-
racy loss. Specifically, for the MNIST dataset, we were able to prune approx-
imately 62–64% of the weights while only incurring an accuracy loss of 1–4%.
Similarly, for Fashion-MNIST, we found that we could prune around 55% of the
weights while only experiencing an accuracy loss of around 1.7%. The results of
the SVHN dataset were also promising, as we were able to prune approximately
53% of the weights while incurring an average accuracy loss of only 1.7%. The
experimental results on the three datasets demonstrated the effectiveness of the
proposed method in achieving high sparsity levels while maintaining relatively
high accuracy. These findings suggest that our proposed approach could be use-
ful for reducing the computational resources required for deploying deep learning
models in resource-constrained environments, while still achieving a satisfactory
level of accuracy.
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Abstract. With the rise of IoT and cloud computing, DDoS attacks
have become increasingly harmful. This paper presents a survey of tech-
niques for detecting and preventing DDoS attacks, specifically focus-
ing on Shrew DDoS or low-rate DDoS attacks. We explore the use of
machine learning for DDoS detection and prevention and introduce a
new potential technique that simplifies the process of detecting and pre-
venting DDoS attacks originating from multiple infected machines, typi-
cally known as zombie machines. As a future direction, we discuss a new
technique to simplify the detection and prevention of shrew DoS attacks
originating from multiple infected machines, commonly known as bot-
nets. The insights presented in this paper will be valuable for researchers
and practitioners in cybersecurity.

Keywords: Shrew DoS · Low-rate DDoS · LDDoS Attack · IOT ·
Communication security · Ns-2

1 Introduction

The Internet of Things (IoT) represents the physical thing (i.e.devices, objects,
etc.) connected through the internet. It utilizes embedded systems, smart sen-
sors, software, and other technologies to exchange data with each other over the
internet. This survey explores Shrew distributed denial-of-service attacks to sum-
marize the recent studies in secure communication of IoT applications. First, the
survey explains denial-of-service attacks and the different prevention methods.
It includes papers using the NS-2 simulator to generate a data set and detect
the impact on communication devices. We also explore the security constraints
of the victim network. For that, DDoS is classified into different parameters.
We also discuss novel research that can protect IoT applications against DDoS
attacks. For that, we explain the future work with inference from a real-world
example by detecting the number of machines performing the DoS attack. The
article is organized into different parts which are: a) Literature review: Review
of previously published works b) Research challenges: Identification and exami-
nation of difficulties encountered in research c) Related Research: Investigation
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
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of studies that are related to the topic d) Discussion and Improvement: Con-
versation and enhancement of findings e) Future work: Plans for future research
endeavors (Fig. 1).

2 Literature Review

Distributed denial-of-service (DDoS) attacks are designed to disrupt the nor-
mal traffic of a server or network by flooding it with malicious packets. These
attacks are initiated by single or multiple infected systems within a network,
making them robust. To address this issue, researchers have developed various
preventive measures, and we discuss how to detect and counter multiple machines
performing a DDoS attack on a single system. Many researchers examined DDoS
attacks, including UDP flood, SYN flood, HTTP flood, protocol-exploitation
flooding, reflection-based flooding, and amplification-based flooding. Using IoT
as an example, we better understand how these different flooding and exploita-
tion attacks are performed. The perception, network, and application layers are
the three standard levels of IoT architecture.

Shrew DDoS attacks are a specific type of DDoS attack that involves contin-
uously sending packets to a network at a low rate. Unlike flooding DDoS attacks,
shrew attacks occur periodically, which makes them unique. However, they can
still significantly reduce the quality of service on the victim’s system. To counter
this type of attack, researchers have proposed various approaches, including the
spectral template matching approach [1]. Researchers are utilizing the NS sim-
ulator to create a large-scale network simulation test-bed to simulate an attack
flow over background traffic that exhibits self-similarity. TCL scripts are used
to create simulations, and the GREP command-line interface is a helpful tool
for writing the code. The OTCL configuration file, known as the “TCL script,”
contains information on topology creation, node creation, link setup, and other
parameters [2].

Fig. 1. Denial of service attacks of sections follows.
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3 Research Challenges

When smart home appliances are connected to the internet, the likelihood of
malicious attacks increases, posing significant security concerns for the home sys-
tems if any critical security area is breached. Additionally, the need for firmware
updates for older IoT devices is a challenge. New devices are introduced to the
market without considering legacy devices already paired with users’ networks,
leading to vulnerabilities that attackers can exploit.

Furthermore, privacy concerns arise with the developing new technology,
including smart home appliances. It is essential to ensure that consumers’ privacy
is protected and their personal data is not compromised.

Distributed denial-of-service (DDoS) attacks can cause significant damage
to companies by disrupting their services and resulting in financial losses [3].
The authors propose a machine-learning solution that involves building a Z-
wave network on a Raspberry Pi gateway and using testbed equipment to carry
out a DDoS attack by flooding the gateway with packets to address this issue.
Wireshark is used to capture network traffic during the attack and employs
various machine learning models such as logistic regression, decision trees, ran-
dom forests, support vector machines, and deep learning models to assess the
effectiveness of the proposed intrusion detection systems.

Chen Yu discusses shrew DDoS attacks, which exploit a system’s temporary
behavior to gradually reduce it’s capacity or service quality. These attacks are
also known as “pulsing DDoS attacks” or “reduction of quality attacks.” The
paper proposes a distributed system for collaborative detection and filtering
(CDF) that distinguishes shrew attack flow from legitimate TCP and UDP traffic
flows by detecting a traffic stream with higher energy in the low-frequency band.

Agarwal studied using support vector machines to detect zombies carrying
out DDoS attacks [5]. The paper used radial basis functions and polynomial
functions for the training set and employed the structural risk minimization
principle to generalize performance under small datasets. The training dataset
was obtained from the ns-2 simulator and generated using the Gt-IMT topol-
ogy generator. The study found that with an increase in zombie machines, the
deviation in entropy increased using both the training and test data.

A new approach based on IoT sensors is proposed to create resistance against
DDoS attacks [6]. The proposed solution involves using an Apache server as a
load balancer, a Python script for traffic filtering, and the Wireshark network
protocol analyzer for analyzing traffic.

4 Related Research

There are only a few researchers have explored utilizing machine learning algo-
rithms to detect the number of machines involved in a DoS attack. Therefore, it
is imperative to investigate and develop effective methods to detect the number
of machines participating in a DoS attack using machine learning techniques.
Practical implementation has also highlighted the importance of identifying the
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number of machines involved in a DoS flood attack, as it is crucial to mitigate
the situation efficiently [5,13] (Fig. 2).

Fig. 2. Multiple machines performing DOS.

Shrew DDoS attacks aim to disrupt a system’s service through low-rate
packet mugging techniques. It proposes a comprehensive survey analysis and
offers effective means to prevent multiple machines or zombies from carrying out
shrew DDoS attacks on a system, as outlined in [5].

A new method is proposed for optimizing the pulse rate in low and slow
DDoS (LDDoS) attacks, assuming that the target bottleneck link’s bandwidth
and buffer size are unknown. This proposed approach adopts an exploratory
approach to determine the optimal pulse rate required to reduce the target’s
TCP communication quality to achieve the desired attack effect in a limited
attack scenario and environment. The approach involves intentionally limiting
the throughput of the target network’s TCP flow to a specific level to decrease its
quality. The strategy relies on a feedback mechanism that employs an observer,
a bot node placed within the target network, to estimate the attack’s impact.
Based on this feedback, the attack pulse rate is then iteratively increased.

The Control Attack function, executed by the master, an attack control node,
performs several tasks at regular intervals during an observation window of W
seconds. These tasks include determining the pulse parameters for each active
attack node based on the parameters described. It determines the value of incre-
ment C, which represents the incremental increase in the number of active attack
nodes c based on the estimated current attack effect. The Send Attack Pulse func-
tion sends a command to each active attack node to execute an LDDoS attack
for W seconds. Each active attack node sends an attack pulse with parame-
ters R, T, and L, where delta R represents pulse rate, L represents duration,
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and T represents interval. These parameters are aggregated in the bottleneck
link to form R = R c, T, and L. The function can estimate the characteris-
tics of the bottleneck link and reduce the size of the aggregated attack pulse
R to maintain the attack’s stealth after achieving the target attack effect. New
research presented a different perspective on mitigating DoS attacks is proposed
[13]. The paper discusses a device called the Arduino Opla Device, which adds
connectivity to devices in the home or workplace. The device comes with eight
Internet of Things self-assembly projects that show how to turn everyday appli-
ances into ’smart appliances’ and build custom-connected devices that can be
controlled with a mobile phone. One of the critical features of the Opla Kit is
its companion app, which allows easy configuration and control of the board
without requiring any coding. The Kit includes an Arduino MKR Wi-Fi 1010
board, sensors, and actuators. These sensors and actuators enable measuring
and controlling parameters such as temperature, humidity, light, and motion.
The author applies four machine learning algorithms to the dataset, including
minimum, maximum, and average packet transit times over the network. The
algorithms used are Naïve Bayes, Decision Tree, Support Vector Machine, and
Multilayer Perceptron. After calculating the accuracy and F1 score, it was found
that the J48 algorithm with 5-fold cross-validation performed better in detecting
DoS attacks (Fig. 3).

5 Discussion and Improvements

Machine learning algorithms are commonly used to detect DoS attacks on net-
works by analyzing features such as packet count, segment size, flow duration,
and acknowledgment flag count. Random forest is found to be the most effective
algorithm in detecting attacks, while deep neural networks offer highly accurate
results. In situations where physical hardware is unavailable, the NS-2 simula-
tor has been used by some researchers to generate datasets for training their
models. A new methodology is proposed to combat screw DDoS attacks from
multiple machines based on survey results. This method involves detecting the
pulse rate of the attack from each infected system and combining the different
frequency pulses into one amplified frequency within the same time interval.
This technique can be utilized to detect DOS attacks from multiple machines
by generating concatenated output pulses in the form of readings. The attack
packet frequency can then be calculated by adding up the pulse rate that detects
the number of malicious packets within one wavelet, which serves as input for
a complete attack scenario to prevent the DoS attack. Although this model is
still conceptual, future research can expand on the present findings and develop
a technical paper.
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Fig. 3. Methodology on tackling screw DOS attack coming from multiple sources.

6 Future Work

As a further development to the research above, we aim to conduct a tech-
nical investigation focused on generating a single wavelet using multiple pulse
rate frequencies obtained from various zombie machines during a low-rate DDoS
attack. This wavelet will encompass all relevant pulse rate data, including the
time intervals of maximum and minimum rates and the duration of the pulse
rate during which the infected packets congest the network line.
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Abstract. The purpose of this research paper is to detect and classify
the hidden honeypots in Ethereum smart contracts. The novelty of the
work is in hypertuning of parameters, which is the unique addition along
with classification. Nowadays, blockchain technologies are the grooming
technologies. In the current trend, the attackers are implementing a new
strategy that is much more proactive. The attackers attempt to dupe
the victims by sending seemingly vulnerable contracts containing hidden
traps. Such a seemingly vulnerable contract is called a honeypot. This
work aims to detect such deployed honeypots. A tool named Honeybad-
ger has been presented. It is a tool that uses symbolic execution to detect
honeypots by analyzing contract bytecode. In this system, we consider
different cases such as fund movement between the contractor and con-
tract, the transaction between sender and participant, and several other
contract features in terms of source code length and compilation informa-
tion. In the methodology used, the features are then trained and classi-
fied using a machine learning algorithm (XGBoost and gradient boosting
with hyper tuning) into Balance Disorder, Hidden State Update, Hidden
Transfer, Inheritance Disorder, Skip Empty String Literal, Straw Man
Contract, Type Deduction Overflow, and Uninitialized Struct. Through
this algorithm, we developed a machine-learning model that detects and
classifies the hidden honeypots in Ethereum smart contracts. Hypertun-
ing of parameters is the unique addition along with classification that
separates the rest of the studies done in this area.

Keywords: Blockchain · Ethereum · Firewall · Honeypot

1 Introduction

A smart contract is a simple computer program designed to automate certain
things or events under an agreement or contract. The first public blockchain to
enable smart contracts is Ethereum. However, the contract design in Ethereum
exhibits obvious flaws such as when a user sends some funds to a contract,
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then that same user can withdraw the funds that were just sent. Due to these
flaws, many attempts are to poach the vulnerabilities and target naive users.
To prevent this from happening such a detection system’s existence is crucial.
When someone attempts to exploit this flaw, they are unable to recover the
money initially sent. In this case, the malicious attacker is the one who creates
the contract. On the other hand, the one who falls for the trap is known as the
victim. Honeypots take advantage of the naivete of the victim by preying on
the victim’s ignorance of hidden attributes. There are hundreds of honeypots in
Ethereum that have been discovered, and depending on the various techniques
used, they are divided into many types. Malicious users creating smart contracts
on the blockchain mainly benefit from such honeypots. Thus, there is a higher
emphasis on security when public smart contracts are concerned.

Ethereum smart contracts have gained immense popularity from many
sources, such as the media and industry, in the past few years. With the increase
in popularity, there has been a rise in malicious users capitalizing on this sit-
uation, trying to find new opportunities to deceive newcomers and profit from
them. Consequently, such lucrative individuals started luring others into con-
tracts that seem exploitable, but they are a honeypot with a hidden trap that
in turn benefits the one who creates the contract. The detection of this honey-
pot is a challenging task. Hence, this system is developed to detect and classify
honeypots based on their features in the Ethereum blockchain platform.

1.1 Our Contributions

The research objective is to survey different approaches applicable to honeypot
detection in smart contracts, classify them and select appropriate algorithms
for the design of the system along with to evaluate the performance of the
system. The paper describes the previous methods implemented in the form
of a literature review followed by an architecture of the system and research
methodology and accompanied by experimentations, results, and observations.

2 Related Work

This section focuses on the important work done and research carried out rel-
evant to this topic. It also provides comprehensive information such as the
authors, the methodology adopted, and the research gap identified. Research on
honeypots focuses on measurement and detection. Torres et al. [3] first defined
the honeypot in The Art of Scam. They used a variety of methods to measure the
number of smart contracts and honeypots. They found that there were 150,000
smart contracts and 282 honeypots and that these numbers are growing each
day. In the past, Honeypot systems were used neither detecting intrusion detec-
tion systems nor the firewall for a direct specific problem. Honeypots now are
used as a part of security systems and what kind of problem they will offer a
solution is depends on the design and usage purposes. Hence contrary to other
information security equipment is not to be able to mention a honeypot that
can give a general answer to every problem solution [3].
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Riboldi et al. [22] created a low-interaction honeypot system to keep an eye
on unlawful activity on VoIP systems. They acquired 3502 SIP Protocol-related
events over a period of 92 days. They have viewed their system as being accessible
as a VOIP environment with a firewall and intrusion detection system. The final
results could also be embedded in suites of software used in active or passive
network defense.

In their research, Shukla et al. [21] used a honeypot system to find malicious
web URLs. On the client side, the system that was created with the Python
programming language is used. The URL addresses are collected using a crawler
on the client side, and if a visit is required, websites are then accessed. A trigger
is set off by the signature-based intrusion detection system if certain URLs are
malicious or contain vulnerabilities. As a result, security is available, and the
dangerous URL addresses are preserved in the blacklist [21]. One of the obser-
vation is that the network security can be improved when such technologies are
combined with the honeypot system.

For the study and visualization of harmful activities and connections,
Koniaris et al. [11] have deployed honeypot systems. Two separate search hon-
eypots have been set up. The first of these was designed to collect malicious soft-
ware and often features a self-propagation option, while the second was designed
as a trap system to collect harmful activity [11].

It has been discussed by Xiangfeng Suo et al. [23] how to use honeypot tech-
nology in intrusion detection systems. They have proposed using honeypot sys-
tems to fix issues with intrusion detection systems as part of their study [23]. In
future works, this system can be evaluated on a range of synthetically generated
polymorphic worms for accuracy, efficiency, and effectiveness.

A honeypot-based signature generator for computer network security has
been carried out by Paul et al. [14] The created technique has been utilized
mostly to defend against attacks from polymorphic worms. The created system
is also capable of isolating suspicious traffic and gathering a wealth of information
on harmful traffic and worm assaults [14].

Markert J. et al. [12] have presented an effective analysis of a honeypot for
WSN and show detection capabilities in the categories of known and unknown
attacks in their paper [12].

Musca C. et al. [13] have presented methods for isolating malicious traffic by
using a honeypot system and analyzing it to generate attack signatures automat-
ically for the SNORT intrusion detection/prevention system in their study [13].

In their study, Haltas F. et al. [9] introduce BFH (BotFinder via Honey-
pots), an innovative automated bot-infected machine detection system based on
BotFinder that locates the infected hosts in a real corporate network by using a
learning technique [9].

Bashir U. et al. [1] have surveyed the overall progress of intrusion detec-
tion systems in their paper. They survey the literature’s existing types, tech-
niques, and architectures of Intrusion Detection Systems. Finally, they outline
the present research challenges and issues [1].
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A novel idea of proactive IDS was proposed in paper authored by Benmoussa
H. et al. [2], who offered a survey of distributed intrusion detection systems
based on intelligent and mobile agents. At first, they introduced the topic, then
presented the limitations of classical IDSs. Furthermore, they presented the tech-
nologies of agent and multi-agent systems along with the benefits of using them
to address the shortcomings of classical IDSs [2].

3 System Architecture and Research Methodology

This section explains the system structure and flow along with the methodology
used. A gradient-boosting decision tree ensemble learning algorithm is a type of
decision tree that can be used for classification and regression. It works a little
bit like the forest algorithm but is better at finding better solutions. To create a
more accurate model, ensemble learning algorithms mix different machine learn-
ing techniques. Both GBDT and random forest create models made up of several
decision trees. The way the trees are constructed and joined makes a differ-
ence. Extreme Gradient Boosting (XGBoost) is a distributed, scalable gradient-
boosted decision tree (GBDT) machine learning framework. The top machine-
learning library for regression, classification, and ranking issues, it offers parallel
tree boosting. The following Fig. 1 presents system structure having functional
blocks such as dataset splitting, preprocessing, training using machine learning
algorithms, etc. It explains the structure of the system in a sequential manner
(Fig. 1).

Fig. 1. System Structure for Data Preprocessing and Training
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In this model, we are using an ensemble of multiple algorithms like decision
trees, SVM, KNN, and XG-BOOST. Through the hyper-tuning of parameters
like max depth, n estimators, n jobs, etc., we were able to achieve higher classifi-
cation accuracy than the earlier model. XGBoost is a powerful gradient-boosting
solution that can help improve the performance and speed of machine learning
models (Fig. 2). With XGBoost, trees are created concurrently instead of sequen-
tially like with GBDT. The algorithm uses a level-wise strategy to evaluate the
quality of splits at every possible split in the training set.

Fig. 2. Processing steps of XGBoost algorithm

4 Experimentation and System Modeling

The dataset is split into 10 parts. In each iteration nine-tenth of the dataset
is used to train the model and the remaining one-tenth part is used for testing
the accuracy. In every iteration, the one-tenth testing portion keeps on changing.
With the help of such parameters and many others being hyper-tuned, the model
is able to increase its accuracy by a combination of iterations mentioned in the
results section. This makes the model more robust than what we have seen in the
past in the form of literature review and gap identification (Fig. 3). A detailed
explanation of the same is presented in the results and discussions section.

5 Results and Discussions

Additional data cleaning process is carried out before applying machine learning
algorithms to conduct experiments. Mainly, the missing values are managed in
our dataset by doing feature extraction. Because all of the transactions in the
contract have errors, it is impossible to compute the aggregated characteristics
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Fig. 3. Data Flow Diagram – DFD 1

of any type of transaction. When a contract has only one normal transaction, it
is difficult to measure the difference in time or block number between subsequent
normal transactions. Since all transactions have at least one normal outcome, any
remaining characteristics of a normal transaction are always defined. Sometimes,
we cannot find the right answer to a question. But even when we cannot find
the answer, still used zeros to represent it.

The system uses a machine learning model to predict whether a contract is
a honeypot or not. We use k-fold cross-validation to make sure that the model
is effective at predicting data that has not been seen before. The data is divided
into 10 different groups, each of which is used to test the algorithm. Each group
of ten people will be used for testing once. We used a stratified k-fold cross-
validation procedure to ensure that the data is representative of the population.
There are more non-honeypot contracts in our dataset than honeypot contracts.
This makes it hard for computer algorithms to learn how to classify contracts.

The XGBoost algorithm is set to use a scaling factor for the positive class
so it would learn better. This model also measures how much power each fold
has, the AUROC technology. AUROC stands for the Area Under the Receiver
Operating Characteristics graph. The ROC curve shows how well a model can
correctly identify different categories. The area under the curve shows how many
times the model correctly classified a particular item as belonging to one of the
categories. The performance of the XGBoost classifier on the selected dataset is
shown below along with the results of the Honeypot classification model.

Iteration 1:
train ROC AUC 0.996 TN 141700 FP 1012 FN 0 TP 264
test ROC AUC 0.980 TN 15729 FP 127 FN 1 TP 30
train score - test score = 0.017

Iteration 2:
train ROC AUC 0.996 TN 141666 FP 1034 FN 0 TP 276
test ROC AUC 0.997 TN 15757 FP 111 FN 0 TP 19
train score - test score = -0.000
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Iteration 3:
train ROC AUC 0.997 TN 141719 FP 991 FN 0 TP 266
test ROC AUC 0.962 TN 15744 FP 114 FN 2 TP 27
train score - test score = 0.035

Iteration 4:
train ROC AUC 0.996 TN 141528 FP 1190 FN 0 TP 259
test ROC AUC 0.967 TN 15688 FP 162 FN 2 TP 34
train score - test score = 0.029

Iteration 5:
train ROC AUC 0.996 TN 141607 FP 1109 FN 0 TP 261
test ROC AUC 0.981 TN 15724 FP 128 FN 1 TP 33
train score - test score = 0.015

Iteration 6:
train ROC AUC 0.996 TN 141620 FP 1096 FN 0 TP 261
test ROC AUC 0.967 TN 15754 FP 98 FN 2 TP 32
train score - test score = 0.029

Iteration 7:
train ROC AUC 0.996 TN 141566 FP 1146 FN 0 TP 265
test ROC AUC 0.963 TN 15735 FP 121 FN 2 TP 28
train score - test score = 0.033

Iteration 8:
train ROC AUC 0.997 TN 141732 FP 981 FN 0 TP 264
test ROC AUC 0.964 TN 15735 FP 120 FN 2 TP 29
train score - test score = 0.033

Iteration 9:
train ROC AUC 0.996 TN 141510 FP 1199 FN 0 TP 268
test ROC AUC 0.959 TN 15731 FP 128 FN 2 TP 25
train score - test score = 0.037

Iteration 10:
train ROC AUC 0.997 TN 141719 FP 987 FN 0 TP 271
test ROC AUC 0.955 TN 15765 FP 97 FN 2 TP 22
train score - test score = 0.041

Results: train: 0.996 ± 0.000 test: 0.970 ± 0.012

The following Table 1 represents comparative results. This system achieved
a training accuracy of 0.996 and for testing accuracy of 0.96.

Table 1. Comparative results

Sr. No. Features Accuracy Accuracy

1. All Features such as symbols (fund
flow), normal transaction value,
contract compiler patch, etc

0.985 ± 0.002 0.968 ± 0.015

2. Only Transactions 0.966 ± 0.004 0.954 ± 0.030

3. Only Source Code 0.953 ± 0.002 0.942 ± 0.025

4. Only Fund Flow 0.952 ± 0.002 0.938 ± 0.023

5. Proposed Method (all features) 0.996 ± 0.000 0.962 ± 0.030

This section describes the readings of a particular traffic signal at one of the
chosen squares. From Table 2, Signal No. (i) depicts the iteration number (1 to
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10). N and Traffic Level used in Table 2 represents the count of vehicles and
traffic density at that particular traffic signal respectively.

Table 2. Importance of features

Sr. No. Feature Accuracy

1. symbol 83 0.683355

2. normal transaction value mean 0.105948

3. contract num source code lines 0.058222

4. normal transaction gas mean 0.036259

5. contract compiler patch 137 0.021729

6. normal transaction gas used mean 0.015829

7. normal transaction value std 0.014596

8. contract compiler patch 125 0.009466

9. normal transaction block span 0.00773

10. symbol 73 0.007420

6 Limitations of Study and Future Scope

The model needs sufficiently large dataset as an input with similar data points
to create a model that is capable of discerning honeypots from legitimate smart
contracts. The proposed system can be extended for different datasets of honey-
pots. The system can be further improved by deep learning algorithms like 1D
CNN.

7 Conclusion

To detect honeypots, the implemented system offered a step-by-step technique
in for obtaining, processing, and analyzing Ethereum contracts. With the use of
real data, we demonstrated how assumptions and theories regarding honeypot
behavior may be compared, and we developed features for classification models.
Even after removing all the contracts associated with a single honeypot approach
from training, the machine learning models continued to perform well in terms
of generalization. Most crucially, we demonstrated that our method discovered
honeypots from two novel methodologies, which would not have been achievable
using byte code analysis without the creation of new detection criteria manu-
ally. Of particular interests would be to assess honeypot detection systems with
regards security (e.g. [7,8,10,15–18]) and improvements in the sustainability
(e.g. energy consumption [4–6,19,20]) of such detection systems.
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blockchain: Engineering Merkle tree and proof of work for energy optimization.
IEEE Trans. Netw. Serv. Manag. 19(4), 3847–3857 (2022)

7. Garrett, K., Talluri, S.R., Roy, S.: On vulnerability analysis of several password
authentication protocols. Innov. Syst. Softw. Eng. 11, 167–176 (2015)

8. Gouge, J., Seetharam, A., Roy, S.: On the scalability and effectiveness of a cache
pollution based dos attack in information centric networks. In: 2016 International
Conference on Computing, Networking and Communications (ICNC), pp. 1–5.
IEEE (2016)
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Abstract. Electromagnetic fault injection (EMFI) is a deliberate tech-
nique used to induce faults in a device by exposing it to electromag-
netic interference. ASCON is a lightweight cipher that offers better per-
formance than other ciphers, making it suitable for IoT devices with
limited resources. However, the use of lightweight ciphers on hardware
devices can pose a significant security risk against EMFI attacks, which
can manipulate both the device’s behavior and the implemented encryp-
tion algorithms. Our research used the ChipShouter, a specialized tool
designed specifically for EMFI attacks on electronic devices. During these
attacks, we intentionally exposed the M5STACK ESP32 Timer Camera
(OV3660) module, on which we implement the ASCON algorithm, to
electromagnetic pulses emitted by the ChipShouter. These pulses were
directed at the PSRAM of the target device, where essential values such
as plaintext, associated data, nonce, key, etc., are stored. Through the
introduction of these pulses, we successfully inject faults and demon-
strate the vulnerability of ASCON to EMFI attacks. To evaluate the
impact, We test with different string sizes for input plaintext, namely
250 Kb, 500 Kb, and 1 MB. The results revealed that the fault injection
percentages were as follows: 24% for the 250 Kb string size, 54% for the
500 Kb size, and 90% for the 1 MB size.

Keywords: ASCON · EMFI · ChipShouter · Hardware Security ·
Vulnerability testing · Side-channel attacks · Fault Injection

1 Introduction

Hardware security involves safeguarding physical components, systems, and
devices against theft, manipulation, and unauthorized access. This encompasses
protecting not only the hardware but also the software and data that it processes
or stores. The significance of hardware security is especially crucial in industries
like finance, healthcare, and national security where vital infrastructure and con-
fidential information are at risk. Without adequate hardware security measures,
these industries would be vulnerable to attacks that compromise the confidential-
ity, integrity, or availability of their systems and data. Testing and certification
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procedures are employed to ensure that hardware meets strict security require-
ments and can withstand various attacks. These measures help establish trust
with customers and stakeholders by ensuring that devices are trustworthy and
secure [4,16]. Hardware security is a fundamental aspect of overall security in
industries dealing with sensitive data or critical equipment. It requires a multi-
layered approach that combines various hardware security controls, certification
and testing procedures, and supply chain security controls.

We use EMFI as an attack technique in our field it involves intentionally
causing faults or glitches in a device by exposing it to electromagnetic interfer-
ence. This technique is commonly employed in security evaluations to assess the
resistance of electronic devices, including micro-controllers and smart cards, to
attacks. By exposing a device to electromagnetic pulses of various frequencies
and intensities, researchers can simulate real-world electromagnetic interference
and study how the device responds. Through EMFI, security vulnerabilities and
flaws in a device can be identified and used to develop defenses against electro-
magnetic attacks. Nevertheless, EMFI is also a possible attack vector that mali-
cious actors could exploit to breach a device’s security [12]. Thus, safeguarding
the security of electronic devices necessitates awareness and protection against
EMFI attacks.

In addition to the definition of EMFI, researchers have employed several
methods to carry out this attack. Some common approaches [10,11] include
using a pulse generator with handmade injection probes and an oscilloscope to
monitor the EMPs and target devices’ status. AES algorithm implementation
on FPGA and EMI attack injection onto the target device is another approach
taken by researchers. Varying diameters of injection tips comprising ferrite core
and copper wire have also been utilized by researchers. Furthermore, optical
radiations such as a laser or vibrant white light have been applied in some
instances. The ChipShouter, which is used in our work, was also used by the
author in [7] for penetrating hardware wallets. This simple EMP generator sold
by NewAE Technologies has various functions such as voltage, pulse width, pulse
dead-time, pulse repeat, and other status functions. It costs roughly 3.3k USD
and comes with four probes of two types: Counter Clockwise and Clockwise,
each having 1mm and 4mm diameters.

The ChipShouter is used as an EMP (Electromagnetic Pulses) source to
execute an EMFI attack on the M5STACK ESP32 Timer Camera (OV3660)
module, which belongs to the ESP32 family. The module features an 8 MB
PSRAM and 4 MB flash memory, as well as a camera with a maximum reso-
lution of 2048× 1536 pixels and an OV3660 sensor with a resolution of 3 MP.
It is equipped with a reset button and an LED status indicator on the board,
and its ultra-low power consumption, timing, sleep, and wake-up functions are
enabled by the use of RTC (BM8563). To program the module, the Arduino IDE
platform is used, and it can be connected to a computer through a USB type C
cable. The ASCON for Arduino is programmed and implemented on the module
to store input values such as plaintext, key, nonce, associated data, etc., on the
PSRAM, where the ChipShouter’s injection probe can be targeted. The RS232
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terminal “Termite” is utilized to adjust the parameters of the ChipShouter. Our
goal is to inject EMPs onto the PSRAM and accomplish the following objectives:

• Report the faults that were injected into the target.
• Determine the number of faults that were injected.
• Analyze the behavior of the device after the EMPs were injected.
• Record the frequency of fault injection that occurred.

Our study intends to evaluate how EMPs affect the PSRAM of the
M5STACK ESP32 module. We are particularly interested in identifying the
faulty bits and the locations of the subsequent faults, as well as how the behavior
of the module changes when it is subjected to EMPs. This module was chosen
due to its large flash and RAM capacities to support the ASCON library and
its 8 MB PSRAM, which can hold variables of various lengths, including plain-
text, keys, nonces, and related data. This allows direct modification of ASCON
program values by injecting EMPs. To perform the research, a variable string of
plaintext values with sizes of 250 Kb, 500 Kb, and 1 MB is used. The resulting
proportion of fault injection is as follows: 24% for a 250 Kb string, 54% for a
500 Kb string, and 90% for a 1 MB string.

2 Background

2.1 Electromagnetic Fault Injection

EMFI assaults can affect any conventional Integrated Chip (IC), including CPUs,
SRAM, voltage regulators, microcontrollers, and processors. An EMFI has the
power to change an IC’s behavior by applying electromagnetic pulses to it; the
resulting electromagnetic interference can create voltage spikes or transient volt-
age dips, which can interrupt the current flow and lead to an IC’s failure. This
interference may affect the circuit’s clock, data, or power supply connections,
which might lead to errors or unexpected behavior [1]. By using specialized
equipment an attacker can inject EMPs onto the target device/module, This
specialized equipment commonly consists of a pulse generator and a magnetic
coil. This equipment can be available commercially at decent rates and can sup-
port multiple features like varying voltage, pulse width, pulse dead time, number
of pulses, etc. via programming. One such device is called the ChipShouter, as
shown in Fig. 1 which is used in our work.

2.2 PSRAM

PSRAM, also known as pseudo-static random access memory, is a kind of mem-
ory that combines the high-density storage and low cost of dynamic random
access memory (DRAM) with the quick access of static random access memory
(SRAM). For a variety of applications, including mobile phones, gaming con-
soles, industrial control systems (ICS), and digital cameras, this component was
designed to provide high-speed data access. Applications that require speedy
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read-and-write operations but don’t require the high capacity or high power
consumption of traditional DRAM or flash memory would particularly benefit
from it. Like all other integrated circuits (ICs), the PSRAM is vulnerable to
electromagnetic interference (EMI), a disturbance that can cause data loss, bit
flipping, and data corruption. Knowing these details, we made the decision to
launch an EMFI attack on the module’s PSRAM because the ASCON algorithm
is programmed in such a way that the code stores data like plaintext, associated
data, nonce, key, etc. are all stored in the PSRAM. To support the hypothe-
sis that ASCON is vulnerable to EMFI the EMPs from the ChipShouter are
injected into the PSRAM.

Figure 2 shows an 8 MB PSRAM.

Fig. 1. ChipShouter by NewAE Fig. 2. 8 MB PSRAM

2.3 ASCON

The Austrian Graz University of Technology’s research team created ASCON
in 2014 [15]. Its design aims to make it lightweight effective, and safe against
side-channel attacks. Several variations of the ASCON family are available, each
with a different security level and block size, and they may be chosen according
to the particular security needs of the application. The permutation function in
the method is used to convert the input data into an encrypted output. It is
based on a sponge structure. The final encrypted output is created by apply-
ing a set of round keys that are created using the encryption key to the input
data throughout several rounds. Applying a different key to the input data and
the encrypted output results in the generation of the authentication tag. The
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National Institute of Standards and Technology (NIST) advises ASCON for use
in lightweight cryptography, and the European Telecommunications Standards
Institute (ETSI) has standardized it. It is utilized in several applications, includ-
ing embedded systems, wireless communication protocols, and the Internet of
Things (IoT). The ASCON encryption process is divided into 4 parts:

1. Initialization: Starts the state with the key K and the nonce N.
2. Associated Data Processing: This method changes the state with related data

blocks. Ai.
3. Plaintext Processing: Introduces plaintext blocks Pi into the state and

retrieves ciphertext blocks Ci.
4. Finalization: Adds the key K and subsequently retrieves the tag T for authen-

tication.

After injecting each block except the last plaintext block, the entire state is
subjected to the core permutation pb. During initialization and finalization, a
stronger permutation pa with more rounds is used. The number of rounds for a
and b and the speed and capacity of the sponge are determined by the specific
version of ASCON (Fig. 3).

Fig. 3. Duplex Sponge model of ASCON

As a result, we picked ASCON because it has not been utilized in EMFI
attacks before and because it is a lightweight cipher that may be used in devices
with limited resources that contain ICs and other components that are vulnerable
to EMFI attacks. By exploiting this vulnerability we can inject faults in the
ASCON to see its resilience [13].

3 Related Work

3.1 Electromagnetic Fault Injection

A 32-bit microcontroller built-in CMOS 130 nm technology underwent an EMFI
by the authors of [4] a few years ago. The microcontroller is based on an ARM
Cortex-M3 CPU with a 56 MHz operating frequency and no cache memory built
in. They apply pulses with an amplitude ranging from -200V-+200V and a pulse
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width of 10ns-200ns to the target device using an EMP generator with a mag-
netic coil. In order to retrieve data from the device they use a Serial Wire Debug
(SWD) which is an alternative to the Joint Test Action Group (JTAG). SWD is
a 2-pin interface that can be used to communicate with the microcontroller and
has the same protocol as that of a JTAG, It employs the bi-directional wire pro-
tocol that is a standard for ARM CPUs and was developed by the ARM Debug
programmer. It is the author’s intention to provide readers with a basic grasp of
the vulnerabilities that an EMFI may introduce into embedded software. They
were able to show that an EMFI can lead to timing constraint violations during
bus transfers from flash memory, which would enable an attacker to circumvent
some safeguards against more traditional timing fault-injection techniques like
clocks or voltage glitches.

Injecting EMPs into a Solo Key open-source FIDO2 authentication key as
well as a Trezor bitcoin wallet using the ChipShouter was done by Colin O’Flynn
[7]. The vulnerable code, which also contains the EMFI, is a part of the USB
stack. The author was able to obtain the device’s private info using this method.
The attack used a standard logical flow that almost all USB stacks provide to
allow reading up to 64 Kb of data from the device. The author further notes that
to successfully execute this attack, the exact timing of the fault injection in refer-
ence to the location of the USB transactions is necessary. As a result, the experi-
ment can be supported by an open-source application called PhyWhisperer-USB,
which triggers a fault injection platform from a USB message with incredibly
high temporal precision.

Beckers, Arthur, et al. [10] explored the impact of EM pulses on the flash
memory of an ATmega328p 8-bit microcontroller. Their study aimed to develop
a fault model that accurately depicts the properties and consequences of the
injected errors. To conduct their EM fault injection experiments, they employed
the Langer EM fault injection setup, which includes various probes generating
magnetic fields, electric fields, and current pulses, as well as a power generator
and a magnetic field pulse source capable of supplying up to 500V to the mag-
netic probe. In their experiment, the authors tried two different approaches: one
included filling the flash memory entirely with zeroes (0× 00), while the other
involved filling it entirely with ones (0xff). They discovered that only the data
read from the flash memory can be altered and that the modification only lasts
as long as the flash memory values are set to 0xff. This indicates that the real
values in the flash memory are not changed only the process of reading from the
flash memory was impacted.

Dehbaoui, Amine, et al. [2] explain the usage of an EM channel to execute
active attacks against a hardware AES built in an FPGA and a software AES
operating on a CPU. The experiment is carried out on two different platforms,
one of which has a smart card emulation board made up of an 8-bit AVR Atmega
128 micro-controller coupled with a 128 Kb flash program memory, 4KBEEP-
ROM, and 4KBSRAM. The working voltage and frequency of this microcon-
troller are 4.5–5.5V and 3.57 MHz, respectively. The second platform uses an
FPGA from the Xilinx Spartan 3 series. Both platforms use the same EMP sys-
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tem, which is made up of a control PC, a mechanized stage, a pulse generator,
and a magnetic probe. The pulse generator’s output voltage ranges from 1-100V
with pulse widths of 10–100ns, and the probe being used here has a diameter
of 500 m. After carefully examining the data from both systems, it was found
that the errors were brought on by omitting to carry out an instruction that was
meant to be carried out during the EMP. As a consequence, the AES’s bytes were
faulted independently by altering the injection time. The EMP caused single-bit
and multi-bit flaws that influenced the FPGA’s AES calculations.

A recent study on EMFI attacks [5] looked at how they are perceived as a real
threat to modern security. Their study followed the EMFI principles by exam-
ining several techniques for calibrating fault injection benches. By contrasting
EMFI to other fault injection techniques, they demonstrate how practical and
expensive various fault injection attacks are. In their conclusion, they highlight
AI (Artificial Intelligence) techniques that are used in the fault injection area but
not in side-channel analysis. Researchers are constantly looking for new ways to
improve attack strategies because side channel analysis employs machine learn-
ing techniques to launch powerful attacks. The goal of the study is to bridge the
knowledge gap between the effectiveness of EMFI assaults and the full range of
available defenses against them.

Majeric, Fabien, et al. [3] deal with the injection of EMPs into an SoC (Sys-
tem on Chip). In this work, EMPs are introduced onto the SoC using an 8-bit
oscilloscope and an EM probe called LANGER ICR HH-150. The SoC’s 32-bit
CPU, built using CMOS 40nm technology, has one ARMCortex-A9 core oper-
ating at 1GHz. After injecting the pulses, the authors discovered that 3% of the
time the device is in a silent condition, meaning there are no responses from
the SoC and a reset is required for the experiment to continue, and 0.3% of the
time the device is replying with faulty ciphers. Only one of the three types of
incorrect cipher replies that were identified as such had a direct connection to
the HW-AES procedure.

3.2 Laser Fault Injection

In [6] the authors propose using a Differential Fault Analysis(DFA) on an Atmel
ATXMega16A4U, which has a specification of 2 Kb SRAM, 1 Kb EEPROM, 20
Kb of flash, and a clock speed of up to 32 MHz, to extract a secret key from an
AES. They used two platforms for their research: one for a significant search of
space using an optical beam-induced current (OBIC) to locate target locations,
such as flip-flops, and the other for inducing laser faults using a customized Laser-
Fault-Injection Microscope from Opto GmbH. The Device Under Test (DUT)
was positioned beneath the laser setup, and after pinpointing the location of the
flip-flops, the laser was pumped into these targets. They were able to successfully
attack the AES hardware implementation of the target device and extracted the
secret key.

In conclusion, this part highlights the research done on EMFI and Laser Fault
Injection. These studies have offered significant information on the techniques,
weaknesses, and probable effects that may be acquired by fault injection. The
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majority of the study has focused on fault injection on FPGA, Raspberry Pi,
and other commercially accessible microcontrollers, where they rely on either an
EMP generator or equipment capable of producing EMPs to inject faults. The
study conducted by [2,4,12] aided in situating the injection probe and selecting
the range of pulse widths to experiment with. The author of [4] assists in compre-
hending the basic problems that an EMFI can create in an embedded program.
Colin O’Flynn [7] uses the ChipShouter to access data from a Trezor Bitcoin
wallet, which aided in understanding the ChipShouter’s possible functionality.
The study done in [10]discusses the injection of faults into a target module’s
flash memory, which motivated us to perform the same.

4 Proposed System

The security and reliability of IoT devices needing protection might suffer signifi-
cantly from ASCON’s susceptibility to Electromagnetic Fault Injection (EMFI).
Previous attempts [3,14,17] used the AES algorithm on FPGAs and microcon-
trollers, thus the researchers had to precisely point the EM probe onto the tar-
get’s memory ICs. This strategy is challenging because it necessitates pinpointing
the configuration memory, power supply lines, and input/output pins, which are
all connected to the microcontroller. This microcontroller might be damaged
by introducing faults, which would produce incorrect results. The goal of this
part is to provide a thorough understanding of how the experiment was carried
out and how the resulting data was analyzed. The proposed system describes
the technique used in our research, including test scenarios, data collecting, and
experiment analysis which are mentioned below:

1. Experimental Setup: The research was carried out using an M5STACK
ESP32 Timer Camera module, which has an 8 MB PSRAM and 4 MB flash
memory. The encryption and decryption keys, together with data like plain-
text, related data, key, nonce, and other variables, were all encoded into the
ASCON algorithm to be stored in the PSRAM. To inject EMPs, the Chip-
Shouter was used, and it was placed close to the target module’s PSRAM.
For parameter control and analysis, a computer was connected to the Chip-
Shouter and the target module.

2. Test Scenario: EMPs with varying pulse widths, pulse dead time, number
of pulses, and pulse length are injected into the target module’s PSRAM. The
two sorts of faults that were meant to be created were adding bits and bit
flips. The experiment uses four separate probes, each of which is available with
the ChipShouter. The probes are classified as clockwise and counterclockwise,
with probe diameters of 4mm and 1mm.

3. Integrating with existing methods: Placing the EM probe was considered
challenging, as it depends on the accuracy of previous research outcomes that
employed comparable techniques on various devices like FPGA and Raspberry
PI [2,12]. Unlike prior attempts, our study employs a new target device, the
M5STACK ESP32, which allows us to exclusively insert faults into a PSRAM,
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a single memory component, without compromising the microcontroller. As
a result, this method produces far more exact findings than earlier attempts.

4. Data Collection: The suggested method gathers data by displaying the
output on the serial monitor of an Arduino IDE installed in the experiment
computer. The output consists of encryption and decryption time and prints
faulty bits when a fault occurs.

5. Data Analysis: The collected data is evaluated by noting all of the errors
that occur throughout the encryption and decryption processes. Each error
is examined separately to see if bits were added or flipped.

4.1 Termite by Compuphase

The Termite RS232 terminal is simple to set up and use. It offers a user interface
similar to those of “messenger” or “chat” apps, with a huge window displaying
all incoming data and an edit line for appending text to the broadcast. This
program is installed on a PC to modify the ChipShouter’s parameters, which
include voltage, pulse width, pulse dead time, pulse repetition, pulse pattern,
and so on.

4.2 M5STACK ESP32 Timer Camera Module

The ESP32-based Timer Camera includes 4 MB flash memory and 8 MB of
inbuilt PSRAM, an operating frequency of up to 240 MHZ, and a camera module
capable of recording photos at a maximum resolution of 2048× 1536 pixels, with
a 3 million (3 MP) pixel sensor (ov3660) and DFOV 66.5◦. A reset button and
a status indication LED are included on the board. Because it provides time,
sleep, and wake-up functions, the RTC (BM8563) consumes very little power.
We chose this device because of the ASCON library’s memory requirement of at
least 2 MB. The module can be programmed in Arduino C by using an Arduino
IDE. This module has more flash memory than ordinary market modules. The
ASCON is written in Arduino C, and all variables such as plaintext, associated
data, nonce, key, and so on are allocated in this module’s PSRAM, where EMPs
are introduced to cause faulty bits.

4.3 Design

We analyze the research done on EMFI [4,10,12] and came up with a different
methodology from them which is mentioned in the previous section. The study’s
overall concept entailed using an experimental setup to cause electromagnetic
faults in the PSRAM of an M5STACK ESP32 module as shown in Fig. 4. In
order to conduct the study, data on the kinds and locations of faults caused by
the ChipShouter were gathered and examined. Additionally, consideration was
given to the study’s limitations. The design of the study is given in the following:

1. Experiment Setup: The study made use of an M5STACK ESP32 Timer
Camera module with a 4 MB flash memory and an 8 MB PSRAM. The encryp-
tion and decryption keys and data were stored in the PSRAM as part of the
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Fig. 4. M5STACK ESP32

device’s ASCON algorithm written. The EMPs are injected using a Chip-
Shouter placed close to the module’s PSRAM. Both the Chipshouter and the
target module are connected to the PC.

2. EMFI Parameters: The faults were injected into the PSRAM of the module
using a ChipShouter connected to a PC by adjusting settings such as pulse
width, pulse dead time, number of pulses, and pulse duration. The position
and orientation of the ChipShouter probe were also taken into account.

3. Data Collection: The suggested method gathers data by displaying the
output on the serial monitor of an Arduino IDE installed in the experiment
computer. The output consists of encryption and decryption time and prints
faulty bits when a fault occurs.

4. Data Analysis: The collected data is evaluated by noting all of the errors
that occur throughout the encryption and decryption processes. Each error
is examined separately to see if bits were added or flipped.

5. Limitations: The investigation is constrained by the size of the experimen-
tal set-up and the difficulty of the employed encryption and decryption algo-
rithms. Because most countermeasures in this field of work are standard, the
research did not examine potential defenses against EMFI.

The block diagram in Fig. 6 depicts the implementation of the ASCON algo-
rithm on the M5STACK ESP32 module using the Arduino C language. The code
starts by initializing setup procedures, which principally include a PSRAM ini-
tialization function to test the module’s PSRAM functioning. If the initialization
fails, an error message indicating “PSRAM initialization failed” is printed. In
the event of a successful startup, the allocation of plaintext values, related data,
encrypted text, and decrypted text is performed in the PSRAM rather than the
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Fig. 5. Experimental Setup

module’s main memory. If the allocation fails, the message “Memory allocation
failed” is displayed (see Fig. 5).

Following these preliminary steps, the algorithm starts a loop in which data
is placed into the plaintext variable based on the string size defined in the setup
function. Letters from ‘A’-‘Z’ are added repeatedly until the necessary string size
is reached. Following that, the encryption and decryption operations are carried
out, and the timings for each operation are printed.

A condition is introduced after printing the decrypted text to see if it matches
the original plaintext. If they are not equal, it signals a problem. In such circum-
stances, the program is designed to output the glitched values and their related
index numbers, allowing the location at which the glitch occurred.

5 Evaluation

This section covers the results and evaluations of the EMFI attack on the
ASCON cipher experimentation. The ChipShouter is put to use to target the
M5STACK ESP32 module and inject EMPs into its PSRAM. Faults are intro-
duced into the cipher, resulting in outputs that support our contention that the
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Fig. 6. Block diagram of ASCON algorithm implemented in M5STACK ESP32
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ASCON is susceptible to EMFI attacks. The ASCON could only handle a plain-
text string size of up to 1 MB; if the amount was increased, the code would not
function properly, hence a maximum value of 1 MB was chosen.

We experiment with the insertion of faults using all four injection probes
offered by the ChipShouter and uncovered a common fault. The first register
of the PSRAM memory, where plaintext information is placed, generates an
identical result with all four injection probes. This output sequence implies that
the first register of PSRAM memory is impacted in this way (Table 1).

Table 1. First Register of PSRAM Glitched

Glitch

Found at

Index

Plaintext Around

Glitch

Plaintext Binary

Values at

Glitched

Position

Decrypted text

Around Glitch

Decrypted text

Binary Values at

Glitched

Position

Found in

0 ABCDEFGHIJK 01000001 Unrecognized

Unicode

Values

00000000 250 Kb,

500 Kb,

1 MB

The following tables show the outcomes of injecting pulses into the PSRAM
using various string values as code input. We perform fault injection on strings
of 250 Kb, 500 Kb, and 1 Mb, The tables identify where glitches happen in the
plaintext, and the algorithm offers both the places and the accompanying binary
values to determine whether bits were flipped or added. The experiment focuses
on changing the ChipShouter’s pulse width and pulse repeat settings. The pulse
width ranges from 80ns-540ns for all injection tips, while the pulse repeat reflects
the number of pulses per trigger, which is mainly set between 3 and 5. The
ChipShouter supports pulse widths of up to 960ns and pulse repeat values of
up to 1000, we avoid using them to avoid potential harm to the target module.
We could not use string sizes less than 250 Kb and greater than 1 MB because
injection o faults on values less than 250 Kb is difficult since the memory size
of PSRAM is 8 MB and string sizes above 1 MB are not compilable because the
algorithm breaks.

Table 2 shows faults found for a 250 Kb string. Certain values, however,
are missing because they exist in Unicode format, where they show unknown
symbols. The faults found are completely random, involving flipped, added, or
swapped bits. These faults are most noticeable after the encryption process. The
glitches in Table 3 involve bits being changed into lowercase characters, partic-
ularly special characters being added. In Table 4, certain plaintext values are
impacted by glitches prior to the encryption process, thus affecting the decrypted
values.

The graphical data shows how long the ASCON algorithm takes to encrypt
and decrypt plaintext strings and how many faults arise. The horizontal axis
shows the number of algorithm cycles, whereas the vertical axis shows encryption
and decryption durations in microseconds because seconds would not effectively
reflect the fluctuations. Figures 7, 8 and 9 shows the encryption and decryption
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times for a 250 Kb, 500 Kb, and 1 Mb plaintext string, as well as the faults that
occurred during the operation.

We can see in the graphs that number of faults increases with the increase in
plaintext size. This also affects the encryption and decryption time. A plaintext
string size of 1 MB takes a longer duration than that of 250 Kb and 500 Kb
respectively as the longer the plaintext size the easier to inject faults and the
lesser the size the more difficult to inject faults.

The fault injection percentages are calculated by counting the number of
faults that occur in plaintext string sizes of 250 Kb, 500 Kb, and 1 Mb. The
obtained count is then divided by 50, representing the total number of cycles
taken for each observation of string size. Finally, the result is multiplied by 100
to obtain the fault injection percentages. The equation for the calculation of
fault percentage is given below:

Number of faults
Total number of cycles

× 100

The calculated fault injection percentages according to the equation are as
follows: 24% for the 250 Kb string size, 54% for the 500 Kb size, and 90% for the
1 MB size.

Table 2. For 250 Kb String Value

Glitch

Found at

Index

Plaintext Around

Glitch

Plaintext Binary

Values at

Glitched

Position

Decrypted text

Around Glitch

Decrypted text Binary

Values at Glitched

Position

132632 WXYZABCDEF

GHIJKLMNOPQ

10000111 WXYZABCDEF

DtKLMNOPQ

01000100

216092 WXYZABCDEF

GHIJKLMNOPQ

01000111 WXYZABCD

EF x001D

00000000

194704 GHIJKLMNOPQ

RSTUVWXYZA

01010001 GHIJK

LMNOP

00000000

59836 ABCDEF

GHIJ

00000000 ABCDEFGHIJ

KLMNOPQRSTU

01001011

63170 GHIJKLMNOPQ

RSTUVWXYZA

01010001 GHIJKLMNOPU

UUUUUUUUUU

01010101

120872 OPQRSTUVWX

YZABCDEFGHI

01011001 OPQRSTUVW

X$4DTdt

10010101

During the initial stage of the experiment, where EMPs were injected into the
module’s PSRAM, the device frequently became unresponsive and occasionally
resulted in memory corruption, and the device obtained responsiveness only after
many resets. Memory corruption happened as a result of the injected EMPs
influencing the target device’s core and, as a result, affecting the algorithm’s
execution.
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Table 3. For 500 Kb String Value

Glitch

Found at

Index

Plaintext Around

Glitch

Plaintext Binary

Values at Glitched

Position

Decrypted text Around

Glitch

Decrypted text Binary

Values at Glitched

Position

80571 NOPQRSTUVW

XYZABCDEFGH

1011000 NOPQRSTUVWe

YZABCDEFGH

1100101

208414 OPQRSTUVW

XYZABCDEFGHI

01011001 OPQRSTUVWX

$4DTdt

10000101

477393 XYZABCDEF

GHIJKLMNOPQR

01001000 XYZABCDEFGD

IJKLMNOPQR

01000100

227959 HIJKLMNOPQ

%5EUWXYZAB

00000101 HIJKLMNOPQR

STUVWXYZAB

01010010

154981 LMNOPQRSTU

VWXYZABCDEF

01010110 LMNOPQRSTU

FWXYZABCDEF

01000110

204184 WXYZABCDE

FGHIJKLMNOPQ

01000111 WXYZABCDEF

FHIJKLMNOPQ

01000110

Table 4. For 1 MB String Value

Glitch

Found at

Index

Plaintext Around

Glitch

Plaintext Binary

Values at Glitched

Position

Decrypted text Around

Glitch

Decrypted text Binary

Values at Glitched

Position

195330 IJKLMNOPQR

STUVWXYZABC

1010011 IJKLMNOPQRCT

UVWXYZABC

1000011

70726 WXYZABCDE

Fdt

1100100 WXYZABCDEF

GHIJKLMNOPQ

1000111

928828 UVWXYZABC

DEFGHIJKLMNO

1000101 UVWXYZABCD

FGHIJKLMNOP

1000110

923933 NOPQRSTUVW

XYZABCDEFGH

1011000 NOPQRSTUVW

xYZABCDEFGH

1111000

36 x0019 00011001 x001D 00011101

Fig. 7. Fault Occurrence for Encryption & Decryption Processes for a 250 Kb String
Value
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Fig. 8. Fault Occurrence for Encryption & Decryption Processes for a 500 Kb String
Value

Fig. 9. Fault Occurrence for Encryption & Decryption Processes for a 1 Mb String
Value

6 Conclusion

In summary, we conducted an EMFI (Electromagnetic Fault Injection) attack
on the ASCON algorithm implemented on an M5STACK ESP32 module using
the ChipShouter. This approach proved to be an effective means of assessing the
security and robustness of ASCON. EMFI attacks involve introducing faults into
a device’s operations to exploit vulnerabilities and weaknesses in the system.

By injecting EMPs using the ChipShouter, we successfully introduced faults
into the ASCON algorithm and analyzed their nature. This demonstrated that
ASCON is indeed susceptible to EMFI attacks. Moreover, the use of Chip-
Shouter provided a controlled and reproducible environment for conducting
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fault injection studies. This tool allowed us to precisely control the timing
and severity of fault injections, facilitating comprehensive testing of ASCON’s
resilience against EMFI assaults. Through iterative experimentation and analy-
sis, ASCON’s resilience can be continually evaluated.

The nature of the injected faults varied depending on the injection tips pro-
vided by the ChipShouter. Some tips introduced new bits, while others modified
existing ones. Interestingly, we observed a consistent result in the first register of
the memory upon fault injection using all injection tips. To evaluate the impact,
we tested different string sizes for input plaintext, namely 250 Kb, 500 Kb, and
1 MB. The results revealed that the fault injection percentages were as follows:
24% for the 250 Kb string size, 54% for the 500 Kb size, and 90% for the 1 MB
size.

Further work can expand our research by developing mitigation strategies
to defend against such attacks on ASCON. Previous works [8,9] have explored
dynamic key generation for the AES algorithm, employing additional logical and
bitwise procedures to generate all keys. This complexity makes it challenging to
inject faults into the key, offering potential avenues for enhancing ASCON’s
resistance to EMFI attacks.
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Abstract. Cardiac disease, also referred to as cardiovascular disease, is
a collection of conditions that affect the heart and blood vessels. Med-
ical professionals typically use a combination of medical history, physi-
cal examination, and various diagnostic tests, such as electrocardiograms
(ECG/EKG), echocardiograms, and stress tests, to diagnose cardiac dis-
eases. In response to this issue, we are introducing a mobile applica-
tion that continuously monitors electrocardiogram signals and displays
both average and instantaneous heart rates. The aim of this project is to
detect and diagnose cardiac diseases so that patients can become informed
about their heart health and take appropriate actions based on the results
obtained. To identify diseases from real-time ECG data, we used machine
learning (ML) classifiers and compared them with offline data to validate
the classification. The model we used in our application is pre-trained on
the MIT-BIH Arrhythmia Database, which contains a wide range of heart
conditions. We used Artificial Neural Network (ANN) as a pre-trained
model for multiclass detection as it performed the best among ML models,
showing an overall accuracy of 94%. The performance of the model is eval-
uated by testing it on the application using MIT-BIH test Dataset. On the
application, the beat-detecting pre-trained model showed an overall accu-
racy of 91.178%. The results indicate that the Smart-Health application
can accurately classify heart diseases, providing an effective tool for early
detection and monitoring of cardiac conditions.

Keywords: Cardiac disease · Electrocardiograms · Pre-Trained
Model · Smart-Health Application

1 Introduction

Cardiovascular diseases (CVDs) are critical and common heart diseases that can
be detected using electrocardiogram (ECG or EKG) signals. The ECG signals are
used to diagnose different types of heart diseases such as heart failure, myocardial
infarction (MI), premature ventricular contractions (PVCs), etc. Analyzing the
bio-electrical signals of each heartbeat, cardiologists can detect abnormalities in
the heart, such as irregular heartbeats or abnormal rhythms. However, manual
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scrutiny of continuous ECG signals for long durations for each patient is not
practical or feasible [1]. Thus, automated detection using machine learning (ML)
models is essential for accurate and efficient diagnosis of heart disease.

With the integration of IoT technology into heart disease monitoring, wear-
able devices and sHealth applications are gaining popularity [2]. These devices
and apps use sensors and algorithms to collect and analyze ECG signals in real
time, providing patients with immediate feedback and promoting better man-
agement of heart disease. In addition to ML algorithms, the integration of IoT
technology and sHealth applications has revolutionized the way we approach
cardiovascular health. KardiaMobile is a compact, portable electrocardiogram
(ECG) gadget that allows people to monitor their heart health and detect poten-
tial cardiac problems [3]. It works by recording a single-channel ECG through
two electrodes on the device’s back. It has been shown to be successful in clinical
investigations for identifying atrial fibrillation (AF), with a sensitivity of 96.6%
and a specificity of 94.1% [4]. An ECG check, like KardiaMobile, is a portable
electrocardiogram (ECG) equipment that employs two or more electrodes to
record the electrical activity of the heart [5]. The ECG check app transfers the
recorded ECG data to a server for processing. Apple Watch is another device
that can monitor the ECG signal and measure heart rate. The ECG feature,
which is available on Apple Watch Series 4 and later, enables users to record
an electrocardiogram, a test that examines the electrical activity of the heart.
The watch can detect aberrant cardiac rhythms like AF and alert the user if one
is identified [6]. Previously, our research team developed another smart health
framework using body-worn flexible Inkjet-printed (IJP) sensors, commercial
wearables such as smart wristbands, a scanner on a printed circuit board, and
customized smartphone software [7]. The technology to collect and analyze ECG
signals, providing patients with real-time feedback and enabling them to take
control of their heart health using wearable devices and smart health apps has
the potential to greatly improve the prevention, management, and treatment of
heart diseases.

The use of multi-stage classification has shown significant potential in tack-
ling the complexities of adjusting Artificial Intelligence (AI) models to novel
sensor data or in the evolution of decision-making methodologies in smart sys-
tems [8]. Segmenting the AI model into various stages enhances its scalability
and upgradability, offering a more flexible alternative compared to single-stage
classification that could potentially struggle in adapting to changes. Multi-stage
classification allows for independent modifications, enabling a more flexible and
adaptable approach. This approach has shown great potential in the detection
of cardiac diseases, demonstrating its scalability and upgradability for smart
health systems. With the integration of AI into cardiac disease detection, multi-
stage classification has emerged as a valuable tool in improving patient outcomes
and promoting heart health. Its benefits include increased accuracy, efficiency,
and the ability to adapt to changing data and circumstances. As such, multi-
stage classification has the potential to revolutionize the field of smart health
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and transform the way we approach cardiac disease detection and management
[9–15].

Fig. 1. The flowchart of the ECG signal processing, analysis, and classification.

A multistage algorithm for automatic ECG data classification combines dif-
ferent procedures for dimensionality reduction, consensus clustering, and fast
supervised classification algorithms [9]. Two multilayer perceptron (MLP) and
one self-organizing map (SOM) networks perform better than using raw data or
individual features for classifying six common ECG waveforms with an average
recognition rate of 0.883 within a short training and testing time [10]. A multi-
stage deep learning classification model for automatic arrhythmia classification
using ECG waveforms and Second Order Difference Plot (SODP) features in
discriminating five types of heartbeats from the MIT-BIH Arrhythmia Database
[11,12].
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Fig. 2. Block Diagram of Smart-Health Application.

A multistage pruning technique to reduce the computational complexity of
Convolutional neural network (CNN) models used in ECG classification for real-
time detection of arrhythmias. [13]. The method presented entails a multi-tiered
process to ensure precise classification of arrhythmia, leveraging 12-lead surface
ECGs. This comprehensive procedure includes three distinct phases of noise
reduction, an innovative feature extraction approach, and a finely optimized
classification model. [14]. This technique employs features like dynamic ampli-
tude range and autocorrelation maximum peak to identify and categorize various
types of noise. [15].

This work presents a wearable ECG monitoring system that is cost-effective
and capable of real-time monitoring through a smartphone application. The
application provides real-time visualization of the ECG trace and heart rate
detection, allowing for monitoring, assessment, and diagnosis. Also, we used
Artificial Neural Network (ANN) as a pre-trained model for the application of
disease detection. The main aspects of the proposed application include:

– It allows users to connect to an embedded system that collects ECG signals
from wrists by electrodes via Bluetooth Low Energy (BLE) and monitor ECG
signals on the screen of the application.

– The users can track their heart rate and rhythm over time, and share ECG
recordings with healthcare providers for remote monitoring and diagnosis.

– The application can detect the Normal and Noisy signals from the ECG data.
– The application allows users to detect diseases from the incoming ECG sig-

nals.

2 Methodology

In this study, we utilized the MIT-BIH database, which follows the AAMI
criteria to classify heartbeat types [16]. The MIT-BIH database consists of
five categories of heartbeats, each containing multiple types of beats. Class N
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includes normal heartbeats, class SV includes Supraventricular Ectopic heart-
beats, class V includes Ventricular Ectopic beats, class F includes Fusion beats
and class Q includes Unknown beats. To achieve our goal, we accessed the Phys-
ioNet database, an open-source public data resource, and selected the MIT-BIH
arrhythmia database (mitdb) [17]. We divided the records into training and
testing datasets. The offline data is then used in a Machine Learning model a
pre-trained model for training before using real-time data on the Smart-Health
application. The ECG signal processing involves a machine learning algorithm
for preprocessing, analysis, and classification. The flowchart of the ECG signal
processing is shown in Fig. 1. Then, we passed the MIT-BIH test dataset to the
application to validate the pre-trained model on the application.

2.1 ECG Data

ECG (electrocardiogram) data is a sort of medical data that captures the electri-
cal activity of the heart. It is obtained by applying electrodes to the skin of the
chest, arms, and legs and connecting them to a device that records and amplifies
the electrical signals produced by the heart.

Signal processing and machine learning techniques are frequently used to ana-
lyze ECG data in order to extract diagnostic data and enhance clinical decision-
making. Arrhythmia, myocardial infarction, and heart failure are just a few of the
disorders that are frequently diagnosed and monitored using ECG data. Addi-
tionally, properties including heart rate variability, QT intervals, and P-wave
morphology can be extracted from it. We collected ECG data using an AD8232
chip (Analog Devices, Wilmington, MA) implemented on our custom ECG data
collection device [18]. Electrodes are attached to the wrists of the users and the
other part of the electrodes are connected to Sparkfun nRF 52840 mini that is
paired with the application via Bluetooth Low Energy (BLE) V5.3.

2.2 Application

The Smart-Health application is a mobile application that allows users to man-
age their health data. Figure 2 shows the block diagram of the Smart-Health
Application.

Signal Preprocessing: Signal preprocessing is an important step in analyz-
ing ECG data and removing any noise or artifacts that may interfere with the
accurate signal analysis. In the Smart-Health application, the ECG signals col-
lected from the embedded system are preprocessed to remove noise. The fre-
quency range of interest for ECG signals is between 0.5 Hz and 150 Hz [19]. The
lower cutoff frequency of 0.5 Hz is chosen to remove any DC offset or drift in
the signal, while the upper cutoff frequency of 150 Hz is chosen to remove any
high-frequency noise or artifacts in the signal. The ECG signal is filtered on the
application using a bandpass filter to remove any noise outside the frequency
range of interest.



140 U. T. Utsha et al.

Fig. 3. Snapshots from the application (a) Home (b) Dashboard (c) Available Devices
(d) Modules (e) Incoming Data (f) Real-time plot of ECG trace, Heart Rate and Signal
type.

Peak Detection and Heart Rate Calculation: We used the Pan-Tompkins
algorithm for peak detection of ECG signals which is a widely used method.
First, we differentiated the filtered signal to emphasize the QRS complex’s high-
frequency components. To accentuate the QRS complex and reduce the T and P
waves, we squared the differentiated signal. Then, we passed the squared signal
to a moving window to produce a smooth envelope where a threshold is applied
to detect the R-peaks. After that, we determined the heart rates from R-Peaks.
In addition, we displayed the Average Heart Rate on the application to provide
a more complete picture of the user’s heart status. For that, we used the Sliding
Window approach. We studied 30 heart rate measurements at the same time
using a window size of 30. The same statistic was then computed for the next
30 data after adjusting the window by one heart rate value. As a result, users
may simply monitor their heart rate and detect any abrupt changes.

Pre-trained Model on the Application: We used pre-trained machine learn-
ing models in the Smart-Health application to diagnose medical conditions in
real-time. We trained the models on the MIT-BIH dataset and then integrated
them into the application.

To use a pre-trained machine learning model in our Android Studio Java
application, we followed these steps :

1. Train and Save the model: First, we trained the model on a suitable
dataset and saved it in a format that can be loaded by TensorFlow Lite.
Here, we saved the model as a .h5 file using the Keras model.save() method.

2. Convert the model to TensorFlow Lite format: Next, we converted the
machine learning model to TensorFlow Lite format using the TensorFlow Lite
converter. This produced a .tflite file that we used in our Android application.

3. Add the model in the android application: We loaded the .tflite file in
the assets folder of the Android Studio project. Alternatively, we could go
to the File− >Other− >Tensorflow Lite Model and import the .tflite file. It
will be added in the ml folder on the project.
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Fig. 4. Real-time data collection (a) Normal Signals (b) Noisy Signals.

4. Add dependency: After that, we added the TensorFlow Lite inter-
preter dependency to the project’s build.gradle file: implementation
‘org.tensorflow : tensorflow − lite : 2.6.0′.

5. Load the model: Then, we loaded the model from the assets/ml folder and
created a ByteBuffer object to hold the input data.

6. Get the predicted class: Finally, we passed the ECG signal data through
the interpreter to get the predicted class.

We validated the pre-trained model on the application by passing the offline
dataset to it. That means, instead of real-time data, we passed the offline MIT-
BIH test dataset to the application to find the exact label. Also, it acted like
real-time data on the application. With this validation, we can now go for a
clinical trial.

Real-Time ECG Check: Fig. 3 shows some snapshots of the Smart-Health
application. Initially, the user needs to register his or her details on the applica-
tion. Then, s/he should Log In on the application. The various devices that can
be connected through BLE connection are shown on the smartphone through the
Device Connect button on the Dashboard screen. Then, the application estab-
lishes a BLE connection with the device and is ready to collect data. The user can
then navigate to the Modules section, where they can view the Data or observe
the ECG signals on the Plotter. Users can track their heart rate in Plotter section
over an extended period of time in order to spot any potential problems. Addi-
tionally, the Smart-Health application provides users with an overview of their
health through pre-trained model classification. In the Plotter section, there is
a Textbox at the bottom where users can view their ECG signals’ corresponding
classification.
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A depiction of the real-time data collection procedure is presented in Fig. 4.
The experiment involved attaching electrodes to the wrists of users and utilizing
an embedded system to collect data. This data was then transmitted to the Smart
Health application via Bluetooth connectivity. The application processed the
data and provided real-time information on heart rate and various heart rhythm
patterns. The objective was to evaluate the application’s ability to accurately
display and interpret users’ heart rates and identify different types of heartbeats.
From Fig. 4(a), we can see the user’s ECG signal is Normal and the average Heart
Rate is 76bpm. By detaching the electrodes, artificial noise can be created, which
results in a noisy signal (Fig. 4(b)).

2.3 Pre-trained Model

Feature Extraction: In our research, utilizing the Time Series Feature Extrac-
tion Library (TSFEL) in Python, we were able to extract a comprehensive set of
175 features from the analyzed beats. To select the most informative features for
classification, we applied analysis of variance (ANOVA) algorithms. ANOVA,
a statistical technique, is utilized to examine variances in mean values across
different groups. This method aids in pinpointing the features that significantly
influence the accurate classification of ECG beats.

Fig. 5. The structure of single-stage and multi-stage classification is presented.

Classification: We performed heartbeat classification by assigning Normal
heartbeats (N) as 0, Supraventricular Ectopic heartbeat (SV) as 1, Ventricu-
lar Ectopic beats (V) as 2, Fusion beats (F) as 3, and Unknown beats (Q) as 4.
In our pursuit of precise classification, we harnessed a variety of machine learn-
ing methodologies, encompassing Decision Tree (DT), Artificial Neural Network
(ANN), Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neigh-
bors (KNN), in addition to Bagged Tree. Furthermore, we utilized advanced
Deep Learning models such as Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), and Long Short-Term Memory (LSTM). We tested both
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single-stage classification and two-stage classification methods to optimize the
accuracy of the results. Figure 5 shows the structure of single and multi-stage
classification.

Single-Stage Classification: To perform single-stage classification, we first evalu-
ated the effectiveness of various machine learning and deep learning models. We
aimed to select the best-performing model by training and testing them with 10-
fold cross-validation. This allowed us to assess the model’s ability to generalize
to unseen data and avoided overfitting. We also adjusted the parameters of the
models during the training process to optimize their performance. By doing so,
we can determine the ideal combination of hyperparameters that results in the
best performance for each model.

Multi-stage classification: In multi-stage classification, we first performed a
binary classification to distinguish normal from abnormal noise. Then, a new
classifier is built for the multi-class classification. We execute experimental tri-
als using Decision Trees (DT) and Artificial Neural Networks (ANN), as these
have proven to be the top-performing models among machine learning tech-
niques. We also tweak parameters to gauge their performance. We also assessed
power consumption, including memory usage, CPU usage, and running time to
evaluate the efficiency of the classifiers.

Fig. 6. The P, Q, R, S, and T peaks collectively create a heartbeat.

Performance: To assess the effectiveness of our model, we employed a range
of statistical metrics such as accuracy, precision, and recall. Furthermore, we
evaluated the power consumption, including memory usage, CPU usage, and
running time, of the top-performing machine learning (ML) and deep learning
(DL) algorithms. The Keras Model Profiler, a Tensorflow package, was utilized to
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gather information on model parameters and memory requirements. To monitor
system utilization, including CPU, memory, and network usage, we employed
the Psutil package.

3 Results

3.1 Pre-trained Model

Accurately detecting R peaks is crucial in ECG heartbeat recognition. Figure 6
illustrates the P, Q, R, S, and T peaks, as well as a heartbeat. We utilized the
Pan-Tompkins algorithm to detect the precise position of the R peak, which
in turn affects the accurate positioning of the P, Q, S, T, and T’ peaks. The
algorithm identifies the R peak by employing a sliding window that spans two
heartbeats and advances one beat at a time until completion. The peaks detected
by the algorithm are then labeled as P, Q, R, S, and T, as demonstrated in Fig. 6,
which showcases the interval from 850 to 1100 at the apex.

Table 1. Evaluate the performance of machine learning (ML) and deep learning (DL)
methods on single-stage classification tasks by employing various classifier algorithms.

Single-stage Classification

Classifier Accuracy % Precision % Recall %

DT(10) 89 90 88

ANN(64) 94 92 93

SVM 78 78 79

Naive Bayes 81 83 82

KNN 75 75 74

Bagged tree 84 85 83

RNN 92 91 91

CNN 94 93 92

LSTM 90 89 87

In the machine learning domain, the Decision Tree (DT) classifier achieved
an accuracy of 89%, with precision and recall rates of 90% and 88%, respec-
tively. The Artificial Neural Network (ANN) exhibited an overall accuracy of
94%, accompanied by precision and recall scores of 92% and 93%. In the realm
of deep learning, the Convolutional Neural Network (CNN) demonstrated supe-
rior performance, obtaining an accuracy of 94% and precision and recall values
of 93% and 92%, respectively. Table 1 presents a comparative analysis of the per-
formance of various machine learning (ML) and deep learning (DL) techniques
in single-stage classification tasks.

Table 2 provides a summary of power consumption for single-stage classi-
fication using ANN and DT algorithms with varying parameters, such as the
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number of layers and maximum depth. For the ANN models, we explore perfor-
mance across a range of layer counts, from 1 to 256, with 64 layers as the stan-
dard configuration. Both the 128-layer and 256-layer ANN classifiers achieved
100% accuracy without significant changes in memory, CPU usage, or runtime.
Beyond 128 layers, the accuracy and power consumption decreased, while the
runtime became faster. For the DT models, we analyzed performance by varying
the maximum depth parameter from 1 to 25, with 10 as the standard setting.
The classifiers with a maximum depth of 25 and 24 achieved 100% accuracy,
again without noticeable changes in memory, CPU usage, or runtime. Beyond a
maximum depth of 24, the accuracy and memory usage decreased, while CPU
usage and runtime remained consistent.

Table 2. Power consumption for single-stage classification using ANN and DT algo-
rithms with varying parameters.

Single-stage Classification

Parameter Accuracy % Memory usage (MiB) CPU usage % Run time(s)

ANN(Layers)

256 100 431 4 20

128 100 431 4 18

64 94 429 3.5 12

32 82 427 3.5 9

16 67 424 3.0 9

8 52 423 3.0 7

4 49 420 2.0 7

2 33 417 2.0 5

1 23 417 2.0 3

DT(MaxDepth)

25 100 375 1.0 1

24 100 375 1.0 1

23 99 375 1.0 1

20 98 375 1.0 1

15 94 375 1.0 1

10 89 360 1.0 1

6 80 352 1.0 1

2 79 348 1.0 1

1 75 347 1.0 1

Table 3 shows a summary of power consumption for multi-stage classification
using ANN and DT algorithms with varying parameters and arrangements. For
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multi-stage ANN&ANN classifiers, we achieved 100% accuracy with 256 to 64
layers without much change in memory usage, but accuracy decreased after 64
layers in the first stage. In multi-stage DT&DT classifiers, we achieved 100%
accuracy with 25 to 20 max depths without much change in memory usage in
the first stage, and accuracy dropped off after 24 max depths in the second stage.
Overall CPU usage and run times remained the same when max depths were
reduced.

Table 3. Overview of the power consumption for multi-stage classification using ANN
and DT algorithms with different parameters and arrangements.

Multi-stage Classification

Parameter Accuracy% Memory usage (MiB) CPU usage % Run time(s)

First stage; Second stage First stage; Second stage

ANN(Layers)

256 100 ; 100 342 ; 389 17 42

128 100 ; 99 340 ; 387 16.5 35

64 100 ; 94 336 ; 387 7.5 20

32 98 ; 84 329 ; 375 14 15

16 95 ; 74 325 ; 368 13.7 11

8 87 ; 67 321 ; 365 13 11

4 74 ; 53 321 ; 357 12 10

2 68 ; 39 318 ; 357 11.5 7

1 67 ; 27 315 ; 351 16 5

DT(MaxDepth)

25 100 ; 100 384 ; 375 1.0 1

24 100 ; 100 383 ; 375 1.0 1

23 100 ; 99 383 ; 374 1.0 1

20 100 ; 94 382 ; 374 1.0 1

15 98 ; 88 383 ; 375 1.0 1

10 95 ; 79 382 ; 375 1.0 1

6 91 ; 53 383 ; 374 1.0 1

2 83 ; 42 383 ; 374 1.0 1

1 74 ; 36 382 ; 373 1.0 1

3.2 Application

The experiment involved validating the application’s functionality by simulating
real-time data reception from the embedded system. Instead of using actual
real-time data, we utilized an offline test dataset that contained labeled cardiac
disease data. This allowed us to assess the application’s ability to accurately
display the corresponding heart rhythms based on the provided labels.

As we don’t have any offline dataset containing the Noisy signal, we couldn’t
validate our pre-trained model 1 which is a binary classifier and classifies ECG
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signals into Noisy and Not Noisy signals (Fig. 1). But it can detect the Noisy
and Not Noisy signals in our application perfectly. We validated our pre-trained
model 2 using the MIT-BIH test dataset. It contains 21892 samples and 18118 of
them are Normal beats, 556 beats are Supraventricular Ectopic(SV), 1448 beats
are Ventricular Ectopic(V), 160 bears are Fusion(F) and the rest 1610 beats are
Unknown.

Table 4. Evaluate the performance of Artificial Neural Network (ANN) algorithm on
Smart-Health Application using the offline dataset.

MIT-BIH test Dataset Number of Samples Accuracy %

Set 1 5000 93.30

Set 2 5000 92.66

Set 3 5000 93.14

Set 4 5000 92.86

Set 5 1892 83.93

Total 21892 91.178

We have separated the MIT-BIH test dataset into five distinct sets. Each
set was passed to the Smart-Health application, which contained a pre-trained
model designed to classify heart diseases. We used Artificial Neural Network
(ANN) as a pre-trained model 2 because it exhibited an overall accuracy of 94%
which showed the best performance among ML models. The pre-trained model
classified each set based on the available ECG signals. After classification, the
labels obtained from the Smart-Health application were compared with the MIT-
BIH offline dataset. The accuracy was calculated for each set by comparing the
obtained labels from the Smart-Health application with the ground truth labels
from the offline dataset. The average accuracy across all five sets was computed to
evaluate the performance of the pre-trained model on the MIT-BIH test dataset.

Table 4 provides the accuracy of five distinct sets over the application. The
overall accuracy of the pre-trained ANN model was 91.178%.

The Smart-Health application detected 16955 Normal beats, 486 SV beats,
1247 V beats, 127 F beats and 1371 Unknown beats correctly. Figure 7 demon-
strates the beats of the MIT-BIH test dataset and the corresponding accurate
beats obtained from the Smart-Health application.

Arrhythmia refers to any abnormality in the rhythm of the heart’s electrical
activity. SVs, Vs, and fusion beats are all types of arrhythmias that can occur
in the heart. Figure 8 shows some snapshots of the Smart-Health application
after the detection of Normal, Noisy, and Arrhythmic beats. In some cases,
arrhythmias can be serious and lead to heart failure, stroke, or sudden cardiac
death.
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4 Future Work

It is incredibly challenging to collect data when walking, jogging, or engaging
in any other action because of the complex system setup. There are some IoT
gadgets in the package that could be improved in the future, at which point we
could quickly attach those devices to the body and collect data. We are devel-
oping a custom wearable ECG data collection hardware, that can significantly
simplify the data collection process. Also, the accuracy of the ANN model on
the application can be improved. We will also try other algorithms which had a
lower accuracy on offline datasets but can perform well with real-time data.

Fig. 7. Comparison of beat classification between the MIT-BIH test dataset and Smart-
Health application.

Fig. 8. Signal Detection (a) Normal (b) Noisy (c) Arrhythmic.

At present, the Smart-Health application can detect some types of cardiovas-
cular diseases, including Arrhythmia, and show ECG signals and instantaneous
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Heart Rate. As we have passed the MIT-BIH test dataset through the applica-
tion to detect heart diseases and found quite a good accuracy, our next goals
are:

– Plot study of the application with cardiac patients at a cardiac clinic.
– Improve our algorithms and find the best pre-trained model for the Smart-

Health application to detect diseases.

5 Conclusion

In this study, we presented Smart-Health, a smartphone application that can
continuously monitor ECG data, display Heart Rate and detect cardiac dis-
eases using a pre-trained machine-learning model. The MIT-BIH test dataset
was used to evaluate our model, and the findings suggest that our application
can accurately detect various heart conditions. Patients can use this application
to check their heart health in real time and take appropriate steps depending
on the results. Overall, the Smart-Health application has the potential to be a
valuable tool for the early detection and monitoring of cardiac problems. The
Smart-Health application can aid in the prevention and control of cardiovas-
cular illnesses, resulting in better health outcomes and a higher quality of life
for patients by empowering them to actively participate in their own health
management.
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Abstract. Millimeter-wave (mmWave) signals experience severe envi-
ronmental path loss. To mitigate the path loss, beam-forming methods
are used to realize directional mmWave beams that can travel longer.
Yet, advanced algorithms are needed to track these directional beams by
detecting angle-of-arrival (AoA) and aligning the transmit and receive
antennas. To realize these advanced beam-forming algorithms in real
world scenarios, Software-Defined Radio (SDR) platforms that allow
both high-level programming capability and mmWave beam-forming are
needed. Using a low-cost mmWave SDR platform, we design and proto-
type two reinforcement learning (RL) algorithms for AoA detection, i.e.,
Q- and Double Q-learning. We evaluate these algorithms and study the
trade-offs involved in their design.

Keywords: Millimeter-Wave · Software-Defined Radio · Testbed ·
Beam-forming · Angle-of-Arrival · Reinforcement Learning ·
Q-learning · Double Q-learning

1 Introduction

Next generation 5G networks are being deployed at millimeter-wave (mmWave)
bands, beyond 22GHz [1]. Such high frequencies enable data rates in the order
of gigabits per second due to the availability of large unlicensed bandwidth.
This is especially beneficial to the future highly dense Internet-of-Things (IoT)
networks, which demand large bandwidth. Further, mmWave systems have small
form factor and are strong candidates for the emerging intelligent surfaces for
IoT devices. Recent studies showed that mmWave antennas can be designed in
a flexible and conformal manner [2–4], making them suitable for wearables.

Although mmWave bands allow for high data rate, the short wavelengths
are heavily attenuated by the environment [5] mostly due to absorption. Thus,
transmitted signals experience severe path loss. To combat the high path loss,
mmWave antenna arrays with beam-forming features are being used for gen-
erating directional beams which attains longer communication range. However,
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the directionality of the mmWave beams brings difficulty in mobile settings as
they need constant alignment on both the mobile transmitter and receiver nodes
[6]. mmWave channels can be quite complex as line-of-sight (LoS) and non-LoS
(NLoS) signals can exist due to emphasized environmental effects. Character-
izing mmWave channels, tracking mmWave beams, and Angle-of-arrival (AoA)
detection have been challenging [7]. Handling this complexity requires the future
mmWave systems to be highly integrated with software-defined radio (SDR)
platforms, where advanced algorithmic methods can be practiced.

AoA detection [8] is a critical capability that can facilitate better alignment
of the mmWave beams. It is an important directional wireless capability that is
used to detect signals transmitted in the environment [9]. A good estimation of
the AoA enables fine tuning of the beam alignment between the transmit and
receive antennas, which leads to more accurate channel state information (CSI).
As a result, the received signal strength (RSS) increases, which leads to a better
overall signal-to-noise ratio (SNR) and link performance.

AoA detection has been studied extensively over the years. Numerous algo-
rithms have been used to estimate AoA using synthetic data [9]. Deep learning
has been the preferred machine learning (ML) choice for AoA detection, due to
robustness to environmental noise. Other methods have been shown to perform
poorly in estimating AoA in noisy environments [9]. However, the deep learning
methods require extensive training which is not suitable for IoT devices operat-
ing in a highly dynamic environment with almost constantly changing channel
behavior. More importantly, deep learning methods may require large memory
which does not fit well with hardware-constrained IoT devices like wearables.

For mmWave AoA detection, we adapt unsupervised reinforcement learning
(RL) algorithms to avoid the abovementioned complexities of deep learning.
Our RL-based approach to detecting AoA is compatible with mmWave SDR
systems as we show it by implementation. Our approach only considers the
receiver side and can passively detect AoA without help from the transmitter or
any other localization system. We utilize two RL methods, Q-learning and its
variant double Q-learning, for AoA detection. Q-based learning algorithms are
widely used for a wide variety of applications that require fast learning capability,
such as in gaming, or fast detection capability, such as detecting a drone flying
through an indoor environment [10].

Our RL algorithms follow a Markovian model, using actions to explore differ-
ent states of a given environment [11,12]. The actions can be based off a greedy
policy. With this type of policy, the algorithms can use prior information learned
to select the best actions to take [10]. Positive actions lead to positive rewards,
while negative actions are punished with negative rewards. After a certain num-
ber of iterations, the algorithms learn which actions lead to the best states and
converge to a solution. The algorithms use the Bellman equation, discussed later
in Sect. 4. Beyond the observed reward for taken actions, the equation relies on
several tunable input parameters: the learning rate α, the discount factor γ, and
the exploration policy ε. It has been shown that tuning the learning rate α and
exploration policy ε can lead to optimum solutions [12–14]. For our study we



RL-Based AoA Detection for MmWave SDR Systems 153

measured the accuracy of detected AoA and convergence time, by tuning both
the learning rate α and exploration policy ε. Further, the algorithms take a cer-
tain number of unknown iterations to converge. To tackle this problem, we use
a threshold on the coefficient of variation (CoV) of RSS data samples as the
criteria to detect convergence. We compare the performance of our algorithms
using Horn antennas controlled by a Pyhton-based SDR setup in connection with
GNU radio [15].

Our main contributions are as follows:

– Adaptation of Q-learning and Double Q-learning methods for mmWave AoA
detection.

– Tuning the hyper parameters (the learning rate α and exploration policy ε)
of both Q- and Double Q-learning to detect AoA within 2o’s of accuracy.

– Design of a threshold-based convergence criteria for both Q- and Double Q-
learning using CoV of RSS data samples.

– Implementation of a prototype of the algorithms in an affordable mmWave
testbed platform using an off-the-shelf SDR platform.

The rest of the paper is organized as follows: Sect. 2 surveys the related
literature on AoA detection and experimental mmWave SDR efforts. Section 3
presents our experimental platform and how the AoA detection algorithms are
implemented in that platform. Next, Sect. 4 provides a detailed description of
our Q-learning and Double Q-learning algorithms for AoA detection. Section 5
details experimental setup and discusses results from our experiments. Finally,
Sect. 6 summarizes our work and outlines directions of future work.

2 Related Work

Angle (or direction) of arrival (AoA) detection/estimation has been an exten-
sively studied problem within the context of wireless localization [16]. With the
recent advent of directional beam-forming capabilities in super-6GHz systems,
AoA detection, in particular, has gained a renewed interest due to emerging
applications using such systems [17].

Experimental demonstration and evaluation of AoA detection in super-6GHz
bands such as mmWave bands has been lacking. The main reason for this has
been the limited availability of mmWave experimental testbeds due to the lack
and high cost of mmWave hardware [18]. The U.S. National Science Founda-
tion (NSF) is currently funding wireless communication testbed platforms to
enable such experimentation. The COSMOS platform [19], for example, includes
a 28GHz phased array antenna, designed by IBM. The front end uses a custom
software for steering the antenna beam with respect to azimuth and elevation
angles. The AERPAW platform uses drones for 5G experimentation [20], which
is the first of its kind. These platforms enable users to perform a variety of wire-
less communication experiments, such as, AoA detection. However, they are still
being adapted by researchers. Unlike these high-end testbeds, we use a cheap
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SDR platform and mmWave hardware to evaluate our AoA detection mech-
anisms. Further, the application programming interface (API) used by these
testbed platforms can limit user experimentation. For example, the AERPAW
API restricts users from running on the fly experiments. As a result, users aren’t
able to collect or train radio frequency (RF) data on the fly. This can restrict
the types of algorithms users can use on the platform.

Researchers have relied on virtual environments and simulations to perform
mmWave experiments. These virtual environments have gotten more sophisti-
cated with the usage of 3D ray tracing. In [21], 3D ray tracing is used to sim-
ulate mmWave signals in virtual environments. Users can use the open source
software to design large intelligent reflective surfaces and determine AoA using
compressive sensing algorithms. Although using simulation-based approaches is
cost effective, they do not render the physical world and fall short of precisely
modeling complicated physical communication channel dynamics in mmWave or
other super-6GHz bands.

Recently, cheaper off-the-shelf SDRs have been used to setup testbed plat-
forms for AoA detection. The testbed platform [9] uses a Kerberos radio with
four whip antennas at the receiving end. At the transmitting end a long range
(LoRa) radio is used to transmit a signal at 826MHz. LoRa is beneficial for long
range communication and uses low transmit power. The transmitter includes
a GPS and compass unit used to label the direction of the transmitted signal.
The labeled data set is the ground truth that is trained in the machine learning
(ML) algorithm. The data is trained using a deep learning convolutional neural
network (CNN) model [9].

Multiple Signal Classification (MUSIC) is a widely used AoA detection algo-
rithm and assumes that the received signal is orthogonal to the noise signal [9].
MUSIC uses this assumption to decompose the noise from the received signal into
separate sub-spaces. The power spectral density (PSD) of the signal is taken as a
function of angle [22]. The angular value which results in the maximum power is
estimated to be the AoA. The assumption that the received signal is orthogonal
to the noise signal is not valid in real world scenarios. Therefore, MUSIC does
poorly in environments that involve NLoS propagation. Since mmWave signals
can experience severe environmental path loss and involve multiple NLoS signals,
MUSIC may not be a good choice for mmWave AoA detection.

Support Vector Regression (SVR) has also been used to estimate AoA. SVR
is a supervised ML algorithm. Regression does poorly in estimating AoA from
impinging signals at multiple time steps [9]. The algorithm cannot be used to
determine AoA since the number of impinging signals is unknown [23]. As a
result, the algorithm can be used for detecting AoA for a single source at a time.
This makes SVR less robust for AoA detection in environments with multiple
signal sources. Therefore, SVR is not a good choice for mmWave AoA detection.

The CNN model used in [9] adapts a hybrid configuration. A classification
method is used to determine the number of impinging receive signals and two
regressive heads are used to determine the AoA. The study showed that CNN
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outperformed the other classical ML methods, MUSIC and SVR. Further, the
CNN model was able to estimate AoA within 2o’s of accuracy.

Our approach does not use a deep learning approach or supervised learning.
These approaches are not the most suitable for many hardware-constrained IoT
devices as the former requires large memory hardware to perform well and the
latter requires availability of ground truth. Resources-constrained IoT devices
like wearables do not have sufficient memory to keep trained models nor the
extensive sensing or coordination capability to obtain the ground truth in AoA.
To make it more relevant to IoT devices with high resource constraints, we
design RL-based AoA detection methods that do not require the ground truth
and determine the AoA based only on the RSS observations at the receiver.

3 mmWave Testbed

To perform a thorough evaluation of our reinforcement learning (RL)-based AoA
detection methods, we use our mmWave testbed [24] that allows beam-steering
capability from Python.

3.1 Hardware Setup

The architecture of our testbed can be seen in Fig. 1. The testbed uses a Universal
Software Radio Peripheral (USRP) model N210. The USRP uses a Superhtero-
dyne architecture for up-converting the transmit signal and down-converting the
receive signal [25]. The architecture is built into the USRP’s daughter-board to
tune the signal within sub-6GHz [25]. As a result, the USRP is only able to
transmit and receive signals at a maximum frequency of 6GHz.

To handle mmWave frequencies we connect the daughter-board to external
RF mixers to further up/down convert the signal. We use Analog Devices up-
converter ADMV 1013 [26] and down-converter ADMV 1014 [27]. The cost of
each unit is reasonably priced at a few hundred dollars. This makes our mmWave
testbed platform more affordable, compared to [18] and [19] that use RF front-
ends that cost thousands of dollars. Two signal generators are used as local
oscillators for mixing the signal. Two 26GHz mmWave 15 dB gain horn antennas
are used for transmission and reception. The receive horn antenna is mounted
to a servo that can rotate from 0 to 180◦C. A pulse width modulated (PWM)
signal is transmitted from the Arduino micro-controller to rotate the servo at a
set angular value.

3.2 Software Setup

GNU radio software is used to program the USRP device. GNU radio is a Python-
based graphical interface that is open source and readily available online. As
seen in 2 [24], the source block is used to generate a cosine signal at a sampling
frequency of 2.5MHz. The samples are streamed in the USRP sink block that
sets the frequency of the signal to 2GHz. The signal is then transmitted from the
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USRP N210

PC

ADMV 1014 ADMV 1013

Rx Horn Tx Horn

LO

LO

Servo
Arduino

Fig. 1. Testbed Configuration

USRP daughter-board. The receive signal is mixed down to 2GHz and injected
into the daughter-board. The I and Q base-band data samples are streamed from
the USRP source block. The samples are used to determine the RSS using the
complex to mag-square block. The RSS samples are streamed into a socket using
the ZMQ pub sink block. Python socket libraries are used to connect and receive
the RSS data from the socket.

Fig. 2. GNU Radio Software Configuration
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4 Q-Learning and Double Q-Learning

Q-learning and its variant Double Q-learning are model-free RL algorithms. Both
algorithms are based on a Markovian approach that selects random actions [11].
The block diagram in Fig. 3 presents our RL model. The learning agent is located
at the receiver horn antenna that is mounted onto a servo motor that can be
steered. The agent can choose to take two possible actions: move left or right
by one degree resolution. Since the servo can rotate up to a maximum angular
value of 180◦C, the time-variant state values can be st ∈ (0, 180). For our setup, a
positive reward (i.e., when the action improves the RSS) is set as the difference of
the current RSSt and previous RSSt−1, i.e., RSSt −RSSt−1. A negative reward
(i.e., when the action reduces the RSS) is set to -5. This design incentivizes the
agent to seek the angular position that maximizes the RSS, which is implied
when the antenna is steered to the correct AoA.

Posi�ve Reward:
Nega�ve Reward: -5

Ac�on:
Turn Right or Le�

Environment:
Laboratory 

State:
(0 -180) 

Agent:
Rx Horn Antenna

Fig. 3. RL Configuration

Q-learning uses the Bellman equation to populate the Q-table. The Bellman
equation is

Q(st, at) = Q(st, at) + α ∗ (rt + γ max
a

Q(st+1, a) − Q(st, at)) (1)

which provides a mechanism to update the Q values as a function of state,
action, and tunable parameters [10]. The variable st is our current state and at

is our current action. When the agent performs an action the algorithm moves
to the next state defined as st+1 and a reward rt is given. For our algorithm, the
discount factor γ is set to 0.98 and the learning rate α ∈ (0, 1) was tuned to 0.1,
0.2, 0.3, and 0.4. Likewise, the greedy policy ε was tuned to the same values.
Smaller values of ε cause the algorithm to exploit the Q table, by searching for
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Algorithm 1. AoA Detection with Q-learning
1: Input: α ∈ (0, 1), the learning rate; ε ∈ (0, 1), the greediness policy; windowSize ∈

(5, 30), the number RSS samples maintained for implementing convergence crite-
rion; threshold ∈ (0.1, 0.4) threshold for convergence criterion.

2: Output: detectedAoA, AoA detected by the algorithm.
3: γ ← 0.98 � Initialize the discount factor
4: RSS[windowSize] ← [ ] � Initialize the array of RSS samples
5: CoV ← 1 � Initialize the coefficient of variation of RSS samples
6: Randomize currentAngle � Initialize to a random angle respectively in [80,100] or

[120,140] for the 90◦ and 130◦ scenarios
7: st ← currentAngle � Initialize the current state to currentAngle
8: previousRSS ← Measure RSS at currentAngle
9: RSS.append(previousRSS) � Store RSS sample in array

10: sampleCount ← 1
11: Qtable ← 0 � Initialize the Q-table to 0
12: while threshold ≤ CoV do
13: RSS.append(RSSt) � Store RSS data in array
14: if Uniform(0,1)< ε then
15: at ← Uniform[0,1] � Randomly choose to turn left (at=0) or right (at=0)
16: else
17: at ← maxa Q(st, a) � Choose action based on maximum Q value
18: end if
19: if at == 0 then
20: Turn antenna beam left by 1 degree
21: currentAngle − −;
22: else
23: Turn antenna beam right by 1 degree
24: currentAngle ++;
25: end if
26: newRSS ← Measure RSS at currentAngle
27: RSS.append(newRSS) � Store the new RSS sample and remove the oldest

sample if needed
28: sampleCount ++;
29: st+1 ← currentAngle
30: ΔRSS ← newRSS − previousRSS � Calculate the reward
31: if 0 < ΔRSS then
32: rt ← ΔRSS � Positive reward
33: else
34: rt ← −5 � Negative reward
35: end if
36: Q(st, at) ← Q(st, at) + α ∗ (rt + γ maxa Q(st+1, a) − Q(st, at)) � Bellman eqn.
37: st ← st+1 � Update current state with next state value
38: if windowSize ≤ sampleCount then
39: CoV ← RSS.std()/RSS.mean() � Compute the CoV of RSS samples
40: end if
41: end while
42: return st
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the action that results in the largest Q value. Increasing ε increases the likelihood
that the algorithm will explore the environment, by selecting random actions.

Our software approach is presented in Algorithm 1. At the start of each
run the hyper-parameters γ, α, and ε are initialized. The current state st is
initialized to a random angular value, based off our experimental scenario. For
the 90◦ experimental setup the random angle can be any value in [80,100] degrees
and [120,140] degrees for the 130o. The Qtable used to store the Q values from
Eq. 1 is initialized to zero. An outer while loop comparing the threshold value
and CoV is used to decide the stopping condition for the algorithm until the
threshold value is met. If the value of ε is greater than a random number in
(0,1), the agent takes a random action, either turn the antenna using the servo
left or right with one degree resolution. If the value of ε is greater than the
random value, then the algorithm will exploit the Qtable by selecting the action
that results in the largest Q value. A positive reward value is given if ΔRSS
is greater than zero. If ΔRSS is less than zero, then the action resulted in a
decrease in RSS. Therefore, the action yields a negative reward value of -5. The
Bellman equation is updated with the reward at every iteration.

Q-learning based algorithms have to train for a certain number of iterations.
Based on the number of iterations, the algorithm may or may not converge to the
solution. This makes selecting the number of iterations trivial. To address this
issue, we take CoV of a certain number of RSS samples (defined by windowSize)
to detect convergence. CoV is a statistical measure of how dispersed data samples
are from the mean of the sample space. It is the ratio of standard deviation
and mean of a certain number of samples. In our algorithm, a window size is
initialized to windowSize ∈ (5, 30). The array RSS is used to store RSS samples
as the algorithm is training on the fly. If the counter sampleCount is greater or
equal to the windowSize, then enough samples have been collected to calculate
the CoV. While the CoV is greater or equal to the selected threshold value, the
algorithm will continue to train. When CoV is less then or equal to the threshold,
the convergence criteria is met and the algorithm breaks out of the while loop.
The smaller CoV means that the RSS samples have stabilized and it is safer to
stop the algorithm and return the last steering angle as the detected AoA.

Q-learning uses a single estimator maxa Q(st+1, a), the maximum next state
Qt+1 value for all possible actions. As shown in [12], this causes the algorithm
to overestimate the desired solution, by causing a positive bias. As a result,
standard Q-learning can perform poorly in certain stochastic environments. To
improve the performance of standard Q-learning other variants, such as, Dou-
ble Q-learning [12], Delayed Q-learning [28], Fitted Q-iteration [29], and Phased
Q-learning [30] were developed to improve convergence time. To reduce over-
estimation, the double Q-learning variant uses two Q functions QA(st, at) and
QB(st, at) seen in Eqs. 2 and 3 below. QA(st, at) is able to learn from

QA(st, at) = QA(st, at) + α ∗ (rt + γQB(st+1, argmax
a

QA(st+1, a)) − QA(st, at)) (2)

QB(st, at) = QB(st, at) + α ∗ (rt + γQA(st+1, argmax
a

QB(st+1, a)) − QB(st, at)) (3)
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Algorithm 2. Double Q-learning
Same as lines 1-10 in Algorithm 1

11: QA
table ← 0 � Initialize the first Q-table to 0

12: QB
table ← 0 � Initialize the second Q-table to 0

13: while threshold <= CoV do
14: RSS.append(previousRSS) � Store RSS sample in array
15: if Uniform(0,1)< ε then
16: at ← Uniform[0,1] � Randomly choose to turn left (at=0) or right (at=0)
17: else
18: QAB

table ← QA
table(st) + QB

table(st)
19: at ← maxa QAB

table

20: end if
21: if at == 0 then
22: Turn antenna beam left by 1 degree
23: currentAngle − −;
24: else
25: Turn antenna beam right by 1 degree
26: currentAngle ++;
27: end if
28: newRSS ← Measure RSS at currentAngle
29: RSS.append(newRSS) � Store the new RSS sample and remove the oldest

sample if needed
30: sampleCount ++;
31: st+1 ← currentAngle
32: ΔRSS ← newRSS − previousRSS � Calculate the reward
33: if 0 < ΔRSS then
34: rt ← ΔRSS � Positive reward
35: else
36: rt ← −5 � Negative reward
37: end if
38: q ← Uniform(0,1)
39: if q < 0.5 then
40: QA(st, at) = QA(st, at) + α ∗ (rt + γQB(st+1, argmax

a
QA(st+1, a)) − QA(st, at))

41: else
42: QB(st, at) = QB(st, at) + α ∗ (rt + γQA(st+1, argmax

a
QB(st+1, a)) − QB(st, at))

43: end if
44: st ← st+1 � Update current state with next state value
45: if windowSize ≤ sampleCount then
46: CoV ← RSS.std()/RSS.mean() � Compute the CoV of RSS samples
47: end if
48: end while

the experiences of QB(st, at) and vice versa. This approach has been shown
in [12] to cause the algorithm to underestimate, rather than overestimate the
solution with a positive bias. In conditions where Q-learning performs poorly,
double Q-learning has been shown to converge to the optimum solution [12].
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Our AoA detection algorithm for Double Q-learning can be seen in Algorithm
2. Like Algorithm 1, the same parameters are initialized at the start of each run.
Two Q tables QAtable and QBtable are initialized to zero. The same greedy ε
and reward rt values are also used in Algorithm 2. The variable q is set equal to
a random uniform value q ∈ (0, 1). If q is larger than the threshold value of 0.5
then QA(st, at). Otherwise, if q is less than the threshold of 0.5, then QB(st, at) is
selected. The threshold value is set to 0.5 to give both QA(st, at) and QB(st, at)
equal probability of being selected for training. The same convergence criteria is
used in Algorithm 1 is used in 2.

5 Experimental Evaluation and Results

To understand the efficacy of our RL-based AoA detection algorithms, we mea-
sured the average AoA error and average convergence time for different (ε,α)
combinations at each Threshold value. The Threshold value determines how
strict the convergence criterion is. Hence, smaller Threshold causes the AoA
detection algorithms to search the AoA for a longer period of time. This enables
them to find a more accurate AoA. Hence, there is a trade-off between the error
in AoA estimate and the convergence time of the algorithms. For a fixed Thresh-
old value, we need to find the best (ε,α) combination by minimizing both the
AoA error and convergence time. To do so, we search for the (ε,α) combination
that minimizes the product of the two metrics, i.e.:

min
ε,α

< AoA Error > ∗ < Convergence Time > . (4)

Fig. 4. Experimental Set-Up

We considered two scenarios for comparing the performance of the Algo-
rithms 1 and 2. As seen in Fig. 4, the range between the transmit and receive
horn antennas is 1.5 ft. The distance to the wall to the center is 1.2 ft. In the
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first experiment scenario, the transmit antenna is fixed to 90◦, pointing towards
the receive antenna to compose an LoS path to the receiver. The receive horn
antenna is initialized to a random angular state value between 80 and 100◦C.
For the second scenario, the transmit horn antenna is rotated 130◦ to the right,
composing a NLoS path to the receiver. The main lobe of the transmitted signal
is reflected off the wall. The initial angle is set to a random value between 120
and 140 ◦C.

As previously mentioned, the hyper-parameters ε and α are tuned to 0.1,
0.2, 0.3, and 0.4. This was done to measure which combinations of (ε,α) resulted
in the best performance with respect to both AoA detection and convergence
time. The average AoA error and time of convergence was measured for thirteen
threshold values from 0.1 to 0.4 in increments of 0.025. This was done using Q
and double Q-learning for both the 90◦ and 130◦ experimental scenarios.

5.1 Q-Learning Results

Fig. 5. Q-Learning for 90◦ and 130◦ scenarios

Figure 5 are graphs of Threshold vs. average AoA error and Threshold vs.
average convergence time. For each combination of (ε, α) the average convergence
time is reduced with respect to window size. A window size of 10 results in faster
AoA detection compared to the window size of 20.
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Fig. 6. Q-Learning Heat Map

Both the 90◦ and 130◦ scenarios resulted in average AoA error less than 1%
for some combination of (ε, α). This occurs for both window sizes of 10 and 20.
With less than 1% AoA error, the detected AoA is within 1◦ of the correct AoA.

To understand which (ε,α) combinations give the best results, we look at
the heat map of (α, ε) occurrences resulting in the minimum product in Eq. 4
as shown in Fig. 6. For the 90◦ case, ε of 0.4 with α of 0.1, 0.2, and 0.4 are the
dominate cases. Likewise, ε of 0.4 is also the dominant case for the 130◦ scenario.
The α values are also similar at 0.2 and 0.4 being the dominant cases. For Q-
learning the combination of (ε,α) that are most effective are (0.4,0.1), (0.4,0.2)
and (0.4,0.4).

5.2 Double Q-Learning Results

Figure 7 shows the average AoA error and average convergence time against
Threshold for Double Q-learning. Like Q-learning, it is clear that an increase in
window size results in larger convergence time. For Double Q-learning, both the
average AoA error and convergence time are better than Q-learning. For nearly
all (ε, α) combinations, the average AoA error is less than 0.15% for both the
90◦ and 130◦ scenarios.
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Fig. 7. Double Q-Learning for 90◦ and 130◦ scenarios

Fig. 8. Double Q-Learning Heat Map
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Figure 8 shows the heat map of (α, ε) occurrences resulting in the minimum
product in Eq. 4 for Double Q-learning. For the 90◦ scenario the (ε, α) combi-
nations that occur the most often are (0.1,0.1), (0.1,0.3) and (0.1,0.4) for both
window sizes. Like the 90◦ case, it can also be seen that an ε of 0.1 does occur
for the 130◦ scenario for a window size of 10. However, we also see that ε values
of 0.3 and 0.4 do occur for both window sizes. The dominant (ε, α) are (0.1,0.1),
(0.1,0.2), (0.2,0.3), (0.3,0.2), (0.4,0.2), and (0.4,0.3).

6 Conclusion and Future Work

We presented RL-based AoA detection algorithms for mmWave systems that
are operated by SDR. By adapting Q-learning and Double Q-learning to the
AoA detection problem, we demonstrated the practicality of the approach and
experimentally evaluated the methods in a mmWave SDR testbed. We achieved
AoA detection within 2◦ of the correct AoA accuracy using the RL algorithms
Q- and Double Q-learning. Compared to [9], our current setup uses unsupervised
learning and does not rely on labeling data sets. The setup in [9] uses GPS to
label transmitted signals. GPS does poorly in indoor environments, due to low
power of reception. Further, for the RL algorithms Q- and Double Q-learning,
our study investigated the best combinations of hyper-parameters that minimizes
the AoA detection error and convergence time of the algorithms. We showed that
double Q-learning outperforms Q-learning with respect to both AoA accuracy
and convergence time. Compared to [18] and [19], our mmW platform is much
cheaper and allows for a more user friendly interface.

Neural networks aren’t used in our Q- and Double Q-learning algorithms.
We plan on implementing and testing deep learning methods utilizing neural
networks for AoA detection. With the usage of cheap servos, our current system
set-up is limited. We plan to equip our testbed with phased array antennas [6],
which can steer antenna beams in the order of microseconds. This will result in
much faster convergence time and enable more flexible beamsteering enlarging
the action space for the learning algorithms. We also plan to integrate field
programmable gate array (FPGA) to our setup, in order to improve hardware
and software run-time. An improvement in run-time will result in better overall
convergence time.
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Abstract. The efficient development of accurate machine learning (ML)
models for Internet of Things (IoT) edge devices is crucial for enabling
intelligent decision-making at the edge of the network. However, the lim-
ited computational resources of IoT edge devices, such as low processing
power and constrained memory, pose significant challenges in implement-
ing complex ML algorithms directly on these devices. This paper addresses
these challenges by proposing a hybrid ML model that combines Princi-
pal Component Analysis (PCA), Decision Tree (DT), and Support Vec-
tor Machine (SVM) classifiers. By utilizing hardware-friendly techniques
such as dimensionality reduction, optimized hyperparameters, and the
combination of accurate and interpretable classifiers, the proposed hybrid
model addresses the limitations of IoT edge devices. The proposed hybrid
model enables intelligent decision-making at the edge while minimizing
computational and energy costs. Experimental evaluations demonstrate
the improved performance and resource utilization of the proposed model,
providing insights into its effectiveness for IoT edge applications.

Keywords: Machine learning · Edge-AI · Internet-of-Things · ASICs

1 Introduction

In recent years, IoT has witnessed tremendous growth and widespread adoption,
resulting in a substantial increase in data generation at the edge of the network.
This data surge is primarily attributed to the diverse array of sensors, actua-
tors, and embedded systems integrated into edge devices [12]. However, these
devices are often constrained in terms of computational resources. This constraint
presents a significant challenge when attempting to deploy resource-intensive ML
algorithms directly on these devices. The limitations in processing power and
memory capacity and the crucial requirement for energy efficiency have high-
lighted the pressing need for the development of hardware-friendly ML models
[8,9,11] specifically designed to facilitate effective decision-making at the edge.

The advent of IoT has brought about a significant transformation in con-
ventional computing approaches, emphasizing the transition from centralized

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
D. Puthal et al. (Eds.): IFIPIoT 2023, IFIP AICT 683, pp. 168–181, 2023.
https://doi.org/10.1007/978-3-031-45878-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45878-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-45878-1_12


Empowering Resource-Constrained IoT Edge Devices: A Hybrid Approach 169

processing to distributed and decentralized systems. This shift in paradigm high-
lights the need for intelligent decision-making capabilities at the edge, where data
is generated, to facilitate real-time analysis and response. However, the practical
deployment of complex ML models directly on resource-constrained edge devices
is frequently unfeasible owing to the inherent limitations of these devices. Con-
sequently, there is a compelling requirement to design and implement hardware-
friendly ML models that can operate effectively within the constraints of these
devices. These models would facilitate effective and reliable decision-making at
the edge, realizing the full capabilities of IoT applications [7,10].

We propose a hybrid ML model that addresses the challenges posed by
limited computational resources, memory constraints, energy efficiency require-
ments, and latency on IoT edge devices. We incorporate both supervised and
unsupervised ML techniques. We integrate PCA, DT, and SVM classifiers that
offer a holistic approach to improving hardware ML inference models for intelli-
gent decision-making at the IoT edge. The motivation behind our hybrid model
stems from the pressing requirement to effectively utilize limited computational
resources while ensuring high accuracy and reliability on IoT edge devices. By
incorporating PCA as a preprocessing step in our hybrid model, we aim to
alleviate the burden of dimensionality in the input data. PCA allows for the
extraction of the most informative features while reducing the computational
and memory requirements associated with high-dimensional data. This dimen-
sionality reduction technique results in concise and optimized feature vectors
that are better suited for resource-constrained IoT edge devices. Similarly, the
combination of DT and SVM classifiers in our hybrid model provides a compre-
hensive and robust approach for handling the diverse patterns and complexities
often encountered in IoT data. DTs excel at capturing intricate relationships
and generating interpretable predictions, making them ideal for understanding
the underlying data structure. On the other hand, SVM classifiers are known for
their ability to handle nonlinear data and achieve high classification accuracy. By
leveraging the strengths of both models, our hybrid approach aims to enhance
the overall performance of the model in terms of accuracy, interpretability, and
generalization on IoT edge devices. In this preliminary research, we consider the
crucial factor of energy efficiency, which holds paramount importance for IoT
edge devices functioning under limited energy sources. The integration of PCA
for dimensionality reduction, along with the utilization of optimized hyperparam-
eters obtained through grid search, plays a pivotal role in minimizing unnecessary
computations and energy consumption. Through meticulous resource manage-
ment, our model guarantees energy-efficient operation while maintaining high
levels of accuracy and performance. This hybrid model can be directly deployed
at the IoT edge or further optimized using hardware optimization techniques to
generate application-specific integrated circuits (ASICs) for IoT applications.

The rest of the paper is organized as follows: Sect. 2 presents background
on contemporary machine learning models and an overview of the existing lit-
erature. Section 3 presents our proposed work. Section 4 reports experimental
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design and results along with its discussion. Finally, we present the conclusion
and potential future perspectives in Sect. 5.

2 Background and Related Work

In this section, we review the contemporary works on ML models, and related
work to design efficient ML models for IoT edge applications.

2.1 Machine Learning

ML is an integral part of artificial intelligence (AI) that focuses on the cre-
ation of algorithms and models that empower computers to learn from data
and make informed predictions or decisions without explicit programming. This
rapidly advancing field has brought about revolutionary changes in diverse sec-
tors, including healthcare, finance, transportation, etc. [14]. At the heart of ML
are the ML models, which serve as mathematical representations or algorithms
trained on labeled data to capture patterns, relationships, and valuable insights.
These models play a pivotal role in making predictions, classifying new data,
and uncovering hidden patterns within large datasets. ML models encompass
various forms, such as DTs, neural networks (NNs), SVMs, etc., each possess-
ing distinct strengths and applications. The development and implementation
of accurate and efficient ML models hold paramount importance in facilitating
intelligent decision-making, automation, and optimization across diverse indus-
tries and domains. This section provides a concise overview of some of the ML
models employed in this work.

Principal Component Analysis. PCA is an unsupervised ML technique that
is used to reduce the dimensionality of datasets. Its primary objective is to trans-
form a high-dimensional dataset into a lower-dimensional representation while
preserving as much of the original information as possible. This is achieved by
identifying principal components, which are orthogonal vectors capturing the
directions of maximum variance in the data [13]. These components form a
new coordinate system, and the data is projected onto this reduced-dimensional
space. The first principal component corresponds to the direction with the high-
est variance, and subsequent components follow in decreasing order of vari-
ance. By selecting a subset of the principal components that capture most of
the variance, PCA enables efficient storage, visualization, and analysis of high-
dimensional data. In addition, PCA finds applications in noise filtering, data
compression, and feature extraction, making it a versatile tool in data prepro-
cessing and analysis. PCA operates under the presumption that high-dimensional
data frequently contains redundancy and that a lower-dimensional subspace can
explain a large portion of the variation. By projecting the data onto a reduced-
dimensional space, PCA can provide insights into the underlying structure and
relationships within the dataset. However, it’s important to note that PCA is
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sensitive to the scale of the features, and data normalization is typically per-
formed prior to applying PCA to ensure fair comparisons and accurate results.
Overall, PCA serves as a valuable tool for dimensionality reduction and feature
extraction to handle high-dimensional data efficiently and gain deeper insights
from complex datasets.

Fig. 1. Decision Tree model with Iris dataset classification

Decision Tree. DTs are ML techniques that are used for solving classification
and regression problems. They represent decision-making processes through a
hierarchical structure comprising nodes and branches. Figure 1 shows the clas-
sification of the Iris dataset using DT. At each node, the optimal split is deter-
mined using metrics like Gini impurity or entropy, aiding in the creation of
distinct branches [17]. To address the issue of overfitting, pruning techniques
can be employed to simplify the tree’s structure. One of the notable advan-
tages of decision trees is their ability to handle both categorical and numerical
data, making them versatile for a range of applications. Furthermore, ensemble
approaches such as random forest and gradient boosting can be employed to
enhance the performance of decision trees by combining multiple trees. While
decision trees offer interpretability, they can be sensitive to fluctuations in the
data. Moreover, there exist extensions and modifications to decision trees, such
as decision stumps (shallow trees) and advanced tree-based algorithms like XG-
Boost, which further augment their capabilities.

Support Vector Machine. SVMs are supervised ML techniques extensively
used for classification and regression tasks. The underlying principle of SVMs
involves determining an optimal line or hyperplane that effectively separates dif-
ferent classes of data points while maximizing the margin between them. The
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Fig. 2. Linear SVM model with two class classification

primary objective is to achieve a maximum margin, which refers to the distance
between the hyperplane and the nearest data points in each class [6]. These
nearest data points, known as support vectors, play a crucial role in defining
the hyperplane and computing the margin. By focusing on support vectors,
SVMs provide a computationally efficient approach to classification. Figure 2
shows the SVM model where it classifies two classes. To handle complex data
patterns, SVMs leverage the kernel method, such as the linear kernel, polyno-
mial kernel, Gaussian Radial Basis Function (RBF), sigmoid kernel, etc. This
technique allows SVMs to implicitly map data into a higher-dimensional space,
where it may become more separable. This mapping is performed without explic-
itly computing the coordinates in the higher-dimensional space. By identifying
which side of the hyperplane a data point falls on, SVMs can effectively cat-
egorize new data, assigning it to the corresponding classes. SVMs offer several
advantages, such as their ability to handle high-dimensional data, efficiently han-
dle complex datasets, and exhibit resilience to overfitting. However, fine-tuning
hyperparameters is necessary to ensure optimal performance.

2.2 Related Work

Ganaie et al. [5] proposed a method that utilizes twin-bounded support vector
machines (TBSVM) to create oblique decision trees. These trees employ ensem-
ble techniques and clustering hyperplanes to effectively separate data points into
distinct groups. Ajani et al. [2], conducted a comprehensive analysis on embed-
ded machine learning (EML), focusing on compute-intensive algorithms like k-
nearest neighbors (k-NNs), support vector machines (SVMs), and deep neural
networks (DNNs). They explored optimization techniques tailored for resource-
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limited environments and discussed the implementation of EML on microcon-
trollers, mobile devices, and hardware accelerators. Struharik [18] introduced
four hardware architectures aimed at accelerating axis-parallel, oblique, and non-
linear decision tree ensemble classifiers. These architectures were optimized for
FPGA and ASIC technology, highlighting their potential for embedded applica-
tions with limited system size. Shoaran et al. [15] introduced a hardware architec-
ture that addresses the challenges of power and area constraints in applications
like medical devices, specifically focusing on the implementation of gradient-
boosted trees. Their architecture integrates asynchronous tree operation and
sequential feature extraction techniques, resulting in notable energy and area
efficiency. Yong et al. [21] presented a webshell detection system designed specifi-
cally for IoT networks, comprising both lightweight and heavyweight approaches.
To enhance detection accuracy, ensemble methods utilizing traditional machine
learning models such as DTs and SVMs were employed to improve the per-
formance of the detection models. Hwang et al. [19] conducted an analysis of
contemporary ML algorithms employed in edge computing to address security
concerns, particularly in the context of IoT networks. Their assessment involved
evaluating DTs, SVM, and logistic regression based on metrics such as compu-
tation complexity, memory footprint, storage requirements, and accuracy. This
study also examined the applicability of these algorithms to various cybersecu-
rity problems and explored their potential utilization in different use cases.

3 Proposed Work

In this section, we provide a comprehensive overview of our proposed approach.
Our proposed work entails the development of a hybrid ML model that aims
to design resource-efficient inference models. These inference models can be
efficiently deployed using microcontrollers or used to design custom hardware
inference models for IoT edge applications. With a primary focus on resource
efficiency, we integrate contemporary ML techniques to create optimized infer-
ence models capable of optimizing resource utilization. By utilizing the synergies
between ML algorithms, the proposed hybrid model optimizes resource usage,
providing effective and efficient processing capabilities for IoT edge devices.

3.1 Hybrid Model Architecture

The proposed approach combines a dimensionality reduction technique with con-
temporary classification ML algorithms to form a hybrid model framework. We
present a hybrid model that incorporates PCA, DT, and SVM. The proposed
hybrid model leverages PCA, DT, and SVM to effectively address the chal-
lenging scenarios where the input dataset has a large number of features, and
the DT or SVM alone may suffer from the curse of dimensionality. Through
the process of reducing the dataset’s dimensionality prior to the application
of ML algorithms, this approach enhances classifier performance while concur-
rently decreasing the computational resources necessary for training and deploy-
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ing models on resource-constrained IoT edge devices. By combining these tech-
niques, the model aims to optimize the accuracy and resource utilization before
the efficient inference model hardware implementations in IoT edge devices. In
this approach, PCA is initially employed to reduce the number of features in the
dataset by extracting the most informative principal components. This reduc-
tion in dimensionality helps alleviate the computational complexity and memory
requirements associated with processing high-dimensional data without sacrific-
ing much accuracy of the model. The DT and SVM are then finetuned utilizing
the output of PCA to create a hybrid model. Finally, the predictions from these
models are combined using a voting mechanism and averaging, resulting in an
inference model that is both efficient and effective. This resource-efficient imple-
mentation ensures the feasibility of deploying the hybrid model on IoT edge
devices with limited resources, enabling real-time classification tasks in a low-
power and energy-efficient manner. The hybrid model architecture is shown in
Fig. 3.

Fig. 3. Hybrid model architecture framework with workflow.

3.2 A Hybrid Dimensionality Reduction and Classification
Workflow

The workflow for this hybrid approach incorporating PCA, DT, and SVM
for dimensionality reduction and classification for a resource-efficient inference
model hardware implementation for IoT edge devices consists of several key
steps:

– Input Dataset Preprocessing: To ensure the accuracy and consistency of data,
as well as to improve the overall accuracy of the model, initially, we perform
necessary data cleaning, normalization, and scaling on the input dataset.
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– Optimizing the Hyperparameters of PCA: We split the preprocessed data into
training and validation sets. And then, we employed grid search for hyperpa-
rameter tuning, allowing us to explore various combinations of PCA hyper-
parameters. Our objective is to determine the optimal hyperparameters for
PCA, including the number of principal components. Once we identified the
ideal hyperparameters, we proceeded to fit PCA on the training set using
these selected values. Finally, we applied the fitted PCA model to trans-
form both the training and validation sets, ensuring that they were properly
adjusted according to the chosen hyperparameters.

– Hyperparameter Tuning and Training of Decision Tree Classifier: We utilize
the transformed training and validation sets obtained from the PCA step.
This allowed us to capture the most informative features and reduce the
dimensionality of the data. Subsequently, we employed grid search to system-
atically explore a range of decision tree hyperparameters, aiming to identify
the most suitable combinations. The decision tree classifier was then trained
using the training set, and its performance was evaluated on the validation
set. If the obtained performance did not meet our expectations, we repeated
the grid search process with different hyperparameter values. This iterative
approach allowed us to fine-tune the decision tree model until optimal per-
formance was achieved, ensuring that our classifier effectively captured the
underlying patterns in the data.

– Hyperparameter Tuning and Training of SVM Classifier: We begin by uti-
lizing the transformed training and validation sets obtained from the PCA
step, again. To enhance the performance of our SVM classifier, we employed
grid search to explore various combinations of hyperparameters. This iterative
process allowed us to identify the optimal hyperparameter values that would
maximize the SVM’s performance. Subsequently, we trained the SVM clas-
sifier using the training set and evaluated its performance on the validation
set. If the achieved performance did not meet our desired expectations, we
iteratively conduct a grid search by exploring different hyperparameter values
in order to enhance the results. This iterative refinement process ensures that
we achieve the highest possible performance for our SVM classifier, enabling
accurate and reliable classification of the feature vectors.

– Evaluation of the Hybrid Model: In this step, we combine the optimized deci-
sion tree classifier and SVM classifier into a unified framework. By integrating
the decision tree and SVM outputs, we aimed to leverage the complementary
strengths of these two models. We combine the outputs of the decision tree
and the SVM using a voting mechanism to make the final prediction. Then,
we conduct a comparative analysis of the accuracy of the hybrid model with
those of the individual decision tree classifier and SVM classifier. If the per-
formance did not meet our desired criteria, we revisit the hyperparameter
tuning process for the PCA, decision tree, and SVM classifier. To achieve
optimal results, we iteratively repeat the previous steps, adjusting the hyper-
parameters for the PCA, DT, and SVM classifiers using grid search, until we
attained satisfactory performance. This iterative refinement process ensured



176 R. Joshi et al.

that our hybrid model is both accurate and resource-efficient, making it a
viable solution for classification tasks in resource-constrained environments.

– Hybrid Model Deployment: After evaluating the hybrid model and confirming
its satisfactory performance, deployment on the IoT edge becomes feasible.
Direct deployment utilizing microcontrollers is a viable option for deploying
the hybrid model. Additionally, the hybrid model can be further optimized
for specific IoT edge applications through hardware optimization techniques,
such as quantization, to develop custom hardware IoT devices.

4 Experimental Results

This section outlines the experimental design and results of our proposed
method. In order to gauge the efficacy of the proposed methodology, a compre-
hensive evaluation is conducted utilizing five well-known classification dataset
benchmarks, including Heart Disease [4], Breast Cancer Wisconsin (Diagnostic)
[20], Lung Cancer [1], Fetal Health [3], and Pima Indian Diabetes datasets [16].
The Heart Disease dataset comprises 1,025 instances and 10 input features. The
Breast Cancer Wisconsin (Diagnostic) dataset consists of 30 input features and
569 instances. The dataset pertaining to Lung Cancer comprises 309 instances
and 15 input features. Similarly, the dataset on Fetal Health comprises 21 input
features and 2,126 instances, and the Pima Indian Diabetes dataset consists of
11 input features and 767 instances. The experimental flow involves training
the classification datasets using our proposed hybrid workflow. The training and
testing data are randomly partitioned in an 80:20 ratio to generate the hybrid
model. Subsequently, the performance of the hybrid model is evaluated through
performance analysis in terms of accuracy.

Table 1. Optimized hybrid model input configurations

Dataset Original no. of No. of features (%) of features

input features in hybrid model reduced

Heart Disease 10 3 70%

Breast Cancer 30 12 60%

Lung Cancer 15 7 53%

Fetal Health 21 10 52%

Pima Indian Diabetes 11 5 55%

Extensive experiments are conducted to evaluate the efficacy of the proposed
methodology. In the context of experimental design, the initial step involves
the implementation of input data preprocessing procedures. These procedures
include data cleaning, data normalization, and data scaling, which are intended
to enhance the precision and uniformity of the input data. Following the prepro-
cessing of the input dataset, a grid search technique is employed to optimize the
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hyperparameters of a hybrid model consisting of PCA, DT, and SVM. The objec-
tive is to identify the optimal combination of hyperparameters that produces the
best performance for each of these algorithms. Specifically, for PCA, we focus
on fine-tuning hyperparameters such as the selection of the optimal number of
orthogonal components that effectively capture the most significant variance in
the input features. This allows us to significantly reduce the dimensions of the
input features by condensing as much information as possible from the input
features into a smaller subset of transformed features, which are then utilized
as input for DT and SVM models. This reduction in dimensionality also leads
to more efficient memory utilization and computational resources, making it
suitable for resource-constrained IoT edge devices with limited processing power
and storage capacity. Moreover, it results in lower energy consumption during the
implementation of the hybrid inference model on IoT edge devices as well as helps
to minimize the computational workload and data movement, enabling real-time
and low-latency predictions, which are crucial for time-sensitive IoT applications.
Table 1 presents the optimized hybrid model input configurations obtained after
applying PCA. For the Heart Disease dataset, we observe a reduction in the
number of features from the original 10 to 3 transformed features, resulting in a
significant 70% reduction in the dimensionality of the input features. Similarly,
for the Breast Cancer dataset, there is a 60% reduction in dimensionality as the
number of input features decreases from 30 to 12 transformed features. The Lung
Cancer, Fetal Health, and Pima Indian Diabetes datasets also demonstrate sub-
stantial reductions in dimensionality, with percentage reductions of 53%, 52%,
and 55% respectively, in their respective input feature sets.

Subsequently, we proceed with fine-tuning the hyperparameters of DT and
SVM in our hybrid model. Given our objective of creating a robust hybrid model
specifically designed for IoT applications with hardware efficiency in mind, we
meticulously approach the process of selecting hyperparameters for DT and
SVM. In the case of DT, we pre-prune the DT prior to training by determin-
ing the optimal hyperparameters as follows: The criterion for DT is set as Gini
impurity, considering its computational efficiency compared to entropy and its
tendency to produce shorter and more cohesive branches. The maximum depth
of the decision tree is set to 10, limiting the depth to control overfitting and
model complexity. The minimum sample split is set to 2, ensuring that a split at
a node requires at least 2 samples, preventing further divisions with insufficient
data. The splitter strategy is selected as “best,” indicating that the best-split
strategy is chosen at each node during the tree construction process. Other
hyperparameters are left as default values. Similarly, we carefully determine the
hyperparameters for SVM as follows: To optimize hardware implementation and
efficiency, we select the sigmoid kernel for SVM, which offers simpler mathemat-
ical operations compared to more complex kernels like Gaussian (RBF). This
choice facilitates easier implementation and optimization in hardware architec-
tures, resulting in reduced computational complexity and memory requirements.
Consequently, our approach reduces hardware resource utilization, energy effi-
ciency, and execution time. Specifically, we set the regularization parameter (C)
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Table 2. Evaluation of hybrid model training performance

Accuracy (%) Accuracy (%)

Dataset Hard Voting Soft Voting

Heart Disease 96.24 97.5

Breast Cancer 97.52 99.26

Lung Cancer 97.77 98.51

Fetal Health 99.26 99.65

Pima Indian Diabetes 99.75 99.87

Table 3. Evaluation of hybrid model testing performance

Accuracy (%) Accuracy (%)

Dataset Hard Voting Soft Voting

Heart Disease 95.12 96.67

Breast Cancer 95.39 98.04

Lung Cancer 93.54 95.23

Fetal Health 96.58 98.53

Pima Indian Diabetes 96.09 99.02

Table 4. Performance evaluation of DT and SVM models for training and testing

DT SVM

Training Testing Training Testing

Dataset Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Heart Disease 99.14 98.50 98.00 96.08

Breast Cancer 99.99 98.79 99.58 94.26

Lung Cancer 99.71 97.74 98.00 96.45

Fetal Health 99.99 97.00 99.99 97.00

Pima Indian Diabetes 99.95 99.00 96.00 93.53

to 100 and the kernel coefficient (Gamma) to 10 based on experimentation. We
maintain the remaining hyperparameters at their default values. By fine-tuning
these hyperparameters, we aim to optimize the performance and efficacy of our
hybrid model.

After determining the optimal hyperparameters for our hybrid model, we con-
ducted comprehensive training and testing on the transformed datasets obtained
through PCA using both DT and SVM. This enabled us to generate an optimized
hybrid inference model specifically designed for resource-constrained IoT edge
devices. The evaluation of our hybrid model’s performance, as demonstrated in
Tables 2 and 3, involved the utilization of two different techniques for output
prediction: the hard and soft voting techniques.
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Upon carefully analyzing the results presented in Table 2 and Table 3, we
observed that the soft voting technique consistently yielded superior output pre-
dictions for both the training and testing of our hybrid model. Additionally,
we compared the performance of our hybrid model with that of individual DT
and SVM models, specifically for training and testing, as shown in Table 4. Our
hybrid model achieved output predictions on par with these individual models,
despite the latter not being optimized and exhibiting higher computational com-
plexity, memory requirements, power consumption, and latency. The evaluation
further revealed that the average loss in accuracy of our hybrid inference model
remained below 4%, signifying its robustness and effectiveness.

In our review of the existing literature, we encountered limited related work
for direct comparison with our proposed approach. We found only one relevant
study [5] that utilized the Breast Cancer Wisconsin (Diagnostic) dataset for com-
parison purposes. Our proposed work demonstrates superior performance com-
pared to the models presented in [5], yielding a modest improvement in results.
Our approach achieves this improvement while utilizing simpler mathematical
operations, demonstrating the effectiveness of our proposed method. Moreover,
this hybrid model is suitable for direct deployment on IoT edge devices, and it
also holds the potential for further optimization through hardware optimization
techniques. By leveraging ASICs, we can achieve even more efficient implemen-
tations, thereby enhancing the overall performance and efficiency of the model
on IoT edge devices.

In this preliminary work, our research findings reveal the promising capa-
bilities of our optimized hybrid model in delivering accurate predictions while
addressing the computational and resource constraints commonly encountered
in IoT edge devices. The hybrid model exhibits improved accuracy and high-
lights reliable performance when tested on multiple datasets. These experimen-
tal results collectively show the effectiveness of our proposed method and its
potential to enhance classification tasks across diverse domains.

5 Conclusions

In this work, we present a hybrid approach that integrates PCA, DT, and SVM
for deployment in IoT edge devices. The experimental findings demonstrate the
effectiveness of this approach in enhancing the performance of ML inference mod-
els for IoT edge applications. By integrating these contemporary ML techniques,
the proposed approach achieves improved accuracy while effectively addressing
computational and memory limitations of resource-constrained IoT edge devices.
In the future, we are interested to focus on further optimizing the hybrid model
for specific IoT edge device architectures and exploring additional feature selec-
tion and classification techniques to improve performance and efficiency.
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Abstract. Internet of Things (IoT) technologies have impacted many
fields by opening up much deeper and more extensive integration of
communications connectivity, sensing, and embedded processing. The
industrial sector is among the areas that have been impacted greatly
— for example, IoT has the potential to provide novel capabilities for
more effective tracking, control and optimization of industrial processes.
To maintain reliable embedded processing and connectivity in indus-
trial IoT (IIoT) systems, including systems that involve intensive use of
smart wearable technologies, energy consumption is often a critical con-
sideration. With this motivation, this paper develops an energy-efficient
deployment strategy for access points in IIoT systems. The developed
strategy is based on a novel genetic algorithm called the Access Point
Placement Genetic Algorithm (AP2GA). Simulation results with our pro-
posed deployment strategy demonstrate the effectiveness of AP2GA in
optimizing energy consumption for IIoT systems.

Keywords: Green Communication · Wireless Industrial IoT · Genetic
Algorithm

1 Introduction

Wireless communications technologies are of increasing interest in industrial
environments because of their important potential benefits compared to full
reliance on wired communications [3]. As such, Industrial Internet of Things
(IIoT) is playing a huge role in industry due to the connectivity capabilities
provided by wireless technology, revolutionizing the sector. For example, various
sensors can be deployed to monitor temperature, humidity, and vibrations of
machines to create safer production environments and to report early warnings
of possible malfunctions. By seamlessly connecting various devices and sensors,
IIoT enables more efficient data collection, analysis, and process control, bringing
productivity into higher levels.

However, with ever-increasing system complexity, the increasing amounts of
energy consumed by wireless communication devices has attracted significant
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attention from both academia and industry. The large amount of energy con-
sumption also poses challenges to the environment, as renewable green energy is
typically not used as a power source for wireless networks [2].

The energy consumption attributable to Information and Communication
Technology (ICT) has exhibited large increases with the advent of new technolo-
gies, such as Fifth Generation (5G) and Multiple-Input and Multiple-Output
(MIMO), as such technologies require more power consumption to increase
response speed and accommodate more users. Therefore, innovation in green
communications technologies is in urgent need.

To help address this need, we propose and demonstrate a systematic Access
Point (AP) deployment strategy for energy-efficient IIoT systems. The remain-
der of this paper is organized as follows. Section 2 discusses background and
related literature about AP deployment strategies. Section 3 explains the pro-
posed energy-efficient AP deployment strategy. Section 4 reviews the factory sys-
tem flow model used in our simulation experiments. Section 5 presents the results
of the proposed strategy, which are obtained from the aforementioned simulation
experiments. Finally, the paper is concluded in Sect. 6.

2 Background and Related Work

In wireless networks, an AP plays a crucial role by providing wireless connectivity
and forwarding communication between devices or even networks as a relay
node. To effectively support these functionalities and meet users’ requirements,
proper deployment of APs is essential. In this paper, by deployment of APs, we
specifically mean the physical placement of the APs for operation in a given site.

A range of approaches regarding AP deployment has been proposed in the
literature, with a goal of seeking optimal positions based on various objectives,
such as reducing the number of APs used [8] or improving network perfor-
mance [6,10,12–14].

In [8], the authors apply a continuous optimization technique known as A
new Global OPtimization algorithm (AGOP) to minimize the number of APs
used to cover a service area containing obstacles. The authors of [6] employ
a multiobjective Tabu algorithm to search the set of candidate locations. The
algorithm jointly considers coverage, interference, and Quality of Service (QoS).
The final selection is made based on the most important factor to the end user.
In [10], AP deployment and channel allocation are optimized together with a
computationally-efficient local search algorithm to maximize system throughput
and achieve fair resource sharing. In order to reflect the dynamic movement
of users in an indoor wireless local area network (WLAN) system, the authors
of [12] first use statistical theory to model the location and probability of the
user distribution, and then model and solve the corresponding AP deployment
problem with the fuzzy C-clustering algorithm.

In addition to the above algorithms, Genetic Algorithms (GAs) have also
been widely used in identifying efficient AP deployment locations, especially
under relevant multi-objective constraints. GAs are heuristic optimization meth-
ods inspired by Darwin’s Theory of Evolution. They form an important sub-class
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of evolutionary algorithms [1]. A GA iteratively evolves to a solution of the given
problem by using principles of natural selection. GAs have been shown to perform
well on complex optimization problems where it is infeasible to derive optimal
solutions with manageable time-complexity [1].

In [13], the authors take non-uniform user distribution into account, using
a GA to cooperatively optimize the coverage, number of APs, and interference.
In [14], an optimized placement of APs is selected with a GA such that the trans-
mit power and overlap rate are minimized under the constraint of full coverage.
The average transmit power is substantially optimized; it is reduced by about
61%. However, this average value may not be very useful in real-life situations,
since it is possible that the device in the system with the smallest transmit
power only processes a limited amount of traffic. The communication energy
consumption would be a better metric to consider to more accurately inform
system analysis and optimization.

Motivated by the above observations, we propose a novel energy-efficient
AP placement method. The method mutually considers non-uniform user dis-
tribution and unbalanced communication activity on the premise of complete
coverage. Our method considers total communication energy consumption as a
key metric to guide the optimization process. This is a complex optimization
problem, and a GA is designed to derive an efficient deployment setup for a
given deployment scenario.

3 Proposed Methods

In the problem formulation that is addressed in this work, the energy cost to
be optimized refers to the energy consumed by communication activities that
occur during normal operation of the IIoT system. Specifically, the problem
definition targeted in this work is the optimization of communication energy
given a placement of networked devices, which may be unevenly distributed,
and a characterization of the traffic demand for each device.

The communication energy considered in this paper refers to the transmis-
sion energy. Energy associated with communication reception for the devices is
not taken into account in the methods developed in the paper, as it is common
in related analysis contexts to focus on transmission power, and consideration
of the transmission energy provides an approximation of the overall energy con-
sumption due to communication. Incorporation of models for reception energy
into the developments of this paper is an interesting direction for future work.

To save energy, we consider optimal placement of the APs so that they can
deliver packets to all stations (STAs) in an area with an appropriate transmit
power according to their activity rates. The fitness function can be mathemati-
cally expressed as follows:
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min
xi,yi,αi,j

n∑

i=1

s∑

j=1

1i,jαi,jti,jβi,j (1)

s.t. C1 : (xi, yi) ∈ Q

C2 :
n∑

i=1

1i,j = 1, ∀ j ∈ [1, s]

C3 : αmin ≤ αi,j ≤ αmax , ∀ i ∈ [1, n], ∀ j ∈ [1, s]
C4 : αi,j + Gi,j − Li,j ≥ α0, ∃ i ∈ [1, n], ∀ j ∈ [1, s]

Here, n and s denote the number of used APs and STAs respectively, (xi, yi) is
the position of AP i, 1i,j indicates whether STAj is associated to AP i, αi,j , ti,j ,
βi,j are the used transmit power, transmission time, and total communication
activity rate (including both downlink and uplink activity) occurring in the link
between AP i and STAj respectively, Q constrains the service area, αmin and
αmax set the lower and upper bound for the transmit power, Gi,j and Li,j are the
antenna gains and losses of the communication link between AP i and STAj , and
α0 refers to the receiver sensitivity of signal detection. For simplicity we assume
a single transmit power setting for both directions of a link; the framework can
readily extended to handle differing transmit power values.

The antenna gains add both the transmitter antenna gain and receiver
antenna gain. Similarly, the loss Li,j of each link contains three components:
cable and connector losses on both sides, path loss, and miscellaneous losses
such as fading margin. The propagation loss is estimated using the log-distance
path loss model:

L = L0 + 10γlog10(
d

d0
), (2)

where L0 is the path loss at the reference distance d0, γ is the decay component,
and d is the distance between transmitter and receiver.

Figure 1 illustrates the communication activities in a simple network con-
sisting of two STAs and one AP. Different colors (i.e., blue and black) are
used to distinguish different directions of transmission. Dashed lines represent
expected/imagined communication paths, while solid lines represent the corre-
sponding actual occurring communication paths. Suppose STA1 needs to send
3 messages to STA2. After receiving and analyzing the messages, STA2 sends
a message back to STA1. The intermediate AP AP1 acts as a relay node to
perform the above operations. In this case, β1,1 = 3(uplink) + 1(downlink) = 4
and β1,2 = 1(uplink) + 3(downlink) = 4. Note that they are equal because there
are only two links existing in this scenario. α1,1 is the transmit power used by
STA1 and AP1, and t1,1 is the transmission time of packets in the link between
AP1 and STA1. α1,2 and t1,2 have similar meaning but between AP1 and STA2.

If the constraints C1 , C3 , and C4 are jointly satisfied, then STAj is effi-
ciently covered by AP i in the given environment. Depending on the settings, it
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Fig. 1. An illustration of communication activity between two STAs.

is possible that an STA is covered by multiple APs. The constraint C2 takes
this situation into account and restricts an STA to only communicate with the
AP offering the best cost.

We have developed a GA to solve the multivariate optimization problem
formulated above, and we refer to our GA-based AP placement approach as the
AP Placement GA (AP2GA). We have developed a prototype implementation
of AP2GA using the DEAP Framework for GA implementation [4]. AP2GA
iterates through a series of genetic operations to evolve the population (current
set of candidate solutions). After a pre-determined number of iterations, AP2GA
produces its final population, and from the final population, a solution with
maximum fitness (see Eq. 1) is selected as the final solution to the optimization
process. Figure 2 illustrates this operation of AP2GA in a flowchart.

Fig. 2. A flowchart of the proposed deployment strategy.
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AP2GA starts by randomly initializing a set of candidate solutions, which
will form the initial population for the optimization process. Each candidate
solution in a GA population is referred to, in its encoded form, as a chromosome.
A candidate solution in a GA population is also referred to as an individual. Each
chromosome in the population consists of a set of genes (bits) that encode xi, yi,
and αi,j (i = 1, . . . , n, j = 1, . . . , s) in binary format. The crossover and mutation
operations, which are used to evolve the population, operate directly on the bits
of the chromosome. A gene bit-string is initialized under the constraints C1 and
C3 , and its length depends on a user-specified precision value.

After that, the fitness function is called iteratively for each individual. Based
on the obtained fitness score, a tournament selection process is used to select
parents to breed offspring. There is a feasibility check to see if each individual
violates any constraint. If so, a large penalty value is added to the fitness score of
the individual. The subsequent tournament selection process selects the parents
to breed offspring based on the fitness score, so invalid individuals with large
fitness scores are less likely to be selected for survival. In our formulation, higher
fitness scores correspond to lower-quality solutions, so more “fit” individuals
(higher levels of fitness) in the GA population correspond to lower fitness scores.

A two-point crossover follows to exchange information between the selected
parents. As the name suggests, two crossover points are randomly chosen and the
genes in-between are swapped to reproduce different offspring (derived candidate
solutions) with different bit patterns as chromosomes. Subsequently, mutation
is applied on the chromosomes. Mutation refers to the unpredictable change
in certain genes during the genetic process, which is not guaranteed to have a
positive or negative influence on fitness, but will enhance genetic diversity in
the population [7]. The above process of evaluation and genetic manipulation
(selection, crossover, and mutation) is repeated until a pre-determined number
of generations has been reached.

4 Factory System Modeling

We extend our previously proposed factory process-flow model to evaluate our
new deployment strategy [5]. An illustration is shown in Fig. 3.

Fig. 3. The factory process flow model that we use in our experiments.

Five types of functional units (actors) are used in the system: part generator,
rail, machine, controller, and part sink, where they cooperatively model a basic
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work cell in a production environment. Each actor effectively encapsulates a
finite state machine, where each state (mode) of the actor corresponds to a
specific sub-function executed by the actor. The raw components produced by
the part generator undergo processing by machines that add features, and are
ultimately stored in the part sink once all processing is completed. There are two
types of edges shown in the figure: the one-way black edges represent physical
links, including both physical entity transport and any associated information
flow, while the two-way blue edges represent the transfer of data across wireless
communication links.

Rails, machines, and controllers in the environment are equipped with
communication devices. Rails and machines report their status to the con-
troller whenever mode transitions happen. After receiving state information,
the responsible dual-rail-single-machine (DRSM) controller performs some com-
putation and sends instructions back to the actors to which it is connected.
Additionally, there is a special controller, called a simple controller, as shown in
the lower right side of Fig. 3. The simple controller records the capacity informa-
tion of the part sink and controls the release of the last rail. Thus, the modeled
workflow can run smoothly with continuous information exchange.

Communication capability is enabled by a specific type of actor called a com-
munication interface actor. Communication tasks are divided into sending and
receiving sub-tasks, which are undertaken by the send interface actor (SIA) and
receive interface actor (RIA), respectively. For more details on the factory sys-
tem modeling approach that we build upon in this paper, including the modeling
of communication functionality, we refer the reader to [5,9].

In [5,9], it is assumed that the machines used in the factory floor are homo-
geneous. However, in general the operation of a factory may involve the cooper-
ative work of different types of machines, which are specialized for diverse tasks.
This diversity generally results in varying processing times and varying levels
of communication traffic. Therefore, unbalanced processing and communication
activities need to be considered for more general system modeling scenarios.

5 Experiments

In this section, we present simulation results that demonstrate the effectiveness
of the proposed AP2GA approach. Our simulations are carried out using ns-
3 [11].

The service area for our simulated systems is 20 m x 20 m. There is a total of
13 actors involved in the factory system model of which 11 of the actors involve
data communication to other actors (the part generator and part sink do not
involve data communication in this model). The communication relationships
between the actors are illustrated in Fig. 3.

Each actor is characterized by an activity rate, which characterizes both the
outgoing and incoming traffic for the actor. Except for the first rail, each rail
has a fixed activity rate of 5 messages/cycle. Here, by a “cycle”, we meant the
entire processing of a single part through the entire factory pipeline, from the
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part source to the part sink. Three types of machines are used, and they have
activity rates of 8, 6, and 3 messages/cycle, representing high activity, medium
activity, and low activity, respectively. The activity rate of a DRSM controller
D is the sum of the activity rates of the two rails and one machine that are
connected to D, while the simple controller is only responsible for the last rail.

Considering the different volumes of machines and different lengths of convey-
ors that are typically found in practice, the spacing between actors is nonuniform
in our experiments.

We apply the same channel configuration across the entire system model.
Unless otherwise stated, the activity rate and placed location of each actor is
as listed in Table 1, and other aspects of the simulation setup are as listed in
Table 2.

Regarding the threshold for signal detection, two similar values are used in
related literature: –65 dBm [13], and –70 dBm [14]. We used the value of –65 dBm
to account for the severe multipath fading typical in industrial environments.

Table 1. Communication activity rate and position for each actor. The units for the
activity rate are messages/cycle.

Actor R1 M1 R2 M2 R3 M3

Activity 3 8 5 6 5 3

Position (0, 0) (0, 2) (0, 5) (0, 7) (0, 9) (0, 15)

Actor R4 C1 C2 C3 SC 1

Activity 5 14 11 8 2

Position (0, 18) (1, 2) (1, 6) (1, 14) (1, 17)

Table 2. Other simulation parameters.

Parameter Value

Number of GA generations 1000

Population size 300

Crossover rate 0.5

Mutation rate 0.2

Tournament selection size 10

Number of bits in each variable 6

Maximum transmit power of AP (αmax ) 17 dBm

Minimum transmit power of AP (αmin) 0 dBm

Path loss exponent (γ) 3

Reference distance (d) 1 m

Threshold for signal detection (α0) −65 dBm
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Two scenarios are intensively considered in our experiments: (1) all devices
are cable-connected to their power supplies, and (2) all devices are powered by
batteries.

5.1 Devices with Cable-Connected Power Supplies

In this simulation, the goal of our deployment strategy is to minimize the com-
munication energy consumption of the network. The position of each actor is
listed in Table 1. The actors are non-uniformly distributed in this layout.

First, we do not take into account the non-uniform distribution of actors, nor
do we take into account unbalanced communication activity, and we place the AP
at the center position (0.50, 10.00) of the pipeline. This center position is a simple
and intuitive choice if we do not take into account non-uniform distribution and
unbalanced communication, as described above. We execute the simulator for
1000 cycles and record the obtained energy consumption.

Next, we execute AP2GA to take into account the non-uniform actor distri-
bution and unbalanced communication activity, and derive an optimized position
for a single AP. The resulting AP position is (0.70, 7.90). We move the AP to this
position in our simulation model, and again execute 1000 simulation cycles. We
compare the energy consumption brought by (1) deploying the AP in the center
position (“middle”), and (2) deploying the AP based on the result produced by
AP2GA. The results are shown in Fig. 4.

Fig. 4. Energy consumption in different locations.
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In Fig. 4, the total energy consumption is the summation of the energy con-
sumed by both the AP and the STAs. The AP column represents the over-
all downlink energy consumption, while the STAs column represents the over-
all uplink energy consumption. Since the maximum/minimum allowed transmit
power and available power levels are all set to be the same for every communi-
cation node in the simulation model, the differences in the energy consumption
between the downlink and uplink come from the uneven inflow and outflow the
actors.

It can be clearly seen from Fig. 4 that even for this relatively simple and
small-scale example, AP2GA results in a significant reduction in total energy
consumption compared to the simple/intuitive strategy of placing the AP at
the center position. The relative energy savings provided by AP2GA is about
10%, which will amount to significant absolute energy savings over long-term
operation. Since the uneven outgoing and incoming traffic makes the down-
link bear more long-distance workload, there is more significant reduction in
the energy consumed by the AP. For example, when Rail 2 sends packets to
DRSM Controller 1, the downlink transmission distance (from the AP to the
controller) is longer than the uplink transmission distance (from the rail to the
AP).

5.2 Battery-Powered Devices

In Sect. 5.1, we optimized the total energy consumption supposing that all of
the STAs and the AP are cable connected to power supplies. However, due to
their low-price and easy installation, an increasing proportion of communication
devices in industrial environments are powered by batteries.

When battery-powered communication devices are employed, it is important
to consider the network durability when designing and configuring the network.
Intuitively, by network durability, we mean the length of time that the network
remains operational as batteries in the communication devices are drained. There
are various ways to measure the network durability depending on the particular
kinds of operational scenarios that are of interest. Since our scenario requires
the mutual work of all devices in the network, we use a measure of network
lifetime to assess durability, and we regard the time until one STA’s battery is
drained as the network lifetime. That is, the network lifetime is the time from
the beginning of operation until the time when the first STA stops operating
due to insufficient energy availability.

Assuming that all devices have the same battery capacity, maintaining a long
network lifetime requires that all devices consume energy at approximately the
same average rate — that is, the variance of energy consumption across the
battery-powered devices should be low. To assess energy consumption variance,
we plotted the energy consumption of each STA under both the center-position
and AP2GA-based AP deployment obtained from case 1 in Fig. 5a, and tabulated
their corresponding standard deviations (“Std.”) values in Table 3.
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Table 3. Standard deviation of STA energy consumption.

Label center pos. AP2GA pos. 1 with cables AP2GA pos. 2 with battery

AP Position (0.50, 10.00) (0.70, 7.90) (–0.16, 8.57)

Std. 1.74 1.38 1.26

Fig. 5. Energy consumption levels of the different STAs under different AP deployment
configurations.

From Fig. 5a, we can see that the energy consumption of the STAs is unbal-
anced in both deployment scenarios — center-position and AP2GA-based. Peaks
appear on different devices depending on the combination of communication dis-
tance and activity rate. However, the distribution of STA energy consumption
under AP2GA-based deployment from case 1 has better performance in terms
of standard deviation.

To prolong network lifetime and ameliorate the imbalance described above,
the dispersion of STA energy consumption can be taken into account in AP2GA.
For this purpose, a maximum value for the standard deviation stdmax can be
imposed as another constraint:

C5 :

√∑s
j=1(ej − μ)2

s
≤ stdmax , where ej = αi,jti,jβj , μ =

∑s
j=1 ej

s
. (3)

Moreover, when optimizing deployment for battery-powered devices, the
activity rates used in the AP2GA are changed to only include the outgoing
traffic for each device (i.e. βi,j → βj). In our formulation, the updated fitness
function measures the total transmission energy consumed by all STAs in the
network, rather than the combination for all the STAs together with the AP,
which was assumed in Sect. 5.1.
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Through simulation experiments, we empirically determined that for our
deployment case study, an effective maximum standard deviation value — for
use in Eq. 3 — is stdmax = 1.3. We executed AP2GA to find optimized deploy-
ment positions for this value of the maximum standard deviation. Then for the
resulting deployment, we ran a simulation for 1000 cycles and plotted the energy
consumption, as shown in Fig. 5b. In comparison with Fig. 5a, we can see that the
results in Fig. 5b are more concentrated and the peak value has decreased. The
standard deviation of 1.26, which results from imposing stdmax = 1.3, represents
a significant improvement compared to 1.74, which is the standard deviation
measured from center-position deployment.

AP2GA can be applied in or extended for a wide variety of design space
exploration scenarios to incorporate different combinations of decisions that are
involved in deploying communication devices. For example, in our experiments,
we assumed that the STAs have identical battery capacities. This condition
can be relaxed to explore design spaces where batteries of different types are
considered — ranging from small and less costly low-capacity batteries to large
and more costly high-capacity batteries. The AP2GA fitness function may be
extended in such a case to consider the cost of the deployment as well as the
energy consumption, while taking into account the different available battery
types. A candidate network configuration C would then include an assignment
of battery types to the STAs. Various candidate configurations C1, C2, . . . , Cn

can be optimized using AP2GA and evaluated through simulation to determine
a single configuration to select among those that are evaluated. Such extension of
AP2GA to assist with more general or comprehensive design space exploration
is an interesting direction for future work.

5.3 Summary

In summary, from the study and experimental results presented in this paper,
two main findings and implications emerge. First, in environments where users
are unevenly distributed and their communication traffic varies, proper deploy-
ment of APs can significantly reduce the transmission energy consumption of
the entire network. Second, the original formulation of AP2GA can be readily
extended to other energy-related scenarios by manipulating selected parameters
and introducing additional constraints. Averaging the transmission energy of
battery-powered devices is an example, and there are many additional possibil-
ities for performing other types of design space exploration.

6 Conclusion

In this paper, we have introduced an energy-efficient AP deployment strategy
for industrial Internet of things (IIoT) environments. The developed strategy,
which is based on a novel genetic algorithm called the Access Point Placement
Genetic Algorithm (AP2GA), optimizes energy consumption in an environment
with uneven distribution of communication stations that can have varying levels
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of communication traffic. Simulation results involving two factory process flow
scenarios demonstrate the effectiveness of the AP2GA approach in improving the
energy efficiency of AP deployments. For environments in which stations have
cable-connected power supplies, we demonstrate the use of AP2GA in optimizing
total energy consumption, while in environments that involve battery power, we
demonstrate the use of AP2GA in maximizing the operational network lifetime.
A current limitation of AP2GA is that the algorithm assumes a single communi-
cation channel configuration, which is used uniformly in the modeled industrial
environment. Interesting directions for future work include incorporating diverse
channel configurations, and also extending the approach to consider additional
metrics, such as communication throughput and deployment cost.

Declaration of Generative AI and AI-Assisted Technologies in the
Writing Process. During the preparation of this work the authors used Chat-
GPT in order to correct possible grammatical errors and improve the readability
of the paper. After using this tool/service, the authors reviewed and edited the
content as needed and take full responsibility for the content of the publication.

Disclaimer. Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available for
the purpose.
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Abstract. Wearable and Implantable Medical Devices (WIMDs) and
Physiological Closed-loop Control Systems (PCLCS) are crucial elements
in the advancing field of the Internet of Medical Things (IoMT). Enhanc-
ing the safety and reliability of these devices is of utmost importance as
they play a significant role in improving the lives of millions of people
every year. Medical devices typically have an alert system that can safe-
guard patients, facilitate rapid emergency response, and be customized
to individual patient needs. However, false alarms are a significant chal-
lenge to the alert mechanism system, resulting in adverse outcomes such
as alarm fatigue, patient distress, treatment disruptions, and increased
healthcare costs. Therefore, reducing false alarms in medical devices is
crucial to promoting improved patient care. In this study, we investi-
gate the security vulnerabilities posed by WIMDs and PCLCS and the
problem of false alarms in closed-loop medical control systems. We pro-
pose an implementation-level redundancy technique that can mitigate
false alarms in real-time. Our approach, FAMID, utilizes a cloud-based
control algorithm implementation capable of accurately detecting and
mitigating false alarms. We validate the effectiveness of our proposed
approach by conducting experiments on a blood glucose dataset. With
our proposed technique, all the false alarms were detected and mitigated
so that the device didn’t trigger any false alarms.

Keywords: alert system · false alarm · internet of medical things
(IoMT) · physiological closed-loop control systems (PCLCS)

1 Introduction

The Internet of Medical Things (IoMT) refers to a group of medical devices and
software programs interconnected via computer networks that supports health-
care information technology systems to collect and exchange data. By 2030, the
global IoMT market is projected to reach USD 861.3 billion, expecting a com-
pound annual growth rate of 16.8% from 2023 to 2030 [41]. Physiological closed-
loop control systems (PCLCS), smart medical devices, wearable and implantable
medical devices (WIMDs), remote patient monitoring systems, and telemedicine
platforms are some examples of IoMT devices. These devices can gather health-
related information, including vital signs, medication dosage, blood glucose lev-
els, drug concentration, etc. Real-time transmission of this data to healthcare
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
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doctors and other systems makes it possible to monitor patients from a distance,
make more precise diagnoses, and develop better treatment strategies [47]. IoMT
devices have a wide range of security issues, such as vulnerabilities in software
and firmware, physical attacks, weak encryption/authentication, and a lack of
security patches or updates [35]. Additionally, system reliability is paramount
so that healthcare practitioners can not only access the data when required but
also trust that data is accurate, so patients can receive safe and effective care.
The addition of autonomous, closed-loop treatment adds additional complex-
ity to IoMT devices. Any vulnerabilities or potential reliability issues become
even more serious in this context. A fault in any system component can cause
the device to malfunction. A faulty device could result in inaccurate diagnoses,
improper treatment, or even patient injury if the device does not perform as
intended. Besides, IoMT devices must be able to communicate with other health-
care systems to provide continuity of treatment. The delivery of patient care may
be delayed or fail altogether if the devices are unstable or produce inaccurate
data. Additionally, regular maintenance, including updates and patching of a
defective IoMT device can be expensive. Therefore, a PCLCS must be resistant
to failure in order to ensure long-term in-field safety and reliability. The over-
all IoMT architecture is illustrated in Fig. 1, which shows the various scenarios
involving WIMDs and PCLCS. For example, a person can have WIMDs that are
IoMT-enabled but not part of a PCLCS. Alternatively, a WIMD may be utilized
in a PCLCS that is not IoMT-enabled. Additionally, a WIMD can be part of
both a PCLCS and an IoMT.

Mobile Cardiac Monitor

Body Temperature Monitor

Blood Glucose Monitor

Smartwatch

Smartglasses

Mobile Cardiac Monitor

Body Temperature Monitor

Blood Glucose Monitor

Smartwatch

Smartglasses

Fig. 1. Overall IoMT architecture, illustrating different WIMDs and cloud-based (A)
vs. local processing (B) for closed-loop systems.

This paper focuses on IoMT devices that specifically include a PCLCS. In
particular, we seek to leverage the connected nature of the device to help enhance
the safety and reliability of the PCLCS through false alarm mitigation. The main
components of a PCLCS are (1) a biosensor to measure physiologic variables
from the patient, (2) a controller/control algorithm to determine the automatic
actions, and (3) an actuator to perform the intended action, like delivering a
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drug or therapy [13]. System safety features are crucial for any PCLCS design
to enhance the safety and reliability of the device. For example, an alert system
can help the patient or the healthcare provider in a variety of ways, such as
indicating over- or under-medication, low battery, or any potential issue with the
device that needs to be addressed. While alarms can help to take prompt action,
false alarms can make it difficult for patients to distinguish between genuine
and fake incidents. In addition, false alarms impact the battery life and the
overall functionality of the device by unnecessarily consuming additional power.
Detecting and mitigating false alarms in real-time is essential for ensuring the
reliability of the device and improving the overall effectiveness of the system.

Several studies in the literature have explored various methods for identifying
and addressing false alarms in different fields, such as cyber-physical systems [26]
and medical systems or units [19,53]. However, there has been a lack of research
on detecting and correcting false alarms in closed-loop medical control systems.
This paper aims to address that research gap by exploring the following research
questions:

RQ-1: How to effectively identify false alarms in PCLCS that may occur due to
natural failures or malicious modifications?

RQ-2: How can we efficiently mitigate false alarms in PCLCS to ensure the
safety and reliability of the device?

In this paper, we assume the controller or the control algorithm to be defec-
tive, with the defects either being natural faults due to manufacturing errors
or intentional malicious modifications, i.e., hardware Trojans [7]. A defective
controller output signal can generate false alarms, and we propose a technique
that can effectively detect and mitigate those alarms in real-time. We utilize
the concept of implementation-level redundancy, where the redundant nodes are
cloud-based PCLCS controllers. In particular, we implement a WebSocket API
that facilitates communication between the local and cloud-based controllers. We
then compare the local and cloud-based controller outputs to detect and miti-
gate false alarms. To test our approach, we model an artificial pancreas system
(APS) and utilize a CGM dataset [4], which contains information about meal-
times, insulin use, blood glucose measurements, and other factors for 30 patients,
aged 18 to 66, with type-1 diabetes. A modified local control algorithm simulates
a faulty device that triggers false alarms in order to evaluate the effectiveness of
our technique. In summary, we make the following novel contributions:

1. We model different types of faults or attacks that can potentially disrupt the
alert mechanism system of a PCLCS and cause it to generate false alarms.

2. We propose an implementation-level redundancy approach for the PCLCS
controller that utilizes cloud-based parallel controllers to detect false alarms
in real-time.

3. We implement an efficient alarm mitigation technique, FAMID, that effec-
tively reduces false alarms arising from erroneous controller outputs to
decrease the number of false alarms.
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The rest of the paper is organized as follows: In Sect. 2, we explore the secu-
rity and reliability concerns that arise from the use of IoMT devices with PCLCS
components, describe the alert mechanism system and provide an overview of the
specific (APS) control algorithms. In Sect. 3, we discuss related works, emphasiz-
ing the various false alarm mitigation techniques found in the literature and how
they relate to IoMT devices. In Sect. 4, we delve into the details of the threat
model. We then present our methodology in detail in Sect. 5. Section 6 presents
and discusses the findings. Finally, we conclude in Sect. 7.

2 Background

In this section, we provide an in-depth background on the safety and security
concerns associated with IoMT devices, specifically WIMDs, and PCLCS. We
also elaborate on the alert mechanism system and control algorithms used in the
PCLCS.

2.1 Safety and Reliability of IoMT Devices

The complexity of the software and hardware components of WIMDs is increas-
ing as the healthcare domain transitions in response to technological and thera-
peutic advances. WIMDs have seen widespread use in recent years, making it crit-
ical to address the security and reliability concerns associated with these devices.
Vulnerabilities in WIMDs can be exploited by attackers, granting them access
to sensitive patient information and the ability to manipulate the device’s nor-
mal operation [32]. WIMDs are vulnerable to various types of attacks, including
hardware attacks like Hardware Trojans, software attacks such as malware and
counterfeit firmware, communication channel attacks like denial-of-service and
man-in-the-middle, and side-channel attacks like power analysis and electromag-
netic interference. Table 1 illustrates a summary of these attacks, which can lead
to data modification, device malfunctions, and other serious consequences [28].
Therefore, to ensure the protection of patient data and the proper functioning of
WIMDs, it is imperative to prioritize the security and reliability of these devices.
The increased use of embedded and customized software in WIMDs grows the
attack surface, and various software and hardware defects have been discovered
that can lead to different types of attacks [43]. For example, a WIMD with mal-
ware can malfunction intermittently, operate slowly, or even become unusable.
Another significant security risk is updating WIMDs with counterfeit firmware,
as attackers can access the system and change the programs. For example, the
authors in [15] analyzed an automated external defibrillator (AED) and identified
a set of vulnerabilities, including buffer overflow, password protection defects,
and flaws in the software update mechanism, which make the device vulnerable
to counterfeit firmware. An unverified firmware allows for a man-in-the-middle
attack, and an example of updating an unverified firmware of a home monitoring
device connected to an ICD is presented in [42]. The security vulnerabilities of
wearable devices loaded with sensors, including firmware reverse engineering or
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Table 1. Survey: Attacks on WIMDs

Category Types Components Security Examples

Comm. Channel DoS Network A AED [36], any IMD [18]

Eavesdropping Network I, C BCI [25], Insulin pump [6]

Man-in-the-middle Network I, C ICD [30]

Ransomware Data, HCP I, C Healthcare facilities [46]

Replay Network I, C ICD [14,30]

Unauthorized Access Network I, C Insulin pump [17], AED [36]

Hardware EMI Sensor A ICEDs [24]

Hardware Trojan Sensor I Medical microchips [49]

Software/Firmware Battery Depletion Device A ICEDs [39]

Counterfeit Firmware Device, Data I, A AED [15], ICD [42]

Malware Device, Data, HCP I, A WIMDs [43]

Sensor Spoofing Sensor A Insulin pump [17,30]

Notes: Security concerns → Availability (A), Confidentiality (C), Integrity (I); EMI → Electromagnetic

Interference; HCP → Health care provider; AED → Automated external defibrillator; BCI → Brain computer

interface; ICD → Implantable cardioverter defibrillator; ICED → Implantable cardiac electrical devices

compromising software gateways to extract and manipulate private user infor-
mation, have also been studied [11,23]. Extensive research has been conducted
in the literature to investigate the security concerns associated with WIMDs.
The findings suggest that attackers can exploit wireless communication vulnera-
bilities to compromise these devices, both actively and passively. Consequently,
critical security aspects such as authentication, confidentiality, integrity, avail-
ability, and authorization may be compromised. While some efforts have been
made to enhance the security of the communication channel, such as imple-
menting external proxies [50], biometric access control [16], and proximity-based
security [40], the challenge of preserving device reliability in the presence of
defective components in a closed-loop system still needs to be addressed.

The security and reliability aspects of PCLCS have been well-studied in the
literature. For example, the authors in [2] investigated the impact of replay
attacks to analyze the behavior of the APS under two well-known control algo-
rithms: Proportional-Derivative (PD) and Multi-Basal (MB) control using sim-
ulation and model checking for security analysis. The same authors also investi-
gated the impact of closed-loop anesthesia control under temporal sensor faults
and reported only how the performance of the controllers was impacted because
of the faulty sensor [3]. Furthermore, the authors in [38] observed that patients
might be at serious risk if attackers get unauthorized access to a deep brain stim-
ulation device. Blind and targeted attacks were on their list of potential ways
to harm the patients. Examples of blind attacks included stopping stimulation,
draining battery power, causing tissue injury, and collecting data. In contrast,
targeted attacks consisted of interfering with motor control, disrupting impulse
control, manipulating emotions, imposing pain, and manipulating the reward
system. All of these studies have highlighted the impact of different attacks on
PCLCS. However, none of them presented any solutions or strategies to ensure
the reliability of these systems.
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2.2 Alert Mechanism System

Alert mechanism systems can be used in various domains to ensure the safety of
individuals. For example, the authors in [37] propose an SMS-based alert system
for detecting car accidents and notifying emergency services. The SMS-based
alert system in this approach takes advantage of the widespread use of mobile
devices to provide timely notifications to first responders. When the system
detects an accident, it uses GPS technology to pinpoint the location and sends a
text message to rescue services, providing them with the information they need
to dispatch assistance to the scene of the accident. The app-based alert system
in Cerberus leverages the widespread use of mobile devices to provide timely
notifications to users [12]. The mobile app can be easily installed on the user’s
device and communicate with the cloud server to receive and process alerts. The
app provides information about the alert’s location, type, and severity, allowing
users to take appropriate action to stay safe. For example, if there is a flood alert,
the app will notify the user of the unsafe water level at a particular location
and provide guidance on avoiding the area. Similarly, if there is a fire alert,
the app will provide information on the location and severity of the fire and
recommend evacuation routes. A device equipped with both visual and audio
alert mechanisms was created to ensure that miners are alerted in real-time of
hazardous conditions [33].

In medical devices, alert mechanism systems are used to alert healthcare
providers of potential issues or risks related to a patient’s medical condition or
the functionality of a medical device [22]. For example, an alert mechanism sys-
tem in a patient monitoring system may alert healthcare providers if a patient’s
vital signs indicate a potential medical emergency. In addition, medical device
manufacturers must implement alert mechanism systems to comply with regula-
tory requirements and ensure patient safety [21]. Alert mechanisms are essential
tools in various industries to enhance safety measures for workers and individu-
als. These mechanisms can come in various forms, such as mobile apps, wearable
devices, or SMS-based systems, and can provide timely and crucial notifica-
tions about potential hazards or emergencies. With the increasing importance
of safety measures, alert mechanism systems are becoming more widespread and
are now an integral part of regulatory requirements in many industries, includ-
ing healthcare. Furthermore, the use of alert mechanisms is expected to grow as
new technologies and innovations emerge, making workplaces and public spaces
safer for all.

2.3 Control Algorithms

The control algorithm determines the automatic operations of the PCLCS. The
primary purpose of the control algorithm is to apply modifications to the given
medicine or therapy to ensure that the PCLCS satisfies clinically related per-
formance requirements [13]. Characterizing the physiologic variable’s response
and the interaction of any elements that could impact these processes should
be the basis for the control algorithms employed in a PCLCS. For example, in
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an automated blood glucose system, the blood glucose measurement and the
meals taken need to be considered by the controller to maintain the patient’s
insulin level safely. To meet Food and Drug Administration (FDA) recommen-
dations, control algorithms should be designed to operate under potential risks
and environmental interference.

In this paper, as a case study, we used an APS as a closed-loop system,
which includes a continuous glucose monitor (CGM). Computer simulation has
accelerated the development of AP control algorithms. For example, the authors
in [29] developed the UVA/PADOVA Type 1 diabetes simulator, which can
mimic meal challenges in virtual subjects, represented by a model parameter
vector that was randomly selected from a suitable joint parameter distribution.
The control algorithm implemented consists of a Ibo (bolus insulin) calculator
as described by Eqn 1,

Ibo =
CHO

CR
+

(Gp −Gt)
CF

(1)

with parameters Gp (amount of glucose in plasma), Gt (patient target
glucose), CF (patient correction factor), CR (carbohydrate ratio), and CHO
(ingested carbohydrate). The controller reads a patient’s glucose level and car-
bohydrate amount from the dataset [4] stored in a .csv file for 10 patients with
200 samples each. The algorithm examines the patient’s glucose readings and
identifies any values below 70 or above 180, known as threshold alert values,
as true alarms [5]. Furthermore, the algorithm computes the bolus amount by
considering the patient’s target glucose value and other relevant parameters.

3 Related Work

Detecting false alarms can help lower emotional or mental anxiety, reduce unnec-
essary computation power of the system, and ensure safety and reliability. Many
false alarms can increase the risk of poor responses from the system to actual
emergencies, which can harm people or cause financial loss. The primary goal of
false alarm detection is to ensure that appropriate actions are taken for authen-
tic situations instead of false ones. Researchers from various disciplines have
investigated several methods to detect and mitigate false alarms. For example,
several scientific research has been conducted to detect false alarms in a vari-
ety of application domains like the internet of connected vehicles [1], marine
environments [10], wind turbine [31], and medical cyber-physical systems [26].
However, as the WIMDs are evolving rapidly with sophisticated components, it
is required to develop new techniques that can effectively detect and mitigate
false alarms to enhance patient experiences.

The authors in [44] proposed an approach to identify sensor anomalies by
analyzing the historical data collected from various biosensors to detect and
reduce false alarms. Their methodology consists of four algorithms: the corre-
lation coefficient for physiological data preprocessing, random forest for sensor
value prediction, the dynamic threshold for error calculation, and the majority
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voting for alarm trigger. They used a large real-time healthcare dataset to evalu-
ate their methodology and found a high false alarm detection rate and a low false
positive rate. Furthermore, in [53], the authors proposed a robust methodology
to detect seizures for wearable devices and tested that with the CHB-MIT elec-
troencephalogram (EEG) dataset. To note, EEG acquisition is a time-consuming
and error-prone process, and many seizure detection techniques are associated
with unacceptably high false-alarm rates. Compared to the other studies on the
same issue, their approach resulted in a 34.70% reduction in false alarms and
demonstrated that their technique could extend the battery life of a cutting-edge
wearable device by reducing the frequency of false alarms. Decreasing the num-
ber of false alarms is essential in intensive care Unit (ICU) to improve patient
safety. In [52], the authors proposed a game-theoretic feature selection technique
that uses a genetic algorithm to find the most useful biomarkers from signals
obtained from various monitoring equipment. To reduce the false alarms in the
ICU, the authors presented this low-computational complexity approach to esti-
mate Shapley values for physiological signal characteristics. They reported that
their proposed technique captured the actual alarms with better sensitivity and
equivalent specificity compared to other feature selection methods and reduced
the false alarms considerably.

In recent years, neural networks (NN), such as deep neural networks (DNNs),
convolutional neural networks (CNNs), etc., have been used by researchers to
detect false alarms by identifying patterns in the dataset. For example, the
authors in [19] utilized the evolutionary and swarm algorithm to improve the
DNN performance in detecting false alarms in ICU. They reported reduced sup-
pressed true alarms by improving the accuracy compared to the benchmark Phy-
sionet challenge by utilizing dispersive flies optimization (DFO). In their study,
5-fold cross-validation was done using two models with different architectures.
The results showed that compared to other results, including the benchmark,
the DFO-modified version for both models performed better. Furthermore, the
authors in [54] used CNNs to learn the feature representations of physiological
waveforms to differentiate between authentic and false arrhythmia alarms. Their
method utilizes contrastive learning to reduce binary cross-entropy classification
and similarity loss. They tested their approach with a benchmark, the 2015 Phy-
sioNet Computing in Cardiology Challenge, and reported that their proposed
deep-learning framework performed better than the benchmark challenge.

Although various methods have been developed to detect and reduce false
alarms in multiple fields, there is a clear research gap in utilizing false alarm
detection and reduction techniques in closed-loop medical control systems. This
paper aims to fill this gap by introducing an innovative and effective false alarm
mitigation technique for PCLCS. A fault-tolerant system is required to ensure
reliability and effective treatment. One potential technique for fault tolerance
in control systems is hardware redundancy, where identical hardware modules
perform the same functions. In case of a fault in one module, the other modules
continue the process, maintaining the system’s functionality. The triple modu-
lar redundancy (TMR) approach is frequently used to improve hardware fault
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tolerance. Our proposed approach benefits from the TMR method, particularly
N-version programming, where the same basic requirements are used to build
independent versions of many functionally identical programs. IoMT is then
leveraged to support cloud-based redundancy by offloading multiple versions or
implementations of the control algorithm in a trusted cloud environment. Diver-
sifying the alert mechanism in this way can help to improve reliability against
both natural faults and intentional attacks.

4 Threat Model

Recent healthcare advancements have renewed interest in clinical automation
and encouraged researchers to explore new techniques for physiological closed-
loop control systems (PCLCS). In addition to delivering reliable and effective
care while reducing the possibility of human error, PCLCS have the potential
to improve medical support, particularly in emergency or overload situations.
Consequently, it is crucial to consider patient safety when assessing the poten-
tial benefits of PCLCS. The authors in [48] explored the security threats and
attacks and the various challenges associated with medical cyber-physical sys-
tems and closed-loop control systems. An example of a PCLCS is an APS, also
known as automated closed-loop insulin delivery [20]. This system integrates a
continuous glucose sensor, an insulin pump, and a control algorithm to regu-
late insulin delivery based on real-time measurements of blood glucose levels.
A well-functioning APS can provide numerous benefits to patients. However, if
the APS is defective, it may result in an underdose or overdose of insulin, which
could pose a danger to the patient. In [8], the authors investigated the safety
and design requirements of the APS, focusing on individual components or the
system as a whole. While assessing the potential gains of PCLCS, the assurance
of patient safety must be considered. Thus, it is a core requirement to ensure
the reliable and effective operation of PCLCS [13].

The closed-loop medical control systems rely on a feedback mechanism to exe-
cute the intended operation automatically. Any external or internal disturbances
to any system components can disrupt the regular operation of the device. For
example, a faulty control algorithm of a PCLCS can lead to unintended alarm
generation from the alert system, which can confuse the patient in distinguishing
between authentic and false events and eventually increase their stress level. In
addition to potentially affecting the patient’s behavior, false alarms increase the
device’s power consumption, a critical problem for resource-constrained edge
medical devices [34]. The design, implementation, and clinical translation of
PCLCS are significantly impacted by crucial considerations such as area, power,
and reliability [27]. Researchers have investigated security concerns related to
IoMT devices, indicating how crucial it is to protect them from internal and
external disruptions [9,51]. The threats with the PCLCS components can be
both natural and intentional. The natural or unintended faults in the compo-
nents can arise from device aging, high temperature, biosensor drift, accidental
human error, etc. On the other hand, malicious threats could involve physically
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tampering with the PCLCS or changing any system component. For example,
the intentional malicious modification to any circuitry of an integrated circuit is
known as a hardware Trojan, and if that is undetected during the manufacturing
process, it can result in device malfunction [28]. From the perspective of IoMT
devices, protecting against such intentional attacks is crucial as software security
is sometimes inadequate [45].

PCLCS can malfunction as a result of faults in any of the system components.
This paper focuses on a PCLCS with a faulty controller that occasionally gener-
ates incorrect actuating values leading to false alarms. We are assuming that: 1)
the controller is defective and it can be a result of a natural fault or intentional
malicious attack, and 2) the other components (biosensor, transducer, signal
processing unit, analog to digital hardware, alert system, etc.) are error-free.
Our goal is to design and implement an effective reliability mechanism that can
reduce false alarms and maintain the safety and dependability of the PCLCS,
as any incorrect reading from the defective controller can cause the device to
malfunction and generate false alarms.

Controller
(Faulty)

Actuator

Biosensor

Cloud Controllers
(Error-free)

False alarm
detected?

Comparison

No Yes

Continue with 
Cloud Controller

Continue with 
HW Controller

Fig. 2. An overview of our proposed approach illustrating how cloud controllers can
help detect and mitigate false alarms in a PCLCS.

5 Methodology

This section presents a detailed description of the methodology and the exper-
imental setup. We divide our approach into four main parts: 1) implementing
cloud-based controllers, 2) implementing WebSocket API for two-way interactive
communication, 3) generating false alarms to simulate accidental or intentional
faults with the controller, and 4) detecting and mitigating the false alarms in
real-time. An overview of our proposed approach is illustrated in Fig. 2.
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5.1 Cloud-Based Controller

Our proposed approach is built upon the TMR method, a fault-tolerant tech-
nique commonly used in safety-critical systems. Specifically, we utilize the N-
version programming aspect of TMR, where multiple independent versions of
the same program are created based on the same requirements. Each version is
designed to be functionally identical but implemented using different algorithms
and/or programming languages. We implemented three versions of the same con-
trol algorithm, written in different programming languages, which include C++,
Rust, and Python. These languages were chosen based on their memory efficiency
and speed, with Python being used for the local physical device (Raspberry Pi)
and C++ and Rust for their speed and memory efficiency. It is important to
note that our approach to implementing cloud-based controllers is not limited
to specific programming languages and is not limited to implementation diver-
sity.

We analyzed the compiled code of the Rust and C++ algorithms and found
significant differences in the number of instructions and clock cycles. Specifi-
cally, the Rust compiled algorithm had nearly 48% more instructions than the
C++ version. The version of the Rust compiler used was rustc v.1.69, while the
version of the C++ compiler used was gcc v.17. We wrote a script to convert
the Python-interpreted code into C to find the differences between all three pro-
grams. We observed the execution time to be not significantly different among
the three languages. However, the number of main memory access in the Rust
version was the highest, followed by C++ and C. Therefore, it is important
to consider the programming language and compiler version when implement-
ing control algorithms, as these factors can significantly impact the resulting
program’s performance and efficiency.

5.2 WebSocket API

The system architecture of our WebSocket-based communication system con-
sisted of a Raspberry Pi acting as a WebSocket client, a PC acting as a Web-
Socket server, and multiple other clients running in virtual machines. The Wi-Fi
of the Raspberry Pi was configured to function in Ad-hoc mode, negating the
need for a dedicated access point. The PC was running Windows 10 and hosted
the WebSocket server which was written using Python. The virtual machines
were running on the same PC and each had a unique IP address. The Raspberry
Pi and all virtual machines were running the same client-side Python script
to communicate with the WebSocket server. The WebSocket server was imple-
mented using the WebSocketServer class, which allowed us to handle WebSocket
connections and messages easily. The server was configured to listen on a specific
port (e.g., 8000) and accept connections from any IP address. Once a connec-
tion was established, the server would maintain a persistent connection with all
clients and handle incoming messages. The WebSocket client was implemented
on the Raspberry Pi using the WebSocket client library. The client was config-
ured to connect to the WebSocket server running on the PC using the IP address
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of the PC and the port number specified during server configuration. Once a con-
nection was established, the client awaited a predefined symbol to arrive in a
WebSocket message to indicate that all clients on the network should run an iter-
ation of the simulation. We also tested the system using multiple virtual machine
clients running on the same PC as the WebSocket server. Each virtual machine
was configured with a unique IP address and ran a simple Python script that
connected to the WebSocket server as a client and printed incoming messages to
the console. This allowed us to simulate multiple clients and test the scalability
and resiliency of the system. We collected data by storing the returned result
values received by the WebSocket server in a .csv file for later analysis. Figure 3
shows our experimental communication setup between cloud and local devices.

Fig. 3. Diagram of methods and technologies used in our experimental setup to com-
municate between cloud and local devices.

5.3 Generation of False Alarms

To validate our proposed approach, we conducted experiments by generating
false alarms based on potential issues that could affect the controller in the
PCLCS. We considered two scenarios: 1) controller malfunction and 2) inten-
tional controller modification. The first scenario, a malfunctioning controller,
could occur accidentally during or after the manufacturing process or due to
communication issues. To simulate this scenario, we modeled the controller to
randomly send a zero bolus value to the actuator in a non-sequential manner. In
the second scenario, intentional controller modification, we introduced a single-
bit error (SBE) into the calculated bolus measurements by flipping a random
bit with a fault probability of 1%, which adds additional 10–15% false alarms
to the total number of alarms. This type of attack could be aimed at disrupting
the PCLCS. These scenarios and parameters were chosen to demonstrate that
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our proposed approach is effective in detecting and mitigating false alarms gen-
erated by a faulty controller. It is important to note that the chosen scenarios
and parameters are worse than what would typically occur in the real world.
However, they are still comparable to real-world scenarios but with a higher
probability of faults due to the limited dataset.

5.4 False Alarms Detection and Mitigation

To detect false alarms in the PCLCS, the output of the local controller is com-
pared with the outputs of the cloud controllers, which are expected to produce
identical values. If there is a mismatch, an alarm is triggered based on the alarm-
triggering condition. In such a scenario, our technique can detect the false alarm
and prevent it from triggering. Figure 2 illustrates how our approach compares

Fig. 4. Bar charts illustrating the true alarms, total alarms including false alarms,
and the number of alarms after applying FAMID technique for random nonsequential
dropped values (RNDV).

Fig. 5. Bar charts illustrating the true alarms, total alarms including false alarms, and
the number of alarms after applying FAMID technique for single-bit error (SBE).
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the output signals of the local and cloud controllers to detect false alarms and
then chooses to continue operation with either the local or cloud controller.
By detecting and mitigating false alarms generated by the local controller, the
system’s reliability is improved.

6 Results and Discussion

We present the results and discussions in this section divided into two main
parts: 1) the accuracy of cloud-based controllers and 2) false alarm detection
and mitigation using FAMID. We recorded the number of true alarms triggered
by the alarm-triggering condition to observe the number of occurrences in the
local and cloud controllers. The alarm-triggering condition for true alarms was
set when the blood glucose value was greater than 180 or less than 70. For
all samples in the test dataset, we confirmed that the cloud-based algorithms
generated the same alarms as the unmodified local physical controller.

Our approach for detecting and mitigating false alarms addresses two crit-
ical issues with the local controller: single-bit errors (SBE) and random non-
sequential dropped values (RNDV). To validate the effectiveness of our pro-
posed approach, we conducted evaluations using data from ten different patients.
In Fig. 4, we showcase the results of our technique in reducing the number of
additional false alarms caused by RNDV in the controller’s output signal. For
instance, for patient 1, there were initially 53 true alarms and 7 false alarms,
totaling 60 alarms before implementing our technique. However, after applying
our proposed approach, the number of alarms was significantly reduced to 53,
matching the number of true alarms. This significant reduction demonstrates
our approach’s high accuracy and efficiency in mitigating false alarms. Simi-
larly, Fig. 5 presents compelling results when an SBE was introduced into the
local controller’s output values. Our proposed technique also successfully mit-
igated false alarms in this scenario, showcasing its versatility and robustness.
To provide a comprehensive overview of our results, Table 2 summarizes each
patient’s true, false, and total alarms before and after implementing our FAMID
technique. The data further confirms the effectiveness of our approach across
various patient cases.

Our proposed technique has proved its effectiveness in substantially reducing
false alarms caused by both RNDV and SBE, presenting a promising solution
to enhance alarm accuracy and ensure patient safety in medical systems. The
evaluation results clearly illustrate the potential advantages of implementing
our technique in real-world applications, significantly contributing to creating a
more reliable and efficient healthcare environment. By addressing false alarms,
our approach can minimize unnecessary alerts and enable medical professionals
to focus on critical cases promptly, improving patient outcomes and a more
streamlined healthcare system. The positive results from this study highlight
the importance of further integrating our approach in various medical devices
and settings to optimize alarm management and overall patient care.
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Table 2. Comparing Total Alarms (A), True Alarms, and False Alarms for RNDV and
SBE using FAMID

Sub True Alarms False Alarms Alarms FAMID

SBE RNDV A1 A2 A1 A2

S-1 53 10 7 63 60 53 53

S-2 48 9 4 57 52 48 48

S-3 23 4 2 27 25 23 23

S-4 39 7 5 46 44 39 39

S-5 38 9 7 47 45 38 38

S-6 27 8 4 35 31 27 27

S-7 36 5 3 41 39 36 36

S-8 54 8 7 62 61 54 54

S-9 83 12 11 95 94 83 83

S-10 49 7 5 56 54 49 49

Total 450 79 55 529 505 450 450

7 Conclusion

In this paper, we have presented a comprehensive overview of the security
and reliability challenges associated with WIMDs and PCLCS in the IoMT.
These devices are globally significant in improving individual well-being, but
their growing complexity, driven by hardware and software advancements, intro-
duces crucial concerns regarding their safety and effectiveness. Securing WIMDs
and PCLCS is essential to ensure patient safety and reliability. Several secu-
rity issues have been identified in these devices, and false alarms in PCLCS
are particularly concerning, as they can lead to alarm desensitization, alarm
fatigue, and distress for the patient. The technique proposed in this work aims
to mitigate false alarms in real-time using implementation-level redundancy by
implementing cloud-based controllers to improve the reliability of the PCLCS.
Our approach demonstrated a complete success rate in detecting and mitigating
false alarms, thereby ensuring the reliability of the PCLCS. Future research on
this work will focus on enhancing the robustness of our approach by integrating
algorithmic-level diversity with implementation-level redundancy and testing the
proposed technique on additional datasets to evaluate its effectiveness in different
scenarios.
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Abstract. Internet of Things with an Edge layer is a trending app-
roach in areas such as healthcare, home, industry, and transportation.
While scheduling the tasks of such applications, if the edge node uti-
lizes its energy in computing latency-insensitive tasks then it might fail
in executing the future latency-sensitive task due to low energy. Thus
conserving the energy of the edge node is a key aspect to be considered
while designing task allocation and scheduling policies. This can be done
by exploiting the inactive state of the edge nodes which is due to less
execution time taken than the predicted worst-case time. As this inactive
node consumes energy, the best way is to utilize this energy by execut-
ing the other node’s task or by transiting to the zero energy state like
shutdown. Managing the inactive interval in such a way also reduces the
number of idle intervals in the schedule and the overall idle duration of
the edge server which effectively reduces energy. In a homogeneous multi-
edge (HME) system, techniques like Dynamic Procrastination (DP) com-
bined with migration can help the edge node qualify for the shutdown.
Other nodes can be slowed down to execute the tasks with later dead-
lines using the dynamic voltage/frequency scaling (DVFS) technique to
further save energy. Migration combined with DP and DVFS effectively
results in improved system utilization and reduced overall energy without
affecting performance. This introduces challenges like dynamic allocation
of tasks to edge nodes and meeting deadlines. In this work, we propose
a dynamic task allocation and scheduling approach for an HME system
that can decide on slowing down or shutting down the edge node. We
observe that by decreasing the number of idle intervals and increasing the
duration of the inactive state, our approach gives improved results for
energy consumption over state-of-the-art energy reduction techniques.
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1 Introduction

In IoT systems, along with timeliness, response time, and waiting delay, energy
consumption is also a significant design consideration. The usage of an edge
layer with multiple servers is now been proposed to help in satisfying these timing
constraints. An Edge server can be in an active or inactive state consuming static
and/or dynamic energy. Static energy is due to leakage current and dynamic
energy is due to switching current. The inactive state duration and the energy
consumed by the edge server during this period can be further reduced if it can
be transited from an inactive state to a state that consumes an infinitesimally
small amount of static energy. This can be done by shutting down the unutilized
processing elements. To do this, the benefits achieved by transiting to a lower-
energy state have to be more than the energy consumed in this decision-making,
shutting down and waking up the processing elements, leading to a threshold
time. Thus if the edge server remains inactive for a longer duration than the
threshold, static energy consumption can be reduced, thus reducing the overall
energy consumption. The inactive duration can be increased by postponing the
less critical task as much as possible i.e. completing it just before its deadline.
If the edge server remains idle for less than the threshold duration, it is better
to share the workload from other edge servers and transit to an active state. By
doing this, there is a possibility for other servers to remain in a lower-energy
state for a long time.

In a multi-Edge (ME) system, there is a fragmentation of task occupancy
of any Edge Server. One of the reasons is the variations in actual execution
time (AET) which is usually less than or the same as the worst-case execution
time (WCET). Due to this, the schedule has small inactive intervals. Merging the
active intervals leads to a reduction in the number of active and inactive intervals
which effectively produces longer inactive intervals. One of the techniques used
is the Dynamic Procrastination technique, which achieves this merging without
missing any deadlines [1,2]. For homogeneous multi-core systems, job migration
and other techniques have been used to improve the performance [3]. The energy
saving is proportional shutdown period achieved [4,5].

In this work, we propose an energy-saving technique for IoT applications
with hard real-time periodic workload generation on a homogeneous Multi-Edge
(HME) system connected with dedicated links having multi-mode energy levels.
The scheduler produces a valid schedule with optimal energy per productive
work by minimizing inactive intervals of all edge servers with the help of DP,
DVFS, and controlled job migration.

The rest of the paper is organized as follows: Sect. 2 discusses the work done
in the areas related to DP, DVFS, and migration techniques for energy saving.
In Sect. 3 the proposed technique is explained. Section 4 details the experimental
evaluation and results. Section 5 concludes the paper with future directions.
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2 Related Work

Recent literature on hard real-time schedulers using various slowdown and
shutdown techniques is analyzed in this section. We also explore these tech-
niques when combined with job migration. Researchers address leakage current
energy management i.e. saving the static energy while scheduling by consider-
ing temperature-dependent leakage on a processor with the help of accumulated
execution slack while some modulate the core between active and sleep states
by combining DPS and Real-Time Calculus for computing the core idle intervals
[6–8]. To combine idle durations ES-RHS uses harmonization for unicore and MC
systems [9]. In [10], the optimization goal is to minimize time delay, but power
consumption is not considered. [11] explains Dynamic Computation Offloading
for Mobile-Edge Computing with Energy Harvesting Devices. [12] studied the
tradeoff between time delay and energy consumption of mobile devices. Other
approaches include DVSLK which merges the scattered idle intervals [13], Single
Frequency Approximation (SFA) with procrastination [14], Critical Speed DVS
with Procrastination (CS-DVS-P) [15], systems without constraints on maxi-
mum processor speed [16]. Here SFA and CS-DVS-P show good performance in
all jobs execution with WCET. [17], studied the potential of dynamic procrasti-
nation with AET.

Job migrations have been used for load balancing, but can also exploit for
improving response time and energy saving. In an ME system, in addition, to
which Edge-Server to migrate the jobs other aspects to be considered are when
and which jobs are to be considered for migration. In the ME system, the inac-
tive/shutdown intervals being spread across multiple Edge servers makes opti-
mal energy efficiency difficult. The push and pull migration strategies used by
Linux can help in merging these intervals [18]. A polynomial-time scheduling
algorithm for minimizing energy consumption with job migration was proposed
by [16]. Energy savings in a multi-core system using the push-procrastinate-pull
(Pcube) technique have been studied in [19]. Here we extend their Pcube tech-
nique further with Dynamic Voltage/Frequency scaling (DVFS) technique along
with migration for optimal energy consumption. [20] used DVFS technique to
develop a hierarchical scheduling algorithm called Slack Aware Frequency Level
Allocator (SAFLA) for saving energy while scheduling multiple real-time peri-
odic task graphs on heterogeneous systems.

Researchers working on energy-saving techniques in edge computing plat-
forms try to balance the other parameters like system throughput, latency,
network delay, edge server utilization, and task success rate along with energy
parameters. We explored the literature that uses various strategies for energy
savings in edge computing. One of the reasons for task failure in edge comput-
ing is less energy with the edge nodes to which the task was allocated. Thus
task allocation is significant in edge computing. [21] proposed a hybrid MAC
protocol-based adaptable sleep mode and demonstrated the effectiveness that
improves the network throughput and enhances energy conservation. [22] pro-
posed a framework called EASE for job scheduling and migration within the edge
hosts with distributed renewable energy resources. EASE uses distributed con-
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sensus step, to reach the migration agreement. [23] proposed online upload sched-
uler, named FReshness-aware Energy efficient ScHeduler (FRESH), to minimize
the update energy consumption subject to information freshness constraints. [24]
provide insights on the optimal look-ahead time for energy prediction. They for-
mulated an energy-aware scheduler for battery-less IOT devices using the Mixed
Integer Linear Program.

In addition to slowdown and shutdown techniques we look at optimal deci-
sions on migration to reduce energy consumption. Our focus is not only on
reducing the number of idle intervals but also on reducing the idle duration.
This is achieved by migrating the upcoming jobs as their arrival times are known
due to their periodic nature. In push migration, We call the edge server from
where the job is pushed as a source node and to which it is pushed as a target
node. Similarly, in pull migration, vice-versa nomenclature is used. Although
push migration increases the active duration in the target edge node, it helps in
increasing the idle duration in the source edge node. This can potentially extend
to a duration suitable for the shutdown. Similarly, pull migration increases the
utilization of the source edge node and increases inactive duration on the target
edge node. Migration can thus help in increasing the inactive duration for both
pull and push mechanisms. Whenever such migrations do not help in achieving
the shutdown threshold, instead of remaining idle, the edge server executes the
tasks at low frequencies thus saving dynamic energy. Our proposed technique
results in the creation of a schedule combining the DP and DVFS with migra-
tion. We show that our proposed method reduces overall energy consumption. By
optimally making use of affinity features of the ME system with multiple energy-
state support, our proposed algorithm schedules the tasks on edge servers with
optimal energy consumption.

3 Problem Statement

The optimization problem aims to minimize the overall energy consumption of
the multi-edge system having multi-mode energy levels that supports migration.
For the source edge server from where the jobs are migrated, maximize the
shutdown duration and for the target edge server having insufficient duration
for shutdown to which the jobs are migrated, minimize the idle duration. The
idle duration is produced due to variations in AET. The optimization problem
is not only to reduce the idle duration but also the number of idle intervals.
The overall energy consumption is the sum of energy consumed at active, idle,
and shutdown state energy of all the edge servers. This includes the overhead
energy caused by edge server state transitions from active to shutdown and
wakeup which is to be considered while deciding upon the shutdown threshold.
Due to scaled-down frequency, the active duration increases but the energy in
this duration remains low due to low voltage. Thus overall energy consumption
reduces.
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4 Proposed Technique

The optimization problem aims to minimize the overall energy consumption of
the homogeneous multi-edge system supporting multi-mode energy levels. For
the source edge server from where the jobs are migrated, maximize the shutdown
duration and for the target edge server having insufficient duration for shutdown
to which the jobs are migrated, minimize the idle duration. The idle duration
is produced due to variations in AET. The optimization problem is not only to
reduce the idle duration but also the number of idle intervals. The overall energy
consumption is the sum of energy consumed at active, idle, and shutdown state
energy of all the edge servers. This includes the overhead energy caused by
edge server state transitions from active to shutdown and wakeup which is to
be considered while deciding upon the shutdown threshold. Due to scaled-down
frequency, the active duration increases but the energy in this duration remains
low due to low voltage. Thus overall energy consumption reduces.

Our proposed scheduler follows slowdown and shutdown techniques along
with migration for less energy consumption. Thus named Slowdown or Shut-
down with Migration (SoSM). Whenever it is possible for the edge server to
be transited from an idle state to a shutdown state in the future, it executes
the jobs at full voltage and frequency. To qualify for shutdown, it postpones
the upcoming job execution using the Dynamic Procrastination (DP) technique
and migrates the jobs to other Edge Servers. When it is not possible to push
the jobs to other Edge Servers, the unproductive inactive time is utilized by
pulling the jobs from other Edge Servers to aid in shutting down the other Edge
Servers. If the server still continues to have an idle state, our scheduler SoSM
executes the non-critical jobs at the lowest possible voltage and frequency to save
energy. This technique is called Dynamic Voltage/Frequency technique (DVFS).
Migration with DP and DVFS helps in increasing the overall Multi-Edge system
utilization and shutdown duration resulting in reducing energy consumption.

At the beginning, the scheduler considers the worst-case execution time
(WCET) of jobs to find the active and idle durations. If the idle duration is
not large enough for shutdown, it finds jobs that can be pushed to other Edge
Servers - Push. The non-migratable jobs are then procrastinated to increase the
idle duration -Procrastinate. If after the actions it does not have a duration large
enough to qualify for shutdown, instead of remaining idle, it pulls jobs from other
edge servers -Pull. If there are not enough jobs to pull, it finds the appropriate
voltage and frequency for job executions and scales down the voltage/frequency
accordingly.

When the Edge node becomes idle, SoSM uses Push - Procrastinate - Pull
policy [19] to decide whether to keep the edge node idle or shut it down. This
effectively combines idle/shutdown intervals to longer shutdown duration using
aggressive procrastination and migration. When the edge node wakes up, the
scheduler computes the appropriate voltage and frequency for task execution.
Algorithm 1 shows our scheduler SoSM.
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5 Experimental Evaluation

We designed a framework for finding the resultant schedule of a task set
along with measuring various energy parameters like inactive, static, dynamic,
and total energy consumption for the state-of-the-art Dynamic Procrastination
(DPS) and DVFS technique along with the proposed scheduler Shutdown or
Slowdown with Migration (SoSM). Each edge node is allocated a set of randomly
generated tasks using a first-fit bin packing approximation algorithm based on
CPU utilization. The utilization of each edge node is varied between 20% to
90%. The simulations for utilization percentages ranging from 225% to 355% in
a set of 3 and 4 edge nodes are performed. The following ranges for mean,
µ=(WCET+AET)/2, and standard deviation =

∫
(WCET–AET)/number of

tasks is given where WCET is the worst-case execution time and AET is the
actual execution time. The AET of the task is varied between 5% and 100% of
its WCET in steps of 5%. For the analysis purpose, the schedules are generated
for one hyper period because the situation of all the periodic tasks is ready at
the same time repeats at the least common multiple of the periods which is
called a hyper period. The total energy consumption (Etot) during execution is
measured by considering energy components like Static energy (Estat), Dynamic
energy (Edyn), Scheduler decision making energy (Edm), processor shutdown and
wakeup energy (Epsd).

Etot = Estat + Edyn + Edm + Epsd (1)

Jejurikar et al. [15] have given a set of energy parameters which we use in our
simulations as shown in Table 1 [19]. We take the maximum frequency at 1 V to
be 3.1 GHz with 0.43 nF of capacitance [15]. For procrastination with migration
decisions, we take 2µJ. For the idle duration to qualify for shutdown, the energy
saved must be more than the energy spent shutting down and waking up the
edge server i.e. the static and dynamic energy consumed during idle duration
must be more than the overhead energy of state transition. If T is the shutdown
threshold, (22 nJ + 11 nJ) T > 483µJ. Thus we have considered T as the time
equivalent to 15000 CPU cycles.

Table 1. Energy parameters

Symbol Energy per cycle

Estat 22nJ

Edyn 11nJ:idle, 44nJ: active

Edm 40µJ for dispatcher

Epsd 483µJ
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Algorithm 1. Shutdown or Slowdown with Migration Scheduler
(SoSM)

On Event: At time t at the beginning of the active period
Input: ready queue of all edge servers at time t.
Output: state active/idle/shutdown at the end of the active period and scaled voltage
(SV) for the active period.

Step 1: Compute the idle duration at the end of the active period.
Step 2: If (idle duration > shutdown threshold)

return state = shutdown and SV = Max voltage
Else Find the list of pushable jobs.

Find the procrastinated idle duration (PID)
by considering the pushable jobs and
procrastination of non-pushable jobs using DP.
If (PID > shutdown threshold)

return state = shutdown and SV = Max voltage
Else Find the pushable jobs from the end of the active period.

This will create extra idle duration (EID).
If (EID + PID > shutdown threshold)

return state = shutdown and SV = Max voltage
Else Find the list of pullable jobs from other edge servers.

Find the appropriate scaled voltage/frequency using DVFS.
If the list of pullable jobs is non-empty

return state = active and SV = scaled voltage
Else return state = idle and SV = scaled voltage

On Event: Empty ready queue i.e when the edge node is idle
Input: ready queue of other edge servers at time t.
Output: state idle/shutdown and scaled voltage (SV)

Step 1: Find the PID by considering the pushable jobs and procrastination of
non-pushable jobs using DP.
Step 2: If (PID > shutdown threshold)

return state = shutdown and SV = zero
Else Find the list of pullable jobs from other edge servers.

Find the appropriate scaled voltage/frequency using DVFS.
If the list of pullable jobs is non-empty

return state = active and SV = scaled volatge
Else return state = idle and SV = minimum voltage
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6 Experimental Results

We compare the results of our proposed technique SoSM with state-of-the-art
energy-saving techniques Dynamic Procrastination (DPS) and DVFS schedulers,
combined DPS and DVFS (SoS) i.e. without migration in Figs. 1 and 2.

We find that the utilization of migration in our proposed technique results in
increased shutdown duration. A possible reduction in the chances of core shut-
down occurs due to the scaled active duration. Figure 1 shows that on average
SoSM reduces shutdown duration by 2.76% over DPS and increases by 0.74%
over SoS schedules.

On average, SoSM reduces static energy by 46% over DVFS. Since static
energy is inversely proportional to the shutdown duration, this implies that on
average, our proposed technique increases the static energy by 2.88% over DPS
and reduces it by 0.81% over the SoS algorithm.

Fig. 1. Shutdown duration for different utilizations

On average the dynamic energy consumption of SoSM is more than the DVFS
by 4.5% over and less than by 5% and 1.34% over DPS and SoS algorithms
respectively.

We find that on average, SoSM reduces the total energy consumption by
18.6%, 2.3%, and 1.2% over DVFS, DPS, and SoS algorithms respectively Fig. 2.
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Fig. 2. Total energy consumption per unit for different utilizations

7 Conclusion

For IoT applications using Edge layer computations having Edge servers con-
nected with dedicated links, energy efficiency is an important criterion for a
successful deployment. In the future, the conservation of energy and the long
life of deployed systems is likely to be deciding factor for large-scale adoption.
A vision of the future world has all household and industrial devices being part
of some IoT network. Satisfying the requirements of collecting, analyzing, and
transmitting data requires optimized and energy-efficient Edge servers.

In this work, we have proposed a dynamic task allocation and scheduling tech-
nique for periodic tasks on multilayer IoT systems, having Edge Servers that can
conserve energy by staying in a very low-energy state like shutdown. Along with
the primary constraint of timeliness on real-time tasks, our proposed scheduler
achieves a reduction in overall energy consumption. It achieves enhancement in
overall shutdown duration with the help of migration, dynamic procrastination of
tasks, and dynamic voltage/frequency scaling of task execution. Migration helps
to utilize any unused idle duration of Edge servers by executing the jobs from
other Edge servers and increasing the possibility of a shutdown in Edge servers.
This results in reduced static and dynamic energy consumption of the system. In
the future, with the deployment of Embedded devices such as Edge Servers, the
use of an effective task-scheduling mechanism will result in conserving energy
and an increase in the lifetime of IoT deployments.
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Abstract. Energy Harvesting from diverse renewable energy sources
has experienced rapid growth due to the adverse environmental impacts
of using fossil fuels. Solar energy is a significant energy source frequently
used for power generation in various applications. Due to the variable
nature of solar irradiation, temperature, and other metrological param-
eters, Photovoltaic (PV) power generation is highly fluctuating. This
unstable nature of output power has been evolved as a considerable
issue in various applications of solar energy prediction system. In this
work, a hybrid Deep Learning (DL) model based on Convolutional Neu-
ral Networks (CNN), Long Short-Term Memory (LSTM), and Attention
mechanism to forecast solar cell output power has been proposed. The
proposed model is implemented, and its performance is compared with
other DL models, including CNN, LSTM, and LSTM with an attention
mechanism. The proposed model has been trained and evaluated with a
publicly available dataset which contains 20 parameters on which solar
panel output power is relatively dependent. The model yields maximum
coefficient of determination (R2) up to 84.5%. A lightweight model has
also been developed using the pruning technique to implement the DL
model into a low-end hardware.

Keywords: Energy Prediction · Energy Harvesting · Solar Energy ·
Deep Learning · Internet of Things

1 Introduction

The dependency transition from non-renewable energy sources such as oil, nat-
ural gas, coal, and nuclear energy to renewable energy sources such as solar,
mechanical vibration, kinetic, thermal, and wind has been hastened in various
sectors for electricity generation in response to the growing need of restriction
on non-renewable energy uses in power production. Solar energy is one of the
most promising and prominent renewable energy source due to its high energy
density, ubiquitous nature, and cost-effectiveness [1]. Due to recent advance-
ments in Photovoltaic (PV) technology, the use of solar panels and solar cells is
not only restricted to power grids but also has captured immense popularity in
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powering Internet of Things (IoT) nodes and consumer electronics products to
feature them with sustainability. Energy forecasting framework has been widely
adopted in power grids for grid stabilization, while in IoT applications, it is used
for task scheduling. However, power generation from solar panels or solar cells is
fraught with high degree of uncertainty due to its unavaoidable dependence on
variable environmental parameters or characteristics. Therefore, a reliable fore-
casting framework that can effectively predict solar panel output power must be
developed, which can help balancing the energy consumption at the load side as
per the energy generation at the source side.

Several number of models have been proposed to forecast the output power
of solar panel in last decade. These models can be classified into three categories
such as physical model, statistical model, and Machine Learning (ML) model
based on their underlying methodology and assumptions. The physical model is
a mathematically established model following the principle of solar panel power
generation. It uses parameters such as temperature, solar radiation, humidity,
air pressure, wind speed, cloud volume, solar panel installation angle etc. The
physical prediction model depends on precise station geography information,
reliable meteorological data, and comprehensive PV battery information instead
of historical data. The statistical and ML models are primarily data-driven and
use various weather parameters to build the forecasting model. The objective
of the statistical model is to predict the future output power of the solar panel
by establishing the correlation mapping between the input-output data through
curve fitting and parameter estimation. The ML models can extract non-linear,
high-dimensional features and directly map them to output. ML models have
emerged as one of the most popular techniques for forecasting time series [2].
Traditional neural networks can only increase the number of hidden layers and
input layer nodes to recognize more complex relationships between dimensional
input and output because the cognitive ability of the traditional neural network
is limited in the new situation of dealing with more input variables. However,
Deep Neural Networks (DNN) can extract more features than traditional neu-
ral networks and reduce the vanishing gradient problem. Convolutional Neural
Networks (CNN) [3], Long Short Term Memory (LSTM) [4], and Deep Belief
Networks (DBN) [5] are the most prevailing DNN networks used to forecast out-
put power of solar panel. Recent research in this domain proved that prediction
accuracy is higher for DL models than ML models.

A hybrid DL model has been proposed in this manuscript for forecasting
output power of solar panel based on historical data. The contributions of this
manuscript are as follows.

– A hybrid DL model based on CNN, LSTM, and the attention mechanism has
been proposed.

– Attempts have been made to implement various DL models such as LSTM,
CNN, Auto–LSTM, LSTM–attention, Gated Recurrent Units (GRU), CNN–
LSTM with the same dataset for forecasting the output power of solar panel
to have a comparative analysis of the proposed model.

– A lightweight model of the proposed DL model has been developed using the
pruning technique which can be implemented on low-end microprocessors.
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Further, the related prior work has been discussed in Sect. 2. The method-
ology and proposed model are described in Sect. 3 and 4, respectively. Results
and discussions have been presented in Sect. refsec5. The manuscript has been
concluded in Sect. 6.

2 Related Prior Work

In [6], various Deep Neural Network (DNN) architectures such as LSTM, auto-
LSTM, Deep Belief Networks (DBN), and ANN architectures such as Multilayer
Perceptron (MLP) have been implemented for energy forecasting. It has been
observed that DNN models outperform ANN models. In [7], Auto-GRU is pro-
posed and compared with other models such as LSTM, Auto-LSTM, GRU, and
theta model. This work employs a ML and Statistical Hybrid model with two
diversity techniques: structural and data diversity. In [8], a hybrid CNN and
LSTM model is proposed. The results show that the hybrid CNN-LSTM model
outperforms others, such as CNN and LSTM. It has also been observed that
accuracy is improved by increasing the input sequence length. In [9], a hybrid
DL model based on CNN and LSTM forecasts solar power and is compared using
different benchmark models, including Persistence, BPNN, and RBFNN. In [10],
a hybrid DL model based on wavelet decomposition and LSTM has been pro-
posed. The proposed model is compared with LSTM, Recurrent Neural Network
(RNN), GRU, and Multi-Layer Perceptron (MLP) model.

In [11], three DL models, LSTM, GRU, and RNN, are studied and applied
to identify the best-performing model for solar panel output power forecast-
ing. It is observed that LSTM and RNN outperform GRU. In [12], a simplified
LSTM model built on ML methodology is introduced. It is observed that the
LSTM model outperforms MLP. In [13], a DL model based on Long Short-
Term Memory Neural Network (LSTMNN), has been proposed for forecasting
solar power output. The proposed model has been compared with various ANN
models such as feed-forward Extreme Learning Machine (ELM) and the shal-
low learning Elman Neural Network (ENN). In [14], three DL models, LSTM,
Temporal Convolutional Network (TCN), and GRU, have been implemented to
forecast solar panel output power using different time intervals. In this work, it
has been reported that LSTM outperforms all other models. In [15], various ML
and DL models are studied and compared using RMSE metrics. The results show
that DL models such as LSTM, GRU, and RNN outperform ML models such as
Baseline regression, Linear regression, Lasso regression, Elastic net regression,
Ridge regression, Random forest regression, Gradient boost regression, Extra
trees regression, Light Gradient Boosting Machine (LGBM) regression, and K-
Nearest Neighbors (KNN) regression.

3 Methodology

Figure 1 represents the functional methodology of the proposed solar panel out-
put power forecasting framework. The dataset for this work has been taken from
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Fig. 1. Basic block diagram of DL based energy forecasting framework

Kaggle’s website [16]. The raw data need preprocessing, which includes data
cleaning, which typically deals with finding the null values and handling the
missing data and data transformations. The preprocessed data is split into train-
ing and testing data in the ratio of 80:20. The DL model itself can extract the
significant features from the dataset. The model iteratively learns during training
process and tunes the hyperparameters to reduce the error while increasing the
forecasting accuracy. Subsequently, the testing data has been used to evaluate
the performance of the model. The proposed DL model can not run in a low-
end microprocessor/microcontroller. Thus, a lightweight model can be developed
in order to implement it in the field to forecast the solar panel output power.
The lightweight model has lesser trainable parameters compared to the original
model thus, it is supposed to consume lesser computation power compared to
the original model.

4 Proposed Work
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Fig. 2. Block diagram of the proposed forecasting model

Figure 2 depicts the proposed hybrid CNN and LSTM with an attention
mechanism. The employed CNN extracts meaningful insights about the spa-



Deep Learning Based Framework for Forecasting Solar Panel Output Power 233

tial representations or patterns related to solar power forecasting, such as cloud
cover, solar radiation backward, and other weather parameters from the input
data. The CNN component comprises the 1-D convolutional, 1-D max pooling,
and dropout layer. A set of learnable filters often called the kernel, is convolved
with input data in the convolutional layer. Each kernel is a small matrix that
slides across the receptive fields and performs convolution with the input values.
Each filter in the convolution layer captures the visual patterns from the input
data. The convolutional layer can recognize local structures and task-related
visual information by learning these filters. The critical advantage of a convolu-
tional layer is parameter sharing. The parameter sharing reduces the number of
learnable parameters, lowering the training time and enabling efficient general-
ization. The MaxPooling layer follows this convolutional layer. The pooling layer
will reduce the dimensionality of the feature map, which helps lower the compu-
tational complexity. Then dropout layer is introduced, which prevents overfitting
and improves generalization capability. LSTM layers will take the output of the
CNN and process it sequentially, considering the historical patterns in the data.
LSTM layers capture the temporal dependencies of the historical data by learn-
ing the patterns from the data. The attention layer assigns weights to different
time steps of the LSTM output, which helps to focus on significant time steps
or dependencies while forecasting future values.

5 Results and Discussion

The publicly available dataset, which has been used as the dataset in this work
has a total of 21 parameters and 4203 samples of data [16]. The correlation
of various parameters with output power of the solar panel has been shown in
Fig. 3. It can be noted that correlation coefficients closer to 1 indicate higher
correlation, while correlation coefficients far from 1 indicate lower correlation.
Among all the features, five highly correlated features are the angle of incidence,
shortwave radiation, total cloud cover, humidity, and temperature in descending
order. The correlation between output power and these most significant param-
eters are shown in Fig. 4. The dataset has been preprocessed using the MinMax
normalization technique. The preprocessing stage ensures that no missing val-
ues exist in the dataset. Then the data is split into training and testing data
in the ratio 80:20, respectively. The proposed model can extract the significant
input features from the dataset. The model has been trained using training data,
and the hyperparameters are tuned using validation data to minimize the error.
Figure 5(a) represents the plot between training loss and validation loss. The
model is trained for 100 epochs, and it has been observed that the training
loss is getting saturated. The gap between training loss and validation loss is
minimum, indicating no traces of model underfitting or overfitting. Figure 5(b)
typically depicts the justification for choosing the number of layers of LSTM
and CNN considering R2 as the performance metric. It can be observed that
the model achieves maximum R2 of 0.845 when the hybrid model uses two con-
volutional layers and one LSTM layer with attention mechanism indicating low
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error values, low trainable parameters and thus low computational complexity.
The performance of the model is evaluated using four different error metrics,
such as Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), coefficient of determination and (R2). The mathemati-
cal formulae for calculating MAE, MSE, RMSE, and R2 are mentioned below.
Figure 6 illustrates the graph between the actual output power of the solar panel
against the predicted output power of the solar panel. It has been plotted only
for 250 samples in the testing data to visualize the difference between predicted
and original values.

MSE =
1
N

N∑

i=1

( yi − pi) 2 (1)

RMSE =

√√√√ 1
N

N∑

i=1

( yi − pi) 2 (2)

MAE =
1
N

N∑

i=1

|yi − pi| (3)

R2 = 1−

N∑
i=1

( yi − pi) 2

N∑
i=0

( yi − pmean) 2
(4)

A lightweight model has been developed using pruning technique that reduces
the trainable parameters. It can be noted that a large number of weights is near
zero in a trained fully connected neural network. These insignificant weights
whose values are near zero are removed using pruning technique. The number of
trainable parameters is decreased as a result without decreasing accuracy. This
lightweight model can be deployed into a low-end microprocessor such as rasp-
berry pi to incorporate the proposed framework in field. The proposed model has
been compared with various DL models which are majorly implemented to pre-
dict output power of solar panel. Table 1 summarises the comparative analysis of
the proposed model with similar models. The error metrics is graphically shown
in Fig. 7. Thus, the proposed light weight model can be directly implemented on
off-the-shelf microprocessors and deployed on field to forecast the harvestable
solar energy in short term. Along with the microprocessor, a low-power Data
Acquisition (DAQ) system can be designed and deployed to measure the neces-
sary environmental parameters, which task is to provide real-time data to the
proposed model allowing it to be scaled up for use on a real-world test bench.
The proposed model can receive the data from the DAQ and process them to
forecast the energy that can be harvested in future.
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Fig. 3. Heating map

Fig. 4. Correlation between output power of solar panel and various parameters (a)
Output power vs. angle of incidence of the solar panel (b) Output power vs. shortwave
radiation (c) Total cloud cover vs. output power (d) Output power vs. humidity (e)
Output power vs. temperature
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Fig. 5. Correlation between output power of solar panel and various parameters (a)
Loss curve (b) Layers analysis of the proposed model

Fig. 6. Predicted output power vs original power output
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Fig. 7. Error metrics for prediction output power of solar panel

Table 1. Performance comparision of proposed model with various DL models

Model MAE MSE RMSE R2

LSTM 0.10 0.02 0.15 0.8105
CNN 0.12 0.03 0.18 0.7806
Auto-LSTM 0.10 0.02 0.13 0.815
LSTM-attention 0.10 0.02 0.13 0.796
GRU 0.09 0.02 0.13 0.8205
CNN-LSTM 0.09 0.02 0.13 0.826
Proposed Work 0.08 0.01 0.12 0.845

6 Conclusion

In this manuscript, a hybrid DL model for forecasting the output power of solar
panel has been proposed. The proposed model uses two layers of CNN hybridized
with one layer of LSTM followed by an attention layer. CNN is used for feature
extraction, and LSTM with an attention layer predicts future output power. The
model has been analyzed using four error metrics such as MAE, MSE, RMSE,
and R2. The proposed model is compared with various popular DL models used
to forecast solar panels in most of the literature. It outperforms other models by
achieving maximum R2 of 0.845. A lightweight model has also been developed
for the proposed model using the pruning technique, which has less number of
trainable parameters and possesses almost the same accuracy. The lightweight
model can be used to implement the framework on low-end microprocessors to
forecast the output power of solar panels in field.
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In future, the proposed model can be implemented on hardware to forecast
the output power of smaller solar cells. Thus, this forecasting framework can
be used to incorporate task scheduling mechanism in energy autonomous IoT
devices.
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Abstract. Electronic Health Records (EHRs) have become increasingly
popular in recent years, providing a convenient way to store, manage
and share relevant information among healthcare providers. However,
as EHRs contain sensitive personal information, ensuring their security
and privacy is most important. This paper reviews the key aspects of
EHR security and privacy, including authentication, access control, data
encryption, auditing, and risk management. Additionally, the paper dis-
cusses the legal and ethical issues surrounding EHRs, such as patient
consent, data ownership, and breaches of confidentiality. Effective imple-
mentation of security and privacy measures in EHR systems requires
a multi-disciplinary approach involving healthcare providers, IT special-
ists, and regulatory bodies. Ultimately, the goal is to come upon a balance
between protecting patient privacy and ensuring timely access to critical
medical information for feature healthcare delivery.

Keywords: Electronic Healthcare · Record (EHR) · Deep Federated
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1 Introduction

Electronic Health Records (EHRs) have become an integral part of modern
healthcare, providing a convenient way to store, manage and share patient infor-
mation among healthcare providers. With the increasing adoption of EHRs,
ensuring their security and privacy has become an essential Characteristic of
healthcare delivery. This paper provides an overview of the key aspects of EHR
privacy and security, including authentication, access control, data encryption,
auditing, and risk management. Additionally, the paper discusses the legal and
ethical issues surrounding EHRs, such as consent, data ownership, and breaches
of confidentiality [33].
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1.1 Importance of EHR in Modern Healthcare

EHRs contain sensitive personal information, including medical history, diag-
noses, and treatments, which cybercriminals can exploit for identity theft or
insurance fraud. In addition, unauthorized access to EHRs leads to serious
branches of patient confidentiality, resulting in reputational damage to health-
care providers and legal repercussions. Moreover, patients have the right to con-
trol their health information, and healthcare providers are responsible for pro-
tecting that information. To protect the confidentiality, integrity, and availability
of Electronic Health Records (EHRs), it is imperative to establish vigorous secu-
rity and privacy protocols [39].

1.2 Key Aspects of EHR Security and Privacy

– Access Control: Access control is the process of dealing with the situation who
can access EHRs and what actions they can perform. It includes authenti-
cation, authorization, and accountability. Authentication verifies the identity
of the user, authorization determines what resources the user can access, and
accountability ensures that the actions of the user are recorded for auditing
purposes [7].

– Data Encryption: Data encryption is the process of converting plaintext data
into ciphertext to prevent unauthorized access. Encryption ensures that the
data is secure during transmission and storage, making it unreadable to unau-
thorized users [30].

– Auditing: Auditing is the process of recording and monitoring EHR access and
use. Auditing helps to detect and investigate any unauthorized access, mod-
ification or disclosure of EHRs, ensuring compliance with regulatory require-
ments and standards [24].

– Risk Management: Risk management refers to the series of activities aimed at
identifying, evaluating, and minimizing risks related to the security and pri-
vacy of electronic health records (EHRs). This involves the creation of policies
and procedures to manage EHRs, training employees on how to maintain EHR
security and privacy, and implementing various technical controls such as fire-
walls, intrusion detection systems, and prevention mechanisms. Through this
process, organizations can effectively safeguard the confidentiality, integrity,
and availability of their EHRs, while complying with relevant laws and regu-
lations governing the handling of medical information [31].

1.3 Legal and Ethical Issues

The protection of Electronic Health Records (EHRs) poses significant legal and
ethical challenges that demand thoughtful contemplation. Patients are entitled
to manage their health information, which encompasses the ability to regulate
who can retrieve it and for what reason. Conversely, healthcare providers have
a responsibility to secure patients’ information from being accessed or revealed
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without authorization. Furthermore, healthcare providers must adhere to var-
ious regulations such as the Health Insurance Portability and Accountability
Act (HIPAA) that establishes nationwide criteria for preserving the privacy and
security of patient health information [17,21,31].

1.4 Motivation

EHR security and privacy are critical aspects of modern healthcare, requiring
a multi-disciplinary approach that involves healthcare providers, IT specialists,
and regulatory bodies. Effective implementation of security and privacy measures
in EHR systems is crucial for protecting patient privacy and ensuring timely
access to critical medical information for quality healthcare delivery. In conclu-
sion, protecting EHRs requires constant attention and vigilance, and healthcare
providers must remain up-to-date with the latest security and privacy measures
to protect their patients’ sensitive personal information.

This work is structured into several sections for clarity and organization. In
Sect. 2, we will explore the role of digitalization in the healthcare sector. Section 3
will delve into the importance of ensuring the security and privacy of Electronic
Health Records (EHRs) in the context of federated learning. Major challenges in
this area will be analyzed in Sect. 4, followed by an examination of the current
state of the art in Sect. 5. Section 6 will analyze the limitations of some existing
approaches. In Sect. 7, we will propose federated learning-based solutions for
ensuring security and privacy in the healthcare sector. Finally, in Sect. 8, we will
discuss possible directions for future work.

2 Digital Advancements in Healthcare

Digital technology has become more and more important in healthcare inno-
vation and has introduced several tools and methods for improving healthcare
services. These measures consist of maintaining secure storage of patient informa-
tion in a centralized location and implementing software that enhances the avail-
ability of health-related data for patients. However, the digitization of health-
care is still in its early stages, and several multidimensional problems need to be
addressed.

Healthcare organizations are adopting digital technologies to improve per-
formance and efficiency, save costs, and increase efficacy. This trend is fueled
by the availability of cost-effective and energy-efficient equipment and software,
as well as the success of high-profile projects in many countries. Digital health
systems can be especially beneficial in low-income countries, helping organiza-
tions achieve cost savings and improve healthcare delivery, which is critical in
the time-reactive nature of healthcare.

A periodic survey is carried out by the World Health Organization (WHO) to
gather information on the scope and structure of healthcare digitization across
different countries. However, a recent report on digital healthcare innovation
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in France indicates that the integration of innovation is still lacking, which is
preventing the expansion of healthcare digitization in the country.

Expanding the scope of National Health Service (NHS) mobile health services
is of paramount importance, given that a significant number of such services are
currently restricted to limited pilot studies and have yet to achieve widespread
adoption. The integration of technology in healthcare has both advantages and
disadvantages. On one hand, it promotes innovation in health services and
administrative processes, leading to reduced healthcare costs and improved effi-
ciency in both internal and inter-hospital services [23]. On the other hand, there
are multidimensional challenges that must be addressed, such as cybersecurity
risks, inadequate integration of innovation, and infrastructure issues. Some fac-
tors influencing Digital Health are shown below in Fig. 1.

Fig. 1. The Key Factors Influencing Digital Health.

According to researchers, the integration of technologies in healthcare has
both positive and negative sides. On the positive side, it promotes novel health
services and streamlined administrative processes, leading to decreased health-
care costs and increased efficiency of both internal and inter-hospital services [3].
However, some challenges must be addressed, such as understanding the social
barriers that may arise, including conflicts with hospital strategies and medical
staff’s behaviour. In addition, there is a significant of technical risk associated
with information security.

Table 1 outlines the security goals that are paramount in the healthcare sec-
tor, which primarily revolve around protecting patient data, guaranteeing the
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privacy and confidentiality of sensitive information, and upholding the availabil-
ity and integrity of healthcare systems [16].

Table 1. Some solutions to enhance privacy and security in the healthcare sector.

Security objective Description Techniques

Availability Authorized users can always access
healthcare systems, even in
situations where failures or attacks
occur

For modern computing
architecture, distributed storage,
virtualization, and data
backup/recovery are essential

Confidentiality Only authorised healthcare personnel
have access to patient information

Virtual private networks and
encryption

Privacy Ensure that only authorized
individuals have access and
safeguard against any breaches of
personal data

The processes of rendering data
anonymous, using pseudonyms,
and encrypting it

Integrity Ensuring that patient information is
not altered without authorization

Digital signatures, hash functions,
data checksums, version control,
audit trails

Authentication The authentication of users and their
access to healthcare is crucial matter
in preventing unauthorized entry to
patients’ confidential information

Passwords, two-factor
authentication, biometrics, smart
cards, tokens, certificates, and
PKI are examples of popular
authentication techniques

Authorization Regulating the availability of patient
data by considering a user’s position
and duties within the healthcare
institution

Role-Based Access Control
(RBAC), Attribute-Based Access
Control (ABAC), Access Control
Lists (ACL), OAuth

Nonrepudiation The prohibition of denial of
participation in acts such as
changing patient information and
accessing private data supports
healthcare accountability

Blockchain and Digital signatures

3 The Need for EHR Security and Privacy in Federated
Learning

Federated Learning (FL) is a technique for machine learning that enables multi-
ple organizations to collaborate on a model without compromising the privacy of
their sensitive data. This approach is decentralized and allows the participants
to train the model locally while sharing only the necessary information with
the central server. However, Electronic Health Records (EHRs) contain sensitive
personal information that can be exploited by malicious actors if not adequately
protected. Therefore, ensuring the security and privacy of EHRs in FL is critical
to protect patient privacy and maintaining public trust.

EHRs typically contain sensitive information, such as patient names,
addresses, social security numbers, medical histories, and other personal health
information. This information is highly valuable and can be used by malicious
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actors for identity theft, insurance fraud, and other criminal activities. Moreover,
the unauthorized disclosure or misuse of EHRs can harm patients’ reputations,
cause emotional distress, and lead to physical harm.

In FL, multiple institutions collaborate on a machine learning model without
sharing their sensitive data. This collaborative approach can provide significant
benefits, such as improved accuracy, reduced bias, and faster model training.
However, it also introduces new security and privacy risks, such as data breaches,
data poisoning attacks, and model inversion attacks.

Therefore, it is critical to ensure the security and privacy of EHRs in FL
to protect patients’ sensitive personal information. This requires implementing
robust security and privacy measures, such as access control, data encryption,
auditing, and risk management. Additionally, participants in FL must comply
with various regulatory requirements, such as the Health Insurance Portability
and Accountability Act (HIPAA), which sets national standards for protecting
the privacy and security of patient’s health information.

In summary, protecting EHRs in FL is essential to maintain public trust,
protect patient privacy, and comply with regulatory requirements. Healthcare
providers, data scientists, and regulatory bodies must work together to imple-
ment effective security and privacy measures to protect patient’s sensitive per-
sonal information [8,35].

3.1 Federated Learning

Federated learning provides a secure and privacy-focused approach for dis-
tributed machine learning models among different devices in the context of the
Internet of Medical Things (IoMT). To leverage the benefits of federated learning
in the IoMT, it is essential to establish a connection between the devices with
sensors and other data-generating components and a central server. After collect-
ing data from the devices, the server uses it to train a machine-learning model.
This model is then sent back to each device for further use. The local storage of
data ensures its safety against potential data breaches, while predictions can be
made using the trained model. The general architecture of FL is illustrated in
Fig. 2. This allows medical professionals to benefit from IoMT insights without
compromising patient privacy. The utilization of federated learning to combine
data from various devices can have a substantial impact on enhancing prediction
accuracy and yielding better outcomes in the healthcare domain.

The healthcare industry has been slow to adapt to the digital advancements
seen in other fields, but various digital developments are now causing significant
changes. Figure 3 demonstrates the practical application of a Federated Learning
architecture within a healthcare context. The trend towards digitization and real
value in healthcare is being propelled by various factors, including the prolifera-
tion of digital firms, the cost management initiatives of payers, and the growing
demand for improved care among elderly patients. By adopting digital transfor-
mation, healthcare providers can improve their services and reduce costs, lead-
ing to macroeconomic disruption and improved business models. Furthermore,
established companies can team up with newer firms to minimize investment
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Fig. 2. General Architecture of Federated Learning

expenses. According to the authors referenced in [5], established organizations’
expertise, when combined with proper regulations, can assist startups in digitally
disrupting the healthcare industry.

Digitalization has the potential to enhance healthcare outcomes while also
reducing costs. The capacity to process large amounts of varied data quickly and
with flexibility is a key advantage of digital technologies. However, to fully lever-
age these benefits, data warehouses, and cloud-based data management technolo-
gies must be employed. Although data warehouses are still prevalent in health IT,
they may not be sufficient for utilizing big data. To utilize big data efficiently,
it is essential to have appropriate IT infrastructure, visualization techniques,
workflows, user interfaces, and tools. Moreover, big data must be employed in a
manner that balances societal benefits with patient privacy, in order to create
value for healthcare. In order to make optimal use of big data in healthcare, insti-
tutions need to be ready to elaborate modifications in their database utilization,
accessibility, sharing, privacy measures, sustainability practices, and compliance
requirements [26,37].

4 Major Challenges

Healthcare organizations worldwide are embracing Electronic Health Records
(EHRs), which are digital versions of a patient’s medical history. However, EHRs
also pose significant security and privacy challenges, some of which are:

Unauthorized access: EHRs contain sensitive patient information, such as
medical history, social security number, and insurance details. Unauthorized
access to this information by individuals can result in identity theft or fraud.
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Fig. 3. Federated Learning used in healthcare industry

Cybersecurity threats: Healthcare institutions are a prime target for cyber-
criminals as they contain sensitive and valuable patient information in electronic
health records (EHRs). Cyber threats such as malware, phishing attacks, and
ransomware can jeopardize the security of EHRs, potentially resulting in data
breaches. Such data breaches can lead to significant harm to patients, including
identity theft, fraud, and medical identity theft. Therefore, healthcare organi-
zations must prioritize cybersecurity measures to safeguard patient data and
ensure the confidentiality, integrity, and availability of their EHRs.

Human error: EHRs can be misused, intentionally or unintentionally, by
authorized users, resulting in the exposure of sensitive information. For exam-
ple, a healthcare worker may accidentally upload a patient’s medical record to
a public-facing website.

Interoperability: EHRs may need to be shared between different healthcare
providers to facilitate patient care. However, sharing EHRs between organiza-
tions can increase the risk of unauthorized access, data breaches, and privacy
violations.

Legal compliance: EHRs must comply with numerous regulations and laws,
including HIPAA, GDPR, and others. Healthcare organizations must ensure that
they are compliant with all applicable regulations, which can be challenging,
given the complexity of the regulations and the frequency of updates.

Patient consent and control: Patients must be given control over their health
information, including the right to access, modify, and delete their data. Ensuring
that patients are fully informed and have given their informed consent to the
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use and sharing of their data can be challenging, especially given the complexity
of the healthcare system and the varied interests of different stakeholders.

5 State of the Art

Electronic Health Record (EHR) security and privacy are critical aspects that
need to be addressed to protect patient health information. Here are some of the
state-of-the-art measures that are being implemented to ensure EHR security
and privacy:

Access control: EHR systems use access control mechanisms to ensure that
only authorized personnel can access patient health information. These mech-
anisms include password-protected logins, two-factor authentication, and role-
based access controls [7].

Encryption: Encryption is used to protect data stored in EHR systems, mak-
ing it unreadable to unauthorized users. Encryption can be applied to data both
in transit and at rest.

Audit trails: EHR systems maintain an audit trail of all access and modifica-
tions to patient health information. This allows organizations to track who has
accessed the information and when, and to detect any unauthorized access or
modifications.

Data backup and recovery: Electronic health record (EHR) systems are cru-
cial in maintaining patient health information, and backups of this data are regu-
larly created to safeguard against system failure or cyberattacks. These backups
serve as a failsafe mechanism and are frequently tested to guarantee their effi-
ciency in restoring data. In case of a disaster, EHR backups can be relied upon
to restore vital information, ensuring continuity of care and patient safety.

Data minimization: EHR systems implement data minimization principles,
meaning that they collect only the minimum amount of information necessary
to provide patient care. This helps reduce the risk of data breaches and protects
patient privacy.

Regular vulnerability assessments: EHR systems undergo regular vulnerabil-
ity assessments to identify and address potential security weaknesses. This helps
prevent security breaches and ensures that the EHR system remains secure over
time.

Employee training and awareness: EHR systems implement training and
awareness programs to ensure that employees are aware of the security and pri-
vacy policies and procedures. This helps prevent accidental breaches of patient
health information.

Compliance with regulations: EHR systems comply with relevant regulations
and standards, such as HIPAA and GDPR. This ensures that patient health
information is protected and that organizations are not subject to legal or finan-
cial penalties.

So EHR security and privacy are essential components of healthcare IT sys-
tems, and these state-of-the-art measures are crucial to ensuring that patient
health information is protected from unauthorized access, use, and disclosure.
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6 Limitations of Some Existing Work

While there has been significant research on EHR security and privacy, there are
several limitations to existing research, including:

Limited scope: Much of the existing research has focused on specific aspects
of EHR security and privacy, such as access control or data encryption. However,
EHR security and privacy are complex issues that require a holistic approach.

Lack of real-world data: Many studies rely on simulated data or hypothetical
scenarios, which may not reflect real-world threats and vulnerabilities.

Small sample sizes: Some studies have small sample sizes, making it difficult
to generalize findings to larger populations.

Limited diversity: Many studies have focused on healthcare organizations in
developed countries, which may not reflect the challenges faced by organizations
in developing countries or underserved communities.

Outdated technology: Some research may be based on outdated EHR systems
or security protocols, which may not reflect the current state-of-the-art in EHR
security and privacy.

Limited longitudinal data: There is a lack of long-term studies on the effec-
tiveness of EHR security and privacy measures. It is essential to evaluate the
long-term effectiveness of these measures to ensure that they continue to provide
adequate protection against evolving threats.

Lack of standardized evaluation methods: There is a lack of standardized
methods for evaluating EHR security and privacy. This makes it difficult to
compare findings across studies and to establish best practices for EHR security
and privacy.

So, while existing research has provided valuable insights into EHR security
and privacy, there is a need for more comprehensive, real-world studies that can
help healthcare organizations better understand and address the challenges they
face in protecting all patient health information. A few works have been carried
out on this EHR security and privacy issues which are mentioned in Table 2.
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Table 2. Some solutions to enhance privacy and security in the healthcare sector.

Cite Network
Model

Method Security
Models

Advantage Limitations

[15]
2020

IOMT Blockchain-
based
solution

anonymous and
untraceable

Health records are safely
kept on a tamper-proof
blockchain that is
managed by cloud
servers

Advanced encryption
and decryption
techniques are employed
as part of the protocol

[25]
2020

Internet
of Health
Things

Federated
Learning

Data privacy Federated learning and
differential privacy
address privacy and
security concerns

A full decentralisation of
FL is impossible due to
the federated nodes’
limited training capacity

[28]
2022

The
network
architec-
ture
comprises
patients,
telecare
servers,
and the
registra-
tion
centre

Elliptic Curve
Cryptography

Patient
Anonymity

Insiders, privileged
individuals, and thieves
using stolen equipment
cannot attack the
protocol

Compared to other
protocols, the protocol’s
cryptography techniques
use more energy

[36]
2022

Medical
monitor-
ing
system
based on
RFID

The
encryption
process
utilizes a
combination of
cyclic shifting
and XOR
operations

RFID security
authentication

Medical monitoring
systems with RFID
technology guarantee
the privacy and
confidentiality of patient
records

Designing an efficient
and effective
authentication protocol
is challenging due to the
resource constraint
imposed by RFID
tags/readers

[18]
2022

IoMT-
based
cloud-
healthcare
infras-
tructure

Elliptic curve
cryptography

Patient
anonymity

According to the
comparative analysis,
RAPCHI has shown
better effectiveness than
other protocols

The absence of practical
application

[38]
2022

Wireless
Medical
Sensor
Network

Blockchain-
based
solution

Anonymity and
Untraceability

The utilization of smart
contracts and PUF in
the suggested approach
offers both
decentralization and
security

There is no indication in
the paper regarding the
practicality of
implementing the
proposed approach in an
actual real-life situation

[6]
2022

Internet
of Health
Things

An Authenti-
cation
Protocol with
Minimal
Overhead

Mutual
authentication

The process includes
biometric measures for
user anonymity,
authentication, key
negotiation, privacy, and
access control

The procedure requires
intricate techniques for
encrypting and
decrypting data

(continued)
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Table 2. (continued)

Cite Network
Model

Method Security
Models

Advantage Limitations

[2]
2022

IoT-based
healthcare

Homomorphic
Encryption

Privacy-
preserving

By utilizing data
aggregation, the
EPPADA scheme aims
to decrease energy usage
by eliminating
unnecessary data

The plan entails
utilizing intricate
techniques for
encrypting and
decrypting data

[1]
2022

Utilizing
an IoT
network
for remote
patient
monitoring

A solution
based on
Elliptic Curve
Cryptography

Privacy-
preserving

The suggested RPM
system provides secure
authentication via
RFID, ensures secure
communication, and
protects privacy

Challenges with
dependability, restricted
availability, and
expensive
communication

[34]
2023

Smart
healthcare
systems

Federated
Learning

Privacy-
preserving

FRESH uses certificate
ring signatures as a
source inference attack
(SIA) defence

The system being
considered is susceptible
to attacks through
adversarial machine
learning techniques

[13]
2023

Smart
healthcare
utilizing
the
Internet of
Things
technology

Cryptographic
primitives
designed for
low
computational
and memory
requirements
are commonly
referred to as
lightweight

Privacy-
preserving

The effectiveness of the
proposed authentication
technique is evaluated
through security and
performance analysis in
comparison to
established and
widely-used schemes

Challenges of
dependability, restricted
availability, and
expensive
communication.

[4]
2023

Internet of
Things
(IoT)
network
for
healthcare

Data
aggregation

Privacy-
preserving

Compared to traditional
methods, it lowers both
the expense of
communication and
computation

The absence of practical
application in actual
situations

[29]
2023

A financial
system for
smart
healthcare
utilizing
the
Internet of
Things

Blockchain-
based
solution

Data privacy The suggested solution
protects user data
privacy and enables
information sharing
across devices using
blockchain and
zero-knowledge evidence

The inherent properties
of blockchain technology
may impose limitations
on the system’s ability
to scale

7 Federated Learning Based Security and Privacy
Solutions for the Healthcare Sector

In their research, Rahman et al. [25] suggested the use of the Internet of Health
Things (IoHT) for managing health, while emphasizing the importance of pro-
tecting privacy through secure data management. They identified a lack of train-
ing capabilities and trust management as key challenges to IoHT adoption and
proposed a hybrid federated learning framework that incorporates blockchain
smart contracts to manage trust and authentication among federated nodes.
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The framework ensures encryption and anonymity of IoHT data using differ-
ential privacy (DP) and was evaluated for COVID-19 patient data using deep
learning applications, showing potential for widespread adoption.

Wang et al. [34] proposed a smart healthcare framework, known as FRESH,
that aims to facilitate the sharing of physiological data while ensuring data
privacy. This framework leverages Federated Learning (FL) and ring signature
defence to protect against source inference attacks (SIAs).

The data collection process for FRESH involves gathering data from wear-
able devices and processing it using edge computing devices for local training
of machine learning models. The model parameters are subsequently uploaded
to the central server for joint training. The authors utilized ring signature tech-
nology to hide the source of parameter updates, which significantly reduces the
success rate of SIAs. They also introduced a batch verification algorithm to
improve the efficiency of signature verification.

According to the authors, FRESH is highly suitable for large-scale smart
healthcare systems that cater to multiple users. This framework represents a
major milestone in the quest to enhance data privacy and security in the health-
care industry.

8 Future Works

8.1 Advancing Privacy and Security in the Healthcare Industry:
The Need for Further Study

The healthcare industry regards the privacy and security of patient data as
essential issues, and continuous investigation is imperative to enhance current
protocols and confront evolving obstacles. A potential research direction could
be to investigate the effectiveness of current privacy and security regulations,
such as HIPAA and GDPR, in protecting patient information. This research
could examine the gaps and limitations in the existing regulatory framework
and propose recommendations for improvements.

Another potential avenue of research is to investigate how emerging tech-
nologies like artificial intelligence and blockchain can improve privacy and secu-
rity within the healthcare industry. For example, blockchain technology offers a
decentralized and tamper-proof platform for storing and sharing patient infor-
mation, which could reduce the risk of data breaches and ensure the accuracy of
health records. Similarly, artificial intelligence can be used to detect and prevent
potential security breaches and unauthorized access to patient information.

Furthermore, research could be conducted on the impact of privacy and secu-
rity breaches on patient trust and healthcare outcomes. A breach of patient
information can lead to a loss of trust between patients and healthcare providers,
which can have long-lasting effects on patient health and well-being. Thus, under-
standing the effects of privacy and security breaches and developing strategies
to restore patient trust could be a valuable research direction.
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8.2 Study of the Impacts of Digitization on Health Outcomes

In addition to the benefits mentioned, digitization has also improved patient
safety. For example, electronic prescribing (e-prescribing) has reduced medica-
tion errors by eliminating the need for handwritten prescriptions, which can
be misread or contain errors. EHRs also can flag potential drug interactions or
allergies, alerting healthcare providers to potential issues before they occur. The
utilization of barcode scanning technology has enhanced medication safety by
verifying that the correct medication is administered to the accurate patient at
the appropriate time.

Digitization has also enabled better coordination of care among healthcare
providers. With EHRs, providers can share patient information more easily and
efficiently, ensuring that all members of the care team have access to the same
information. This can help to reduce the risk of errors or duplicative testing,
leading to improved patient outcomes.

However, despite the many benefits of digitization in healthcare, there are
also challenges and potential drawbacks to consider. For example, there may be
concerns about the security and privacy of patient information, as well as issues
related to data ownership and access. Additionally, there may be concerns about
the potential for technology to replace human interaction and the importance of
maintaining the human touch in healthcare.

Future research in this area could focus on exploring the benefits and chal-
lenges of digitization in healthcare, as well as identifying ways to optimize the
use of technology to improve patient outcomes and quality of care. This could
include examining the role of patient engagement and education in promoting
the adoption and effective use of digital technologies in healthcare, as well as
the potential for technology to improve patient-centred care and promote better
health results.

8.3 An Evaluation of Artificial Intelligence’s Role in Healthcare

AI is transforming healthcare by leveraging natural language processing, vir-
tual assistants, and AI-powered chatbots as well as AI-powered imaging anal-
ysis and diagnostic tools, among other technologies, to enhance patient out-
comes. AI-powered healthcare solutions have the potential to significantly reduce
healthcare costs, increase efficiency, and improve patient outcomes by providing
faster and more accurate diagnoses, personalized treatment recommendations,
and improved patient communication and engagement. However, it’s important
to note that while AI has the potential to revolutionize healthcare, it’s important
to ensure that these systems are developed ethically and that patient privacy is
protected.

8.4 The Significance of Patient Engagement in Ensuring Security
and Privacy

In the healthcare industry, ensuring privacy and security heavily relies on patient
engagement as a crucial factor. When patients are engaged in their healthcare,
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they are more likely to be aware of the risks associated with the use of personal
health information and are more likely to take steps to protect it. Healthcare
providers can encourage patient engagement by providing clear and concise infor-
mation about privacy and security policies, as well as by offering patient educa-
tion resources, such as online portals, educational videos, and other materials.
Healthcare providers can promote patient privacy and security, as well as enable
informed decision-making regarding healthcare, by actively engaging patients in
safeguarding their personal information [20,22,32].

8.5 Exploring the Potential of Blockchain Technology in Healthcare

The healthcare sector has the prospect of a significant transformation through
the adoption of blockchain technology, as it offers secure and transparent means
for storing and exchanging patient information. Blockchain’s distributed ledger
technology can ensure that patient data is protected from unauthorized access,
while also allowing for the efficient sharing of that data among healthcare
providers. The use of blockchain technology for electronic medical records can
also reduce errors, streamline workflows, and increase the accuracy of medical
data [14,19].

By utilizing blockchain technology, smart contracts can automate and sim-
plify the procedure of insurance claims and reimbursements for both patients
and insurance companies. By reducing the time and costs associated with tradi-
tional payment processing systems, blockchain-based smart contracts can help
to reduce healthcare costs and improve patient outcomes [12,27].

Blockchain technology can leverage the healthcare industry to facilitate sup-
ply chain management via vehicular communication [9] securely, enabling the
verification and traceability of medical devices and drugs to ensure their gen-
uineness. This can improve patient safety by reducing the risk of counterfeit
products, and can also help to improve supply chain efficiency and transparency
[10,11].

9 Future Scope and Advancements

Digitalization, including IoMT (Internet of Medical Things) and blockchain tech-
nology, offers significant opportunities and advantages to the healthcare sector.
However, successful implementation requires careful consideration of social, orga-
nizational, and collaborative aspects. Fostering a positive attitude and providing
necessary support enable healthcare organizations to adopt digital technologies,
improving patient care and cost savings while addressing potential difficulties
and constraints. Future work aims to enhance Electronic Health Record (EHR)
security through novel approaches, leveraging IoMT and blockchain technology
for concise and secure record-keeping in electronic mode.



258 S. Banerjee et al.

10 Conclusion

In conclusion, digitalization offers significant opportunities and advantages to
the healthcare sector, but its implementation requires careful consideration of
the social, organizational, and collaborative aspects of the workplace. Even if
digitization can enhance healthcare performance and accomplish strategic goals,
it is crucial to be aware of potential difficulties and constraints. By focusing on a
positive attitude and providing necessary support, healthcare organizations can
successfully adopt digital technologies and streamline their procedures, resulting
in improved patient care and cost savings.

Acknowledgement. This work was supported by the National Science Foundation,
under award number 2219741.

References

1. Ahmed, M.I., Kannan, G.: Secure and lightweight privacy preserving internet of
things integration for remote patient monitoring. J. King Saud Univ.-Comput.
Inform. Sci. 34(9), 6895–6908 (2022)

2. Alam, M.A., Al Riyami, K.: Shear strengthening of reinforced concrete beam using
natural fibre reinforced polymer laminates. Constr. Build. Mater. 162, 683–696
(2018)

3. Alloghani, M., Al-Jumeily, D., Hussain, A., Aljaaf, A.J., Mustafina, J., Petrov,
E.: Healthcare services innovations based on the state of the art technology trend
industry 4.0. In: 2018 11th International Conference on Developments in eSystems
Engineering (DeSE), pp. 64–70. IEEE (2018)

4. Bhowmik, T., Banerjee, I.: Eeppda-edge-enabled efficient privacy-preserving data
aggregation in smart healthcare internet of things network. Inter. J. Network
Manag. e2216 (2023)

5. Chae, B.: Mapping the evolution of digital business research: a bibliometric review.
Sustainability 14(12), 6990 (2022)

6. Chen, C.M., Chen, Z., Kumari, S., Lin, M.C.: Lap-ioht: a lightweight authentication
protocol for the internet of health things. Sensors 22(14), 5401 (2022)

7. Dagher, G.G., Mohler, J., Milojkovic, M., Marella, P.B.: Ancile: privacy-preserving
framework for access control and interoperability of electronic health records using
blockchain technology. Sustain. Urban Areas 39, 283–297 (2018)

8. Dang, T.K., Lan, X., Weng, J., Feng, M.: Federated learning for electronic health
records. ACM Trans. Intell. Syst. Technol. (TIST) 13(5), 1–17 (2022)

9. Das, D., Banerjee, S., Chatterjee, P., Ghosh, U., Biswas, U.: A secure blockchain
enabled v2v communication system using smart contracts. IEEE Trans. Intell.
Trans. Syst. (2022)

10. Das, D., Banerjee, S., Chatterjee, P., Ghosh, U., Mansoor, W., Biswas, U.: Design of
a blockchain enabled secure vehicle-to-vehicle communication system. In: 2021 4th
International Conference on Signal Processing and Information Security (ICSPIS),
pp. 29–32. IEEE (2021)

11. Das, D., Banerjee, S., Chatterjee, P., Ghosh, U., Mansoor, W., Biswas, U.: Design
of an automated blockchain-enabled vehicle data management system. In: 2022 5th
International Conference on Signal Processing and Information Security (ICSPIS),
pp. 22–25. IEEE (2022)



EHR Security and Privacy Aspects: A Systematic Review 259

12. Das, D., Banerjee, S., Dasgupta, K., Chatterjee, P., Ghosh, U., Biswas, U.:
Blockchain enabled sdn framework for security management in 5g applications.
In: 24th International Conference on Distributed Computing and Networking, pp.
414–419 (2023)

13. Das, S., Namasudra, S.: Lightweight and efficient scpprivacy-preserving/scp mutual
authentication scheme to secure scpinternet of things/scp-based smart healthcare.
Trans. Emerging Telecommun. Technol. (2023)

14. Dutta, K., Guin, R.B., Chakrabarti, S., Banerjee, S., Biswas, U.: A smart job
scheduling system for cloud computing service providers and users: modeling and
simulation. In: 2012 1st international conference on recent advances in information
technology (rait), pp. 346–351. IEEE (2012)

15. Garg, N., Wazid, M., Das, A.K., Singh, D.P., Rodrigues, J.J., Park, Y.: Bakmp-
iomt: design of blockchain enabled authenticated key management protocol for
internet of medical things deployment. IEEE Access 8, 95956–95977 (2020)

16. Herrmann, M., Boehme, P., Mondritzki, T., Ehlers, J.P., Kavadias, S., Truebel,
H.: Digital transformation and disruption of the health care sector: Internet-based
observational study. J. Med. Internet Res. 20(3), e104 (2018)

17. Kigera, J., Kipkorir, V.: Electronic health records-the ethical and legal issues.
Annals African Surgery 20(1), 1–2 (2023)

18. Kumar, V., Mahmoud, M.S., Alkhayyat, A., Srinivas, J., Ahmad, M., Kumari, A.:
Rapchi: robust authentication protocol for iomt-based cloud-healthcare infrastruc-
ture. J. Supercomput. 78(14), 16167–16196 (2022)

19. Lahiri, P.K., Das, D., Mansoor, W., Banerjee, S., Chatterjee, P.: A trustworthy
blockchain based framework for impregnable iov in edge computing. In: 2020 IEEE
17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.
26–31. IEEE (2020)

20. Lahiri, P.K., Mandal, R., Banerjee, S., Biswas, U.: An approach towards devel-
opments of smart covid-19 patient’s management and triaging using blockchain
framework (2020)

21. Li, H., et al.: Review on security of federated learning and its application in health-
care. Futur. Gener. Comput. Syst. 144, 271–290 (2023)

22. Mandal, R., Banerjee, S., Islam, M.B., Chatterjee, P., Biswas, U.: Qos and energy
efficiency using green cloud computing. In: Intelligent Internet of Things for Health-
care and Industry, pp. 287–305. Springer (2022). https://doi.org/10.1007/978-3-
030-81473-1_14

23. Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intel-
ligence for healthcare industry 4.0. Cybersecurity for Industry 4.0: Analysis for
Design and Manufacturing, pp. 103–126 (2017)

24. Parker, M.: Managing threats to health data and information: toward security. In:
Health Information Exchange, pp. 149–196. Elsevier (2023)

25. Rahman, M.A., Hossain, M.S., Islam, M.S., Alrajeh, N.A., Muhammad, G.: Secure
and provenance enhanced internet of health things framework: a blockchain man-
aged federated learning approach. IEEE Access 8, 205071–205087 (2020)

26. Roski, J., Bo-Linn, G.W., Andrews, T.A.: Creating value in health care through big
data: opportunities and policy implications. Health Aff. 33(7), 1115–1122 (2014)

27. Roy, R., Haldar, P., Das, D., Banerjee, S., Biswas, U.: A blockchain enabled
trusted public distribution management system using smart contract. In: Inter-
national Conference on Electronic Governance with Emerging Technologies, pp.
25–35. Springer (2022). https://doi.org/10.1007/978-3-031-22950-3_3

28. Ryu, J., et al.: Secure ecc-based three-factor mutual authentication protocol for
telecare medical information system. IEEE Access 10, 11511–11526 (2022)

https://doi.org/10.1007/978-3-030-81473-1_14
https://doi.org/10.1007/978-3-030-81473-1_14
https://doi.org/10.1007/978-3-031-22950-3_3


260 S. Banerjee et al.

29. Singh, R., Dwivedi, A.D., Srivastava, G., Chatterjee, P., Lin, J.C.W.: A privacy
preserving internet of things smart healthcare financial system. IEEE Internet of
Things J. (2023)

30. Sonkamble, R.G., Bongale, A.M., Phansalkar, S., Sharma, A., Rajput, S.: Secure
data transmission of electronic health records using blockchain technology. Elec-
tronics 12(4), 1015 (2023)

31. Tertulino, R., Antunes, N., Morais, H.: Privacy in electronic health records: a
systematic mapping study. J. Public Health, 1–20 (2023)

32. Tiwari, S., et al.: Applications of machine learning approaches to combat covid-19:
a survey. In: Lessons from COVID-19, pp. 263–287 (2022)

33. Wang, S., Kirillova, K., Lehto, X.: Travelers’ food experience sharing on social
network sites. J. Travel Tourism Market. 34(5), 680–693 (2017)

34. Wang, W., Li, X., Qiu, X., Zhang, X., Zhao, J., Brusic, V.: A privacy preserv-
ing framework for federated learning in smart healthcare systems. Inform. Proc.
Manag. 60(1), 103167 (2023)

35. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning
for healthcare informatics. J. Healthcare Inform. Res. 5, 1–19 (2021)

36. Yang, C., Everitt, J.H., Murden, D.: Evaluating high resolution spot 5 satellite
imagery for crop identification. Comput. Electron. Agric. 75(2), 347–354 (2011)

37. Yin, X., Zhu, Y., Hu, J.: A comprehensive survey of privacy-preserving federated
learning: a taxonomy, review, and future directions. ACM Comput. Surv. (CSUR)
54(6), 1–36 (2021)

38. Yu, S., Park, Y.: A robust authentication protocol for wireless medical sensor net-
works using blockchain and physically unclonable functions. IEEE Internet Things
J. 9(20), 20214–20228 (2022). https://doi.org/10.1109/JIOT.2022.3171791

39. Zhao, Y., et al.: Growth traits and sperm proteomics analyses of myostatin gene-
edited Chinese yellow cattle. Life 12(5), 627 (2022)

https://doi.org/10.1109/JIOT.2022.3171791


SNN Based Neuromorphic Computing Towards
Healthcare Applications

Prasenjit Maji1(B) , Ramapati Patra2, Kunal Dhibar3,
and Hemanta Kumar Mondal2

1 Department of CSD, BCREC Durgapur, Durgapur, India
maji.katm@gmail.com

2 Department of ECE, NIT Durgapur, Durgapur, India
rp.19ec1103@phd.nitdgp.ac.in, hemanta.mondal@ece.nitdgp.ac.in

3 Department of CSE, BCET Durgapur, Durgapur, India

Abstract. The diagnosis, treatment, and prevention of diseases may be revolu-
tionized by integrating neuromorphic computing, artificial intelligence (AI), and
machine learning (ML) into medical services. A novel method of processing com-
plex data that more effectively and quickly mimics how the human brain works
is called neuromorphic computing. This paper provides an overview of neuro-
morphic computing and its uses in AI and ML-based healthcare. We talk about
the advantages and disadvantages of using these technologies as well as how it
helps to accelerate the entire diagnostic procedure. We also provide case studies
of how neuromorphic applications have been successfully used in the medical
field to diagnose and predict diseases. Additionally, we provide the medical and
healthcare industries with enhanced Spiking Neural network application results
with up to 98.5% accuracy.

Keywords: Artificial Intelligence ·Machine Learning · Neuromorphic
Computing · Neural Networks · Spiking Neural Network

1 Introduction

Medical healthcare is an area that can significantly benefit from the integration of neuro-
morphic computing, AI, andML. Neuromorphic computing is a revolutionary computer
paradigm that mimics the operation of the human brain. It uses spiking neural networks
(SNNs), Deep Neural Networks (DNNs), and in some cases, Recurrent Neural Net-
works (RNNs) to process and analyze data more efficiently and faster than traditional
computing systems. AI and ML are also becoming increasingly important in healthcare,
allowing for analyzing large amounts of data and developing predictive models. In the
proposed work, we explore the applications of these technologies in medical healthcare
and their potential to transform the field. Artificial Neural Networks (ANNs) are widely
used in a variety of applications such as image recognition, audio identification, and
processing of natural languages. Traditional ANNs, on the other hand, are unsuitable
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for low-power and real-time applications because to their high computational complex-
ity and energy consumption. Because of their excellent energy economy and processing
capacity, SNNs have emerged as a potential replacement to standardANNs. In this paper,
we comprehensively study the theory and applications of SNNs [1].

1.1 Neuromorphic Computing

Neuromorphic computing is a form of computing inspired by the human brain’s structure
and function. It employs SNNs, which are connections of artificial neurons that inter-
act with one another via electrical impulses. These networks can process and analyze
data more efficiently and faster than traditional computing systems. Neuromorphic com-
puting is particularly useful for complex data processing applications, such as medical
healthcare [2].

1.2 Spiking Neural Networks (SNNs)

SNNs are a class of artificial neural networks that simulate the spiking behavior of
biological neurons. SNNs have gained importance in recent years due to their poten-
tial to achieve high energy efficiency and computational power. This work provides
a widespread review of the theory and applications of SNNs. We first introduce the
basic principles of SNNs, including the spiking neuron model and the synaptic plas-
ticity rule. Following that, we look at current improvements in SNN learning algo-
rithms, such as supervised, unsupervised, and reinforcement learning approaches. Next,
we discuss the hardware implementations of SNNs, including neuromorphic chips and
Field-Programmable Gate Arrays (FPGAs) [3].

SNN and neuromorphic computing are related; however not the same thing. So,
while SNNs can be used in neuromorphic systems, not all neuromorphic systems use
SNNs. Neuromorphic computing is a larger field that includes a variety of ways to
creating electronic circuits and devices that imitate the behavior of biological neurons
and synapses, such as analogue and digital circuits, memristive devices, and others.
SNNs are one type of neural network that can use in neuromorphic systems. However,
different kinds of networks, such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), can also be used.

While there are several opportunities to use neuromorphic computing, AI, and ML
in medical healthcare, there are also challenges to solve. Security and confidentiality
of information are two of the most challenging concerns to address. Medical informa-
tion is particularly sensitive and must be protected against unauthorized access. Ethical
concerns, such as the use of AI and ML throughout decision-making processes, must
additionally be addressed. The general concept of the proposed work, as well as how it
will be implanted in edge devices via cloud and IoT platforms, is depicted in Fig. 1.

Another issue is regulation. The application of AI and machine learning in medical
healthcare is still in its early stages, and there is a need for clear laws and standards to
guarantee that these technologies are utilised safely and efficiently [4]. Spiking Neural
Networks (SNNs) have several potential applications in medical healthcare due to their
ability to simulate the spiking behavior of biological neurons. Here are some examples
of how SNNs are used in medical healthcare.
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Brain-Computer Interfaces (BCIs): SNNs can be used to developBCIs,which enable
patients to communicate with computers or other devices using of their brain signals.
SNNs can be used to decode the electroencephalogram (EEG) signals generated by the
patient’s brain and translate them into specific commands.

Fig. 1. Working model of SNN with the advanced application

Epilepsy Prediction: SNNs can be used to predict epileptic seizures in patients with
epilepsy. SNNs can learn to recognize the patterns in EEG signals that indicate an
imminent seizure and issue an alert to the patient or caregiver.

Parkinson’s Disease Diagnosis: SNNs can be used to diagnose Parkinson’s disease
by analyzing the patient’s gait. SNNs can learn to recognize the characteristic changes
in gait associated with Parkinson’s disease and issue a diagnosis.

Drug Discovery: SNNs can be used to accelerate the drug discovery process by pre-
dicting the efficacy and toxicity of candidate drugs. SNNs can be trained on large datasets
of molecular structures and their corresponding biological activities and used to predict
the activity of new compounds.

Medical Image Analysis: SNNs can be used to analyze medical images, such as MRI
and CT scans. SNNs is used to detect and classify abnormalities, such as tumors, and
aid in the diagnosis of diseases.

Medical Robotics: SNNs can be used to control medical robots, such as surgical
robots. SNNs can learn to recognize the desired surgical actions and movements and
issue commands to the robot.

Overall, SNNs have the potential to revolutionize medical healthcare by enabling
faster and more accurate diagnosis, prediction, and treatment of diseases [5]. The salient
contribution of the proposed work is as follows:

1. Spiking Neural Network’s (SNN) biological spiking behavior is used to generate
desired results.
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2. The proposed work validates a Neuromorphic approach for various disease detection.
3. The proposed Neuromorphic framework considerably speeds up the process of

evaluating required outputs accurately.

The remainder of the work is organized as follows: Sect. 2 contains a literature
review, Sect. 3 contains a proposed method and data for the application of neuromorphic
systems, and Sect. 4 contains a Dataflow Diagram. Part 4 discusses the findings, and
Sect. 5 concludes with a conclusion.

2 Literature Review

There are already several examples of neuromorphic applications in medical healthcare.
Artificial Intelligence (AI), Spiking Neural Networks (SNNs), Machine Learning (ML),
and Neuromorphic Computing (NC) are rapidly gaining traction in medical healthcare
due to their ability to process vast amounts of data and make accurate predictions. In
this literature review, we will explore the various ways in which these technologies are
being used in medical healthcare.

AI andMLhave been used inmedical healthcare for decades, primarily for tasks such
as image analysis and diagnosis. However, recent advancements in SNN and NC have
opened up new possibilities for medical applications. One of the primary advantages of
SNN and NC is their ability to mimic the behavior of biological neurons, enabling them
to process information in a way that is similar to the human brain [6].

One of the primary applications of SNN and NC in medical healthcare is in the
development of Brain-Computer Interfaces (BCIs). BCIs use SNNs to translate the elec-
trical signals generated by the brain into specific commands, enabling patients to control
devices such as prosthetic limbs or communication devices. This technology has the
capability to vastly enhance the quality of life for people who are paralysed or have
other impairments. [7].

SNN and NC have also been used in the diagnosis and prediction of neurological
disorders, such as epilepsy and Parkinson’s disease. By analyzing the patterns in brain
activity, SNNs can predict the onset of seizures or diagnose Parkinson’s disease based on
changes in gait. This technology has the potential to enable earlier diagnosis and more
effective treatment of these conditions [8].

In addition to neurological disorders, SNNandNChave also been used in the analysis
and treatment of other diseases, such as cancer. For example, SNNs can analyze medi-
cal images to detect and classify tumors, enabling earlier detection and more effective
treatment. Another area where SNN and NC have shown promise is in the development
of new drugs. SNNs can analyze large datasets of molecular structures and predict the
efficacy and toxicity of new compounds. This technology has the potential to speed up
the drug unearthing process and enable the development of more effective and safer
drugs [17].

Overall, SNN and NC have the potential to revolutionize medical healthcare by
enabling faster andmore accurate diagnosis, prediction, and treatment of diseases.While
there are still many challenges to overcome, such as the need for more data and the
development of more efficient hardware, the potential benefits of these technologies are
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Table 1. Comparative table for different neuromorphic approaches in the medical field with
resultant.

Ref Neuromorphic System Medical Application Results/Output

Qiao [9] SpiNNaker Brain-Computer
Interfaces (BCIs)

Achieved
state-of-the-art BCI
performance with
accuracy of 90.6% for
4-class classification

Livi [10] TrueNorth Neuromorphic Vision High-accuracy facial
recognition with 99.45%
accuracy on the FERET
dataset

Yamakawa [11] BrainScaleS Epileptic Seizure
Prediction

Outperformed
traditional algorithms
with a sensitivity of
88.4% and a specificity
of 90.2%

Pereira [12] IBM Neurosynaptic Brain Tumor
Segmentation

Increased accuracy over
traditional methods with
a Dice similarity
coefficient of 0.83

Michaelis [13] Loihi Predictive Maintenance
for Medical Equipment

Identified equipment
faults with high
accuracy, achieving a
mean-area under the
ROC curve of 0.947

Hatem [14] SpiNNaker Motor Rehabilitation of
Stroke Patients

Improved rehabilitation
outcomes compared to
traditional therapy, with
patients showing a
significant improvement
in Fugl-Meyer
Assessment scores

Klietz [15] BrainScaleS Parkinson’s Disease
Diagnosis

Achieved high accuracy
in diagnosis, with a
sensitivity of 90.0% and
a specificity of 94.0%

Andreou [16] TrueNorth Neuromorphic
Auditory Processing

Improved speech
recognition compared to
traditional methods,
achieving a word error
rate of 16.5% on the
TIMIT dataset
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immense. Table 1. clearly reflect the comparisons among the work done in the field of
neuromorphic systems and application area.

3 Proposed Method and Data

The proposed work defines and trains a spiking neural network to perform binary classi-
fication on the Pima Indian’s diabetes and Wisconsin Cancer datasets. The US National
Institute of Diabetes and Digestive and Kidney Diseases first gathered the data, then
made it available to the general public for research. It is a dataset that is frequently used
in the study of machine learning and predictive modeling. The dataset has 768 instances,
each with 8 attributes. Dr. William H.Wolberg originally gathered the breast cancer data
at the University of Wisconsin Hospital in Madison, Wisconsin, and made it accessible
to the general public for research. There are 569 instances in the collection, and each
instance has 32 attributes.

The spiking neural network is defined using theNengo framework. It consists of three
layers: a dense layer with 16 units, a layer of leaky integrate-and-fire (LIF) neurons,
and a dense output layer with a single sigmoid activation unit. The input and output
nodes are defined as well.

The network is then compiled using the NengoDL simulator and trained using the
fit method with the mean squared error loss and a stochastic gradient descent optimizer.
The training is performed for the number of epochs, and we attain the best in 10 epochs.

Finally, the trained model is used to predict the training data and compute the clas-
sification accuracy. The predictions are threshold at 0.5 to obtain binary labels, and the
accuracy is computed as the mean of the correct predictions.

3.1 Proposed SNN Implementation Algorithm

In this proposedwork, we explain with the diabetic dataset only; however, we have tested
the proposed model with both the said dataset and also explain in the result section. We
first load the Pima Indians Diabetes dataset from the UCI repository and split it into
input features (X) and output labels (y). We then scale the input features to the range {0,
1} to ensure that all the features are on a similar scale.

We define a spiking neural network using the Nengo and NengoDL frameworks. The
network has two dense layers and a spiking LIF layer. We then compile the model using
NengoDL’s Simulator object and train the model on the dataset.

Once the SNN framework is installed and the data is preprocessed, we begin to build
the SNN. The steps involved in building an SNN model for diabetes prediction are as
follows.

Here’s the step-wise detailed working principle of the algorithm:



SNN Based Neuromorphic Computing Towards Healthcare Applications 267

Step1. Load the Pima Indians Diabetes dataset from a URL and 
store the column Names in a list.

Step 2. Load the dataset into a Pandas DataFrame.

Step 3. Split the dataset into input features (X) and output labels 
(y).

Step 4. Scale the input features to the range [0, 1].

Step 5. Define a spiking neural network using the Nengo library

5.1. Create a Nengo network. 

5.2. Define the input and output nodes. 

5.3. Create the first dense layer with 16 units using 
the NengoDL Layer. 

5.4. Create the second dense layer with 16 units using 
the Nengo LIF Neuron model. 

5.5. Create the final output layer with a sigmoid 
activation Function using the NengoDL layer. 

5.6. Create probes to record the output of the final 
layer.

Step 6. Configure the NengoDL settings to make the network non-  
trainable.

Step 7. Compile the model using the MSE loss function and 
With a learning rate of 0.001 along with Stochastic Gradient 
descent optimizer

Step 8. Train the model using the training data for 10 epochs.

Step 9. Predict new data using the trained model.

The spiking neural network has two dense layers, each with 16 units, and a final
output layer with a sigmoid activation function. The LIF neuron model is used in the
second layer. The model is trained using the MSE loss function and SGD optimizer with
a learning rate of 0.001 for 10 epochs. The final classification accuracy of the model is
printed to the console, which is more than 90% for the diabetes dataset and 98.5% in
cancer dataset.

4 Result and Discussion

The investigations occurred on the Google Colab platform and also in Jupyter Notebook
with Python 3.7 and Keras. Machine learning techniques have been applied using the
“SKLearn” library.Moreover,wemonitor the binary cross-entropywithAdamOptimizer
and MSE metric function. For SNN, we employ the Nengo library. The capacity of
Nengo to simulate massive spiking neural networks is one of its key advantages. For that
purpose, a network of interconnected neurons is defined, and each neuron is represented
using LIF neurons (Fig. 2).
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Fig. 2. Dataflow Diagram of the proposed method

Fig. 3. Comparison of performance in disease prediction using ML and Neuromorphic approach

A number of backend, such as the CPU, GPU or specialized neuromorphic hardware,
can be used to run the network. The output of the implementation is the accuracy of
classification on trained spiking neural network model on the Pima Indian Diabetes
dataset. The exact accuracymay vary each time the code is executed due to the stochastic
nature of the spiking neural network and the randomness introduced by the training
process. The hyper parameters used for the applications are as follows:

Hyper parameters:
tau_rc: Time constant of the RC circuit in the LIF neurons.
tau_ref: Refractory period of the LIF neurons.
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Units: Number of neurons in the dense layers.
Activation: Activation function used in the dense layers.
Loss: Loss function used to train the model.
Optimizer: Optimization algorithm used to train the model.
Trainable: Boolean flag to specify whether to train the layers or not.
Synapse: Synapse model used for filtering the output probe.
In this dataset, the spiking neural network model achieves significant classification

accuracy, correctly predicting the presence or absence of diabetes in 90.42% of the
samples. For the breast cancer dataset, the accuracy is 98.5%. The overall performance
of different ML algorithms and SNN for two other datasets are shown in Fig. 3.

In SNN, only those neurons that cross a certain threshold are activated, which aids in
energy efficiency. Unlike other neural networks (such as CNN, ANN, etc.), all neurons
are active and functioning. The fact that SNN does not use back propagation like some
other systems does make it unique and more challenging to deploy. Back propagation in
SNN must be explicitly implemented when the neuron grid is utilized after the feature
extraction block rather than ReLU or softmax function, typically employed after feature
extraction for classification. Figure 4 makes this understandable.
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Fig. 4. Framework for generic neuromorphic edge computing in medical applications

When assessing the effectiveness of regressors, we also utilize metrics like mean
squared error (MSE) or mean absolute error (MAE) in place of accuracy. The perfor-
mance of the model improves as these metrics’ values decrease. When predicting a
continuous parameter (such as blood sugar level) in regression assignments like the one
in this code, precision is typically not an essential factor. The ROC curve, used to assess
the effectiveness of binary classification models, cannot be calculated because the code
provided is for a regression problem. The ROC curve is used to calculate the trade-off
between true and false favourable rates at various categorization levels. Braindrop is
also used, which is an open-source mixed-signal neuromorphic architecture designed
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to be programmed at a high degree of abstraction. Neuromorphic techniques can offer
superior results when used in conjunction with hardware, particularly FPGAs.We intend
to develop this project further in the next, especially by implementing hardware.

5 Conclusion

Classification of neuron modelling approaches, comparison of the investigated chips,
and identification of present trends and limits impeding the development of neuromor-
phic technologies for medical applications. The application of Neuromorphic systems in
biological healthcare and signal processing holds great potential for medical profession-
als, practitioners and their patients. Neural Networks specially SNNs can be utilized to
improve the quality of life for chronically sick patients by allowing ambient observations
for anomalies, hence reducing the strain on medical resources. In the proposed work,
we can implement SNN for healthcare data with up to 98.5% accuracy compared to
other ML algorithms. Proper application can result in decreased workloads for medical
practitioners, allowing them to focus on time-critical jobs that demand a quality higher
than what neural networks can attain now.

When combined with Neuromorphic hardware, an SNN-based application performs
better than conventional ML methods. Our observation is that neuromorphic computing
have the potential to significantly enhance medical applications and the optimization
profession. Each of these applications is likely to benefit from the massively parallel,
event-driven, and/or stochastic processes of neuromorphic computers when combined
with neural networks.
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Abstract. As the internet plays an increasingly vital role in our daily
lives, the threat of denial of service (DoS) attacks continues to loom, pos-
ing significant challenges to network security. With the proliferation of
internet-of-things (IoT) devices, including those in the healthcare sector
(IoMT), the need to secure these networks becomes even more critical.
The emergence of Mobile Edge Computing (MEC) servers has shifted
the focus toward processing data near the network edge to alleviate net-
work congestion. However, a new form of DoS attack, known as the
crossfire attack, presents a complex challenge as it is difficult to detect
and can have devastating effects on networks. While Software Defined
Networks (SDNs) offer promise in mitigating DoS attacks, they also
introduce vulnerabilities of their own. This paper explores the current
landscape of IoT, IoMT, DoS attacks, and crossfire attacks. It discusses
existing defense strategies and proposes a defense mechanism that lever-
ages packet header inspection to differentiate between adversarial and
benign packets. The paper concludes with the execution of a crossfire
attack in a Mininet environment with the RYU SDN controller, high-
lighting the need for multiple approaches to protect critical servers in
the face of persistent DDoS attacks.

Keywords: IoT · Cross Fire attack · Neural Network · Mininet

1 Introduction

As the internet continues to evolve and become more essential to daily lives
than ever, there is a growing population looking to destroy it. Denial of service
(DoS) attacks have been a threat to the internet for years and continue to cause
issues even in today’s networks. The continued improvement and introduction
of internet-of-things (IoT) devices have pushed mobile carriers to update their
existing infrastructure to support the increased number of devices. With the
use of Internet of Medical Things (IoMT) servers, securing the network has
become even more critical. If an adversary were to disrupt the operations of
IoMT devices, entire hospitals and healthcare networks may be affected, leading
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to disastrous, if not deadly consequences. Due to the increased load on the
network, a focus on Mobile Edge Computing (MEC) has increased. These MEC
servers keep data from going across the center of the network and instead process
the data near the edge of the network. A newer type of DoS attack, known as the
crossfire attack has plagued the internet. This type of attack is extremely difficult
to detect and can be lethal to networks if executed correctly. Software defined
networks (SDNs) have been discussed as a promising mitigation technology that
could detect DoS attacks. While SDNs are helpful, they are not perfect and open
up a different set of vulnerabilities to exploit. The end of DDoS attacks is not in
sight, and therefore many different approaches must be taken to protect critical
servers.

About 25 billion devices are currently interconnected and by 2025, 60 billion
devices are expected to be connected [3]. As the Internet continues to develop,
traditional devices are becoming “smart”, meaning that they are connected
to the Internet. The term “Internet of Things” (IoT) was coined in 1999 by
Kevin Ashton which describes a global network of interconnected devices [3].
The motivation for IoT devices is to create large “smart” systems [8]. Techno-
logical advancements are the reason for the increased motivation to link devices
together [3]. IoT devices take many forms and almost any traditional device can
be converted to a smart device. Some examples of IoT devices include smart
plugs, smart washing machines, smart lights, smart refrigerators, etc. The Inter-
net of Medical Things (IoMT) is an extension of the IoT with a focus on med-
ical devices. These IoMT devices are medical things that have the capability
to transfer information across a network without requiring human-to-human or
human-to-computer interaction. These devices enable physicians to diagnose ill-
nesses more easily by connecting various vital parameters using IoMT monitors
[16].

The crossfire attack is a type of DoS attack that is more difficult to detect.
This attack uses many devices across large geographic regions to send low-
intensity requests across the network to various servers on the other side of
the network. This is especially problematic with the advent of IoT and IoMT,
because even though these devices often have extremely limited processing
power, these devices can be compromised and used since the attack only requires
low-intensity attacks to be sent from any given device.

Previous works seek to defend against these crossfire attacks using vari-
ous methodologies. Routing around congestion (RAC) attempts to mitigate the
crossfire attack by changing routing decisions based on the congestion of a given
link. This solution, though also slows down legitimate traffic as all traffic is routed
around that congestion. If an adversary was able to force routing decisions to
consistently change, packets may be dropped as the network tries to continually
determine the best route but is unable to do so. Another defense strategy, mov-
ing target defense (MTD) seeks to make the scanning phase of the attack more
difficult by randomly updating routes so that an adversary would not be able to
identify a consistently shared link between nodes in the network. This approach
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also suffers from the fact that oftentimes these routes are non-ideal, meaning
legitimate traffic is degraded at the expense of security.

The summary of contributions are:

– The paper proposes a statistical detection model for crossfire attacks using
Analysis of Variance (ANOVA) and neural networks.

– The proposed mechanism only uses packet headers and not packet content
to determine if a packet is adversarial that achieves an accuracy of 95.3% in
detecting these packets

– We evaluated the proposed defense mechanism on a real-world network topol-
ogy from the ATT North America backbone topology using the Mininet sim-
ulation environment.

The rest of the article is organized as follows: Sect. 2 discusses some back-
ground information about IoT, IoMT, DoS attacks, and crossfire attacks.
Section 3 details the threat model of the attack. Section 4 discusses defense strate-
gies against the crossfire attack. Section 5 Shows the execution of the crossfire
attack.

2 Background

This section discusses the essential knowledge required to successfully execute
a crossfire attack, a critical aspect of modern network security. It explores key
networking concepts, including the revolutionary 6G technology, the Internet
of Things (IoT) and Internet of Medical Things (IoMT), Mobile Edge Com-
puting, and the pervasive security concerns surrounding these advancements.
Moreover, it provides a comprehensive examination of the crossfire attack itself,
shedding light on its intricacies and implications for network defenses. By thor-
oughly examining these interconnected topics, this section aims to contribute
to the understanding and mitigation of cyber threats in contemporary network
environments

2.1 6G

5G/6G Architecture. Until recently, mobile communication was handled by
fourth-generation (4G) and Long Term Evolution (LTE) systems. Recently with
the rise of Internet of Things (IoT) devices and a larger focus on edge comput-
ing, a new standard had to be created in order to support the rapidly growing
Internet. Fifth-generation (5G) is the next standard of mobile communication
that will be able to support such a wide variety of devices simultaneously. 5G
services are attempting to meet 3 main constraints as it develops: ubiquitous
connectivity, zero latency, and high-speed gigabit connections [11].
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Network Architecture. As the number of mobile devices exponentially
increases, there is a need for an architecture redesign from the previous gener-
ation. Differences in the waves used for 5G that permit increased speed require
careful consideration due to differences in propagation.

5G cellular network architecture is distinct from previous generations but
retains many features of those generations. A renewed focus on interior architec-
ture is necessary. With 4G, an outdoor base station had the ability to allow both
inside and outside users to communicate. Due to the constraints and changes in
architecture, the shorter waves of 5G cannot penetrate walls as easily [5]. There-
fore, 5G architecture must consider distinct interior architecture to overcome
the issue of penetration loss [17]. The use of multiple-input, multiple-output
(MIMO) technology can help reduce the burden of penetration loss.

2.2 IoT and IoMT
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Fig. 1. The 4 Layer IoT Architecture

The Internet of Things has its own distinct architecture that works with the
Internet. Typically IoT is categorized into 4 layers. Figure 1 details the types of
devices that are present on each layer. The perception layer is the lowest level of
the IoT architecture. The perception layer contains the sensor-enabled physical
objects which act as endpoints to the IoT ecosystem. The next layer, the network
layer, consists of various communication protocols, edge computing, and network
connectivity. This layer transfers information securely from IoT end-points to a
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processing device. The middleware layer receives data from the network layer
and stores it in a database. Cloud computing servers and database management
systems are typically middleware devices that allow applications and sensors to
connect. Finally, the top layer of the four-layer IoT architecture is the application
layer. This layer IoT exists as a result of many technologies. These technologies
work together to create a holistic system that is able to communicate across the
internet. Radio frequency identification (RFID) was a large precursor to IoT as
it allowed machines to record metadata, recognize objects, and control devices
through radio waves [8].

2.3 Mobile Edge Computing

Mobile edge computing (MEC) is an architecture where cloud computing services
are placed on the edge of the network using mobile base stations [1]. With the
ever-increasing need for cloud computing services while using mobile devices,
placing computing servers within the radio access network (RAN) and in close
proximity to these devices allows mobile traffic to connect to the nearest cloud
service edge network. By placing MEC services within the RAN, bottlenecks
associated with traveling through the core of the internet can be reduced [1].
The European Telecommunications Standards Institute characterizes MEC by
the following criteria: [12]

1. On-Premises - The edge services should be located at the edge of the network,
meaning it should be able to run isolated from the core of the network

2. Proximity - By being close to the source of the data/information, MEC is
useful for analytics and data collection

3. Lower Latency - By being closer to the edge devices, latency is considerably
reduced. This can be used to reduce latency or improve user experience.

4. Location Awareness - When connected to WiFi or cellular, services can use
low-level signaling to determine the location of connected devices.

5. Network Context Information - Real-time network statistics can be used by
applications to provide context-specific services that can be monetized and
change the experience of mobile communication.

Mobile edge computing can be used in many sectors to offload core ser-
vices. Augmented reality (AR) systems typically require high computational
power. Many users use (AR) on their mobile devices, so computations have to
be offloaded to servers. Edge computing would allow these high-demand, low-
latency tasks to remain at the edge of the network [1]. Edge computing also
will play a key role with respect to web performance and caching HTML con-
tent. By deploying content delivery servers at the edge, HTTP requests would
travel through these servers that would handle many of these requests, reducing
traffic across the core network [1]. MEC services allow 5G to continue to work
towards the core goal of “zero-latency” as reducing congestion in the core allows
more traffic to be routed. This in turn improves the experience for users of 5G
technology.
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2.4 Security Concerns

IoT and IoMT devices may provide useful services, however, they currently
present a large security problem in the world of networking. The first concern
that arises with the introduction of IoT is that creating additional devices that
are addressable can allow attackers to intrude [8]. Security measures are only as
good as the weakest link, and the introduction of new devices opens the door to
additional vulnerabilities that could be exploited by an adversary. Due to the low
cost of IoT devices, corners may be cut in terms of manufacturing. Oftentimes,
IoT devices may use default or anonymous logins which an adversary can use to
intrude on a network [13]. These concerns are magnified in healthcare settings. If
sensors are compromised, they may report false data, or no data at all leading to
misdiagnoses, or in the worst case, a patient unable to call for medical staff in a
time of emergency. Therefore, it is necessary that additional security and safety
measures are in place to prevent these critical devices from failing or becoming
compromised.

2.5 Crossfire Attack
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Fig. 2. Execution of the crossfire attack

The crossfire attack is a type of Link Flooding attack that attempts to
degrade or disable connections to a specific geographical region of the internet.
This attack is perpetuated by directing low-intensity requests to various public
servers that share a common link to flood that shared link. The attack uses mul-
tiple attacking nodes, each sending low-intensity traffic to different destination
nodes. This type of attack does not affect one specific destination, instead, it
targets a large geographical region, served by the target link node. This type
of attack is devastating to a specific geographical region, as both upstream and
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downstream traffic is affected [7]. The crossfire attack is more difficult to detect,
as crossfire is an indirect attack, contrary to most other attacks. Since the attack
spreads low-intensity traffic to various destinations, this allows the attack traffic
to blend in with legitimate traffic and is virtually undetectable in standard DoS
detection and mitigation protocols, at least until after substantial damage has
been done [7].

To execute a crossfire attack, first, a potential adversary would select a list
of public servers within the targeted areas and a set of decoy servers away from
the target area. Since these servers are publicly accessible, they can be easily
found. Next, the adversary would have to perform recognisance and generates
a link map. This link map would be a map of layer 3 links that connect their
decoy servers to public servers. The map enables the adversary to select a set of
“target servers” that when flooded, would be able to cut off the target area from
the open internet. The adversary then coordinates the decoy servers to flood the
target link, effectively blocking most flows to the target area. Each individual
server sends low-intensity traffic so as to not arouse suspicion of anomaly-based
detection system. The individual low-intensity flows are indistinguishable from
legitimate traffic. Finally, the adversary begins to flood each target link one at
a time to not trigger automatic packet route mutation [7].

2.6 Related Works

MTD. One proposed crossfire defense solution is the moving target defense
(MTD). Traditional networks are static in nature, allowing attacks to spend as
much time as needed to gather information and find vulnerabilities [4]. MTD
has historically been a warfare strategy but recently has been adopted into the
IT world. A moving target defense can first delay network mapping and recon-
naissance. ICMP and UDP scans can be disrupted by imposing fake hosts and
services on random ports that do not exist. The fake listeners can increase the
time and workload an attacker would need in order to launch an attack [6]. Addi-
tionally, a mutable network can be created that changes IP addresses and ports
of network hosts dynamically. This means that machines will not be able to be
located at the same address at any given time [4]. Oftentimes, MTD takes the
form of random route and address mutations. Randomization has been a com-
mon strategy in moving target defenses. This strategy is based on the idea that
if addresses of targets within the network constantly change or access policies
between the attacker and target change, then the attack success rate will dras-
tically reduce. An attacker’s ability to effectively do reconnaissance is sharply
diminished as well due to the ever-changing network landscape [6]. Obfuscation
of links via SDN has also been proposed to confuse and thwart attackers [2]. By
obfuscating links between the attacker and target, an adversary would not be
able to identify common links, a key step in performing a crossfire attack.

Rerouting-Based Defenses. Moving target defense can also be used to create
virtual “routable IPs”. While the real IPs of hosts remain unchanged and static,
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the virtual IPs assigned by the network consistently changed frequently and
synchronously. However, the higher the rate of mutation, the more overhead is
required to run the network [4]. This type of approach is often used by load-
balancers to send traffic to different destinations depending on network load.

Another proposed way to mitigate large-scale DDoS attacks is by using a
routing around congestion (RAC) defense. The RAC defense works by rout-
ing traffic between a service deployer and a critical autonomous system around
degraded links. RAC defense asserts that attack traffic is irrelevant and does not
need to be filtered when using this defense [14]. The RAC defense offers path
isolation by dynamically creating detour routes for critical flow [15].

Infeasibility of Current Mitigation Techniques. While the proposed
defense solutions may work in theory, they are infeasible in nature. Rerouting-
based defenses like RAC are not feasible in production servers. RAC defense
uses border gateway protocol poisoning to avoid specific autonomous systems.
The current border gateway protocol is incompatible and may not be able
to be updated in such a way as to make this defense feasible. Even so, if
this defense were made possible, it could be misused with malicious intent to
attack autonomous systems [15]. Rerouting-based defense may also be able to
be hijacked to force rerouting constantly. This in practice may cause packets to
get dropped or delayed. Additionally, the aforementioned overhead required to
implement a moving target defense may not be practical on large-scale networks.

Current Detection Efforts. Current defense mechanisms treat both legiti-
mate and attack traffic the same, degrading the performance of legitimate users.
Current attack traffic detection methods point to detecting DoS and DDoS
attacks, not link-flooding attacks. These detection efforts often rely on traffic
being directed to a singular end-point. Therefore, models that detect standard
DoS and DDoS attacks may not be able to accurately detect crossfire attack
traffic.

One study, Narayanadoss et al. [10] proposes a deep-learning model to detect
crossfire attacks in intelligent transport systems. This study provides a machine-
learning-based model to detect vehicles in a network that are involved in the
attack. The created models reflected a detection rate of 80% in a network of 35
nodes [10]. This model includes data irrelevant to traditional networks (vehicle
speed) that may impact the model’s accuracy in networks that are not intelli-
gent transport systems. Additionally, as the network grew, detection accuracy
decreased. Only a maximum of 35 nodes were implemented. As noted by the
author, as the number of nodes increased, “[m]any legitimate flows could be
detected as part of attacking traffic as they may have a temporal correlation
with other attacking flows” [10]. This model may prove infeasible in larger net-
works, such as networks in large cities. Beyond this singular model, significant
work has not been done to detect crossfire attacks and classify traffic based on
characteristics.
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3 Threat Model

To successfully execute a crossfire attack, adversaries must be able to mask
malicious traffic behind legitimate traffic to avoid detection by the system. The
aforementioned mitigation techniques focus on adversaries using the same attack
nodes repeatedly. If an adversary were to have a botnet sufficiently large, they
would be able to slowly introduce attack nodes into the attack, and remove
attack nodes that have become ineffective. By staying within the confines of
thresholds, an attack could be executed for longer without being detected.

During the reconnaissance phase of the attack, an adversary would use mul-
tiple attack nodes to execute trace route commands. These commands would be
done at low intensity, and low rate to avoid route mutation from the SDN. By
spreading out these trace route commands, common links can be discovered and
mapped with minimal error due to route mutation. This would allow the adver-
sary to create a route map, and understand where secondary nodes are used
when the primary link is being flooded. For maximum efficiency, the adversary
would choose a time during routine peak demand, as SDNs would anticipate this
stress on the system, and additional strain may be attributed to regular demand
fluctuations.

Once launching the attack, the nodes would monitor the route of the low-
intensity traffic to destination servers, to ensure that the traffic is being routed
through the link node. If a node determines that it has been rerouted, it shall
continue directing traffic to the target node, and wait before disconnecting and
changing targets. This can prevent the “common denominator” defense. The
moving target defense can be leveraged in itself to disrupt legitimate traffic. By
forcing the SDN to continually change routes, legitimate traffic can be slowed
down beyond usability.

The adversary would not launch all attack nodes at once, as this may cause
a spike in demand, which the system would detect. Instead, the adversary would
gradually increase attack nodes in order to mask the increase in demand as
organic demand, thereby potentially circumventing anomaly-based detection [7].

As the attack propagates on the network, constant monitoring of network
routing would be required. As the system responds to the attack, we would
monitor the change in performance during route mutation, and when the attack
is taking place undetected. This would allow for the practicality of leveraging
route mutation-based mitigation to be measured.

4 Defense Mechanism

Since crossfire attacks are so lethal, it is important to detect when they are occur-
ring as soon as possible. Therefore, using a software defined network (SDN) is
ideal so that a holistic view of the network can be obtained. The use of SDN
is proposed as an ideal approach to obtain a holistic view of the network. In
an SDN, the control plane is decoupled from the data plane, allowing central-
ized control and management of the network. The SDN architecture consists of
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OpenFlow switches that forward network traffic based on instructions received
from the SDN controller. Each OpenFlow switch in the network reports the
packet headers of incoming packets to the SDN controller. Packet headers contain
important information such as source and destination IP addresses, transport
protocol, port numbers, etc. By inspecting these headers, the SDN controller
can gain visibility into the network and analyze the characteristics of the pack-
ets flowing through it. To defend against crossfire attacks, a traffic classification
model is proposed to determine whether a packet is adversarial (part of the
attack) or benign. This model is implemented on the SDN controller. It lever-
ages machine learning or rule-based techniques to analyze the packet headers
and make an informed decision about the nature of the packet. The SDN con-
troller sends the packet headers to a cloud-based IDS for further analysis. The
IDS hosts the proposed traffic classification model, which evaluates the received
packet headers and determines if they correspond to an adversarial or benign
packet. The IDS is equipped with computational resources and advanced anal-
ysis techniques to perform this task effectively. Once the IDS determines that
a packet is adversarial, the SDN controller instructs the respective OpenFlow
switch to drop the offending packet(s) from the processing pipeline. By discard-
ing the malicious packets, congestion on the network can be reduced, preventing
the crossfire attack from spreading further. In summary, this defense mechanism
combines the capabilities of SDN, packet header inspection, a traffic classifica-
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tion model, and a cloud-based IDS to detect and mitigate crossfire attacks. By
inspecting packet headers, identifying adversarial packets, and dropping them in
real time, the mechanism helps protect the network from the detrimental effects
of crossfire attacks, minimizing potential damage and maintaining network per-
formance. Figure 3 details the mechanism.

5 Experiment Setup

The execution of a crossfire attack, in theory, appears straightforward. By flood-
ing a specific link, the attacker aims to overwhelm it with traffic. This process
involves identifying potential routes that utilize the targeted link and generating
low-intensity requests across those routes to flood the link effectively. However,
in practice, executing a crossfire attack can be challenging due to the limited
availability of information regarding the specific routes taken by packets. The
lack of public access to this crucial routing data presents a significant hurdle
for attackers attempting to orchestrate such attacks. In this section, we delve
into the intricacies of executing a crossfire attack, exploring the methodologies
used to overcome these obstacles and the implications of this type of attack on
network performance and security.
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Fig. 4. Test Network Diagram [9]

Our crossfire attack was executed on a network simulated by the MiniNet
network simulator and the RYU SDN controller. These tools allowed for the
creation and management of a virtual network environment for experimentation
and analysis. To set up the network, a python script was employed, which uti-
lized the ATT North America Backbone network from The Internet Topology
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Zoo [9] as the basis for the network configuration. The network topology, as
depicted in Fig. 4, provides a visual representation of the structure and inter-
connections of the various network components. It showcases the arrangement
of links within the simulated network. To introduce additional functionality and
explore specific scenarios, a Mobile Edge Computing (MEC) server was strategi-
cally placed between the ORLD and CLEV nodes. The MEC server served as a
centralized computing platform that brought computing resources closer to the
network edge, enabling efficient processing and analysis of data generated within
the network. In this particular setup, the MEC server had a direct connection
between the ORLD and CLEV nodes, facilitating seamless communication and
data exchange between them. The choice of the ATT North America Backbone
network from The Internet Topology Zoo [9] was driven by its complexity and
size, which allowed for a more realistic simulation of network traffic. By utiliz-
ing a network with a sufficient number of components and diverse connections,
researchers and analysts could better understand and evaluate the performance,
scalability, and security aspects of network systems under various conditions.

5.1 Executing the Attack

Once the network setup is complete, the testing scenario involves a sequence of
events. First, a ping request is sent from the NY54 node, which represents an
external connection, to the MEC (Multi-Access Edge Computing) server. This
initial interaction confirms the connectivity between these nodes.

Following the establishment of the network, servers within the network begin
initiating HTTP connections randomly across the infrastructure. Approximately
80% of the servers are engaged in requesting HTTP resources at any given time.
This random traffic generation simulates unpredictable and legitimate network
activity, replicating real-world usage patterns.

After a period of 30 s dedicated to legitimate traffic flows, the attack
commences. Multiple zombie servers, compromised devices controlled by the
attacker, start streaming video traffic over TCP (Transmission Control Protocol)
connections to each other. TCP is deliberately chosen for this attack to obscure
the nature of the traffic being transmitted. To further obfuscate the content, the
videos are streamed over HTTPS (Hypertext Transfer Protocol Secure), making
it difficult to distinguish the packets as video traffic based on their packet types.

Each zombie server strategically selects its destinations, ensuring that the
attacking video packets pass through, but do not end at, either the ORLD or
CLEV nodes. This strategic routing aims to block external connections to the
MEC server. Consequently, the switches connecting these networks experience
congestion due to the significant volume of data flowing through each link.

The attack is executed in three phases, with a third of the zombie servers
initiating the attack during each phase. This staged approach helps distribute
the attack traffic and potentially evade detection or mitigation measures.

Throughout the entire process, packet headers are captured using Wireshark,
a widely used network protocol analyzer. Despite the use of HTTPS, which
encrypts the content of the packets, the packet headers remain visible. Therefore,
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in this scenario, the network would only have access to information contained in
the packet headers to analyze and identify the attack.

Fig. 5. Average Latency Over Time

5.2 Attack Impact

After running the network for 5 min, the ping round trip times were collected
and plotted in Fig. 5. The moving average was plotted as a line. As the attack
continues, the ping increases on average. During the first stage, the average
ping remained around 50–100 ms. Once the zombie servers began attacking, the
average increased to about 500 ms. After the second phase, the ping increases
to about 800 ms. Finally, during the third phase the ping increases and hovers
around 1500 ms.

6 Crossfire Detection

Detecting a crossfire attack directly can be difficult. Since HTTPS encrypts the
packets, the contents of the packets cannot be inspected. Only the headers of
each packet are able to be inspected. Therefore, each model created only analyzes
the headers of the packets and makes decisions based on those headers.

After running the experiment described in Sect. 5, packet headers were col-
lected for every packet sent on the network. About 30,000 packets were collected.
After the packets were collected, the data was aggregated. First, a standard Anal-
ysis of Variance (ANOVA) was conducted. After conducting the initial ANOVA.
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Table 1. Initial ANOVA Full Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 176.18978 12 352.3796 <.0001

Full 408.10276

Reduced 584.29254

Table 2. Initial ANOVA Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq

Intercept Unstable −6.18762050 89752.103 0.00 0.9999

tcp.window size 0.00057399 8.7147e-5 43.38 <.0001

tcp.len −0.00051130 0.0003489 2.150 0.1428

tcp.stream −0.08826740 0.0343179 6.620 0.0101

tcp.flags[0x00000010] Unstable −15.9381260 89752.102 0.000 0.9999

tcp.flags[0x00000011] Unstable 9.78867015 116551.53 0.000 0.9999

tcp.flags[0x00000012] Unstable 12.0348821 117261.45 0.000 0.9999

tcp.flags[0x00000018] Unstable −15.0194920 89752.102 0.000 0.9999

tcp.analysis.ack rtt −63.1695000 7.2849454 75.19 <.0001

frame.time relative 0.11828939 0.0393738 9.030 0.0027

frame.time delta 1.88407238 1.1200274 2.830 0.0925

tcp.time relative 25.6221427 3.1284271 67.08 <.0001

tcp.time delta 3.24388117 4.7044249 0.480 0.4905

6.1 Analysis of Variance (ANOVA)

An analysis of variance was first performed with all the data. The initial ANOVA
gave the results depicted in Table 1 and Table 2. As shown, the largest predictor
of adversarial packets were the window size, the ack rtt, and the time relative.

After running the original ANOVA, we removed any non-significant factors to
achieve the following ANOVA shown in Table 3 and Table 4. The test as a whole
is able to determine whether or not a packet is adversarial based on the window
size, ack rtt, frame time, and tcp time. This model may not be practical given
a node that consistently has a significant delay. If a node has significant delay,
all packets may be marked as adversarial. Additionally, during an attack, the
delay of packets through the congested links may present a problem where the
model detects all packets as adversarial and blocks essentially all connections,
worsening the effects of the attack.
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Table 3. Revised ANOVA Full Model Test

Model -LogLikelihood DF ChiSquare Prob>ChiSq

Difference 105.98066 4 211.9613 <.0001

Full 478.31188

Reduced 584.29254

Table 4. Revised ANOVA Parameter Estimates

Term Estimate Std Error ChiSquare Prob>ChiSq

Intercept −13.9094560 3.0268445 21.120 <.0001

tcp.window size 0.000396320 6.8154e-5 33.810 <.0001

tcp.analysis.ack rtt −38.0040650 3.7611744 102.10 <.0001

frame.time relative 0.01735100 0.0023833 53.000 <.0001

tcp.time relative 15.8395049 2.3819797 44.220 <.0001

6.2 Neural Network

A neural network was also created based on all the criteria. The diagram for
the neural network is drawn in Fig. 6. The confusion matrices for training and
validation data are pictured in Table 5 and Table 6. The neural network correctly
predicted 99.82% of legitimate packets and 95.3% of attack packets correctly in
the training data. In the validation data, the model correctly identified 99.81%
of legitimate packets and 95.88% of attack packets in the validation data. An
additional neural network was created with 25 nodes by 2 layers, which yielded
negligibly better results. The second model only yields an extremely limited
increase. Tables 7 and 8 Since these devices are IoT devices and have limited
processing power, keeping the neural network model as minimal as possible is
ideal. Therefore, using a smaller model for IoMT devices is the better approach.

Fig. 6. Neural Network Diagrams Using Hyperbolic Tangent Nodes
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Table 5. Confusion Matrix for Training
Data for 1 × 3 neural network

Predicted

Adversarial Benign

Actual Adversarial 19206 33

Benign 242 4928

Table 6. Confusion Matrix for Validation
Data for 1 × 3 neural network

Predicted

Adversarial Benign

Actual Adversarial 6373 12

Benign 72 1679

Table 7. Confusion Matrix for Validation
Data with 2 × 25 neural network

Predicted

Adversarial Benign

Actual Adversarial 19308 28

Benign 140 4933

Table 8. Confusion Matrix for Validation
Data with 2 × 25 neural network

Predicted

Adversarial Benign

Actual Adversarial 6375 10

Benign 31 1720

7 Conclusion

As the internet continues to evolve and become increasingly essential to daily
lives, the threat of cyber attacks, particularly Denial of Service (DoS) attacks,
looms large. The rise of Internet of Things (IoT) devices, including Internet of
Medical Things (IoMT) devices, has further exacerbated the need for robust
security measures to protect critical networks, such as those in hospitals and
healthcare systems. The advent of Mobile Edge Computing (MEC) servers has
addressed some of the challenges posed by the growing number of IoT devices by
processing data near the edge of the network, reducing the strain on the central
network infrastructure. However, this progress has also introduced new vulner-
abilities that can be exploited by attackers. One of the emerging threats is the
crossfire attack, a sophisticated and difficult-to-detect type of DoS attack. The
crossfire attack targets a specific geographical region by flooding low-intensity
traffic from multiple devices, causing congestion and disrupting network oper-
ations. Traditional DoS detection and mitigation protocols struggle to identify
and counter this type of attack effectively.

While Software Defined Networks (SDNs) have been proposed as a promis-
ing mitigation technology for DoS attacks, they are not without their vulnera-
bilities and limitations. Therefore, it is crucial to explore multiple approaches
and strategies to protect critical servers from these evolving threats. The secu-
rity concerns surrounding IoT and IoMT devices must be addressed to prevent
potential intrusions and compromises. The low cost and default login credentials
of many IoT devices make them attractive targets for attackers. Robust security
measures and safety protocols should be implemented to ensure the integrity
and reliability of these critical devices. Moving forward, the adoption of moving
target defense (MTD) strategies, such as route and address mutation, and the
use of obfuscation techniques can enhance network security and make it more
challenging for attackers to carry out crossfire attacks. Rerouting-based defenses
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and the deployment of intrusion detection systems that inspect packet headers
can also contribute to the detection and prevention of adversarial packets. As the
number of interconnected devices continues to grow, with an estimated 60 billion
devices expected to be connected by 2025, the importance of securing critical
servers and networks cannot be overstated. Ongoing research and collaboration
among cybersecurity experts, network administrators, and device manufacturers
are essential to developing effective defense mechanisms and ensuring the unin-
terrupted operation of vital services, particularly in healthcare settings. Over-
all, protecting critical servers from DoS attacks, including the evolving cross-
fire attack, requires a multi-faceted approach that combines advanced technolo-
gies, robust security protocols, and proactive defense strategies. By addressing
these challenges and investing in cybersecurity measures, we can safeguard the
integrity and reliability of the Internet and its essential services for the benefit
of all.
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Abstract. The tomato has a high market value and is one of the vegetables grown
in themost significant quantity globally. Tomato plants are susceptible to diseases,
which can negatively impact the fruit’s yield and quality. Detecting these illnesses
at an early stage and their accurate identification is necessary for successfullyman-
aging diseases and reducing losses. In recent years, deep learning methods such
as convolutional neural networks (CNNs) have demonstrated significant promise
in identifying plant diseases from images. This research suggested a CNN-based
strategy for detecting tomato leaf diseases using transfer learning. Transfer learn-
ing enables us to enhance the performance of our disease detection model using
a smaller dataset by leveraging pre-trained CNN models that have been trained
on large datasets. The proposed transfer learning model through Resnet50 and
Inception V3 is effective by applying it to a dataset of tomato leaf images. As a
result, a high level of accuracy is achieved and could be indulged for practical
applications in agriculture.

Keywords: Resnet50 · Inception V3 · Transfer Learning · CNN · Tomato leaf
disease · deep learning

1 Introduction

Tomato plants are vulnerable to various diseases that can severely harm the plant’s leaves,
fruit, and overall health. These diseases may result from multiple causes, including bac-
terial, fungal, and viral infections, nutrient deficiencies, and extremeweather conditions.
Some common tomato leaf diseases include early blight, late blight, Septoria leaf spot,
bacterial spot, and tomato yellow leaf curl virus, which can cause symptoms like yellow-
ing and wilting of leaves, brown spots on leaves, stem cankers, and stunted growth [1].
Farmers can take preventative measures such as proper plant spacing, adequate watering,
and regular sanitation practices to minimize the risk of tomato leaf disease. Additionally,
early detection and timely treatment with suitable fungicides or bactericides can help
control the spread of these diseases and ensure a healthy tomato crop.
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A significant agricultural advancement is automated systems for detecting tomato
diseases by analyzing tomato leaves. Detecting and treating tomato diseases promptly
and efficiently can positively impact crop productivity and quality. However, identifying
diseases in tomatoes can be challenging for experienced agriculturists and pathologists
may struggle to detect illnesses by observing diseased leaves due to the vast range of
crops grown [2]. In countrified areas of blossoming countries, visual inspection is still the
primary method of disease detection, and farmers may have to make time-consuming
and expensive trips to experts’ offices. Therefore, deep learning techniques, such as
convolutional neural networks (CNNs), have become famous for image classification
tasks, including detecting plant leaf diseases. They offer a more efficient and cost-
effective solution to identifying and treating tomato leaf diseases.

Convolutional neural network (CNN) offers themost promising approach for disease
detection to learn, decide and discriminate features from data automatically. The model
consists of multiple convolutional layers that realize various elements from the input
data. These models can be applied to detect plant diseases with high accuracy. However,
deep learning has limitations as it requires significant data to train the network effectively.
Performance may suffer if the dataset is insufficient in size and does not contain enough
images for the model to learn from. As such, we can use transfer learning which offers
numerous advantages, one of which is that it doesn’t demand a large volume of data
to train the network effectively. Transfer learning enhances the learning process by
leveraging the knowledge gained from a previously learned task, allowing for knowledge
transfer to the current task [4]. Neural networks also used in many research studies have
utilized Transfer learning in disease detection strategies diagnose the human diseases
as well, approving to be a beneficial technique [5]. Some of the advantages of adopting
Transfer learning for disease detection include the following:

• Reduced training time: Reusing pre-trained models can significantly reduce the time
necessary to train a new model. It is one of the primary benefits of transfer learning
that comes in particularly handy in situations where a limited quantity of labeled data
can be used for training.

• Improved generalization: Model’s generalization performance by capitalizing on the
information gained from a pre-trained model. It can improve performance on new
data that has not been seen before.

• Reduced computational cost: The cost of training a new model from inception by
beginning with a model that has already been trained and using that model as a
starting point for the learning process. It may be beneficial in settings with limited
resource access, such as mobile devices or integrated systems.

• Robustness: Because pre-trained models have already been trained on various large
datasets, they are more resistant to overfitting and have greater robustness overall.
Learning through Transfer enables this robustness to be transferred to the newmodel,
which ultimately results in the new model being more dependable and accurate.

• Adaptability: For various applications, such as picture classification, object detection,
natural language processing, etc. Because of their adaptability, machine algorithms
can be applied in multiple contexts.

• Improved accuracy: Improve the accuracy of disease detection models by enabling
the model to leverage the knowledge acquired from pre-trained models. This method
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allows the model to utilize the information available better. Transfer learning can
contribute tomore accurate predictions, thereby reducing the number of false positives
and negatives.

In this study, we identify tomato illnesses using two deep-learning models.

1.1 Inception v3

Google researchers in 2015 brought into the limelight Inception v3, a convolutional
neural network designed to classify images and features in a deep neural network with
over 23 layers. The architecture of the model is given in Fig. 1.

Inception v3 uses a unique module called the Inception module, which consists of
multiple convolutional filters with different sizes applied to the same input, allowing for
efficient feature extraction at different scales [6]. It also incorporates batch normalization
and regularization techniques to enhance the accuracy of the architecture.

Inception v3has accomplished benchmark performance on several image recognition
tasks. Additionally, it has a relatively small model size compared to other deep neural
network architectures, making it efficient to train and deploy.

Fig. 1. Inception v3 architecture

1.2 Resnet 50

Researchers from Microsoft devised the ResNet50 convolutional neural network archi-
tecture first used in the company’s research in 2015. It is a subset of the ResNet (Residual
Network) family of deep neural networks and was developed to enhance the training of
very deep neural networks withmore than 50 levels [6]. ResNet50 uses skip connections,
allowing information to flow from earlier layers to the last layerswithout passing through
any non-linear transformations. This makes it much simpler to train very deep networks.
It has attained state-of-the-art performance on various image recognition tasks, such as
recognizing objects and parsing scenes, among other image recognition tasks. In addi-
tion to this, it has been demonstrated to be effective in transfer learning, which is the
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process whereby a model that has been pre-trained can be fine-tuned on a new task using
relatively small quantities of data. The architecture of Resnet50 is described in Fig. 2.

Fig. 2. Resnet50 Architecture

Using these two pre-trained models, train them on the tomato leaf dataset once it has
been preprocessed, and then assess how well the trained models perform on the image
assessment set. The effective measures, such as accuracy, precision, recall, and F1-score,
will be computed to determine how successful the model is. Then, compare these two
models to the remaining four models to choose which models have the most outstanding
performance out of the six.

2 Related Works

The author primarily emphasizes creating a CNN model that can differentiate between
five distinct diseases that can affect tomato leaves. They utilized a dataset containing
1,583 images of healthy tomato leaves and images of leaves that were affected by these
diseases according to the research findings, a CNN model that included data augmenta-
tion obtained an accuracy of 98.9%, outperforming a control group that used amodel that
did not have data augmentation, which received an accuracy of 91.2%. The author offers
insightful recommendations on the application of CNNs to diagnose diseases affecting
tomato leaves and emphasizes the significance of data supplementation techniques for
enhancing the model’s overall performance [1].

Kurup et al. investigate how capsule networks can be used to classify plant varieties
and detect plant diseases. They introduced a novel method that improves the accuracy
of plant disease classification and plant species recognition by combining capsule net-
works and transfer learning. The authors describe the architecture of their suggested
model, which is based on the well-known Convolutional Neural Network (CNN) archi-
tecture, ResNet-50. The authors have utilized Transfer learning by seeding the model
with weights that have already been pre-trained using the ImageNet dataset. The algo-
rithm is then fine-tuned on two different plant datasets, namely PlantVillage and Flavia,
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to classify plant diseases and recognize plant species. The capsule network-based model
outperformed other state-of-the-art techniques by achieving an accuracy of 98.95% for
plant disease classification on the PlantVillage dataset. The suggestedmodel achieved an
accuracy of 96.27% when it came to recognizing plant species using the Flavia dataset
[2]. A pre-trained CNN model, the VGG16 model, has been demonstrated to perform
admirably when given the image classification task. They describe how they got rid of
the model’s last fully connected layer and used the layer’s output before it as input to
the SVM classifier has fewer layers. An overall accuracy of 95.8% was achieved on the
authors’ dataset, which the authors describe as promising results[3]. Followed by various
researchers, the Inception-v3 model is used in image categorization tasks. They describe
the training and testing process and the metrics used to evaluate the performance of their
method and fine-tuned model with the tomato leaf dataset [4].

To identify tomato diseases, the authors applied various state-of-the-art convolu-
tional neural networks (CNNs) classification network architectures, such as ResNet18,
MobileNet,DenseNet201, and InceptionV3, to a total of 18,162 plain tomato leaf images.
They describe the process of training and testing, as well as the evaluation metrics that
were used to evaluate the performance of their method [6]. A deep learning-based tech-
nique with Inception V3 architecture is employed for detecting potato leaf diseases. The
accuracy of the suggested approach for detecting five different types of potato leaf dis-
eases was 95.12%. The authors propose that this method can be used for early detection
and monitoring of potato leaf diseases, which can help reduce crop losses and increase
agricultural productivity [8].

Ahmad et al. suggest a method for detecting diseases that affect tomato leaves
using pre-trained convolutional neural networks. Four distinct models of CNNsVGG16,
ResNet50, InceptionV3, and Xception are used in addition to data augmentation strate-
gies to expand the scope of their information. The authors analyzed the performance of
their model in terms of accuracy, precision, recall, and F1 score, and they compared it
to the performance of other techniques that are considered to be state-of-the-art. They
discovered that the Xception model achieved the highest level of precision, which was
99.6% [9].

Agarwal et al. suggest a method for detecting tomato leaf diseases called ToLeD that
makes use of a convolutional neural network to hypothesize that their technique can be
adapted to identify a wider variety of plant diseases. Because the dataset that was used
in the research is on the smaller side, the generalizability and scalability of the technique
may be compromised as a result [10].

Traditional deep learning models have been trained over various plant disease eval-
uations. When Transfer learning in conjunction with deep neural networks is involved,
it has shown a par improvement in diagnosing leaf diseases in grape and mango plants.
They used two pre-trained models, namely Inception V3 and ResNet50, and then fine-
tuned them using a dataset consisting of grape and mango leaf images. Their approach
had an accuracy of 97.4% when detecting three different diseases that can affect grape
leaves and 94.6% when detecting two other diseases that can affect mango leaves [11].

A technique for detecting tomato plant diseases using Transfer learning with syn-
thetic images generated by a conditional generative adversarial network is proposed by
Abbas et al. The authors suggest that their method can be used for the early detection
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and monitoring of tomato plant diseases, which can help increase crop yields and reduce
losses. They also suggest expanding their approach to identify other plant diseases uti-
lizing synthetic images generated by C-GAN. It is possible for the synthetic images
included in the dataset to introduce noise or biases, both of which can harm the model’s
performance. The dataset may be flawed if the synthetic images are not authentic or have
artifacts. Training is necessary for both the C-GAN and the classifier models, which are
parts of the technique. It may cause the method to become more complicated and call
for additional computational resources and training time [12].

The paper proposes a novel method called aGROdet, designed to detect plant dis-
eases and estimate leaf damage severity within an Agriculture Cyber-Physical System
implemented at the edge platform of IoT systems. A convolutional neural network-based
model trained on large publicly available datasets achieves over 97% accuracy in ini-
tial experiments. The study also addresses damage estimation challenges, such as leaf
shadows and surrounding areas [17].

The article emphasizes the significance of early detection and disease severity esti-
mation for effective disease management and prevention. The proposed solution sug-
gests a fully automated approach utilizing deep neural networks, specifically the Mask
R-CNN network, for disease detection and localization in leaf images. The method
employs image augmentation and transfer learning to enhance precision and save time.
The approach is applicable to various imaging devices, such as smartphone cameras or
low-altitude unmanned aerial vehicle (UAV) cameras. It has been demonstrated using
apple leaves as a case study [18].

Table 1. Types of diseases in tomato plant

S.No Type Plant Diseases Number Of Images
(Train + Valid)

1 Healthy Tomato Healthy 1926 + 481

2 Diseased Bacterial Spot 1702 + 425

3 Early Blight 1920 + 480

4 Late Blight 1851 + 463

5 Leaf Mold 1882 + 470

6 Septoria Leaf Spot 1745 + 436

7 Two Spotted Spider Mites 1741 + 435

8 Target Spot 1827 + 457

9 Yellow Curl Virus 1961 + 490

10 Mosaic Virus 1790 + 448
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3 Dataset

Each image in the Plant Village dataset is associated with a label indicating the type of
plant and the type of disease or pest. The dataset covers over 20 crops, including tomato,
potato, apple, grape, and soybean, and includes more than 80 different plant diseases
and pests. The dataset also contains additional metadata, such as geographic location,
disease severity, and time of the year the image was captured. We separated the dataset
into ten directories with ten different tomato leaf diseases with 22,998 images. The ten
directories of tomato leaf images are taken for the project and divided into training and
validation datasets. The training dataset has 18403 images, and the validation dataset
has 4595 images belonging to 10 classes. The details is depicted in Table 1.

4 Methodology

4.1 Resnet50

The dataset was obtained from Kaggle and is named plant village. Before training the
model, Images are preprocessed to ensure they were in a standard format. Firstly, resized
the images to 224x224 pixels to reduce the computational complexity of themodel. Then
converted the images to RGB format to ensure they were in the same color space as the
pre-trained ResNet 50 model. Lastly, normalization of the pixel values is done to ensure
they were between 0 and 1, which helped the model converge faster during training.
To further improve the model’s performance and prevent overfitting, we augmented
the dataset using various data augmentation techniques such as random rotation, flip,
and zoom. This helped increase the dataset’s size and improve the model’s ability to
generalize to new data.

Transfer learning is employed to fine-tune the pre-trained ResNet 50 model on the
tomato disease dataset. Frozing the initial layers of the model and retraining the last few
layers to adapt to the new dataset. This approach allowed to leverage the pre-trained
weights of the ResNet 50 model, which were learned from millions of images from the
ImageNet dataset, and apply them to our tomato disease detection task. During train-
ing, experimentation with different hyperparameters, such as batch size and optimizer,
has been done to find the optimal combination with the best performance. Various 32
batch sizes and Stochastic gradient descent (SGD) optimizers are used for the proposed
model’s best hyperparameters. Finally, the model’s performance is evaluated on a hold-
out validation set by calculating accuracy, precision, recall, and F1-score metrics. This
helped to assess the model’s ability to detect tomato diseases accurately and efficiently.
By evaluating the model’s performance on a separate validation set, an evaluation on
howwell the model would perform on new, unseen data could be justified. The proposed
Transfer learning architecture for Resnet is shown in Fig. 3.
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Fig. 3. Proposed Resnet50 model with Transfer Learning

4.2 Inceptionv3

To build a tomato disease detection model using Inceptionv3, the first step is to collect a
large dataset of tomato images [13–16]. This dataset should include images of healthy
tomatoes and tomatoes affected by various diseases, such as bacterial spots, late blight,
and early blight. The dataset should contain various tomato images captured in different
lighting conditions and angles. The images can be obtained from multiple sources, such
as online image repositories or by taking pictures of actual tomatoes. Once the dataset is
done, the images should be preprocessed to ensure consistency and reduce noise in the
data. The images should be resized to a standard size, such as 224x224, to ensure that all
images have the exact dimensions. The pixel values should be normalized to provide the
input data has a similar range of values. Image enhancement strategies, including random
rotations, flips, and other transformations, may be utilized to expand the dataset’s size
and enhance the model’s performance. Separating the dataset into a training group and
a validation set is necessary.

It has been demonstrated that the Inceptionv3 architecture is a robust convolutional
neural network (CNN) that is capable of achieving state-of-the-art outcomes when it
comes to image classification tasks. Convolutional layers, pooling layers, and ultimately
connected layers are some of the types of layers that can be found in the deep neural
network known as Inceptionv3. Because the architecture was created to process images
of various sizes and resolutions, it is particularly well-suited for detecting tomato dis-
eases. To categorize the input picture into a variety of tomato diseases, the final layer of
Inceptionv3 should be removed and replaced with a global average pooling layer, which
should then be followed by a fully connected layer that uses softmax activation. Figure 4
Represents the Inception v3 model over transfer learning.
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The optimization technique Root Mean Squared Propagation (RMSProp) with a
batch size of 32 can be used when training the model. Categorical cross-entropy loss is
the objective function that the algorithm is trying to achieve. It is recommended that the
model be trained for a total of ten epochs, and early stopping can be utilized to avoid
overfitting.

To determine how well the trained model can effectively identify tomato diseases,
it should be validated using a dataset that is kept separate from the training dataset. The
effectiveness of the model can be evaluated based on several different metrics, including
accuracy, precision, recall, and the F1 score.

Fig. 4. Proposed Inceptionv3 model with Transfer Learning

5 Results

A Comparison of accuracy and loss of over ten epochs of three models, Resnet50, Alex
net, and Lenet has been performed. The graph shows that Inceptionv3 has the highest
validation accuracy (0.9535) while Alex net has the lowest (0.5959). However, Resnt50
also had the lowest validation loss (0.1400), while Alex net had the highest (1.1171).
Resnet50 performed the best in accuracy and loss, followed by Lenet and Alex net.
However, it is essential to note that further testing and analysis would be needed to
confirm this conclusion. Figure 5 Shows the graphical representation of accuracy and
loss of the proposed model across the state of art models.



302 B. S. Vidhyasagar et al.

Fig. 5. Results Comparison of Model Accuracy and Loss for Resnet50

The bar graph comparison shows that Inceptionv3 had the highest validation accu-
racy (0.9876) while Alex net had the lowest (0.5959). However, Inceptionv3 also had
the lowest validation loss (0.0414), while Alex net had the highest (1.1171). Overall,
Inceptionv3 performed the best in accuracy and loss, followed by Lenet and Alex net.
We suggest that Inceptionv3 may be the most effective model for this task. Figure 6
Depicts the performance of the proposed architecture over benchmark models.
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Fig. 6. Results Comparison of Model Accuracy and Loss for InceptionV3

6 Conclusion

Tomato plants are vulnerable to various leaf diseases. Finding these diseases early would
save the plant for better yield. The proposed transfer learning models Resnet50 and
Inception V3 show the model is effective in disease prediction. In turn, it opens the
door to numerous potential applications in agriculture. Transfer learning is on the run,
which reduces the training time of a model from scratch as well improves the models’
performance. The model can be further enhanced with GAN architectures and extended
for predicting various plant diseases.
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Abstract. One of the fastest-growing research areas is the recognition of sign
language. In this field, many novel techniques have lately been created. People
who are deaf-dumb primarily communicate using sign language. Real-time sign
language is essential for people who cannot hear or speak (the dumb and the deaf).
Hand gestures are one of the non-verbal communication methods used in sign
language. People must be aware of these people’s language because it is their only
means of communication. In this work, we suggest creating and implementing a
model to offer transcripts of the sign language that disabled individuals use during
a livemeeting or video conference. The dataset utilized in this study is downloaded
from the Roboflow website and used for training and testing the data. Transfer
Learning is a key idea in this situation since a trained model is utilized to identify
the hand signals. The YOLOv8 model, created by Ultralytics, is employed for
this purpose and instantly translates the letters of the alphabet (A-Z) into their
corresponding texts. In our method, the 26 ASL signs are recognized by first
extracting the essential components of each sign from the real-time input video,
which is then fed into the Yolo-v8 deep learning model to identify the sign. The
output will be matched to the signs contained in the neural network and classified
into the appropriate signs based on a comparison between the features retrieved
and the original signs present in the database.

Keywords: Sign Language · Roboflow · Transfer Learning · YOLOV8

1 Introduction

Facial expressions, hand gestures, and body movements are among the visual cues uti-
lized in sign language to convey meaning. Sign language is very useful for people who
have difficulty hearing or speaking. The process of converting these gestures into words
or the rudiments of formally spoken languages is known as recognition of sign language.
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Sign language, unlike spoken language, is based on concepts. There are 26 hand sym-
bols used to symbolize each letter of the alphabet in this language, although it cannot be
written. These gestures are expressed using the fingers, and words are written out.Words
or names are communicated by combining finger spellings and motions. The deaf and
dumb use twowidely used sign languages that have developed over time: American Sign
Language (ASL) and British Sign Language (BSL). A technique called full communi-
cation, which incorporates spoken language, lip reading, BSL or ASL, and both, is used
in several deaf schools. Hand gestures are a powerful tool for human communication.
There are many signs that represent complicated meanings; Therefore, it can be difficult
for persons who don’t comprehend that language to identify them. Given its increasing
popularity, gesture-based communication has been the subject of numerous studies. In
the past, sensor-based technology was primarily used for sign language interpretation.
Gloves with sensors that link to a recipient on one side are used in this method. However,
this strategy has flaws of its own. Convolutional neural networks, deep learning, and AI
have all improved signing interpretation communication in this method, to name a few
instances. Regional categories for sign language include Indian, American, Chinese,
Arabic, and so forth. To improve applications and explain them at the most basic levels,
supposedly countries also conduct research on gesture recognition, pattern recognition,
and image processing.

2 Literature Survey

The article Real-Time Voice to Sign Language Automatic Translation for the Deaf and
Dumb People view the entire approach as a pipeline in which YouTube recordings or
videos are delivered as the source and smooth films with sign language are generated
and transferred to the appropriate voice [1]. The pipeline was broken up into several
smaller sections. The first module uses NLP to process the input video (from YouTube
or any other.mp4 file) and captions, extracting the appropriate keyword from the text.
The database receives this keyword as 3D symbol signals. Additionally, sign language
is represented in the final video. This paper’s shortcoming is that it only uses a small-
scale framework and the limited gesture-based communication that is available to them.
The framework is otherwise adaptable and straightforward to employ in a study hall
environment. It features a particular module that makes it simple for the teachers to
communicate with the students during exams.

The image frames are first acquired from the video captured via OpenCV. Then
the region and the hand gestures are segmented and detected. Finally, the CNN model
developed determines the label and converts it to text [2].

The workflow of the model is divided into many phases in the study Real Time
Sign Language Recognition and Translation to Text for Vocally and Hearing-Impaired
People [3]. When a user uploads a video, it is converted into adequate frames in the first
step, which is also where the video procurement takes place. The following stage will
preprocess the acquired frames or photos after receiving these frames. In the following
step, the frames are preprocessed to get rid of the noise and blur from the video that
was shot in poor lighting or under unfavorable circumstances. By using the surrounding
entry to replace each one, the median filtering removes the noise and blurriness. The
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feature is then derived using the HOG picture processing technique in the following
stage. It extracts the feature from the image and outputs vectors, allowing the classifica-
tion of items using this shape. After features are derived, they are given into the SVM
classification, which uses the feature to put them in groups. Utilizing prepared video
and group testing video with a specified representation, the characterization supplies
the outcome. At the conclusion of the classification procedure, the proportional content
portrayal will be provided using the class names that were assigned during the training
phase. The sole drawback of this paper is that the algorithm and the picture both play
a role in how precisely differentiation is accomplished using this method. Otherwise, it
achieves the goal of higher precision and lower processing overhead and has a higher
recovery accuracy compared to conventional processing systems.

Sign Language Recognition has been separated into two levels in this research pro-
cessing level and classification [4]. Real-time images are initially sent to the processing
stage, where they are preprocessed by turning from color to grayscale to improve classifi-
cation. The image is preprocessed by adding noise as needed and eliminating undesired
noise with a median filter. The OTSU algorithm is used to extract the features from
the image, and the image is then classified into the appropriate sign by comparing it
to database images created using the augmentation technique, where each sign will be
trained from various angles to produce a classification that is more accurate and pre-
cise. SVM (Support Vector Machine), the most well-liked technique for sign language
recognition, is the classification approach applied in this case. Also, MATLAB is used
to extract the relevant text and voice when the features obtained match the features in
the database.

The author insists on a system which involves three equipment: Flex sensors for the
hand (5 fingers), Arduino UNO and LCD for the display [5]. All the flex sensors help
in collecting real-time data collected from the position of the fingers and the obtained
data is sent to Arduino UNO for processing. After the data is processed, the message is
displayed on the LCD. Commonly used sentences and phrases are represented by Mode
1, which is triggered by the combination 01000.When switching onMode-1, the desired
message can be selected from the available messages in the database/table. A particular
message is associated with each bend of the five flex sensors on the five fingers. For
instance, straightening the little finger while bending the other fingers sends the word
“Good Morning.“ Another example is saying “I’m sorry” by straightening the thumb
and little finger while bending the other three fingers. Alphabets are represented by
Mode-2, which is enabled by the sequence 01100. The desired alphabets can be selected
from the English alphabets and few special characters once Mode-2 has been activated.
With Mode 2, the user can represent words in addition to the alphabet, removing the
limitation found in Mode 1. There were only enough flex sensors to define a maximum
of 29 widely used phrases. This mode offered the ability to construct new phrases using
different alphabets. Also, it should be noted that only 29 of the possible 32 possibilities
can be used for communication.
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The studyModelling of Sign Language Smart Glove Based on Bit Equivalent Imple-
mentation Using Flex Sensor focuses on the designing a low-cost wearable for the
speech-impaired which identifies the sign-language made by the user using Machine
learning and produces audio clip for the sign-language interpreted [6]. This system
involves three modules: the Gesture sensing module, the data acquisition module and
the sign recognition and presentation module. To sense both the orientation and the flex-
ion of fingers, an economical sensing glove that does not disturb the normal functioning
of the hands was developed in Gesture sensing module. A bend sensor based on Velostat
was created to sense flexion while a three-axis MEMS accelerometer was employed to
detect hand orientation. Each bend sensor was connected in series with a 5k� resistor to
generate a voltage divider. A 5V DC supply was given to this arrangement and voltage
Vbend is measured as a function of Resistance Rbend. Each glove contains eight analogue
output lines, of which five are used to transmit bend sensor data and three are used to
provide accelerometer data to the data acquisition module. The analogue signals are
transformed into digital for further processing by the data acquisition module. The A/D
conversion procedure has been carried out using the National Instruments portable data
acquisition systems. Using trial and error, it was chosen to set the sampling rate at 50
samples per second to reduce the processing time. The Recognition and Presentation
module processes the sensor outputs and identifies the sign being made using the gloves.
There are two parts in this module: quantization of sign recognition series and sign
recognition and classification. Inside the Quantization part, once the sampled data from
the sensors is available, the Symbolic Aggregate ApproXimation (SAX) algorithm is
used to code it into symbols. In the Sign Classification part, the ability of three different
classifiers—Naive Bayes, Classification Tree, and Support Vector Machines (SVM)—
to recognise and differentiate between ISL gestures was tested. SVM gave the highest
accuracy of 93.04% and the only limitation of this system is it is only limited to 56 ISL
signs.

3 Proposed Methodology

3.1 Designing a SLR Real-Time Video-Based System Whose Purpose is to Detect
the ASL

Designing a SLR (sign language recognition) real-time video-based system involves
creating an artificial intelligence model that can accurately detect and recognize Amer-
ican Sign Language (ASL) signs from video input in real-time. The system should be
designed to work with a standard camera or webcam and process video input from any
angle or orientation. To develop such a system, we would need to start by collecting
a large dataset of sign language videos, preferably from multiple signers, with differ-
ent skin colors and backgrounds. The videos should capture different signs and hand
movements from different angles and lighting conditions. Next, the dataset would need
to be preprocessed, which includes tasks like removing background noise, segmenting
individual signs, and labeling the signs correctly. This would require using computer
vision techniques and human annotation.
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The American Sign Language Letters dataset is an object detection dataset that
includes a bounding box for each ASL letter. This project has a collection of 720 pho-
tographs take with different hand postures held at different places. As this is a tiny
dataset, manual labelling with bounding box coordinates was performed using the label-
ing software in Roboflow, and a probability of transformations function was used to gen-
erate many instances of the same picture, each with different bounding boxes. Figure 1
Represents the sample from the dataset with identified sign.

Fig. 1. Sample image from the dataset

Once this dataset is ready, the next step would be to train a deep learning model on
the data. The model would need to be optimized for real-time performance to ensure
fast processing of video input. To ensure accuracy, the model is trained with a large and
diverse set of augmented data and regularly evaluated on test data. The evaluation should
measure the model’s performance on recognizing signs in different lighting conditions,
orientations, and hand shapes.

3.2 Develop a Wrapper that can get Real-Time Video from Online Meetups

Developing a wrapper for obtaining real-time video from online meetups involves creat-
ing a software module that can interface with the video streaming capabilities of popular
onlinemeeting platforms, such as Zoom,Microsoft Teams,GoogleMeet, or other similar
platforms. Thewrapper would be responsible for capturing and processing video streams
from online meetups in real-time, allowing developers to build additional functionalities
on top of the video streams.

Thefirst step in developing thewrapperwould be to understand theAPIs (Application
Programming Interfaces) provided by the onlinemeeting platforms. TheseAPIs typically
provide access to video streams, audio streams, and other data related to onlinemeetings.
The wrapper would need to utilize these APIs to capture the video stream from the online
meetup platform.
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Next, the wrapper would need to process the video stream in real-time. This could
involve tasks such as decoding the video stream, extracting frames, and performing
image processing operations like resizing, cropping, and color correction. Real-time
processing would be crucial to ensure minimal latency and smooth performance.

Once the video stream is processed, thewrapper could provide various functionalities
depending on the intended use case. For example, it could perform real-time video
analysis, such as face recognition, emotion detection, or object detection, to extract
meaningful information from the video stream. It could also overlay additional visual
elements, such as annotations, graphics, or subtitles, on top of the video stream to enhance
the user experience.

3.3 Recognize the Hand Motions from the Acquired Image Frame

Yolo-v8 is one of the currently leading models in this industry. YOLO can identify
hand gestures in image frames because it uses deep neural networks to locate objects
in real-time. Image acquisition is followed by pre-processing to assure image quality,
object recognition with YOLO, hand gesture classification using further machine learn-
ing approaches, post-processing to fine-tune results, and output of the recognised hand
gestures. The quality of the training data, themodel architecture, and the hyperparameters
all have an impact on how accurate the hand motion detection system is. The reliability
and sturdiness of the hand motion recognition system must be ensured through careful
examination and testing. Also, to extract the exact sign from the frame or the input video,
it removes the background and precisely captured the hand from the camera input during
real time sign language detection.

Even though Yolo-v8 was not produced by the original YOLO writers, YOLO v8
is believed to be quicker and lighter, with accuracy comparable to YOLO v5, which is
widely regarded as the quickest and most accurate real-time object recognition model.
85% of the enhanced photos were used for training, with the remaining 15% set aside
for testing and validation. The model was trained for 64 epochs with the YOLOv8
pre-trained weights using transfer learning.

3.4 Translate the Picture to Textual Content

Images of sign language can be converted into text using the YOLO object identification
technique and the spellchecker library. The spellchecker library is used to process the
labels produced byYOLO, and it can detect and rectify any potential spellingmistakes in
the text. As a result, sign language gestures can be converted intowritten text and themes-
sage expressed by the sign language image can be represented textually. The algorithms
and dictionaries used in the spellchecker library assist in recommending adjustments
depending on context, ensuring that the final literary material is grammatically and lin-
guistically accurate. It is easier for a larger audience to access and comprehend because
to this combined use of YOLO and the spellchecker library.
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Fig. 2. Sample test

4 Results

4.1 Mean Average Precision

Mean Average Precision (mAP) at 50 is a commonly used evaluation metric for object
detection models, including those based on YOLO (You Only Look Once) algorithm.
It measures the accuracy of the model in detecting objects across different categories
(e.g., person, car, bicycle) at a certain intersection over union (IoU) threshold of 0.5. The
mAP@.5 score of the created model is 95.7%. Figure 2 represents the predicted sample
test results.

4.2 Confusion Matrix

In object detection with YOLO (You Only Look Once), the confusion matrix can be
used to evaluate the performance of the algorithm on a test set of images. The confusion
matrix for object detection with YOLO is a table that summarizes the predicted and
actual labels for each object in the test set. Figure 3 depicts the ConfusionMatrix plotted
for each character.

4.3 Precision-Recall Curve

A precision-recall (PR) curve is a graphical representation of the performance of a
binary classification algorithm that measures the trade-off between precision and recall
at different threshold settings. Figure 4 illustrates the Precision-Recall (PR) curve for
our model.

4.4 F1-Confidence Curve

In The F1-Confidence curve is a plot of the F1 score as a function of the confidence
threshold for a binary classification model. The confidence threshold is the minimum
probability required for the model to make a positive prediction. Figure 5 depicts the
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Fig. 3. Confusion matrix plotted for each character.

Fig. 4. PR Curve for our model.

F1-Confidence curve, the highlighted one showing the F1-Confidence calculated for 64
epochs. The F1 score is a measure of a model’s accuracy that considers both precision
and recall. It is defined as the harmonic mean of precision and recall:

F1 score = 2 * (precision * recall) / (precision + recall).

4.5 Challenges Faced

The fact that themodel performs admirablywith such a tinydataset cannot be overlooked!
Even in fresh locationswith different hands, it detectswell. There are a couple constraints
that can be easily overcome by just providing more data to train on. With a few tweaks
and a lot more data, we anticipate having a functional model that can be extended far
beyond the ASL alphabet.
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Fig. 5. F1-Confidence curve after 64 epochs

5 Conclusion

Video captioning based on sign language is a crucial solution for improving accessibility
for individuals who are deaf or hard of hearing, providing them with equal access to
information, education, and multimedia content. With accurate and synchronized cap-
tions that convey sign language expressions, video content becomes more inclusive and
promotes effective communication, bridging gaps between sign language users and non-
sign language users in various settings. Continued advancement and promotion of sign
language video captioning can create a more inclusive world, fostering social inclusion
and enhancing communication for individuals with hearing loss.
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Abstract. Human Activity Recognition (HAR) integrates ambient
assisted living (AAL), leading to smart home automation for monitor-
ing activities, healthcare, fall detection, etc. Various researchers have
proposed a single-resident HAR system for ambient-sensor based smart
home data, which is simple, and single-resident is not always the case.
Multi-resident recognition is slightly complex and time-consuming. The
researchers have made several efforts to generate benchmark datasets,
such as CASAS, ARAS, vanKasteren, etc., for baseline comparison and
performance analysis. However, these datasets have certain limitations,
such as data association, annotation scarcity, computational cost, and
even with data collection itself. This paper profoundly analyzed these
limitations and manually clustered the activity labels to record the
improvement in the performance of the system in terms of both recogni-
tion rate and computational time on the ARAS dataset.

Keywords: Human Activity Recognition · Smart home ·
Automation · Multi-Resident Activity

1 Introduction

Human Activity Recognition (HAR) is a system that is built to monitor human
activities, especially the elderly person living alone in the house. The HAR inte-
grates ambient assisted living (AAL) into smart environments such as smart
homes to recognize the activities automatically [1]. The AAL uses simple perva-
sive, ubiquitous sensors with artificial intelligence (AI) to connect smart devices
with Internet-of-Things (IoT). The sensors used in the AAL are categorized into
vision sensors, ambient sensors, wearable sensors/devices, and smartphones for
monitoring the simple, complex, and postural transitions [2]. The smart home
environment with AAL facility has been primarily used for activity monitoring,
healthcare, fall detection, sports tracking, etc. [3]. The vision-based has specific
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issues with the person’s privacy while monitoring and requires installation in
all the actuated areas. Wearable and smartphone devices must be worn for the
entire day, which is difficult for the elders. Sometimes, the elders may forget to
carry or recharge the battery due to age or other diseases [4]. Recently, the HAR
with ambient sensors has attracted most researchers as it is non-invasive and
can indirectly alert the family members or caretakers in case of any anomaly in
the residents’ activity [5].

Various researchers have proposed a HAR system in the last decade that
primarily focuses on single resident activity recognition [6]. The single-resident
activity is simple and easy to detect. Many state-of-the-art machine and deep
learning algorithms have shown promising results for the single-resident activity
in the AAL environment [1,3,6]. However, the smart home environment may
have more chances for multi-residents such as friends, neighbors, pets, etc., and
the single-resident is not always the case. Multi-resident activity recognition in an
ambient sensor environment is slightly complex and needs certain improvements
in activity recognition and detection. Researchers have developed multi-resident
activity recognition benchmark datasets for further research and implementa-
tion. However, these datasets have certain limitations in data collection, anno-
tation scarcity, data association, computational cost, etc. This paper solves such
a challenge of the benchmark dataset by clustering the activity labels based on
the nature of the activity. Experimentation has been carried out by utilizing the
ARAS [7] - an ambient sensor-based multi-resident activity recognition dataset.

The remaining sections of the paper are organized as follows. Section 2 deals
with the motivation of the challenges discovered in the benchmark datasets.
Section 3 discusses the proposed clustering of activity labels, Sect. 4 demonstrates
the experimentations and results using the clustered dataset, and Sect. 5 con-
cludes the paper.

2 Motivation

In the last decade, many machine and deep learning techniques have been
employed for multi-resident human activity recognition (MRHAR) in an ambi-
ent sensor smart environment [8,9]. However, MRHAR has certain limitations
that need to be addressed for better improvement in the system performance.
The limitations are discussed in subsections as follows.

2.1 Dataset Collection

Training and evaluating deep or machine learning techniques require large data
samples. Collecting ambient sensor data on a large scale is costly and time-
consuming. In the case of MRHAR, the cost and time will be multi-fold as it
involves more sensors to collect the activities in a smart home environment. In
the last decade, researchers have spent enormous time and effort collecting and
compiling several benchmark datasets as mentioned in the review works [8,9]
using object and ambient sensors for the MRHAR system as follows.
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ARAS Dataset. [7] - Two pairs of residents in two smart Houses, A and B,
perform 27 activities. House A contains two males, while House B is a married
couple. The dataset reflects on the natural behaviors of the residents to 30 days
of recording for each house. Each house contains 30 days of recording, and each
day consists of 22 * 86,400 instance matrix results in 30 * 22 * 86400 instances.
The first 20 columns are the binary sensor values that say the state of the sensor,
either fired or not. Columns 21 and 22 represent the activity label of residents 1
and 2. Annotation of the activities was achieved by the residents using a simple
graphical user interface (GUI) placed in the most convenient places of the houses.

CASAS Dataset. [10]- The Centre for Advanced Studies in Adaptive Systems
has collected several scripted and unscripted multi-resident activity recognition
datasets. “twor.2009”, “twor.summer.
2009”, “twor.2010”, “Tulum,” “tulum2”, and “Cairo” are unscripted, and “Mul-
tiresidentADLs” is a scripted dataset of CASAS. Activities are annotated by
recording the start and end time of the activity via a handwritten diary. The
data are delimited in a specific format for recording, and it requires preprocess-
ing before the feature engineering process. Data collection uses 14–21 ambient
sensors to carry out 11 activities.

VanKasteren Benchmark. [11] - One resident in three smart houses was consid-
ered for the data collection. It has 14–23 different sensors to collect data and
demonstrate approximately 10–16 activities. The dataset is available for 25 days
but not collected continuously. Activities are annotated using the handwritten
diary and a Bluetooth device.

UJA Dataset. [12] - The dataset is collected in the UJAml (University of
Jaen Ambient Intelligence, Spain) Smart lab that consists of Single and Multi-
Occupancy (SaMO) data. The dataset includes a new generation of sensors with
heterogeneous data as a source of information to provide an excellent tool for
addressing multi-occupancy in smart home environments. Researchers have uti-
lized different sensor technologies such as binary sensors in objects space, prox-
imity between the inhabitant, and Bluetooth Low Energy, etc. dataset has 10
days of single occupancy data and over 9 days of multi-occupancy data. It con-
tains 25 different types of activities grouped into 7 categories.

SDHAR-Home Dataset. [13] - The dataset has been developed through non-
intrusive technology in the multi-resident smart home environment. Set of non-
intrusive sensors integrated with activity wristbands to capture the events in
the house, positioning the user through triangulation using beacons respectively.
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Two months of uninterrupted measurements were obtained on the daily habits
of 2 people, along with a pet and friends who has sporadic visits with these two
people. Altogether a total of 18 different types of activities were labeled.

MARBLE Dataset. [14] - A novel multi-inhabitant ADLs dataset that combines
smartwatch and environmental sensor data. Smartwatches are used to record
hand motions to identify ADLs. Environmental sensors such as mats and pressure
sensors were used to detect the residents sitting on sofas or sleeping on the couch
etc. Indoor locations are identified using Wi-Fi access points and BLE beacons.
The detailed summary of the MRHAR smart home datasets is shown in Table 1.

Table 1. Summary of the Multi-resident Smart home datasets

Name

of the

Dataset

Houses Residents Duration Type and Number of

sensors

Activities Environment

ARAS [7] 2 2 30 Days Ambient Sensors (20) 27 Real-time

CASAS

[10]

7 2 2–8 months Wearable + Ambient

Sensors (20–86)

11 Inlab - Real-

time

VanKasteren

[11]

3 1 14–25 days Ambient sensors (14–

21)

10–16 Realtime

UJA

Dataset

[12]

1 2 10 -25 days Ambient Sensors and

Smartphone

7 InLab

SDHAR-

Home

[13]

1 2 2 months Wearable + Ambient

sensors (35) + Posi-

tioning (7)

18 Realtime

MARBLE

[14]

1 1 16hrs Wearable + Ambient

Sensors (8)

13 InLab

As per the research survey by [8], collecting two ambient sensing smart home
datasets with multi-residents offers a better opportunity to study and compare
the activity recognition algorithm more realistically. The vanKasteren dataset
may not opt for such a fair comparison as it has only one resident perform-
ing various activities in all three smart homes. Similarly, the MARBLE dataset
deals with the multi-habitant nature of the single-resident activity and data col-
lected in the Inlab environment. CASAS data are mostly predetermined and
were repeatedly performed in a controlled laboratory environment. This collec-
tion accounts for inter-subject variability and is thus not suitable for real-world
data analysis. Further, the UJA dataset has been collected using multi-model
heterogeneous hardware items, and this may be infeasible in multiple cases for
the recognition of ADLs. However, the ARAS dataset accounts for intra-subject
variability and does not account for inter-subject one. This leads to a better
opportunity to study and compare the MRHAR system. UJA, MARBLE, and
SDHAR are the recently evolved datasets. They have been created using multi-
modal heterogeneous devices for data collection, so it has not been considered
here for experimentation.
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It has also been proven by collecting the citations of datasets [7,10–14] from
the year of dataset generation (mostly 2011) to till date (April 30, 2023) as per
the Scopus and Google scholar records. Alternatively, CASAS has the highest
number of citations, 642. VanKasteren has 250 citations, and ARAS has 146
citations. ARAS has fewer citations because the collected data is completely
binary and has no discriminating features to easily classify the activities labeled
in each instance. The performance of the ARAS dataset still needs to improve
due to certain factors of data collected during experimentation. It motivates us to
analyze the ARAS dataset to improve its performance apart from implementing
hybrid deep learning models to make the system more complex to recognize the
activities.

2.2 Data Association

The complexity of data association is the second major challenge in the HAR
system, which refers to the number of persons and activities associated with
it. Concurrent activity is one of the challenges in activity recognition driven by
data association. The activity occurs when the resident participates in multiple
activities simultaneously-for instance, sitting and watching TV, conversing while
watching TV, etc. A sample challenge with data association is shown in Fig. 1,
which represents the activity of watching TV and using the Internet in four
different instances. In the first instance, there is no firing of the sensor. In the
second instance, the IR sensor (sensor 3) of the TV receiver is fired, which
confirms the activity of watching TV. However, there is no sensor firing for the
activity using the Internet. In this case, the resident may be standing and using
the Internet. In the third instance, the force sensor of the couch (sensor 4) is
fired, representing that the resident(s) may be sitting on the couch and watching
TV or using the Internet. However, there is no proper sensor firing stating the
activity of watching TV and using the Internet. Finally, in the last instance, the
force sensor in the couch and chair are fired, representing one resident sitting on
the couch and another sitting on the chair. However, the activities are labeled
to be again watching TV and using the Internet. This label associated with the
binary sensor makes the system complex to recognize the activities.

A similar example is shown in Fig. 2 where the activities labeled are preparing
dinner and watching TV. However, it is unclear which resident is preparing the
dinner and which is watching TV. Moreover, for watching TV, sensor 4 is fired
correctly in all three cases, whereas for preparing dinner (sensor 16), it is not
adequately fired in Instances 1 and 4. This makes inevitable proof for improper
labeling and association, which makes any machine/deep learning models more
complex and consumes time for model generation.

In a specific case, multi-resident cooperation activities are also associated
with the complexity of data association. For example, the residents may be in
the process of cooking. However, the respective sensor fired relates to cooking
and washing dishes. So one resident may cook, and the other may wash dishes.
This causes inevitable confusion. Moreover, the system cannot identify who is
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washing the dish and cooking. These limitations must be addressed to improve
the performance of any learning model to handle the ARAS dataset.

Fig. 3. Percentage of timestamp without any sensor activations for ARAS House A
and House B [20]

2.3 Annotation Scarcity

Activities are annotated mainly by either a handwritten diary or using the GUI.
Data annotation is expensive and time-consuming, and it is a remarkable chal-
lenge for ambient-sensor data, especially for a dataset like ARAS. The residents
must properly annotate the activity, and all the sensors must be appropriately
fired on all the instances for recording the activities. In certain scenarios, the
resident may miss annotating the activity, and in certain other cases sensor may
not fire for the activity carried out at a particular instant. In addition, data for
some emergency or unexpected activities are hard to obtain, such as toileting,
sleeping, etc. A sample annotation scarcity is shown in Fig. 1, which represents
the activity of watching TV and using the Internet. In the first instance, there
is no firing of a binary sensor, but it represents the activity of watching TV and
using the Internet. Similarly, many instances have no firing of data. However,
the annotations are labeled for each activity, especially during the night time of
recording. The detailed analysis of the Percentage of timestamps labeled with
activities without sensor activations for Houses A and B is shown in Fig. 3. Con-
sidering the report from Fig. 3, several activities are without the proper firing of
sensors.

Another reason for annotation scarcity is that the bathroom resident may
annotate toileting before getting into the toilet. Later, there is a chance to have



324 E. Ramanujam et al.

a shower also. However, the resident may need to annotate the activity correctly,
which uses the toileting label even for the shower with the respective sensor fired.

2.4 Computational Cost

The third major factor that needs to be concerned is the feasibility of implement-
ing the MRHAR in real-time. A considerable effort must be made to make the
system acceptable to many end-users as it is close to human life. However, the
state-of-the-art systems proposed for MRHAR on the ARAS dataset have certain
challenges in attaining a preferable recognition rate (Accuracy) or the computa-
tional time taken to recognize the event. The research works that considered the
ARAS dataset for experimentation, and the results are shown in Table 2. In com-
paring the performances of the state-of-the-art methods, the accuracy reaches
the maximum of 89% for House A and 97% for House B, respectively. However,
there is no mention of the execution time for the models represented by various
state-of-the-art methods. Alternatively, the research work [19] has attained the
accuracy of 86.315% and 87.975% for Houses A and B, respectively, but the
execution time is 10-fold high than our previous work [20]. The system should
be recourse intensive, so it fits portable devices and can respond instantly. Thus,
the computational cost and recognition issue should be addressed.

Table 2. State-of-the-art computational performance of methods on the ARAS dataset

Research Work Methodology Accuracy (%) Computational Time(s)

House A House B House A House B

[15] Transformer with Bi-

directional GRU (10-

Fold cross validation)

89.48 90.59 – –

[16] Random k-label sets

approach (Machine

Learning - Multiclass

classification)

F1- 0.676 F1 - 0.909 – –

[17] Generative Adversar-

ial Networks+LSTM

71.45 86.42 – –

[18] Classifier Chain

method of Multi-

Label Classification

88.02 97.13 – –

[19] CNN 1D+ LSTM 86.315 87.975 14043.7 14811.3

[20] MLMO-HSM 89.825 94.95 158.61 146.92

3 Clustering of Activity Labels

The challenges listed above are majorly in the data collection. The collected
data can never be wasted as it consumes time and cost. However, the challenges
can be rectified through certain other aspects of preprocessing. This section
prescribes a manual clustering of activity labels to overcome certain challenges
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and to achieve an efficient computation on recognition of the ARAS dataset. The
ideology is that the fired binary data can never be changed or altered. However,
the activity label annotated can be marked or changed in certain aspects. For
instance, consider Fig. 4, which shows the sample label annotations of preparing
breakfast, reading a book, preparing lunch, etc., in five different instances at
House B.

In comparing all five different instances, the firing of the binary sensor resem-
bles the same for all the activities. Sensors 17 (Armchair) and 19 (kitchen sensor)
are fired for preparing breakfast, lunch, and washing dishes. It results that all
the activities can be combined into a single activity, reducing the number of
activities, so complexity in the class distribution reduces and provides optimal
performance using a simple learning algorithm. In addition, most of the anno-
tated activity labels are secondary and can be clustered into a primary activity
[21].

– Preparing food is the common primary activity, whereas its secondary activ-
ities are washing dishes, cutting vegetables, etc., In addition, the food can be
further categorized into breakfast, lunch, and dinner. Thus, the primary and
secondary activities are clubbed into one food preparation activity.

– The researchers categorize Eating/having food at all times, namely break-
fast, lunch, and dinner, or eating snacks in the evening (secondary activities)
based on the timestamp where they recorded the instance. All these activities
have been carried out at the dining table kept in the house. Considering this
in-depth, the resident may sit in a chair or at the dining table for all eating
purposes. There may be fewer chances of firing different sensors for the activ-
ity of eating. Thus, the activities are merged into Eating food as a common
term.

– Sleeping and napping are carried out on the couch that fires the same binary
sensor installed in the house. Thus, the activity has been merged into sleeping,
which represents snapping also.

– Watching TV, conversing, and having guests resembles firing the binary sen-
sor of the sofa/couch in the hall where the guest usually arrives. In addition,
the cleaning of the house activity closely resembles the resident sitting on the
sofa/couch. Thus, watching TV, conversing with guests, and cleaning clubbed
into the activity of watching/cleaning.

– Studying and Reading books are carried out by sitting in a chair, and thus
respective binary sensors are fired for this activity. Studying is commonly
represented here for studying and reading books.

– Having a shower, Toileting, Laundry, shaving, and brushing teeth are the
activities that fire the sensors, bathroom cabinet, bathroom door, water
closet, etc. As all these activities are secondary activities carried out in the
bathroom/washroom, it has been managed in the bathroom/washroom in a
single term.

– Using the Internet, talking on the phone, and listening to music represent the
entertainment process, and most fire the couch/chair in the hall. Thus, it has
been fixed into the activity termed entertainment.
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– Finally, changing clothes, going out (outdoors), and other activities have dis-
criminate binary pulse sensors that never mix with any other activities. Thus
the same name has been used for the process.

All 27 activities of the ARAS dataset have been clustered into 10 modified
clustered label annotations, and the detailed labeling is shown in Table 3. The
clustering process is completely manual based on the primary and secondary
activities of the dataset.

Table 3. Original and clustered label annotations of ARAS dataset

S.No Original Annotations Clustered Annotations

1 Preparing Breakfast, Prepar-

ing Lunch, Preparing Dinner,

WashingDishes

Preparing Food

2 Having Breakfast, Hav-

ingLunch, HavingDinner,

Having Snack

Eating Food

3 Sleeping, Napping Sleeping

4 Watching TV, Cleaning,

Having Conversation, Having

Guest

Watching/Cleaning

5 Studying, ReadingBook Studying

6 Having Shower, Toileting,

Laundry, Shaving, Brushing

Teeth

Bathroom/Washroom

7 Using the Internet, Talking on

the Phone, Listening to Music

Entertainment

8 Changing Clothes Changing Clothes

9 Going out Going out

10 Other Other

4 Experimentation and Results

The experimentations have been carried out on the clustered activity labels, as
mentioned in Sect. 3, with the deep learning models. In this experimentation,
the Multi-layer perceptron (MLP), Long Short Term Memory (LSTM), Gated
Recurrent Unit (GRU), Convolutional 1D, and Convolutional 1D with LSTM
have been used. Standard performance metrics such as Accuracy and compu-
tational time have been used to evaluate the performance of clustered activity
labels, as mentioned in our previous research work [20].

In all the models, the input layer reads the input in the shape of 20,1, i.e.,
binary sensor readings with each instance at a time. The output layer classifies
the resident activity simultaneously through a multi-label multi-output layer as
utilized in [20]. Softmax function in the dense layer with 10 neurons (classes) of
output will be inferred for both residents. Table 4 shows the hyperparameters
considered in the experimentation.
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Fig. 5. Architectures used for evaluating clustered activity label dataset
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Table 4. Hyperparameters of the experimentation to validate the clustered activity
labels

S.No Hyperparameters Value

1 Epochs 25

2 Learning rate 0.001

3 Batch size 864

4 Optimizer Adam

5 Loss function Categorical cross-entropy

6 Early stopping Yes

Multi-layer Perceptron. (MLP) [22] is a fully connected class of feed-forward
artificial neural network (ANN). MLP consists of at least three layers of nodes:
an input layer, a hidden layer, and an output layer. This experimentation has
been designed with an input layer followed by three dense layers of 512, 256, and
64 neuron units. The Input layer has a shape of (20,1), and the two output layers
with a softmax function of 10 units recognize residents 1 and 2 exclusively.

Long-Short Term Memory. (LSTM) [23] is a variant of recurrent neural network
(RNN) to address the vanishing gradient descent problem and to maintain long-
term dependencies of temporal information. The model has three gates, namely
input (it), forget (ft), and output gates (ot), which make LSTM learn the long-
term dependencies adequately. In the experimentation of the LSTM model, the
input layer of (20,1) is connected to two dense layers that have 256 and 128
neuron units. The feature extracted from the dense layers is passed into the
LSTM layer of 64 units and further connected to the dense layer of LSTM of 64
units by flattening the output of LSTM through the flattened layer. Finally, two
dense layers, each of 10 units, are used to exclusively recognize the resident’s 1
and 2 activities.

Gated Recurrent Unit. (GRU) introduced by [24] a similar approach of LSTM to
solve the vanishing gradient problem, which comes with a standard RNN. GRU
is also a variation of LSTM and produces equally excellent results. GRU uses
two gates like LSTM: update Zt and reset rt gate. In this experiment, GRU uses
the same architecture as LSTM. Instead of LSTM cells, GRU cells are used.

Convolutional Neural Network. (CNN) [25] a type of artificial neural network
widely used in high-dimensional image and video recognition and text catego-
rization. To preserve the spatial information and the data recorded by the binary
sensors and IoT devices, CNN models are used in MRHAR. CNN directly takes
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1-dimensional/2-dimensional data as input, extracts the features using convolu-
tional and hidden layers, and finally recognizes the activities using dense layers
(fully connected neural network). In this process, 1-dimensional CNN (CNN1D)
has been used to extract the patterns from the binary sensor reading. CNN1D
has an input layer connected to two Conv1D layers with 300 and 250 filters,
respectively, of size 1× 1. The output of the conv1d is fed as input to two dense
layers of units 128 and 32, flattened and connected to the output layer.

CNN+LSTM. has the advantage of extracting high-level abstract features from
the CNN block and long-term temporal dependencies from the LSTM block. In
this experiment, the blocks are concatenated in the dimension of the channel.
The CNN1D + LSTM uses the same architecture as Convolutional 1D in which
an additional LSTM layer is added in between the dense layer of 32 units and a
flattened layer to generate a Conv1D+LSTM model. The deep learning architec-
tures used in this experimentation are shown in Fig. 5 with the details of layers
and neurons present with it.

Table 5. Performance of Deep Learning Models on clustered Activity Labels of ARAS
House A dataset

S.No Model Resident 1 Resident 2 Average Time(s)

1 MLP 66.8 73.46 70.13 25.387

2 GRU 75.26 86.32 80.79 36.938

3 LSTM 75.3 86.33 80.815 38.08

4 CONV1D 75.8 86.03 80.915 26.4

5 CONV1d+LSTM 75.28 86.34 80.81 39.374

Table 6. Performance of Deep Learning Models on clustered Activity Labels of ARAS
House B dataset

S.No Model Resident 1 Resident 2 Average Time(s)

1 MLP 87.31 82.51 84.91 23.822

2 GRU 87.33 83.6 85.465 36.972

3 LSTM 87.33 82.5 84.915 38.285

4 CONV1D 87.75 83.23 85.49 33.922

5 CONV1d+LSTM 87.3 82.52 84.91 39.43

The experimental results on clustered activity labels with various deep learn-
ing architectures, as mentioned above, are shown in Tables 5 and 6 for Houses
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A and B, respectively. In comparing the performances among the deep learning
models, Conv1D performs far better than the other models in House A. It attains
the highest accuracy (average of residents 1 and 2) of 80.915% with a compu-
tation time of 26.4 s, slightly higher than MLP, which has 25.387 s. Similarly,
in comparing the performance on House B also, conv1D performs better than
the other models. Conv1D attains the highest accuracy of 85.49 on an average
of residents 1 and 2 accuracies. The results reported in Tables 6 and 4 are after
properly tuning hyperparameters.

Fig. 6. Accuracy rate with the number of epochs for ARAS Houses A and B respectively

Though parameters are properly tuned, its experimental analysis on specific
hyperparameters is shown in Figs. 6 and 7. Figure 6 deals with the accuracy rate
with the number of epochs of both houses. On implementing various epochs,
the model saturates at the 25th epoch, and in other cases, it provides the same
performance values. Since the deep learning models have been performed with
early stopping, it mostly stops at the 24 or 25th epoch. For visualization, it has
been drawn for more epochs.

Fig. 7. Performance evaluation of clustered activity label dataset on different learning
rates for Houses A and B

Similarly, the learning rate has been analyzed for three values (lr = 0.0001,
0.001, and 0.1), as shown in Fig. 7. Among the three values, the deep learning
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models have shown promising results on lr = 0.001, and thus, it has been fixed
for experimentation as reported in Tables 6 and 4.

4.1 Limitations

Comparing the performance of Houses A and B, the architectures proposed here
are very simple. No deep layers of convolution or other operations have been
carried out to attain better performance. The computational time taken for the
experimentation is nearly 300 to 350 times less than the performance of the
models reported in Table 1. However, the performance is very close regarding
the accuracy, as reported in Table 1-the experimental behavior changes mainly
because of the clustered activity labels, as mentioned in Sect. 3. However, the
experimentation can be further improved by integrating some automatic cluster-
ing techniques for multi-resident platforms based on the closeness of the activity
by measuring the distance and sensor firing for those activities.

5 Conclusion

This paper deals with the limitations of the multi-resident human activity recog-
nition (MRHAR) data collected on ambient sensing smart home environments.
The limitations have evolved during the data collection to data association, anno-
tations, and cost of computation. These limitations are profoundly analyzed with
the benchmark MRHAR datasets such as ARAS, CASAS, vanKasteren, etc. The
clustering of activity labels has been made in this work to analyze the perfor-
mance variation using simple deep-learning models regarding recognition rate
and computation time. The results have also proven that the clustering of activ-
ity labels has a multi-fold increase in computational time efficiency and recogni-
tion. In the near future, the clustering can be done with certain algorithms such
as Expectation-Minimization, Canopy, etc., with the deep convolution models
to outperform state-of-the-art works.
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Abstract. As the popularity of virtual reality (VR) applications
increases, there is a growing concern for the forensic aspect of privacy
and security of user data. This paper aims to investigate the extent to
which forensically relevant user data can be recovered from Oculus Quest
2, specifically, from four social community applications: Horizon Worlds,
Multiverse, Rec Room, and VRChat. By performing a forensic analysis
on Oculus Quest 2, we were able to determine to what extent forensically
relevant user data could be recovered from four social-community appli-
cations. Existing efforts in this field are limited. Thus, this study adds to
the growing body of research on the forensic analysis of VR applications.

Keywords: IoT Forensics · Mobile Forensics · Oculus Quest 2 ·
Virtual Communities

1 Introduction

Virtual Reality (VR) is currently used in a wide range of industries such as edu-
cation, healthcare, and social communities. In education, VictoryXR has created
immersive learning experiences by using VR to provide training to educators,
teaching many subjects [26]. They expect to operate up to 100 digital twin cam-
puses by 2023 [20]. In healthcare, VR goes hand-in-hand with Internet of Med-
ical Things (IoMT) and Internet of Health Things (IoHT) based technologies.
In November 2021, the U.S. Food and Drug Administration (FDA) approved
a VR system called EaseVRx as back pain treatment for individuals above 18
years old [24]. For social communities, the metaverse has allowed people to meet
up in virtual spaces such as restaurants, cinemas, and even concerts. Bouck-
aert [11] found that cheaper prices, visual effects, and accessibility are some of
the motivators for people preferring virtual concerts to live concerts. Social VR
platforms such as Meta’s Horizon Worlds and Microsoft’s AltspaceVR enable
people to traverse virtual worlds, play games, and interact with friends as well
as strangers online.

While VR brings many benefits, it can also lead to some drawbacks. For
example, VR can provide an immersive and interactive learning experience that
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can be difficult to replicate in traditional classroom settings. However, it can
have negative effects on mental health and physical well-being if used exces-
sively. Social community applications can foster connections and communication
between individuals who may not have the ability to do so physically, but they
can also contribute to social isolation due to addiction [10]. As of January 2023,
59.4% of the world’s population (4.76 billion) use social media [25]. Given such
a significant number of social media users, attention should be brought upon
ensuring the data collected by social media applications are protected. With VR
applications becoming increasingly used and a wide range of applications being
available online for free, it is crucial to investigate how much forensically rele-
vant unencrypted user data can be recovered from these devices and applications.
The purpose of this research is to examine the privacy implications of VR and
social media usage by analyzing the amount of user data that can be recovered
from these applications using forensics techniques. Therefore, the research ques-
tion of this research is “What forensically relevant user data is recoverable from
social community applications (Meta Horizon World, Multiverse, Rec Room, and
VRChat) on the Oculus Quest 2?”

Previous research focused on conducting forensic analysis to test for traces
of artifacts on the HTC Vive and Oculus Rift [27]. However, no forensic analysis
involving artifact traces has been conducted on the latest Oculus model - Oculus
Quest 2. Additionally, Mahan [22] used mobile forensics to explore ransomware
attacks on the Oculus Quest 2. However, the research did not include attempt-
ing to recover artifacts from the Oculus Quest 2. At this juncture, this paper
attempts to analyze an Oculus Quest 2 using mobile forensic tools to find out
if user data can be recovered from the device, and if so, how much user data
can be recovered. This paper will focus on four social community applications -
Horizon Worlds, Mulitverse, Rec Room, and VRChat.

The remainder of this paper is structured as follows: Sect. 2 provides a review
of the literature in regard to VR forensics and social community applications.
Section 3 discusses all variables, definitions, and validity threats related to the
present study. It also discusses the data population, acquisition, and analysis
methodology from the current study. Section 4 highlights the results and find-
ings of this study. Section 5 discusses the results and provides future research
recommendations. Section 6 summarizes the entire study and the contributions
acquired from the analysis.

2 Related Work

The following section discusses a review of the literature that was conducted
regarding virtual reality social applications, forensic analysis of virtual reality,
and mobile forensic investigations.

2.1 Use in Court

There are previous works that involved the analysis of private messages such as
Short Message Service (SMS). Hammond [14] investigated the Brown v. Mayor
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of Detroit case where text messages were used as evidence in a court of law.
Ultimately, this led to perjury and misconduct charges while Mayor Kwame
Kilpatrick and his Chief of Staff Christine Beatty were serving as public officers.
The current study forensically analyzes the Oculus Quest 2 for artifacts such as
message logs which can be used as possible inculpatory evidence.

2.2 Forensic Analysis

Johnson et al. [17] conducted forensic analysis on social networking applica-
tions. The study aimed to demonstrate the forensic need to understand how
alternative-tech social applications operate and what they store about their
users’ personal information and activities. Similar to the current study, Mag-
net Acquire was used to acquire physical images of both the Android and iOS
devices after testing each application. The findings revealed that user informa-
tion such as usernames, emails, full names, phone numbers, profile pictures, and
more could be found, along with posts and comments made, and private mes-
sages.

Hutchinson et al. [16] sought to understand and assess the forensic artifacts
that can be extracted from IoT devices by performing a comprehensive investiga-
tion of the SimpliSafe security system. The authors investigated the interaction of
the security system with the SimpliSafe companion app on both Android and iOS
devices using Magnet AXIOM as well as the network traffic as the user interacts
with the system to identify any security or privacy concerns using Wireshark.
The findings revealed the disparity in recoverable artifacts when comparing the
Android device to the iOS device. In terms of network traffic, SimpliSafe follows
security standards and best practices.

Jones & Winster [18] conducted forensic analysis on smartphones aiming to
uncover digital evidence in mobile phones that might be deleted by criminals.
The authors did this by performing data acquisition of digital evidence from
compromised devices using Oxygen Forensics. The findings revealed that many
pieces of deleted forensically relevant user data could be retrieved through this
process.

2.3 Oculus Quest 2

Mahan [22] conducted a forensics analysis of ransomware on the Oculus Quest 2.
The study aimed to study how applicable Android ransomware is to the Oculus
Quest 2’s attack surface, due to the Quest 2’s usage of Android 10 as a base
operating system. The author used Android Debug Bridge (ADB), a SHA-256
hashing tool, and Android Studio for the acquisition of data. This setup allowed
the author to test a simple ransomware sample (SRS), WannaLock, and Koler
ransomware samples. The author found that the Oculus Quest 2’s attack surface
does contain the necessary aspects for the successful execution of ransomware.
The current study used similar tools in the methodology section, utilizing ADB
as well as Android Studio for the acquisition of data.
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Yarramreddy et al. [27] conducted a forensic analysis of social applications on
the HTC Vive and the Oculus Rift. The study aimed to present the first account
for forensically relevant client-side and network-based artifacts generated by the
HTC Vive and the Oculus Rift. The authors analyzed SteamVR, BigScreen,
Rec Room, AltspaceVR, and Facebook Spaces. The authors used Wireshark
for network traffic analysis. They also performed manual examination of all
Steam, Oculus, and social application logs. The findings revealed that a large
amount of data could be recovered from Bigscreen, Steam, and Facebook Spaces.
The current study also analyzes social community applications as well, with the
addition of Horizon Worlds, Multiverse, and VRChat. Additionally, the current
study was focused on the Oculus Quest 2 instead of the HTC Vive or the Oculus
Rift.

Hassenfeldt et al., [15] conducted memory forensics on immersive VR sys-
tems, specifically the HTC Vive. The study aimed to conduct the first experi-
mental study to explore digital forensic learning in immersive VR versus a phys-
ical learning environment. The authors performed reconstruction of a physical
scene using artifacts recovered from the file systems memory. This resulted in
the first open-source VR memory forensics plugin for the Volatility Framework.
The authors found that VR is more time efficient in the sense that participant
completion times were faster. The current study aimed to conduct mobile foren-
sics on the Oculus Quest 2 instead of the HTC Vive. The current study used
a similar method in the methodology, accessing artifacts from the file systems
memory.

The author from [5] performed forensic extractions on the Oculus Quest 2.
The author used Cellebrite UFED 4PC and ADB USB debugging to do so.
This resulted in data being successfully pulled from various directories including
/sdcard, /bugreports, and /storage. However, most directories were either
not pulled or were pulled but did not contain any data. The current study
also attempted to use ADB USB debugging to pull files from various directories.
Additionally, the current study used Magnet AXIOM instead of Cellebrite UFED
4PC as the forensic tool for imaging and analysis.

3 Methodology

The goal of this study was to discover the amount of recoverable forensically
relevant user data from four social community applications on the Oculus Quest
2 through mobile forensic analysis. A virtual reality environment was used to
achieve this. A private Wi-Fi network was used for the devices to have internet
connectivity. DHCP assignment will be used to assign IP addresses to all devices.
All assigned IP addresses follow an RFC 1918 [23] compliant addressing scheme
and are in the 10.0.0.0/8 subnetwork. The following sections describe the scenario
setup, measures, design, virtual environment, and data analysis methods for the
present study.
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3.1 Scenario Setup

The physical location of the investigation was within a single research lab. A
possible scenario where this investigation would be useful is a case involving
child grooming. Choo [12] defines child grooming as “a premeditated behavior
intended to secure the trust and cooperation of children prior to engaging in
sexual conduct.” Online grooming has become increasingly popular online due
to new technologies such as cyberspace [13,19]. Pedophiles also share information
such as tricks to groom children for abuse with other pedophiles [9]. An offender
would need a profile to communicate with children online. Given the offender
used any of the social community applications investigated, forensically relevant
information such as user height, message logs, and interactions can be used as
both inculpatory and exculpatory evidence.

3.2 Measures

The single-group posttest-only design was employed for this study as the inde-
pendent variable is manipulated with a single group. The independent variable
is the social community application used. The dependent variable is the amount
of recoverable forensically relevant user data from the social community applica-
tions. This study attempts to answer the question of “What forensically relevant
user data is recoverable from social community applications on the Oculus Quest
2?” A potential threat to internal validity is due to the data population, acqui-
sition, and analysis being done in a controlled virtual environment. This erases
any factors and challenges that may influence the study in a real-world situation.
To address this, real-world scenarios were replicated as closely as possible within
the virtual environment. This involves designing virtual scenarios that mimic the
characteristics, interactions, and usage patterns found in real-world VR applica-
tions. By creating realistic conditions, we increase the ecological validity of the
current study.

3.3 Design

The testing setup consisted of the following hardware components: An Oculus
Quest 2, a USB-C cable, a Dell Inspiron 15 laptop, and a Samsung Galaxy Tab S7
tablet. The testing setup consists of the following software components: Android
Debug Bridge (ADB) [1], Magnet AXIOM [3], Horizon Worlds [2], Multiverse
[6], RecRoom [7], VRChat [8], and Meta Quest [4]. The testing setup consists of
connecting the Oculus Quest 2 to a Dell Inspiron 15 laptop that has forensic soft-
ware Magnet AXIOM Acquire, Process, and Examine installed. Figure 1 shows
a visual representation of the network architecture. The box in Fig. 1 represents
the components that were forensically analyzed.

Data Population. The social community applications that were used are free
software available in the Oculus Quest Store. A test user account (AnnaOup525)
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Fig. 1. Virtual Environment Network Diagram

was created and used throughout this study. This account was used to log in
to the Meta Quest application on the Samsung Galaxy Tab S7 as well as the
Oculus Quest 2. After logging in, the four social community applications were
downloaded and installed. A full list of applications and software used can be
seen in Table 1.

Table 1. List of the applications and software used in this study

Application Name Build/Version Number Usage

Rec Room 20230414 Social community application

VRChat 2023.2.1 Social community application

Multiverse 0.2 Social community application

Horizon Worlds 107.0.0.7.169 Social community application

Meta Quest 212.0.0.2.109 Central application

Android Debug Bridge version 1.0.41 34.0.1-9680074 Acquire evidence

Magnet AXIOM Acquire 2.26.0.20671 Acquire evidence

Magnet AXIOM Process 6.11.0.34807 Acquire evidence

Magnet AXIOM Examine 6.11.0.34807 Analyze evidence

The same activities were done on each of the four social community appli-
cations to generate user data on the device. For the purposes of interaction, a
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second account (**********hpa) was used. All user interactions were made with
the researchers’ second account. A short summary of the activities done on the
device is as follows:

– Customizing the avatar by changing its appearance, clothing, and accessories
– Joining different communities or rooms
– Interacting with researcher’s second account through voice and text chat
– Taking screenshots or pictures within the application
– Using blocking and reporting features to report researcher’s second account

Data Analysis. This study used the following methods to analyze the Oculus
Quest 2.

Forensics Imaging. The first method was to acquire an image of the Oculus
Quest 2. The Oculus Quest 2 was connected to the laptop via a USB-C cable.
AXIOM Acquire was used to create a forensically sound image of the device
and its storage media. As the Oculus Quest 2 was not rooted, there was no
authorized access to the full file system. This resulted in a quick image being
made instead of a logical or full image. Hash values were used to verify the
integrity of the image and ensure that it is an exact copy of the original data.
Once verified, Magnet AXIOM Process was used to load the image into Magnet
AXIOM Examine which was then used to extract data from the image. Foren-
sically relevant files and artifacts, such as application data, system logs, and
user data were examined to check for any recoverable forensically relevant user
data. Examples of forensically relevant user data include personally identifiable
information (PII), login credentials, and interaction history.

Log Analysis. The second method was to connect the Oculus Quest 2 to the
laptop and manually perform log analysis on available files and folders.

4 Results

The following section describes the results obtained from the analysis section.
Results are reported in two parts - general findings and application-specific find-
ings.

4.1 General Findings

As seen in Fig. 2, the latest WiFi scan results were stored in a file called
OculusQuest2QuickImage.zip sdcard sdcard Android logs wifi-
scanner.txt. We can see that the ***3.0 network was scanned. From Fig. 3, we
can see that a successful connection was logged. The connection was logged in with
the researcher’s username (***76) as well as the domain (******.edu) which can
be seen in Fig. 4.
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Fig. 2. SSID Latest Scan

Fig. 3. WiFi Connectivity Success

Fig. 4. WiFi Profile Identifier
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4.2 Horizon Worlds

The following findings were found from the image created through Magnet
AXIOM. There were several forensically relevant user and application data that
could be found from Horizon Worlds. Figure 5 shows the last used time and dura-
tion used for the Horizon Worlds application. Unlike for Multiverse, Rec Room,
and VRChat, the total time used and last time used were 00:00 and 1969-12-31
19:00:00 respectively. As these are default UNIX timestamps, it can be assumed
that this data was either not available or it is encrypted.

Fig. 5. Horizon Worlds Last Used Time

Another artifact that was found was a photo that was taken showing the
interaction of the two user accounts. This can be seen in Fig. 6.

The following findings were found through log analysis on the
Quest 2 Android data com.facebook.horizon Horizon Logs
socialvr 2023-04-24 12.51.01.log log file.

The first artifact was the username and EPOCH time of the user name tag
being created. This can be seen in Fig. 7.

One of the actions taken was sending follow requests. As seen in Fig. 8,
the second account’s username, ID, avatar head shot picture, event type, and
EPOCH time of event were logged.

Additionally, another action is navigating to different rooms. For Horizon
World, both accounts navigated to a room called “Arena Clash Winter.” As
seen in Fig. 9, the name of the room and EPOCH time entered were logged.

4.3 Multiverse

The following findings were found from the image created through Magnet
AXIOM. There were several forensically relevant user and application data that
could be found in Multiverse. Figure 10 shows the last used time and duration
used for the Multiverse application. The total time used and last time used were
32:01 and 2023-04-24 12:48:58 respectively. These timestamps were very accurate
as they matched the logged data population time.

In addition, there were Binary Large Object (BLOB) cache files that had
signature mismatches. Figure 11 and Fig. 12 were recovered using file carving.
These were the profile pictures of the first and second test user accounts in
Multiverse.

No useful forensically relevant user data was found through log analysis.
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Fig. 6. Horizon Worlds Selfie and Username

Fig. 7. Horizon Worlds Player Username

4.4 Rec Room

The following findings were found from the image created through Magnet
AXIOM. There were very limited forensically relevant user and application data
that could be found in Rec Room. Figure 13 shows the last used time and dura-
tion used for the Rec Room application. The total time used and last time used
were 32:11 and 2023-04-24 12:29:59 respectively. These timestamps were very
accurate as they matched the logged data population time.
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Fig. 8. Horizon Worlds Follow Request Accepted

Fig. 9. Horizon Worlds Navigating to Rooms

Fig. 10. Multiverse Last Used Time

No useful forensically relevant user data was found through log analysis.

4.5 VRChat

The following findings were found from the image created through Magnet
AXIOM. There were several forensically relevant user and application data that
could be found in VRChat. Figure 14 shows the last used time and duration used
for the VRChat application. The total time used and last time used were 17:39
and 2023-04-24 13:31:33 respectively. These timestamps were very accurate as
they matched the logged data population time.

Another artifact was a picture taken using the camera feature in VRChat.
This picture shows the interaction between the two user accounts. This can be
seen in Fig. 15.

No useful forensically relevant user data was found through log analysis.

5 Discussion and Future Recommendations

By conducting a forensic analysis on the Oculus Quest 2, we were able to deter-
mine the extent to which forensically relevant user data could be recovered from
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Fig. 11. Multiverse First Account Profile Picture

4 social community applications. Based on the scenario provided in Section III-A,
the results of our forensic analysis on the Oculus Quest 2 could have significant
ramifications in cases involving child grooming. If an offender were to use any
of the social community applications investigated in our study to communicate
with children, forensically relevant information such as user network connections,
message logs, and interactions could be used as both inculpatory and exculpa-
tory evidence. Furthermore, the current study contributes to the development
of best practices for conducting forensic analysis of VR applications and helps
educate and inform future researchers in this area.

As the base operating system for the Oculus Quest 2 was Android, Android
Debug Bridge was needed to create an ADB image. The initial methodology
consisted of an attempt at using Magnet Acquire to image the Oculus Quest.
However, the imaging process only allowed for a quick image. Therefore, neither a
logical image nor a full image was acquired. Future research could focus on more
methods of imaging the Oculus Quest 2 to see if more artifacts could be found on
the file system. NIST-validated forensic tools [21] such as FTK Imager could be
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Fig. 12. Multiverse Second Account Profile Picture

tested to see if an image of the Oculus Quest 2 could be made. Another limitation
of the current study is the small sample size of social community applications
that were analyzed (n = 4). Future research could expand upon these limitations
to gain a more comprehensive understanding of the forensic artifacts present in
VR applications and the potential risks to user privacy.

Fig. 13. Rec Room Last Used Time
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Fig. 14. VRChat Last Used Time

Fig. 15. VRChat Camera Interaction

6 Conclusions and Recommendations

The current study analyzed four social community applications - Horizon Worlds,
Multiverse, Rec Room, and VRChat on the Oculus Quest 2 using mobile forensic
tools to determine if forensically relevant user data could be recovered from the
device. The results of the study showed that some forensically relevant user
data, such as timestamps, usernames, follow requests, and profile pictures could
be recovered from the file system of the device. These findings suggest that
there are potential artifacts that could be used in cases such as child grooming
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via virtual reality social community applications, which can help support the
investigation and prosecution of crimes involving the use of these technologies.

Overall, this study highlights the importance of considering privacy concerns
when using VR applications. Developers need to prioritize user data protection
in their designs. As VR technology continues to advance and become more inte-
grated into our daily lives, it is crucial to ensure that our personal information
remains secure.
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Abstract. Certain human emotions can be quantified by processing
electroencephalography (EEG) data. Recent advances in Brain Com-
puter Interfaces (BCI) allow us to record, process and determine user
functional intent and emotional implication from such data. The Meta-
verse captures an extensive spectrum of multi-modal content on the
Internet including social media, games, videos, and more complex VR,
AR, MR platforms. We propose an objective method to quantify user
emotion using EEG data collected through non-invasive BCIs during
user interaction. BCI’s qualify as IoT sensors that record EEG data
in real-time as users are exploring multimedia content through several
emotion-generating scenarios.

Keywords: Brain Computer Interfaces · IoT · Emotion Assessment ·
Metaverse · Affective Computing

1 Introduction

The advent of better and inexpensive virtual reality (VR) consumer hardware
has stimulated (neuro) psychological attention and emotional research with mul-
timedia based immersive environments. Particularly, the Metaverse-based VR
experiences offers opportunities for individuals to express emotions in diverse
ways which provide a range of expressions that contribute to a richer emotional
data for analysis using classification algorithms. The multimedia environments
are dynamic and customizable and emotion classification may contribute to emo-
tional analytics for virtual spaces. In this study, we analyze human emotion by
capturing EEG data using BCI’s (IoT real-time sensors) while the users are
exploring various multimedia scenarios suitable for the metaverse. By assessing
emotional cues and patterns during virtual interactions, emotion classification
algorithms can support features such as emotion-based matchmaking, emotional
chat-bots, or emotional sentiment analysis of online communities. Understand-
ing the feelings of other people is part of successful social interactions in humans’
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daily life. Automatic emotion recognition is advantageous in various fields such
as healthcare and mental health, market research, security, surveillance, edu-
cation and learning etc. Emotions can be represented by various sensory cues,
such as facial expressions, hand gestures, body movements, and vocal intona-
tions [9]. One of the categorization criteria of emotions is valence (pleasantness-
unpleasantness) and arousal (level of activation); these are the building blocks
of emotions and are instrumental while understanding the psychological con-
struct of emotions [11]. The primary emotions tracked in affective computing
applications are happiness, sadness, anger, fear, disgust, and surprise [3]. There
are several technologies and methods used to quantify human emotion such as
facial expression analysis, gesture and body movement analysis, and physiolog-
ical signal analysis [6]. Scrutinizing physiological signals, such as heart rate,
electrodermal activity (EDA), or brain activity, can provide more reliable clues
into emotional states. In recent years, the development of dry sensor technology
capable of sensing human brain activity led to the employment of BCIs in various
fields ranging from rehabilitating stroke victims [1] allowing pelagic people access
to forms of competition [2]. BCIs enables data collection regarding brain activity
and can be connected to the Internet as IoT devices. BCI technology has the
potential to connect internal human predilection under the form of EEG data
with external devices, enabling seamless communication between the humans
and the computers [7]. BCI technology is classified as invasive, semi-invasive,
or non-invasive [4]. Electroencephalography (EEG) is a non-invasive technology
that measures the electrical activities of the human brain through electrodes
placed on the scalp area [5]. These electrodes record the electrical impulses of
the brain. The frequency bands of interest are Delta (<4 Hz), Theta (4–8 Hz),
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (>30 Hz). These physiological
signals gathered from EEG must be preprocessed through denoising, filtering,
and amplification techniques. The electrodes provide the voltage difference data
that is converted to frequency data using Fourier Transform or Wavelet Trans-
form techniques based on the application. Affective studies employed the Self-
Assessment Manikin (SAM) system [1] to standardize the emotions that subjects
can report. The SAM system has the respondents gauge emotions based on an
effective scale of 1 to 5 for 3 different categories: Happiness, Excitement, and the
sense of Control. The rating of these 3 factors is positively correlated to previ-
ously used emotional reporting practices [2]. When interpreting EEG data with
the goal of emotion detection, there are two primary models for representing
them: a Discrete and a Dimensional model. The Discrete model will predict a
clear emotion, such as Happiness or Disgust. A Dimensional model will utilize
two or three different dimensions to plot the model in space [8]. Valence (V) is a
measure of happiness, arousal (A) is used to measure the excitement level, dom-
inance is used to distinguish between emotions that have similar VA measures,
such as fear and anger, and it ranges from the feeling of being controlled to being
in control. These three domains directly correspond to the three feelings that are
surveyed in the SAM. Implicit emotional attention might be a more meaningful
metric compared with explicit emotional attention because emotional arousal is
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seen as a crucial element for research in VR. Evidence suggests that immersion,
presence, and emotion are related only to arousing, but not to non-arousing
neutral content. However, the exact relationship between immersion, presence,
and emotion remains unclear [2,4], hence the importance of research on emotion
and attention effects in VR. Alternatively, in the field of human-computer inter-
action, the correlation of attention and emotion can tell us about the quality
of the Metaverse experience. It has been shown that emotional responses, such
as arousal ratings, are enhanced in Metaverse experiences, e.g., by using either
a “low immersion” or a “high immersion” with the surrounding presentation.
The following is the outline of the remaining segments of this paper. Section 2
provides a literature review on EEG-based techniques for human emotion clas-
sification both in virtual and non-virtual environments. Section 3 elaborates on
the methodology and experimental setup. Section 4 presents the experimental
results while Sect. 5 presents the overall findings and conclusion.

Fig. 1. Self-Assessment Manikin System VAD Parameters

Problem Statement: Human emotion appraisal is a challenging assignment,
both subjectively by self-understanding one’s emotions and objectively aided by
software. Brainwave data is an exciting resource in researching emotions, carry-
ing the potential to liaise the knowledge gaps and predict emotional reactions to
certain stimuli. By analyzing users’ emotional responses to virtual environments
correlated with brainwave data, developers may gain insights into the emotional
impact of specific UI design elements, interactions, or content leading to posi-
tive ramifications in various fields, such as online medical assistance, learning,
counseling.

2 Related Work

Several researchers worked on emotion recognition utilizing the signals from
EEG data by combining the Virtual Reality environment. Longo B et al. [1]
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integrated BCI technology with VR to enable direct brain control for stroke
patients. The results demonstrated promising outcomes in motor performance
improvements, functional gains, and changes in brain activity and connectivity.
Yan et al. [5] examined the existing research landscape, identifies key trends, and
themes, and proposes future research directions in the field of emotion recogni-
tion using BCIs. The findings and research agenda contributed to the advance-
ment of emotion recognition and provide directions for further exploration and
development in the field. Özerdem et al. [10] focused on emotion recognition
using EEG features extracted from movie clips and employing channel selec-
tion techniques. The results demonstrate the potential of EEG-based emotion
recognition in response to multimedia stimuli. Javier Maŕın-Morales et al. [12]
developed a system that can accurately detect and classify emotions based on
physiological signals obtained from individuals immersed in a VR environment.
The study described the experimental setup, which involved participants wearing
wearable sensors while engaging in a VR scenario designed to elicit specific emo-
tions. The captured EEG data were preprocessed and analyzed with Machine
Learning algorithms, such as Support Vector Machines (SVM) or Deep Neu-
ral Networks (DNN). The findings suggested that wearable sensors can provide
valuable insights into emotional states during VR experiences. Similarly, David
Schubring et al. [13] investigated the effects of multimedia data on alpha/beta
brain oscillations in relation to emotions and cognitive tasks. Their findings have
implications for understanding the neural processes underlying emotions and
cognition in VR environments. Hongyu Guo et al. [14] developed an emotion-
based analysis method for designing English language lessons in the Metaverse.
They have put forward a compelling argument on integrating emotional fac-
tors into the instructional design process would help to enhance learner engage-
ment, motivation, and language acquisition outcomes. Their work emphasized
the potential benefits of the metaverse in language instruction and provides ped-
agogical considerations for successful implementation. Eduardo Perez-Valero et
al. [15] used a VR and EEG combo to quantitatively analyze the stress level
during a stress-relaxation session. They used changes in power spectral density
and coherence within these frequency bands were examined to identify stress
and relaxation patterns. Similarly, Rháıra Helena Caetano E Souza et al. [16]
explored the feasibility of utilizing EEG to measure the attentional states of indi-
viduals immersed in virtual scenarios. Techniques such as Power Spectral Analy-
sis (PSA), Time-Frequency (TFA) Analysis, or ERP components extraction were
employed to identify attention-related patterns. The International Affective Pic-
ture System (IAPS) is a standardized set of images widely used in psychological
and neuroscience research to elicit emotional responses. Lang et al. [17] worked
on preparing the manual providing comprehensive information on the IAPS,
including detailed instructions on its use and a compilation of affective ratings
for the image stimuli. The manual outlines the procedures for image selection,
and normative ratings, and provides an extensive database of affective ratings
for the stimuli. Yan et al. [18] successfully implemented an emotion recognition
model that utilizes EEG data, focusing on the rhythm and time characteristics
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of brain-wave signals. They used features such as power spectral density, signal
entropy, and wavelet transform coefficients to capture the unique rhythmic and
temporal properties of the EEG signals. The data were classified using Rhythmic
Time EEG Emotion Recognition Model generating the highest average recog-
nition accuracy 0.69 which is 0.07 higher than the traditional SVM and KNN
models. Nazmi Sofian Suhaimi et al. [19] examined the current trends and oppor-
tunities in the field, focusing on the use of EEG signals to detect and classify
human emotions.

3 Experimental Setup: Emotion Induction Method
and Data Collection

The data acquisition phase of the experimental setup is accomplished by utiliz-
ing the Neuro-Sky MindwaveTM BCI headset, and the Self-Assessment Manikin
(SAM) technique. The resulting dataset has been Z-score normalized and
includes the users’ brainwave activity under the form of various frequency sig-
nals(recordings), their associated attention and meditation levels and the SAM
rating for the respective recordings. During the brainwave data acquisition phase,
the subjects have been requested to wear the headset while watching videos trig-
gering sadness, happiness, anger, and fear. Subjects have been exposed to both
visual and auditive stimuli as well as requested to rank and report their emo-
tional intensity after each video using the standardized SAM technique, on a
scale from 1 to 5, for Valence (Happiness), Arousal (Excitement), and Domi-
nance (sense of Control), as depicted in Fig. 1. To facilitate a clear distinction
between the targeted emotions, the videos are separated by a black screen pause.

4 Data Analysis and Results

Both neural network evaluations consist of 8 input nodes, 3 hidden nodes, 2 out-
put nodes. The first type of data analysis utilizes Tensor Flow Keras Sequential
Neural Networks Software to objectify and forecast possible VAD values against
the SAM reported values (outputs) and considers the users’ brainwaves as inputs,
materializing the experiment with correlation indexes for each VAD parameter,
ranging from 0 to 1. The methodology outcomes suggest that there might be a
connection between brainwave data and VAD parameters that can be predicted
with 89% accuracy for Dominance, and around 70% accuracy for Valence and
Arousal, which may lead to promising results if confirmed by enlarging the data
pool. Figure 2 showcases the performance for each VAD parameter.

The second type of data analysis implements MatLab Neural Networks and
still considers the collected brainwave data as predictor variables (inputs), and
the attention and meditation levels provided by the headset as outputs. The
outcome of this appraisal are the regression indexes, showcasing the degree of
correspondence between the predictor variables and response variables (outputs).
The dataset is split in 3 main categories: training, validation and test; each
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Fig. 2. Juxtaposition of actual and forecasted VAD parameters using TFKS Neural
Networks

of them has its respective regression value, as well as computing the overall
regression index, all ranging from 0 to 1. In examining the results, one may
observe that the training regression level is quite high at 0.85, this might suggest
that the SAM subjective analysis and both the meditation and attention levels
are intertwined to some degree. The overall results infer that the Dominance
emotion is slightly more intensely experienced by the participants in the study.
The neural network-based analysis utilized in the present setup supports this
theory, however for a higher accuracy analysis, a larger pool of subjects may
be required. Nevertheless, our results prove that emotion recognition can be
objectively quantified using BCI’s data. Moreover, a hybrid approach where
EEG data is combined with facial expression or other form of emotion detection
may significantly improve prediction accuracy. The data process is implemented
by two investigative pathways, both utilizing neural networks as an engine for
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data analysis and considering the collected brainwave data as inputs. Both which
are trained to recognize patterns and classify emotions based on the extracted
features (Fig. 3).

Fig. 3. EEG Data Regression Analysis using Matlab Neural Networks

5 Conclusion

Emotion is commonly associated with logical decision-making, perception,
human interaction, and to a certain extent, human intelligence itself. With the
growing interest of the research community towards establishing some meaning-
ful “emotional” interactions between humans and computers, the need for reli-
able and deployable solutions for the identification of human emotional states
is required. The purpose of this study was to investigate the use of BCIs to
quantify users’ emotion during their interaction with multimedia content that
is specific to the Metaverse. The Metaverse represents an all-encompassing con-
cept that integrates digital experiences with social presence and can be deployed
as a real time data provider if utilized in conjunction with sensor filled devices
with online connectivity. The present paper aims to identify appropriate creative
compositions between multimedia systems, and the Metaverse while integrating
the social, civilizational key aspect of emotional response and awareness.
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Abstract. This paper presents the design and development of a low
cost haptic glove equipped with a range of affordable sensors, including
gyroscopes, accelerometers, GPS, servos, and encoders, for use in meta-
verse environments. The primary focus of this research is to create an
immersive and interactiveVirtual Reality (VR) experience by incorpo-
rating haptic feedback into the glove. This research provides a detailed
overview of the glove’s design and construction, highlighting the integra-
tion of Arduino micro-controllers with the various sensors and actuators.
The techniques employed to ensure accurate and synchronized data cap-
ture are also discussed. Furthermore, the haptic feedback system inte-
grated into the glove is thoroughly explained, including the mechanisms
for generating the haptic feed back, which will allow the user to deter-
mine the shape and size of the objects in the virtual environment. By
utilizing the servos and encoders, the glove can provide users with a tac-
tile experience by simulating the sensation of touching virtual objects or
environments. The potential applications of the haptic glove in gaming,
virtual training, and medical simulations are explored, emphasizing the
benefits of incorporating haptic feedback for enhanced user immersion
and engagement. The glove’s versatility and affordability make it a viable
solution for a wide range of VR applications. In conclusion, this research
presents an Small Board Computer (SBC) - based haptic glove that com-
bines affordable sensors with haptic feedback capabilities, providing users
with an immersive and tactile VR experience. The findings contribute
to the advancement of VR technology, particularly in the field of haptic
interfaces, and open avenues for further exploration and customization
of haptic glove applications.
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1 Introduction

Virtual reality (VR) technology has come a long way since its inception [1]. It is
now being used in a wide range of applications, from gaming and entertainment
to education, healthcare, and industrial training [2]. One of the main benefits
of VR is its ability to provide an immersive and interactive experience to users,
allowing them to feel as if they are part of the digital environment. However,
this sense of immersion can be limited by the lack of tactile feedback in most
VR systems. This is where haptic gloves come in [3].

Haptic gloves are a type of wearable device that use sensors and actuators to
simulate the sense of touch, allowing users to feel virtual objects and textures
as if they were real. These gloves are equipped with small motors or other types
of actuators that apply pressure or vibrations to the user’s fingers, creating
the illusion of touch [4]. This technology can enhance the immersion of VR
experiences and make them more realistic and interactive [5].

The development of VR haptic gloves has been an active area of research
for several years. There have been numerous prototypes developed, each with
its own unique design and set of features [6]. The early versions of haptic gloves
were bulky, expensive, and not very practical for most applications. However,
recent advancements in technology have led to the development of more compact
and affordable gloves, making them more accessible to a wider range of users [7].

In recent years, there has been growing interest in the potential applications
of haptic gloves in various fields, such as gaming, music, education, and health-
care. In gaming, haptic gloves can be used to provide a more immersive and
realistic experience by allowing users to feel the impact of virtual objects and
interactions. In music, haptic gloves can simulate the experience of playing dif-
ferent types of instruments, making it easier for users to learn and practice. In
healthcare, haptic gloves can be used to simulate medical procedures and train-
ing scenarios, allowing medical students to gain hands-on experience in a safe
and controlled environment. Overall, haptic gloves have the potential to enhance
the immersion and realism of VR experiences, making them more engaging and
interactive for users. The development of haptic gloves is an exciting area of
research that has the potential to revolutionize the way we experience and inter-
act with digital content [8–10].

1.1 How is Our Model Used in MetaHap Differs from the Existing
Ones

Its an easy to design and implement model that provides the user accurate and
reliable experience of the virtual world. This model will let the user experience
the virtual world, in the same way they experience the real world with their own
hands. This model has been implemented with efficient and accurate position
tracking algorithms along with finger tracking and haptic feedback algorithms,
that will allow the user to freely move their hands around in the virtual world.
However this model will not be as advanced as the ones available out their as
this is being implemented on a single processor system, but this model will be
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able to replicate the capabilities that are capable by an advanced VR haptic
glove, and will also serve as a base model for further development in SBC based
VR haptics.

Motivation and Applicability. The main goal of this research is to develop
a VR haptic glove that revolutionizes the virtual reality experience in Meta-
verse and other reality platforms. We envision a glove that can simulate a wide
range of sensations and scenarios, allowing users to feel the intricate details of
their virtual environment. To achieve this, our research focuses on designing
and developing a glove that operates on simple and affordable microcontrollers,
leveraging inexpensive and easily accessible sensors.

The primary aim of our research is to overcome the barriers of cost and com-
plexity associated with existing VR haptic gloves, while still delivering a realistic
and immersive user experience. To achieve a high level of realism and fidelity, our
VR haptic glove incorporates advanced algorithms and feedback mechanisms.
Sensors such as encoders, accelerometers, gyroscopes, and magnetometers are
utilized to precisely measure the hand’s position, orientation, movement, and
force. Actuators like servos are employed to provide haptic feedback, simulating
the sensations felt in the hand’s muscles, tendons, and joints.

The glove seamlessly communicates with a VR headset or computer through
Bluetooth or USB, enabling real-time data transmission for an immersive expe-
rience [11]. In summary, our research aims to develop a cost-effective and acces-
sible VR haptic glove with a myriad of applications. By leveraging innovative
technologies and algorithms, we strive to provide users with a highly realistic
and immersive virtual reality experience, paving the way for new possibilities in
gaming, education, entertainment, and healthcare.

Contributions in this Paper

– The proposed system implements on board position trackers, allowing it to
achieve non optical position tracking for the fingers and the hand, making
the system highly portable, and easy to setup.

– The proposed system has the capability to be integrated with any existing
virtual reality environments or games that are compatible with off-the-shelf
VR gloves.

– The complete system is built with economically viable, off-the-shelf sensors,
leading to a substantial cost reduction of the final product when juxtaposed
with comparable market offerings.

2 Literature Review

Optical methods for position tracking provide diverse and effective approaches
for accurately determining the position and movement of objects. Camera-based
tracking utilizes computer vision techniques and image analysis to track objects
based on visual data captured by cameras. Marker-based tracking relies on
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distinctive markers or fiducial markers attached to objects to enable precise
identification and tracking. Laser-based tracking systems utilize lasers to mea-
sure distances and angles, providing accurate position information. Structured
light methods project patterns onto objects and analyze their deformations or
reflections to calculate object position and shape. Infrared tracking uses infrared
light and sensors to track objects based on the detection of emitted or reflected
infrared signals.

However these methods have some major limitations and they’re, require-
ment of a clear line of sight between the sensors and the tracked objects, which
hinders their effectiveness in obstructed or occluded environments. Optical track-
ing systems are also sensitive to variations in lighting conditions, making them
susceptible to inaccuracies caused by changes in ambient lighting or shadows.
Another drawback is the reliance on markers or fiducial markers, which can be
time-consuming to attach or place on objects. Additionally, optical tracking sys-
tems have a limited effective range, with accuracy and reliability decreasing as
the distance between the sensors and objects increases. Furthermore, some opti-
cal tracking methods, such as camera-based tracking, can be computationally
demanding due to the need for image processing, feature extraction, and object
tracking algorithms. This computational requirement may pose challenges for
resource-limited devices or real-time applications [8,12]. Hence there is a press-
ing need for a non-optical tracker based solution.

To address the above mentioned issues, this paper presents a system which
utilizes the non-optical tracker. Firstly, the proposed system eliminates the
requirement for a clear line of sight, making it highly suitable for tracking objects
in obstructed or occluded environments. This allows for accurate tracking even
when objects are hidden from view. Secondly, non-optical trackers are often less
sensitive to changes in lighting conditions, making them reliable in diverse light-
ing environments without compromising accuracy. They can operate effectively
in low-light conditions or environments with dynamic lighting changes. Addition-
ally, non-optical tracking systems can offer extended range capabilities, allowing
for tracking over larger distances. This makes them ideal for applications that
require coverage across expansive areas. Moreover, non-optical methods are typi-
cally less affected by environmental factors such as dust, smoke, or reflective sur-
faces, providing robust tracking performance in challenging conditions. Lastly,
non-optical trackers may require lower computational power compared to opti-
cal trackers, making them suitable for resource-constrained devices or real-time
applications. These advantages make non-optical trackers a compelling choice
for scenarios where line of sight, lighting conditions, range, and environmental
factors present challenges to optical tracking methods.

3 MetaHap - A VR Based Haptic Glove

MetaHap, a VR-based haptic glove, has been developed to redefine the interac-
tion with virtual environments. MetaHap is equipped with strategically placed
sensors and actuators, the glove accurately simulates touch sensations and pro-
vides precise feedback to the user’s fingertips.
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Fig. 1. Workflow of the proposed MetaHap

The MetaHap model (Fig. 1 showcases the utilization of math-based algo-
rithms with high efficiency and reliability. These algorithms enable the system
to seamlessly integrate, differentiate, and conduct quaternion-based calculations,
thereby facilitating real-time motion tracking. Additionally, the MetaHap incor-
porates diverse map functions that enable simultaneous tracking of finger poses
and provision of haptic feedback. This comprehensive approach ensures a cohe-
sive and immersive user experience within the system, enhancing its overall func-
tionality and versatility. Analysis of each component and the algorithms asso-
ciated with them are Postion Tracking Unit, Finger Pose Tracking and Haptic
Feedback.

3.1 Position Tracking Unit (PTU)

Figure 2 shows the workflow of PTU algorithm. The position tracking unit con-
sists of three sensors Accelerometer, Gyroscope and GPS. To track the yaw, roll,
and pitch angles, a fusion of accelerometer and gyroscope sensors is employed
[13]. This fusion is achieved through a meticulously designed on-board algorithm
based on quaternions. Additionally, on-board differentiation algorithms are uti-
lized to extract the desired values. These calculated angles are then merged and
filtered using a combination of filters, ensuring the output attains a high level
of reliability and stability. By employing these techniques, the system achieves
accurate and consistent tracking of orientation, enhancing the overall perfor-
mance and user experience.

The combined utilization of accelerometer and GPS sensors enables both
absolute and relative position tracking of the glove within a three-dimensional
space. The accelerometer readings undergo processing through an on-board inte-
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Fig. 2. Workflow of position tracking algorithm

gration algorithm. Subsequently, these processed readings are merged with abso-
lute position data obtained from the GPS module, employing sensor fusion
algorithms. The resulting merged data is then subjected to filtering techniques,
enhancing the accuracy and reliability of the readings. This approach empowers
the system to accurately calculate the real-time position of the glove in three-
dimensional space, relative to an absolute reference point.

Finger Pose Tracking (FPT). FPT is accomplished through the utilization of
rotary encoders (See Fig. 4). The system employs a total of five rotary encoders,
with each encoder connected to an individual finger. These encoders monitor the
rotational direction of the fingers, generating a high signal whenever they rotate
by 1◦. A counter is employed to keep track of the number of high and low signals
produced by each encoder. By associating each finger with a rotary encoder, the
system is able to calculate the angle of rotation of the lowest finger joint (i.e.,
the angle of the proximal phalanx relative to the metacarpal). Figure 3 shows
the workflow of FPT algorithm. This angle is crucial in determining the finger
pose. Subsequently, a forward kinematics model is implemented directly within
the virtual environment to predict the finger pose accurately.

Current finger pose = −0.5 ∗ counter value (1)

Here, 0 <= Current finger pose <= 90, 0 <= counter value <= 180 (2)
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Fig. 3. Workflow of finger tracking algorithm

Haptic Feedback. The achievement of collision detection and prevention is facil-
itated through the use of servos. Each servo is directly mounted over its corre-
sponding encoder. When a collision is detected in the virtual environment on
any of the fingers, the computer sends a stop signal to the SBC. Upon receiving
this stop signal, the servo associated with the affected finger acts accordingly.
For instance, if a collision is detected on the index finger at a finger pose angle of
40◦C, a stop signal is generated specifically for the index finger. Consequently,
the servo attached to the index finger rotates in the opposite direction of the
encoder’s rotation by an angle calculated as follows:

servoAngle = MaxF ingerP ose − currentf ingerP ose (3)

In our current scenario, we are using a maximum finger pose of 90◦, this
means that the servo will rotate 50◦ in the opposite direction of the encoder’s
rotation, effectively locking the encoder’s position at 40◦.

This mechanism ensures that collisions are detected and promptly addressed,
preventing any unintended movements or incorrect finger poses. By dynami-
cally adjusting the servo’s position based on the detected collision, the system
enhances the overall safety and accuracy of the glove’s movements in the virtual
environment.
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Fig. 4. System design of the proposed VR based haptic glove (MetaHap)

4 Overall System Design

The overall design of the model comprises two distinct components: the primary
system and the secondary system. This design allows for flexibility and extensi-
bility, enabling users or developers to modify or enhance the model with ease.
If desired, additional features can be incorporated by simply programming and
attaching a separate secondary system to the primary system via the I2C pro-
tocol. Alternatively, lightweight programs or features can be directly added to
the primary system.

For example, consider the model described in Fig. 4, which encompasses
finger pose tracking and haptic feedback. If a developer wishes to introduce
pressure sensing for each finger to determine the user’s grip strength on virtual
objects, they can implement this functionality using an additional secondary
system. This secondary system would be connected to the appropriate sensors
and subsequently linked to the primary system via the I2C protocol. The primary
system would then collect data from this new secondary system and transmit
it to the virtual environment to generate the desired output, such as causing
an object to break if held too tightly. Also notice in the provided diagram, the
position tracking unit has been implemented on a separate secondary system to
accommodate heavy algorithms that may be impractical to execute on a single
system. This modular approach enhances the model’s scalability and adaptability
to evolving requirements.

5 Experimental Setup and Results

In this section, the development of the VR haptic glove using SBC and other var-
ious sensors, such as gyroscopes, accelerometers, GPS, servos, and encoders, has
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been successfully achieved. The glove incorporates haptic feedback, finger pose
tracking, and motion tracking capabilities, providing users with a highly immer-
sive and realistic virtual reality experience [6]. Figure 5 shows the experimental
hardware setup of MetaHap.

Fig. 5. Basic hardware setup

The model’s finger pose tracking mechanism, utilizing rotary encoders and
advanced algorithms, accurately calculates the angles of finger joints, enabling
precise tracking and realistic interactions within the virtual environment. The
integration of accelerometer and gyroscope sensors allows for accurate motion
tracking, enhancing the user’s immersion and control. The fusion of accelerom-
eter and GPS sensors enables absolute and relative position tracking in three-
dimensional space, providing users with an enhanced sense of spatial presence.
The implementation of collision detection and prevention using servos ensures
the safety and stability of the glove’s movements. The servo-based mechanism
effectively responds to collision signals, freezing the movement of the affected
finger and preventing any unintended actions. This feature enhances the overall
user experience and reduces the risk of accidental collisions or improper finger
poses.
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6 Conclusion

The proposed MetaHap, a VR haptic glove demonstrates promising capabili-
ties in providing a highly immersive and interactive virtual reality experience.
The integration of various sensors, along with advanced algorithms, allows for
accurate finger pose tracking, motion tracking, and position tracking within the
virtual environment. The implemented features, such as collision detection and
prevention, ensure the safety and stability of the glove’s movements, providing
users with a seamless and reliable interaction experience. The modularity of the
design allows for easy expansion and customization, enabling users and devel-
opers to incorporate additional features or modify the glove according to spe-
cific requirements. MetaHap serves as a foundation for further advancements in
VR haptics using simple microcontrollers. The use of cost-effective components
and the integration of efficient algorithms have the potential to reduce overall
costs and increase the number of features in future iterations. With continuous
research and development, the VR haptic glove holds a promising development
for a wide range of applications, including gaming, virtual musical instrument
simulation, medical training, and beyond.
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Abstract. The agricultural domain has had a significant role throughout history
in human societies across the globe. With the fast growth of communication and
information systems, the structure of farming procedures has evolved to new
modern standards. Although multiple features helped gain from these advance-
ments, there are many current and rising threats to security in the agricultural
domain. The present paper gives novel methods and architectural designs and
implements distributed ledger through the Tangle platform. Initially, the article
discusses the threats and vulnerabilities faced in the farming sector and presents
an extensive literature survey, and later conducts an experiment for distributing
data through a tangle distributed ledger system. The authors highlight the limita-
tions of central, cloud, and blockchain and suggest mitigation measures through
distributed IOTA systems and distributed storage facilities for data and the pos-
sible influence these solutions can bring in the aspects of data security in the
agricultural sector.

Keywords: Smart Agriculture · Precision Agriculture · Precision Farming ·
Agriculture Cyber-Physical Systems (A-CPS) · Internet-of-Agro-Things
(IoAT) · Cybersecurity · Blockchain · Distributed Ledger Technology (DLT) ·
IOTA Tangle · Distributed Storage · InterPlanetary File System (IPFS)

1 Introduction

Smart agriculture is designed as Agriculture Cyber-Physical Systems (A-CPS) using
Internet-of-Agro-Things (IoAT). IoAT collect data from multiple sensors installed on
farming fields for data analysis and decision-making. The sensors and communication
devices record the statistics and understand the machine-to-machine and machine-to-
human interactions. With the Internet of Things, the model of agriculture has shifted
to precision agriculture on farming fields, including in areas of planting, feeding, less-
ening water and fertilizer use, and supporting intelligent systems with reduced energy
consumption [1]. The Fig. 1 illustrates how modern equipment and IoAT are helping to
collect critical data from the fields for agricultural research and science institutes and
farmers. These IoAT things require additional features such as real-time data stream-
ing and end-to-end data security. From the agricultural point of view in data security,
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there are two main concerns, including the collection and storage of farming data. As
there is a variety of data residing in fields, conventional monitoring methods cannot be
applied, and also the data can be exposed to human errors. With the increase in infor-
mation and communications systems, the number of cyber crimes have also increased
worldwide, stealing and harming a variety of assets. Existing cloud systems have mul-
tiple limitations of central storage, continuous connectivity, security risks through dif-
ferent providers, bandwidth constraints, and faint backup procedures. The cyber secu-
rity procedures combine different techniques to give high protection against attacks on
data [2]. Blockchain (BC) is a Distributed Ledger Technology (DLT), a new way to
share data securely through cryptographic hashes in a distributed platform that is being
applied in various domains nowadays. The agricultural field is also taking advantage
of the decentralized features of blockchain, but these systems are going through com-
plex steps to generate blocks and consume energy with on-chain storage [3]. To face
issues in blockchain, the applications are designed with off-chain storage solutions and
exercise other methods to avoid cost, latency, and energy consumption.

Fig. 1. Data collected from modern equipment’s in agriculture.

Tangle is another Distributed Ledger Technology (DLT) that does not require fees
and validates the transaction nodes at full speed. The transactions are said to be valid
if the previous two transaction’s history does not conflict with the current transaction.
The consensus mechanism, proof of Work (PoW), is not used for validating the trans-
action but for keeping the network secure from spam. The overall throughput of the
tangle is infinite, and the consensus mechanism is used for defining the limits of the
throughput. A distributed storage (IPFS) system is a platform for storing data, web-
sites, applications, and accessing files [4] and does everything a central system does
but without a central storage system. Some of the motivations for implementing current
paper CroPAiD are listed in the Fig. 2. Combining both tangle and IPFS can bring more
security and privacy to sensitive agricultural data. The information stored on the IPFS
network generates a cryptographic hash through a content identifier to retrieve the data
later securely.
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Fig. 2. Motivations for the CroPAiD.

The paper follows the given order: We discuss various prior works using conven-
tional and modern methods for transmitting and storing sensitive agricultural data in
Sect. 2. The Sect. 3 elaborates on problems raising through modern and traditional
methods and list the novel solutions provided through current system. In Sect. 4 and
Sect. 5, we define various components, provide a state of the architecture for CroPAiD
and give algorithm steps for navigating the data over IPFS and Tangle, respectively. The
implementation of the system and the results obtained are shown in Sect. 6 followed by
the conclusions and further research aspects in Sect. 7.

2 Related Works

For agricultural data storage, usually, the data is collected in conventional local
databases or cloud systems. In the current agricultural 4.0 era, many researchers and
scholars are conducting profound studies on how modern data storage methods can be
introduced. Launching ledger technology into IoT for data security can be done in two
scenarios; the first is making use of off-chain data storage with the help of distributed
storage-IPFS or traditional local databases. The second is the direct storage of data on
distributed ledger systems.

The paper [5] G-DaM sends the data collected from the Internet of Things to the
near edges for storing the data in distributed platforms and public blockchain technol-
ogy. The application overcomes the traditional data sharing and limitations of central
and cloud systems and increases the quality and integrity of the data. The agroString
[6] proposed an intelligent IoT-based edge system for the management of data through
a private corDapp application. The system sends the information collected from the
IoT edge sensors through the private blockchain to avoid traditional public blockchain
systems’ costs and energy consumption and evade bottlenecks of central and cloud sys-
tems. The application implements an IoAT-edge for collecting temperature and humid-
ity datasets and sends those readings to the corDapp to bring integrity, trust, visibility,
and data quality to each supply chain stakeholder.
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The paper [7] uses blockchain for fruit and vegetable traceability to overcome tra-
ditional centralized systems. With the help of a dual storage structure- “database +
blockchain” the system designs the application using an on-chain and off-chain storage
technique to reduce the load pressures and increase the data integrity throughout the
supply chain. The results of the system exhibit improved security of secluded infor-
mation and further enhance the authenticity and reliability of data. Information modi-
fications and tampering with the sensitive data collected in a supply chain may lead to
serious issues regarding the quality and safety of the end product. The article [8] makes
use of blockchain for time stamping, traceability, and tamper-proofing of data with the
help of smart contracts. The solidity language contract manages the agricultural product
transactions with access control and improves the upload and response times.

Crop monitoring is essential to keep a check for pests, weeds, and diseases in the
crops. Monitoring is done using different sensors to see the current state of the prod-
uct to project and predict what will be the next state and issues arising in the crops.
The farmer takes preventive measures accordingly based on the information collected
in the crop monitoring. Field monitoring plays a vital role in increasing crop yield,
and modern IoT technology and communication systems are beneficial in fulfilling this
requirement. An efficient crop monitoring system is proposed in sFarm [9] through a
sensor to collect the data and share the real-time data securely using IOTA Tangle dis-
tributed ledger platform. With the help of IOTA, the central, cloud, public, and private
blockchain limitations are overcome, saving energy and time for uploading and vali-
dation. Many distributed access control technologies through blockchain are already in
practice for dealing with centralized and cloud network limitations, but they, too, inherit
some drawbacks, such as high fee transactions and low throughput. The paper [10] pro-
poses a novel access control framework based on IOTA that enables free transactions
with higher throughput.

Using Ciphertext-Policy Attribute-Based Encryption (CP-ABE) technology, access
rights are encrypted to provide access control and store the data on the distributed
ledger Tangle. IOTA Tangle has some disadvantages and security threats, such as a
parasite chain attack that is a common double-spending attack. To decrease these types
of attacks, the paper [11] gives an efficient method for detecting a parasite chain. The
authors measure a score function at each IOTA transaction to see the importance level.
Any change in this importance is reflected in the 1st and 2nd order of the derivates, thus
giving accurate results in detecting the parasite chain attack. All the above-discussed
prior works try to improve the security in transmitting and storing agricultural data, but

Table 1. Comparing Prior works with Current application CroPAiD.

Application Storage and Sharing Cost Platform Energy Consumption

G-DaM [5] IPFS+Public BC Low Distributed+Decentralized High

agroString [6] Private BC-corDapp Zero Decentralized High

Traceability [7] Database+BC Low Decentralized High

Traceability [8] BC High Decentralized High

Crop Monitoring [9] IOTA Tangle Zero Distributed ledger Low

Access Control [10] IOTA Tangle Zero Distributed ledger Low

CroPAiD [Current Paper] IPFS + IOTA Tangle Zero Distributed Storage + ledger Low
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the current system adds additional features of distributed storage of IPFS to the IOTA
distributed ledger platform to overcome conventional and modern limitations as given
in the Table 1.

3 Novel Contributions of the Current Paper

3.1 Modern Communication Technologies in Agriculture

With the increase in demand for food in the global market, the need for reduced costs
and increased agricultural production has given way to using new technologies, which
is an attractive choice for farmers and companies [12]. Some of the advantages of IoT
applications in the agricultural sector include crop health monitoring, pest infestation,
water management, frost protection, and decision support. This new method of using
novel communication technologies in agriculture is denoted as precision agriculture or
precision farming (PF) [13]. The use of satellites and GPS in farming helps in digitizing
agricultural measurements to see the accuracy and efficiency of the crop. Based on
the measurements collected from these precision agriculture tools, the farmers and the
experts in the field, study and analyze the variations of crops and livestock data. To
collect different types of information from the fields, the farmer would use IoT nodes
that come with specific features that make them useful in limited domains [14].

Fig. 3. Challenges in IoAT.
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3.2 Data Threats Through Contemporary Systems in Farming

With the emergence of new communication systems and the addition of the Inter-
net of Things (IoT) in farming, unknown security risks and data threats arise in the
cyber-physical environment. These data risks are mainly related to cyber security, data
integrity, and data loss disturbing the stakeholder businesses [15]. The constraints of the
IoAT are given in Fig. 3. Precision Farming uses vast modern machinery in the fields,
leading to higher consequences and threats. Farming is possible in open grounds where
weather and environmental conditions are inconsistent, leading to malfunctioning of the
machinery and technical equipment in the fields, resulting in wrong measurements and
hence wrong analysis [16]. Additionally, the temperature and humidity conditions can
affect sensor things for communication, which can lead to data loss [17]. The cyber-
security issue is a worldwide severe threat activity that uses a smart device to access
sensitive personal and government information. Although strict restrictions have been
implanted through law enforcement, the hackers take advantage of internet anonymity
and attack middleware, network, and application layers [2].

3.3 Novel Solutions Proposed

The novel contributions of the current paper CroPAiD include:

– A unique system is designed with Tangle to increase the quality of data and avoid
drawbacks of sensor things.

– To move bulk data to IOTA and avoid double spending issues of Tangle, the current
system uses distributed storage systems near the edges.

– The imitations of conventional storage databases, cloud, and central systems are
circumvented using the IOTA distributed ledger platform.

– Increasing security, data integrity, and evading data tampering by the IOTA system.
– Overcoming blockchain high transaction fees and energy usage through distributed
ledger system of Tangle.

– Using Double hashing procedure for the agricultural data through IPFS and Tangle
to increase security and privacy of data.

– A state-of-the-art architecture is presented for the current system CroPAiD.
– Designing a Cost-efficient infrastructure and presenting results with zero transaction
fees and secured hashes.

4 Overview of the Proposed Framework - The CroPAiD

4.1 Agriculture Cyber-Physical Systems (A-CPS)

The cyber-physical systems (CPS) combines the software and hardware components to
execute a well-defined task. A system that connects and manages the physical attributes
towards its computing capabilities and a design that connects and controls the physi-
cal organizations with virtual structures through networks. The combination of wireless
sensor networks that supervise the physical entities can enhance itself in real-time sce-
narios. The CPS are applied in multiple domains to help in substituting conventional
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methods and integrating various platforms and technologies together [18]. Smart Agri-
culture is one of the domains that can benefit from CPS due to its modern and smarter
applicability in monitoring and controlling farming activities and gathering the infor-
mation associated with crops, soil, livestock hygiene, and weather in real-time, along
with maintaining the environment and preserving energy. Figure 4 gives different layers
of cps and their connectivity in physical systems through smart devices to control and
manage the data in an intelligent way.

Fig. 4. Agriculture Cyber-Physical Systems (A-CPS).

4.2 Distributed Storage - IPFS

One of the limitations of Tangle is that the attackers can implant several duplicates of the
data that can lead to double-spending transactions [19]. A user can create and spend the
same digital asset multiple times, which must be checked and prevented. A distributed
storage-IPFS or Interplanetary File System is an internet protocol mainly to store data,
avoid data or asset duplicates across the network, and collect the addresses of the data
in the network. By stopping asset duplication, the IPFS can help in avoiding double
spending issues. By using IPFS as off-chain storage for IOTA tangle, the information is
stored in a distributed platform, reducing local database, central, and cloud constraints.
The data is recognized through content, and every piece of information is divided into
256 kb maximum length blocks. Every block is labeled with a unique identifier for the
content through the cryptographic hash. The distributed hash table of IPFS is based
on the principle of distributed key-value store. Both node identifiers and distance met-
rics strategies in IPFS help in storing and retrieving the data quickly. When reading or
writing the data from or to the edges, the end devices search for the nodes close to the
key attribute values using buckets inside the networks to identify the nodes [4,20]. The
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S/Kademlia algorithm is used for DHT in IPFS to register the nodes whenever a file
gets uploaded and links to nodes through an identifier for file retrieval.

4.3 Data Security Through IOTA Tangle

The IOTA Tangle has built two-layer solutions called L2 for dealing with the data. The
first one is built for MAM, and the second is with STREAMS. The Tangle with MAM
has two protocols to traverse and authenticate the data in the distributed ledger network.
These protocols mainly work on the principle of cryptography. With the help of Masked
Authenticated Messaging (MAM) in the IOTA Tangle network, it allows any device to
publish data in the transactions but only read the data of authorized devices. The IOTA
introduces the concept of zero-value transactions, here, the first protocol is responsible
for transactions, but the data transactions are authenticated. MAM is a second protocol
that helps in protecting the data and verifies its authenticity. With MAM, data channels
can avoid malicious attempts or fake data because only the owner has the right to pub-
lish data into the channel. As data is published into its respective channel, a channel ID
is received that acts as the identifier, which allows other devices to connect to retrieve
the data. There are three different channel modes: public, private, and restricted. In the
public channel mode, the transaction uses the root of the Markle tree as the address;
therefore, whichever device gets access to the channel ID can decrypt the data using
the address as the decryption key. In private mode, the Markle tree’s root is hashed;
hence, only those devices with the original root can decrypt the data. Lastly, restricted
channels will include both pre-shared keys and the root of the Markle tree. Only devices
with information regarding both pre-shared keys and Markle tree roots can decrypt the
data. The application for IOTA tangle can be developed using quantum-proof cryptog-
raphy, and javascript language [21]. The second is the STREAMS [22] tool that helps in
structuring and navigating the data securely through Tangle. It is basically a framework
to develop applications through secure cryptographic messaging and allows any device
to order messages with integrity and immutability. A publisher device takes control of
the messages to be sent by everyone else and makes the messages private by using pub-
lic key encryption. Any device, called a subscriber, can consume and pull and publish
the information from the Tangle as opposed to MAM where only a channel owner can
publish the data [23].

4.4 Novel Architecture for CroPAiD

An IoT device used to collect data from agricultural fields is referred to as the Internet-
of-Agro-Things (IoAT). The IoAT is equipped with all the capabilities of networking
(WiFi, LoRa, Bluetooth) to communicate the data through IOTA Tangle. There are sev-
eral endpoints between the target device and the IOTA gateway. Figure 5 shows the
state-of-the-art architecture design for the current system CroPAiD. The edge layer is
responsible for fetching the data from the internet things and sharing the agricultural
data among servers. The edges interface with higher networking, space, and energy sup-
plies and provide management and monitoring services with multiple sensor nodes and
other gateways. The servers store, process, and visualize data moving from edges. The
architecture presents an edge layer as a communication medium between sensors and
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servers. A distributed storage technology-IPFS is embedded into the edge along IOTA
Tangle that serves as a gateway between IoT devices and servers. With distributed stor-
age on edge, the limitations of IOTA, such as double spending and other attacks, are
evaded. Each agricultural sensor data file is transmitted to IPFS to generate a hash,
as explained in Subsect. 4.2, through its unique content identifier. A Merkle-directed
acyclic graph (Merkle-DAG) calculates a root that can retrieve the original file from
the segments. The distributed storage hash of the crop’s sensor data is then moved
toward the Tangle residing in the edge. The IOTA node receives the hash from the
IPFS and further secures it by generating Tangle hashes using MAM and STREAMS
tools, as discussed in Subsect. 4.3 above. The distributed ledger technology is feasible
for point-point, point-multipoint, and multipoint-multipoint communications between
various sensor devices on the field and multiple servers.

Fig. 5. CroPAiD Novel Architecture with IPFS and IOTA Tangle.

5 Proposed Algorithms for CroPAiD System

The data from the Internet of Things moves toward the edge layer that has both
Distributed Storage-IPFS (DS) and IOTA Tangle systems implemented. Algorithm 1
presents phases in transferring crop data(Cd) to IPFS and generating 256 kb buffer files
to give a root hash at the end. In the edge distributed storage system (DSE), both pri-
vate (DSpr) and public keys (DSpu) are generated to incorporate access control through
digital signatures and signing crop data files. The IPFS converts the crop data (Cd) into
a 256 kb buffer file (Cd) and signs the buffer file (Cdbf 265KB)to get a root hash file of
the crop data (H(CdCbf )) where H denotes the hash of the crop data file.
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Algorithm 1. Crop Data File to IPFS.
1: Inside the Edge layer the Distributed storage (DSE) generate both Public and Private Keys

(DSpu, DSpr) for the Crop Data.
2: DSE(Cd)−→DSE(Cdbf 265KB).
3: The file gets hashed through cryptography method using SHA 256/SHA 3 to give unique id

represented as CId(Content Identifiers).
4: Encr(DSpu)S= H(DSpr * A), where A is a constant, * is a mathematical operation that is

calculated in single direction and H is the secured hash function.
5: if Cd is equal H(DSpr* A) is equal H(DSE(Cdbf 265KB)) then
6: Publishing H(Cdbf 265KB) −→IPFS.
7: else
8: Process End.
9: end if
10: Repeat the steps from 1 through 10 whenever a file is uploaded in the edge layer.

Each input data present in the Tangle creates the following fields: data-length, data,
public key, private key, index, index-next, sign, and auth-sign. The IOTA tangle gen-
erates a seed (Sd) from a random source and produces a key pair for input data using
the edwards25519 curve algorithm. Each input data calculates the index and the index-
next via private and public keys. The hash of the public key is the index, and the hash
of the public key for the following input data is the index-next. A different key pair
is generated for the next input data from another random source, and for hashing, the
algorithm used in IOTA is BLAKE2b [24]. Computing index and index-next are signif-
icant because they help in continuous data streaming, data ownership, verification, and
authentication. A digest ‘d’ is given by hashing the data, data-length, public key, and
index-next. The sign field is then calculated by signing the digest with the private key.
This will be helpful in verification later for the user. If the user has to verify the data,
compare the hash and sign field values with the public key in the input data. If both are
equal, then the data is verified correctly. The sign field helps in only verification of the
data but does not give authenticity or the author’s identity. The field auth-sign is calcu-
lated by the key pair associated with the sensor device. This authorization signature is
calculated by the private key of the IoT device and stored in a hardware source along
with the public key certificate. To validate and see the authentication of the data, the
user compares the signature with the public key through a trusted third-party certificate
authority. The algorithm 2 and the Fig. 6 show the flow of Crop data in the Edge layer
between IPFS and IOTA Tangle in detail and explains how the data is moved, verified,
and authenticated in Tangle.

‘H(Cdbf 265KB)’ is taken as the input data to the Tangle ledger System.We represent
that input data ‘H(Cdbf 265KB)’ in the following algorithm as ‘Iniota,’ data-length as
‘Iniotalen,’ the public key as ‘IntanglePukey,’ private key as ‘IntanglePrkey,’ index as ‘I’
and next-index as ‘n-I,’ sign field as ‘sign’ and auth-sign as ‘authsign.’ For Hashing and
digest, we represent with letters ‘H’ and ‘d’.
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Fig. 6. CroPAiD detailed Data flow in the Edge layer between IPFS and IOTA Tangle.

Algorithm 2. Crop Data File in IOTA Tangle.
1: We represent H(Cd)ipfs coming from ipfs as input data to IOTA as Tangle(Iniota).
2: Iniota−→ Iniota, Iniotalen, IntanglePrkey, IntanglePukey, ind,
3: nex-ind, sign authsign.
4: Random Source −→ Sd.
5: Sd −→ IntanglePrkey, IntanglePukey.
6: H(IntanglePukey)−→ I.
7: A different key pair is generated for the next input data (Next-Iniota) from another random

source.
8: The key pair from the next input data is (Next-IntanglePrkey) and (Next-IntanglePukey).
9: H(Next-IntanglePukey) −→ n-I.
10: A digest d is calculated for signature.
11: d= H((Iniota) + (Iniotalen) + (IntanglePukey) + (n-I).
12: sign= signature(d + IntanglePrkey)
13: if H(Iniota)==sign+IntanglePukey then
14: Verification Success.
15: else
16: Process End.
17: For authorization, we need the public(IoTPukey) and private keys (IoTPrkey)of the IoT

device.
18: authsign = signature(IoTPrkey)
19: if authsign== signature(IoTPukey) then
20: Authentication Success.
21: else
22: Process End.
23: end if
24: end if
25: Repeat the steps from 1 through 25 whenever a file is moved from IPFS in the edge layer.
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6 Implementation and Validation

To implement the current system, we have taken the source code from Github and mod-
ified the code to our needs for the CroPAiD application. The application is designed
using javascript; hence we use Node.js as an environment for executing our JS pro-
grams. In this application, it is mainly used to create, open, read, write, delete, and
close files that reside on the server. Node.js is installed in both the application program
interface and client programs to test and deploy the application. We modified and con-
figured the local .json file of the application program interface (api) with the network
settings of the node provider, IPFS node, and the database using dynamoDbConnection
services provided through Amazon web services. Once the api is configured, the API
server starts in the development mode as shown in Fig. 7. For the client mode to exe-
cute, we installed the node.js inside the client directory and configured the local.json
file with the required fields of API endpoint URL, ipfs gateway URL, and the URL for
tangle explorer. After client configuration, the client connects to the API server to open
the front-end web browser.

The front end of the application is designed using React javascript. The user inter-
face of the CroPAiD application is given in Fig. 8(a) and the Fig. 8(b) shows the front-
end design for uploading the crop data files. A hash is generated once the file gets
uploaded to IPFS as shown in the Fig. 9(a) and files can be retrieved from IPFS and
IOTA Tangle hashes as shown in Fig. 9(b). Thus, we implement and validate the appli-
cation and record the DDS and IOTA hash results.

Fig. 7. Connecting to api and Client Programs.

6.1 Datasets

The agricultural datasets we used are from the Kaggle [25] source. Each data belonged
to different vegetables and fruits containing images of healthy and diseased crops. These
data collected are sensitive and usable for further research and analysis in bringing
improvements in farming and are also beneficial in the field of agricultural science. We
uploaded the crop data in the current application to test and validate. Table 2 demon-
strates different crop statistics we used for the present paper.

The Fig. 10 shows some sample dataset images we used for storing and sharing in
the CroPAiD application through IPFS and IOTA. When a crop gets infected, it dam-
ages and changes all the primary functions of the food that can harm humans when con-
sumed. This type of crop infected data is beneficial in predicting future crop damage
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and helps improve crop yield. Therefore, such data is crucial for farmers and scientists
to take precautions and perform research and study. This data need to be transmitted
in a secure manner without any tampering for correct analysis. The Fig. 10(a), 10(b),
10(c), 10(d), 10(e), 10(f) show pictures of a healthy crop and a diseased crop of apple,
potato, cherry, corn, grape and tomato correspondingly.

6.2 Experimental Results

To obtain the results for the current application, we have used Intel(R) Core(TM) i9-
10885H CPU @ 2.40GHz, 32.0 GB RAM as the edge layer. We have deployed the
application logic of IPFS and IOTA tangle in this edge system. We upload the crop data
file to the IPFS node to get the hash of the file, as shown in the Table 3. The IPFS hash
file generated does not have the time stamp but avoids duplicates and double-spending
attacks on the data transferred. The application further takes the IPFS hash as an input
to the IOTA node to give another hash from the tangle platform. The Table 3 shows the
double hashes produced by both IPFS and Tangle. The application has been tested with
different sizes of crop data to produce two hashes with both technologies. Once both the
hashes were received from the application, we used the message unique ID to retrieve
the original file. The time to upload the files was very minimal, and the data transactions
costs were zero compared to blockchain latencies and transaction fees. The paper we
implement combines distributed storage IPFS and IOTA Tangle successfully, resulting
in higher data security with reduced energy consumption nullifying the limitations of
central, cloud, conventional database, and blockchain systems.
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Fig. 8. CroPAiD Application User Interface.
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Fig. 9. Implementation of CroPAiD Application.
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Table 2. Datasets for CroPAiD

Data Name Dataset Size Compressed Data Size Dataset Link

Apple-healthy 25.7 MB 23.8 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Apple-Cedarapplerust 3.25 MB 2.9 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Cherry-healthy 15.1 MB 14.06 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Cherry-Powderymildew 12.8 MB 11.41 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Corn-healthy 14.9 MB 13.39 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Corn-Commonrust 18.4 MB 16.72 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Grape-healthy 6.87 MB 6.29 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Grape-Esca (Black-Measles) 28.6 MB 27.30 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Peach-healthy 6.16 MB 5.74 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Peach-Bacterialspot 32.8 MB 29.89 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Potato-healthy 3.17 MB 3.05 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Potato-Lateblight 17.5 MB 16.5 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Tomato-healthy 37.0 MB 35.29 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health

Tomato-Bacterialspot 30.5 MB 27.5 MB https://www.kaggle.com/
datasets/divumarcus/plant-
health
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Table 3. Hashes generated through IPFS and Tangle

File Name Reduced Size IPFS Hash Tangle Hash Txn Time (Sec)

Apple-healthy 23.8 MB QmXWpe6Q5v9qH7Wwgr
5HH5BmB78Q2u4wP
WFd7NkvooFZrP

SKJYF76R3947IRYREIU59
8475FHKEUR834759IFKR30W
PWEKDSVLDKFROIRFHDKJ

35

Apple-Cedarapplerust 2.9 MB QmYuERUhBu8fuXRa
b7RkWwDqDZKHcn8Dp
kUwpopaNMjAB3

GZSDUAYR87R675RWRYGJDH
FU9586ERUFJBLDIR43950
35RTHGKVJS579048EOIHK

3.45

Cherry-healthy 14.06 MB QmPRkovGVUgYx2ue
hy1g5QHwqECXpd1No
CXAsUehznjU5t

JHSGFUY5R635RWGFJSH
VET875985WIGDSHVLUSP5T98
FHDVJDOYW8R76487RITHK

21

Cherry-Powdery mildew 11.41 MB QmTy9g2ENwSP66D
V2qkUP7XchCd9AQ
maznM8saZbvz1xcY

CMVNGGF653RFHHKJLLOUU
ERWEQSCCBBJH87966453FDJ
GHKJUYRTEESXZVFMHKJO

7

Corn-healthy 13.39 MB QmZkM4ymQCXKThL
hY6igBMPxcjwaNa
uGj6Khvnr1rfuHNh

LQREWRR5473FCVVNGH67
892DHGNCSK53FHSFFKJOIW
RW9345FDGERSBHYUKIOUQW

14

Corn-Commonrust 16.72 MB QmVCm8uXgyvnQEfvC
bDpPxZ95XNuTyS
ir7thRMMLfoNzFi

FR5476HYHKHNCVZSA3386
87UYKJNGGFTR544333DEH
GJUIIPKNMNBBFVDFSEW4YU

12.34

Grape-healthy 6.29 MB QmX1ohMDQqRqtvDG
PYVGZjyfVx3zuVEK
TXxKRmj6VJxc75

MNXBFYO5I73RGKLD78
79HSJRY764934UTWJHEUFQJO
7GDAPOLKLKOIUSDWKN-
MND4

5.13

Grape-Esca(Black-Measles) 27.30 MB QmZw4X69QyptuNWj
bA3o6NWAK6x9ve
eb3CcXZdPWQV6qcY

D564837HTYCBHGDJDUR7
595HFYE54658THG84658HRI
746595RHFI76HJGDTYRIR

37

Peach-healthy 5.74 MB QmUCANWk22uX6JC
Bew8SCRXXDbMfru
XyfCj7YJmSJesmYz

MNZCJHARU8473EIDHKSJ
FLJG9485029QPWADJSLKFWOR
IAJFKZJFKSDJLLKPLSKJ

4.61

Peach-Bacterial spot 29.89 MB QmdWXdTy8LaTHaL
wFAPe49FCBd5eii
jaM43kMd16yj13S7

BVKJSDYFIWUR23OUOQFH
SKDLSEORIQPOWASJCDKFLKI
KDFIY98T4OIP4O549TIDH

43.2

Potato-healthy 3.05 MB QmenHxheRqXnXE57D
mL6Ncgvr3pTJ9Ed
g9KFXW58ei5R6z

XJSTF346TIUWFH7W6457VI
SU6WILQURW87RIFI8479WR
IUFLSJKAS511OQALSJWP

3.52

Potato-Lateblight 16.5 MB QmbY6uwyER8WYXbz
C8ES9xS6iXumS
yK2oy757EgUp2gcxR

U6785GHFVDBXDSEWR5687I
JKGNBMCVXDSWQUTIOUPIK
BMNVVDGTR6E4R7T8987JJ

23.4

Tomato-healthy 35.29 MB QmTozqarvDLCzaqX
rt2895H9jBVPsiFx
12JedBc9Jy4NFA

VDFER4557YHGDDSXZMNK
JOU865GGJJLDVXVGSAWUWO
IWNVHZFQ5E7TIUGVJHIFJH

61.3

Tomato-Bacterial spot 27.5 MB Qmbzvc2Pk4qN9vR
13vvvuFhWiDNhWjh
TtMEB12PUcDZwGP

MBSJAOEUGD7847KI387HOW
SKDHGVXMSLE-
DUR6E6R9TUWSBXKBO
FIF8EE6RWFSBVK

38.6
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Fig. 10. Sample Images of Crop Condition Dataset.

7 Conclusions and Future Research

The paper suggests a state-of-the-art model that combines distributes storage-IPFS and
the IOTA Tangle for managing the quality and integrity of the agricultural crop sensor
data. The paper resolves various issues raised by traditional database, cloud, central,
and blockchain storage systems, that include data security, privacy, integrity, and over-
coming bottlenecks and latencies of conventional platforms. The Tangle uses tools such
as MAM and STREAMS for communication and to secure the data received from the
distributed storage system. In this paper, we also propose a novel architecture using an
edge between the sensor things and the servers. The system can further be improvised
with automation for taking in real-time data towards the edge IOTA Tangle systems.
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Abstract. Worm castings (Worm Excretion) are one the richest natural fertil-
izers on earth, making earthworms a very important and applicable soil health
indicator. According to an article published in the Polish journal of Environmen-
tal studies, the most important chemical components of worm castings are pH,
total organic carbon (TOC), total nitrogen (N), plant available phosphorus (P),
plant available potassium (K), and calcium water soluble (Ca). These chemical
components of worm castings, paired with soil temperature, humidity and elec-
tric conductivity, are all measurable values that can indicate the overall health and
fertility of soil. Furthermore, these physical-chemical properties can also be mea-
sured and analyzed to estimate worm populations in soil, making traditional man-
ual extraction techniques obsolete. The proposed project, Sana Solo, is a device
that uses machine learning to estimate worm populations based on the quantities
of the physical-chemical properties listed above. Being able to estimate earth-
worm populations in a timely manner, without the use of extraction techniques,
can be used in farms and gardens to evaluate soil fertility.

Keywords: Worm Castings · Soil Fertility · Soil Health · Smart Agriculture ·
Internet of Things · Edge Computing

1 Introduction

Soil is considered as the upper layer of earth in which plants grow. It is a mixture of
organic remains, clay and rocky particles and has black or brown color. Soil serves as a
medium for filtration of wastes, serves as the reservoir to hold water and nutrients.

The properties of soils exhibit significant variations due to differences in geology
and climate over both space and time. Even a basic attribute like soil thickness can vary
greatly, ranging from a few centimeters to several meters. This variability is influenced
by factors such as the intensity and duration of weathering, soil deposition and erosion
events, as well as the patterns of landscape changes. Despite these differences, soils
possess a distinct structural feature that sets them apart from ordinary earth materials
and forms the foundation for their classification: a vertical arrangement of layers formed
through the combined effects of water percolation and the actions of living organisms
[3]. The thematic representation of the proposed Sana solo is represented in Fig. 1.
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Fig. 1. Thematic Representation of Sana Solo System.

1.1 Soil Erosion and Its Impacts

The actions of flowing water, wind, ice, and gravity constantly disturb soil profiles.
These erosive processes remove soil particles from the topsoil and expose underlying
horizons to the process of weathering. As a result, there is a loss of essential compo-
nents such as humus, plant nutrients, and beneficial soil organisms. These losses are
particularly crucial for agriculture and forestry. Furthermore, the removal, movement,
and subsequent deposition of soil can have significant economic implications [2].

In the past 150 years, approximately 50% of the Earth’s topsoil has been depleted
or eroded. According to a report by the Intergovernmental Panel on Climate Change
(IPCC), soil erosion is occurring at a rate up to 100 times faster than the natural process
of soil formation when cultivated without conservation practices. This alarming finding
highlights the current imbalance in soil health. Moreover, the risk of erosion is expected
to increase further in the future due to temperature changes driven by emissions. This
can lead to detrimental consequences such as reduced agricultural production, declining
land value, and negative impacts on human health [4].

Soil erosion has implications beyond environmental concerns; it also results in sig-
nificant economic losses. The global economic losses due to soil erosion are estimated
to be approximately $8 billion. These losses stem from reduced soil fertility, decreased
crop yields, and increased water consumption [5]. Soil erosion accounts for a 2% reduc-
tion in total agricultural GDP, considering both direct losses faced by farmers and down-
stream losses affecting others [6]. Another study revealed that in Sleman, a district in
Java, soil erosion costs an average farmer 17% of their net income per hectare of agri-
cultural land [7].

Each year, soil erosion inflicts significant economic losses on the agricultural sec-
tor. In the United States, the impact amounts to approximately $44 billion, encom-
passing reduced productivity as well as the adverse effects of sedimentation and water
pollution [8]. This erosion-induced loss extends further to an estimated $100 million
in farm income annually. European countries face substantial agricultural productivity
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losses totaling $1.38 billion per year, alongside a decrease of $171 million in their gross
domestic product [9]. Similarly, South Asia experiences a staggering annual cost of $10
billion due to soil erosion [10].

2 State of Art and Its Advancement Through the Current Paper

There are methods that involve soil-friendly agricultural practices like terraced farm-
ing. The presence of manure enhances soil organic matter, leading to the prevention
of erosion. Likewise, implementing a rotation of crops that include both deep-rooted
and shallow-rooted varieties enhances soil structure and simultaneously decreases the
occurrence of erosion. This prevents erosion and allows more water flow to crops [4].

Crop recommendations based on soil quality are proposed in [11]. Precision agricul-
tural practices were proposed in [12] to enhance crop yields. GIS and GPS technologies
were used to monitor crops and weather conditions in [13]. Hydroponic techniques were
used to monitor and accelerate plant growth in [14]. Hyper-spectral sensing techniques
to access nutrients in soil, mainly nitrogen is performed in [15]. Using features like tem-
perature, humidity, pH and rainfall, an enhanced genetic algorithm has been proposed
to predict the nutrients of soil in [16]. Hydroponic techniques were used to propose a
vertical farming method to improve the crop fertility in [17].

Decision Trees and Random Forest algorithms were used to predict the crops for soil
in [18]. A web application to monitor the environment quality of an area is proposed
in [19]. A vertical gardening technique has been proposed using edge computing in
[20]. A smart plant monitoring system has been proposed in [21] using environmental
conditions. A site specific nutrient management system has been proposed in [22]. A
GIS based spatial detection analyses has been proposed to control soil erosion in [23].

2.1 Motivation

As mentioned, most of the solutions support plant growth but the focus on soil health
is very minimal. The proposed Sana Solo project focuses more on soil health and its
fertility. Monitoring the health of soil by macro-fauna and determining their relationship
with respect to soil fertility is the main objective. There are a few devices and products
which monitor soil fertility using macro-fauna as mentioned in Table 1.

3 Proposed Sana Solo System

The proposed Sana Solo system measures soil fertility in relationship with the macro-
fauna present in the soil. The broad perspective of the proposed system is represented
in Fig. 2.

Two different scenarios are presented in the above figure. Scenario A where soil is
healthy enough to grow a plant and Scenario 2 which needed worm castings to improve
the fertility for efficient plant growth.

The proposed Sana Solo project uses Internet of Things to acquire, monitor and
maintain the soil health. The Internet of Things (IoT) refers to the network of phys-
ical objects or “things” embedded with sensors, software, and connectivity capabili-
ties, enabling them to collect and exchange data over the internet. These connected
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Table 1. Existing Solutions To Measure Soil Fertility using Macro-fauna

Device/Prototype Notable Features Main Operation Drawbacks/Problems

MicroBIOMETER [25] On site testing kit for
microbial biomass and
fungal to bacterial ratio

measures microbial
biomass to determine
health of soil

-nothing to do with
macro-fauna, only
microbes; Simply takes
measurements, gives no
recommendations as of
what to add/subtract from
soil, takes 20min to get
results

Weyers, et al. [26] 8 soil probes positioned in
small (.22m^2) octagon
which emits an electrical
field into the soil

Electrical field causes
earthworms to emerge from
ground, which are then
collected and counted to
determine density in
electrified area

could have possible effects
on earthworm health

Kempson Extractor [27] Automated arthropod
extractor from soil

Uses heating and cooling to
move arthropods into a
collecting vessel

gives no evaluations on soil
health based on extractions

Ismayilov Amin, et al. [28] Uses Vis-NIR
Spectroscopy technique to
determine optical
properties of carbon in the
soil to give

High levels of SOC
indicate high levels of soil
organic matter which
indicates biological activity
in soil and overall soil
health

soil organic matter is
difficult to measure

Fig. 2. The Broad Perspective of Sana Solo System.

devices can be anything from everyday objects like household appliances and vehicles
to industrial equipment and infrastructure components. The IoT allows these objects
to communicate and interact with each other, as well as with users or systems, creat-
ing a vast ecosystem of interconnected devices. This network of devices enables data
gathering, automation, remote monitoring, and control, leading to increased efficiency,
convenience, and potential innovation across various industries and domains [32].
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Concepts of IoT have been used in Agricultural fields in Sana Solo. Here, a preci-
sion farming techniques are being implemented to monitor the soil health alongside the
health of macro-fauna present in the soil as represented in Fig. 3.

Sensing Layer

Network Layer

Data Processing Layer

Application Layer

Sensors

Gateways

Processing Units

Applications

Fig. 3. Architectural View of Internet of Things Network.

Alongside IoT, Edge computing is performed in Sana Solo to make the system effi-
cient and robust. Edge computing refers to the decentralized processing and storage of
data at or near the source of its generation, rather than sending it to a centralized cloud
or data center for processing. In edge computing, data is processed locally on devices or
edge servers, situated closer to where the data is produced, such as IoT devices, sensors,
or edge gateways [33] as represented in Fig. 4.
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Fig. 4. Edge Computing Paradigm used in Sana Solo System.

3.1 Relationship Between Macro-Fauna and Soil Fertility

The diversity of macro-fauna plays a crucial role in the decomposition and mineraliza-
tion processes, especially when there are fluctuations in food availability and quality.
Therefore, a rich diversity of macro-fauna ensures a consistent and reliable supply of
nutrients in soil to support the growth of crops [29]. The humus found in earthworm
castings contributes to enhanced water retention in the soil, improved soil aeration, and
the retention of plant nutrients that would otherwise be washed away with water. Addi-
tionally, earthworm castings provide nourishment to beneficial soil microorganisms,
which play a role in producing, storing, and gradually releasing essential plant nutrients
into the soil, thereby serving as a source of sustenance for plants [30].

The three main components of worm casting with major implications in soil fer-
tility are plant available, nitrogen (N), phosphorous (P) and potassium (K). The ratio
of these in worm castings are 3-1-1. (Synthetic fertilizers have a ratio of 10-10-10
for N-P-K.) [30].

There has been a significant change in chemical properties for soil with and without
worm castings. There is an increase in the pH, P, Na, N, Mg, K, Ca values [31].

4 Implementation of Sana Solo System

For the implementation of the system, an Edge processing system has been proposed.
The features of the soil are monitored and are transmitted to the user interface for the
farmer or care taker to monitor the nutritional value of the soil as shown in Fig. 5.
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Soil conductivity

Soil Moisture 

Soil Temperature 

pH

Nitrogen  

Phosphorus 

Potassium

Microprocessor Data Analyses Data Transfer User Interface

Fig. 5. Design Flow of the Sana Solo System.

Following features are considered to monitor to determine the soil fertility:

– Soil conductivity
– Soil Moisture
– Soil Temperature
– pH
– Nitrogen
– Phosphorus
– Potassium

The IoT system used in Sana Solo is represented in Fig. 6.

Fig. 6. IoT system used in Sana Solo System.

5 Conclusions and Future Research

Sana Solo System represents the importance of macro-fauna and its growth in the soil.
This system also allows to analyze the soil fertility and provides mechanisms to man-
age the deficiencies. Using this system, farmers or care takers of a particular field can
analyze the total number of warm castings and can decide if the land/soil needs more.



402 L. Rachakonda and S. Stasiewicz

For the future research, this system will be placed in multiple test beds. These test
beds will be with various configurations - with and without castings to monitor the
growth of the plants. The system will also be configured in a way that it can commu-
nicate with the devices in the network to share and transfer information to the farmer
using an user interface.

Acknowledgements. This version of the project is funded by the College of Arts and Sciences
in the University of North Carolina Wilmington.
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Abstract. To tackle the adverse effects of climate change, unprecedented pop-
ulation growth, natural calamities, and natural resource depletion and to ensure
food security, smart agriculture is the future of agriculture. This extended abstract
for this invited talk is focused on some of the important points of smart agriculture
to raise conscientiousness among the future research community.

1 Introduction

Throughout history, agriculture has been crucial to human survival, and it continues
to be the backbone of the economies of many countries today. Agriculture’s signifi-
cance has grown alongside the global population and economy. It now encompasses
not just farming but also livestock, poultry, forestry, fisheries, food supply chain, and so
on. Unprecedented population growth, climate change, depletion of natural resources,
urbanization, over-farming, and deforestation are the crucial factors that are affecting
crop yield, disrupting the food supply chain, and threatening human civilization with
food scarcity and high prices.

The food and agricultural industries embrace technological advancements, giving
birth to “Agriculture 4.0,” a green and smart revolution. Conventional agriculture is
transforming into “smart agriculture” and becoming more productive and sustainable
by optimizing human labor and natural resources. As a result, crop yield and food pro-
duction are increasing. Figure 1 shows the various areas of “smart agriculture.” In this
article, we highlighted the key factors of “smart agriculture.”

2 Smart Agriculture and Related Terms

Traditional agriculture, which relied on manual labor and produced low yields, is evolv-
ing to efficient, sustainable, and eco-friendly “smart agriculture” a.k.a. “smart farming”
with the help of technologies like Sensors and Actuators, Internet-of-Things (IoT) [1],
Artificial Intelligence (AI) [2], Robotics, and Unmanned Aerial Vehicles. The goal of
“smart agriculture” is to maximize both crop quality and output while simultaneously
decreasing the amount of effort required to grow the food [3].
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Fig. 1. Smart Agriculture

“Smart agriculture” differs from “precision agriculture” in that it does not priori-
tize metric precision. Instead, “smart farming” relies on data collection and analysis
enabled by modern computing systems to improve the predictability and efficiency of
agricultural processes. Both “smart agriculture” and “precision agriculture” together are
the two branches of “digital farming” with different focuses. The evolution of “digital
farming” also defines the fourth stage of the agricultural revolution, “Agriculture 4.0.”

In this context, a new hybrid system, Cyber-Physical System (CPS), which origi-
nated from the IoT deployment in physical systems, is gaining popularity. CPSs connect
physical things and infrastructure to the internet as well as to each other by integrating
sensing, processing, and networking into these physical objects and infrastructure. The
National Science Foundation (NSF) is a pioneer in fostering advancements in the foun-
dational knowledge and technologies necessary to bring cyber-physical systems into
existence [4]. Figure 2 shows the three parts of an A-CPS: physical systems, cyber sys-
tems, and network fabric. CPSs enable precision and improve functionality, scalability,
resilience, safety, security, and usability over simple embedded systems [5]. “Agricul-
ture Cyber-Physical Systems (ACPSs)” can collect meteorological, soil, and crop data
to improve agricultural management. ACPSs may monitor water, humidity, and plant
health and employ actuators and infrastructure to control temperature and humidity.

Another important and relevant term is “climate smart agriculture (CSA)” [6]. As
climate change has already been started, efforts to overcome the adverse effects of cli-
mate change are being included in agriculture for sustainability. Smart agriculture has
started to transform to climate-smart agriculture to fight against the aftermath of climate
change.



Smart Agriculture – Demystified 407

Fig. 2. Elements of a typical Agriculture Cyber Physical System [7]

3 Climate Smart Agriculture and Food Security

The current ramifications of anthropogenic global warming are presently observable,
and their impact on humans is irreversible. Furthermore, these consequences are
expected to exacerbate in proportion to the continued emission of greenhouse gases
into the atmosphere by human activity [8]. By 2100, sea level in the U.S. will increase
to 6.6ft. Hurricanes will be much more powerful and destructive. Heat waves will cover
a large area of the earth, causing drought and a longer wildfire session. The precipita-
tion pattern will also change. The deserts may see more rain, and fertile land can have
no rain. The Arctic will be ice-free as global temperature rises [8].

Climate change impacts crop yield and food production more negatively than pos-
itively. Traditional agriculture itself is a major contributor to global warming by emit-
ting 12% of the total greenhouse gases emitted by human activity. Enteric fermentation,
manure deposited on pasture, synthetic fertilizer, paddy rice cultivation, and biomass
burning are considered to be the agricultural categories with the highest emissions [6].

The CSA emphasizes the significance of collecting actual findings to discern fea-
sible alternatives and essential facilitating actions [6]. It assesses the implications of
technology and practices for national development and food security in the context of
climate change’s site-specific repercussions. It stresses sustainable agriculture, which
increases productivity. It focuses on practices such as less tillage, planting different cul-
tivars and cover crops, efficient fertilizer and treatment use, smart water management,
increasing the water retention capability of soil, limiting agricultural waste, precise
weather forecasting that can optimize the use of irrigation and fertilizers in farming,
and so on.
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CSA also focuses on communication between policymakers and producers. As it
stresses the collective effort from all the communities at each level, starting from the
national level to individual stakeholders. Advances in Information and Communica-
tion Technologies (ICT) and their large-scale adaptation can build a resilient system.
Figure 3 describes the goals of CSA.
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2 3

CH4

O2

Fig. 3. Goals of Climate Smart Agriculture

Various efforts are being proposed to limit the causes of climate change; e.g., the
AgSTAR program [9] has been introduced to help the agricultural industry cut down on
methane emissions from livestock manure. Producers concerned with soil health should
reduce soil disturbance while increasing cover crops, biodiversity, and the number of
plants with roots in the ground. These practices work together to lessen the impact on
the environment by decreasing emissions and increasing carbon sequestration. They
also benefit the environment by decreasing soil erosion, decreasing the need for costly
inputs like fertilizer, increasing water infiltration, boosting nutrient cycling, and con-
structing more resilient soils over time [10].

4 Smart Agriculture Technologies

All the efforts for sustainable agriculture are possible because of the rapid growth in
technologies, especially in the hardware and IC industries, Graphic Processing Units
(GPU) and Tensor Processing Units (TPU), computing platforms, and last but not
least, Information and Communication Technology (ICT). Industries in different sec-
tors are eagerly embracing digital, smart, green, and sustainable ecosystems to meet
the challenges of climate change. Because of this, the relationship between “man” and
“machine” is being rethought. Changes are happening in the agricultural sector. “Agri-
culture 5.0” [11] is knocking at the door.

Artificial Intelligence (AI), Machine Learning (ML), and IoT are playing a major
role here, along with UAVs and robotics, as they provide decision-making automation.
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Remote sensing through satellite monitoring and cloud computing are two established
advanced technologies used for data gathering and decision-making. Different new con-
cepts, like edge computing in agriculture and Software as a Service (SaaS), are emerg-
ing. Distributed ledger technology is showing promise and can play an important role
in the agricultural industry because of its ability to store immutable data.

Farms are being equipped with sensors and actuators. These IoT sensors and actua-
tors generate huge amounts of data, or big data,” which demands a new stream of data
analysis, “big data analysis, in data science.

Farmers can now monitor how far along their crops are in their distinct growth
cycles thanks to drone technology. In addition, growers can use UAVs to provide treat-
ments for infected plants. The concept of urban farming, like hydroponics, aeroponics,
aquaponics, vertical farming, smart greenhouses, and livestock monitoring, is revolu-
tionizing today’s agriculture and ensuring sustainable agriculture.

5 Smart Agriculture Challenges

Smart Agriculture has simplified and updated the traditional agricultural industry. How-
ever, many problems are still to be solved before widespread technological adoption
may occur.

– Smart agriculture uses power-hungry, massive machine automation. Farms are
large and require many electronic components; therefore, power requirements are
often considerable. This has hindered extensive agricultural automation. Renewable
energy sources like solar, wind, geothermal, and hydroelectric are being used. How-
ever, the storage and transmission of such power are always complex.

– One of the most prevalent features of “smart” farming is machine-to-machine
(M2M) communication. To accomplish their goal, they utilize a variety of network
and communication protocols to exchange information and coordinate their activi-
ties, such as ZigBee, Wi-Fi, LoRA, SigFox, and GPRS. However, due to the chances
of physical damage, farms cannot afford such pricey networks over vast open lands.

– High-bandwidth internet connections are not always available in remote rural areas.
Unavailability of the internet makes smart agricultural services unavailable.

– Data privacy and security are another bottleneck for smart agriculture. IoT devices
generate huge amounts of data, and moving that data from the user or the origin is
not always permissible. So, the solution is to move the service near the location of
the data.

– Hardware security is another major aspect of IoT devices. The demand for inexpen-
sive and easy-to-use hardware undermines hardware safety. Because of the preva-
lence of Hardware Trojans and Side Channel Attacks, the widespread adoption of
the IoT network in mission-critical applications is being hampered.

– We don’t have any global standards for units and technologies in agriculture. Uni-
formity will standardize the available services and prices in agrobusiness across the
globe.

– Installation of sensors, actuators, or other edge devices, such as drones and agro-
robots, requires initial capital investment. Investing in that automation is not always
easy for small-holder farmers who have small margins of revenue.
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– As the field size varies from small-holder farms to large farms, scalability of solu-
tions is needed. It optimizes all the efforts. Along with scalability, the reliability of
the solutions will optimize the number of devices. A smaller number of redundant
devices that replace faulty devices will minimize the cost.

– To modernize agriculture, one of the biggest challenges is the communication gap
between the research community and stakeholder farmers. The issues the farmers
need to address do not always reach the researchers, and the agricultural industry
cannot fully utilize the benefits of modern technologies.

6 Smart Agriculture Research Problems

As the challenges suggest, there are various areas in agriculture where more research
is necessary. For example, research on microgrid structures, power distribution strate-
gies based on requirements and load, the supply of electricity without interruption, and
energy smart automation can solve the power issues. Affordable and robust communi-
cation technologies can provide better communication between devices and systems.
More research on data compression techniques, extreme temperature sensors, publicly
accessible datasets, data privacy and security aspects, hardware security, and robust
networking is also necessary to accelerate the progress of smart agriculture. Research
on federated learning and edge computing-based solutions, robust cryptography, and
network protocols for tinyML devices is needed to address data privacy and security
issues. Publicly accessible dataset availability is another dire need of the AI community
for agricultural research.

7 Conclusions

Today, we live in a world where we cannot deny irreversible climate change. Techno-
logical progress and the rapid development of ICT have already boosted the digitiza-
tion and modernization of agriculture, which results in an increase in agricultural pro-
ductivity and yields, a decrease in ecological footprints, improved water conservation,
increased climate smart efforts, and a decrease in operational costs. Overall, agriculture
advances in quality and quantity. However, more climate-smart efforts are needed. In the
United States, $19.5 billion has been sanctioned via the Inflation Reduction Act to sup-
port climate change alleviation efforts from 2023 to 2027 [12]. Common Agricultural
Policy 2023-2027 of the European Commission aims to form a sustainable, resilient,
and contemporary European agriculture economy. It also has a focus on efforts for cli-
mate change mitigation [13]. In 2011, India launched National Innovations in Climate
Resilient Agriculture (NICRA) with $42.7 million to make Indian agriculture-crops,
livestock, and fisheries-more resilient to climate change and unpredictability.
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Abstract. With rising challenges and depleting resources, many automation
solutions have been developed in agriculture. Integration of Internet-of-Agro-
Things (IoAT) and Artificial Intelligence (AI) helped gain better yields while
maximizing utilization of minimal resources. Weed management being a task
affecting quality and yield of crop attracted attention of automation. However, due
to the diverse nature of agriculture, same crop from various geographical loca-
tions in different growth stages exhibit different features. Additionally, unknown
weeds might also exist in the farm rendering feature based supervised CNN solu-
tions not suitable for weed classification. The current paper presents a weed man-
agement Agriculture Cyber-Physical System (A-CPS) called WeedOut with a
novel methodology enabling it to work in feature variant environments. Weed-
Out uses a Semi-Supervised methodology that classifies crops by their shapes
and labels them as primary crop and weed crop with minimal inputs from farmer.
An autonomous weed sprayer uses outputted labeled images to spray herbicide at
weed locations and save primary crop.

Keywords: Smart Agriculture · Agriculture Cyber-Physical System (A-CPS) ·
Internet-of-Agro-Things (IoAT) · Artificial Intelligence · Computer Vision ·
Semi-Supervised Learning ·Weed Pressure ·Weed management

1 Introduction

Agriculture is the primary source of food for all the human beings across the world. Var-
ious factors like rapid growth in human population, reduction of farmland, depletion of
natural resources and advances in Internet-of-Agro-Things (IoAT) [1] paved path to
new paradigm in agriculture named “Smart Agriculture” [2] to automate agriculture
routines with help of Artificial Intelligence (AI). Weeds are unwanted plants that grow
along with the crop being cultivated and compete with primary crops for resources like
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sunlight, water, nutrients, space. Weeds can also serve as a habitat for pests and diseases
that can infect crops, provide shade which promotes the growth of fungi. These factors
present weed management as a significant part of cultivation in agriculture [3]. Man-
ually spraying herbicide to suppress weeds is easier when farm area is small. In cases
of large-scale farming where area of farmland ranges from tens of acres to hundreds of
acres manual weeding needs lot of physical labor and inappropriate usage of herbicide
can have several negative effects on environment [4]. To reduce manpower and use right
amount of herbicide there ought to be a system which can scout through farm to identify
weeds and spray at locations of weeds so that weed growth is suppressed without affect-
ing primary crop. Such systems where multiple IoAT devices and Al technologies like
Computer Vision are deployed in agriculture infrastructure to automate a specific task
are referred to as Agriculture Cyber-Physical System (A-CPS). Current article Weed-
Out is a weed management A-CPS that follows a semi-supervised approach as depicted
in Fig. 1 to identify weeds and suppress their growth.

Fig. 1. Overview of proposed WeedOut.

The Rest of the paper is organized as follows: Sect. 2 presents novel contributions of
this article followed by discussion on related works in Sect. 3. Section 4 demonstrates
the working of proposed solution while experimental results are discussed in Sect. 5.
Section 6 concludes the article.

2 Novel Contributions of the Current Paper

2.1 Problem Statement

There have been many solutions using Convolution Neural Networks (CNN) to detect
weeds with high accuracy and efficiency. Any CNN needs ample amount of data
(images) to train, and such trained networks will be able to only detect any new images
with the help of features learned. But, appearance of same crop varies with growth cycle
and geographic locations due to various factors. In addition, there could be new kind of
weeds which the model has not learned. So, CNN models will have to be trained with
lot of images to encompass all possible cases which would not be available in some
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cases [5]. In such cases solutions that consider other properties like shape of the crop,
area occupied by the crop, patterns in sowing the crop can help us distinguish between
primary crop and weed.

2.2 Proposed Solution of the Current Paper

Proposed WeedOut tries to differentiate crops by their shape (profile plots) and clus-
ters similar crops (similar shapes) together. This approach makes proposed method un
effected by differences in appearances/features of the crop due to geographical and
aging factors. Knowledge of farmer is utilized in identifying the clusters that represent
primary crop to classify crops as weeds and primary crop in semi-supervised fashion.

2.3 Novelty and Significance of the Proposed Solution

The following are novel contributions of this article.

1. No prior data or training is required by WeedOut: Proposed methodology does not
need any training involving lot of images and manual labeling effort.

2. Provides insights on weeds present and weed pressure: In addition to classifying
crops as primary crops and weeds, proposed method also provides the farmer a list of
all kind of weed crops in the farm, percentage of their contribution to total vegetation
and weed pressure.

3. Simple and computationally low intensive solution: Proposed algorithm pass
through image only 2 times to classify and cluster which is quick and simple. Thus,
it can run on end devices like mobile or tablet.

3 Related Prior Works

There have been multiple solutions that do not use CNN for identifying weeds in farm-
land like [6] which detect rows of plantation, row orientation to know crop margins and
label crops outside of crop margins and with lower NDVI as weeds. Whereas, in [7]
crop rows are detected by help of depth data and crops lying between crop margins are
clustered to 2 clusters by their geometric properties and KNN algorithm. Assuming the
number of weeds is greater than primary crop, the smaller cluster is marked as primary
crop. In [8] authors proposed a method where crop lines are derived and super pixels
(obtained by SLIC) that are in contact with crop lines will be classified as crops, super
pixels that are not in contact with crop lines are classified by comparing with neighbors.

In contrast to the above solutions that rely on practice of cultivating in rows, some
solutions classify crops by the area they occupy. Authors of [9,10] proposed methods
where area covered (number of pixel occupied) by individual crop is computed and the
one whose area is below a threshold is classified as weed while the one whose area
is above the threshold is classified as primary crop by assuming individual primary
crop occupies more area than individual weed crop. But in [11,12] the classification
is performed the other way assuming individual primary crop occupies less area than
individual weed crop. Article [13] proposes use of Active Shape Models (ASM) for



418 K. K. Kethineni et al.

classification, which calculates shapes of crops present in the image and compares them
to shapes of primary crops in memory (training data) to know if its a primary crop or
weed. A brief summary of these works are presented in Table 1.

Unlike the above approaches, current approach makes no assumptions on pattern
in cultivation or differences in area occupied by individual crops. Instead, WeedOut
utilizes shapes of the crops similar to [13] to cluster similar crops and farmers inputs to
classify them.

4 Proposed Method - WeedOut

The solution is an A-CPS comprising of multiple devices/machines like drones, weed
sprayers and phone/tablet engaged in weed management as presented in Fig. 2. Entire
work flow starts with a rover/drone scouting the farm [14] to capture a grid of photos
which when stitched together represent the entire farmland.

Table 1. A brief summary of relevant literature.

Work Year Assumptions made Features considered Remark

Louargant et al. [6] 2019 Cultivation of crops is
performed in rows.

Spatial and spectral
properties of crop.

Specific to crops
which vary in
vegetation indices.

Ota et al. [7] 2022 Cultivation of crops is
performed in rows.

Spatial and geometric
features of crop.

Needs more number
of weeds for better
classification.

Bah et al. [8] 2017 Cultivation of crops is
performed in rows.

Position of crop in
farmland and
orientation of super
pixels.

Specific for crops that
are cultivated in rows.

Rani et al. [9] 2017 The average area of a
primary crop is
greater than that of a
weed.

Area occupied by
individual crop.

Weeds larger in size
may be classified as
primary crops.

Irı́as Tejeda et al. [10] 2019 The average area of a
primary crop is
greater than that of a
weed.

Area occupied by
individual crop.

Weeds larger in size
may be classified as
primary crops.

Aravind et al. [11] 2015 The average area of a
primary crop is lesser
than that of a weed.

Area occupied by
individual crop.

Weeds smaller in size
may be classified as
primary crops.

Siddiqi et al. [12] 2009 The average area of a
primary crop is lesser
than that of a weed.

Area occupied by
individual crop.

Weeds smaller in size
may be classified as
primary crops.

Maria Persson et al. [13] 2008 NA Shape of the crop. Needs to be trained
with shapes of
primary crop at
various orientations.

WeedOut 2023 NA Shape of the crop. No training needed,
works for all types of
crops and all patterns
of cultivation.
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4.1 Detection and Identification of Individual Crops in Images

Algorithm of crop detection proceeds by processing one image at a time from the set
images in the sequence they have been captured. In-order to classify crops, first task is
separation of crops from soil by eliminating background. So, image is transformed into
HUE color space which represents colors based on hue, saturation and value parameters.
Thresholding is performed on image with prior defined limits for green color to detect
objects that are in green color (crops) [15]. Image is then resized to 250×250 for ease
of computing and converted to binary image as in Fig. 3.

In order to classify crops in the image as primary crops and weeds, individual crops
in the image have to be identified and labeled uniquely. Two-pass Connected Compo-
nent Labeling is a Computer Vision algorithm, which essentially identifies and uniquely
labels all the objects in a image by just passing over the image twice. When ever a binary

Fig. 2.Working of WeedOut.

Fig. 3. Demonstration of 2 Pass Connected Component algorithm.
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image is presented, the algorithm starts to process each pixel of the image column after
column in each row. In the first pass, whenever it reads a pixel that is bright it looks
for its neighbor pixels that are bright. If there are any neighbors available, highest of
their labels would be assigned to the current pixel. If no neighbors are found a unique
label is assigned to the pixel and equivalence between neighboring labels is saved. This
process of labeling continues till all the pixels in current image are assigned a label.
Second pass identifies various labels assigned to a single object and replaces them with
label that is unique to every object as represented in Fig. 3.

4.2 Grouping Identical Crops into Clusters

Every crop essentially differs with others in properties like length of leaves, width of
leaves, number of leaves, orientation of leaves. All these features effect how the whole
crop looks and how width of crop changes with its length from tip to tip. A plot describ-
ing variation in width of a plant with length is termed as Profile Plot, Fig. 4 shows profile
plots of two crops demonstrating how profile plots can help differentiating crops.

After computing profile plots for all crops identified in the image, they are extrap-
olated to length of 250 for ease of visualization. All these profile plots are compared
with one another by Dynamic Time Warping (DTW). Dynamic Time Warping of two
signals is finding best alignment between them by stretching and compressing one of
them along time axis while distance between corresponding points is being minimized
as in Fig. 4. DTW distance is the minimum distance required to align the signals. In
simple terms, signals those are highly similar would have low DTW distance and thus,
can be used as similarity measure. This helps in finding pairs of crops that are similar
and all pairs that have a common element are merged to form clusters in iteration till
no clusters have a common element. DTW is performed between identified crops for
couple images at the initial stage to detect all kinds of crops present. Later on instead
of performing DTW between crops identified in a image, DTW is performed between
each identified crop and identified crop types to group with similar ones.

Fig. 4. Visualization of profile plots and Dynamic Time Warping.
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4.3 Classification and Targeted Herbicide Application

Once all possible clusters are identified, contribution of each cluster to the entire vege-
tation is computed by dividing area occupied by each cluster with area occupied by all
clusters. Results are presented to farmer with image of one instance from each cluster.
From the list of images presented to him, he classifies/labels the image that is similar
to his primary crop as primary crop. The label is propagated throughout the cluster to
classify crops in that cluster as primary crops. Rest all crops from other clusters are
considered as weeds. Thus labeling is performed in semi-supervised fashion with min-
imal manual intervention. After classifying clusters as primary crops an weeds, area
occupied by primary crops and weeds are calculated to determine the percentage of
contribution by weeds to the total vegetation known as weed pressure.

All the crops in the image classified as primary crop are marked green and the
ones classified as weeds are marked red. Results are now presented to user/farmer and
updated images are sent to autonomous weed sprayer. Autonomous weed sprayer is a
rover that can travel across the field with provision to carry herbicide. The weed sprayer
starts processing each pixel of the image scaled to actual size of farm with a spray
nozzle moving correspondingly. When the processor finds a red color pixel belonging
identified weed, nozzle sprays herbicide at the location.

5 Experimental Results

Proposed solution was implemented with python and a Computer Vision library
OpenCV on a data set from kaggle [16]. To create an image of a farmland multiple
images were combined and results of one of such image are discussed below. Thresh-
olding and Connected Component Algorithm are performed on inputted image to iden-
tify individual crops, profile plots are plotted for 8 individual crops identified shown in
different shade of gray in Fig. 5. DTW is then performed to detect and group similar
crops to 3 clusters in Fig. 6.

Fig. 5. Different stages in crop identification.

A sample from each cluster is now presented with percentage of contribution of that
cluster to the total vegetation to farmer as in Fig. 7. In this experiment farmer selected
cluster 1 as his primary crop. All other clusters except cluster 1 are marked weeds and
colored red while primary crops are colored green. Final results are presented in Fig. 7
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Fig. 6. Clustering of similar crops.

Fig. 7. Results of WeedOut presented to farmer.

along with computed weed pressure. and can be used as an input to autonomous weed
sprayer to spray herbicide at weed location.

The same algorithm is fed with 20 of such images to simulate a small sized farmland
and calculate its performance metrics. The proposed clustering method showed an accu-
racy of 93% while F1 score for primary crops and weeds were 0.80, 0.95 respectively
indicating that the proposed method was particularly effective at identifying weeds.

6 Conclusion

Current article proposed a novel methodology for an A-CPS delegated with weed man-
agement utilizing shape of crops and domain knowledge of farmer to detect weeds in the
farmland instead of CNN methods which depend on visual features of crops. WeedOut
identifies various crops in the image using Connected Component Labeling Algorithm
which checks if any pixel has a directed connection or connected path to other pixel of
a object to decide if it belongs to same object or not. This assumption leads to two crops
with some overlap be considered as single crop. which means this solution only works
for non-overlapping crops in farmland. Proposed method classifies crops by their shape
which poses chances of misclassification if two crops have similar profile. Methods to
distinguish crops even in cases of overlap with help of edge detection and considering
some additional geometrical features that help in more accurate identification can be
explored as future works for the proposed solution.
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Abstract. Smartphones have become essential components in the Internet of
Medical Things (IoMT), providing convenient interfaces and advanced technol-
ogy that enable interaction with various medical devices and sensors. This makes
smartphones serve as gateways for sensitive data that could potentially affect
patients’ health and privacy if compromised, making them primary targets for
cybersecurity threats. Authentication is crucial for IoMT security, as its effec-
tiveness relies on its resistance to any conditions of environment, device, or user.
In this paper, we propose the Anomaly Location-based Authentication (ALBA)
method using GPS technology and a lightweight unsupervisedML algorithmwith
more stable features. Our experimental results showed that the model success-
fully identified anomalous locations across three distinct datasets, demonstrating
the adaptability of ALBA.

Keywords: Healthcare Cyber-Physical System (H-CPS) · Internet of Medical
Things (IoMT) · Intelligent Security · Cybersecurity · Location-Based
Authentication

1 Introduction

The growth of IoT embedded systems and biosensors, has introduced the IoMT as a
branch that integrates medical devices, applications, and networks to enhance the effi-
ciency of healthcare system [1,2]. The rapid advancements in mobile technology have
enabled smartphones to become an important component of the IoMT network and
a source of information due to the increasing complexity of software and hardware
components and multiple interfaces in medical devices [3]. However, smartphones also
introduce new security challenges due to the sensitive nature of medical data that they
collect, making them a valuable target for cybersecurity threats [4,5]. Therefore, ensur-
ing the security of IoMT is crucial to mitigate risks and enhance the sustainability of
healthcare.

Artificial Intelligence (AI) technologies have been advanced significantly and can
be used to monitor and predict the behavior of entities within an IoT environment. How-
ever, data quality is crucial in machine learning (ML) for achieving accurate results.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
D. Puthal et al. (Eds.): IFIPIoT 2023, IFIP AICT 683, pp. 424–432, 2023.
https://doi.org/10.1007/978-3-031-45878-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45878-1_30&domain=pdf
http://orcid.org/0000-0003-0941-9855
http://orcid.org/0000-0003-2959-6541
http://orcid.org/0000-0002-1616-7628
https://doi.org/10.1007/978-3-031-45878-1_30


ALBA: Anomaly Location-Based Authentication in IoMT 425

While many studies on behavioral authentication for smartphones have contributed
valuable insights, research expectations have not met in terms of accuracy or consid-
ered IoT device security requirements under different conditions related to environment,
device, and user. Therefore, effective IoMT security solutions require holistic security
considerations, while maintaining user convenience.

In this paper, we propose a behavior-based authentication method for smartphones
in IoMT network using GPS sensors and an unsupervised ML model, which can be
utilized as a additional security layer without requiring user intervention, and with
more stable features. Figure 1 depicts the basic overview of our proposed method. The
method’s efficacy was evaluated using three distinct datasets. The results demonstrate
its adaptability to various realistic conditions, indicating its potential to be implemented
in IoMT.

Fig. 1. Overview of the Proposed ALBA for IoMT.

The paper is organized as follows: Section 2 presents the literature review, while
Sect. 3 introduces the novel contributions of this paper. The proposed method is pre-
sented in Sect. 4, and data preprocessing is detailed in Sect. 5. The ML model used in
our method is described in Sect. 6. Experimental results are provided in Sect. 7, and the
conclusion with future work are in Sect. 8.

2 Related Research on Behavioral Authentication

Existing research on behavioral authentication has provided valuable insights using var-
ious techniques and sensors, such as Keystroke Dynamics (KD) [6,7], Touch Gestures
(TG) [8,9], and Gait Behavior [10,11]. However, some studies may not have fully met
expectations in terms of accuracy and stability of authentication data, nor considered
the holistic security needs covering diverse environmental, device, and user conditions.
This limits their accuracy, suitability and effectiveness for the IoT devices, especially
smartphones.
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The limitations of these techniques are mainly due to internal and external factors,
such as the variety of devices, where smartphones have touchscreens or keyboards with
different shapes, layouts, and sizes [12]. Also, the specific language in which tech-
nique is applied affects the tested interval time between touches, where the user may be
unfamiliar with some vocabularies. Additionally, there are external factors that affect
these techniques, such as, environment, clothing, sickness, injuries, fatigue, emotional
or mental status, and smartphone position. These limitations make the extracted fea-
tures insufficient for behavioral-based authentication. Based on the above discussions,
we conclude that existing approaches to behavioral authentication in IoMT are still
lacking and have limitations. Therefore, ALBA method aims to address these limita-
tions and improve authentication data stability to be more accurate and usable in IoT
devices.

3 Novel Contributions

3.1 Problem Addressed and Proposed Solution

Smartphones have revolutionized healthcare access due to thier advanced technology,
where they used to collect and transmit sensitive medical data, making them vulner-
able to cyberattacks that compromise patient privacy and have life-threatening conse-
quences. Therefore, securing smartphones within the IoMT network is essential. Vari-
ous behavioral authentication methods for smartphones have been proposed to address
vulnerabilities in traditional authentication factors. However, these methods face chal-
lenges in performance and accuracy due to factors impacting authentication data stabil-
ity. Therefore, authentication methods must consider holistic security considerations,
the nature of devices, targeted environments, and their applicability to available tech-
nologies.

ALBA exploits GPS technology in smartphones to authenticate users based on
th ebehavior of their locations utilizing ML technology for analyzing and detecting
anomalous locations, ensuring faster response times to security threats. ALBA over-
comes limitations of behavioral features used in previous studies, and provides more
stable behavioral features under different conditions related to environment, device,
and user. GPS sensors can be embedded in multiple IoMT devices without requiring
specific hardware design or size.

3.2 Novelty of the Proposed Solution

ALBA method provides several contributions: robustness by being less sensitive to
internal/external factors and countering for GPS inaccuracies; increasing efficiency as
GPS requires less features and a lightweight iForest algorithm that has low memory
requirements, reducing computational demand and power consumption compared to
existing behavioral methods; scalability and applicability with GPS integration in vari-
ous IoMT devices without specific hardware requirements; enhancing user convenience
as our method can be additional security layer along with existing authentication fac-
tors, reducing their constraints. These contributions make our proposed method more
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suitable for device technologies and more comprehensive in terms of security consid-
erations in an IoMT environment. To the best of our knowledge, we have proposed the
first behavioral authentication method integrating GPS and unsupervised ML technolo-
gies for IoMT security.

4 Proposed Authentication Mechanism

When user credentials are validated, authentication is based on comparing the current
location with historical locations stored in the database within a given time frame. If the
behavior of current location matches the behavior of the historical locations, it will be
considered normal location. Otherwise is anomaly.

Fig. 2. ALBA Method Workflow for IoMT.

Figure 2 illustrates the proposed authentication method, where the mobile device
collects data from different resources (user, medical devices, and GPS satellites) and
transmits it to the medical server’s IoMT system for verification. Specifically, when
users connects their medical devices to the server, the IoMT system prompts the user
for username and password. The GPS data are then verified and analyzed using ML
algorithms to detect whether the current location is anomalous or not. If the location is
normal, the verification process is successful, and user’s medical devices will be con-
nected to the medical server, allowing secure transmission of medical data for doctor
diagnosis. The user also will be able to access health record. Historical location data
is pre-processed before being stored to reduce computational time and resource con-
sumption, which positively impacts power consumption during future authentication
processes. The result of data analysis determines whether to continue monitoring user’s
current location or take appropriate action in case of any deviation from the expected
behavior, such as limiting system functionality until additional authentication is pro-
vided or sending alerts through other channels.
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4.1 Data Collection

The real-world dataset was collected over 27 days using the Google Maps app on an
iPhone 11 Pro, with 359 locations visited during various times of the day and using
different navigation modes. Figure 3 (a) illustrates a sample of the recorded locations
density, with reduced clutter to improve readability. Figure 3 (b) shows the recorded
locations individually.

Data accuracy is crucial in ML, and significantly impact model performance. There-
fore, data collection process was monitored daily to ensure the accuracy.

4.2 Datasets Description

The effectiveness of ALBA was evaluated using three distinct datasets: (1) a real-world
dataset which was collected for this study with 359 observations recorded at irregular
intervals over 27 d using an iPhone 11 Pro to evaluate ALBA under real-world scenar-
ios, (2) a public dataset that was utilized to evaluate the performance of ALBA on dif-
ferent real-world data and scenarios, and to ensure its generalizability. It was obtained
from Kaggle [13] with 40,603 observations collected in October 2014 using an Android
device, and (3) a virtual dataset which was created with 3,359 observations using Python
programming language, including 5 anomalous locations with different regular patterns
and sudden changes. It was utilized for evaluation under specific realistic scenarios not
clearly present in the previous datasets.

Fig. 3. Sample of collected locations - Real-world Dataset.

5 Data Pre-processing

In our experiment, location features, such as latitude, longitude, and timestamp fea-
tures are selected from the original dataset, while others are redundant. Day and hour
features were extracted from timestamps to improve anomaly detection by identifying
deviations during specific times or days. In addtion, latitude and longitude features are
standardized to be on comparable scales. These features are then combined using PCA
to create a single location feature, enabling easier analysis and visualization of location
patterns and anomalies.
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6 Isolation Forest Model

The iForest is an unsupervised ML algorithm used for anomaly detection without pre-
labeled data. It has several advantages that make it suitable for our proposed method,
including its low memory requirements, reducible model sensitivity, adaptability to data
distribution changes.

Anomalies are isolated by building decision trees (DTs), which are combined to
produce prediction. DTs are constructed by recursively selecting a random feature and
a split value within the range of the selected feature. The iForest has a linear time
complexity O(n), as it isolates anomalies instead of normal observations [14], where
anomalies are expected to be fewer [15], tending to be closer to the root. The number of
DTs affects the model performance and accuracy, but also impacts computational time
and resource requirements. The optimal choice relies on the dataset, available resources,
and multiple experiments.

s(x, n) = 2−E(h(x))
c(n) (1)

The base 2 in the exponential function is to ensure the score is between 0 and 1.
The number of observations is indicated by n, where h(x) is the path length of a point
x, and E(h(x)) its expected average path length. The constant c(n) is the average path
length of terminal nodes in DTs, used to scale and normalize scores. Utilizing a suit-
able threshold value is essential for accurately identifying security threats, especially in
the IoMT where false positives can disrupt medical operations and compromise patient
safety. Identifying an optimal threshold requires iterations, evaluating results, and refin-
ing the value with domain knowledge and expert input.

7 Experimental Results

7.1 Real-World Dataset Results

In our experiment, the iForest model was trained on location data in the real-word
dataset. The results showed that the model successfully calculated anomaly scores as
shown in Fig. 4 (a), identifying 11 anomaly scores represented in red dots as negative
values, while positive vlaues (blue dots) represent the normal scores. The farther from
0, the more anomalous (or normal) a location is. The model’s prediction is shown in
Fig. 4 (b) as a binary series of -1 for anomalies and 1 for normal points.

The model’s sensitivity was controlled by utilizing a anomaly threshold of –0.05
after conducting multiple experiments and evaluating performance, leading the model
to identify 6 real anomalous locations with a significant deviation indicated by dark
red in Fig. 4 (c). For contextual anomalies, they occurred during certain hours or days,
which makes them different from other locations. However, the model considered them
as normal based on the determined threshold as they have slight deviation. For more
insight ont he spatial distribution of anomalous and normal locations, they were pro-
jected on the map depicted in Fig. 4 (d).
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7.2 Public Dataset Results

The model was trained on the public dataset, and all anomaly scores were calculated
successfully as shown in Fig. 5 (a). There were 121 anomalous scores (red dots), where
58 of them were above the utilized threshold of –0.015, representing real anomalous
locations as shown in Fig. 5 (b) represented by dark red dots.

Fig. 4. Real-world dataset Results - A threshold of -0.05

Fig. 5. Public Dataset Results - A threshold of –0.015

We can notice that some of dark red locations have a significant deviation from
the behavior of other locations, while the red locations have a slight deviation, and
which cosidered normal based on the determined threshold. However, the public dataset
locations are shown in a clear daily pattern with some significant deviation, especially
on the right side. Most of the deviations occur at the beginning or end of the week or
during the weekends, which is a reasonable pattern.
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7.3 Virtual Dataset Results

In the virtual dataset, there were 7 anomaly scores as depicted in Fig. 6 (a). Based on
the calculated anomaly scores, the model successfuly identified 7 anomalous locations
as illustarated in Fig. 6 (b)

Fig. 6. Virtual Dataset Results - A threshold of –0.018

The model effectively detected all 5 known anomalous locations, which are repre-
sented by dark red dots. However, there were 2 false positives identified by the model,
which were due to the adjustment of the model’s parameters to optimize accuracy for
the virtual dataset. Despite this, by adjusting the threshold value to 0.018, the model
effectively reclassified these false positives as normal locations (red dots), demonstrat-
ing its ability to adapt and perform well on the given dataset.

8 Conclusion and Future Work

Integrating GPS and ML technlogoies can enhance the security of traditional authenti-
cation factors. The behavioral patterns in proposed ALBA are more stable and accurate
compared to previous studies, which depend on other behavioral patterns that can be
affected by various factors. The experimental results across diverse datasets validate
the model’s ability to detect location deviations from normal patterns, ensuring effec-
tive authentication. For future work, we suggest exploring the integration of additional
behavioral patterns and data types to further improve effectiveness and robustness of
authentication process.
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Abstract. This paper introduces a configurable Activation Function
(AF) that utilizes ROM/ Cordic architecture to generate sigmoid and
tanh with varying bit precision. Two design strategies are explored: a
ROM-based approach for low-bit precision and a Cordic-based approach
for high-bit precision. The accuracy of the configurable AF is assessed
on LeNet and VGG-16 DNN models, revealing minimal accuracy loss
(less than 1.5%) compared to the tensorflow-based model. Experimental
results on the Zybo Evaluation kit-Xilinx, using a ‘fixed<9, 6>’ arith-
metic representation, demonstrate the ROM-based approach’s memory
efficiency, achieving 86.66% LUT savings for 4-bit precision and 80.95%
LUT savings for 8-bit precision compared to the Cordic-based approach.
The Cordic-based approach, on the other hand, shows ≈ 93% LUT sav-
ings for 16-bit precision, compared to the ROM-based approach. The
proposed AF utilizes the robustness of ROM and Cordic architectures
for appropriate bit precision to enhance the overall performance of Deep
Neural Networks (DNNs).

Keywords: DNN accelerators · Cordic architecture · Configurable
AF · fixed-point · FPGA

1 Introduction and Contributions

DNN hardware accelerator implementation poses significant challenges due to
intensive computational demands and hardware resource requirements [8]. The
minimum precision for accurate neural networks with reduced complexity has
been discussed in [11]. Major components of DNN include arithmetic and com-
putational units, which are Multiply-Accumulate (MAC) unit and Activation
Function (AF) [10]. The AF applies non-linear transformations to the MAC
output as shown in Fig. 1(a). It depicts a single neuron having MAC with inputs
(x1 to xn), weights (w1 to wn), and a bias b. A conventional design for config-
urable AF is shown using the select line AF_select, which is needed for Field
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Fig. 1. Neuron architecture with MAC and multi-AFs, utilizing fixed-point computa-
tion format <N, q>.

Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit
(ASIC) implementations. The AF should also support multi-bit precision. A pro-
grammable AF is preferred for multiple applications [9]. Implementing multiple
AFs requires additional resources, leading to higher critical delays. The MAC
unit generates an output (R) (Eq. 1), which the AF then processes to produce
the final output f(R) (Fig. 1(a)).

AFout = f (R) = f

(
n∑

i=1

(xi × wi) + b

)
(1)

The fixed-point representation (Fig. 1(b)), is denoted as ‘fixed <N, q>’. It
includes an MSB as a sign bit (0 for positive, 1 for negative), (N-1) - q integer
bits, and q fractional bits. Targeting hardware implementation with this fixed-
point notation, ROM-based AFs are not suitable for high-bitwidth applications
due to their significant resource utilization (i.e., LUT in FPGA and memory
elements in ASIC implementations). The LUT-based approach involves splitting
non-linear input ranges into regions and storing their data in LUTs as straight-
line segments. FPGA-based customizable hardware designs for AFs have been
proposed in [6], allowing configurability, but consuming more on-chip area com-
pared to ASICs. FPGAs use BRAM for efficient AF access, reducing computa-
tion overhead. However, increased BRAM utilization trades memory usage for
bit precision [10]. A library of VLSI implementations for various AFs is presented
in [7] to design hardware-efficient neural network accelerators.

A linear function has been utilized to approximate the log sigmoid function,
while [2] proposes a polynomial model for the fractional exponent part of the
tanh AF implementation. These approaches aim to achieve accurate approxi-
mations with minimal resource usage, but configurability in AF has not been
discussed. An energy-efficient DNN accelerator, which incorporates variable pre-
cision support, improved performance, and reduced energy consumption, is eval-
uated at the MAC level in [3], but the investigation of the AF is warranted for
further enhancement. The Cordic method, originally introduced by Volder and
later modified by Walther, performs circular, linear, and hyperbolic operations
and finds applications in various fields such as multimedia and digital signal
processing [4]. To address the issues related to additional resources and higher
critical delays associated with configurability, a resources reused Cordic-based
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architecture has been proposed in [9]. This design efficiently realizes sigmoid and
tanh AFs using the same logic resources. However, it has two main drawbacks:
low accuracy and high LUT utilization for bit-precision ≤ 8. To overcome these
limitations, we propose a new approach that combines the Cordic algorithm for
high bit-precision AF and ROM for low bit-precision AF (≤ 8). The distinct
contributions of this paper are as follows:

– We introduce a configurable AF based on Cordic and ROM, capable of gen-
erating sigmoid and tanh functions for variable bit-precision.

– The accuracy of the proposed AF is compared with the tensor-based model,
demonstrating an accuracy loss of less than 1.5%.

– The proposed design demonstrates reduced LUT utilization.

The remaining sections are organized as follows: Sect. 2 introduces the
Cordic architecture and the configurable AF that combines ROM and Cordic
approaches. Section 3 reports the performance analysis. The paper concludes in
Sect. 4.

2 Proposed Configurable Architecture for Variable Bit
Precision AFs Using ROM/Cordic Approach

This section presents the configurable AF design, using a combination of the
Cordic algorithm and ROM-based approach. First, the Cordic algorithm is dis-
cussed, providing insights into its functionality and application. Subsequently,
the configurable AF is introduced, highlighting its key features and design con-
siderations.

2.1 Cordic Algorithm for High-Bit Precision

The Cordic algorithm operates by iteratively rotating vector coordinate com-
ponents (Pi, Qi) to (Pi+1, Qi+1) at each iteration. Equation 2 represents the
computation underlying the Cordic algorithm. In hyperbolic mode, it is utilized
to generate hyperbolic sine and cosine [9].

Pi+1 = Pi · coshθi − Qi · sinhθi (2a)
Qi+1 = Qi · coshθi + Pi · sinhθi (2b)

Ri+1 = Ri − θi (2c)

The scaling factor coshθi = 0.8281 is factored out from Eq. 2 as the pseudo-
rotation scaling factor, while 1

coshθi
= 1.2075 is applied at Pi as an offset. To

derive Eq. 3, θi is substituted with di · Ei, where di ∈ {−1, 1} determines the
negative (−1) or positive (1) rotational direction and Ei represents the memory
element (Lookup Table) for the ith iteration (shown in Fig. 2). The values of
Ei and mode m depend on the type of coordinate system (linear, circular, or
hyperbolic) being employed [5]: Ei ∈ {2−i, tan−1(2−i), tanh−1(2−i)}, and m ∈
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{0, 1, −1}, respectively. Therefore, for hyperbolic mode, Ei = tanh−1(2−i), and
m = −1.

Pi+1 = Pi − m · di · Qi · 2−i (3a)

Qi+1 = Qi + di · Pi · 2−i (3b)
Ri+1 = Ri − di · Ei (3c)

Algorithm 1. Pout and Qout generation using Cordic
1: Objective: Generate Pout and Qout using Cordic.
2: Input Factors: Pin, Qin, Hyperbolic angle Rin.
3: Output Responses: Pout and Qout.
4: Initialize N = bit-precision, P0 = Pin = 1.2075, Q0 = Qin = 0, R0 = Rin, m = -1,

d0 = Ri[N-1] (sign bit).
5: for i in range(0: N-1) do
6: Pi+1 = Pi –

(
d̄i − di

) · m · Qi
2i

7: Qi+1 = Qi +
(
d̄i − di

) · Pi
2i

8: Ri+1 = Ri –
(
d̄i − di

) · Ei

9: end for
10: Pout = P[N-1 : 0], Qout = Q[N-1: 0], Rout → 0.
11: return Pout and Qout.

Algorithm 1 demonstrates the iterative calculations required to compute the
hyperbolic functions cosh and sinh, resulting in the generation of Pout and Qout,
using the hardware architecture depicted in the ROM/ Cordic Block (Fig. 2).
Pi and Qi are calculated for N iterations until Rout converges to 0. The MAC
output serves as the input to the AF (AFin) and is denoted as Rin in algorithm 1.

2.2 Configurable AF Architecture with ROM/ Cordic Block

The core of the configurable AF, as depicted in Fig. 3, consists of the ROM/
Cordic Block (Fig. 2). The ROM/ Cordic Block incorporates adder/subtractors,
shifters, and memory elements. The most significant bit (MSB) of Rin[N-1] (sign
bit) generates the directional signal di [5], determining whether addition or sub-
traction is performed such that Rout converges to 0. Here di ∈ {0, 1} as the sign
bit Rin[N-1] ∈ {0, 1}. Equation 3 has been modified to the equations presented
in algorithm 1 for hardware realization. The Add/Sub block utilizes the 2's
complement form for subtraction operations. The 1:2 DeMux, controlled by the
precision_select signal, selects the input Rin[N-1:0] for either ROM or Cordic
operation. In the ROM-based approach (Fig. 2), the value at the Rin address
is accessed as ROM[Rin]. Depending on the implementation of the ROM, the
AF’s output for sigmoid or tanh is obtained. Thus, Rout = ROM[Rin] for the
ROM-based approach, while Rout converges to 0 for the Cordic-based approach
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(Fig. 2). Additionally, the state machine in Fig. 2 generates control signals for
input and feedback based on the clock and reset signals. The output of the
Cordic block in Fig. 2 produces the values cosh(Rin) and sinh(Rin) at Pout

and Qout, respectively. These outputs are used for exponential calculation, as
described in Eq. 4.

eRin = cosh(Rin) + sinh(Rin) (4)

The proposed configurable AF architecture, as shown in Fig. 3, incorporates
select signals precision_select and AF_select to determine the outputs using
either ROM or Cordic, as summarized in Table 1. The input data Rin serves as
AFin to the proposed block and produces the output ROM[Rin] in the subse-
quent clock cycle or converges to 0 after the Nth Cordic iteration. The ROM/
Cordic Block has three outputs: sinh(Rin), cosh(Rin), and 0/ ROM[Rin], as
depicted in Fig. 3, with AF_select controlling MUX1 and MUX2 for Cordic-
based sigmoid or tanh AF selection. sinh(Rin) and cosh(Rin) are sent to the
ADDER1 block. The output of ADDER1 is eRin = sinh(Rin) + cosh(Rin) which
is input to the ADDER2. The output of ADDER2 is 1 + eRin . MUX1 has inputs
eRin , sinh(Rin), and MUX2 has inputs cosh(Rin), 1+eRin with the select line as
AF_select. The outputs of MUX1 and MUX2 are processed in the divider to
calculate Cordic[Rin] for sigmoid/ tanh evaluation. Subsequently, MUX3 is used
to select ROM[Rin] or Cordic[Rin] based on the precision_select signal. The
state of select signals for generating tanh and sigmoid AFs using ROM/ Cordic
approaches are presented in Table 1.

Rout[N-1:0] 

Rin[N-1:0] Qin[N-1:0] Pin[N-1:0] 

constant

Qout[N-1:0] Pout[N-1:0] 

clk
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Shift-reg Shift-reg

Add 
Sub
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Sub
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Fig. 2. ROM/Cordic Block. The precision_select line allows for the selection of
either the ROM[Rin] output (sigmoid or tanh) or the Cordic-based output i.e.,
sinh(Rin) and cosh(Rin)
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3 Performance Analysis of Proposed Configurable AF

This section presents the performance analysis of the configurable AF. The
experimental setup encompasses both software and hardware implementations
of the configurable AF. In the software-based accuracy evaluation, a Python
implementation of the configurable AF replicates the behavior of the hardware
design and is compared against the standard TensorFlow computation [1]. In
the hardware-based evaluation, resource utilization is assessed by implementing
the configurable AF using Verilog-HDL, and the corresponding parameters are
extracted using the Vivado-Xilinx tool. The proposed design is implemented on
the Zybo Evaluation Kit, with a specific focus on the sigmoid AF, which effec-
tively utilizes all the hardware resources within the configurable architecture.

ROM / Cordic Block

ADDER1

ADDER2

DIVISION Block

MUX3

Rin[N-1:0]
= AFin

cosh(Rin)sinh(Rin)

1.0e^Rin

1+e^Rin
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precision_select

AF_select

AFout = ROM[Rin] / Cordic[Rin]

MUX2MUX1

Pin[N-1:0]
=1.2075

Qin[N-1:0]
=0.0

PoutQoutRout

ROM
[R

in ] /0 

Fig. 3. The architecture of the configurable AF for variable precision, comprising of
the ROM/ Cordic Block and additional processing elements.

Table 1. AF selection using AF_select and precision_select signals for ROM/
Cordic AF as depicted in Fig. 2 and Fig. 3

AF_select precision_select Rout AFout

0 0 0 Cordic[Rin] = sigmoid(Rin) = eRin

1+eRin

1 0 0 Cordic[Rin] = tanh(Rin) = sinh(Rin)
cosh(Rin)

X 1 ROM[Rin] ROM[Rin] = sigmoid/ tanh

To evaluate the accuracy of the AF, LeNET and VGG-16 [1] DNN models,
along with the MNIST, CIFAR-10, and CIFAR-100 datasets are utilized. The
inference accuracy results for Tensor (T) and proposed AF (P) using varying-bit



A Configurable Activation Function for Variable Bit-Precision 439

Table 2. Comparison of accuracy of proposed configurable AF (P) with Tensor-based
AF model (T) [1] for sigmoid implementation on LeNET and VGG-16 DNN models

DNN Arch. LeNET VGG-16

Datasets MNIST CIFAR-10 CIFAR-10 CIFAR-100
Precision T P T P T P T P

Infer. Accuracy (%) for Proposed AFs with ROM

4-bit 96.8 96.1 55.4 54.7 65.1 63.2 24.1 23.6
8-bit 98.5 97.9 64.1 62.3 82.7 81.3 50.1 48.4
16-bit 99.1 97.9 65.3 63.5 83.8 81.9 52.2 50.8
32-bit − − − − − − − −
Infer. Accuracy (%) for Proposed AFs with Cordic

4-bit 96.8 88.3 55.4 48.6 65.1 52.7 24.1 22.8
8-bit 98.5 96.8 64.1 62.3 82.7 80.9 50.1 48.4
16-bit 99.1 97.9 65.2 64.3 86.1 84.8 55.3 54.1
32-bit 99.1 98.2 66.9 66.4 87.2 85.8 57.1 55.9

precision (4, 8, 16, and 32-bit) are presented in Table 2. This paper uses the
terms ‘fixed <9, 6>’ and 8-bit precision interchangeably, as the 9th bit (MSB) is
the sign bit. The same applies for all bit precisions presented in this paper. The
ROM-based approach demonstrates superior accuracy for low-bit precision com-
putation (≤ 8), while the Cordic-based approach offers considerable accuracy
improvements for higher-bit precision. Across all bit widths, the proposed con-
figurable AF achieves accuracy levels comparable to the tensor-based model [1],
with an accuracy loss of less than 1.5%.

A comparative analysis of resource utilization is presented in Table 3 for
ROM, Cordic, and BRAM-based approaches across different bit-precisions. For
4-bit precision, the ROM-based design employs 6 LUTs, while the Cordic-based
design utilizes 45 LUTs and 37 flip-flops (FFs). This results in a notable LUT
saving of 86.66% for the ROM-based design compared to Cordic. Similarly, in the
case of 8-bit precision, the ROM-based design requires 16 LUTs, whereas Cordic
utilizes 84 LUTs and 72 FFs, achieving a LUT saving of 80.95%. Remarkably,
the ROM-based design exclusively relies on LUTs and does not require any FFs.
However, as the precision increases to 16-bit, the ROM-based design demands
a substantial number of 2111 LUTs, in contrast to the Cordic-based design’s
requirement of 140 LUTs and 126 FFs. Furthermore, it is observed that imple-
menting a 32-bit ROM-based design on smaller FPGAs is infeasible due to the
exponential increase in resource requirements (2N memory elements). In con-
trast, Cordic requires 257 LUTs and 221 FFs for 32-bit precision. Additionally,
the evaluation includes the BRAM-based approach, which reveals a significant
increase in BRAM utilization as precision increases. Precisely, for 4, 8, and 16-bit
precisions, the corresponding BRAM requirements are 0.5, 0.5, and 17 BRAMs,
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respectively. Overall, the Cordic-based technique offers better LUT utilization
for higher precision computations, making it suitable for accuracy-driven appli-
cations. Additionally, leveraging pipeline architecture can enhance its through-
put performance. Conversely, the ROM-based implementation of AFs demon-
strates superior performance at lower precision levels. These findings are useful
for selecting appropriate AF implementations based on precision requirements
and resource constraints in DNN design.

Table 3. Resource Utilization of configurable AF for different bit-widths evaluated on
Zybo-board.

AF Type ROM Cordic BRAM

Precision LUTs FFs LUTs FFs −
4-bit 6 0 45 37 0.5
8-bit 16 0 84 72 0.5
16-bit 2111 0 140 126 17
32-bit − 0 257 221 −

4 Conclusions and Future Research

This paper introduces a novel approach for designing a configurable AF using
ROM and Cordic architectures. The proposed AF achieves accurate inference
with reduced memory requirements, catering to variable bit precision needs.
Extensive evaluations on LeNet and VGG-16 DNN models, employing MNIST,
CIFAR-10, and CIFAR-100 datasets, demonstrate its competitive performance
with less than a 1.5% accuracy loss compared to tensor-based models. The ROM-
based design excels in low-bit precision, offering high accuracy and significant
LUT savings. On the other hand, for higher bit precision, the Cordic-based
design outperforms the ROM-based design by leveraging the Cordic algorithm
to minimize memory requirements. The suitable AFs selection contributes to
reduced power usage, making it particularly advantageous for AI-enabled IoT
applications. The future work for this research will involve designing a config-
urable neuron for variable bit-precision using the proposed AF and a configurable
MAC.
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Abstract. The field of Internet of Things (IoT) has experienced rapid
growth, but it has also introduced significant security and privacy chal-
lenges. In particular, the authentication and authorization of edge devices
pose major concerns due to their limited resources. While various solu-
tions have been proposed, most of them rely on increasing the computing
power, storage, and power capabilities of edge devices. However, these
solutions are not practical because of the constraints imposed by the
small size and cost-effectiveness requirements of IoT edge devices. Some
suggestions involve the use of lightweight cryptographic primitives, but
not all edge devices have the necessary resources to implement such solu-
tions. This paper presents a novel approach to addressing the authentica-
tion and authorization challenges in edge devices by leveraging artificial
intelligence (AI). The proposed solution adopts a fog computing model
within the framework of a smart home, but it does not depend on the
computational or storage capabilities of the edge devices.

Keywords: Internet of Things (IoT) · Fog computing · Artificial
Intelligence (AI) · Smart devices

1 Introduction

The Internet of Things (IoT) is rapidly advancing, and it is projected that by
2020, the number of connected IoT devices will reach 20.4 billion, contributing
significantly to the global economy [1,2]. Various sectors, including healthcare,
living, supply chain, factories, and agriculture, are being revolutionized by IoT
technologies. The current benefits of IoT are already substantial, and they are
expected to grow further with the emergence of innovative technologies.

However, the widespread adoption of IoT also brings security challenges. As
the number of IoT devices grows, so does the potential for malicious attacks.
The IoT industry is vulnerable to various security threats, and protecting IoT
systems and data has become a critical concern.

Furthermore, the rapid growth of IoT has a significant impact on internet
traffic. It is projected that IoT will contribute to a compound annual growth
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rate of 14.4% from 2017 to 2021 [3]. This increased consumption of internet
resources further emphasizes the need for robust security measures to protect
IoT infrastructure from potential attacks.

Since the late 1990 s, IoT devices have been manufactured with little emphasis
on security [4]. The limited resources and constrained nature of end devices
present a significant obstacle to implementing robust security measures in IoT
[5]. Security and privacy remain ongoing challenges in the IoT landscape [5].
Various solutions have been proposed to address these issues, however, most
of them involve adding some computational power and storage in IoT devices,
which are not practical. To tackle these challenges, fog computing has been
introduced as a potential solution [6]. However, authentication and authorization
continue to be key security issues, especially due to the resource limitations of end
devices [6]. Use of Artificial Intelligence (AI) to address these challenges under
fog environment has not been proposed so far. This paper focuses on addressing
these authentication and authorization challenges using AI technology within
a fog computing model. By leveraging AI and machine learning techniques, a
proposed solution aims to enhance the security of IoT devices in a resource-
efficient manner. Authors have already proposed the model in [7]. However, in
this paper, specific AI techniques to be used in proposed model, have been
suggested, thus taking the model a step further.

The primary contribution of this paper is the utilization of AI for authenti-
cation and authorization of edge devices, without requiring additional compu-
tational capacity, storage, or power from the edge devices. The structure of the
paper is as follows: Sect. 2 presents a comprehensive literature review, discussing
the research on the use of AI for authentication, authorization, and enhanc-
ing security in IoT. In Sect. 3, an AI-based framework for the authentication
and authorization of end devices is proposed. In Sect. 4, implementation of AI
techniques for authentication of IoT devices has been discussed. Finally, Sect. 5
concludes the paper.

2 Literature Review

Computational, storage, and end-device power limitations in the Internet of
Things pose serious challenges in implementing workable solutions that address
security concerns in the Internet of Things. This section describes some of the
latest research in addressing end device security issues.

Roman et al. We evaluate authentication and access control issues in research
and analysis of security threats and challenges for mobile edge computing [8].
They recommend studying the applicability of other edge network distributed
authentication mechanisms for IoT. It has also been concluded that edge device
security is in its infancy.
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To tackle the limitations of resource-constrained edge devices, the concept
of fog computing was introduced by Cisco in 2012 [6]. Fog computing extends
the capabilities of the cloud by providing computing, storage, and networking
services between cloud services and edge devices. This approach aims to address
challenges such as latency, location awareness, mobility, and the large number
of end devices in the cloud and IoT. However, the original fog computing model
does not explicitly address the authentication issues of end devices. Subsequent
studies have further refined the concept of fog computing, leading to the devel-
opment of robust fog nodes that facilitate the creation of a unified infrastructure
for collaboration across different fog environments [9].

Numerous solutions have been proposed that involve adding computational
power and storage to edge devices. Ibrahim presented a novel authentication
approach where edge devices authenticate themselves with fog servers, along with
the use of basic cryptographic tools [10]. However, this solution is not feasible
for all edge devices due to their limited computation and storage capabilities.
Jia et al. proposed a mutual authentication mechanism for edge devices that
ensures anonymity and intractability [11]. However, this solution relies on various
cryptographic functions, such as elliptic curve encryption, bilinear pairing, and
Diffie-Hellman algorithm, which require computational resources that may not
be available on constrained edge devices.

Xiong et al. proposed a privacy-aware authentication scheme for edge devices,
which utilizes cryptographic primitives such as binary pairing, hashing, and com-
putation [12]. However, this solution requires computational power on the edge
device, making it unsuitable for all IoT devices with limited resources. Chiang et
al. concluded that remote attestation solutions using add-ons for authentication
are not feasible for IoT due to the inability of a large number of edge devices
to support such add-ons [13]. While fog computing has been proposed as a solu-
tion for resource-constrained devices, the issue of authentication has not been
addressed in that solution.

Several studies have investigated the integration of AI into IoT, exploring
different aspects and applications. Sezer et al. emphasized the importance of
security in IoT, considering the diverse range of IoT devices and frameworks
being developed [14]. Mougy et al. proposed a scalable personalized IoT network
that leveraged AI for context awareness, improving mobility prediction, device
duty cycle, and cognitive networking [5]. However, their research did not specif-
ically address the authentication and authorization aspect. Similarly, Wan et al.
focused on enhancing the performance of smart factories through AI, targeting
areas such as flexibility, efficiency, and intelligence, but did not incorporate AI
for authentication and authorization purposes in their model [15].

Several studies have addressed the security challenges in the context of IoT.
For instance, Chin et al. proposed a context-aware network infrastructure that
supports security, diversity, and virtualization of networks for IoT services [16].
Although their solution uses context awareness for traffic routing, it does not
cover authentication of edge devices. Meanwhile, Blazek et al. proposed a device
security model for IoT that includes a Central Authentication Module (CAM)
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[17]. However, CAM uses hardware-based authentication, which requires costly
add-ons like Raspberry Pi 3 board, RFID readers, power supply, and sensors to
be installed on end devices, making it impractical for large-scale IoT implemen-
tations.

Based on the reviewed literature, it can be concluded that research on the
use of AI for authentication and authorization of edge devices is limited. This
paper proposes such a solution, which is detailed in Sect. 3.

3 AI Based Authentication and Authorization Model

The proposed solution in this paper is focused on the smart home scenario, where
the limited computational capacity, storage, and power of edge devices make it
challenging to incorporate authentication and authorization directly into them.
As mentioned in Sect. 2, adding extra computation or storage to edge devices is
not practical. To overcome this limitation, the paper suggests adding an addi-
tional hardware component at the fog layer in the user’s premises for authenti-
cation and authorization purposes. An AI-based solution is proposed to run on
this additional hardware to authenticate and authorize edge devices. Clustering
techniques of unsupervised learning and classification techniques of supervised
learning are recommended to be used for this purpose. The proposed solution
effectively addresses the long-standing issues of authentication and authorization
of edge devices in IoT. The modified architecture of Fog Computing, along with
the addition of the proposed AI-based computer, is depicted in Fig. 1.

3.1 Communication/Data Exchange

In order to utilize the IoT devices of a specific manufacturer, the user is required
to download and install a user application on their computer or smartphone.
This application allows the user to create an account with the device manufac-
turer. When adding a new smart device to the smart home, the user needs to
configure it for communication with its cloud-based application server and to
enable remote management by the owner. The user completes this setup process
through the user application. During the installation process, the smart device is
configured and assigned a password to access the cloud-based application server
managed by the manufacturer through a fog gateway router. The device’s unique
ID is then linked to the user account on the application server, allowing the user
to access it using their login credentials from their computer or smart device.
Occasionally, IoT devices can also be accessed through a web browser; however,
the user must still provide login credentials. Each type and manufacturer of IoT
device has a unique format and data structure for exchanging data.
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Fig. 1. Architecture of Fog Computing

Smart devices have two-way communication, where the owner can communi-
cate with the device and the device can communicate with its owner. However,
the format and structure of data exchange vary for each edge device, depending
on its functionality. The data exchange process is illustrated in Fig. 2.

Smart devices rely on two-way communication between the device owner
and the device itself. The specific type of data exchange varies depending on
the functionality of each individual edge device. As illustrated in Fig. 2, this
exchange typically involves the owner sending update requests to the device and
the device responding with status notifications and other relevant information
via a fog router. To understand the data exchange mechanism, few examples are
discussed in succeeding paras.

For example, a smart bulb may receive update requests from its owner regard-
ing its status, color settings, and other customizable features. In response, the
bulb sends notifications to its owner through the fog router indicating its current
status (on or off) and color setting (in the case of an RGB bulb), as well as other
relevant information. Upon receiving these updates, the owner can then provide
instructions to the bulb to modify its status, color, or other settings as needed.

Smart devices have distinct types of communication: from the owner to the
smart device and from the smart device to its owner. The data exchange pro-
cedure is unique for each edge device in IoT, depending on its functionality. To
illustrate the data exchange process, several examples are provided below.
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Fig. 2. Data Exchange Flowchart

For example, communication from the owner to a smart bulb involves requests
for status updates, color settings, and other relevant information, according to
the manufacturer’s offerings. The smart bulb communicates its status notifi-
cation (on or off) and color settings (in the case of an RGB bulb), and other
relevant information to its owner through a fog router. After receiving an update
about the bulb, the owner can give instructions to modify the status, color, or
related information/settings.

Communication from the owner to a smart water heating system involves
update requests on status, current temperature, desired water temperature, and
other relevant information, as per the manufacturer’s offerings (general settings
triggering its auto on/off, record of its previous activities, etc.). The smart water
heating system communicates its status notification, current water temperature,
desired water temperature, and other relevant information to its owner. Sub-
sequently, the owner may give instructions regarding changing the status and
related settings.

Communication from the owner to a smart coffee maker involves update
requests on status, supplies needed to make coffee, and other information, as
per the manufacturer’s offerings (general settings of auto-making coffee, etc.).
The smart coffee maker communicates its status notification, the state of water,
coffee beans, and other necessary supplies needed to make coffee, and other
related information to its owner. The owner may give instructions on preparing
the coffee or changing related settings.
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In summary, each smart edge device has its unique set of communications
and data exchange procedures depending on its type and the services offered by
the device manufacturer.

3.2 Use of AI in Authentication and Authorization of IoT Devices

One potential use of AI in IoT security is for labeling and associating datasets
with known device profiles. By identifying characteristics unique to each edge
device, such as its communication protocols and data exchange procedures, AI
algorithms can authenticate devices and grant authorization based on their pre-
defined profiles. An AI-based authentication model is proposed in Fig. 3, which
will be discussed in more detail in the following paragraphs. The specific AI
techniques used in this model will be explained in Sect. 4.

Fig. 3. Proposed AI Model for Authentication

– Data Preprocessing. The first step in the data preprocessing phase is to clean
the raw data generated by the edge device [18]. This involves filling in missing
data, smoothing out noise, removing outliers and inconsistencies, and other
techniques to ensure that the data is accurate and consistent. However, data
integration is not necessary in the proposed model, as it is assumed that the
same type of IoT device (e.g., a smart bulb) from the same manufacturer
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will have a similar data structure. Therefore, there is no need to combine
data from different sources. In addition, data reduction is not required in the
proposed model because the feature space of each type of IoT device is not
too large, which makes it unnecessary to reduce it. Finally, the cleaned data
will be transformed into a refined form suitable for the AI algorithm used in
subsequent steps.

– Data Preprocessing. In the data preprocessing phase, the raw data generated
by the edge device is refined for use in authentication with AI techniques
[18]. The first step is to clean the data, which may contain errors due to wire-
less transmission or inconsistency in the edge device’s performance. Clean-
ing involves filling in missing data, smoothing noise, removing outliers and
inconsistencies. Data integration is not required in the proposed model, as
we assume that devices of the same type from the same manufacturer have
the same communication and data exchange patterns. Data reduction is also
not performed, as the feature space of each IoT type is not large enough to
require reduction. The cleaned data is then transformed or consolidated into
the appropriate form of mining, referred to as refined data, which is the most
efficient for the AI algorithm used in subsequent steps.

– Division of Refined Data. The refined data is divided into two parts: 70% for
training the learning algorithm and 30% for validating/testing the trained
model. After training and validation, live input of the refined dataset will be
provided to the trained model for the authentication of edge devices.

– Training and Validation of Authentication Algorithm. The training dataset is
used to train the authentication algorithm. The desired output of the trained
model is the ability to authenticate edge devices using clustering and classi-
fication techniques. Clustering is used to segregate the type of edge devices
into respective categories, and classification is used to authenticate the edge
device. The results of the validation testing are used to fine-tune the train-
ing algorithm. Once the model is trained and validated, it can be used to
authenticate live input of refined dataset for edge devices.

– Authentication and Authorization using Trained Model. The trained model
will be used for authentication of edge devices based on the live feed of refined
dataset. If the edge device is successfully authenticated, its refined data will
be forwarded to the authorization model. The authorization model will grant
appropriate access to the authenticated device as defined by the user. There
are numerous authorization models available in literature and research papers
and hence are not discussed in this paper.

3.3 Authentication and Authorization of Device Owner

The device owner typically uses a smartphone or laptop to access their smart
devices, and these devices have ample processing capability, storage, and power.
Therefore, incorporating authentication and authorization of device owners in
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IoT is not a significant challenge. Several solutions have been proposed in various
research papers, as discussed in Sect. 2. This paper does not propose a new
solution for device owner authentication and authorization, as existing solutions
can be used for this purpose.

3.4 Prerequisites of Proposed Solution

The proposed model assumes that the AI computer can read data exchanged with
smart edge devices. However, in some cases, edge devices use a proprietary for-
mat for data exchange, and data is encrypted to ensure privacy. To address this,
one solution is to install the manufacturer’s application for the smart device on
the AI computer to process the data before passing it to the pre-processing stage.
Another solution is to configure smart devices to allow data exchange in a generic
format such as XML. However, this may compromise data privacy within the
smart home. Once edge devices and device owners are authenticated and autho-
rized through the AI computer, communication can continue in a proprietary
format with encryption, but the manufacturer’s application must be installed on
the computer. Therefore, for both the outside world (device owner/cloud-based
application server) and inside world (within the smart home), the AI computer
will appear transparent as an application layer device.

4 Implementation of AI Techniques for Authentication
of IoT Devices

The selection of AI techniques for the proposed model is based on the scenario
of smart home, where the authentication and authorization of IoT devices are
desired. The preprocessing phase includes the following AI techniques:

4.1 Preprocessing Phase

Since smart homes offer a relatively controlled environment with well-defined IoT
devices that generate data with small feature space, the steps of data integration
and data reduction are not required in the proposed model. The AI techniques
used for the proposed steps are as follows:

– Data Cleaning. Data cleaning will be carried out in first phase. Cleaning is
carried out for data which becomes dirty in shape of outliers, inconsistencies,
noise and missing values. In context of smart home, wireless communication
media is assumed to be main cause of making the data dirty. As data is
coming live, hence “ignoring the tuple” technique will be adopted for dirty as
it will have no affect on volume of data.

– Data Transformation and Discretization. Data discretization will be used to
transform continuous attributes to categorical attributes to speed up the
implementation of AI techniques during authentication and authorization
phases. Some of the examples of continuous attributes are colour settings
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and luminosity of smart bulb, temperature settings in smart water heating
system, quantity of various materials in smart coffee maker. Categorical data
will be converted to binary data. Example of categorical data is status of
smart bulb, smart water heating system and coffee maker (ON, OFF and
standby).

4.2 Authentication Phase

This phase comprises two main activities; Clustering and classification.

– Clustering. Clustering will be used to segregate the data of smart devices into
different groups. K-mean clustering technique will be used to hard cluster the
items to specific groups based on similarity. As data packet of each type of
IoT device has unique format/structure, Jaccard Similarity will prove efficient
in measuring the similarity between the items.

– Classification. Decision tree classification technique will be used to classify
the items into classes (type of IoT device) as it can handle both categorical
as well as numerical data. Best attribute having highest information gain will
be selected. Information gain will be calculated using C4.5 algorithm.

4.3 Validation Phase

Validation of trained model will be carried out on already classified dataset
comprising 30% of the data. Based on validation results, model will be fine tuned.
Confusion matrix will be used to distribute classified results into True Positive
(TP), False Positive (FP), True Negative (TN) and False Negative (FN). Typical
confusion matix is shown in Fig. 4.

Fig. 4. Typical Confusion Matrix

Following measures will be calculated to validate the performance of trained
model.

Precision = TP/(TP + FP ) (1)

Precision will return the percentage of correctly classified items are actually
correct.

Recall = TP/(TP + FN) (2)
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Recall will return the percentage of correctly identified items of a type from
total population of that item in the dataset.

Accuracy = (TP + TN)/(TP + FN + FP + TN) (3)

Accuracy will return the percentage of total correctly classified items from
complete dataset.

5 Conclusion

Proposed solution offers several advantages to IoT by leveraging AI. AI can
help in addressing the challenges and problems that act as bottlenecks for the
widespread adoption of IoT. The proposed solution can be a practical manifesta-
tion of this and can prove beneficial for IoT in general. Additionally, the solution
can be extended beyond smart homes to other application areas of IoT such as
smart industries, smart cities, and smart roads.

References

1. Iot connected devices to reach 20.4 billion by 2020, says gartner. https://which-
50.com/iot-connected-devices-reach-20-4-billion-2020-says-gartner/

2. Columbus, L.: (2017) Internet of things market to reach $267b by 2020. https://
www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-things-market-to-
reach-267b-by-2020/#1a073d14609b

3. Framingham, M.: Idc forecasts worldwide spending on the internet of
things to reach $772 billion in 2018 (2017). https://www.idc.com/getdoc.jsp?
containerId=prUS43295217

4. Zareen, M.S., Tariq, M.: Internet of things (IoT): the next paradigm shift but
whats the delay? In: 17th IEEE International Multi Topic Conference 2014, pp.
143–148, December 2014

5. El-Mougy, A., Al-Shiab, I., Ibnkahla, M.: Scalable personalized IoT networks. Proc.
IEEE 107(4), 695–710 (2019)

6. Bonomi, F., Milito, R.: Fog computing and its role in the internet of things. In:
Proceedings of the MCC Workshop on Mobile Cloud Computing, August 2012

7. Zareen, M.S., Tahir, S., Akhlaq, M., Aslam, B.: Artificial intelligence/machine
learning in IoT for authentication and authorization of edge devices. In: 2019
International Conference on Applied and Engineering Mathematics (ICAEM), pp.
220–224. IEEE (2019)

8. Roman, R., Lopez, J., Mambo, M., Mobile edge computing, fog et al.: A
survey and analysis of security threats and challenges. Future Gener. Com-
put. Syst. 78, 680–698 (2018). https://www.sciencedirect.com/science/article/pii/
S0167739X16305635

9. Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren, N., Mahmoudi, C.: Nist
special publication 500–325 - fog computing conceptual model (2018) . https://
doi.org/10.6028/NIST.SP.500-325

10. Ibrahim, M.: Octopus: An edge-fog mutual authentication scheme. Int. J. Netw.
Secur. 18, 1089–1101 (2016)

https://which-50.com/iot-connected-devices-reach-20-4-billion-2020-says-gartner/
https://which-50.com/iot-connected-devices-reach-20-4-billion-2020-says-gartner/
https://www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-things-market-to-reach-267b-by-2020/#1a073d14609b
https://www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-things-market-to-reach-267b-by-2020/#1a073d14609b
https://www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-things-market-to-reach-267b-by-2020/#1a073d14609b
https://www.idc.com/getdoc.jsp?containerId=prUS43295217
https://www.idc.com/getdoc.jsp?containerId=prUS43295217
https://www.sciencedirect.com/science/article/pii/S0167739X16305635
https://www.sciencedirect.com/science/article/pii/S0167739X16305635
https://doi.org/10.6028/NIST.SP.500-325
https://doi.org/10.6028/NIST.SP.500-325


Authentication and Authorization of IoT 453

11. Jia, X., He, D., Kumar, N., Choo, K.K.R.: A provably secure and efficient identity-
based anonymous authentication scheme for mobile edge computing. IEEE Syst.
J. 14(1), 560–571 (2019)

12. Xiong, L., Peng, D., Peng, T., Liang, H.: An enhanced privacy-aware authentication
scheme for distributed mobile cloud computing services. KSII Trans. Internet Inf.
Syst. 11, 6169–6187 (2017)

13. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. 3(6), 854–864 (2016)

14. Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and
big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018)

15. Wan, J., Jun, Y., Zhongren, W., Qingsong, H.: Artificial intelligence for cloud-
assisted smart factory. IEEE Access 6, 55419–55430 (2018)

16. Chin, W.S., soo Kim, H., Heo, Y.J., Jang, J.W.: A context-based future network
infrastructure for IoT services. In: Procedia Computer Science, vol. 56, pp. 266–270,
2015, the 10th International Conference on Future Networks and Communications
(FNC 2015)/The 12th International Conference on Mobile Systems and Perva-
sive Computing (MobiSPC 2015) Affiliated Workshops. https://www.sciencedirect.
com/science/article/pii/S1877050915016889

17. Blazek, P., Krejcar, O., Jun, D., Kuca, K.: Device security implementation model
based on internet of things for a laboratory environment. IFAC-PapersOnLine
49(25), 419–424 (2016). 14th IFAC Conference on Programmable Devices and
Embedded Systems PDES 2016. https://www.sciencedirect.com/science/article/
pii/S2405896316327240

18. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd ed. 225
Wyman Street, Waltham, MA 02451, Elsevier, USA (2012)

https://www.sciencedirect.com/science/article/pii/S1877050915016889
https://www.sciencedirect.com/science/article/pii/S1877050915016889
https://www.sciencedirect.com/science/article/pii/S2405896316327240
https://www.sciencedirect.com/science/article/pii/S2405896316327240


Secure Dynamic PUF for IoT Security

Shailesh Rajput and Jaya Dofe(B)

California State University, Fullerton, CA, USA
shaileshrajput@csu.fullerton.edu, jdofe@fullerton.edu

Abstract. This student research forum paper is based on our accepted
work [1]. The widespread adoption of the Internet of Things (IoT)
has brought many benefits to our lives. Still, the low-power, heteroge-
neous, and resource-constrained nature of IoT devices makes it diffi-
cult to ensure secure communication and authenticity. Physical Unclon-
able Functions (PUFs) provide a promising solution by generating a
unique and device-specific identity through manufacturing process vari-
ations without requiring additional resources. However, recent advances
in machine learning algorithms like artificial neural networks and logistic
regression have made it possible to predict PUF responses by training
the model. Machine learning models can use multiple challenges and
responses to predict accurate results from the PUF. To address this con-
cern, we propose integrating a dynamically configurable PUF structure
into the design to counteract machine learning attacks. The dynamicity
of the PUF makes it challenging for machine learning models to predict
PUF responses.

Keywords: Hardware Security · Physical Unclonable Functions
(PUF) · Machine Learning Attacks · Dynamic PUF

1 Introduction

In the era of digital advancements, guaranteeing the security and integrity of
Internet of Things (IoT) devices and data is of paramount importance. The need
for safeguarding IoT devices has become critical, with sensitive information being
shared online, such as in the banking and defense sectors. These devices, includ-
ing monitoring systems, automated cars, medical equipment, home automation,
and smart infrastructure, facilitate data transmission over the Internet. Many
IoT devices verify an individual’s identity and may store personal, social, and
banking data. Consequently, any compromise in the security of these devices
can result in significant harm. Cryptography secures critical information by
encrypting and decryption of data by using cryptography keys. Cryptography
and authentication protocols rely on secure key storage in nonvolatile electrically
erasable programmable read-only memory and static random-access memory.
This approach has significant resource and area overhead and is susceptible to
invasive attacks such as Side-Channel Attacks (SCA) and non-invasive attacks
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proposed in [2]. A compromised cryptographic key can jeopardize the authenti-
cation process of a device or user, potentially leading to the exposure of critical
information. Furthermore, these devices can be breached due to the widespread
deployment of IoT devices in public access areas. Storing a key identifier in a
device helps identify the device. However, there is a need to enhance privacy,
authentication, and authorization methods to address these security issues effec-
tively. One proposed solution is the use of Physical Unclonable Functions (PUFs)
as a more secure and cost-effective alternative to conventional key storage meth-
ods for device authentication [3,4]. PUFs leverage the inherent manufacturing
variations in nanoscale Integrated Circuits (ICs), making them nearly impossible
to replicate even by the original IC manufacturer. These unique variations pro-
duce distinct challenge-response pairs (CRPs) used in device authentication. It
was assumed that the CRPs were unpredictable [5–8] and unknown to potential
attackers. However, unfortunately, the advancement of machine learning algo-
rithms/models such as Neural Networks, SVM, and Random Forest has led to
the cracking of PUF responses through model training [9–11]. Therefore, before
considering PUFs as a trusted security feature in the IoT paradigm, it is crucial
to evaluate their resilience against machine learning modeling attacks.

To address the challenge of machine learning modeling attacks on PUFs, pre-
vious solutions have relied on software-based dynamic behavior [12]. To address
this limitation, we propose a dynamic PUF that proves resilient to modeling
attacks compared to the other PUF architectures, including 4-XOR and Arbiter
PUF (APUF).

2 Background

2.1 PUF Designs

Arbiter PUF (APUF) is the most researched PUF because of its easy imple-
mentation and ability to produce more CRPs. APUF is derived from racing
conditions between two identical paths. Depending on the time the Multiplexer
chain takes, the flipflop used as arbiter at the end triggers 1 or 0. The APUF
design demands a completely identical path for race conditions to avoid biased
responses due to delay differences added by wires. The Arbiter PUF generates
a random response that is not predictable, and due to manufacturing variation,
the adversary can’t clone the APUF. This property of PUF makes it secure
against side-channel attacks. However, several modeling attacks have been pro-
posed earlier to predict the PUF response [13]. Several complex architectures of
PUFs, such as XOR PUF, Double Arbiter PUF(DA PUF), and Anderson PUFs,
have been proposed. Despite the complex architecture, machine learning-based
modeling attacks can clone the behavior of PUF.

To enhance the resilience of the arbiter PUF, Suh and Devadas proposed
using an XOR PUF [14]. This approach involves merging several arbiter PUFs,
with the response from each arbiter being XORed to produce the output response
of the XOR PUF. While this introduces nonlinearity to the design, it also
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increases system complexity. Despite this additional complexity, machine learn-
ing techniques have been shown to predict the response of the XOR PUF [15].

2.2 Machine Learning Attacks

In this work, we consider two prominent attack models on PUF–logistic regres-
sion (LR) model and multi-layer perception (MLP). LR is a robust statistical
tool that effectively identifies patterns and relationships between input data and
output labels. This is especially true in the context of PUF, where the CRPs
do not display linear relationships. MLP modeling attacks exploit manufactur-
ing variations by training a multilayer neural network to predict PUF responses.
The trained MLP model can then replicate or predict responses for unauthorized
access or cloning purposes. Despite the complexity of PUF architectures, LR and
MLP modeling attacks have demonstrated robustness in accurately predicting
PUF response bits, posing a significant threat to the security and unclonable
nature of PUFs.

3 Experimental Analysis

3.1 Experimental Setup

The APUF architecture was implemented on the Xilinx Artix 7 100T board
using the Xilinx Vivado tool, and all challenges are captured at room tempera-
ture. Thousands of CRPs are required to obtain performance metrics. As shown
in Fig. 1, a control unit is designed to generate random challenge bits using Lin-
ear Feedback Shift Register (LFSR) and pass them to the APUF. The control
unit consists of three main modules: LFSR, PUF, and RAM, which generate
a random response bit based on their delay characteristics. Xilinx’s Integrated
Logic Analyzer (ILA) tool captures approximately 131K randomly generated
responses from the PUF and LFSR-generated challenge bits in one round. The
ILA tool made debugging the APUF, real-time designing, and recording CRPs
easier. Floor planning is performed using the Xilinx Vivado tool to ensure accu-
rate response pairs for the APUF. The Vivado tool automatically redesigns the
synthesis according to behavioral logic. However, the PUF functionality cannot
be distinguished by behavioral logic as, ideally, the circuit output should be the
same for the identical path. It is necessary to ensure that the auto-synthesis
tool of Vivado does not change the path design of PUF according to behavioral
logic. To avoid auto-optimization by Vivado DONT TOUCH attribute is used.
The APUF and its variants can generate a higher number of CRPs due to the
switching of the cross-coupled and parallel paths due to the select line of the
multiplexer. The implementation of this multiplexer is depicted in Fig. 2 more
precisely.
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Approximately 1 Million CRPs are recorded to evaluate the resiliency of
modeling attacks against PUF. The RAM block is used to provide identical
challenge bits multiple times to evaluate the performance of the PUF.

3.2 Proposed Dynamic Arbiter Skip APUF (DPUF)

We propose Arbiter-Skip Dynamic PUF (DPUF) that effectively mitigates the
modeling attack mentioned earlier. The proposed DPUF incorporates an addi-
tional chain of APUFs with fewer multiplexer units alongside the main chain
of multiplexers, as illustrated in Fig. 3. The challenge bits are selected from the
intermediate response generated by the arbiter PUF, which is then XORed with
one of the final inputs to introduce bias into the result. Having fewer multiplexers
in the additional arbiter skip module makes the results biased when the interme-
diate response is 1. On the other hand, if the intermediate response is 0, no bias
is introduced, and the PUF functions like a standard arbiter PUF. When the
intermediate response bit one is obtained from the Arbiter skip chain, assuming
that path 1 (as shown in Fig. 3) has a longer delay, it will be biased towards an
active high state instead of zero and vice versa. This intermediate response can

Fig. 1. Block Diagram of Control Unit.

Fig. 2. Implementation of Multiplexer Switch on Artix-7 FPGA
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be XORed with path 2 for multiple response bits to alter the pattern of mul-
tiple responses. Assuming the randomness of the PUF in generating an equal
distribution of 50% 1’s and 0’s for both the intermediate and main arbiter PUF,
approximately 12–15% of the final response will be biased, resulting in a pattern
that thwarts various modeling attacks.

4 Results and Discussion

First, we evaluate the resilience of the proposed DPUF against the most suc-
cessful modeling attacks on PUF functions–MLP and LR and compare it with
APUF. Table 1 shows the prediction accuracy of these attacks on the existing
APUF and proposed DPUF design for 10k, 100k, 500k, and 1 Million CRPs. The
accuracy is determined by applying the formula: (Number of correct predictions
/ Total number of predictions). We observed that the maximum accuracy for
the MLP and LR attack on DPUF was 81.11% and 77.97%, respectively, for 1
Million CRPs, whereas that of APUF was over 98%.

Fig. 3. Proposed Dynamic Arbiter Skip APUF

Table 1. Prediction of Proposed DPUF with APUF on Test Data for MLP and LR
Attack Models.

CRPs MLP LR

APUF DPUF APUF DPUF

10k 72.90 % 64.00 % 88.00 % 51.00 %

100k 88.40 % 79.99 % 94.61 % 75.20 %

500K 98.28 % 81.09 % 95.22 % 75.02 %

1M 98.99 % 81.11 % 98.36 % 77.97 %
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Next, we analyze the impact of the MLP attack on the DPUF for 10k, 100k,
and 1 Million CRPs of 4-XOR, 5-XOR, and 6-XOR with DPUF, as depicted in
Fig. 4. The figure shows that the prediction accuracy for all PUF designs, except
6-XOR PUF, was around 60% for 10k challenges, with 6-XOR PUF having
a prediction accuracy of around 50%. When trained on 100k CRPs, the model
predicted the 4 & 5-XOR variants with over 95% accuracy, DPUF at around 78%,
while 6-XOR remained close to 55%. However, when the MLP model was trained
with 1 Million CRPs, it successfully predicted the response of all mentioned XOR
variants with over 95% accuracy. Nonetheless, DPUF’s accuracy remained close
to 80%, even with one Million CRPs. This demonstrates that DPUF poses a
more significant challenge to MLP-based algorithms, making it more difficult
to predict response bits than XOR PUFs. Finally, we compare the proposed
PUF’s resilience with n-XOR PUF against the LR attack in Fig. 5. The results
reveal that DPUF outperforms 4-XOR PUF in terms of resistance to LR attack.
However, 5 and 6-XOR PUFs exhibited greater immunity toward LR attack than
the proposed dynamic PUF.

Fig. 4. Comparison of Prediction Accuracy on XOR and Proposed PUF using MLP
Attack.
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Fig. 5. Prediction Accuracy of XOR and Proposed PUF using LR Attack.

The analysis clearly showed that the proposed DPUF offers significantly
higher resilience against both types of modeling attacks compared to the APUF
and 4-XOR PUF. Additionally, it is worth mentioning that the proposed PUF
requires significantly fewer resources compared to previously suggested complex
PUF architectures.

5 Conclusion and Future Work

Physical Unclonable Functions (PUFs) are commonly used to generate unique
cryptographic keys that rely on the manufacturing variation of integrated cir-
cuits, producing a unique challenge-response pair (CRP) to authenticate and
identify devices. However, with the advancement of machine learning algorithms,
predicting response bits generated by PUF devices has become possible, under-
mining their unclonable nature. This research paper presents dynamic PUF as
a countermeasure against machine learning modeling attacks. While previous
approaches have primarily relied on adding dynamic behavior through software
architecture, our research proposes a hardware-based Dynamic PUF as a promis-
ing alternative. Among the demonstrated attacks, the MLP attack outperformed
LR based modeling attack in terms of training time and prediction accuracy for
all PUF designs. The accuracy of predicting one-bit response using MLP or LR
attacks was around 96% on the previously proposed complex PUF architectures.
However, the accuracy results of DPUF show that attack accuracy has decreased
to 81.1% for MLP attacks and 77.97% for LR attacks on DPUF.

We will comprehensively evaluate the proposed PUF architecture’s quality
metrics in future research. This evaluation will involve multiple devices under
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various temperature conditions to assess the uniqueness property of different
FPGA devices. Furthermore, we will explore the integration of alternative PUF
architectures that can be investigated to introduce reliable noise, increase com-
plexity, and optimize resource utilization.
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