
Orchestrating Information Governance
Workloads as Stateful Services Using
Kubernetes Operator Framework

Cataldo Mega(B)

University of Stuttgart, Universitätsstraße 38, 56095 Stuttgart, Germany
cataldo.mega@ipvs.uni-stuttgart.de

Abstract. Regulatory compliance is forcing organizations to implement an infor-
mation governance (IG) strategy, but many are struggling to evolve their IG solu-
tions due to their legacy architecture, as they are not designed to adapt to new
business models and for the growing amount of unstructured data produced by a
potentiallyworldwide audience.One of the biggest problems faced is continuously
determining data value and adaptation of measures to keep risks and operational
costs under control. Oneway to solve this issue is to leverage cloud technology and
find an affordable approach to migrate legacy solutions to a cloud environment. In
most cases, this means de-composing monolithic applications, refactoring com-
ponents and replacing outdated homegrown deployment technologies with cloud-
native, automated deployment and orchestration services. Our goal is to show how
operational costs can be reduced by running refactored versions of IG solutions
in clouds with a minimum of human intervention. This paper discusses the steps
to evolve a legacy multi-tier IG solutions from physical to containerized environ-
ments by encapsulating human operator knowledge in cloud topology and orches-
tration artifacts, with the goal of enabling automated deployment and operation in
Kubernetes (K8s) managed execution environments.

Keywords: Information governance · IG workloads · cloud · stateful services

1 Introduction

Every company is subject to three basic business metrics; Value, cost and risk. They
form the basis of any Enterprise Information Management (EIM) system. IG adds gov-
ernance controls to information lifecycles and becomes the control authority for Infor-
mation Lifecycle Governance (ILG). ILG starts with the creation and extends to the
disposition of data. Data sets in the IG context represent governance metadata needed to
control how data is processed and to create an appropriate governance context derived
from applicable company policies, regulations and standards through the use of Records
Lifecycle Management (RLM). This means that governance records relate to the secu-
rity, classification, retention, and disposition of data. In practical terms, IG consists of
implementing an Information Governance Program (IGP) that helps to steer information
lifecycles based on actual data value. As a result, ILGworkflows through their processes

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 125–143, 2023.
https://doi.org/10.1007/978-3-031-45728-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_8&domain=pdf
http://orcid.org/0000-0002-2816-2699
https://doi.org/10.1007/978-3-031-45728-9_8

126 C. Mega

implement three key activities: 1) Use of analytics to determine andmaximize data value
as context erodes; 2) Enforce archiving of data onto tiered storage to ensure storage cost
declines as value declines; 3) Trigger disposal of obsolete data to avoid cost and eliminate
risk. As a result, in addition to actual business workloads, these activities also produce
typical ILG workloads that an EIM system must handle.

1.1 Problem Statement and Requirements

Today, legacy IG solutions operating in a global openmarket have to dealwith an increas-
ingworkload causedby international regulationpushing them to its operational andfinan-
cial limits. The root cause of these shortcomings is a monolithic solution design and a
production system running on a static IT infrastructure. These factors prevent flexibility
at component level and elasticity at IT resource level, and are therefore costly to operate
andmaintain. Oneway out of this situation is tomigrate these solutions to cloud environ-
ments and take advantage of the economies of scale where the sharing of IT resources
makes it possible to minimize operational costs and optimize resource consumption
through automation. Unlike traditional IT systems, clouds automate operational cost
control by monitoring key performance indicators that report on cloud resource con-
sumption, and more important make changes to the used infrastructure through dynamic
provisioning and de-provisioning requests. This paper proposes steps to evolve and adapt
the legacy architecture of IG solutions designed for bare metal production environments
tomodern cloud environments. To prove the feasibility of our approach, we implemented
a prototype of an IG solution running on a Kubernetes-managed (K8s) platform using
the operator pattern promoted by the Cloud Native Computing Foundation (CNCF) [1].

1.2 Contributions and Outline of this Paper

Contribution 1: We decomposed our IG solution, reworked its legacy design, and made
the necessary changes to automatically deploy and operate it in a K8s execution envi-
ronment. Major focus has been put into refactoring component and deployment models
and the consolidation of the tier-based high availability (HA) design before moving
from a bare-metal to a containerized on virtualized deployment model, shown on Fig. 3.
Contribution 2: We formalized the knowledge of human operators and implemented a
resilient IG solution that models HA, disaster recovery (DR) and scale-out by incorpo-
rating infrastructure operational logic into the design and implementation of stateless
and stateful cloud services running under the control of the K8s orchestrator.

The remainder of this paper is structured as follows: Sect.: 2 presents a blue-print for
IG solutions and an associated componentmodel thatwederived froma representative set
of IG use cases. Some background on the benefits that the cloud offers for IG workloads
is also provided. Section: 3 introduces the fundamental aspects of deployment topologies
for IG solutions and discusses traditional versus cloud-native deployment models. It also
briefly explains how K8s based workload orchestration works in the cloud. Section: 4
presents our solution approach. Section: 5 introduces the stateful IG solution prototype
and its services. Section: 6 details the prototype development and the system under test
(SUT) used. Section: 7 discusses the evaluation performed and the test results produced;
Sect.: 8 presents our conclusion and provides an outlook on future work.

Orchestrating Information Governance Workloads 127

2 Background

In order to bring together IG solutions and the cloud we need to look at the requirements
and workloads that regulations add to typical production systems.

IG requirements are mainly derived from corporate policies, regulations and stan-
dards. They influence the solutions design and define RLM control structures required
for EIM and RLM lifecycles processes as described by the following use cases (UC) out
of the EIM, RLM application domains:

• UC1 (EIM): Collect and classify enterprise data from known sources.
• UC2 (EIM): Load, store, index and secure data in enterprise repositories.
• UC3 (EIM): Search, access and retrieve information from the repositories.
• UC4 (RLM):Apply regulatory security, classification, retention, hold, and disposition

policies.
• UC5 (RLM): Support legal cases through e-discover, aggregate and transfer case data

on hold.

2.1 ILG Workload Models

By definition, a workload is defined as a representative mix of primitive operations
performed against a system. The workloads implied by the UC1 – UC5 use cases fall
into the following categories (details are discussed in Mega [5]):

• WL1: This workload is created by interactive users and external agents using web-
requests through Https/REST issued against the IG services APIs.

• WL2: Is an interactive- and bulk workload, using lower-level application logic per-
forming database operations consisting of a representativemix of primitive operations
like: Create, Retrieve, Update, Delete and Search (CRUDS).

• WL3: Is an interactive- and bulk workloads using low-level file system functions
against persisted files, consisting of digital objects of any type, format and size.

Together, use cases, workloads and real-world experience helped define an IG
solution and blueprint as shown in Fig. 1 below.

The blueprint consists of seven key solution components, listed as CM1 to CM7.
Going left to right there is: CM1: Aggregates the subcomponents Data Collection,

Classification, Assessment and Ingest. CM2:Content Services: ProvidingAccess, Index,
Search, Retrieval, Security and Management functions.

CM3: Records Services: These are, Classification, Retention, Disposition and Com-
pliance. CM4: Case Management Services: Consisting of e-Discovery, Legal Data
Requests, andHolds.CM5:ContentAnalytics:Related to, businessClassification, Statis-
tics, Reporting. CM6: Repository Services: Provide Information Retrieval, Catalog and
Archive functions. CM7: Platform Services: Address Compute, Storage, and Network
needs.

For a reference and comparison we looked at architectures published by California
Department of Technology [6],Alfresco [7], IBMCloudDesignCenter [3], IBMContent
Manager Enterprise Edition [4], IBM FileNet Content Manager [8], and other major
players in this domain. Workloads, similar to the one defined before, are discussed in
Mega [5] and in Lebutsch [9].

128 C. Mega

Lifecycles

Information Governance Services
IG Services: Classify, Retain, Dispose, e-Discover

K
no

w
n

D
at

a
So

ur
ce

s

Sources Pre-processing Processing & Persisting Post-processing Resources

CatalogDB

Repository
Content Management, Archive

Pl
at

fo
rm

 S
er

vi
ce

sPolicy driven
Data Collection

Relevant, Transient

Valuable

Data Classification
Process

Content Analytics
Analyze eDiscovery

Provenance, Quality

Integrity

Data Assessment

REP-Services: CRUD, Index, Search, Archive

File Storage

Object Storage

DB-Storage

Object-Storage

Dispose

Enterprise
Records

Case
Management

RLM

ILG

- Component - Process- WorkflowRecords Lifecycle Management (RLM)Information Lifecycle Management (ILG)

Process

Process

Full text index

CM2

CM3 CM4

CM5

CM6

CM7

CM1: Data Services: Collection, Classification, Assessment and Ingest.

CM2: Content Services: Access, Index, Search, Retrieval, Security, Management.

CM3: Records Services: Classification, Retention, Disposition, Compliance.

CM4: Case Management Services: e -Discovery, Legal Data Requests, Holds.

CM5: Content Analytics: Classification, Statistics, Reporting.

CM6: Repository services: Information Retrieval, Catalog, Archive.

CM7: Platform Services: Compute, Storage, and Network.

CM1

ObjectDB

Fig. 1. ILG Solution blueprint and component.

Platform Services
Resource Provisioning, De-

provisioning & Control

Repository Services

Http Server App-Server

Object Services

DB-Server
Repository Services

Scaled-out Storage

Data Services
Enterprise Records
Case Management

Catalog-DB

Files Full-text Index
Object-DB

Objects

Catalog

DB-ServerObj-Catalog

RM-Client

Full-Text ServerFull-Text Index

Rep-Manager

Obj-Server

FT-Services

CM-Client

Catalog
DB-Server

Requests

Tier1 -Cluster
Web-Server

LB1

App-Server
CM-Client

Web-Server

App-Server
RM-Client

Obj-Catalog
DB-Server

Https

Tier2 -Cluster

Tier3 -Cluster

Solution Components Deployment Components Deployment Topology

Storage -Cluster

decompose cloudify

Cloud Platform Services

Cluster, Deployment, Orchestration, Communication,

DNS, LB, Security, Infrastructure, Compute, Network, Storage

Fig. 2. Steps to create an ILG solution component model and deployment topology.

Both performed similar tests and used a deployment topology similar to that on
the far right of Fig. 2. Moving from left to right, we sketched the steps in which the
IG solution on the left is broken down into individual, self-sufficient components then
assembled into a deployment package along with platform components and arranged as
a deployable topology graph using a multi-tier application pattern, shown on the far left.

2.2 The Benefit of Clouds

Today’s cloud platforms offer dynamic resource provisioning, scalability and efficiency
to applications that are both containerized and virtualized - characteristics that legacy
IG solutions lack. Virtualization affects physical production environments; it transforms
physical infrastructure into purely virtual infrastructure through a Soft-ware Defined
Infrastructure (SDI) approach. Containerization is done at the solution level by breaking
down monolithic solutions into independent components that are suitable for running
inside containers.Our approach follows the concept of a composable solution that runs on
top of a composable infrastructure as coined by Gartner [2]. This approach suggests that
IT resources are dynamically allocated through APIs based on policies. Composable in
this context means striving for fully automated IT resource lifecycle management, where

Orchestrating Information Governance Workloads 129

application workload pattern and Service Level Agreements (SLA) trigger resource
provisioning and de-provisioning events. To prove this approach, we implemented a
prototype using the IBM Content Services Reference Architecture [3] guidelines and a
subset of IBM Content Management [4] family of products.

3 Foundation

Before cloud, there was a gap between cluster and cluster management. The topology
graph of Fig. 2 emphasizes this aspect were each tier is designed as a cluster of appli-
cations/resources pair configured to address the need for service resiliency and scale
using component-specific cluster management logic. IG solutions typically consists of
multiple tiers. Examples are a web server tier, an application server tier hosting a con-
tent repository for managing unstructured content, a database server tier for storing
meta data and a storage tier to persist digital content. Service high availability man-
dates that every tier withstands component failure therefore a high availability solution
requires a high availability configuration for every tier. The complexity of configur-
ing high availability holistically stems from the fact that different tier and server types
use different approaches to high availability, consisting of specific operational logic,
to holistically maintain a defined application state and meet established service level
agreements (SLA). SLAs are measured through key performance indicators like: health
(alive, dead), response time and throughput. On clouds, cluster operations are consoli-
dated, centralized and application agnostic. Cloud applications are deployed in container
together with their runtime environments, in units called Pod. Pod cluster management
is an integral part of the cloud platform and independent of application type. Pods are
the smallest deployable units in Kubernetes [10]. Cluster of Pods are centrally managed
by the K8s control plane, which acts as a replacement for the legacy, tier-specific cluster
management. This feature is the biggest advantage for a traditional multi-tier solution.
By migrating legacy applications from bare-metal to the cloud, it is possible to close
the gap between clusters and cluster management, simplifying and consolidating the
operation of an IG production system.

3.1 Virtualizing and Componentizing a Monolithic IG Solution

Figure 3 is a visual of the platform related migration steps necessary for moving IG
solutions from bare metal (left) through virtualization to containerized on virtualized
(right) cloud execution environments, as suggested by the CNCF [1].

The refactored IG solution design which we used to develop the prototype required
the following migration steps: 1) We decomposed the IG solution design in to smaller
independent components; 2) We then virtualized the production environment, selecting
OpenStack and KVM as the cloud platform/hypervisor technology (Gang [11]); 3) The
third step was to containerize the chosen components using Docker for the container
and Kubernetes for the cluster and orchestration technology (Trybek [12], Hagemann
[13]) and applied it to the stateless application-tier components; 4) The last step included
developing the stateful services based onKubernetes StatefulSets and the operator frame-
work (Wang [14]). Throughout development our focus was on the re-design but were

130 C. Mega

Physical Server

Network Storage

Operating System

App1 App2 App3

Physical Server

Network Storage

Host Operating System

Hypervisor

App1 App2

Guest OS

VM

Physical Server

Network Storage

Host Operating System

Container Engine

App1

Container

App2

Container

App3

Container

App3

Guest OS

VM

Physical Server

Network Storage

Host Operating System

Container Engine

App1
Container

App2
Container

Hypervisor

Guest OS

VM

Bare Metal Virtualized Containerized on Virtualized

Fig. 3. Migrating from bare metal to containerized on virtualized.

possible also replacement of old components with new cloud-ready technology. As an
example, physical components like load balancer (LB), compute server and some net-
works were replaced with virtual resources provisioned by the cloud platform. Web1

and application2 tiers-specific cluster management was replaced with K8s built-in Pod
cluster management. Only the management of the database cluster required a custom
developed database operator for the DB2 HA-reconciliation and cluster administration
logic.

3.2 Comparing Physical vs Virtual Infrastructure Models

Figure 4 shows the deployment topologies of both the original physical production
system versus the new virtual, cloud-based production platforms. On the left, you see
the legacy system deployed on bare metal servers, in a static, pre-configured production
environment. This configuration does not support dynamic topology changes as physical
resources are provisioned manually and on request. In these environments software trig-
gered dynamic pro(de)visioning events are not an option. In addition, tier-specific cluster
management requiresmore complex planning and labor intensive operator interventions.

The three clusters (Cluster1–3) on the left of Fig. 4 relate to the three tiers (T1 -T3),
web, application and database in a physical environment. The right side shows the same
configuration but with a K8s assisted deployment topology optimized for managing the
container on virtualized infrastructure. The benefit gained is a consolidated platform
built-in cluster management, including a centralized service orchestration facility. In
addition, the database specific cluster management is controlled alongside through the
K8s APIs using a custom database operator.

1 https://www.ibm.com/docs/en/ibm.
2 https://www.ibm.com/docs/en/was/9.0.5?topic=websphere-application-server-overview.

https://www.ibm.com/docs/en/ibm
https://www.ibm.com/docs/en/was/9.0.5?topic=websphere-application-server-overview

Orchestrating Information Governance Workloads 131

Database Tier
DB-Server

DB Vol – Table Spaces Content Data

Web-Tier
WS

App-Tier
AS

Https

FS

admin

network

private

public

Storage-Tier

M

M

T1

T2

T3

M

network
LB

Users

Pod DB-Server

Pod-WS

Pod-AS

VM

VM

VM

P
latfo

rm
 S

erv
ices

C
o

n
tro

l P
lan

e, O
rch

estrato
r,

M
an

ag
em

e
n
t

Infrastructure Services

Compute, Storage, Network,

DNS, Load Balancer, Firewall

K8s Communication Services

K8s-Cluster-3

K8s-Cluster-1

K8s-Cluster-2

DNS

Physical

Virtual

admin
private

public

LB - Physical Load Balancer

- Communication Links

- Physical Network Segments
WS

AS - Bare Metal App-Server

DB-Server - Bare Metal DB-Server

M

- Physical Storage-Server

L

- Physical Machine

- Topology Layer/Tier

FS - Filesystem Access

Https- Network Access

- Bare Metal Web-Server

DNS - Domain name Service

Cluster-3

Cluster-1

Cluster-2

Fig. 4. Migrating solutions from physical to virtual infrastructures.

3.3 Kubernetes Stateful Architecture and its Entities

For a better understanding of our solution approach, we introduce Kubernetes, its com-
ponents, resources and the operator framework at the high-level. The most important
components of K8s are: Controller, Scheduler, Configuration Database (ETCD), a Node
(VM), and the actual Operator.

The Deployment, Service and StatefulSets are K8s script resources that are required
to define deployment topology and runtime context using YAML grammar.

More specifically their definition is as follows:

• A Deployment is a declarative description of PODs, who carry stateless services.
• A StatefulSets3 is a declarative description of PODs, carrying stateful services.
• A Service is a declarative way to expose PODs to the external world. The Service

defines network access and load-balancing policies to PODs hosting applications that
provide the actual service.

• A Custom Resource Definition (CRD) is a declarative description representing a
resource known to, but not managed by K8s.

• A Custom Resource (CR) is a component implementing a custom control loop used
to manage a custom resource throughout its entire lifecycle. A CR carries the human
operator knowledge in form of resource specific implementation artifact.

• An Operator is a K8s extension that allows custom software to be management from
within Kubernetes using a CustomResource Definition (CRD) and the corresponding
Custom Resource (CR) component via K8s APIs.

By definition, an IG solution consists of components that provides both stateless
and stateful services. This means that the following 3 K8s resources must be used to

3 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

132 C. Mega

bring stateless and stateful services under the control of K8s: Deployments for stateless
services; StatefulSets for modeling stateful services and operators that use application-
specific management logic to control topology changes via APIs. Figure 5 shows the
control flow of an operator for managing the lifecycle based on state changes of a custom
resource.

Declarative
Requested State Controller

Operator Knowledge

Current State

Managed
Resource

Apply measure
to reach

requested State
External Events

Forces state
change

Compare
State

Post
changed state

3 6

4

5

1
2

Query state

Kubernetes Operator Pattern

Fig. 5. K8s control loop of the operator pattern.

In summary, Kubernetes manages the execution environment at and above the Pod
level, but not the application within the containers. The operator4pattern is intended to
close this gap. That is, human operator functionsweremade available to aK8s operator to
manage sets of services in an automated way via K8s APIs. For example, the imitation of
a human database operator through database-specific administration logic implemented
with scripts or program modules that specify setup, configuration and management of
the database in a production environment.

4 Solution Approach

For our IG solution design, we envisioned a 2-level hierarchy of five K8s operators.
The first operator on the left of Fig. 6 represents the top level ILG service operator,
who controls and monitors the four operators at the 2nd-level. These are the Repository
service, the Client service, the ObjServer service, and the DB service, which together
form the four-tiered deployment topology shown in Fig. 4. As can be seen, the web and
application tiers aremapped to three stateless services implemented asK8sDeployments.
The combined database and storage tier are implemented through a K8s StatefulSet,
which is used to control and manage the DB service operator, as shown in Fig. 6, bottom
right. The DB service operator contains the definition of the DB cluster and the logic
required to support high availability, read-scalability and disaster recovery.We deployed
and tested the prototype implementation in 2 phases. In the first phase, we focused on
the stateless services of the web and application tier, which are shown as the upper part
of the topology graph in Fig. 7. In the second phase, we developed and deployed the
underlying stateful repository services, including the database and storage tiers shown
in the image at the bottom of the topology graph.

4 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Orchestrating Information Governance Workloads 133

Custom Resource Definition

Relation Type

… Operator

Declarative description of PODs carrying stateless services.Deployment

Service Exposes PODs to external world. Defines access and load-balancing policies.

StatefulSet Declarative description of PODs carrying stateful services.

.

Obj-Server Service Operator

managed by

Service
StatefulSet

Deployment
Service

Deployment
Service

Deployment

Service

Client Service

Repository Service

ObjServ Service

DB Service

create / change

create / manages

Repository Service Operator

DB-Service Operator

Client Service Operator

managed by

ILG Service

ILG CRD

managed by create / manages

managed by create / manages

managed by create / manages

Fig. 6. K8s operator hierarchy for managing ILG deployment topology.

By stateful database services we mean a service that is resilience to component
failures. In our context this might be database instance, a storage or a network failure.
The implemented solution is a shared-nothing database clusterwith at least 3 independent
database instances and a mechanism that replicates the database data using synchronous
or asynchronous replication.

The rest of this papers focuses on the aspect of highly available stateful database
services and the required orchestration logic used, which we derived from database
product guidelines and our own expertise.

4.1 K8s Operator Extended Control Loop

To support a stateful database service by running a cluster of database instances in con-
tainers on a virtualized in environment, it was necessary to design database-specific
cluster management using the components and a topology shown in Fig. 7. The integra-
tion of the database cluster and its execution environment is controlled by the StatefulSet
complemented by the DB2 operator, together they control the database overall state and
topology through the K8s control plane. The DB2 operator and respective custom con-
trol loop is shown in the lower left part of Fig. 7. It also shows the K8s and the DB2
control loops, so-called MAPE loops, a concept that is being discussed in Maurer [15].
MAPE stands for Monitor, Analyze, Plan and Execute, basically the chain of processes
that, through decision logic determines what activities must follow after a change of the
desired state of the stateful service. The MAPE process steps are: Monitor the target
resource state; Analyze and compare current state with the desired state; In case of mis-
alignments, Plan what activities to perform; Execute the reconciliation plan, taking the
necessary actions to align current state with desired service state.

4.2 Related Work

The prototype implementation work was done in the course of 4 master thesis at the
university of Stuttgart by Gang [11], Trybek [12], Hagemann [13] and Wang [14]. The
concept design around dynamic topology was published by Mega [5], Börner [16], and
contribution on how application might use the MAPE loop concept came from Ritter
[17]. A concept model of an ECM system including governance services was provided

134 C. Mega

Data Catalog
DB-Server

Http Server

CM-Clients

Http Server

Object Server

Object Catalog
DB-Server

Web Tier

Application Tier

Database Tier

DB Storage

Storage Tier

Object
Storage

DB Storage

Repository Manager

M A
PE

Deployment
Controller

M A
PE

StatefulSets
Controller

M A
PE

DB2
Operator

Monitoring Provisioning Management

DB specific
control & decision logic

K
u
b
ern

etes co
n
tro

l p
lan

e

Load Balancer

Repository Tier

Load Balancer

Fig. 7. ILG solution deployment topology and the K8s control loops.

by the IBM Cloud Architecture Center [3]. The CNCF [1] published white paper on the
operator pattern provided the ground work for our migration approach. Andrikopoulos
[18] in his paper outlines a generic introduction on how to adapt applications for the
cloud. Kubernetes best practices, specific to StatefulSets and operators came from Palak
[19] at Google, and aspects of EIM practices in companies from Chaki [20]. The Cali-
fornia Department of Technology [6] published an ECM reference architecture, that was
complemented by information management governance guidelines from Victoria State
Government [21] and other agencies, which we used to align our blueprint with. Maurer
et al. [15] elaborated on MAPE for autonomic management of cloud infrastructures.
Overall, our research lead to several academic sources on stateful services on cloud, but
none that address specifically the aspect of refactoring monolithic, legacy IG solutions
and none how to move them on cloud execution platforms.

5 The ILG Repository Stateful Service Prototype

Compared to stateless services, stateful services are more complex to design and to
implement because K8s was initially designed for stateless services only. Stateful ser-
vices were introduced later for integrating custom resources. For the prototype we chose
an IG solution based on IBM ECM [4] and other necessary components, consisting of
IBM Content Navigator, IBM Content Manager, IBM WebSphere Application Server
and the IBMDB2 database server. This decision was based on practical experience with
these products, in building ECM production systems that provide information gover-
nance services. A knowledge we have acquired through several customer projects. The
configuration of the prototype is designed to test scale-out, service availability and dis-
aster recovery and was translated into a set of K8s stateful services. The DB2 service
operator is used specifically to automate the management of the DB2 database cluster
through K8s APIs.

Orchestrating Information Governance Workloads 135

5.1 Kubernetes Stateful Services Cluster Setup

Figure 8 shows the multi-tiered deployment model of the refactored IG solution which
usesK8s automated operating concept. This setup, implements theweb tier withDocker-
compose and focused on the application and database tiers for our HA testing.

The application cluster at Tier-2 is managed by aK8sDeployment artefact not shown
in Fig. 8. Instead, the database cluster uses a K8s StatefulSet together with the DB2
operator as Tier-3. The DB2 StatefulSet defines, creates and controls the Pod cluster,
which consists of Pod1 - Pod4 running on Node1and Node2. It defines two service entry
points SVC-Read/Write and SVC-Read-only, and ensures that the persistent volumes
PV1 - PV4 are attached to the Pods. Each Pod consists of one container that hosts
one database instance. The StatefulSet also ensures that each Pod has an ordered, stable
identity, a unique network identifier and is bound to its persistent volume (PV), surviving
deletions and recreations. If a Pod fails or dies, then the StatefulSet control loop will
recreate the Pod with exactly the same identity and rebound them to the original PV,
ensuring the Pod can access the previously owned database data.

Primary

CM-Client / RM

Secondary

LBWeb-Tier-1

Application –Tier-2

Database -Tier-3

StorageStorage -Tier-4

StatefulSet

DB-Operator

K8s DB-Cluster

API

K8s
Controller

Controller
CR

API

CR

CRD

Auxiliary Auxiliary

Storage Storage Storage

Read-only Read/Write Svc

sync

PV1

DB-Instance DB-Instance DB-Instance DB-Instance
Pod2

Httpd

Workloads

K8s LB

PIP:443 PIP:443

NP:30001 NIP:30002

Node2 Node3

PIP:443->NIP:443

CIP:50001 CIP:50001

Svc

async

- CR-Description

- Container
- Pod

- Custom Resource

- Persistent VolumePV

Pod

- Node

- Load BalancerLB
- Public IPPIP
- Node IPNIP

Legend:

- Container IPCIP

- Service
CR

Node

CRD

443->30001 443->30002

Pod1 Pod3 Pod4

PV2 PV3 PV4

Node1

Pod Deployment
K8s

Node1 Master Pod

Worker Worker

async

Routing

Fig. 8. Deployment model of a K8s cluster of DB2 instances.

The K8s DB2 operator complements the StatefulSet by creating and managing the
cluster ofDB2 instances using theCRD.Theoperator itself is deployed in another Pod. Its
task is to create the DB2-CR using the DB2-CRD specification, once it is activated. Once
active, the Governor, which represents the DB2 cluster control loop, begins monitoring
the health of each database instance, continuously compares it to the desired state. If the
current state deviates from the desired state, the control loop triggers a series of actions,
to reconcile current state with the desired state using database-specific administration
logic.

Figure 9 details the DB2 cluster setup in an HA and DR configuration. Primary and
secondary instances have each a collocated Governor component.

All four DB-instances have a connection to the DB2 HADR component, which
implements the DB2 cluster management logic. Figure 9 also shows the different roles

136 C. Mega

assigned to each cluster members. The primary instance is the cluster leader and owns
the reference database. The principal standby instance is attached to the first instance
as a peer instance, and its database is the HA-synchronous replication target. Database
service fail-over is between primary and standby (the secondary) database instance.

Node

Node

Node

Node

Service network

Container
network

Fig. 9. Component model of a cluster of DB2 instances.

Optionally, there can be up to two auxiliary stand-by instances that can be used to
mitigate a production site outage. In this setup, only the primary servers both read/write
requests, while all others support read-only requests, forming a read-only scale-out
farm. Database operations that modify data are redirected to the primary instance. All
changes are propagated to all stand-by instances via log shipping using synchronous
or asynchronous replication mode. The synchronization source though, is always the
primary. These built-inDB2 capabilities enableHAandDRconfigurations to be realized,
with the positive side effect of supporting scale-out of read-only workloads. The roles of
primary and secondary are interchangeable. Fail-over and fallback is triggered by state
change events, and state reconciliation is based on the logic implemented through the
DB2 operator.

5.2 K8s DB2 Stateful Service Design and Implementation

According to the K8s Operator framework, an operator consists of the following com-
ponents: API, CRD, CR, a Controller and the resource specific management logic. The
operator itself is defined through a K8s ‘Deployment’ that describes security, roles,
accounts management and runs in its own Pod. Figure 10 shows the DB2 operator
components and their relationships. By definition, the K8s DB2 operator manages the
lifecycle of theDB2 resources, that is, creating andmanaging the cluster ofDB2 database
instances that are unknown to K8s and its native cluster management services. In our
prototype, the custom resource administration logic is spread among the operator Pod,
the DB2 instance Pods and the ETCD Pod. The constituent custom resource compo-
nents are: Governor, DB cluster controller, DB2 APIs, HADR and ETCD components
shown at the bottom of Fig. 10. The ETCD is a distributed key-value store that is used to

Orchestrating Information Governance Workloads 137

store the DB-cluster topology information in a look-up table, like: host name, role lock,
timestamp and other required configuration parameters.

< RoleBinding>
db2operator-rolebinding

< ClusterRole >

db2operator-role

< ServiceAccount >

db2operator-manager

< CR >

db2clusters-db2.examples.com

Kind: DB2-Cluster

< CRD >

DB2-Cluster

instance of

parse

bind

uses

uses

- Relation

- Description

- Operator

- Scripts

< API/Logic >
DB2-Cluster-types.go

< Controller >
DB2-Cluster-controller.go

- Component

DB2-HADR
take
over

< Docker Image >

manager

ETCD Governor

look up

get/set role

check

- Container

DB2

< Container>

< Container>

Controller-Manager

StatefulSet

create

Storage

PV

config

attach

StatefulSet

Deployment

create

deploy

deploy

Fig. 10. Components of the Kubernetes Operator for DB2.

The operator component model of Fig. 10 shows the Governor and the HADR com-
ponent as deployed collocated with the DB instance on every Pod, bottom tight. The
DB2 Controller and API, on the other hand, are hosted on the operator Pod, upper part.
A possible situation of “split-brain syndrome”, i.e. a situation in which both the primary
and the secondary instance try to restart at the same time, resulting in duplicate services,
is avoided using ETCD as an external reference point monitored by the Governor, as
shown on the bottom left in Fig. 10, overseeing the automated fail-over/fallback process.
Creating and managing the database topology is done by the DB2 Controller inside the
DB2 Operator.

6 DB2-Operator Prototype Test System Setup

We implemented and evaluated the prototype on our department’s cloud infrastructure.
The test environment consists of OpenStack, which is used to provision compute, stor-
age, network and virtual machines (VM). The VMs run an Ubuntu server, configured
with Docker, Compose and Kubernetes. The test infrastructure resources include 3 VMs
labeled Node1- Node3, the public and internal networks and 4 physical storage volumes
PV1-PV4, as shown in Fig. 11. This setup has one master and two worker K8s nodes.
The test system includes: an ETCD cluster, the Google Operator template, the HAProxy
load balancer and the DB2 Pod cluster. The actual database instances are loaded into the
containers using docker images. The DB2 operator artifacts consist of as set of kuber-
netes YAML scripts and the custom database cluster management tools, implemented as
Python, Go and Bash scripts. Figure 11 shows two aspects of our database test system
setup, consisting of four Pods, the test client and the HAProxy used as the load bal-
ancer. The database instances are configured to start automatically with the Pod using

138 C. Mega

startup shell scripts that start the DB2 database, the Governor component and the DB2
HADR component. The configuration on the left side of Fig. 11 highlights the routing
path for the read/write workload, represented by the service selector leading to the pri-
mary instance. The right side shows the same configuration with the routing path for the
read-only workload, represented by the service selector that leads to all instances, the
scale-out farm. Instance state, roles and network configuration are stored and updated
periodically in the ETCD key-value store and monitored by a watchdog.

CM-Client / RM

Storage Storage Storage Storage

Read/Write Svc

sync

PV1

DB2

Pod2

HAProxy

Node2

async

30001

Pod1 Pod3 Pod4

PV2 PV3 PV4

23307

DB2 DB2 DB2

30001

Primary Secondary Auxiliary Auxiliary
50000 50000 50000 50000

PVC PVC PVC PVC

Node3

DB-Cluster

Workload: Read/Write

Endpoint Endpoint

to primary
30001

Selector

CM-Client / RM

Storage Storage Storage Storage

Read-only Svc

PV1

DB2

Pod2

HAProxy

Node2
30002

Pod1 Pod3 Pod4

PV2 PV3 PV4

23308

DB2 DB2 DB2

30002

Primary Secondary Auxiliary Auxiliary
50000 50000 50000 50000

PVC PVC PVC PVC

Node3

DB-Cluster

Workload: Read/Write

Endpoint Endpoint

to all
30002

Selector

async

Internal Communication

External Communication

Synchronous replication

Asynchronous replication

VM

30001 Port

K8s Cluster

External Component

CRUD
Select

ETCD
Pod

Arbiter

State Table

Fig. 11. System under test (SUT) Prototype.

The initialization routines ensure that the K8s service instances receive the correct
labels and are associated with corresponding communication endpoints, i.e. their IP
addresses and ports. Endpoints configurations are dynamically updated when Pods die
or are recreated. Each database instance has a specific role and together represent theDB2
database HA-cluster. Figure 11 also outlines the external and internal communication
endpoints and lists the flow of user request for the different workload types.

This test setup includes the HA-Proxy component that plays the role of the request
dispatcher and load balancer. We have configured HA-Proxy to run outside of the K8s
cluster and to forward incoming client requests to the two worker nodes. HA-Proxy
provides a pair of public communications end-points that are linked to the DB service
entry points inside the K8s cluster, shown in Fig. 11. K8s Service artifacts act as service
proxies of the actual database service. In the case of a read-only workload, the K8s
selector (a built-in K8s LB) forwards requests to all Pods across the VM worker nodes
to ensure the request traffic is load balanced based on defined policies.

Orchestrating Information Governance Workloads 139

7 Tests, Results and Evaluation

Our test scenarios were created to evaluate the prototype in terms HA, DR and scale-out
capabilities. The actual verification tests were developed using a Python client applica-
tion that simulates an interactive multi-user database transaction workload. We ran sev-
eral load and scalability tests against the database HA-cluster and collected the results.
The external HA-Proxy server provided in-cluster response-time statistics, end-to-end
response-times were generated by our own client application. Results include request
response times, data throughput, the number of connections, as well as server status,
reaction time to failures and service recovery times.

Note: The tests carried out are only indicative and serve to verify the steps of platform
migration, estimate approximate effort and prove the feasibility of our approach.

7.1 Service Availability and Failover Scenario

The first test scenario shown in Fig. 12, simulates a failure of the database service by
simply deleting the Pod alongwith the primary database instance, see red lightning bolt at
T1. We then measured the time it took until the outage was discovered, the time at which
the database service was re-restored and verified the consistency of the database and its
data. The relevant HA metrics used are: Reaction time Trec = T2-T1; Fail-over time
Tfov= T3-T2; HA-service restore time Tha= T4-T3; and the auxiliary reconfiguration
time Taux = T5-T4. The sum over the partial times is the overall configuration reset
time. Using the interaction diagram of Fig. 12 we have following flow of events: At T1,
the Pod of the primary server is deleted and the primary lock (a timestamp) in ETCD is
no longer updated. T2 – is the case when the K8s Deployment control loop (C-loop in
the diagram) detects that the primary Pod has died, and re-creates the Pod with the same
data (PV1) but with new IP address and eventually on a different node; T3 - the Governor
on the secondary server detects that the timestamp of the primary lock exceeds the time
to live (TTL) and therefore declares it inactive. At this point the secondary takes on the
role of the primary. This is done by starting the DB2 HA-specific take-over process and
re-establishing the database service.

T4 is when the Governor on the new clone of the old primary Pod through the
ETCD database detects that there is a new active primary server and assigns itself the
role of the new secondary server, connects as peer, and starts the synchronous database
replication. At T5, the two Auxiliary instances become aware of the role change and
reconnect to the new primary instance, triggering the database replication, as shown
in the interaction diagram of Fig. 12. We performed 10x test runs of the HA failover
scenario and measured reaction-, failover- and service recovery times listed in Table 1.
The test results are displayed in seconds. The average measured reaction time of the K8s
control loop was about ~2 s, while the service recovery time was about ~14 s on average.

140 C. Mega

up

K8s
C-Loop Secondary

kill down?

.

failover

DB2
Governor
C-Loop

.

Role:primary

Auxiliary

DB2
Governor

.

Primary

.

.

check primary

down up Full reset

Time
T5

HA reset

.

ETCD

.

.
primary?

.

.

Primary-Pod

Primary*-Pod
create new

check
primary.

connect as Auxiliary
..

Primary*-Pod

Secondary

Role:secondar
y

connect as peer

x sec

TfTr To

..
. .

x sec

State

.

T1 T4T3

..
T2

Tr =T2–T1 – Reaction time

Loop

Legend

T1-Service down

T3-Service up

T2-Failover start

T4-HA reset

T5-Auxliary reset

To =T3–T2 Service recovery

Tf =T4–T3 – Failover time

Fig. 12. HA fail-over flow of events and reaction times.

Table 1. DB availability (HA) failover response time test results.

Trec (s) Tfov (s) Tha (s)

1 2.859 3.621 6.425

2 1.995 4.322 6.839

3 2.403 9.655 18.180

4 2.066 5.856 13.793

5 2.022 36.309 41.639

6 2.051 9.632 14.555

7 1.720 4.839 9.570

8 2.058 29.886 32.728

9 2.624 9.679 18.111

10 2.059 33.286 34.581

Avg. 2.186 14.709 19.642

The variations in failover time, i.e. the time it takes for the new secondary database
to restore HA-state, were approximately ~20 s, as this depends on the think time of the
governor’s control loop, which was configured to 30 s. In the worst case, this means a
30 s wait period before the role change happens, plus some time delay due to system
load, which explains the magnitude of the fluctuations in the Tf response time. The
results suggest that the reaction time of the K8s control loop is negligible compared to
the service recovery time. K8s rebuilds Pods faster than the time it takes for the custom
resource takes to restore service. In our test environment, service recovery seems to be
in the of range of minutes, while Pod cloning is in the range of tenths of seconds. Overall
though, the results obtained prove the feasibility of our approach.

Orchestrating Information Governance Workloads 141

7.2 Read-Only Workload Scalability Test

The first series of tests focuses on determining the response time characteristics of
the DB2-cluster under different loads. The test is to create an increasing number of
interactive (10–30) virtual users that send a series of SQL requests to a database table
that is replicated to the fourDB2-clustermembers. Theworkload itself consists of simple
select statements that are issued in a loop with a short think time in between. Each run is
repeated with 10, 20 and 30 simulated users against 1, then 2, then 3 and finally 4 DB2-
instances. Each user sends 1000 requests for a total workload of 10.000, 20.000 and in
the third iteration 30.000 read requests, which equates to 30.000 database transactions at
peak. Figure 13, shows the response time of Pod/ DB-instances (x-axis) and workloads
(colored horizontal lines).

Fig. 13. Average read response time by number of users and DB-instances. (Color figure online)

As can be seen, the three response time graphs all show that time gradually decreases
as Pods (instances) are added independent of the workload used: blue (10.000), orange
(20.000), grey (30.000). This is Easily explainable, because the workload is distributed
across all available instances. Instead, with a constant number of Pods, the response time
increases as the workload increases demonstrating the scale-out behavior of the system.

In the second scenario, load balancing across the DB2-cluster is evaluated. With
this test case, we investigated the distribution of work among the cluster members by
constant load. The results of the three set of tests are shown in Fig. 14. The vertical axis
shows the number of read requests generated by the virtual users in batches of 10.000,
20.000 and 30.000 transactions. For each batch, we repeated the test with 1,2,3 and 4
DB2-instances.

The graph shows the system load as color-coded sections of the vertical bars. The blue
area represents the primary, brown the secondary, grey the auxiliary-1 and yellow the
auxiliary-2 database instance. The number of transactions served by each DB2-instance
is proportional to the size of the section in the respective bar.

The result demonstrates, that using a constant workload with a growing number of
DB2-instances, the individual load on each instance decreases as the overall workload
is distributed across all cluster members.

Here, too, the test results confirm our claim. Therefore, migrating legacy IG solutions
to cloud execution environments is feasibility and with an affordable effort. Typical IG

142 C. Mega

solution capabilities such as HA, DR and scale-out are retained, benefiting automated
service delivery, flexible resource allocation, and reduced operational costs.

Fig. 14. Read-only workload. Response time and request

8 Conclusion and Outlooks

This paper explored the effort required to migrate a legacy IG solution designed to oper-
ate in a pre-configured, physical production environment to a dynamic software-defined
cloud infrastructure (SDI). The focus of this work was on refactoring the legacy solu-
tion design and successfully moving from a physical to a cloud environment. The benefit
gained from this is the ability to orchestrate ILGworkloads using stateful services in K8s
managed clusters. We have learned that cloud platforms provide cluster control mecha-
nisms and resource topology management across all solution tiers, which can simplify
and reduce the application-specific cluster management complexity. With Pod clusters
managed by K8s, Pod, Node, Network and Storage management is kept out of applica-
tion responsibility and centrally consolidated in the cloud platform. This makes applica-
tion layer-specific cluster management obsolete and solution design leaner. In addition,
built-in control loops with the cloud platform enables monitoring of resource health and
automatic triggering of provisioning and de-provisioning requests. Component specific
lifecycle management tasks are integrated as K8s extensions using the operator pattern.
Operators make it possible to take advantage of the elasticity of the cloud infrastructure
and react dynamically to changes in workload. The resulting effects are the avoidance of
manual interventions, gain in flexibility and the reduction of associated operating costs.

Our prototype leveraged the IBM ECM product stack, consisting of IBM Content
Navigator, IBMContentManager Enterprise Edition, along with the required IBMWeb-
Sphere Application Server and IBM DB2 database server. We have developed an IG
solution design as used by traditional ECM customers world-wide, most of whom still
run their systems on-premise on a physical infrastructure. Currently, all products support
virtualized environments, but not all support containerized in virtualized environments.
We couldn’t, find a customer story that holistically shows the migration of an IG solution
from physical to cloud, but several blogs explaining cloud implementations of individual
component. Future work could focus on real-world production deployments and repeat
our tests with more realistic workloads and database sizes.

Orchestrating Information Governance Workloads 143

References

1. CNCF, CNCF operator white paper. https://github.com/cncf/tag-app-delivery/blob/main/ope
rator-wg/whitepaper/Operator-WhitePaper_v1-0.md. Accessed 30 July 2023

2. Panetta, K.: Gartner keynote: the future of business is composable the future of business is
composable, 19 October 2020 https://www.gartner.com/smarterwithgartner/gartner-keynote-
the-future-of-business-is-composable. Accessed 30 July 2023

3. IBM, Content management: content services reference architecture. https://www.ibm.
com/cloud/architecture/architectures/contentManagementdomain/reference-architecture/.
Accessed1 Mar 2023

4. IBM Corporation, “IBM Content Manager Enterprise Edition components,” IBM Corpora-
tion, Online (2023)

5. Mega, C., Waizenegger, T., Lebutsch, D., Schleipen, S., Barney, J.M.: Dynamic cloud service
topology adaption for minimizing resources while meeting performance goals. IBM J. Res.
Dev. 58, 1–10 (2014)

6. California department of technology , enterprise content management reference architecture,
California department of technology 1325 J Street, Suite 1600, Sacramento, CA 95814 (2014)

7. Alfresco, Alfresco Content Services (2021). https://www.alfresco.com/platform
8. IBM Corporation, “FileNet P8 baseline architecture,” IBM Corporation, Online (2023)
9. Lebutsch, D., Bolik, C., Hennecke, M.: Content management as a service—financial archive

cloud. Datenbank-Spektrum 10, 131–142 (2010)
10. kubernetes.io, “Kubernetes Concepts,” 30 July 2023. https://kubernetes.io/docs/concepts/.

Accessed 30 July 2023
11. Shao, G.: About the design changes required for enabling ECM systems to exploit cloud

technology (2020)
12. Trybek, C.: Investigating the orchestration of containerized enterprise content management

worklaods in cloud environments using open source cloud technology based on kubernets
and docker (2021)

13. Hagemann, P.: About the design changes required for enabling ECM systems to exploit cloud
technology (2021)

14. Wang, X.: Orchestrating stateful database services in cloud environments using Kubernetes
stateful services framework, OPUS - publication server of the University of Stuttgart (2022)

15. Maurer, M., Breskovic, I., Emeakaroha, V.C., Brandic, I.: Revealing the MAPE loop for the
autonomic management of Cloud infrastructures. In: 2011 IEEE Symposium on Computers
and Communications (ISCC) (2011)

16. Andreas, B.: Orchestration and provisioning of dynamic system topologies, Stuttgart (2011)
17. Ritter, T., Mitschang, B., Mega, C.: Dynamic provisioning of system topologies in the cloud.

In: Enterprise Interoperability V, London (2012)
18. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the cloud

environment – challenges and solutions in migrating applications to the cloud. Computing
95, 493–535 (2013)

19. Bhatia, P., Tee, J.X.: Best practices for building Kubernetes Operators and state-
ful apps. https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-
building-kubernetes-operators-and-stateful-apps. Accessed 20 October 2018

20. Chaki, S.: Enterprise information management in practice (2015)
21. .StateGovernmentofVictoria, “Information Management Maturity Measurement” (2019)
22. IBM Corporation, “IBM Enterprise Content Management Performance Methodology,” IBM

Corporation, Online (2015)
23. IBM Corporation, “IBM FileNet Content Manager 5.2High Volume Scalability,” IBM SWG,

Online (2014)
24. IBM Corporation, “IBM Content Services,” IBM Corporation, Online (2022)

https://github.com/cncf/tag-app-delivery/blob/main/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://www.gartner.com/smarterwithgartner/gartner-keynote-the-future-of-business-is-composable
https://www.ibm.com/cloud/architecture/architectures/contentManagementdomain/reference-architecture/
https://www.alfresco.com/platform
https://kubernetes.io/docs/concepts/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

	Orchestrating Information Governance Workloads as Stateful Services Using Kubernetes Operator Framework
	1 Introduction
	1.1 Problem Statement and Requirements
	1.2 Contributions and Outline of this Paper

	2 Background
	2.1 ILG Workload Models
	2.2 The Benefit of Clouds

	3 Foundation
	3.1 Virtualizing and Componentizing a Monolithic IG Solution
	3.2 Comparing Physical vs Virtual Infrastructure Models
	3.3 Kubernetes Stateful Architecture and its Entities

	4 Solution Approach
	4.1 K8s Operator Extended Control Loop
	4.2 Related Work

	5 The ILG Repository Stateful Service Prototype
	5.1 Kubernetes Stateful Services Cluster Setup
	5.2 K8s DB2 Stateful Service Design and Implementation

	6 DB2-Operator Prototype Test System Setup
	7 Tests, Results and Evaluation
	7.1 Service Availability and Failover Scenario
	7.2 Read-Only Workload Scalability Test

	8 Conclusion and Outlooks
	References

