
Operating with Quantum Integers: An
Efficient ‘Multiples of’ Oracle

Javier Sanchez-Rivero1(B), Daniel Talaván1, Jose Garcia-Alonso2,
Antonio Ruiz-Cortés3, and Juan Manuel Murillo1,2

1 COMPUTAEX, Cáceres, Spain
jszrivero@gmail.com

2 University of Extremadura, Cáceres, Spain
3 Universidad de Sevilla, Sevilla, Spain

Abstract. Quantum algorithms are a very promising field. However,
creating and manipulating these kind of algorithms is a very complex
task, specially for software engineers used to work at higher abstraction
levels. The work presented here is part of a broader research focused on
providing operations of a higher abstraction level to manipulate integers
codified as a superposition. These operations are designed to be com-
posable and efficient, so quantum software developers can reuse them
to create more complex solutions. Specifically, in this paper we present
a ‘multiples of’ operation. To validate this operation, we show several
examples of quantum circuits and their simulations, including its com-
position possibilities. A theoretical analysis proves that both the com-
plexity of the required classical calculations and the depth of the circuit
scale linearly with the number of qubits. Hence, the ‘multiples of’ oracle
is efficient in terms of complexity and depth. Finally, an empirical study
of the circuit depth is conducted to further reinforce the theoretical anal-
ysis.

Keywords: Quantum computing · Amplitude Amplification · Oracle ·
Multiples · Qiskit

1 Introduction

Quantum computing [17] uses quantum mechanics to perform computations in
a different manner than classical computing [18]. Nowadays, quantum comput-
ers are in the NISQ (Noisy Intermediate-Scale Quantum) Era [19], which means
their practical use is still limited by errors and the low number of qubits (quan-
tum bits). However, the recent developments on quantum devices have allowed
researchers to start testing on real quantum hardware the theoretical work on
quantum algorithms, which has been a very active field for decades [12].

Quantum algorithms are useful when they can solve certain problems faster
than any known classical algorithm [16]. This speedup is measured in terms of
asymptotic scaling of complexity [4]. The work presented here is part of ongoing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 105–124, 2023.
https://doi.org/10.1007/978-3-031-45728-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-45728-9_7

106 J. Sanchez-Rivero et al.

research aimed at providing programmers with operations on quantum states at
a higher level of abstraction than the base quantum gates. The design of these
operations aims at composability and efficiency, such that they can be reused to
create larger solutions. More specifically, our research has begun with the goal
of providing operations on a superposition quantum state that encodes integers
with size determined by the number of qubits in the state [20]. These operations
are not only useful for manipulating a quantum state encoding integers, they are
also more efficient than the same operations in the classical domain. In addition,
the quantum circuits that implement these operations are optimised in depth,
with respect to Qiskit’s automatic methods [23], as well as in the number of
qubits (ancilla and non-ancilla) they use [21].

In particular, this paper presents an operation that computes multiples.
Thus, given an integer and a quantum state that encodes integers, the oper-
ation phase-tags1 the configurations of the quantum state that correspond to
multiples of the given integer. While the complexity of finding the multiples in
the classical domain is O(2nN),2 the complexity of the operation presented here
is O(nN), where nN is the number of bits codifying the maximum size of the
wanted multiples, N . This is a logarithmic scaling in the total number of states,
which provides an exponential speedup with respect to classical calculations.

As mentioned before, in our research this ’multiples of’ is part of a larger set
of quantum operations on integers [20,21]. An important feature that we want
the whole set of operations to preserve is composability. Thus, all the resources
of this set are composable with each other and, for example, the ‘multiples of’
can be composed with a ‘less than’ operation to obtain the multiples of a given
integer a less than another given integer b. In particular, the operation ‘multi-
ples of’ can also be composed with itself to, for example, mark in a quantum
state the multiples of an integer a and then, in the resulting state, mark the
multiples of another integer b. Preserving composability offers the possibility to
reuse such operations to build more complex operations with a higher level of
abstraction. Achieving the best quality attributes, such as reusability or com-
posability, in each operation is important because their compositions will inherit
those attributes [14,24].

This paper is organized as follows. In Sect. 2 we provide the necessary back-
ground for this work. Next, the description of the ’multiples of’ operation is
presented in Sect. 4. The operation takes the shape of a quantum oracle and
the section details both the idea inspiring the oracle and the quantum circuit
exact implementation. In Sect. 5 some examples of circuits and simulations are
shown to prove the functionality of the oracle. Then, in Sect. 6, the complexity of
classical calculations as well as the quantum circuit is discussed. Section 7 shows
composability and further uses of the oracle. Finally, in Sect. 8, the conclusions
and future work are explored.

1 Phase-tagging a state is giving that state a π-phase.
2 Given k ∈ N, there are �N/k� multiples of k in [0, N]. As k is fixed, the number of

multiples grows linearly in N , O(N). Namely, if N = 2nN , then O(2nN).

‘Multiples of’ Oracle 107

2 Background

Oracles have been identified as a recurring pattern in quantum software [15,24].
Following this trend, the work presented here is built as an oracle for Grover’s
algorithm [9]. This algorithm searches for one quantum state in an unordered
database faster than any known classical algorithm. Its generalization is called
Amplitude Amplification [3,10] and allows to search for multiple values. This
algorithm works by applying two quantum operations: an oracle, which marks
with a π-phase the desired quantum states, and a diffuser, which tries to amplify
the amplitude of those marked states. Often, to reach a satisfactory amplifi-
cation, it is needed to repeat the pair oracle-diffuser several times. This pair
oracle-diffuser is usually called the Grover iterator.

The ‘multiples of’ oracle is built reusing two pieces of existing quantum
software, the linear multi-controlled gate [22] and the modulo addition [1,7].

In [22] the authors present an efficient implementation of a multi-controlled
gate whose depth scales linearly with the number of qubits and thus avoids the
polynomial growth of previous implementations. Furthermore, it does not require
the use of ancilla qubits. The linear multi-control gate outperforms Qiskit [23]
implementation from five qubits onwards, which supposes a clear improvement
for any meaningful use. Furthermore, the authors also conduct an analysis on
the utility of the linear multi-controlled gate on NISQ devices, showing that the
depth reduction can help achieve more accurate results. Because of these quality
attributes, we chose to reuse it in this work.

The modulo addition operation a + b mod k is defined as the remainder of
dividing a + b by k. In this work, this operation will only be performed with
values a, b < k. Hence, in our case, the modulo addition can be written as:

a + b mod k =
{

a + b if a + b < k
a + b − k if a + b ≥ k

a, b < k (1)

For this modulo addition we use the implementation presented in [1]. It is
heavily based on Draper’s algorithm [7] for quantum addition. This method uses
the quantum Fourier transform [6] and hence is done on the frequency domain3.
It allows the addition of an integer to a quantum superposed state without the
need to encode the integer in a quantum register. This reduces the number of
necessary qubits. The depth of this operation is linear on the number of qubits,
as it is a composition of linear-depth primitives.

Once the addition gate is built, the modulo addition conducts the following
operations [1]: adds a classical value a < k to a quantum state holding the
classical value b < k, and then it subtracts k if a + b ≥ k. This methods requires
two ancilla qubits to perform the operation, one for the overflowing of the sum,
and another one for checking whether it is needed to subtract k or not.

3 In the frequency domain, integers are represented by superposition of states with
the same different in phase between the state. That difference in phase is the unique
identifier of the integer [18].

108 J. Sanchez-Rivero et al.

This paper showcases how by carefully composing existing pieces of quantum
software a new non-trivial software can be obtained. The ideas hereby described
are the ones which allow to build the oracle ‘multiples of’, presented in detail in
Sect. 4.

3 Related Works

There are several approaches which seek to create higher-level quantum pro-
gramming languages. Quipper [8] is a scalable quantum programming language
which can be used to program several quantum algorithms, such as HHL [11].
Silq [2] is a high-level quantum language which focuses, among other objectives,
in the automatic uncomputation of operations usually required in quantum pro-
gramming. Another construction of higher-level quantum program is Classiq [5],
which researches in building oracles for arithmetic expressions. Latter one is the
closest to our work, previous ones focus on quantum primitives with a more
general approach. Operations in Classiq, range from addition or subtraction to
built-in functions such as Amplitude Estimation. These languages aim at cre-
ating a whole set of operations to be able to create quantum software without
the need of deep knowledge on quantum circuits. Our work follows the same
idea and attempts to create new more complex operations with efficient classical
calculations.

4 Implementation of the ‘Multiples of’ Oracle

In this section, we provide a description of the oracle. It comprises two differen-
tiated parts, the first one is the mathematical ideas inspiring the oracle, where
basic modulo theory shows a condition for identifying multiples. The second
part describes the quantum circuit of the oracle, how the multiples are given a
π-phase, and how to adapt the oracle for a full Amplitude Amplification imple-
mentation.

4.1 Mathematical Properties Inspiring the Oracle

A number M ∈ N is multiple of another number k if the remainder of the division
is 0, formally expressed as M ≡ 0 mod k. If M is not a multiple of k, then M �≡ 0
mod k.

The number M can be be expressed in binary form, also known as binary
decomposition:

M = am · 2m + am−1 · 2m−1 + . . . + a1 · 21 + a0 · 20 =
m∑
i=0

ai · 2i (2)

where ai ∈ {0, 1} and m = �log2 M�.

‘Multiples of’ Oracle 109

Let ri, with 0 ≤ ri < k, be the remainder of 2i when divided by k, formally:

2i ≡ ri mod k (3)

Then by the properties of the ring of remainders Zk it can be noticed that:

M ≡
m∑
i=0

ai · 2i ≡
m∑
i=0

ai · ri mod k (4)

Hence, M is a multiple of k if the sum of the remainders of the powers of 2
modulo k of its binary decomposition is equivalent to 0, formally:

M ≡ 0 mod k ⇐⇒
m∑
i=0

ai · ri ≡ 0 mod k (5)

Therefore, the ‘multiples of’ oracle is built in two parts, first adding the
remainders of the powers of two, and then giving a π-phase to those which are
0, thus the multiples.

4.2 Algorithm for the ‘Multiples of’ Oracle

This subsection provides a detailed explanation of the implementation of the
‘multiples of’ oracle.

Let k ∈ N be the number whose multiples want to be calculated. The quan-
tum circuit for the ‘multiples of k’ oracle consists of three registers of qubits.

The first is the input register, which holds the quantum states in which the
multiples will be searched. It is formed by n qubits and the i-th qubit of this
register is denoted qi. The number n is an input parameter and does not depend
on any other value. Thus, the numbers in which the multiples will be searched
range from 0 to N − 1, where N = 2n.

The second register holds the remainder of the numbers. At most, the remain-
der of dividing by k is k−1, hence the required number of qubits for this register
is nk = �log2(k − 1)�. The i-th qubit of this register is denoted rqi.

Finally, an ancilla register with two qubits is needed to perform the modulo
addition introduced in the Sect. 2, as described in detail in [1]. These qubits are
denoted ancilla0 and ancilla1. Both the registers and the ancilla registers are
initialized to state |0〉.

Algorithm 1 builds the circuit. It follows an explanation which describes it
thoroughly.

The remainders of each power of 2, ri ≡ 2i mod k, are added modulo k
to the remainders register, where the addition is controlled by the input qubit
qi. As the remainders register is initialized as |0〉 and ri < k ∀i, the result of
each modulo addition will never be larger than k, as shown in the definition of
this operation in Sect. 2. Figure 1 shows the general case of this implementation.
This image and all the others showing circuits have been done with the quantikz
package [13].

110 J. Sanchez-Rivero et al.

Data: Number of qubits n and a natural number k
Result: Quantum Circuit which gives a π-phase to all states representing

binary forms of natural numbers multiples of k
Calculate ri ≡ 2i mod k for i ∈ [0, n − 1] ; /* see Appendix A */

nk ← �log2(k − 1)�;
input register (q) ← QuantumRegister(n);
remainder register (rq) ← QuantumRegister(nk);
ancilla register ← QuantumRegister(2);
ntotal ← n + nk + 2;
circ ← QuantumCircuit(ntotal);
Initialize input register to |0〉;
for i = 0 to n − 1 do

circ+ = ModuloAddition(ri, nk + 2);
append circ+ to circ:

- Target: remainder register and ancilla register;
- Control: qi;

end
for j = 0 to nk − 1 do

X gate to rqj ;
end
CZnk gate to qubits rq0, . . . , rqnk−1;
; /* Target: rqnk−1, Control: rq0, . . . , rqnk−2 */

for j = 0 to nk − 1 do
X gate to rqj ;

end
for i = 0 to n − 1 do

circ− = ModuloSubstraction(ri, nk + 2);
append circ− to circ:

- Target: remainder register and ancilla register;
- Control: qi;

end
Algorithm 1: Algorithm for building the ‘multiples of’ oracle

After applying the modulo additions, the ancilla register is always at state
|00〉 [1]. The remainders register holds states from |0〉 up to |k − 1〉. From Eq. 5,
it can be seen that the multiples of k are those states of the form:

|rqnk−1 . . . rq1 rq0 qn−1 . . . q1 q0〉 = | 0 . . . 0 0︸ ︷︷ ︸
rq register

qn−1 . . . q1 q0︸ ︷︷ ︸
input register

〉 (6)

Hence, these states and only these ones will be given a π-phase by means of
the gate 7:

X⊗nk · CZnk · X⊗nk (7)

where CZnk is a multi-controlled Z-gate whose target is qubit rqnk−1 and
controlled by qubits rq0, . . . , rqnk−2. This gate is built using the linear multi-
controlled Z-gate introduced in Sect. 2. Figure 2 shows how this part of the circuit
is built.

‘Multiples of’ Oracle 111

. . .

. . .

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

rq1

...

rqnk−1

ancilla0

ancilla1

Fig. 1. Modulo addition of the remainders of the powers of 2.

. . .

. . .

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

X X

rq1 X X

... X X

rqnk−1 X Z X

ancilla0

ancilla1

Fig. 2. Oracle that marks multiples of k.

Afterwards, in order to apply the diffuser, it is required to return auxiliary
qubits to their initial states, that is, to perform an uncomputation on this register
[18]. As the multiples are already given a π-phase, if the modulo additions of the
remainders are uncomputed, the states would keep the phase. The circuit would
be as in Fig. 3.

112 J. Sanchez-Rivero et al.

.

.

...
...

.

.

.

.

.

.

.

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

X X

− r0 mod k − r1 mod k − rn−1 mod k

rq1 X X

... X X

rqnk−1 X Z X

ancilla0

ancilla1

Fig. 3. Oracle that marks multiples of k and returns all auxiliary qubits to state |0〉.

Finally, the diffuser can be applied to the input register (the rest of the regis-
ters, remainders and ancilla, are in the state |0〉). The complete implementation
is shown in Fig. 4.

oracle

input register: q H⊗n Diffuser

remainders register: rq
+ r mod k

X⊗nk CZnk X⊗nk

− r mod k
ancilla register: ancilla

Fig. 4. Implementation of ‘multiples of’ oracle plus diffuser with full superposition as
input.

A documentation for this ‘multiples of’ oracle following the guidelines pro-
posed in [21] can be found in the following repository.

5 Simulations and Results

In this section, we show some examples of the oracle, both the implementations
and the results, which are obtained by means of a simulator with no noise and
no error model applied. Different values for k, the number whose multiples are
calculated, and n, the number of input qubits4, are chosen to showcase the func-
tionality of the ‘multiples of’ oracle. We display the full circuit for the multiples
of 3 oracle with 4 qubits input as well as its simulation. We also show the full
circuit and the simulation of multiples of 5 with 6 qubits. We have chosen these
values for k and number of input qubits to improve readability of the circuits.

4 We codify all our integers as quantum states in these n qubits, hence the multiples
are calculated up to N = 2n integers.

‘Multiples of’ Oracle 113

In addition, we also show a simulation of multiples of 14 with 5 qubits using
one and two repetitions of the Grover iterator to showcase the difference in the
amplified amplitude in both cases.

We have used Qiskit [23] to generate the circuits and simulate them. To be
able to amplify the marked quantum states we have chosen a full superposition
of 0s and 1s as our input state and have applied the Grover’s algorithm diffuser
[18] after the oracle. All the simulations are conducted with 20,000 shots5 as it
is the maximum allowed by Qiskit.

5.1 Multiples of 3

The ‘multiples of 3’ oracle with 4 qubits as input can be found in Fig. 5. The
remainders of the powers of 2 when divided by 3 follow the cycle 1, 2, as:

20 ≡ 1 mod 3

21 ≡ 2 mod 3

22 ≡ 1 mod 3

(8)

As there are 4 input qubits, the remainders of the first 4 powers of 2 are added
in the remainders register. These 4 remainders are 1, 2, 1, 2, repeating the whole
cycle once.

q0

q1

q2

q3

rq0

+ 1 mod 3 + 2 mod 3 + 1 mod 3 + 2 mod 3

X X

− 1 mod 3 − 2 mod 3 − 1 mod 3 − 2 mod 3
rq1 X Z X

ancilla0

ancilla1

Fig. 5. Multiples of 3 oracle with a 4 qubits input register.

The result of simulating the entire circuit, including the initialisation of the
state, the shown oracle, and the diffuser, are shown on Fig. 6. The x-axis repre-
sents the final quantum states and the y-axis represents the relative frequency.
Desired states (multiples of 3) are in blue with a thick border, undesired states
(not multiples of 3) are in red without border. It can be noticed that with just one
repetition, the desired states are clearly amplified to differentiate the multiples
of 3 from the rest of the numbers.

5 Each shot is one simulation of the circuit, the final result is the aggregation of all
shots.

114 J. Sanchez-Rivero et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Numbers

0.0

0.1

0.2
Fr
eq
ue
nc
y

Multiples of 3
Not multiples

Fig. 6. Results of simulating the circuit of multiples of 3 with a 4 qubits input.

5.2 Multiples of 5

The ‘multiples of 5’ oracle with 6 qubits as input can be found in Fig. 7. The
remainders of the powers of 2 when divided by 5 follow the cycle 1, 2, 4, 3, as:

20 ≡ 1 mod 5

21 ≡ 2 mod 5

22 ≡ 4 mod 5

23 ≡ 3 mod 5

24 ≡ 1 mod 5

(9)

As there are 6 input qubits, the remainders of the first 6 powers of 2 are added
in the remainders register. These 6 remainders are 1, 2, 4, 3, 1, 2, repeating the
first remainders of the cycle, 1 and 2.

q0

q1

q2

q3

q4

q5

rq0

+ 1 mod 5 + 2 mod 5 + 4 mod 5 + 3 mod 5 + 1 mod 5 + 2 mod 5

X X

− 1 mod 5 − 2 mod 5 − 4 mod 5 − 3 mod 5 − 1 mod 5 − 2 mod 5

rq1 X X

rq2 X Z X

ancilla0

ancilla1

Fig. 7. Multiples of 5 oracle with a 6 qubits input register.

The result of simulating the full circuit, including the initialisation of the
state, the shown oracle and the diffuser; are shown on Fig. 8. It can be seen that,
in this case, the amplification with one iteration is almost perfect.

‘Multiples of’ Oracle 115

0 5 10 15 20 25 30 35 40 45 50 55 60
Numbers

0.00

0.05

0.10
Fr
eq
ue
nc
y

Multiples of 5
Not multiples

Fig. 8. Results of simulating the circuit of multiples of 5 with a 6 qubits input.

5.3 Multiples of 14

In this section, we show the results of simulating the ‘multiples of 14’ with 5
input qubits in full superposition with one and two repetitions of the Grover
iterator. The remainders of the powers of 2 are 1, 2, 4, 8, and 2. We do not
show the circuits for the sake of readability, however they can be found in the
provided repository.

Figure 9 shows the results of the simulation using one repetition. The total
amount of amplification of desired states is ≈ 64%. Although from an absolute
perspective this may not seem a favourable result, the three desired states (0,
14 and 28, multiples of 14 up to 31) have their amplitude enlarged by a factor
≈ 6.82. This amplification allows the distinction of multiples of 14 among the
input states.

On Fig. 10 are depicted the results of the simulation using two repetitions.
In this case, the total amount of amplification is ≈ 100%. This is the best
possible amplification and shows that this oracle may improve its applicability by
repeating the pair oracle-diffuser. However, the increased depth of this operation
has to be taken into account when implementing the operation in a real quantum
device.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq
ue
nc
y

Multiples of 14
Not multiples

Fig. 9. Results of simulating the circuit of multiples of 14 with a 5 qubits input with
one repetition of the Grover iterator.

116 J. Sanchez-Rivero et al.

Knowing the number of desired states, M , and the total number of states,
N , the number of repetitions to reach maximum amplification can be calculated
exactly [18]. Further analyses on the number of repetitions are conducted in [9]
[10].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq
ue
nc
y

Multiples of 14
Not multiples

Fig. 10. Results of simulating the circuit of multiples of 14 with a 5 qubits input with
two repetitions of the Grover iterator.

6 Complexity and Depth

In this section, we present both an analysis of the classical calculations required
to build the quantum oracle and also a theoretical and empirical study of the
depth of the resulting quantum oracle.

Let us bear in mind that k ∈ N is the number whose multiples want to be
calculated; n is the number of input qubits, in which the multiples of k are going
to be calculated; N = 2n is the total number of quantum states; and nk is the
required number of qubits to store the remainders of dividing by k (at most
k − 1).

6.1 Classical Calculations Complexity

In this subsection, we analyse the classical calculations needed to implement the
‘multiples of’ quantum oracle. This classical part is divided in two tasks. First
one is computing the remainders of the powers of 2 divided by k. Second task is
building the quantum circuit.

The first task consists on the calculations of the remainders ri ≡ 2i mod k,
0 ≤ ri < k and i ∈ [0, n − 1]. At most, only n remainders need to be calculated,
as only n modulo additions are conducted. Therefore, this operation is O(n) =
O(log N). The algorithm to do these computations can be found in Appendix A.

The second task is building the quantum circuit. The construction of the
controlled circuit ‘+r mod k’ which performs the modulo addition is linear on
the number of qubits [1]. In this case, the number of qubits on the remainders
register, nk. This means that the complexity of this operation is O(log k) =

‘Multiples of’ Oracle 117

O(nk). This is smaller than O(n), otherwise, k would be greater than N = 2n

and there would be only one multiple in those integers, the number 0.
Moreover, the complexity of appending the modulo addition circuits to the

full quantum circuit is linear on the number of qubits on the input register,
n, thus, O(n) = O(log N). The rest of needed appends (Hadamard, X and
multi-controlled Z) are also linear with the number of qubits. Therefore, the
complete procedure required in classical computations holds a complexity of
O(n) = O(log N).

It can be noted that for obtaining the multiples of a given number k up to
N classically, it is needed to calculate �N/k� multiples. Hence, as k is already
fixed, this calculation grows exponentially with the number of binary bits, nN ,
needed to encode N in binary form, O(N) = O(2nN). To apply our method, we
need to encode N in a quantum circuit and nN qubits are needed. As showed
above, the complexity of the classical computations of our method is O(nN),
hence, our method presents an exponential reduction of the complexity of the
classical computations.

6.2 Theoretical Analysis of Quantum Circuit Depth

As stated in Sect. 4.2, the quantum circuit consists of three registers of qubits,
the input qubits, which hold the information for all the possible numbers, formed
by n qubits, which is input from the user. The register which holds the remainder
of the numbers, which has nk = �log2(k − 1)� qubits. At most, the remainder
of dividing by k is k − 1, hence not more qubits are required. Finally, an ancilla
register with two qubits is needed to perform the modulo addition, as described
in detail in [1]. The depth of this circuit is determined by the depth of its two
reused oracles, the modulo addition and the phase-marking operation.

The modulo addition ‘+r mod k’ has linear depth on the number of qubits,
in this case O(nk) = O(log k), as it is applied on the remainders register. Once
k is chosen, the depth of this circuit is fixed. This operation needs to be applied
2n times, firstly to compute the remainders and afterwards to uncompute them.
Therefore, the depth of this operation is O(n) = O(log N).

The phase-marking operation requires a multi-controlled Z-gate. This is
implemented following [22], which provides a linear depth on the number of
qubits, O(nk) = O(log k). As stated in the previous Subsect. 6.1, this is upper-
bounded by O(n).

Therefore, the depth of the full implementation of the ‘multiples of’ oracle is
linear on the number of input qubits n, O(n) = O(log N).

6.3 Empirical Measurement of Circuit Depth

To further reinforce the depth complexity study, an empirical analysis is also
presented. In order to do this, we have generated the oracles for different numbers
of k, nk, and n. To properly perform this analysis, before measuring depth,
all the circuits have been transpiled using one of the IBM quantum computer

118 J. Sanchez-Rivero et al.

backends. In particular, the one used has been fake washington v2, which has
the same properties (gate set, coupling map, etc.) as the real quantum device
Washington.6.

Figure 11 shows the depth of the oracle with respect to the number of input
qubits n, for different values of k and nk. It can be noticed that the depth grows
linearly as the number of input qubits increases. This is an expected behaviour
as theoretically explained above.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of input qubits (n)

5000

10000

15000

20000

25000

30000

D
ep
th

k = 107 nk = 7
k = 58 nk = 6
k = 17 nk = 5
k = 12 nk = 4
k = 5 nk = 3
k = 3 nk = 2

Fig. 11. Depth (y-axis) against number of input qubits n (x-axis) for different values
of k.

It can also be noticed that the slope of the graphic grows as the number of
qubits in the remainders register nk increases. This is also an expected behaviour,
as the depth of the modulo addition grows linearly with the number of qubits on
which it is applied. This behaviour can be observed in Fig. 12. This figure shows
the growth of the depth with respect to the number k whose multiples are to be
computed. This analysis has been conducted by choosing several pseudo-random
numbers in each interval [2nk−1, 2nk), with nk ∈ {3, 4, 5, 6, 7}. These intervals
are delimited by vertical dotted lines on the figure. It can be observed that the
depth for each value holds mostly constant in these intervals. This means that
the depth increments are mainly caused by the growing number of nk qubits
required to store the remainders of k (largest number stored is k − 1).

Lines in both figures are mere visual guides and do not represent any data.

7 Composability and Further Uses

In this section, we show how the proposed oracle can be further reused by pro-
viding some examples. First, we showcase how the ‘multiples of’ oracle can be
composed with other oracles. Second, we explain how the oracle can be modi-
fied to obtain, instead of multiples of a number k, numbers with a determined
6 https://qiskit.org/documentation/apidoc/providers fake provider.html.

https://qiskit.org/documentation/apidoc/providers_fake_provider.html

‘Multiples of’ Oracle 119

0 20 40 60 80 100 120
Number k

2000

4000

6000

8000

10000

12000

14000
D
ep
th

nk = 3 nk = 4 nk = 5 nk = 6 nk = 7

9 input qubits
8 input qubits
7 input qubits
6 input qubits
5 input qubits

Fig. 12. Depth (y-axis) against k (x-axis) for different amounts of input qubits (n).
The corresponding value of nk for each k is displayed.

remainder when dividing by k. Last, both of these options are combined. Both
circuit and results of simulations are displayed in each case. The conditions for
the simulations are the same as previously described in Sect. 5.

7.1 Multiples and Less-Than Oracle

We show an example on how to obtain the multiples of a given number k smaller
than m. In order to do so, the ‘multiples of’ oracle and the ‘less-than’ oracle [20]
are composed7. However, this composition is not trivial since it must be applied
in an specific way. The oracle to compose with (‘less-than’ in this example) must
be applied controlled by the qubits in the remainders register rq0, . . . , rqnk−1

and targeted on the input register q0, . . . , qn−1. This oracle substitutes the multi-
controlled Z-gate which is used originally to mark all the multiples.

In this example, the choices are k = 5, m = 14, n = 5. Hence, the desired
states are the multiples of 5 smaller than 14 from 0 to 31. The implementation
of this oracle can be found in Fig. 13. The results of the simulation using only
one repetition of the Grover iterator is in Fig. 14. The results are, as expected,
the states amplified of the multiples of 5 less than 14.

7.2 Numbers with Any Remainder

This subsection shows how to change the multiples oracle in order to obtain
numbers with any remainder r when dividing by a given integer k. The operation
‘multiples of’ explained so far is the particular case r = 0. In this example, we
show the oracle taking k = 6, r = 3, n = 5, formally, p ≡ 3 mod 6. The oracle
can be found in Fig. 15. Notice that, when giving a π-phase with gate CCZ in
the remainders register, there are only X gates in the qubit rq2, hence marking

7 The ‘multiples of’ oracle can be combined with any other phase-marking oracle.

120 J. Sanchez-Rivero et al.

q0

< 14

q1

q2

q3

q4

rq0

+ 1 mod 5 + 2 mod 5 + 4 mod 5 + 3 mod 5 + 1 mod 5

X X

− 1 mod 5 − 2 mod 5 − 4 mod 5 − 3 mod 5 − 1 mod 5

rq1 X X

rq2 X X

ancilla0

ancilla1

Fig. 13. Multiples of 5 oracle combined with less than 14 oracle with a 5 qubits input.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.00

0.05

0.10

0.15

0.20

Fr
eq
ue
nc
y

Multiples of 5 less than 14
Otherwise

Fig. 14. Results of simulating the circuit of multiples of 5 less than 14 with a 5 qubits
input.

those states where |rq2 rq1 rq0〉 = |011〉 = |3〉 = |r〉. The results of the simulation
using only one repetition of the Grover iterator is shown in Fig. 16 and match
the expected results for this operation.

7.3 Numbers with Any Remainder and Range of Integers

This subsection shows how to combine the oracle of numbers with a determined
remainder when dividing by a number and the range of integers oracle presented
in [21]. For instance, here we show the oracle for integers p ≡ 5 mod 9 and
p ∈ [12, 28]. The oracle can be found in Fig. 17. Notice that, as in Subsect. 7.1,
there is an oracle controlled by the qubits in the remainders register. However,
in this case, the X gates are arranged such that the oracle is activated when the
qubits in the remainders register are in the state |rq3 rq2 rq1 rq0〉 = |0101〉 = |5〉.
The results of the simulation using only one repetition of the Grover iterator is
shown in Fig. 18.

‘Multiples of’ Oracle 121

q0

q1

q2

q3

q4

rq0

+ 1 mod 6 + 2 mod 6 + 4 mod 6 + 2 mod 6 + 4 mod 6 − 1 mod 6 − 2 mod 6 − 4 mod 6 − 2 mod 6 − 4 mod 6

rq1

rq2 X Z X

ancilla0

ancilla1

Fig. 15. Numbers p ≡ 3 mod 6 oracle with a 5 qubits input.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

Fr
eq
ue
nc
y

p ≡ 3 mod 6
Otherwise

Fig. 16. Results of simulating the circuit of numbers p ≡ 3 mod 6 with a 5 qubits
input.

q0

[12, 28]

q1

q2

q3

q4

rq0

+ 1 mod 9 + 2 mod 9 + 4 mod 9 + 8 mod 9 + 7 mod 9 − 1 mod 9 − 2 mod 9 − 4 mod 9 − 8 mod 9 − 7 mod 9

rq1 X X

rq2

rq3 X X

ancilla0

ancilla1

Fig. 17. Numbers p ≡ 5 mod 9 with p ∈ [12, 28] oracle with a 5 qubits input.

122 J. Sanchez-Rivero et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

Fr
eq
ue
nc
y

p ≡ 5 mod 9 and p ∈ [12, 28]
Otherwise

Fig. 18. Results of simulating the circuit of numbers p ≡ 5 mod 9 with p ∈ [12, 28]
with a 5 qubits input.

8 Conclusions

In this work, we have presented a method to build an efficient oracle for phase-
marking multiples of a given number. We have shown the theoretical ideas behind
this construction and how to build the quantum circuit. Moreover, we have con-
ducted a theoretical analysis of the complexity of both the classical calculations
needed to build the oracle and the oracle itself. The result of this analysis is that
our method leads to an exponential speedup over the classical one in terms of
the required classical computations. Finally, further functionalities are explored.
Through examples and simulations we show how to compose the ‘multiples of’
oracle with other oracles and also how numbers with other properties can be
obtained.

This work is one of the steps taken to create an efficient set of tools of
quantum software for working with integers. We hope these tools can be reused
by quantum software developers to create new quantum algorithms.

Acknowledgements. This work has been financially supported by the Ministry of
Economic Affairs and Digital Transformation of the Spanish Government through the
QUANTUM ENIA project call - Quantum Spain project, by the Spanish Ministry of
Science and Innovation under project PID2021-124054OB-C31, by the Regional Min-
istry of Economy, Science and Digital Agenda, and the Department of Economy and
Infrastructure of the Government of Extremadura under project GR21133, and by the
European Union through the Recovery, Transformation and Resilience Plan - NextGen-
erationEU within the framework of the Digital Spain 2026 Agenda.

We are grateful to COMPUTAEX Foundation for allowing us to use the supercom-
puting facilities (LUSITANIA II) for calculations.

Repository. The code used for this paper can be found in the following repository:

https://github.com/JSRivero/oracle-multiples

https://github.com/JSRivero/oracle-multiples

‘Multiples of’ Oracle 123

Appendix A

Data: Number of powers n and a natural number k
Result: List of remainders ri of 2i when divided by k

ri ≡ 2i mod k for i ∈ [0, n − 1]
list remainders ← list(n);
r ← 1 ; /* as 20 ≡ 1 mod k for any k ∈ N */

for i = 1 to n − 1 do
r′ ← 2 · r;
if r′ < k then

r ← r′

else
r ← r′ − k

end
list remainders[i] ← r

end
Algorithm 2: Algorithm for computing the remainders of the first n powers
of 2 when divided by k

It can be noticed that this algorithm performs at most 3 operations each
iteration, and has n iterations, hence its complexity is O(n).

References

1. Beauregard, S.: Circuit for shor’s algorithm using 2n+3 qubits (2002).
https://doi.org/10.48550/ARXIV.QUANT-PH/0205095, https://arxiv.org/abs/
quant-ph/0205095

2. Bichsel, B., Baader, M., Gehr, T., Vechev, M.: SILQ: a high-level quantum language
with safe uncomputation and intuitive semantics. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
286–300. PLDI 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3385412.3386007

3. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

4. Chivers, I., Sleightholme, J., Chivers, I., Sleightholme, J.: An introduction to algo-
rithms and the big o notation. Introduction to Programming with Fortran: With
Coverage of Fortran 90, 95, 2003, 2008 and 77, pp. 359–364 (2015)

5. Classiq: Classiq arithmetic oracle. https://docs.classiq.io/0-13/user-guide/builtin-
functions/arithmetic/arithmetic-expression.html

6. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring.
arXiv preprint quant-ph/0201067 (2002)

7. Draper, T.G.: Addition on a quantum computer (2000). https://doi.org/10.48550/
ARXIV.QUANT-PH/0008033, https://arxiv.org/abs/quant-ph/0008033

8. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: A
scalable quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013).
https://doi.org/10.1145/2499370.2462177

https://doi.org/10.48550/ARXIV.QUANT-PH/0205095
https://arxiv.org/abs/quant-ph/0205095
https://arxiv.org/abs/quant-ph/0205095
https://doi.org/10.1145/3385412.3386007
https://docs.classiq.io/0-13/user-guide/builtin-functions/arithmetic/arithmetic-expression.html
https://docs.classiq.io/0-13/user-guide/builtin-functions/arithmetic/arithmetic-expression.html
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
https://arxiv.org/abs/quant-ph/0008033
https://doi.org/10.1145/2499370.2462177

124 J. Sanchez-Rivero et al.

9. Grover, L.K.: A fast quantum mechanical algorithm for database search
(1996). https://doi.org/10.48550/ARXIV.QUANT-PH/9605043, https://arxiv.
org/abs/quant-ph/9605043

10. Grover, L.K.: Quantum computers can search rapidly by using almost any trans-
formation. Phys. Rev. Lett. 80(19), 4329–4332 (1998). https://doi.org/10.1103/
physrevlett.80.4329

11. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear sys-
tems of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/
10.1103/PhysRevLett.103.150502, https://link.aps.org/doi/10.1103/PhysRevLett.
103.150502

12. Hidary, J.D., Hidary, J.D.: A brief history of quantum computing. Quant. Comput.
Appl. Approach. 15–21 (2021)

13. Kay, A.: Tutorial on the quantikz package. arXiv preprint arXiv:1809.03842 (2018)
14. Klappenecker, A., Roetteler, M.: Quantum software reusability. Int. J. Found.

Comput. Sci. 14(05), 777–796 (2003)
15. Leymann, F.: Towards a pattern language for quantum algorithms. In: Feld, S.,

Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 218–230. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-14082-3 19

16. Montanaro, A.: Quantum algorithms: an overview. npj Quant. Inf. 2(1), 1–8 (2016)
17. National Academies of Sciences, Engineering, and Medicine and others: Quantum

computing: progress and prospects (2019)
18. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Phys.

Today. 54, 60 (2002)
19. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79

(2018)
20. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.:

Automatic generation of an efficient less-than oracle for quantum amplitude ampli-
fication (2023). https://doi.org/10.48550/ARXIV.2303.07120, https://arxiv.org/
abs/2303.07120

21. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.:
Some initial guidelines for building reusable quantum oracles (2023). https://doi.
org/10.48550/arXiv.2303.14959

22. da Silva, A.J., Park, D.K.: Linear-depth quantum circuits for multiqubit controlled
gates. Phys. Rev. A. 106, 042602 (2022). https://doi.org/10.1103/PhysRevA.106.
042602, https://link.aps.org/doi/10.1103/PhysRevA.106.042602

23. Qiskit, A., et al.: An open-source framework for quantum computing (2021).
https://doi.org/10.5281/zenodo.2573505

24. Zhao, J.: Quantum software engineering: Landscapes and horizons (2021). https://
doi.org/10.48550/ARXIV.2007.07047, https://arxiv.org/abs/2007.07047

https://doi.org/10.48550/ARXIV.QUANT-PH/9605043
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/1809.03842
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.48550/ARXIV.2303.07120
https://arxiv.org/abs/2303.07120
https://arxiv.org/abs/2303.07120
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.1103/PhysRevA.106.042602
https://doi.org/10.1103/PhysRevA.106.042602
https://link.aps.org/doi/10.1103/PhysRevA.106.042602
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/ARXIV.2007.07047
https://doi.org/10.48550/ARXIV.2007.07047
https://arxiv.org/abs/2007.07047

	Operating with Quantum Integers: An Efficient `Multiples of' Oracle
	1 Introduction
	2 Background
	3 Related Works
	4 Implementation of the `Multiples of' Oracle
	4.1 Mathematical Properties Inspiring the Oracle
	4.2 Algorithm for the `Multiples of' Oracle

	5 Simulations and Results
	5.1 Multiples of 3
	5.2 Multiples of 5
	5.3 Multiples of 14

	6 Complexity and Depth
	6.1 Classical Calculations Complexity
	6.2 Theoretical Analysis of Quantum Circuit Depth
	6.3 Empirical Measurement of Circuit Depth

	7 Composability and Further Uses
	7.1 Multiples and Less-Than Oracle
	7.2 Numbers with Any Remainder
	7.3 Numbers with Any Remainder and Range of Integers

	8 Conclusions
	References

