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Abstract. The emergence of Blockchain digital technology provides one
of the most prominent transaction mechanisms in an increasing variety
of digital and augmented environments. In the Blockchain habitat, inter-
actions among autonomous agents, called miners, form mining pools that
aggregate computational power in order to increase their possible gains.
A Pool game models mining pools that compete against each other in
order to improve their outcome by strategically committing their miners.
Current studies in Pool games make the assumption that pools have com-
plete and correct information about the situation. In this work we drop
this assumption, studying Pool games under various information envi-
ronments such as incomplete information and erroneous information.
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1 Introduction

Nowadays, the emergence of digital environments, automated procedures, and
big data have brought into light many intangible, crowd-sourcing, and sophis-
ticated digital transaction methodologies. One of the emerging attractive solu-
tions that provide security, accessibility, and privacy in big data systems is the
Blockchain, see [3]. It was proposed in [12] to serve as the main concept in the dig-
ital economy, providing transparent and secure transactions in distributed and
decentralized environments (for more details see [5]). Hence, Blockchain tech-
nology provides an appealing and applicable methodology for versatile practices
from Insurance and Commerce to the Internet of Things and Security.

In practice, a Blockchain is a distributed synchronized secure database con-
taining validated blocks of transactions. A block is validated by special nodes,
called miners, via the solution of a computationally demanding problem, called
the proof-of-work puzzle. The miners compete against each other and the first
one to solve the problem, provides a full proof of work, and announces it. The
block is then verified by a predefined agreement protocol called consensus. After
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the new block reaches the consensus, it is added to the distributed database,
and the miner that generated the block is rewarded according to the, commonly
and a priori known, protocol of the transaction.

In order to increase their outcome, miners form mining pools implemented by
a pool manager (see [10]), where all of them provide proof of work concurrently
and share their revenues accordingly. In this work, we focus on open pools that
allow any miner to join them. The utility of a pool is the total sum of the revenues
received by its miners. The information available to a pool includes the set of
its miners, a predefined protocol for the reward of newly generated blocks, and
the set of adversary pools.

As stated in [4], a miner may attack an adversary pool by providing par-
tial proof of work to its pool manager. The attacking miner shares the revenue
obtained in the pool but does not contribute, thus the utility of the attacked
pool deteriorates and becomes less attractive to other miners.

Therefore, pools may have incentives to commit miners attack and deliver
partial proof of work (called infiltration rate) to opponent pools in order to
improve their revenues, see [10]. Hence, the use of game-theoretical tools in the
Blockchain environment is a direct way to study, model and analyze these kinds
of interactions (see [1,4,11]).

In the literature, pools are aware of the number of miners at their disposal and
can estimate accurately the amount of attacking miners. Thus, they have com-
plete and correct information regarding the interaction with other pools. This is
a highly unrealistic scenario, as, in many situations, none of these assumptions
hold, due to the presence of side information, bounded rationality, computational
restrictions, etc. In this paper, we study the Pool game considering various infor-
mation environments as stated in the following subsection.

1.1 Contributions

A pool manager may experience several scenarios for modeling uncertainty or
erroneous beliefs with regards to the mining power (how many miners) or the
infiltration rate (how many attackers) of a pool. In order to cope with these
issues and provide a more realistic analysis of the Pool game setting, we plug in
the model of [4] incomplete and incorrect information, considering two cases.

First, we address the case where the pools have incomplete information
regarding the infiltration situation. In particular, the pools are not aware of
the size of the incoming attack. In Subsect. 4.1, we model this scenario using the
notion of Bayesian games as provided in [9], prove the convergence of revenues
and compute the equilibria of the Bayesian Pool game.

Second, in Subsect. 4.2, we consider the case where the pools have incorrect
information regarding the specifications of the interaction. More specifically, they
think they know the actual mining power of the pool and the accurate number
of incoming attacks. We model this scenario using the concept of misinformation
games as introduced in [16]. In order to cope with the iterative nature of the Pool
game, we apply the Adaptation Procedure, which was introduced in [14]. Hence,
the misinformed pools have the machinery to re-evaluate their information and
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adapt their decisions in the next round. We prove the convergence of the revenues
and compute the equilibria of the misinformed Pool game.

Another contribution of this work is about the convergence of the revenues
of the Pool games for the case of complete-correct information. Namely, in
Lemma 1, Theorem 1, and Corollary 1 we prove the convergence of the den-
sity revenues for non-constant infiltration rates, as opposed to Lemma 1 in [4].

Summarizing the various information scenarios, in the correct-complete case,
[4], the pools know their mining power and estimate correctly the infiltration
rates. In the setting of incomplete information, pools know their mining power
but assign probabilities in the infiltration rate. In the setting of incorrect infor-
mation, pools know incorrectly their mining power and the infiltration rates
they face. Throughout our analysis, we assume that all of the pools are of equal
capabilities and all miners are identical.

2 Related Work

Several studies cope with complete and correct information settings (e.g. [2,4]).
The Pool game is presented in detail in [4]. A different approach is introduced
in [2], where the authors provide allocation methodologies so that the miners
cooperate, and avoid the development of centralized pools. In the same spirit,
in [8,17] authors introduced models where the miners can either cooperate or
employ a block withholding attack in a pool. In [10] authors study the Pool game
model, in the complete-correct information environment, from the perspective
of system rewards and punishments and analyze the outcome of the interaction.
Further, in [7] authors study models, where miners play a complete-information
stochastic game from the perspective of miners. In this study, we focus on the
cases of incomplete and incorrect information.

In the context of Bayesian games, authors in [19] consider the case where a
user knows the distribution of others’ valuations, and focuses on truthful mecha-
nisms. In [18] authors propose a characterization of Blockchain protocols regard-
ing the rational and Byzantine behaviors. Furthermore, in [6] authors present
a probabilistic model based on the information propagating over a Blockchain
habitat (e.g. a Bitcoin network). They probabilistically identify the users initiat-
ing the transactions and do not implement their framework in the case of incom-
plete information. Authors in [15] plug in Bayesian game theory into Blockchain
transactions, and provide an auction model.

In summary, existing works that apply game theory in Blockchain environ-
ments with incomplete information, mainly focus on the development of sufficient
and robust mechanisms that regulate the situation, rather than on interactions
among pools. To the best of our knowledge, there are no works that deal with
the situation where pools experience subjective views of information.

3 Preliminaries

We consider a normal-form game G = 〈N,S,U〉 that consists of a set of players
N , a set S = S1 × . . . × S|N | of players’ joint decisions, where Si is player’s
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i set of pure strategies and a utility matrix U = (U1, . . . , U|N |), where Ui ∈
R

|S1|×...×|S|N|| is player’s i utility matrix.
A mixed strategy for player i that represents a probabilistic mixture of pure

strategies, is a tuple σi = (σi1, . . . , σi|Si|) where σij ≥ 0 and
∑

j σij = 1. Let
Σi be the set of all possible mixed strategies of player i. In a game with |N |
players, a strategy profile is an |N |-tuple σ = (σ1, . . . , σ|N |), σi ∈ Σi, and σ−i

is the strategy profile all but player i. Further, we will use the Forbenius norm
‖ · ‖ : Rn×m → R in Sect. 4.

The players’ behaviour in a normal-form game is predicted through the Nash
equilibrium:

Definition 1 (Nash equilibrium [13]). A strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
|N |)

is a Nash equilibrium, if and only if, for any i and for any σi ∈ Σi, fi(σ∗
i , σ∗

−i) ≥
fi(σi, σ

∗
−i), where fi is the utility function of player i, defined as fi : Σ → R,

such that:

fi(σi, σ−i) =
∑

k∈S1
· · ·

∑

j∈S|N|
Ui(k, . . . , j) · σ1,k · . . . · σ|N |,j , (1)

We denote a Nash equilibrium by ne and the set of nes in G by NE(G).

3.1 Incomplete Information

In classical game theory, incomplete information is addressed by Bayesian games.
A Bayesian normal-form game is defined as a tuple BG = 〈N,S,Θ, p, U〉, where
N,S are defined as previously. Θ = Θ1 × . . . × Θ|N | is the set of joint types
of players, p is a common prior distribution over the types, and U is the set of
utility functions, U = (U1, . . . , UN ), whereas Ui : (S × Θ)i → R.

A player’s type is private information and is used to make decisions and
update her beliefs about the likelihood of opponents’ types (using the conditional
probability p(θ−i|θi), where θi ∈ Θi). In this setting, a pure strategy is given
by a mapping from the type space to the strategy space, si : Θi → Si. In other
words, si maps every information type θi ∈ Θi that player i has to the pure
strategy that she could play in that type. As in the case of correct-complete
information, a mixed strategy σi is a probabilistic mixture of pure strategies.

Each player calculates her expected utility given that she knows her own
type but not the types of the opponents (ex-interim concept)1 by the following
formula,

E[Ui(σ, θi)] =
∑

θ−i∈Θ−i

p(θ−i|θi)E[Ui(σ, (θi, θ−i))], (2)

where θi is the type of player i.
Player i’s best response curve to strategy profile σ−i is given by BRi(σ−i) =

argmaxσi∈Σi
E[U(σi, σ−i)].

Definition 2 (Bayes-Nash equilibrium, [9]). A Bayes-Nash equilibrium is
a mixed-strategy profile σ such that σi ∈ BRi(σ−i),∀i ∈ N .
1 There are also the concepts of ex-post, and ex-ante utilities, see [9].
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Repeated Bayesian Games Consider a finite discrete time horizon T , with
T > 0. In our study we will analyze two cases: i) undiscounted utilities, and ii)
discounted utilities. In the first case, the utilities in BG are evaluated as limits of
arithmetic averages. In the latter case, we allow every player to evaluate her util-
ity sequence with a discount factor δ ∈ (0, 1). The utility formulas for both cases
are provided by Table 1. Further, the players’ types are intrinsic characteristics
and are fixed throughout the interaction.

Table 1. Utility formulas for the repeated Bayesian game.

case formula

Undiscounted 1
T

∑
t∈[T ] Ui(σ

t, θi) i ∈ [|N |], T > 0

Discounted (1 − δ)
∑

t∈[T ] δ
tUi(σ

t, θi)

3.2 Incorrect Information

Misinformation games were introduced in [16] and defined as a tuple mG = 〈G0

, G1, . . . , G|N |〉, where all Gi are normal-form games and G0 contains |N | players.
Further, G0 is called the actual game and represents the game that is actually
being played, whereas Gi (i ∈ N) represents the game that player i thinks that is
being played (called the game of player i). Moreover, no assumptions are made as
to the relation among G0 and Gis, thereby allowing all types of misinformation.

The outcome of a misinformation game is dictated by the equilibrium strategy
profiles that each player picks in her view.

Definition 3 (Natural misinformed equilibrium). A strategy profile σ∗ =
(σ∗,1

1 , . . . , σ
∗,|N |
|N | ) is a natural misinformed equilibrium, if and only if, for any i

and for any σ̂i ∈ Σi
i , f i

i (σ
∗,i
i , σ∗,i

−i) ≥ f i
i (σ̂i, σ

∗,i
−i), where f i is the utility function

of player i in the game Gi and defined as: f i
i : Σi → R, such that:

f i
i (σ

i
i , σ

i
−i) =

∑

k∈Si
1

· · ·
∑

j∈Si
|N|

U i
i (k, . . . , j) · σi

1,k · . . . · σi
|N |,j , (3)

Further, we denote by NME(mG) the set of nmes in mG. Observe that players
obtain the utilities provided by G0, and not the utilities they realise in Gis.

Evidently, the misinformed players may come across an outcome different
than the one they expect in their own game. In the case where the interaction is
iterative, the misinformed players update their information according to choices
they made, the choices their opponents have made, and the corresponding infor-
mation that the environment provides to them. This process is formalized by the
Adaptation Procedure that was introduced in [14]. More specifically, the Adap-
tation Procedure occurs in discrete time steps t ∈ N0 = N ∪ {0}. It starts at
t = 0 with the misinformation game mG. Then, at each time step t ≥ 0, the
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players choose a Nash strategy profile in their game, and new nmes are formed.
As the outcome and the respective utilities are announced, the players re-adjust
their choices and update their utilities according to the information they have
received. Formally, the Adaptation Procedure is provided by the following defi-
nition.

Definition 4 (Definition 4.4 in [14]). For a set M of misinformation games,
we set AD(M) = {mGu | mG ∈ M,u ∈ χ(σ), σ ∈ NME(mG)}. We define
as Adaptation Procedure of a set of misinformation games M to be the iterative
process such that:

{AD(0)(M ) = M

AD(t+1)(M ) = AD(t)(AD(M ))

for t ∈ N0.

where χ(σ) is the set of indices associated with the strategies in the support of
the strategy profile σ and mGu is the updated game. Namely, u provides the
position in the subjective utility matrices where the update takes place, and is
determined by the strategic choices of the players.

The Adaptation Procedure terminates (see Definition 4.5 in [14]), if there
exists a time point t ∈ N0 such that any further iterations do not provide new
information to the players, that is AD(t+1)(M) = AD(t)(M). Interestingly, the
nme where the players do not obtain new information is stable; this is called
stable misinformed equilibrium sme. We denote by SME(mG) the set of smes
in mG.

4 The Pool Game

We consider the case where a set of N pools, with a total of m miners, compete
with each other in order to maximize their outcome. This situation is introduced
in [4] as the Pool game. In particular, the pools try to maximize their revenue
density by optimizing their infiltration rates to the adversaries. As stated in [4],
the revenue density of pool i is the ratio between the average revenue that miner
v earns and the average revenue it would have earned as a solo miner. We denote
the revenue density of pool i at time step t by ri(t).

In this study, the interaction is evolved in discrete time steps, and the total
number of miners that each pool has in its disposal remains constant throughout
the game. Moreover, each pool can compare the rates of partial and full proofs of
work it receives from its miners, in order to find the rate of infiltrators attacking
it, see [4]. Also, it can compute the revenue rates of each of the other pools.
Initially, we restate the basic concepts of Pool games in the case where each
pool has correct and complete information about the infiltration rates and the
density revenue.

Let mi(t) be the total number of miners in the disposal of pool i, whereas
mii(t) is the number of miners pool i assigns to mine honestly in pool i, and
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mij(t) is the number of miners used by pool i to infiltrate pool j at time step
t (infiltration rate). Thus, in general, it holds mi(t) ≥ ∑

j mij(t). Clearly, in
each time step pool i mines with power mii(t), and shares its reward among
mi(t)+

∑
j∈[|N |]\{i} mji(t) members. For our analysis we use the following vector

that measures the direct mining revenue density,

u(t) =

(
m1(t) − ∑

j∈[|N |]\{1} m1j(t)

m1(t) +
∑

j∈[|N |]\{1} mj1(t)
, . . . ,

mN (t) − ∑
j∈[|N |]\{N} mNj(t)

mN (t) +
∑

j∈[|N |]\{N} mjN (t)

)T

Further, in time step t pool i gains revenue mij(t)rj(t − 1) through infiltrat-
ing pool j with mij(t) miners, and distributes it among members mi(t) +∑

j∈[|N |] mji(t). We construct the |N | × |N | infiltration matrix as follows

IR(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m11(t)
m1(t)+

∑
j mj1(t)

. . .
m1 |N|(t)

m1(t)+
∑

j mj1(t)

...
. . .

...

m|N|1(t)
m|N|(t)+

∑
j mj|N|(t)

. . .
m|N||N|(t)

m|N|(t)+
∑

j mj|N|(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

Plugin together the u(t) and IR(t) we end up with the density revenue vector
at time step t,

r(t) = u(t) + IR(t) · r(t − 1) with r(0) = u(0) (5)

Moreover, the direct mining rate, Ri(t), of pool i at time step t, is the number
of its miners, mi(t), minus the miners it uses for infiltration,

∑
j∈[|N |]\{i} mij(t),

and is divided by the total mining rate in the system, namely the number of all
miners apart from the perpetrators. So, we have the following formula

Ri(t) =
mi(t) − ∑

j∈[|N |]\{i} mij(t)

m − ∑
j∈[|N |]\{i}

∑
k∈[|N |]\{j} mjk(t)

(6)

Hence, for the revenue density of pool i we have

ri(t) =
Ri(t) +

∑
j∈[|N |]\{i} mij(t)rj(t)

mi(t) +
∑

j∈[|N |]\{i} mji(t)
(7)

with that we define the revenue density vector r(t) = (r1(t), . . . , rn(t))
T . In case

where |n| = 2, the infiltration rates are m12(t) and m21(t), and the formula (7)
takes the form

r1(m12(t),m21(t)) =
m22(t)R1(t) + m12(t)(R1(t) + R2(t))

m11(t)m22(t) + m11(t)m12(t) + m22(t)m21(t)
,

r2(m12(t),m21(t)) =
m11(t)R2(t) + m21(t)(R1(t) + R2(t))

m11(t)m22(t) + m11(t)m12(t) + m22(t)m21(t)

(8)
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with m11(t),m22(t) > 0 and m1(t) + m2(t) ≤ m. Further, each pool controls
only its own infiltration rate. In each round of the Pool game, each pool will
optimize its infiltration rate of the other. Clearly, an equilibrium exists where
neither Pool1 nor Pool2 can improve its revenue by changing its infiltration rate.

As stated in [4], the values of m12(t),m21(t) at the equilibrium can be com-
puted by solving the following system of first-order ordinary differential equa-
tions ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂r1(m12(t),m21(t))
∂m12(t)

= 0

∂r2(m12(t),m21(t))
∂m21(t)

= 0
(9)

In the rest of the analysis we assume that pool i has two pure strategies;
attack or to non-attack the adversary. The density revenue for the pure strategy
attack is ri, and for the pure strategy non-attack is r̃i. Hence the pure strategy
profiles are (attack, attack), (attack, non-attack), (non-attack, attack), and (non-
attack, non-attack). Moreover, from [4] we have the following ordering for the
density revenues of the pools

For Pool1 :

{
(attack, non − attack) > (non − attack, non − attack)

(attack, attack) > (non − attack, attack)

For Pool2 :

{
(non − attack, attack) > (non − attack, non − attack)

(attack, attack) > (attack, non − attack)

(10)

With this at hand we can produce the payoff matrix as provided in Table 2.

Table 2. Pool game with two pools, Fig. 9 in [4].

Pool1

Pool2 attack non-attack

attack (r1, r2) (r1, r̃2)

non-attack (r̃1, r2) (r̃1, r̃2)

Observe that the game provided by Table 2 is a Prisoner’s Dilemma, meaning
that (attack, attack) is a dominating pure strategy profile.

Moreover, in [4] it is proved that the pool revenues converge, in the case where
infiltration rates are constant. In the following we prove that the convergence of
density revenues holds for cases where the infiltration rates are not constant.

Lemma 1. Consider a Pool game with |N | pools, and mi(t), mij(t) non-zero
polynomials of equal degree d ∈ N with non-negative coefficients ∀i, j ∈ [|N |] and
∀t ∈ N. Then the pool density revenues converge.
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Proof. Let mi(t) =
∑

k∈[d] αi,ktk and mij(t) =
∑

k∈[d] βij,ktk, with αi,k, βij,k ≥ 0
∀i, j, k. Observe that the elements of the IR(t) are

(IR(t))ij =
mii(t)

mi(t) +
∑

j mji(t)
=

∑
k∈[d] βii,ktk

∑
k∈[d] αi,ktk +

∑
j

∑
k∈[d] βji,ktk

Hence taking the limit we have,

lim
t→+∞(IR(t))ij = lim

t→+∞

∑
k∈[d] βii,ktk−d

∑
k∈[d] αi,ktk−d +

∑
j

∑
k∈[d] βji,ktk−d

=
βii,d

αi,d +
∑

j βji,d

In the (IR(t))ij the denominator can not be equal to 0, as mi(t), mij(t) are
non-zero polynomials. Hence, on the limit the IR(t) has constant elements, then
using Lemma 1 in [4] we conclude. �
In the rest of the analysis, we consider mi(t) as non-negative and continuous
functions in time ∀i, and we have the following result

Theorem 1. Consider a Pool game with |N | pools, with bounded u(t), and IR(t)
such that ‖IR(t)‖ ≤ 1 ∀t ∈ N. Then the pool density revenues converges to u(t).

Proof. From the Eq. (5) we have

r(t) − u(t) =
t∑

k=1

(
k∏

d=1

IR(t − d)

)

u(t − k) (11)

Now, fix t and consider the sequences {αk}k∈[t] := m(t − k) and {βk}k∈[t] :=
∏k

d=1 IR(t − d). Observe that since ‖IR(t)‖ ≤ 1 we have ‖∏k−1
d=0 IR(t − d)‖ ≤

∏k−1
d=0 ‖IR(t−d)‖ → 0, as t, k → ∞ thus, βk → 02. Further, from the assumptions

the αk is a bounded sequence, so
∑

k αkβk → 03. But
∑

k αkβk → 0 is the right-
hand side of (11). Thus, we conclude. �
Theorem 1 provides a pointwise convergence of r(t) on u(t). Also, using Theo-
rem 1 we can deduce the following remark.

Corollary 1. Consider a Pool game with |N | pools, with a convergent u(t), and
IR(t) such that ‖IR(t)‖ ≤ 1 ∀t ∈ N. Then the pool density revenues converges.

Until now we present the case where every pool at any time step knows
the revenue density of all other pools rj(t − 1) and its total infiltration rate∑p

j=1 mji(t). In the following two Subsections we will drop these assumptions
and we mitigate the cases where the pools have i) some distribution over the
revenue densities, and ii) incorrect revenue densities. Interestingly, as the Pool
game is an iterative Prisoner’s Dilemma, then it has a dominant equilibrium
strategy profile. Thus, in the case where a mediator provides side information
to the pools, this will not affect their choices. In a nutshell, a correlation device
can not alter the outcome of the Pool game in Table 2 (Fig. 1).
2 It holds, limn→∞ An = 0 iff the spectral radius of the square matrix A is less than 1,

which holds as the spectral radius of a matrix is less or equal than the matrix norm.
3 Intuitively, we use the fact that if αk is bounded and if βk → 0, then

∑
k αkβk → 0.
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Fig. 1. Pool game with N = {Pool1, Pool2}.

4.1 Incomplete Information

From [4] we know that a pool can estimate the rates with which it is attacked.
Now, assume that the estimation has a level of uncertainty. E.g., at time t,
Pool2 estimates with probability p1 that Pool1 attacks her with the correct
infiltration rate m12(t) and with probability p2 that Pool1 attacks her with
infiltration rate m̂12(t), with p1 + p2 = 1. At the same time, the Pool1 does
not experience any uncertainty in her estimations, and believes that Pool2
attacks her with the correct infiltration rate m21(t). Hence, we have a Bayesian
game, where Pool1 has one type ΘPool1 = {θPool1,1} and Pool2 has two types
ΘPool2 = {θPool2,1, θPool2,2}. The density revenues r1, r2, r̃1, r̃2, r

′
1, r

′
2, r̂1, and r̂2

are compute via the formulas (6)–(8).

Table 3. Information types in Bayesian Pool game with two pools.

Pool1

Pool2 attack non-attack

attack (r1, r2) (r1, r̃2)

non-attack (r̃1, r2) (r̃1, r̃2)

(a) Types: θPool1,1, θPool2,1

Pool1

Pool2 attack non-attack

attack (r1, r′
2) (r1, r̂2)

non-attack (r̃1, r′
2) (r̃1, r̂2)

(b) Types: θPool1,1, θPool2,2

While the utility functions of the pools are given in Table 4.

Table 4. Utility functions uPool1 and uPool2 for the Bayesian Pool game from Table 3.

r c ΘPool1 ΘPool2 uPool1 uPool2

attack attack θPool1,1 θPool2,1 r1 r2

attack attack θPool1,1 θPool2,2 r′
1 r′

2

attack non-attack θPool1,1 θPool2,1 r̃1 r2

attack non-attack θPool1,1 θPool2,2 r′
1 r̂2

non-attack attack θPool1,1 θPool2,1 r̃1 r2

non-attack attack θPool1,1 θPool2,2 r̂1 r′
2

non-attack non-attack θPool1,1 θPool2,1 r̃1 r̃2

non-attack non-attack θPool1,1 θPool2,2 r̂1 r̂2
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Using the methodology provided in Subsect. 3.1 we construct the induced utility
matrix provided in Table 5.

Table 5. Induced utility matrix.

s1s1 s1s2 s2s1 s2s2

s1 (r1, p1r2 + p2r
′
2) (r1, p1r2 + p2r̂2) (r1, p1r̃2 + p2r2) (r1, p1r̃2 + p2r̂2)

s2 (r̃1, p1r2 + p2r
′
2) (r̃1, p1r2 + p2r̂2) (r̃1, p1r̃2 + p2r2) (r̃1, p1r̃2 + p2r̂2)

Next, we can compute the Bayes-Nash equilibria. Then given the finite horizon
of the repeated procedure we can derive the final utility for each one of the pools.

Corollary 2. Consider the Bayesian Pool game BG. If all the utility matrices
in the Information types in the BG have constant infiltration rates, then the pool
revenues converge.

For notational convention, let IRi(t) be the infiltration matrix, and ri(t) be the
revenues density, in the ith Information type. Then, the Lemma 1 and Theorem 1
can be transfused in the case of Bayesian Pool games. Namely,

Lemma 2. Consider a Bayesian Pool game BG with |N | pools. If for all Infor-
mation types i ∈ Θ in the BG, mi

j(t), mi
jk(t) are non-zero polynomials of equal

degree d ∈ N with non-negative coefficients ∀i, j ∈ [|N |] and ∀t ∈ N, then the
pool density revenues converge.

Proof. From Lemma 1 in each ri(t) and the distribution p over the Θs we have
that limt→∞ r(t) = limt→+∞

∑
i piri(t) that converges. �

Corollary 3. Consider a Bayesian Pool game BG with |N | pools. If for all
Information types i ∈ Θ in the BG, ui(t) converge, and IRi(t) are such that
‖IRi(t)‖ ≤ 1 ∀t ∈ N, then the pool revenues converge.

4.2 Incorrect Information

In the previous Subsection we presented the case where the pools experience
uncertainty over the density revenues. Now, assume that the pools have incorrect
information regarding the mining power and the density revenues. E.g., at time
t, Pool1 knows the Pool game in Table 6b and the Pool2 knows the Pool game
in Table 6c, whereas the actual situation captured by Table 6a. This is a case of
incorrect information and is described by the misinformed Pool game mG with
density revenues matrices as provided in Table 6.



Pool Games in Various Information Environments 95

Table 6. Misinformed Pool game.

s1 s2

s1 (r1, r2) (r1, r̃2)

s2 (r̃1, r2) (r̃1, r̃2)

(a) Actual Game

s1 s2

s1 (ṙ1, ṙ2) (ṙ1, r̂2)

s2 (r̂1, ṙ2) (r̃1, r̂2)

(b) Pool1 game

s1 s2

s1 (r̄1, r̄2) (r̄1, r̂′
2)

s2 (r̂′
1, r̄2) (r̃1, r̂′

2)

(c) Pool2 game

From the analysis of Sect. 4 at each time step each pool will solve independently
the system (9). Namely,

Pool1 :

⎧
⎪⎪⎨

⎪⎪⎩

∂ṙ1(m1
12(t),m

1
21(t))

∂m1
12(t)

= 0

∂ṙ2(m1
12(t),m

1
21(t))

∂m1
21(t)

= 0
, Pool2 :

⎧
⎪⎪⎨

⎪⎪⎩

∂r̂′
1(m

2
12(t),m

2
21(t))

∂m2
12(t)

= 0

∂r̂′
2(m

2
12(t),m

2
21(t))

∂m2
21(t)

= 0

(12)
Then the agglomeration of the solution m1

12(t), from the left system, and m2
21(t)

from the right system, will provide the nme. Given the nme, the Adaptation
Procedure will evaluate the information of the pools and then the procedure will
proceed to the next time step. Thus, the matrices as given in Table 7.

Table 7. Misinformed Pool game after the first step of the Adaptation Procedure.

s1 s2

s1 (r1, r2) (r1, r̃2)

s2 (r̃1, r2) (r̃1, r̃2)

(a) Actual Game

s1 s2

s1 (r1, r2) (ṙ1, r̃2)

s2 (r̂1, ṙ2) (r̃1, r̂2)

(b) Pool1 game

s1 s2

s1 (r1, r2) (r̄1, r̂′
2)

s2 (r̂′
1, r̄2) (r̃1, r̂′

2)

(c) Pool2 game

Since all the games in mG are Prisoner’s Dilemmas, the Adaptation proce-
dure will update the (attack − attack) joint decision according the utilities of
the actual game, and will provide AD(1)(M), that is the misinformed Pool game
for the t = 1. Observe, that the ordering between r1 and r̂1, r̂′

1, and r2 and r̃2,
r̂′
2 affects the progress of the Adaptation Procedure. Namely,

Corollary 4. Given the misinformation game in Table 6, if r1 > max{r̂1, r̂
′
1}

and r2 > max{r̂2, r̂
′
2} then AD(1)(M) = AD(0)(M), and the Adaptation Proce-

dure terminates in one step.

In case the Corollary 4 holds, the misinformed Pool game has a unique sme,
that is (attack, attack). On the other hand,

Lemma 3. Given the misinformation game in Table 6, if r1 < max{r̂1, r̂
′
1} or

r2 < max{r̂2, r̂
′
2} then the Adaptation Procedure terminates at most in |S| steps.

Proof. From Proposition 4.11 in [14] we have that the Adaptation Procedure in
the misinformed Pool game Table 6 is finite. It is easy to see that at most the
Adaptation Procedure will update the total number of the joint pure strategies
of the misinformed game, that is |S|. �
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In case where the Adaptation Procedure updates all the joint pure strategies
of the subjective Pool games, then we end up with a unique sme, that is
(attack, attack). In any intermediate situation where the Adaptation Procedure
terminates in time steps either t = 2 or t = 3, we need more information in order
to conclude about the smes.

Next, we have the following results regarding the convergence of the density
revenues. We start with the case where the infiltration rates are constant in all
games in the misinformation game.

Lemma 4. Consider the finite misinformation Pool game mG with constant
infiltration rates for all Gis and G0, then the pool density revenues converge.

Proof. From the Corollary 4 and Lemma 3 the Adaptation Procedure terminates.
Then, from Lemma 1 in [4] we conclude. �


Abusing notation, we denote as u0, ui the direct mining revenue densities,
and m0

ij , mi
ij are the infiltration rates in the actual game G0 and in the Gi

respectively.

Lemma 5. Consider the finite misinformation Pool game mG, then if mi
j(t),

mi
jk(t) are non-zero polynomials of equal degree d ∈ N with non-negative coeffi-

cients ∀i, j ∈ [|N |] and ∀t ∈ N, then the pool density revenues converge. �
Proof. Using Lemma 1 for each Gi we have that each ri(t) converges. Further,
from Lemma 3 the Adaptation Procedure for mG terminates in finite time, thus
the revenue densities converge for the mG.

Lemma 6. Consider the finite misinformation Pool game mG, ui(t) are
bounded, and IRi(t) are such that ‖IRi(t)‖ ≤ 1 ∀t ∈ N, then the pool revenues
converge.

Proof. Using Theorem 1 for each Gi we have that each ri(t) converges. Further,
from Lemma 3 the Adaptation Procedure for mG terminates in finite time, thus
the revenue densities converge for the mG. �

Interestingly, we can attain convergence of the density revenues of the mG
in the case where the subjective games Gi have general infiltration rates. This
is provided by te following result.

Corollary 5. Consider the finite misinformation Pool game mG, such that
u0(t) > ui(t), ∀i ∈ [|N |] and the Adaptation Procedure terminates after |S|
steps. If one of the following holds
– the infiltration rates of the G0 are constant
– the m0

i (t), and m0
ij(t) are non-zero polynomials with non-negative coefficients

of equal degree ∀i ∈ [|N |]
– ∀t the u0(t) converges and ‖IR0(t)‖ ≤ 1

Then the density revenues for the mG converge.

In the case where the assumptions of the Corollary 5 hold then SME(mG) =
{σ| σ := (σ1, . . . , σ|N |), σi ∈ nej for some nej ∈ NE(G0)}. In other words, the
sme’s of the mG are all the combinations of the Nash equilibria strategy profiles
of the pools in G0.
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5 Numerical Experiments

The theoretical results of Sect. 4 cope with the Pool game in various information
environments. Here, we empirically demonstrate the evolution of the density
revenues of the Pool game, as provided by the equation r∗(t) = u∗(t) + IR∗(t) ·
r∗(t − 1) analyzed in Sect. 44, considering the cases of i) complete and correct
information, ii) incomplete information, and iii) incorrect information. In what
follows T = 1000, the number of pools is |N | = 2, where each one starts with
100 miners. As shown in Table 8 the number of miners does not remain constant.
Further, we take r(0) = (m∗

12(0),m
∗
21(0))

T for all cases.
To demonstrate our numerical results we use the functions provided in

Table 8. More specifically, we use linear functions (second column) to study the
case where pools attract miners that increase proportionally in time. Second,
we pick cubic functions (third column) as they are "relatively simple" polyno-
mial functions that experience critical points. Apparently, the properties of the
functions affect the behavior of the pools.

Table 8. Polynomial functions for m(t)s.

Figs. 2a, 3a, 3b, 4a, 4b Figs. 2b, 3c, 3d, 4c, 4d

m1(t) 200t + 100 6t3 + 10t2 + 4t + 100

m11(t) 110t + (100 − m12(0)) 5t3 + 7t2 + t + (100 − m12(0))

m12(t) 40t + m12(0) 4t3 + 2t2 + 2t + m12(0)

m2(t) 156t + 100 8t3 + 9t2 + 4t + 100

m21(t) 20t + m21(0) 3t3 + 3t2 + 2t + m21(0)

m22(t) 91t + (100 − m21(0)) 4t3 + 5t2 + t + (100 − m21(0))

Complete - Correct Information. In this case, the pools have complete and
correct information regarding the Pool game. In Figs. 2a, 2b we compute the
density revenues with initial values m11(0) = 60, m12(0) = 40, m21(0) = 10,
and m22(0) = 90. Further, the density revenue functions for the case where the
m(t)s are provided by Table 8.

Incomplete Information. For the case of incomplete information we provide
experiments both for the undiscounted and the discounted cases, as they were
presented in Subsect. 3.1, whereas we compute the density rates, using the set-
tings in Table 9. In Figs. 3 are shown both the undiscounted (Figs. 3a, 3c) and
the discounted cases (Figs. 3b, 3d). Further, in Figs. 3a, 3b, 3c, and 3d the m(t)s
are polynomial functions and are provided by Table 8. Clearly, the numerical
results are inline with Lemma 2, and Corollaries 2, and 3.

4 The asterisk refers to the different information environments.
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Fig. 2. Realisations for the density revenues for the complete-correct information envi-
ronment.

Table 9. Initial infiltration rates, distribution over Information sets, and δ.

Case m11(0) m12(0) m21(0) m22(0) p δ

Undiscounted 90 10 30 70 .4 -
60 40 40 60 .6

Discounted 90 10 30 70 .4 .8

60 40 40 60 .6

Fig. 3. Realisations for the density revenues regarding incomplete information envi-
ronment, see Table 9.
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Incorrect Information. The pools have subjective views regarding the Pool
game. This case is analysed using misinformation games, as presented in Sub-
sect. 3.2 for the values of Table 10. The asterisk in Table 10 simply implies that
these values are according to the game in the second column.

In Figs. 4a–4d we compute the density revenues as provided by the equations
(12), using polynomial infiltration rates, see Figs. 4a, 4b, 4c, and 4d. Since all the
actual and the subjective Pool games are in the class of Prisoners’ Dilemma the
misinformed Pool game has a unique nme. So, the Adaptation procedure will
terminate in one step. Observe that eventually, the density revenues converge to
the values close to the density revenues in the case of complete-correct informa-
tion. This happens because m(t)s are increasing functions and masking the effect
of the update. Thus, the structure of m(t)s can tune the effect of misinformation.
Finally, the numerical results are in line with Lemmas 4, 5, and 6.

Table 10. Initial infiltration rates for a misinformed Pool game.

Game m11(0) m12(0) m21(0) m22(0)

Actual 60 40 20 80

GPool1 70 30 20 80

GPool2 90 10 40 60

Fig. 4. Realisations for the density revenues regarding the settings that presented in
Table 10, for the incorrect information environment.
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As a general remark, m(t)s influence the density revenues. In cases where
r(t) attain a critical point, the pools may have incentives to stop/continue the
interaction. For example, in Fig. 2b the pools attain the maximum density rev-
enues early in time. On the other hand, in Fig. 3b the pools attain the minimum
density revenues early and then they recover. As a result, the pools can exploit
the properties of m(t)s for their benefit.

6 Conclusions

In this paper, we transfuse and study the Pool game model, which was intro-
duced in [4], under different information environments. In particular, we consider
the cases where the pools i) experience uncertainty, and ii) have erroneous infor-
mation regarding the interaction. We provide theoretical results regarding the
convergence of the density revenues in all cases, and we generalize the conver-
gence results in [4]. In parallel, we demonstrate experimentally the theoretical
results in all the aforementioned information environments.

Our analysis provides several insights regarding the behavior of the pools.
First, we show experimentally, for all information environments, that the behav-
ior of the pools is affected severely by the formulas of infiltration rates. In that
direction, if the formulas are linear then we can expect the Pool game to con-
verge quicker compared to the case of cubic formulas. Second in case of incorrect
information the pools are not necessarily to understand the actual interaction
in order to converge.

As the Blockchain framework is becoming more and more involved in versatile
and demanding activities is of paramount importance to study and analyze it
in more realistic environments. With this work, we make a first step in this
direction. To that end, some future directions are to study protocols other than
withholding attacks, to develop a mechanism that regulates the efficiency of a
Pool game, and to measure the inefficiency of the Pool game due to uncertainty,
and misinformation.
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