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Abstract. Despite software industries’ successful utilization of Service-
Oriented Computing (SOC) to streamline software development,
machine learning (ML) development has yet to fully integrate these prac-
tices. This disparity can be attributed to multiple factors, such as the
unique challenges inherent to ML development and the absence of a uni-
fied framework for incorporating services into this process. In this paper,
we shed light on the disparities between services-oriented computing
and machine learning development. We propose “Everything as a Mod-
ule” (XaaM), a framework designed to encapsulate every ML artifacts
including models, code, data, and configurations as individual modules,
to bridge this gap. We propose a set of additional steps that need to be
taken to empower machine learning development using services-oriented
computing via an architecture that facilitates efficient management and
orchestration of complex ML systems. By leveraging the best practices
of services-oriented computing, we believe that machine learning devel-
opment can achieve a higher level of maturity, improve the efficiency
of the development process, and ultimately, facilitate the more effective
creation of machine learning applications.

Keywords: Machine Learning Lifecycle · MLOps · Service-Oriented
Computing · Adaptive Data Processing · ML Pipelines

1 Introduction

Machine learning (ML) has emerged as a powerful tool for solving complex prob-
lems across various domains, leading to a growing demand for production-grade
ML applications. With the increasing importance of ML in various industries, the
need for efficient and scalable ML development has become more pronounced.
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However, despite the rapid advancements in ML techniques and tools, the devel-
opment of production-grade ML systems still faces several challenges that hinder
its alignment with best practices in software development [25].

In recent years, the software industry has successfully embraced service-
oriented computing (SOC) and DevOps (“Development Operations” to automate
software development process), which has significantly improved software devel-
opment processes, enabling better modularity, flexibility, and maintainability
[31]. However, ML development has not yet fully adopted these best practices,
resulting in a gap between service-oriented computing and ML development [1].

DevOps is a cross-departmental and collaborative endeavor within an organi-
zation, aiming to simplify the continuous delivery of new software releases while
upholding their integrity and trustworthiness [26]. In service-oriented comput-
ing, DevOps is a cultural shift and set of practices for enhancing collabora-
tion between development and operations teams. This approach accelerates the
development life cycle for efficient, continuous software service delivery. DevOps
incorporates Agile principles, e.g., continuous integration, deployment, and auto-
mated testing, which are critical in service-oriented computing for integration
and constant service availability. Moreover, DevOps encourages improved com-
munication and collaboration across service production and maintenance teams.

MLOps (Machine Learning Operations) can be considered an extension
of DevOps. It applies the principles and practices of DevOps to the specific
challenges and requirements of machine learning development. This includes
the development, deployment, and lifecycle management of ML models, while
addressing the complexities inherent in data-driven machine learning.

Challenges in MLOps stem from the unique nature of machine learning mod-
els. For instance, they may degrade over time as data drifts occur, requiring
constant monitoring and frequent retraining. Another challenge is managing the
lifecycle of a machine learning model, which includes stages like data collection,
model training, validation, deployment, and continuous monitoring. Moreover,
another common challenge is the reproducibility of ML models due to varia-
tions in data, code, configuration, or environment, which can lead to incon-
sistencies in model performance. MLOps aims to address these challenges by
providing a robust framework for managing the ML lifecycle, similar to how
DevOps manages the software development lifecycle. It incorporates practices
like versioning of datasets and ML models, automated testing, and continuous
integration/continuous delivery (CI/CD) for machine learning models to ensure
their reliability and performance over time.

In this paper, we investigate the best practices in service-oriented computing
and DevOps and identify the gaps between these practices and machine learning
development and MLOps. Inspired by Anything as a Service (XaaS), we propose
our “Everything as a Module” (XaaM) vision, an enabler of MLOps practices and
a comprehensive solution for bridging these gaps. In this vision, we encapsulate
every machine learning artifact such as model, code, data, and configurations as
a module. XaaM is specifically introduced to differentiate between conventional
web services and machine learning services, while also catering to the machine
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learning community’s preference for the term “Module”. However, XaaM is dif-
ferent from XaaS which is a business and delivery model that provides various
types of services over the Internet. These services could range from Infrastructure
(IaaS), Platform (PaaS), to Software (SaaS), and beyond.

The contributions of this research, reflecting our vision, are as follows. First,
we present the concept of two levels of modularity, elaborating on the definition
of modules, while addressing polymorphism. We then describe our approach to
composing complex modules from atomic ones. We also highlight the importance
of module versioning for experiment tracking in machine learning applications,
with the aim of achieving maximum observability. Here, our intention is to create
a system where every artifact is trackable throughout the development process,
a goal we strive to achieve through the introduction of module lineage.

Subsequently, we venture into the challenge of monitoring machine learning
applications, providing our perspective on managing the lifecycle of modules.
This is realized by proposing Adaptive Module Selection and What-if Scenarios.
The former aspires to select the most effective module at any given time, while
the latter is akin to automatic testing to facilitate improved module evaluation.

This work encapsulates our vision to enhance machine learning development
by leveraging the best practices from service-oriented computing, thereby lead-
ing to the creation of more robust, efficient, and scalable ML systems. While we
anticipate benefits such as improved development efficiency, increased scalability
and adaptability of ML applications, and more effective creation of production-
grade ML systems, these outcomes depend on a successful implementation of
our proposals. One of the motivational goals of our vision is fostering interde-
partmental communication and collaboration by advocating a modular design.
Note that our work presents a blueprint towards a desired state, not a fully
functioning system. We aim to advance machine learning development practices
and encourage more widespread use of service-oriented computing in this field.

The rest of this paper is structured as follows: Sect. 2 offers background for a
better understanding of service-oriented computing and machine learning devel-
opment. Section 3 presents a review of related work. Section 4 identifies the gaps
that exist in various aspects and proposes solutions to bridge them. Finally,
Sect. 5 presents our conclusions.

2 Background

2.1 Service-Oriented Computing

Service-Oriented Computing (SOC) is a distributed computing paradigm that
utilizes services as building blocks for applications [31]. These services are often
realized as web services or microservices which can be described, published,
located, and invoked over a network. This paradigm promotes interoperability,
integration, and simplifies large-scale system development, reducing complexity
via service reuse and advancing business agility and innovation.

In technical terms, these services are commonly encapsulated within contain-
ers, such as Docker, to ensure their isolation and to simplify their deployment and
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scaling. Management and orchestration of these containers can be achieved using
technologies like Kubernetes, which enables automated deployment, scaling, and
management, effectively distributing and coordinating containers across a clus-
ter of machines [8]. Communication among these services, vital for orchestrating
complex business processes, leverages protocols like HTTP/REST or gRPC for
synchronous, and message brokers for asynchronous communication.

2.2 Machine Learning Development

Drawing from literature [37,41], we synthesize the common elements into a gener-
alized workflow of lifecycle of Artificial Intelligence/Machine Learning (AI/ML)
applications depicted in Fig. 1.

Fig. 1. Coarse-grained AI/ML application life-cycle illustrating the stages and their
corresponding actors.

The AI/ML lifecycle encompasses five interrelated stages. First, during the
business requirement stage, stakeholders collaborate with the AI/ML team to
define the problem, objectives, and project scope. Second, the data prepara-
tion stage entails acquiring, cleaning, preprocessing, and transforming data for
model training and evaluation. Third, the AI/ML development stage focuses
on designing, implementing, and validating machine learning models. Fourth,
the application deployment stage integrates models into an application, ensuring
its stability, performance, and security in an operational environment. Finally,
the monitoring stage involves tracking the application’s performance, identifying
issues, and gathering insights for continuous improvement.

AI/ML development diverges from traditional software development, primar-
ily due to its data-driven nature. It involves iteratively constructing probabilistic
models that learn patterns from data, a process that requires extensive experi-
mentation and monitoring. Teams often explore various model architectures and
algorithms before settling on a solution. Moreover, decisions are data-driven,
emphasizing the quality of the data used for model training. Evaluating a learn-
ing model is a complex task, as its performance is tightly coupled with the
data. Thus, teams must conduct extensive training and testing on both small
and large datasets that closely resemble production data, necessitating a scalable
underlying platform. Throughout this process, monitoring and experiment track-
ing become critical to compare different models, observe their performance over
time, and ensure reproducibility. The latter means that running the same model
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with the same data should ideally yield the same results, despite the inherent
probabilistic nature of ML models. This iterative, monitored, and reproducible
process ensures that the AI/ML solution generalizes well to new, unseen data
and effectively addresses the defined business requirements.

3 Related Work

This section focuses on MLOps and the study of solutions founded on the prin-
ciples of service-oriented computing for machine learning. For convenience and
cohesion, we discuss other relevant subjects in their sections. Our dual goal is to
highlight the differences between ML development and SOC, and to centralize
related content for easy access and reference.

MLOps is an emerging paradigm, merging machine learning and tradi-
tional software development using DevOps principles. It focuses on automating
machine learning development, deployment, and monitoring to boost efficiency
and shorten time to market [37]. Testi et al. [41] respond to the fragmented
state of MLOps literature by proposing a cohesive taxonomy and standardized
methodology for MLOps projects. Several studies address MLOps challenges and
solution to facilitate this integration.

Symeonidis et al. [40] delve into the complexities of Machine Learning Oper-
ations (MLOps), highlighting challenges like efficient pipeline creation, continual
model re-training, comprehensive monitoring, and data manipulation. They dis-
cuss tools for data preprocessing, modeling, and operationalization, highlighting
AutoML’s potential to automate and simplify the machine learning process.
Granlund et al. [18] discuss AI/ML operations’ integration challenges, focus-
ing on complexities of data consolidation, shared ML model development, and
cross-organizational system performance monitoring. They also discuss the scal-
ing challenge related to managing data from multiple entities, developing per-
sonalized models, and providing tailored monitoring options in a large, multi-
organizational setting. Zhou et al. [44] use existing CI/CD tools and Kubeflow to
illuminate potential performance bottlenecks like GPU utilization. Their analy-
sis of time and resource consumption in ML pipelines offers a practical guide for
efficient ML pipeline platform construction.

Another interesting area is applying microservices architecture in ML devel-
opment [10]. Microservices enable the modularization of ML components, allow-
ing for more flexible development and deployment of ML applications. This
method also encourages reusability of components, significantly saving devel-
opment time and effort. Several studies cover machine-learning use for service-
oriented computing, but few investigated the integration of machine learning
models into service-oriented architectures. Fantinato et al. [15] review the mutual
enhancement of service-oriented architecture (SOA) and deep learning. They
detail how deep learning aids SOA solutions using web service data and how SOA
enables flexible, reusable infrastructures for deep learning. Their study highlights
the potential of this synergy for various environments and users, shedding light
on these technologies’ evolution. Briese et al. [7] propose a service-oriented archi-
tecture for rapid deployment of deep learning in reverse logistics, addressing the
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problem of uninterpretable markers. Their method allows using ever-expanding,
initially small datasets, reducing digitization and labeling costs and time.

Mboweni et al. [28] extensively studied MLOps literature to identify the state-
of-the-art and gaps in understanding. Despite abundant literature, their review
uncovers a lack of standardization and a shared vision on implementing MLOps
across industries, showing a need for further research in this area. While these
works offer insights into applying service-oriented computing in machine learn-
ing development, they often concentrate on specifics like MLOps or microser-
vices, rather than a holistic vision for enhancing machine learning development
using service-oriented computing principles. In this paper, we aim to broaden
the perspective on this topic, discussing a variety of techniques to bridge the gap
between machine learning development and service-oriented computing.

4 Methods

In this section, we examine various aspects of software development and identify
existing gaps, using service-oriented computing as a reference point. We begin by
introducing our perspective of modules and explaining module composition since
these components form the fundamental pillars of our vision. Prior to delving
into other constituent components, we present an overarching overview of our
system. Subsequently, we explain each component in a more intricate manner.

4.1 Modularity by Design

Modularity by design refers to an approach that emphasizes the creation of
smaller, independent, and interchangeable services. These services can be assem-
bled, rearranged, or replaced without affecting the overall system’s functionality.
The primary advantages of modular design include increased flexibility, reusabil-
ity, maintainability, and scalability.

In our research, we distinguish between two levels of modularity within
the context of machine learning applications: 1) Algorithmic Modularity and
2) Architectural Modularity. This classification highlights different aspects of
machine learning applications, ranging from programming and code-level details
to larger-scale system architecture and deployment considerations.

Algorithmic Modularity pertains to the utilization of programming lan-
guages or frameworks for the development of machine learning applications. Data
scientists often employ frameworks such as Scikit-learn1 or PyTorch2 to facili-
tate various stages of their ML applications, including data preprocessing, scal-
ing, modeling, and evaluation. Leveraging these frameworks enables the effective
modularization of ML applications and accelerates the development process.

Architectural Modularity, on the other hand, involves packaging each
stage into distinct services and deploying these services into appropriate envi-
ronments, such as production. This modularity offers greater flexibility, improved
1 https://scikit-learn.org/.
2 https://pytorch.org/.

https://scikit-learn.org/
https://pytorch.org/
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maintainability, and enhanced scalability, ensuring that the ML application
remains adaptable to changing requirements and emerging technologies.

Due to the wealth of available frameworks in machine learning development,
algorithmic modularity is well-established. AI/ML teams generally concentrate
on the primary purpose of their applications and wish to avoid unnecessary
complexities, such as packaging (e.g., containerization) or deployment [29]. They
often create monolithic applications that may be deployed using services but
remain monolithic by design, failing to exploit modularity’s full potential.

As architectural modularity is less widespread, our primary goal is to promote
its adoption and increase its prevalence in the field. Architectural modularity
provides numerous benefits, including enhanced maintainability, scalability, and
adaptability to changing requirements. By advocating for its adoption, we aim
to facilitate the development of more robust and flexible ML applications.

In addition to the applicability, our proposed solution must be both user-
friendly and easy to understand to ensure its acceptance within the community.
Our approach aims to facilitate the seamless integration of services, promote
efficient collaboration between different teams, and simplify the development
process. To achieve this, we define modules as a higher abstraction of services
with two main components rooted in the concept of polymorphism: Module
Definition and Module Implementation. These components ensure applicability
and enhance understandability by providing a clear separation between high-
level and low-level information of a module.

Module Definition involves creating a general and unified interface for
modules, similar to APIs for services. These interfaces facilitate communication
among team members and between different teams, ensuring everyone has a clear
understanding of each module, e.g. what are its purpose, inputs, and outputs.
The clarity of module definition enables a better division of responsibilities. For
instance, a clear module definition allows AI/ML teams to focus on the internal
logic of modules, while DevOps teams handle packaging and deployment.

Module Implementation refers to the process of putting a module defini-
tion into practice, much like how concrete classes in object-oriented programming
languages implement abstract classes. This method permits multiple implemen-
tations of a single module definition, fostering reusability and polymorphism
within the system. Importantly, a module implementation can be composed of
multiple smaller modules.

Throughout the remainder of this paper, we will use the term “module” to
refer to services in the context of our research. Specifically, we will focus on
machine learning services that are designed, implemented, and maintained using
MLOps best practices, as well as the solutions we propose. We selected the
term “module” due to its common usage in the machine learning field, where it
denotes a self-contained and coherent unit of work that shares similarities with
the concept of a service.

In essence, any combination of a module definition and module implementa-
tion forms a module, as illustrated in Fig. 3a. It is important to note that the
definitions and implementations of the modules are loosely coupled. If a mod-
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ule implementation fulfills a module definition, they can be combined to create
a module. Consequently, a single module definition may be satisfied by multi-
ple implementations, and a module implementation may satisfy more than one
definition. This flexibility is a significant advantage of our approach.

Modules that share the same module definition are considered equivalent, as
they achieve the same objective. However, it is essential to acknowledge that
equivalent modules may display different performances when handling the same
tasks due to the variability in their implementations.

To illustrate, let us consider an example of a module definition and two
module implementations. Imagine a module definition called “Scaler” where the
input is a matrix of numeric data with shape (n-samples, n-features), and the
output is a standardized version of this matrix with the same shape. The first
implementation, “StandardScaler”, standardizes the input features to have zero
mean and unit variance. The second implementation, “MinMaxScaler” Rescales
the input features to a specified range (usually [0, 1]). Although both implemen-
tations are scaling the input features, their output has a different distribution.

We propose a new concept called Everything as a Module (XaaM), which
presents a general unified interface that facilitates the encapsulation of diverse
components in an ML system, including executable codes, ML pipelines, and
datasets. Figure 2 offers a demonstrative example of XaaM for the training and
inference stages of an ML application, where each artifact is considered a module.

Using various implementations, XaaM enhances the modularity and flexibil-
ity of AI/ML applications, ultimately advancing the state-of-the-art and advanc-
ing innovation in the field.

ML Code Output Data

Input Data

ML Code

Training Data

ML ModelTraining
Configurations

Training InferenceInference
Configurations

Fig. 2. An example XaaM demonstration for training and inference

4.2 Module Composition

Module composition is the process of combining simpler modules to form a more
complex one, enabling developers to break down intricate systems into manage-
able components. Our goal is to create modular and adaptable modules that can
be easily adjusted and extended to meet evolving requirements. Similar to Web
Service Composition [3], we define two module types:
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– Atomic Module: A self-contained module independent of other modules,
such as a Docker container.

– Composite Module: A module composed of multiple atomic or compos-
ite modules, like a data processing pipeline consisting of Scaler and Model
modules, as shown in Fig. 3c.

a) Module Template b) Registry c) example composite module

Module Implementations

Classifier

Pipeline

K-Nearest

Neighbors

Support

Vector

Machine

MinMax

Scaler
Normalizer

Standard

Scaler

Module Definitions

ScalerNumeric
Classifier Classifier

Module

Definition

Implementation

Customer Segmentation

Numeric Classifier

Classifier Pipeline

Preprocessing

Scaler

Standard

Scaler

Model

Classifier

Support

Vector

Machine

Fig. 3. Module Composition Example: a) Module template, b) Sample registry, c) A
composite module from registry elements, adhering to the given template.

Our framework houses module definitions and implementations in a registry
(Fig. 3b). A composite module is represented by a graph topology, which details
the included modules and their connections. Both atomic and composite modules
share consistent definitions, enabling polymorphism and module reuse. Topology
structures can adopt any form, unlike works that enforce sequential steps [43] or
Directed Acyclic Graph (DAG) [5] structure.

To create a composite module adhering to a desired definition, developers
outline constituent module definitions and connections, choose suitable imple-
mentations, and align the resulting composite implementation with the desired
module definition. Architectural modularity allows seamless alteration of module
implementations without code changes or complex procedures.

We can conduct operational and behavioral verifications with well-defined
module structures. Operational verification confirms the pipeline’s correctness,
while behavioral verification assesses whether the composite module produces
the expected output. The former relies on module implementations, and the
latter depends on module definitions.

We propose two automation stages for module composition: 1) Topology
Creation and 2) Implementation Selection. The first stage generates a topology
using modules from the registry or creating missing module definitions. The sec-
ond stage selects appropriate implementations for each definition, ensuring that
the chosen implementations can interact effectively and process data efficiently.

Module composition in machine learning development differs from service
composition due to its probabilistic nature. Performance cannot be guaranteed
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through testing on available data alone, but we can use historical data and
feedback to make informed decisions during module composition.

There are several techniques available for the automation of machine learn-
ing application creation, such as AutoAI [9] and AutoML [19]. While these
approaches hold significant promise, they are not without their challenges, as
identified by Elshawi et al. [14]. In our work, we aim to address several of
these challenges, including Composability, Scalability, and Continuous delivery
pipeline.

One of the primary challenges with existing AutoAI and AutoML approaches
is their lack of generality and flexibility, particularly with respect to composabil-
ity. These approaches often lack the ability to incorporate custom components
or allow users to tweak the generated machine learning pipeline. Our approach
aims to address this limitation by providing a fully automated solution that is
still general enough to allow users to be involved in various formats. For instance,
users can define certain parts of a composite module and let the system fill in
the rest, allowing for greater flexibility and customizability.

In addition to addressing the issue of composability, we also seek to tackle
challenges related to scalability, which can be especially problematic for large
real datasets. To overcome this challenge, we plan to utilize techniques such as
meta-learning to learn from previous runs and gradually improve the composite
module’s performance. This aligns with our goal of establishing a continuous
delivery pipeline for machine learning applications, enabling us to deliver more
effective solutions to end-users while improving overall efficiency and scalability.

In summary, our approach to module composition provides greater compos-
ability, flexibility, and scalability, allowing for more customized and adaptable
machine learning pipelines. By leveraging historical data and feedback, we can
make more informed decisions during module composition, which contributes to
the continuous improvement of the composite module’s performance. Ultimately,
our approach allows for the development of more effective machine learning appli-
cations while reducing development time and costs.

4.3 Proposed Architecture

We propose a simplified layered architecture that serves as an overview of the
implementation of our vision illustrated in Fig. 4. The ultimate goal is to enable
users to define module definitions and the system takes care of the rest includ-
ing automatically associating it with proper implementations and deploying the
modules. In this section, we will explore the different components of the proposed
architecture and their interactions.

The version control component is the entry point to the system where users
can add module definitions and module implementations to the registry. A proper
versioning mechanism enables observability, extensive experiment tracking, and
module lineage. In particular, it is essential for other components such as moni-
toring and adaptive module selection to fully operate. Therefore, to avoid over-
complicating other components’ mechanisms, we propose a unified versioning
mechanism for every module.
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WHAT-IF

Version Control CICD

Monitoring Adaptive Module
Selection

Automatic Module
Composion

Adaptive Rruntime Controller

Scalable Computing Cluster

User

Life cycle
Management

Orchestration

Infrastructure

Fig. 4. A layered architecture implements the XaaM vision, with items in each layer
interacting only with adjacent layer items.

From this point the Continuous Integration and Continuous Deployment
(CI/CD) pipeline is responsible for managing the automatic workflow of deliver-
ing module definitions from the registry to an environment among other respon-
sibilities. This pipeline invokes the automatic module composition and selection
components in order to complete modules by selecting or generating module
implementations for the module definitions while testing different scenarios via
the What-If component. Finally, it invokes the adaptive runtime controller for
deploying the module on the underlying infrastructure.

The automatic module composition process creates placeholders for module
implementations and leverages adaptive module selection to fill them at design
time. This process may involve multiple iterations if a valid selection is not found.
If no solution is found, the automatic module composition returns an incomplete
module to the user, identifying the missing implementations.

Once a module is ready, meaning that at least one module implementation
satisfies the module definition, it is submitted to the adaptive runtime controller
for deployment in the cluster. Users can also define monitoring modules and
bind them to other modules, such as inference modules. One of the key features
of our platform and the XaaM vision is the ability to have monitoring modules
that monitor other monitoring modules within the cluster.

The what-if component is responsible for generating scenarios for various
purposes, such as testing and interpretability. It submits these scenarios to the
adaptive runtime controller, which runs them in separate environments to avoid
interference with production systems.

Monitoring modules collect data on the performance of other modules and
store it in a standardized format for multiple purposes, such as visualization in a
graphical interface. The adaptive module selection component actively checks the
monitoring data and updates the module implementations accordingly to satisfy
the requirement that may come from the user or a downstream module. This
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comprehensive monitoring system ensures that the platform remains efficient,
adaptive, and responsive to changing requirements and conditions.

The adaptive runtime controller component is responsible for continuously
syncing the actual state of the scalable computing cluster with the desired state.
We develop our control mechanism on top of Kubernetes which is an open-source
container orchestration system that can operate on a diverse range of infrastruc-
tures such as Amazon AWS3 and Google Cloud Platform4. This implementation
makes our system portable and avoids vendor lock-in. Finally, the scalable com-
puting cluster is where the modules run.

4.4 Version Control

Version control is essential in both software engineering and machine learning,
managing artifacts like source code, configuration files, and documentation in
the former [45], and tracking changes in data, models, hyperparameters, and
code in the latter [6]. Effective version control systems facilitate collaboration,
reproducibility, and debugging.

Git has become the industry standard in version control for software engineer-
ing, with popular implementations like GitHub, GitLab, and BitBucket. It can
manage common artifacts in machine learning, such as hyperparameters stored
as plain text. However, managing large datasets and model weights presents
unique challenges such as lack of standardization [21] and intricacies involved in
tracking and recording model changes, leading to problems like reproducibility
and model comparison [20].

To address these challenges, specialized version control systems such as
DVC5, Pachyderm6, and MLflow7 have been developed. They offer features like
model versioning, data versioning, and model lineage tracking, simplifying the
management of model and data updates. Cloud-based solutions like Amazon S3,
Azure Blob Storage, and Google Cloud Storage can provide scalable storage and
versioning solutions for large models and datasets.

In our XaaM vision, we treat data and other components as modules, ensur-
ing consistency across various projects and teams. We store module definitions
and implementations in an informative text format, i.e., YAML (YAML Ain’t
Markup Language), enabling Git-based version control on a metadata level.
Module definitions are stored fully in YAML format since they are designed
to be describable in text format. On the other hand, module implementations
are more complex as they can have various forms. Therefore, we designed a
unified YAML description that captures features of the implementation. This
YAML file is then linked to the actual implementation.

3 https://aws.amazon.com/.
4 https://cloud.google.com/.
5 https://dvc.org/.
6 https://www.pachyderm.com/.
7 https://mlflow.org/.

https://aws.amazon.com/
https://cloud.google.com/
https://dvc.org/
https://www.pachyderm.com/
https://mlflow.org/
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Within our XaaM vision, we adopt a modular approach where every ML asset
encompassing data, code, models, and executables are treated as distinct mod-
ules, thereby ensuring a cohesive framework across diverse projects and teams.
We establish a registry of module definitions and implementations in an infor-
mative text format, specifically YAML, which facilitates version control through
Git at a metadata level. The module definitions are exclusively stored in YAML
to align with their text-based descriptive nature. Conversely, module implemen-
tations necessitate a more comprehensive treatment due to their multifaceted
nature. To address this, we have devised a comprehensive YAML schema that
encapsulates the nuances of the implementation. This specialized YAML file is
linked to the tangible implementation, facilitating a unified and coherent frame-
work. This method streamlines project administration, guarantees uniformity,
and eases the integration of varied modules and tools, thereby fostering the
creation of intricate, scalable machine learning solutions.

Our cohesive XaaM versioning approach significantly enhances both trans-
parency and reproducibility within the context of module development. This is
achieved through the comprehensive preservation of module lineage, encompass-
ing every facet from data and code to configuration settings, that contributed to
creating each module. Put simply, this framework empowers users to carefully
trace the trajectory and evolution of individual modules within the project.
For example, users possess the capability to discern the origins of output data,
encompassing details such as the model employed, configuration parameters uti-
lized, and input data employed during its generation.

Ultimately, our approach allows for the targeted application of techniques
aligned with each unique implementation, all within the framework of our
YAML-based versioning system. By leveraging both traditional version control
systems like Git and specialized tools tailored for machine learning, we bridge
the gap between machine learning development and software development, ulti-
mately leading to more effective and streamlined machine learning projects with
enhanced transparency and reproducibility through module lineage tracking.

4.5 Continuous Monitoring

Continuous monitoring is vital for managing application health and performance
in software development projects, particularly in service-based applications with
complex interdependencies [13]. In machine learning projects, continuous moni-
toring is even more critical since it ensures model performance remains consis-
tent, detects data drift, anomalies, and performance issues [41], and determines
when model retraining is necessary [22].

Challenges in continuous monitoring include integrating monitoring metrics
and KPI evaluations from different teams [41], scalability and real-time monitor-
ing [39], addressing the statistical nature of drift detection and outlier identifi-
cation [24], standardization data collection and storage methods [30], and mon-
itoring upstream processes that feed data to ML systems [39]. Our XaaM vision
addresses these challenges by building on state-of-the-art monitoring techniques
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that adapt to changing requirements and workloads without adversely affecting
performance.

We propose Monitoring as a Module to integrate various monitoring tech-
niques and enable seamless collaboration between teams. Monitoring modules
are treated almost the same way as other modules. The only difference is the
way of handling modules by the adaptive runtime controller which employs spe-
cific mechanisms to collect data from other modules seamlessly and redirect
the output data to a standard storage. Subsequently, the monitoring team can
develop the monitoring module definition and implementation in the same way as
other modules. They can also benefit from the automation offered by our system
to create composite monitoring modules automatically that deliver the desired
functionality. It is also worth mentioning that since the monitoring modules are
the same as other modules, they can also be monitored using other monitoring
modules.

We introduce the concept of Monitoring as a Module, which serves as an
integration point for diverse monitoring methodologies, fostering harmonious
collaboration among teams. Monitoring modules are treated almost the same
way as other modules. A nuanced distinction lies in the manner by which these
modules interface with the adaptive runtime controller. This controller employs
distinct mechanisms to seamlessly fetch information from concurrent modules,
channeling output data to a standardized repository.

Consequently, the monitoring team finds themselves capacitated to devise
module definitions and implementations for monitoring on par with general mod-
ule practices. Leveraging the automation inherent to our framework, they are
further empowered to fabricate composite monitoring modules. Moreover, it is
worth mentioning that the equivalence of monitoring modules with other mod-
ules extends to the realm of monitoring, wherein monitoring modules themselves
are amenable to oversight through analogous monitoring modules. This confers
the capability for adaptive module selection to not merely ensure the fulfillment
of requirements by the monitored modules, but also to maintain the monitor-
ing modules’ correctness. Ultimately, this synergy culminates in an enhanced
performance exhibited by the monitored modules.

4.6 Adaptive Module Selection

Module selection involves searching and identifying module implementations that
align with a specific module definition and its requirements, resembling service
composition in web services. In our vision, selection emphasizes choosing existing
implementations, while composition focuses on generating new modules. This
process can occur at three stages in the module composition life cycle: design
time, deployment time, and runtime.

During design time, developers create and define a module tailored to fulfill
specific requirements. Deployment time involves installing and configuring the
composition in the runtime environment for execution. Runtime is when the
module is executed, and its performance and functionality are evaluated. Module
selection at runtime depends on algorithms that associate module definitions
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with implementations based on performance metrics and requirements, ensuring
the selection of the most suitable implementation.

Service selection algorithms prioritize QoS attributes such as response time,
success rate, and cost [11]. In machine learning development, we must ensure
QoS metrics while satisfying performance requirements, like accuracy and Mean
Squared Error (MSE) [17]. Addressing the interdependence of metrics is crucial,
considering modules correlations and user requirements correlations [27,33].

Our vision’s module selection consists of three primary stages, each present-
ing unique challenges:
– candidating: find suitable module implementations for a module definition.
– ranking: order top-performing module implementations for a scenario.
– choosing: determine if updating the production module is worthwhile.

Challenges during the candidating phase include ensuring implementation
satisfaction of the module definition and designing a scalable find-matching algo-
rithm. The level of granularity poses another challenge, as a module implemen-
tation may be a composite module. In our vision, find-matching algorithms’
input is the YAML-based descriptions of module definition and implementation.
Analogous to web-service selection [16], we incorporate the structural-semantic
approach enhances the candidate identification phase, using domain ontology
concepts, similarity measures, and structural properties analysis to select suit-
able module implementations.

Defining the scenario presents a significant challenge during the ranking
stage, given its reliance on variable factors such as incoming data streams, sens-
ing and operational environments, and requirements. The subsequent difficulty
lies in forecasting future scenarios and the corresponding performance of each
individual module within these hypothetical situations. In our vision, we propose
a pipeline incorporating a scenario prediction algorithm and a metamodel. This
metamodel is designed to estimate module performance utilizing the historical
data collected via monitoring modules.

Finally, the choosing phase entails the critical decision of whether to update
the existing module in the production environment, taking into account the costs
of redeployment and possible non-optimal performance measures. The effective-
ness of this phase is inextricably linked to the successful execution of the ranking
stage and the accuracy of future scenario prediction. Furthermore, it must take
into account the distinct overheads and deployment costs that may be associated
with different modules.

Designing a reliable and fast adaptive module selection involves numerous
interconnected choices across all phases. Understanding these choices’ influence
on each other and the overall system performance is essential. A holistic approach
is necessary to create a system that can adapt effectively to changing scenarios
and maintain optimal performance across various scenarios.

4.7 Life Cycle Management

Software life cycle management covers stages from inception to maintenance of
a software product. This process ensures software meets user and stakeholder
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requirements, adheres to quality standards, and fits cost constraints [23]. Differ-
ences in life cycle management between machine learning (ML) and traditional
software development stem from ML’s data reliance and iterative model training,
contrasted with traditional software development’s deterministic approach.

In ML development, data is crucial throughout the entire life cycle, with data
collection, preprocessing, and feature engineering significantly affecting model
performance [39]. Model training in ML development involves iterative experi-
mentation with algorithms, hyperparameters, and data representations [34]. Val-
idation and testing in ML development involve assessing model generalization to
unseen data, which can be challenging due to overfitting and biases [36]. Deploy-
ing an ML model requires serving it in a production environment, monitoring
its performance, and updating or fine-tuning it as necessary [4].

Traditional software development has adopted CI/CD practices, but ML
development still faces challenges in integrating these practices due to the itera-
tive nature of model training and dependency on data [32]. Emerging tools such
as MLflow [43], TFX [4], and Kubeflow [5] address the unique requirements of
ML CI/CD but still leave room for improvement in aligning these practices with
traditional software development. Ensuring explainable predictions is crucial for
gaining user trust and ensuring ethical use in ML development [2].

Our vision incorporates “What-if” scenarios [35] into ML development to
facilitate validation, testing, and interpretability. Sensitivity analysis can help
identify potential weaknesses or areas of improvement and inform the selection
of features and parameters [38]. Counterfactual explanations provide insights
into how a model might behave if specific features or inputs were different,
supporting better decision-making and model understanding [42]. Automatic
scenario generation techniques allow developers to consider multiple plausible
future scenarios and their potential impacts on ML models or software systems
to inform model development and decision-making.

The What-If scenario component plays a crucial role in our vision, encom-
passing a range of possibilities that significantly enhance our machine learning
module’s adaptability and robustness.

Firstly, It engages with the aspect of “new data vs current modules”. In
essence, it consistently explores the hypothetical question, “What if an alterna-
tive equivalent module was operational instead of the currently running one?”
This means that it generates various scenarios where any active module is
replaced by an equivalent alternative, contributing to the system’s adaptabil-
ity.

Secondly, it contemplates “new modules vs historical data”. Whenever a new
module is introduced, the component seeks to answer, “What if these modules
were already integrated into our system?” This implies that it measures the per-
formance of the newcomer against collected historical data. This is accomplished
either by running the new module or estimating its performance. This provision
of the What-If scenario component aids in adaptive module selection, generating
more data to enhance performance.
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Lastly, it examines the interaction of “current modules vs unseen data”. Unlike
traditional software development, machine learning development does not allow
for extensive testing. To counter this limitation, the What-If scenario component
learns from the shortcomings of other equivalent modules, generating corner-case
scenarios to test modules against any unforeseen circumstances. This not only
ensures model robustness but also facilitates proactive identification of potential
issues, significantly improving the system’s resilience.

This component greatly aid in the process of adaptive module selection,
enabling the system to collect more data and consequently perform more effec-
tively. Ultimately, incorporating what-if scenarios in ML and traditional software
development can help bridge the gap between these domains by enhancing model
understanding and improving decision-making.

4.8 Adaptive Runtime Controller

A runtime controller is a software component responsible for managing and
orchestrating the execution of applications or services at runtime. It ensures
that the desired state of the system is maintained and adapts to any changes or
requirements that may arise during the execution. Kubernetes, a widely adopted
platform for orchestrating containerized services, has emerged as a best practice
in this context [8]. It offers numerous built-in features and solutions that simplify
application deployment, scaling, and management.

Machine learning development and our adaptive module selection require
frequent changes in the modules, depending on various factors such as the appli-
cation’s needs, user preferences, or environmental conditions. Kubernetes pro-
vides a mechanism called the operator pattern, which can be used to implement
this adaptive behavior [12]. An operator is a custom controller that extends the
functionality of the Kubernetes API by implementing custom control logic and
defining custom resource definitions (CRDs), which are stored in YAML format.

We designed CRDs to possess a one-to-one correspondence with module def-
initions and implementation, thereby making them straightforward and user-
friendly. This allows users to specify their requirements with minimal technical
acumen. In other words, the user-defined module definitions and implementa-
tions serve as the direct input to the controller, which represents the desired
state. The controller then translates this high-level desired state into technical
specifications. Kubernetes CRDs are translated into OpenAPI APIs, enabling
seamless integration with the Kubernetes API server.

The controller continually monitors the actual state of the system in the
cluster and attempts to match it with the desired state defined by the user. We
implemented modules, consisting of both module definition and module imple-
mentation, as Kubernetes CRDs. To support deploying modules as a service
and adaptive module selection mechanism, we developed several custom con-
trollers that extend the Kubernetes API. These custom controllers manage var-
ious aspects of the system, such as container deployment, storage, and commu-
nication.
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However, since it is impossible to cover every possible deployment need and
to ensure the generality of our platform, we designed our CRD in a way that
allows more advanced users to develop their own custom controllers. These cus-
tom controllers can be used in a pluggable fashion, enabling users to tailor the
adaptive runtime controller to their specific needs and requirements. This flexi-
bility allows for a wide range of use cases and applications, making the adaptive
runtime controller a powerful tool for managing complex, dynamic systems.

In summary, the adaptive runtime controller leverages the power of Kuber-
netes and the operator pattern to provide a flexible and extensible platform
for managing and orchestrating modules in various applications. By designing
user-friendly CRDs and supporting custom controllers, the adaptive runtime
controller enables users to implement complex adaptive behavior with ease, ulti-
mately leading to more robust and responsive systems.

5 Conclusion

In this paper, we presented the “Everything as a Module” (XaaM) vision, a
comprehensive approach that aims to empower machine learning development
by addressing the unique challenges in machine learning and deviations from the
best practices of service-oriented software development. We investigated several
aspects, identified the gaps, and proposed solutions for bridging these gaps.

We also introduced an architecture to demonstrate how the various com-
ponents of the XaaM vision can be seamlessly integrated, enabling users to
efficiently manage and orchestrate complex systems. We believe that the XaaM
vision has the potential to revolutionize the way machine learning systems and
software development projects are designed, developed, and maintained, paving
the way for more adaptable, efficient, and scalable solutions. By continuing to
develop and refine the XaaM vision, we hope to contribute to the effective devel-
opment of production-grade machine learning applications.
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