
Marco Aiello
Johanna Barzen
Schahram Dustdar
Frank Leymann (Eds.)

17th Symposium and Summer School, SummerSOC 2023
Heraklion, Crete, Greece, June 25 – July 1, 2023
Revised Selected Papers

Service-Oriented
Computing

Communications in Computer and Information Science 1847

Communications
in Computer and Information Science 1847

Editorial Board Members
Joaquim Filipe , Polytechnic Institute of Setúbal, Setúbal, Portugal
Ashish Ghosh , Indian Statistical Institute, Kolkata, India
Raquel Oliveira Prates , Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil
Lizhu Zhou, Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0003-1548-5576
https://orcid.org/0000-0002-7128-4974

Rationale
The CCIS series is devoted to the publication of proceedings of computer science con-
ferences. Its aim is to efficiently disseminate original research results in informatics
in printed and electronic form. While the focus is on publication of peer-reviewed full
papers presenting mature work, inclusion of reviewed short papers reporting on work in
progress is welcome, too. Besides globally relevant meetings with internationally repre-
sentative program committees guaranteeing a strict peer-reviewing and paper selection
process, conferences run by societies or of high regional or national relevance are also
considered for publication.

Topics
The topical scope of CCIS spans the entire spectrum of informatics ranging from foun-
dational topics in the theory of computing to information and communications science
and technology and a broad variety of interdisciplinary application fields.

Information for Volume Editors and Authors
Publication in CCIS is free of charge. No royalties are paid, however, we offer registered
conference participants temporary free access to the online version of the conference
proceedings on SpringerLink (http://link.springer.com) bymeans of an http referrer from
the conference website and/or a number of complimentary printed copies, as specified
in the official acceptance email of the event.

CCIS proceedings can be published in time for distribution at conferences or as post-
proceedings, and delivered in the form of printed books and/or electronically as USBs
and/or e-content licenses for accessing proceedings at SpringerLink. Furthermore, CCIS
proceedings are included in the CCIS electronic book series hosted in the SpringerLink
digital library at http://link.springer.com/bookseries/7899. Conferences publishing in
CCIS are allowed to use Online Conference Service (OCS) for managing the whole
proceedings lifecycle (from submission and reviewing to preparing for publication) free
of charge.

Publication process
The language of publication is exclusively English. Authors publishing in CCIS have
to sign the Springer CCIS copyright transfer form, however, they are free to use their
material published in CCIS for substantially changed, more elaborate subsequent publi-
cations elsewhere. For the preparation of the camera-ready papers/files, authors have to
strictly adhere to the Springer CCIS Authors’ Instructions and are strongly encouraged
to use the CCIS LaTeX style files or templates.

Abstracting/Indexing
CCIS is abstracted/indexed in DBLP, Google Scholar, EI-Compendex, Mathematical
Reviews, SCImago, Scopus. CCIS volumes are also submitted for the inclusion in ISI
Proceedings.

How to start
To start the evaluation of your proposal for inclusion in the CCIS series, please send an
e-mail to ccis@springer.com.

http://springerlink.bibliotecabuap.elogim.com
http://springerlink.bibliotecabuap.elogim.com/bookseries/7899
mailto:ccis@springer.com

Marco Aiello · Johanna Barzen ·
Schahram Dustdar · Frank Leymann
Editors

Service-Oriented
Computing
17th Symposium and Summer School, SummerSOC 2023
Heraklion, Crete, Greece, June 25 – July 1, 2023
Revised Selected Papers

Editors
Marco Aiello
University of Stuttgart
Stuttgart, Germany

Schahram Dustdar
TU Wien
Vienna, Austria

Johanna Barzen
University of Stuttgart
Stuttgart, Germany

Frank Leymann
University of Stuttgart
Stuttgart, Germany

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-45727-2 ISBN 978-3-031-45728-9 (eBook)
https://doi.org/10.1007/978-3-031-45728-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-0764-2124
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-8397-7973
https://orcid.org/0000-0002-9123-259X
https://doi.org/10.1007/978-3-031-45728-9

Preface

The 17th advanced Summer School on Service-Oriented Computing (SummerSOC
2023) continued a successful series of summer schools that started in 2007. Summer-
SOC regularly attracts world-class experts in Service Oriented Computing (SOC) to
present state-of-the-art research during a week-long program organized in several the-
matic tracks: IoT, formal methods for SOC, Cloud Computing, Data Science, Advanced
Manufacturing, Software Architecture, Digital Humanities, Quantum Computing, and
emerging topics. The advanced summer school is regularly attended by top researchers
from academia and industry as well as by PhD and graduate students.

During the SummerSOC symposium original research contributions in the areas
mentioned above were presented. All accepted contributions were submitted in advance
and were peer-reviewed in a single-blind review process. All papers were reviewed
by three reviewers per paper. Based on the reviews the program chairs accepted or
rejected contributions. Out of 27 submitted contributions, only 9 were accepted, with an
acceptance rate of less than 34%. The contributionswere extensively discussed after their
presentation during a separate poster session. In addition to the reviewers’ comments,
the feedback from these discussions was folded into the final version published in this
special issue.

The volume is structured into three parts focusing on (i) distributed systems, (ii)
smart*, and (iii) mixed technologies, each providing three contributions. The first article
in the section on distributed systems introduces a conceptual framework for understand-
ing real-world AI planning domains; this contribution received the SummerSOC Best
Paper Award 2023, sponsored by D-Visor. The next article proposes an architecture that
bridges the gap by empowering machine learning development with service-oriented
computing principles, followed by an article that demonstrates that the often-prohibitive
costs of dictionary generation exhibited by earlier approaches can be avoided by sim-
ply using cache entries for content encoding based on shared dictionary compression
for the web. The section on smart* provides contributions devoted to privacy in con-
nected vehicles from the perspectives of drivers as well as car manufacturers, services
in smart manufacturing with a focus on comparing automated reasoning techniques for
composition and orchestration, and pool games in various information environments;
this last contribution received the SummerSOC Young Researcher Award, sponsored by
ServTech & ICSOC. The final section, on mixed technologies, provides first an article
presenting an efficient ‘multiples of’ oracle as composable operations that help quan-
tum software developers to reuse them when creating complex solutions, followed by

vi Preface

a contribution focusing on orchestrating information governance workloads as state-
ful services using the Kubernetes operator framework. The final article of the last part
provides insights on serverless data exchange within federations.

August 2023 Marco Aiello
Johanna Barzen

Schahram Dustdar
Frank Leymann

Organization

General Chairs

Marco Aiello Universität Stuttgart, Germany
Schahram Dustdar Technische Universität Wien, Austria
Frank Leymann Universität Stuttgart, Germany

Organization Committee

Johanna Barzen Universität Stuttgart, Germany
George Koutras OpenIT, Greece
Themis Kutsuras OpenIT, Greece

Steering Committee

Marco Aiello Universität Stuttgart, Germany
Schahram Dustdar Technische Universität Wien, Austria
Johanna Barzen Universität Stuttgart, Germany
Christoph Gröger Bosch, Germany
Frank Hentschel Universität zu Köln, Germany
Willem-Jan van Heuvel Eindhoven University of Technology,

The Netherlands
Rania Khalaf Inari, USA
Alexander Lazovik University of Groningen, The Netherlands
Frank Leymann Universität Stuttgart, Germany
Andreas Liebing StoneOne AG, Germany
Kostas Magoutis University of Crete, Greece
Massimo Mecella Sapienza University of Rome, Italy
Bernhard Mitschang Universität Stuttgart, Germany
Guadalupe Ortiz Bellot Universidad de Cádiz, Spain
Dimitris Plexousakis University of Crete, Greece
Wolfgang Reisig Humboldt-Universität, Germany
Jakka Sairamesh CapsicoHealth Inc., USA
Sanjiva Weerawarana WSO2, Sri Lanka
Guido Wirtz Universität Bamberg, Germany

viii Organization

Program Committee

Marco Aiello Universität Stuttgart, Germany
Johanna Barzen Universität Stuttgart, Germany
Steffen Becker Universität Stuttgart, Germany
Wolfgang Blochinger Hochschule Reutlingen, Germany
Uwe Breitenbücher Universität Stuttgart, Germany
Antonio Brogi Università di Pisa, Italy
Giacomo Cabri University of Modena and Reggio Emilia, Italy
Guiliano Casale Imperial College London, UK
Christian Decker Hochschule Reutlingen, Germany
Stefan Dessloch TU Kaiserslautern, Germany
Schahram Dustdar TU Wien, Austria
Sebastian Feld TU Delft, The Netherlands
Melanie Herschel Universität Stuttgart, Germany
Willem-Jan van Heuvel Eindhoven University of Technology,

The Netherlands
Dimka Karastoyanova University of Groningen, The Netherlands
Christian Kohls Technische Hochschule Köln, Germany
Ralf Küsters Universität Stuttgart, Germany
Winfried Lamersdorf Universität Hamburg, Germany
Alexander Lazovik University of Groningen, The Netherlands
Frank Leymann Universität Stuttgart, Germany
Kostas Magoutis University of Crete, Greece
Massimo Mecella Sapienza University of Rome, Italy
Bernhard Mitschang Universität Stuttgart, Germany
Daniela Nicklas Universität Bamberg, Germany
Guadalupe Ortiz Bellot Universidad de Cádiz, Spain
Adrian Paschke Freie Universität Berlin, Germany
Cesare Pautasso University of Lugano, Switzerland
Srinath Perera WSO2, Sri Lanka
Dimitris Plexousakis University of Crete, Greece
René Reiners Fraunhofer FIT, Germany
Wolfgang Reisig Humboldt-Universität, Germany
Norbert Ritter Universität Hamburg, Germany
Jakka Sairamesh CapsicoHealth Inc., USA
Harald Schoening Software AG, Germany
Ulf Schreier Hochschule Furtwangen, Germany
Heiko Schuldt Universität Basel, Switzerland
Stefan Schulte TU Wien, Austria
Holger Schwarz Universität Stuttgart, Germany
Stefan Tai TU Berlin, Germany

Organization ix

Damian Tamburri Eindhoven University of Technology,
The Netherlands

Massimo Villari Università degli Studi di Messina, Italy
Stefan Wagner Universität Stuttgart, Germany
Sanjiva Weerawarana WSO2, Sri Lanka
Guido Wirtz Universität Bamberg, Germany
Uwe Zdun Universität Wien, Austria
Alfred Zimmermann Hochschule Reutlingen, Germany
Olaf Zimmermann Hochschule für Technik Rapperswil, Switzerland

Additional Reviewers

Ghareeb Falazi
Nicolas Huber
Andrea Morichetta
Marie Salm
Mostafa Hadadian Nejad Yousefi

Contents

Distributed Systems

Understanding Real-World AI Planning Domains: A Conceptual
Framework . 3

Ebaa Alnazer and Ilche Georgievski

Empowering Machine Learning Development with Service-Oriented
Computing Principles . 24

Mostafa Hadadian Nejad Yousefi, Viktoriya Degeler,
and Alexander Lazovik

Using the Client Cache for Content Encoding: Shared Dictionary
Compression for the Web . 45

Benjamin Wollmer, Wolfram Wingerath, Felix Gessert,
Florian Bücklers, Hannes Kuhlmann, Erik Witt, Fabian Panse,
and Norbert Ritter

Smart*

Privacy in Connected Vehicles: Perspectives of Drivers and Car
Manufacturers . 59

Andrea Fieschi, Yunxuan Li, Pascal Hirmer, Christoph Stach,
and Bernhard Mitschang

Services in Smart Manufacturing: Comparing Automated Reasoning
Techniques for Composition and Orchestration . 69

Flavia Monti, Luciana Silo, Francesco Leotta, and Massimo Mecella

Pool Games in Various Information Environments . 84
Constantinos Varsos and Marina Bitsaki

Mixed Technologies

Operating with Quantum Integers: An Efficient ‘Multiples of’ Oracle 105
Javier Sanchez-Rivero, Daniel Talaván, Jose Garcia-Alonso,
Antonio Ruiz-Cortés, and Juan Manuel Murillo

xii Contents

Orchestrating Information Governance Workloads as Stateful Services
Using Kubernetes Operator Framework . 125

Cataldo Mega

Towards Serverless Data Exchange Within Federations . 144
Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta,
Sebastian Werner, Karl Wolf, Matteo Falconi, Frank Pallas,
Schahram Dustdar, Stefan Tai, and Pierluigi Plebani

Author Index . 155

Distributed Systems

Understanding Real-World AI Planning
Domains: A Conceptual Framework

Ebaa Alnazer(B) and Ilche Georgievski

Service Computing Department, IAAS, University of Stuttgart, Germany,
Universitätsstrasse 38, 70569 Stuttgart, Germany

{ebaa.alnazer,ilche.georgievski}@iaas.uni-stuttgart.de

Abstract. Planning is a pivotal ability of any intelligent system being
developed for real-world applications. AI planning is concerned with
researching and developing planning systems that automatically com-
pute plans that satisfy some user objective. Identifying and understand-
ing the relevant and realistic aspects that characterise real-world appli-
cation domains are crucial to the development of AI planning systems.
This provides guidance to knowledge engineers and software engineers in
the process of designing, identifying, and categorising resources required
for the development process. To the best of our knowledge, such support
does not exist. We address this research gap by developing a conceptual
framework that identifies and categorises the aspects of real-world plan-
ning domains in varying levels of granularity. Our framework provides
not only a common terminology but also a comprehensive overview of a
broad range of planning aspects exemplified using the domain of sustain-
able buildings as a prominent application domain of AI planning. The
framework has the potential to impact the design, development, and
applicability of AI planning systems in real-world application domains.

Keywords: AI Planning · Real-World Planning Domains · Conceptual
Framework

1 Introduction

Artificial Intelligence (AI) planning is the process of finding and organising a
course of action to achieve some designated goals [20]. The field of AI plan-
ning has matured to such a degree that it is increasingly used to solve planning
problems in real application domains, such as autonomous driving [5], intelli-
gent buildings [18], robotics [36], and cloud computing [19]. In these application
domains, various types of AI planning techniques have been used that differ
in their assumptions and applicability for solving different planning problems.
All the techniques, however, require gathering and formulating adequate and
relevant knowledge of the application domain. This is in fact one of the phases
needed to design and develop AI planning systems. Other phases include require-
ment analysis, selecting a suitable planning type, designing the planning systems,
etc. [14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-45728-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_1&domain=pdf
http://orcid.org/0000-0001-6951-4227
http://orcid.org/0000-0001-6745-0063
https://doi.org/10.1007/978-3-031-45728-9_1

4 E. Alnazer and I. Georgievski

A crucial process that should precede the development of an operational
and successful planning system is identifying and understanding relevant and
realistic planning aspects that capture the complexity and characteristics of the
application domain without making any simplified assumptions. This process
is essential as it needs to guide all the phases of the development process of a
planning system that can be utilised in actual settings. However, this process
is difficult because AI planning covers a broad range of aspects considering the
physics, functions, and qualities of the application domain. Despite all this, there
are currently no mechanisms that can support software engineers and knowledge
engineers in this process.

Our aim is, therefore, to conceptualise the realism of planning domains. To
this end, we develop a top-down approach in which we explore and analyse
the characteristics of planning domains in the existing literature. The outcome
is a conceptual framework that contains realistic aspects of planning domains
and corresponding categories with varying levels of granularity. The framework
would form the basis of the design, identification, and categorisation of elements
(e.g., planning domain models, planning software components or services, prove-
nance data) for real-world planning applications. In particular, the benefits of
the realistic-aspects framework can be summarised as follows.

– It helps to advance towards a common and inclusive notion of the realism of
AI planning domain models.

– It serves as a basis for characterising planning problems based on their
requirements. This offers useful guidelines for planning and software engineers
through all the phases of planning system development on which methods and
tools can reflect the requirements.

– It can drive the development of AI planning techniques and tools to address
real-world planning problems’ aspects.

– It provides means for comparing different AI planning systems based on their
support of the real-domain aspects.

– It lays the groundwork for other AI planning research on the topics of improv-
ing the applicability of AI planning in real-world applications and guiding
planning engineers in the development of planning systems.

– It highlights some aspects simplified in the existing literature on AI planning.

The rest of the paper is organised as follows. Section 2 provides the necessary
fundamentals and the problem statement. Section 3 presents our methodology to
develop the conceptual framework. Section 4 introduces our conceptual frame-
work by focusing on the categories at the highest level of granularity. Finally,
Sect. 5 concludes the paper with a discussion of our findings and future work.

2 Fundamentals and Problem Statement

We provide a brief introduction to AI planning followed by discussions on plan-
ning domain knowledge and designing AI planning systems, where we high-
light the importance of having and understanding realistic aspects of planning
domains. This serves as our basis to then state the problem our work focuses on.

Understanding Real-World AI Planning Domains: A Conceptual Framework 5

2.1 Artificial Intelligence (AI) Planning

Artificial Intelligence (AI) planning is a subfield of AI that focuses on researching
and developing planning systems that aim to find, organise and execute a course
of action, i.e., a plan, in order to achieve some designated goal [20]. Depending
on how complex and realistic the application domain is, one can employ various
types of planning. The most basic but widely used type of planning is classical
planning. It is based on the concept of actions and makes restrictive assumptions
about how the environment of the application domain looks like. In particular,
the environment is fully controllable, observable, deterministic, and static (no
exogenous events), without temporal properties (actions are instantaneous), and
plans are linearly ordered sequences of actions. Other planning types aim at
relaxing some of these assumptions. Examples include probabilistic planning,
which allows actions to have probabilistic effects, and temporal planning, which
allows actions to have durations and considers the temporal interaction between
them. Hierarchical Task Network (HTN) planning is another type of planning but
one that breaks with the tradition of classical planning by introducing a hierarchy
over actions with the help of tasks that can be refined into smaller subtasks
using so-called decomposition methods that represent specific knowledge from
the application domain [15].

2.2 Planning Domain Knowledge

AI planning is a knowledge-based technique, meaning, to compute plans, AI
planning systems require relevant and adequate knowledge about the application
domain. The knowledge consists of a planning domain model and an associated
problem instance. A planning domain model is a formal representation of the
domain knowledge, which is an abstract and conceptual description of the appli-
cation domain. A problem instance is a specification of a particular planning
scenario to be solved within this domain.

In classical planning, a planning domain model formalises the domain knowl-
edge in terms of domain objects with their relations and properties, and actions
that can change the state of the environment. A problem instance is specified
via an initial state and set of goal states that need to be reached. The planning
domain models and problem instances used by other types of planning support
more constructs, thus enabling the expression of more complex and realistic
domain knowledge. For example, in HTN planning, the planning domain model
is formalised in terms of actions, compound tasks, and methods. Actions are
defined the same as in classical planning. Compound tasks are more complex
tasks than actions and need to be refined into smaller tasks utilising methods.
Methods enable encoding of how compound tasks can be achieved by achieving
smaller tasks through the means of specific domain knowledge.

2.3 Designing AI Planning Systems

The design and development of a typical AI planning system can go through
various phases [14]. In the first phase, relevant requirements should be analysed.

6 E. Alnazer and I. Georgievski

The requirements can be functional, non-functional, user-related, and domain-
oriented. Having relevant and well-defined requirements is of utmost importance
as it affects the suitability of the intended planning system to address the real-
world aspects of the application domain. So, this phase is crucial as it provides the
ingredients necessary to select a suitable planning type, design a planning domain
model, design the system architecture, and define relevant provenance data. The
main concern of the second phase is the selection of a suitable planning type. The
selection depends on the assumptions about how realistic the environment is (see
Sect. 2.1). In the third phase, the requirements are used to formulate planning
domain knowledge out of which a planning domain model is created. The proper
execution of this phase in terms of detailed knowledge encoding and management
is essential as the lack of relevant or ill-described knowledge can lead to planning
domain models that do not reflect the intended aspects of the corresponding
application domain [33]. This can lead, eventually, to unsatisfactory plans that
cannot be executed in real settings [34]. In the fourth phase, the planning system
is designed, where the choice of relevant software-engineering principles, design
approaches and patterns, and other specific techniques is dictated by the type
and nature of the output of the previous three phases. For example, if we want to
develop a planning system for any planning domain, e.g., sustainable buildings,
that computes plans, schedules, and executes the plan actions in real-time, then
we need to adequately structure and connect relevant planning components.

2.4 Problem Statement

Understanding and gathering the relevant aspects characterising real-world plan-
ning problems is crucial to the design, development, and applicability of AI plan-
ning systems. In particular, this should precede all development phases of AI
planning systems since these relevant aspects should be considered and reflected
during the execution of each development phase. The way these aspects are
reflected depends on the particularities of each phase. For example, in the third
phase, where planning engineers create a domain model out of the planning
knowledge they acquired, it is necessary to see how the different aspects are
reflected in the planning constructs used in the model. Similarly, in phase 5,
when selecting suitable AI planning tools, planning engineers should have ade-
quate knowledge about the aspects that the planning system should support to
be able to select the tools that support these aspects. There exist some works that
focus on providing means to support the design of planning domain knowledge.
These works assume that relevant requirements and specifications of relevant
domain knowledge are already given by stakeholders or domain experts. The
aim of knowledge engineers is to satisfy these requirements and specifications
in their design of planning domain knowledge. Usually, the process of design-
ing this knowledge is done in an ad-hoc manner, and the quality of the resulting
planning domain models depends mainly on the skills of the knowledge engineers
and, if available, the tools they use [27,31]. In this context, a quality framework
is suggested aiming at developing systematic processes that support a more com-
prehensive notion of planning domain quality [31]. Some other studies focus on

Understanding Real-World AI Planning Domains: A Conceptual Framework 7

conceptualising planning functionalities as distinct software components so that
they can be directly and flexibly used to address the intended requirements of
application domains (e.g., [13]).

However, to the best of our knowledge, there is currently no support for soft-
ware engineers and knowledge engineers in the process of identifying relevant
and realistic aspects of real-world planning domains necessary for the develop-
ment of essential planning elements (i.e., requirements, planning types, planning
domain models, planning system design). Our work is positioned within this
research gap and aims at answering the following research question: What are
the realistic aspects that should be considered in the process of developing AI plan-
ning systems for real-world domains and how those aspects can be meaningfully
organised?

3 Approach

To address our research question, we perform top-down exploratory research on
existing literature to find relevant information related to the realism of plan-
ning domains and create the conceptual framework of realistic aspects for plan-
ning domains. We illustrate the elements of the conceptual framework using the
domain of Sustainable Buildings, which is one prominent example of real-world
application domains.

3.1 Methodology

Our methodology is illustrated in Fig. 1. The first step is to identify the litera-
ture from which we can obtain initial ideas about realistic aspects of planning
domains as discussed in the literature. We start with literature known to us
and then use relevant terms to search for and explore other relevant studies.
We are interested in studies that analyse the requirements and characteristics of
application domains (e.g., building automation, smart homes, ubiquitous com-
puting) by following a systematic way and/or developing a framework. Another
type of research we are interested in focuses on characteristics that exist in real-
world planning domains generally, i.e., not in a specific domain. A third strand
of research that we explore focuses on providing quality measures to assess the
quality of planning knowledge or that discuss what aspects can define the useful-
ness of the domains. The last strand of research that interests us contains some
works that provide a systematic process of knowledge engineering and modelling
of AI planning domains. The output of Step 1 is 20 identified studies.

We use the set of identified studies to extract statements about realism in
planning domains, and then identify and gather realistic aspects as described in
these studies (Step 2). The output of this step is a collection of realistic charac-
teristics. After that, we follow a descriptive research method to depict, describe,
and organise the collected aspects [21,35]. Thus, in Step 3, we categorise the
gathered aspects based on their relevance to one another. We also refine the

8 E. Alnazer and I. Georgievski

Fig. 1. Our methodology for defining the realistic-aspects framework. Rectangles rep-
resent the steps, circles represent the output of each step, and arrows illustrate that
the output of each step represents the input of the following one.

gathered information of each category by combining similar aspects and dis-
tinguishing different concerns. In this step, each category is annotated with a
common feature that describes all the aspects within the category. Additionally,
in this step, we further extract subcategories as defined in the corresponding
identified studies. The output of Step 3 is a collection of identified categories
and subcategories. Lastly, in Step 4, we identify the different relations between
the categories, subcategories, and aspects. We organise these as a hierarchy of
aspects and their categories with varying degrees of granularity. The final out-
come of our approach is a conceptual framework represented by the hierarchy.
We call this framework the realistic-aspects framework.

3.2 Running Example: Sustainable Buildings Domain

Sustainable buildings are smart buildings whose operation depends on the effec-
tiveness and efficiency of their Building Management Systems (BMSs). These are
computer-and-device-based control systems concerned with monitoring, storing,
and communicating data, in addition to supervising, controlling, and automat-
ing the various systems in buildings [26]. Examples of devices in sustainable
buildings include sensors (e.g., position and temperature sensors), and actuators
(e.g., switches on ceiling lamps). Systems in sustainable buildings can include
Heating, Ventilation, Air conditioning (HVAC), lighting, access control, security,
electrical, and other interrelated systems. The main objectives of BMSs include
increasing safety, improving people’s productivity, cutting energy consumption;
hence preserving finite resources, using non-carbon sources when possible to
lower the CO2 footprint, and lowering the costs of consumers and businesses
while preserving users’ comfort [10,18]. This is especially true for buildings that
are connected to a smart grid, which makes it possible to include renewable
sources and provides dynamic pricing and energy offers coming from compet-
ing providers [12]. The advent of the Internet of Things (IoT) and advances
in AI offer significant opportunities to improve the limited control capabilities

Understanding Real-World AI Planning Domains: A Conceptual Framework 9

offered by current building management systems, such as the reactive control
and feedback mechanisms [17,18].

4 The Framework

We gather and extract realistic aspects of planning domains from the identified
relevant studies. We categorise these realistic aspects into seven main categories
based on their relevance to each other, namely: Objectives, Tasks, Quantities,
Determinism, Agents, Constraints, and Qualities. We provide details on identi-
fied aspects and categories per study in Appendix 5.1

We use the identified aspects and categories to develop a conceptual frame-
work in the form of a hierarchy of realistic aspects for planning domains. Figures
2 and 3 show the realistic-aspects framework. We split the hierarchy into two
figures for better readability. The categories that we identified in Step 3 form
the highest level of the hierarchy. In the following, we organise the discussion of
the realistic-aspects framework per category at the highest level.

4.1 Objectives

The first high-level category is related to the Objectives of planning domains.
We categorise the Objectives based on their Types and Granularity. For the
first category, we distinguish two types of goals as suggested in [16]. The first is
Soft Goals or Preferences, which represent the non-mandatory user’s desires that
should be considered when solving planning problems in the domain. Considering
our running example domain, the BMS might have the soft goal of keeping the
offices in a building clean. The second is Hard goals or Requests, which, unlike
the Preferences, define a mandatory behaviour of the planning system according
to which planning problems in the domain should be solved. A hard goal in the
Sustainable Buildings domain could be to maintain the energy consumption in
the building under a certain threshold.

We further classify the goals into Qualitative and Quantitative goals. That
is, in some domains, it might be required to express goals in terms of qualities
that the system should meet, such as improving the comfort of the building
occupants, or in terms of exact quantities that should be maintained or reached,
such as minimising the operation costs of the building to a certain value per year.
Additionally, goals, whether they are soft or hard, can be of an Optimisation
nature or Satisfaction nature. In the first case, the goal is to find an optimal
solution to the planning problem. For example, in the Sustainable Buildings
domain, according to the market prices, the amount of stored energy, and the
weather forecast, the goal could be to find an optimal plan that minimises the
energy consumption of the building. In the second case, the goal is to satisfy
the domain goal to a certain degree. For example, given the aforementioned

1 Note that the categories and subcategories included in the table are the ones iden-
tified directly from the studies before any refinement and/or generalisation.

10 E. Alnazer and I. Georgievski

Fig. 2. Realistic-Aspects Framework (Part One). Rectangles represent the aspects, blue
rectangles are the aspects of the highest level, and dashed arrows define the relation-
ships between the aspects. (Color figure online)

Understanding Real-World AI Planning Domains: A Conceptual Framework 11

Fig. 3. Realistic-Aspects Framework (Part Two).

building conditions, the goal could be to compute plans that do not exceed a
certain threshold of energy consumption.

For Granularity, in some application domains, we might need to express Sub-
goals of bigger goals. For example, the goal of maintaining cleanness in the
offices could be a subgoal of a more coarse-grained goal of increasing occupants’

12 E. Alnazer and I. Georgievski

comfort. The latter can have another subgoal, such as the quantitative subgoal
of maintaining the office temperature between 15–20◦.

4.2 Tasks

The second high-level category of the hierarchy is related to the Tasks performed
in the application domain. We categorise Tasks into two subcategories based on
their Complexity and the Properties of Relations between them, respectively.
In the Complexity subcategory, we distinguish between Actions and Complex
Tasks. Actions are the simplest kind of tasks that can be performed directly,
such as pulling up the blinds. Complex Tasks, on the other hand, are more com-
plex than Actions and cannot be performed directly, but are needed as they
represent domain-specific knowledge. The Complex Tasks eventually depend on
the tasks that can be performed directly. For example, in the Sustainable Build-
ings domain, the task of conducting a meeting in a meeting room is a complex
task. It can be realised by performing the tasks of adjusting the light intensity
in the room, adjusting the temperature, and turning on the projector.

Unlike in the Complexity subcategory, aspects in the Properties of Relations
subcategory are interrelated and not mutually exclusive. We distinguish five
relation properties, which are Abstraction Levels, Structured Causality, Recur-
sion, Alternatives, and Conditions [3,18]. All these properties are related to the
idea of achieving complex tasks by performing smaller tasks, i.e., the refinement
of complex tasks into subtasks, which can be Complex Tasks and/or Actions.
In particular, these properties characterise the relations between Complex Tasks
and their subtasks. The Abstraction Levels property indicates that complex tasks
represent an abstraction level to the subtasks they can be refined to. Structured
Causality is a by-product of the Abstraction Levels property since expressing
tasks knowledge in different abstraction levels leads to having causal reasoning
between the different tasks. Recursion defines the relation between a Complex
Task and itself. That is, it defines that some Complex Tasks can be performed
by recursively refining them until reaching a certain condition. For example, the
complex task of increasing the light intensity in the meeting room when we have
multiple lamps can be refined into the action of turning on a lamp and the com-
plex task of increasing the light intensity again. The recursion stops, for example,
when reaching a certain light intensity or when having no more lamps to light in
the room. The Alternatives property means that there might be multiple ways
in which the same Complex Task can be achieved. For example, the complex
task of increasing the light intensity can be performed by refining it to the task
of pulling up the blinds or by refining it to the alternative task of turning on
lamps. Finally, the Conditions property represents the situation where refining
a Complex Task in a certain way has conditions that should be satisfied. For
example, turning on lamps to increase the light intensity can only be done if
there is not enough light coming from windows, i.e., if pulling up the blinds does
not increase the light intensity to the required intensity level.

Understanding Real-World AI Planning Domains: A Conceptual Framework 13

4.3 Quantities

The third high-level category of the hierarchy is related to Quantities. We cate-
gorise Quantities in planning domains based on their Type and how they should
be computed. We call the latter subcategory Computation. In the first case,
we distinguish three types of quantities; Resources, Action costs, and Environ-
mental Inputs. Resources are quantities that define a bound to the allowed or
possible consumption. They can be, for instance, money, fuel, energy, and time.
In the Sustainable Buildings domain, the budget dedicated to the building oper-
ation represents a resource. Action costs represent the resource consumption
incurred by performing actions. For example, if we consider the energy that is
stored locally in the building as a resource, the action of turning on the heating
system using locally stored energy results in a cost that equals the amount of
consumed energy. The Environmental Inputs represent all measurable charac-
teristics of the planning domain environment and the tasks performed in the
domain. Examples of environmental inputs in the Sustainable Buildings domain
include indoor temperature, CO2 level, humidity, light intensity, energy demand,
and battery capacity [17]. Similarly, drivers’ trust in the autonomous vehicle is
considered an environmental input [5]. We compute quantities based on the real-
world concepts they express, where either Linear or Non-linear functions should
be used [17]. For example, calculating temperature, battery charging, and tariff
change requires using non-linear functions.

4.4 Determinism

The fourth high-level category of the hierarchy is related to whether the planning
domain is deterministic or not. When the application domain is Deterministic, all
conditions of the environment are Totally observable at all times. Additionally,
in deterministic environments, actions work exactly as expected, i.e., they have
Predefined Consequences and Predefined Costs. For example, in the Sustainable
Buildings domain, if the heating system is 100% reliable, the action of turning it
on will always lead to the heating system being turned on. Furthermore, if the
energy prices are known with 100% certainty, the operation cost of the heating
system, i.e., the cost of the action is predefined with certainty.

Most real-world planning domains are, however, Non-deterministic [4]. We
categorise the non-determinism of planning domains based on the Source, Ran-
domness, and Consequences of non-determinism. Sources might be Internal,
meaning, they are related to the performer of the actions. These include, for
example, internal malfunctions, and unreliability or limited capabilities of the
agents. Sources might otherwise be External, i.e., related to environmental condi-
tions that are external to the agent, such as the non-determinism of the weather
conditions. The Randomness subcategory defines whether the non-determinism
source is Regular, i.e., changes all the time, such as weather conditions, energy
demand and market prices [10,11], or it is totally Random, such as a malfunction
in the battery storage. The Consequences category defines the effects that the

14 E. Alnazer and I. Georgievski

non-determinism sources have on the planning domain. The first type of conse-
quences is related to Partial Observability of the surrounding environment. For
example, an internal malfunction in the sensors responsible for detecting whether
the person is working on his/her PC can lead to partial knowledge about the cur-
rent conditions of the environment. The second type of Consequences is related
to Action Contingencies, i.e., actions not working as expected [25]. These can be
Effect Contingencies and/or Cost Contingencies, which means that actions do
not have predefined effects on the environment and do not consume resources as
expected, respectively. For example, turning on the radiator to heat the office
might lead to the radiator not being turned on due to internal malfunction.
Additionally, turning on the radiator might have costs that are hard to prede-
fine with certainty. The reason for this could be not having enough locally stored
energy due to unexpected weather conditions. This necessitates buying energy,
which incurs costs that depend on the market prices.

With the existence of non-determinism in the environment, we can have
a full spectrum of the degree of knowledge that is available about the Action
Consequences. We might have Full Knowledge about the probability distribution
and outcomes of actions or we might be able to Statically infer them. In both
cases, we have Risk involved in the domain. We might, however, have only Partial
or even No Knowledge about the probability distribution of the action outcomes.
In these cases, we have Uncertainty in the domain. For the distinction between
Risk and Uncertainty in AI planning, see [4].

4.5 Agents

The fifth high-level category is related to Agents, which are the performers of
actions. We classify agents based on their Type and Behaviour. For the Type, we
distinguish between Human Agents (e.g., occupants of the building) and non-
human agents, which we refer to as Components. Components are further cat-
egorised based on their Type and Controllability. Types of components include
Devices (e.g., actuators and batteries to store energy), Robots (e.g., telecon-
ferencing and cleaning robots), or Software Components. The latter represents
either Application Services that can be commercial (e.g., Microsoft PowerPoint)
or have a specific purpose (e.g., application services to control the desired thresh-
olds of lighting and heating), or Information Systems (e.g., platforms used to
analyse smart building data and display them in a dashboard for monitor-
ing) [16].

Regarding Controllability, Components in planning domains can be either
Controllable or Uncontrollable [17]. Controllable components can be controlled
directly and are mostly internal to the application domain. These include compo-
nents that run in the Background all the time (e.g., water heating in buildings),
Schedulable Components (e.g., dishwashers), or Combined components that can
run in the background and be scheduled (e.g., space heating in buildings). On
the other hand, Uncontrollable components are components whose operations
cannot be controlled directly but depend mainly on conditions external to the

Understanding Real-World AI Planning Domains: A Conceptual Framework 15

application domain. An example of uncontrollable components in smart build-
ings is solar panels whose operations depend on weather conditions.

When dealing with domains that involve risk and uncertainty, the domain
knowledge should reflect the Behaviour of the agents. That is, when risk and
uncertainty exist in the domain, agents can have different preferences on how to
make decisions during planning. These preferences are related to the agents’ Risk
Tolerance and the Degree of Trust they have in the planning system to make
the right choices. We classify the agent’s risk tolerance based on its Degree and
Dynamics. For the Degree, we distinguish three risk tolerance degrees, namely
Risk-seeking, Risk-averse, and Risk-neutral. For example, let us assume that a
risk-seeking agent is confronted with two choices that have the same expected
value of the outcomes. The first choice has a 100% probability of its outcome,
i.e., it has a guaranteed outcome. However, although the second choice has the
same expected value of outcomes, the probability of having a good outcome is
very low. In this case, the risk-seeking agent will take risks and choose the second
option hoping to end up with a good outcome. On the other hand, a risk-averse
agent will avoid taking risks and prefer the first choice as it is guaranteed. A
risk-neutral agent will only consider the expected value of the outcomes and thus
will be indifferent to the risk involved in each option, i.e., it will be indifferent to
the two options. Considering our running example, the building can get its elec-
tricity from two different sources; either from stored electricity generated locally
by renewable resources or from electric utilities with varying prices and energy
offers. The choice of whether to consume locally generated electricity or to pur-
chase it from outside sources should be made under uncertainty about the future
market prices and the future weather forecast. Let us assume that the building
management system has the following information: there is a high probability
of having a cloudy next day, i.e., no energy can be stored in the batteries and
a small probability of having a sunny day. However, there is information about
the day-ahead prices offered by different providers. The building management
system might follow a risk-seeking attitude and decides not to purchase energy
and rely on the small probability of having a sunny day, i.e., using solar energy.

Regarding the Dynamics of the agent’s risk tolerance, the agent might have
Static or Dynamic risk tolerance. Static risk tolerance means that the agent will
have the same degree of risk tolerance in one-shot planning with the same domain
conditions. On the other hand, Dynamic risk tolerance changes during the one-
shot planning based on some factors, such as the resource amount remaining in
the domain. For example, the BMS might be making all choices during planning
based on risk-seeking tolerance, but once the locally stored energy goes under a
certain threshold, it will become less risk tolerant.

4.6 Constrains

The sixth high-level category is about the Constraints in the application domain.
We distinguish four different classes of constraints: Physical Constraints, Order-
ing Constraints, Well-being Constraints, and Economic Constraints. Physical
Constraints relate agents and the actions they perform to each other with respect

16 E. Alnazer and I. Georgievski

to space (i.e., Spatial Constraints) and time (i.e., Temporal Constraints). For
example, a spatial constraint on the action of an occupant moving from the cor-
ridor to the office defines that the agent should be in the corridor before moving
and will be in the office after performing the action. Another example where
the agent is a component is a spatial constraint on the actions of the actuator
that controls the blinds. That is, for the actuator to open the blinds, the actu-
ator should be attached to the blinds. Spatial Constraints can be represented
either abstractly or purely [2]. An abstract representation is a representation
without considering any geometrical or physical laws, where actions are consid-
ered to be, for example, instantaneous. An example of this is assuming that an
occupant’s movement from the corridor to the office or the battery storing the
energy generated from solar panels happens instantaneously. On the other hand,
a pure representation considers the geometrical or physical laws and sometimes
the spatiotemporal properties [6]. This means that representing the movement
of an occupant requires considering the time needed for the movement and the
spatial arrangement of the building, i.e., the locations of the corridor and the
office. According to this, we categorise the Spatial Constraints based on the
agents performing the spatially constrained actions into Human Locations and
Component Locations. We also categorise them based on their representation
into Abstract Representation and Pure Representation.

Similar to Spatial Constraints, Temporal Constraints might be defined with
respect to the actions executed by agents and the relations between these actions.
We distinguish two categories of Temporal Constraints Metric Constraints and
Interval Constraints. The first type defines an absolute time point at which an
action should be performed. For example, actions that turn off the lights in the
whole building should be performed at the end of the working day. This type of
constraints can also restrict the relations between different actions with respect
to absolute time points. For example, we might have a constraint that restricts
the action of opening the blinds in the room and turning on the room lights at the
same time since this might lead to a waste of energy. Interval Constraints restrict
the start and end time of actions. We refer to these actions as Durative Actions.
In other words, they are defined on the time interval in which actions are per-
formed. For example, there might be a temporal constraint that restricts when
the cleaning robot can start and end cleaning in the office to avoid disturbing
office occupants. Additionally, Temporal Constraints can restrict the relations
between durative actions with respect to time. For example, there might exist a
temporal constraint that requires the start of the air conditioner operation using
locally stored energy to follow the end of the storing energy in batteries opera-
tion. Spatial and Temporal Constraints can also restrict the existence of agents
with one another even if these agents are not performing actions. For example,
in a health-sensitive situation, regulations might be in place that restrict the
existence of more than a certain number of people in the same location (spatial
constraint) at the same time (temporal constraint).

The second class of constraints is related to the Ordering between Objectives,
Complex Tasks, or Durative Actions. These can have a Strict Total Ordering,

Understanding Real-World AI Planning Domains: A Conceptual Framework 17

Partial Ordering, Require Concurrency, or can be Unordered. Ordering between
objectives can represent the importance of these objectives. For example, the
objective of maintaining occupants’ safety cannot be compromised by satisfy-
ing other objectives, such as improving the occupants’ comfort. In the context
of objectives, concurrency ordering means that objectives have the same exact
importance. For Durative Actions, we can have, for example, a strict ordering
between the operation of storing energy and the operation of operating the air
conditioner, or we can have a flexible order, i.e., unordered constraints, as long
as the battery has enough energy. We can also have a partial order between
durative actions, where we define a certain degree of order among them, i.e.,
some actions have a specific order of execution while others do not. This also
applies to complex tasks.

The third class of constraints is called Well-being Constraints. These con-
straints are derived from regulations, policies, or standards of the application
domain and aim at improving users’ comfort, privacy, health, safety, and effec-
tiveness [18]. For example, turning lights on/off and controlling their intensity in
the office can follow some standards for lighting in indoor workplaces [18]. The
fourth class of constraints is defined on the actions performed in the application
domain and is of economical nature. Thus, we call it Economical Constraints. An
example of these kinds of constraints can be a constraint on the maximum energy
consumption, i.e., cost induced as a result of performing a specific operation.

The classes of constraints are not mutually exclusive. Well-being constraints,
for example, can restrict the existence of multiple people in the same location,
the existence of certain components with human beings at the same location, or
the existence of people and/or components at the same time [17].

4.7 Qualities

The last high-level category of the framework is concerned with the Qualities of
the different aspects of a planning domain and the overall planning system. Iden-
tifying the required qualities of the planning system, including all its elements,
contributes directly to our goal of providing support to knowledge engineers
and software engineers in the process of designing and developing the planning
system.

We categorise the Qualities into eight classes. The first class is the Robust-
ness class, which reflects how robust planning is to changes. This includes the
domain’s (1) Minimality, (2) Scalability, (3) Efficiency, and (4) Performance
under Failures. These define (1) how compact is the model of the domain, such
that the domain knowledge is modelled efficiently and there are no additional
or unnecessary constructs; (2) how well the planning system enables solving
planning problems of increased complexity; (3) how efficiently planning prob-
lems in this domain can be solved; and (4) how robust the planning system is
against failures in some parts of it, respectively. These aspects characterise the
planning system as a whole, but at the same time, are affected by the plan-
ning domain itself. For example, the efficiency quality depends partially on the

18 E. Alnazer and I. Georgievski

planning system, but the domain structure, minimality, and encoding language
may have a great impact on the efficiency of the planning system.

The second class is related to the compliance of the planning system and
its elements with the requirements of the application domain. We call this class
Compliance with Requirements and it includes: (1) Coverage, (2) Completeness,
(3) Accuracy, and (4) Adequacy. Coverage defines to what extent the planning
domain model covers all required aspects of the application area. Completeness
means that the domain model enables the generation of all (and only) solu-
tion plans that are correct with respect to the domain specifications. Accuracy
ensures that the domain model is a valid representation of the domain specifi-
cations, meaning it encodes all the aspects that are correct and relevant for the
application domain. Adequacy is related to the expressive power of the planning
modelling language to represent the requirements within a planning domain
model in sufficient detail so that a complete planning domain model can be
expressed. For more details and formal definitions of Completeness, Accuracy,
and Adequacy aspects, see [27,30].

The third class is related to the Specificities of the application domain. This
class includes Structural diversity and Generalisability. These are related to
how well the planning domain model reflects the specificities of the applica-
tion domain [3] and how easy it is to be generalised to enable solving planning
problems with fewer or more specificities, respectively. For example, in the Sus-
tainable Building domain, specificities of the domain include the task of prepar-
ing the meeting room. This task is specific to this domain. Generalisability in
this domain can be achieved, for example, by having different abstraction levels
of tasks (see Sect. 4.2).

The fourth class is related to the Maintainability of the planning system in
general and the planning domain in particular. This class defines how easily the
planning domain model can be modified to handle new requirements and includes
(1) Modularity, (2) Scope/Defined Boundaries, (3) Well-defined Aspects, and (4)
Minimal Dependency. Modularity is achieved when the planning system/domain
model has clearly divided modules, thus, it is easier to modify a specific module
without the need to change the whole planning system/domain model. This is
also related to the planning system/planning domain model being scoped, i.e.,
having well-defined boundaries and aspects that precisely reflect the specific
requirements of the application domain. Lastly, the fewer dependencies between
the different modules in the planning system/domain model, the easier it is to
be maintained.

The fifth class is related to the Explainability of the planning system
behaviour and the planning knowledge, especially to non-experts. This is related
to the (1) formation of the domain knowledge, (2) the formation of the plans
computed in the domain, and (3) the planning process itself [5]. For example,
the structured causality between tasks in the domain enables causal reasoning,
which makes it easy to track and explain the behaviour of the system.

The last three classes are related to Physical, Pragmatic [31], and Oper-
ationality aspects [27,31]. The Physical class focuses on maximising the

Understanding Real-World AI Planning Domains: A Conceptual Framework 19

availability and accessibility of the planning domain models to interpreters to
make sense of and revisit domain models. This class aims at maximising the
availability of planning knowledge models such that future validations and eval-
uations can be performed. The Pragmatic class is related to the analysis of
domain models after the design phase and focuses on how the changes made
to domain models, as a result of using them in planning systems, can lead to
the discovery of missing requirements. Operationality is related to the ability
of planning systems to reason upon domain models and generate solution plans
using bounded computational resources (e.g., memory usage). It focuses mainly
on the quality and shape of the resulting plans and the speed of plan gener-
ation. For more details and formal definitions of the Physical, Pragmatic, and
Operationality aspects, see [27,31].

5 Conclusions and Future Work

Despite the research advancements in AI planning, applying AI planning systems
to solve real-world planning problems seems to be still challenging. Improving
this situation requires understanding and considering the aspects that charac-
terise real-world planning domains in all development phases of planning sys-
tems. In particular, knowledge engineers and software engineers should be sup-
ported in making informed choices when reasoning about relevant and realistic
aspects of application domains that must be considered when developing plan-
ning systems. Currently, this process is not supported. The main obstacles seem
to be the broad range of aspects of planning domains and the lack of unified
notions of what makes a planning domain realistic.

We took a step forward in this direction by introducing a framework that con-
ceptualises the notion of planning domains’ realism. We gathered and analysed
information about planning domains from existing literature and, consequently,
developed a framework that categorises a large number of realistic aspects in
multi-level granularity. The framework provides a common notion of planning
domains’ realism, highlights some aspects (e.g., uncertainty and risk) that are
simplified and/or neglected in the literature of AI planning, can drive the devel-
opment of service-oriented AI planning systems, and offers means for comparing
different planning systems. For future work, we plan to synthesise metrics that
can quantitatively evaluate the realism of planning domains and empirically ver-
ify and validate the conceptual framework on realistic application domains. We
also want to explore the framework’s usability for the design of service-oriented
AI planning systems.

Appendix

Table 1 shows the identified studies, identified aspects in each study, subcate-
gories as defined in the identified studies, and the category to which each aspect
and subcategory belongs, respectively.

20 E. Alnazer and I. Georgievski

Table 1. Realistic aspects of planning domains in literature with the identified cate-
gories and subcategories.

Studies Characteristics Subcategories Category

[16] preferences - behavioural

inputs

Requests

device operations - behavioural

outputs

human operations

robot operations

application operations

information operations

(s) object and human locations (s)patial,

(t)emporal

physical

properties

(t) time points (metric constraints)

and qualitative relations (intervals)

unexpected events - Uncertainty

partial observability

operations contingencies

[30] definition of goals and subgoals - -

accuracy - -

adequacy - -

[24,25] definition of goals and subgoals - -

expressing temporal constructs in goals - -

[23] structural diversity - -

[28] objects, relations, properties, and

constraints

- static

knowledge

object behaviour - dynamic knowledge

[4] risk - -

uncertainty - -

risk attitude - -

[5] trust - -

[3] structural diversity - -

action costs - -

alternatives - -

[32] explainability - -

[8] efficiency - -

[22] action costs - -

[17] ambient operations - building

operations

electrical equipment operations

green operations

(c) background, schedulable, and combined (c)ontrollable,

(u)ncontrollable

building

properties

linear - quantities

non-linear

well-being constraints - constraints

operation constraints

temporal: required concurrency

ordering constraints

business constraints

strict-total ordering - objectives

(continued)

Understanding Real-World AI Planning Domains: A Conceptual Framework 21

Table 1. (continued)

Studies Characteristics Subcategories Category

[18] occupant activity - -

building properties - -

activity area - -

building condition - -

social and economic (resource

management)

- quality

conditions

modularity/abstraction - -

structured causality - -

ordering control - -

recursion - -

[1] explainability - user-related

requirements

improvement of sustainability

safety

privacy

keeping the effectiveness of people

comfort

ordering constraints - -

business, administrative, user,

and system requirements

- -

minimize operation costs

and environmental impact,

and satisfy the power needs

- objectives

modularity - non-functional

requirements

well-defined components

minimal dependencies

increase workload

perform under failures

[9] Express the degree of goal satisfaction - -

domain boundaries (scope) - -

flexibility, generality, and robustness -

[7] understandable and modifiable plans - -

temporal constraints: relative and absolute - -

flexibility, generality, and robustness - -

Express the degree of goal satisfaction - -

[29] efficiency/operationality - -

maintenance and documentation - -

clear and easy to understand by

non-experts

- -

[31] encoding language - -

semantic, syntactic, physical, pragmatic,

and operational qualities

- -

[27] accuracy, adequacy, completeness,

operationality, and consistency

- -

References

1. Aiello, M., Fiorini, L., Georgievski, I.: Software engineering smart energy systems.
In: Handbook of smart energy systems, pp. 1–29. Springer (2022). https://doi.org/
10.1007/978-3-030-72322-4 21-1

https://doi.org/10.1007/978-3-030-72322-4_21-1
https://doi.org/10.1007/978-3-030-72322-4_21-1

22 E. Alnazer and I. Georgievski

2. Aiello, M., Pratt-Hartmann, I., Van Benthem, J.: What is spatial logic? Handbook
of spatial logics pp. 1–11 (2007). https://doi.org/10.1007/978-1-4020-5587-4

3. Alnazer, E., Georgievski, I., Aiello, M.: On Bringing HTN Domains Closer to Real-
ity - The Case of Satellite and Rover Domains

4. Alnazer, E., Georgievski, I., Aiello, M.: Risk Awareness in HTN Planning. arXiv
preprint arXiv:2204.10669 (2022)

5. Alnazer, E., Georgievski, I., Prakash, N., Aiello, M.: A role for HTN planning in
increasing trust in autonomous driving. In: ISC2, pp. 1–7. IEEE (2022). https://
doi.org/10.1109/ISC255366.2022.9922427

6. Andréka, H., Madarász, J.X., Németi, I.: Logic of space-time and relativity the-
ory. Handbook of spatial logics pp. 607–711 (2007). https://doi.org/10.1007/978-
1-4020-5587-4 11

7. Chien, S., Hill, R., Jr., Wang, X., Estlin, T., Fayyad, K., Mortensen, H.: Why
real-world planning is difficult: A tale of two applications. IOS Press, Washington,
DC (1996)

8. Chrpa, L.: Modeling Planning Tasks: Representation Matters. KEPS pp. 107–123
(2020). https://doi.org/10.1007/978-3-030-38561-3 6

9. Evans, C., Brodie, L., Augusto, J.C.: Requirements engineering for intelligent envi-
ronments. In: Intelligent Environments. pp. 154–161. IEEE (2014). https://doi.org/
10.1109/IE.2014.30

10. Fiorini, L., Aiello, M.: Energy management for user’s thermal and power needs: a
survey. Energy Rep. 5, 1048–1076 (2019). https://doi.org/10.1016/j.egyr.2019.08.
003

11. Fiorini, L., Aiello, M.: Predictive multi-objective scheduling with dynamic prices
and marginal CO2-emission intensities. In: ACM e-Energy. pp. 196–207 (2020).
https://doi.org/10.1145/3396851.3397732

12. Georgievski, I.: Coordinating services embedded everywhere via hierarchical plan-
ning (2015)

13. Georgievski, I.: Towards Engineering AI Planning Functionalities as Services.
In: Service-Oriented Computing - ICSOC 2022 Workshops. pp. 225–236. LNCS,
Springer (2022). https://doi.org/10.1007/978-3-031-26507-5 18

14. Georgievski, I.: Conceptualising software development lifecycle for engineering
AI planning systems. In: CAIN (2023). https://doi.org/10.1109/CAIN58948.2023.
00019

15. Georgievski, I., Aiello, M.: HTN planning: overview, comparison, and beyond. AIJ
222, 124–156 (2015). https://doi.org/10.1016/j.artint.2015.02.002

16. Georgievski, I., Aiello, M.: Automated planning for ubiquitous computing. CSUR
49(4), 1–46 (2016). https://doi.org/10.1145/3004294

17. Georgievski, I., Aiello, M.: Building automation based on temporal planning (2023)
18. Georgievski, I., Nguyen, T.A., Nizamic, F., Setz, B., Lazovik, A., Aiello, M.: Plan-

ning meets activity recognition: service coordination for intelligent buildings. PMC
38, 110–139 (2017). https://doi.org/10.1016/j.pmcj.2017.02.008

19. Georgievski, I., Nizamic, F., Lazovik, A., Aiello, M.: Cloud ready applications
composed via HTN planning. In: SOCA, pp. 81–89. IEEE (2017). https://doi.org/
10.1109/SOCA.2017.19

20. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: theory and practice.
Elsevier (2004)

21. Glass, G., Hopkins, K.: Descriptive research in qualitative and quantitative
research. J. Educ. Commun. Technol. 3(1), 45–57 (1984). https://doi.org/10.1007/
978-1-4615-1401-5 12

https://doi.org/10.1007/978-1-4020-5587-4
http://arxiv.org/abs/2204.10669
https://doi.org/10.1109/ISC255366.2022.9922427
https://doi.org/10.1109/ISC255366.2022.9922427
https://doi.org/10.1007/978-1-4020-5587-4_11
https://doi.org/10.1007/978-1-4020-5587-4_11
https://doi.org/10.1007/978-3-030-38561-3_6
https://doi.org/10.1109/IE.2014.30
https://doi.org/10.1109/IE.2014.30
https://doi.org/10.1016/j.egyr.2019.08.003
https://doi.org/10.1016/j.egyr.2019.08.003
https://doi.org/10.1145/3396851.3397732
https://doi.org/10.1007/978-3-031-26507-5_18
https://doi.org/10.1109/CAIN58948.2023.00019
https://doi.org/10.1109/CAIN58948.2023.00019
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1145/3004294
https://doi.org/10.1016/j.pmcj.2017.02.008
https://doi.org/10.1109/SOCA.2017.19
https://doi.org/10.1109/SOCA.2017.19
https://doi.org/10.1007/978-1-4615-1401-5_12
https://doi.org/10.1007/978-1-4615-1401-5_12

Understanding Real-World AI Planning Domains: A Conceptual Framework 23

22. Gregory, P., Lindsay, A.: Domain model acquisition in domains with action costs.
In: ICAPS, vol. 26, pp. 149–157 (2016). https://doi.org/10.1609/icaps.v26i1.13762

23. Hoffmann, J., Edelkamp, S., Thiébaux, S., Englert, R., Liporace, F., Trüg, S.:
Engineering benchmarks for planning: the domains used in the deterministic part
of IPC-4. JAIR 26, 453–541 (2006). https://doi.org/10.1613/jair.1982

24. Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In:
ICAPS, vol. 19, pp. 362–365 (2009). https://doi.org/10.1609/icaps.v19i1.13385

25. Kaldeli, E., Warriach, E.U., Lazovik, A., Aiello, M.: Coordinating the web of
services for a smart home. TWEB 7(2), 1–40 (2013). https://doi.org/10.1145/
2460383.2460389

26. Levermore, G.J.: Building energy management systems: applications to low-energy
HVAC and natural ventilation control. Taylor & Francis (2000)

27. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated
planning: towards a notion of quality. In: K-CAP, pp. 1–8 (2017). https://doi.org/
10.1145/3148011.3148012

28. McCluskey, T.L., Simpson, R.M.: Knowledge Formulation for AI Planning. In:
Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS
(LNAI), vol. 3257, pp. 449–465. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30202-5 30

29. Shah, M., et al.: Knowledge engineering tools in planning: state-of-the-art and
future challenges. KEPS 53, 53 (2013)

30. Silva, J.R., Silva, J.M., Vaquero, T.S.: Formal Knowledge Engineering for Plan-
ning: Pre and Post-Design Analysis. In: Vallati, M., Kitchin, D. (eds.) Knowledge
Engineering Tools and Techniques for AI Planning, pp. 47–65. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-38561-3 3

31. Vallati, M., McCluskey, L.: A quality framework for automated planning knowl-
edge models. In: Agents and Artificial Intelligence, pp. 635–644. SciTePress (2021).
https://doi.org/10.5220/0010216806350644

32. Vallati, M., McCluskey, T.L.: In Defence of Design Patterns for AI Planning Knowl-
edge Models. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol.
12414, pp. 191–203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77091-4 12

33. Vaquero, T.S., Silva, J.R., Tonidandel, F., Beck, J.C.: itSIMPLE: towards an inte-
grated design system for real planning applications. Knowl. Eng. Rev. 28(2), 215–
230 (2013). https://doi.org/10.1017/S0269888912000434

34. Vaquero, T.S., Silva, J.R., Beck, J.C.: Improving planning performance through
post-design analysis. In: KEPS, pp. 45–52 (2010)

35. Wazlawick, R.S.: Reflections about research in computer science regarding the
classification of sciences and the scientific method. FSMA 6, 3–10 (2010)

36. Weser, M., Off, D., Zhang, J.: HTN robot planning in partially observable dynamic
environments. In: ICRA, pp. 1505–1510. IEEE (2010). https://doi.org/10.1109/
ROBOT.2010.5509770

https://doi.org/10.1609/icaps.v26i1.13762
https://doi.org/10.1613/jair.1982
https://doi.org/10.1609/icaps.v19i1.13385
https://doi.org/10.1145/2460383.2460389
https://doi.org/10.1145/2460383.2460389
https://doi.org/10.1145/3148011.3148012
https://doi.org/10.1145/3148011.3148012
https://doi.org/10.1007/978-3-540-30202-5_30
https://doi.org/10.1007/978-3-540-30202-5_30
https://doi.org/10.1007/978-3-030-38561-3_3
https://doi.org/10.5220/0010216806350644
https://doi.org/10.1007/978-3-030-77091-4_12
https://doi.org/10.1007/978-3-030-77091-4_12
https://doi.org/10.1017/S0269888912000434
https://doi.org/10.1109/ROBOT.2010.5509770
https://doi.org/10.1109/ROBOT.2010.5509770

Empowering Machine Learning
Development with Service-Oriented

Computing Principles

Mostafa Hadadian Nejad Yousefi1, Viktoriya Degeler2,
and Alexander Lazovik1(B)

1 Faculty of Science and Engineering, Bernoulli Institute, University of Groningen,
Groningen, The Netherlands

{m.hadadian,a.lazovik}@rug.nl
2 Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam,

The Netherlands
v.o.degeler@uva.nl

Abstract. Despite software industries’ successful utilization of Service-
Oriented Computing (SOC) to streamline software development,
machine learning (ML) development has yet to fully integrate these prac-
tices. This disparity can be attributed to multiple factors, such as the
unique challenges inherent to ML development and the absence of a uni-
fied framework for incorporating services into this process. In this paper,
we shed light on the disparities between services-oriented computing
and machine learning development. We propose “Everything as a Mod-
ule” (XaaM), a framework designed to encapsulate every ML artifacts
including models, code, data, and configurations as individual modules,
to bridge this gap. We propose a set of additional steps that need to be
taken to empower machine learning development using services-oriented
computing via an architecture that facilitates efficient management and
orchestration of complex ML systems. By leveraging the best practices
of services-oriented computing, we believe that machine learning devel-
opment can achieve a higher level of maturity, improve the efficiency
of the development process, and ultimately, facilitate the more effective
creation of machine learning applications.

Keywords: Machine Learning Lifecycle · MLOps · Service-Oriented
Computing · Adaptive Data Processing · ML Pipelines

1 Introduction

Machine learning (ML) has emerged as a powerful tool for solving complex prob-
lems across various domains, leading to a growing demand for production-grade
ML applications. With the increasing importance of ML in various industries, the
need for efficient and scalable ML development has become more pronounced.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 24–44, 2023.
https://doi.org/10.1007/978-3-031-45728-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-45728-9_2

Machine Learning Development with Service-Oriented Computing 25

However, despite the rapid advancements in ML techniques and tools, the devel-
opment of production-grade ML systems still faces several challenges that hinder
its alignment with best practices in software development [25].

In recent years, the software industry has successfully embraced service-
oriented computing (SOC) and DevOps (“Development Operations” to automate
software development process), which has significantly improved software devel-
opment processes, enabling better modularity, flexibility, and maintainability
[31]. However, ML development has not yet fully adopted these best practices,
resulting in a gap between service-oriented computing and ML development [1].

DevOps is a cross-departmental and collaborative endeavor within an organi-
zation, aiming to simplify the continuous delivery of new software releases while
upholding their integrity and trustworthiness [26]. In service-oriented comput-
ing, DevOps is a cultural shift and set of practices for enhancing collabora-
tion between development and operations teams. This approach accelerates the
development life cycle for efficient, continuous software service delivery. DevOps
incorporates Agile principles, e.g., continuous integration, deployment, and auto-
mated testing, which are critical in service-oriented computing for integration
and constant service availability. Moreover, DevOps encourages improved com-
munication and collaboration across service production and maintenance teams.

MLOps (Machine Learning Operations) can be considered an extension
of DevOps. It applies the principles and practices of DevOps to the specific
challenges and requirements of machine learning development. This includes
the development, deployment, and lifecycle management of ML models, while
addressing the complexities inherent in data-driven machine learning.

Challenges in MLOps stem from the unique nature of machine learning mod-
els. For instance, they may degrade over time as data drifts occur, requiring
constant monitoring and frequent retraining. Another challenge is managing the
lifecycle of a machine learning model, which includes stages like data collection,
model training, validation, deployment, and continuous monitoring. Moreover,
another common challenge is the reproducibility of ML models due to varia-
tions in data, code, configuration, or environment, which can lead to incon-
sistencies in model performance. MLOps aims to address these challenges by
providing a robust framework for managing the ML lifecycle, similar to how
DevOps manages the software development lifecycle. It incorporates practices
like versioning of datasets and ML models, automated testing, and continuous
integration/continuous delivery (CI/CD) for machine learning models to ensure
their reliability and performance over time.

In this paper, we investigate the best practices in service-oriented computing
and DevOps and identify the gaps between these practices and machine learning
development and MLOps. Inspired by Anything as a Service (XaaS), we propose
our “Everything as a Module” (XaaM) vision, an enabler of MLOps practices and
a comprehensive solution for bridging these gaps. In this vision, we encapsulate
every machine learning artifact such as model, code, data, and configurations as
a module. XaaM is specifically introduced to differentiate between conventional
web services and machine learning services, while also catering to the machine

26 M. H. N. Yousefi et al.

learning community’s preference for the term “Module”. However, XaaM is dif-
ferent from XaaS which is a business and delivery model that provides various
types of services over the Internet. These services could range from Infrastructure
(IaaS), Platform (PaaS), to Software (SaaS), and beyond.

The contributions of this research, reflecting our vision, are as follows. First,
we present the concept of two levels of modularity, elaborating on the definition
of modules, while addressing polymorphism. We then describe our approach to
composing complex modules from atomic ones. We also highlight the importance
of module versioning for experiment tracking in machine learning applications,
with the aim of achieving maximum observability. Here, our intention is to create
a system where every artifact is trackable throughout the development process,
a goal we strive to achieve through the introduction of module lineage.

Subsequently, we venture into the challenge of monitoring machine learning
applications, providing our perspective on managing the lifecycle of modules.
This is realized by proposing Adaptive Module Selection and What-if Scenarios.
The former aspires to select the most effective module at any given time, while
the latter is akin to automatic testing to facilitate improved module evaluation.

This work encapsulates our vision to enhance machine learning development
by leveraging the best practices from service-oriented computing, thereby lead-
ing to the creation of more robust, efficient, and scalable ML systems. While we
anticipate benefits such as improved development efficiency, increased scalability
and adaptability of ML applications, and more effective creation of production-
grade ML systems, these outcomes depend on a successful implementation of
our proposals. One of the motivational goals of our vision is fostering interde-
partmental communication and collaboration by advocating a modular design.
Note that our work presents a blueprint towards a desired state, not a fully
functioning system. We aim to advance machine learning development practices
and encourage more widespread use of service-oriented computing in this field.

The rest of this paper is structured as follows: Sect. 2 offers background for a
better understanding of service-oriented computing and machine learning devel-
opment. Section 3 presents a review of related work. Section 4 identifies the gaps
that exist in various aspects and proposes solutions to bridge them. Finally,
Sect. 5 presents our conclusions.

2 Background

2.1 Service-Oriented Computing

Service-Oriented Computing (SOC) is a distributed computing paradigm that
utilizes services as building blocks for applications [31]. These services are often
realized as web services or microservices which can be described, published,
located, and invoked over a network. This paradigm promotes interoperability,
integration, and simplifies large-scale system development, reducing complexity
via service reuse and advancing business agility and innovation.

In technical terms, these services are commonly encapsulated within contain-
ers, such as Docker, to ensure their isolation and to simplify their deployment and

Machine Learning Development with Service-Oriented Computing 27

scaling. Management and orchestration of these containers can be achieved using
technologies like Kubernetes, which enables automated deployment, scaling, and
management, effectively distributing and coordinating containers across a clus-
ter of machines [8]. Communication among these services, vital for orchestrating
complex business processes, leverages protocols like HTTP/REST or gRPC for
synchronous, and message brokers for asynchronous communication.

2.2 Machine Learning Development

Drawing from literature [37,41], we synthesize the common elements into a gener-
alized workflow of lifecycle of Artificial Intelligence/Machine Learning (AI/ML)
applications depicted in Fig. 1.

Fig. 1. Coarse-grained AI/ML application life-cycle illustrating the stages and their
corresponding actors.

The AI/ML lifecycle encompasses five interrelated stages. First, during the
business requirement stage, stakeholders collaborate with the AI/ML team to
define the problem, objectives, and project scope. Second, the data prepara-
tion stage entails acquiring, cleaning, preprocessing, and transforming data for
model training and evaluation. Third, the AI/ML development stage focuses
on designing, implementing, and validating machine learning models. Fourth,
the application deployment stage integrates models into an application, ensuring
its stability, performance, and security in an operational environment. Finally,
the monitoring stage involves tracking the application’s performance, identifying
issues, and gathering insights for continuous improvement.

AI/ML development diverges from traditional software development, primar-
ily due to its data-driven nature. It involves iteratively constructing probabilistic
models that learn patterns from data, a process that requires extensive experi-
mentation and monitoring. Teams often explore various model architectures and
algorithms before settling on a solution. Moreover, decisions are data-driven,
emphasizing the quality of the data used for model training. Evaluating a learn-
ing model is a complex task, as its performance is tightly coupled with the
data. Thus, teams must conduct extensive training and testing on both small
and large datasets that closely resemble production data, necessitating a scalable
underlying platform. Throughout this process, monitoring and experiment track-
ing become critical to compare different models, observe their performance over
time, and ensure reproducibility. The latter means that running the same model

28 M. H. N. Yousefi et al.

with the same data should ideally yield the same results, despite the inherent
probabilistic nature of ML models. This iterative, monitored, and reproducible
process ensures that the AI/ML solution generalizes well to new, unseen data
and effectively addresses the defined business requirements.

3 Related Work

This section focuses on MLOps and the study of solutions founded on the prin-
ciples of service-oriented computing for machine learning. For convenience and
cohesion, we discuss other relevant subjects in their sections. Our dual goal is to
highlight the differences between ML development and SOC, and to centralize
related content for easy access and reference.

MLOps is an emerging paradigm, merging machine learning and tradi-
tional software development using DevOps principles. It focuses on automating
machine learning development, deployment, and monitoring to boost efficiency
and shorten time to market [37]. Testi et al. [41] respond to the fragmented
state of MLOps literature by proposing a cohesive taxonomy and standardized
methodology for MLOps projects. Several studies address MLOps challenges and
solution to facilitate this integration.

Symeonidis et al. [40] delve into the complexities of Machine Learning Oper-
ations (MLOps), highlighting challenges like efficient pipeline creation, continual
model re-training, comprehensive monitoring, and data manipulation. They dis-
cuss tools for data preprocessing, modeling, and operationalization, highlighting
AutoML’s potential to automate and simplify the machine learning process.
Granlund et al. [18] discuss AI/ML operations’ integration challenges, focus-
ing on complexities of data consolidation, shared ML model development, and
cross-organizational system performance monitoring. They also discuss the scal-
ing challenge related to managing data from multiple entities, developing per-
sonalized models, and providing tailored monitoring options in a large, multi-
organizational setting. Zhou et al. [44] use existing CI/CD tools and Kubeflow to
illuminate potential performance bottlenecks like GPU utilization. Their analy-
sis of time and resource consumption in ML pipelines offers a practical guide for
efficient ML pipeline platform construction.

Another interesting area is applying microservices architecture in ML devel-
opment [10]. Microservices enable the modularization of ML components, allow-
ing for more flexible development and deployment of ML applications. This
method also encourages reusability of components, significantly saving devel-
opment time and effort. Several studies cover machine-learning use for service-
oriented computing, but few investigated the integration of machine learning
models into service-oriented architectures. Fantinato et al. [15] review the mutual
enhancement of service-oriented architecture (SOA) and deep learning. They
detail how deep learning aids SOA solutions using web service data and how SOA
enables flexible, reusable infrastructures for deep learning. Their study highlights
the potential of this synergy for various environments and users, shedding light
on these technologies’ evolution. Briese et al. [7] propose a service-oriented archi-
tecture for rapid deployment of deep learning in reverse logistics, addressing the

Machine Learning Development with Service-Oriented Computing 29

problem of uninterpretable markers. Their method allows using ever-expanding,
initially small datasets, reducing digitization and labeling costs and time.

Mboweni et al. [28] extensively studied MLOps literature to identify the state-
of-the-art and gaps in understanding. Despite abundant literature, their review
uncovers a lack of standardization and a shared vision on implementing MLOps
across industries, showing a need for further research in this area. While these
works offer insights into applying service-oriented computing in machine learn-
ing development, they often concentrate on specifics like MLOps or microser-
vices, rather than a holistic vision for enhancing machine learning development
using service-oriented computing principles. In this paper, we aim to broaden
the perspective on this topic, discussing a variety of techniques to bridge the gap
between machine learning development and service-oriented computing.

4 Methods

In this section, we examine various aspects of software development and identify
existing gaps, using service-oriented computing as a reference point. We begin by
introducing our perspective of modules and explaining module composition since
these components form the fundamental pillars of our vision. Prior to delving
into other constituent components, we present an overarching overview of our
system. Subsequently, we explain each component in a more intricate manner.

4.1 Modularity by Design

Modularity by design refers to an approach that emphasizes the creation of
smaller, independent, and interchangeable services. These services can be assem-
bled, rearranged, or replaced without affecting the overall system’s functionality.
The primary advantages of modular design include increased flexibility, reusabil-
ity, maintainability, and scalability.

In our research, we distinguish between two levels of modularity within
the context of machine learning applications: 1) Algorithmic Modularity and
2) Architectural Modularity. This classification highlights different aspects of
machine learning applications, ranging from programming and code-level details
to larger-scale system architecture and deployment considerations.

Algorithmic Modularity pertains to the utilization of programming lan-
guages or frameworks for the development of machine learning applications. Data
scientists often employ frameworks such as Scikit-learn1 or PyTorch2 to facili-
tate various stages of their ML applications, including data preprocessing, scal-
ing, modeling, and evaluation. Leveraging these frameworks enables the effective
modularization of ML applications and accelerates the development process.

Architectural Modularity, on the other hand, involves packaging each
stage into distinct services and deploying these services into appropriate envi-
ronments, such as production. This modularity offers greater flexibility, improved
1 https://scikit-learn.org/.
2 https://pytorch.org/.

https://scikit-learn.org/
https://pytorch.org/

30 M. H. N. Yousefi et al.

maintainability, and enhanced scalability, ensuring that the ML application
remains adaptable to changing requirements and emerging technologies.

Due to the wealth of available frameworks in machine learning development,
algorithmic modularity is well-established. AI/ML teams generally concentrate
on the primary purpose of their applications and wish to avoid unnecessary
complexities, such as packaging (e.g., containerization) or deployment [29]. They
often create monolithic applications that may be deployed using services but
remain monolithic by design, failing to exploit modularity’s full potential.

As architectural modularity is less widespread, our primary goal is to promote
its adoption and increase its prevalence in the field. Architectural modularity
provides numerous benefits, including enhanced maintainability, scalability, and
adaptability to changing requirements. By advocating for its adoption, we aim
to facilitate the development of more robust and flexible ML applications.

In addition to the applicability, our proposed solution must be both user-
friendly and easy to understand to ensure its acceptance within the community.
Our approach aims to facilitate the seamless integration of services, promote
efficient collaboration between different teams, and simplify the development
process. To achieve this, we define modules as a higher abstraction of services
with two main components rooted in the concept of polymorphism: Module
Definition and Module Implementation. These components ensure applicability
and enhance understandability by providing a clear separation between high-
level and low-level information of a module.

Module Definition involves creating a general and unified interface for
modules, similar to APIs for services. These interfaces facilitate communication
among team members and between different teams, ensuring everyone has a clear
understanding of each module, e.g. what are its purpose, inputs, and outputs.
The clarity of module definition enables a better division of responsibilities. For
instance, a clear module definition allows AI/ML teams to focus on the internal
logic of modules, while DevOps teams handle packaging and deployment.

Module Implementation refers to the process of putting a module defini-
tion into practice, much like how concrete classes in object-oriented programming
languages implement abstract classes. This method permits multiple implemen-
tations of a single module definition, fostering reusability and polymorphism
within the system. Importantly, a module implementation can be composed of
multiple smaller modules.

Throughout the remainder of this paper, we will use the term “module” to
refer to services in the context of our research. Specifically, we will focus on
machine learning services that are designed, implemented, and maintained using
MLOps best practices, as well as the solutions we propose. We selected the
term “module” due to its common usage in the machine learning field, where it
denotes a self-contained and coherent unit of work that shares similarities with
the concept of a service.

In essence, any combination of a module definition and module implementa-
tion forms a module, as illustrated in Fig. 3a. It is important to note that the
definitions and implementations of the modules are loosely coupled. If a mod-

Machine Learning Development with Service-Oriented Computing 31

ule implementation fulfills a module definition, they can be combined to create
a module. Consequently, a single module definition may be satisfied by multi-
ple implementations, and a module implementation may satisfy more than one
definition. This flexibility is a significant advantage of our approach.

Modules that share the same module definition are considered equivalent, as
they achieve the same objective. However, it is essential to acknowledge that
equivalent modules may display different performances when handling the same
tasks due to the variability in their implementations.

To illustrate, let us consider an example of a module definition and two
module implementations. Imagine a module definition called “Scaler” where the
input is a matrix of numeric data with shape (n-samples, n-features), and the
output is a standardized version of this matrix with the same shape. The first
implementation, “StandardScaler”, standardizes the input features to have zero
mean and unit variance. The second implementation, “MinMaxScaler” Rescales
the input features to a specified range (usually [0, 1]). Although both implemen-
tations are scaling the input features, their output has a different distribution.

We propose a new concept called Everything as a Module (XaaM), which
presents a general unified interface that facilitates the encapsulation of diverse
components in an ML system, including executable codes, ML pipelines, and
datasets. Figure 2 offers a demonstrative example of XaaM for the training and
inference stages of an ML application, where each artifact is considered a module.

Using various implementations, XaaM enhances the modularity and flexibil-
ity of AI/ML applications, ultimately advancing the state-of-the-art and advanc-
ing innovation in the field.

ML Code Output Data

Input Data

ML Code

Training Data

ML ModelTraining
Configurations

Training InferenceInference
Configurations

Fig. 2. An example XaaM demonstration for training and inference

4.2 Module Composition

Module composition is the process of combining simpler modules to form a more
complex one, enabling developers to break down intricate systems into manage-
able components. Our goal is to create modular and adaptable modules that can
be easily adjusted and extended to meet evolving requirements. Similar to Web
Service Composition [3], we define two module types:

32 M. H. N. Yousefi et al.

– Atomic Module: A self-contained module independent of other modules,
such as a Docker container.

– Composite Module: A module composed of multiple atomic or compos-
ite modules, like a data processing pipeline consisting of Scaler and Model
modules, as shown in Fig. 3c.

a) Module Template b) Registry c) example composite module

Module Implementations

Classifier

Pipeline

K-Nearest

Neighbors

Support

Vector

Machine

MinMax

Scaler
Normalizer

Standard

Scaler

Module Definitions

ScalerNumeric
Classifier Classifier

Module

Definition

Implementation

Customer Segmentation

Numeric Classifier

Classifier Pipeline

Preprocessing

Scaler

Standard

Scaler

Model

Classifier

Support

Vector

Machine

Fig. 3. Module Composition Example: a) Module template, b) Sample registry, c) A
composite module from registry elements, adhering to the given template.

Our framework houses module definitions and implementations in a registry
(Fig. 3b). A composite module is represented by a graph topology, which details
the included modules and their connections. Both atomic and composite modules
share consistent definitions, enabling polymorphism and module reuse. Topology
structures can adopt any form, unlike works that enforce sequential steps [43] or
Directed Acyclic Graph (DAG) [5] structure.

To create a composite module adhering to a desired definition, developers
outline constituent module definitions and connections, choose suitable imple-
mentations, and align the resulting composite implementation with the desired
module definition. Architectural modularity allows seamless alteration of module
implementations without code changes or complex procedures.

We can conduct operational and behavioral verifications with well-defined
module structures. Operational verification confirms the pipeline’s correctness,
while behavioral verification assesses whether the composite module produces
the expected output. The former relies on module implementations, and the
latter depends on module definitions.

We propose two automation stages for module composition: 1) Topology
Creation and 2) Implementation Selection. The first stage generates a topology
using modules from the registry or creating missing module definitions. The sec-
ond stage selects appropriate implementations for each definition, ensuring that
the chosen implementations can interact effectively and process data efficiently.

Module composition in machine learning development differs from service
composition due to its probabilistic nature. Performance cannot be guaranteed

Machine Learning Development with Service-Oriented Computing 33

through testing on available data alone, but we can use historical data and
feedback to make informed decisions during module composition.

There are several techniques available for the automation of machine learn-
ing application creation, such as AutoAI [9] and AutoML [19]. While these
approaches hold significant promise, they are not without their challenges, as
identified by Elshawi et al. [14]. In our work, we aim to address several of
these challenges, including Composability, Scalability, and Continuous delivery
pipeline.

One of the primary challenges with existing AutoAI and AutoML approaches
is their lack of generality and flexibility, particularly with respect to composabil-
ity. These approaches often lack the ability to incorporate custom components
or allow users to tweak the generated machine learning pipeline. Our approach
aims to address this limitation by providing a fully automated solution that is
still general enough to allow users to be involved in various formats. For instance,
users can define certain parts of a composite module and let the system fill in
the rest, allowing for greater flexibility and customizability.

In addition to addressing the issue of composability, we also seek to tackle
challenges related to scalability, which can be especially problematic for large
real datasets. To overcome this challenge, we plan to utilize techniques such as
meta-learning to learn from previous runs and gradually improve the composite
module’s performance. This aligns with our goal of establishing a continuous
delivery pipeline for machine learning applications, enabling us to deliver more
effective solutions to end-users while improving overall efficiency and scalability.

In summary, our approach to module composition provides greater compos-
ability, flexibility, and scalability, allowing for more customized and adaptable
machine learning pipelines. By leveraging historical data and feedback, we can
make more informed decisions during module composition, which contributes to
the continuous improvement of the composite module’s performance. Ultimately,
our approach allows for the development of more effective machine learning appli-
cations while reducing development time and costs.

4.3 Proposed Architecture

We propose a simplified layered architecture that serves as an overview of the
implementation of our vision illustrated in Fig. 4. The ultimate goal is to enable
users to define module definitions and the system takes care of the rest includ-
ing automatically associating it with proper implementations and deploying the
modules. In this section, we will explore the different components of the proposed
architecture and their interactions.

The version control component is the entry point to the system where users
can add module definitions and module implementations to the registry. A proper
versioning mechanism enables observability, extensive experiment tracking, and
module lineage. In particular, it is essential for other components such as moni-
toring and adaptive module selection to fully operate. Therefore, to avoid over-
complicating other components’ mechanisms, we propose a unified versioning
mechanism for every module.

34 M. H. N. Yousefi et al.

WHAT-IF

Version Control CICD

Monitoring Adaptive Module
Selection

Automatic Module
Composion

Adaptive Rruntime Controller

Scalable Computing Cluster

User

Life cycle
Management

Orchestration

Infrastructure

Fig. 4. A layered architecture implements the XaaM vision, with items in each layer
interacting only with adjacent layer items.

From this point the Continuous Integration and Continuous Deployment
(CI/CD) pipeline is responsible for managing the automatic workflow of deliver-
ing module definitions from the registry to an environment among other respon-
sibilities. This pipeline invokes the automatic module composition and selection
components in order to complete modules by selecting or generating module
implementations for the module definitions while testing different scenarios via
the What-If component. Finally, it invokes the adaptive runtime controller for
deploying the module on the underlying infrastructure.

The automatic module composition process creates placeholders for module
implementations and leverages adaptive module selection to fill them at design
time. This process may involve multiple iterations if a valid selection is not found.
If no solution is found, the automatic module composition returns an incomplete
module to the user, identifying the missing implementations.

Once a module is ready, meaning that at least one module implementation
satisfies the module definition, it is submitted to the adaptive runtime controller
for deployment in the cluster. Users can also define monitoring modules and
bind them to other modules, such as inference modules. One of the key features
of our platform and the XaaM vision is the ability to have monitoring modules
that monitor other monitoring modules within the cluster.

The what-if component is responsible for generating scenarios for various
purposes, such as testing and interpretability. It submits these scenarios to the
adaptive runtime controller, which runs them in separate environments to avoid
interference with production systems.

Monitoring modules collect data on the performance of other modules and
store it in a standardized format for multiple purposes, such as visualization in a
graphical interface. The adaptive module selection component actively checks the
monitoring data and updates the module implementations accordingly to satisfy
the requirement that may come from the user or a downstream module. This

Machine Learning Development with Service-Oriented Computing 35

comprehensive monitoring system ensures that the platform remains efficient,
adaptive, and responsive to changing requirements and conditions.

The adaptive runtime controller component is responsible for continuously
syncing the actual state of the scalable computing cluster with the desired state.
We develop our control mechanism on top of Kubernetes which is an open-source
container orchestration system that can operate on a diverse range of infrastruc-
tures such as Amazon AWS3 and Google Cloud Platform4. This implementation
makes our system portable and avoids vendor lock-in. Finally, the scalable com-
puting cluster is where the modules run.

4.4 Version Control

Version control is essential in both software engineering and machine learning,
managing artifacts like source code, configuration files, and documentation in
the former [45], and tracking changes in data, models, hyperparameters, and
code in the latter [6]. Effective version control systems facilitate collaboration,
reproducibility, and debugging.

Git has become the industry standard in version control for software engineer-
ing, with popular implementations like GitHub, GitLab, and BitBucket. It can
manage common artifacts in machine learning, such as hyperparameters stored
as plain text. However, managing large datasets and model weights presents
unique challenges such as lack of standardization [21] and intricacies involved in
tracking and recording model changes, leading to problems like reproducibility
and model comparison [20].

To address these challenges, specialized version control systems such as
DVC5, Pachyderm6, and MLflow7 have been developed. They offer features like
model versioning, data versioning, and model lineage tracking, simplifying the
management of model and data updates. Cloud-based solutions like Amazon S3,
Azure Blob Storage, and Google Cloud Storage can provide scalable storage and
versioning solutions for large models and datasets.

In our XaaM vision, we treat data and other components as modules, ensur-
ing consistency across various projects and teams. We store module definitions
and implementations in an informative text format, i.e., YAML (YAML Ain’t
Markup Language), enabling Git-based version control on a metadata level.
Module definitions are stored fully in YAML format since they are designed
to be describable in text format. On the other hand, module implementations
are more complex as they can have various forms. Therefore, we designed a
unified YAML description that captures features of the implementation. This
YAML file is then linked to the actual implementation.

3 https://aws.amazon.com/.
4 https://cloud.google.com/.
5 https://dvc.org/.
6 https://www.pachyderm.com/.
7 https://mlflow.org/.

https://aws.amazon.com/
https://cloud.google.com/
https://dvc.org/
https://www.pachyderm.com/
https://mlflow.org/

36 M. H. N. Yousefi et al.

Within our XaaM vision, we adopt a modular approach where every ML asset
encompassing data, code, models, and executables are treated as distinct mod-
ules, thereby ensuring a cohesive framework across diverse projects and teams.
We establish a registry of module definitions and implementations in an infor-
mative text format, specifically YAML, which facilitates version control through
Git at a metadata level. The module definitions are exclusively stored in YAML
to align with their text-based descriptive nature. Conversely, module implemen-
tations necessitate a more comprehensive treatment due to their multifaceted
nature. To address this, we have devised a comprehensive YAML schema that
encapsulates the nuances of the implementation. This specialized YAML file is
linked to the tangible implementation, facilitating a unified and coherent frame-
work. This method streamlines project administration, guarantees uniformity,
and eases the integration of varied modules and tools, thereby fostering the
creation of intricate, scalable machine learning solutions.

Our cohesive XaaM versioning approach significantly enhances both trans-
parency and reproducibility within the context of module development. This is
achieved through the comprehensive preservation of module lineage, encompass-
ing every facet from data and code to configuration settings, that contributed to
creating each module. Put simply, this framework empowers users to carefully
trace the trajectory and evolution of individual modules within the project.
For example, users possess the capability to discern the origins of output data,
encompassing details such as the model employed, configuration parameters uti-
lized, and input data employed during its generation.

Ultimately, our approach allows for the targeted application of techniques
aligned with each unique implementation, all within the framework of our
YAML-based versioning system. By leveraging both traditional version control
systems like Git and specialized tools tailored for machine learning, we bridge
the gap between machine learning development and software development, ulti-
mately leading to more effective and streamlined machine learning projects with
enhanced transparency and reproducibility through module lineage tracking.

4.5 Continuous Monitoring

Continuous monitoring is vital for managing application health and performance
in software development projects, particularly in service-based applications with
complex interdependencies [13]. In machine learning projects, continuous moni-
toring is even more critical since it ensures model performance remains consis-
tent, detects data drift, anomalies, and performance issues [41], and determines
when model retraining is necessary [22].

Challenges in continuous monitoring include integrating monitoring metrics
and KPI evaluations from different teams [41], scalability and real-time monitor-
ing [39], addressing the statistical nature of drift detection and outlier identifi-
cation [24], standardization data collection and storage methods [30], and mon-
itoring upstream processes that feed data to ML systems [39]. Our XaaM vision
addresses these challenges by building on state-of-the-art monitoring techniques

Machine Learning Development with Service-Oriented Computing 37

that adapt to changing requirements and workloads without adversely affecting
performance.

We propose Monitoring as a Module to integrate various monitoring tech-
niques and enable seamless collaboration between teams. Monitoring modules
are treated almost the same way as other modules. The only difference is the
way of handling modules by the adaptive runtime controller which employs spe-
cific mechanisms to collect data from other modules seamlessly and redirect
the output data to a standard storage. Subsequently, the monitoring team can
develop the monitoring module definition and implementation in the same way as
other modules. They can also benefit from the automation offered by our system
to create composite monitoring modules automatically that deliver the desired
functionality. It is also worth mentioning that since the monitoring modules are
the same as other modules, they can also be monitored using other monitoring
modules.

We introduce the concept of Monitoring as a Module, which serves as an
integration point for diverse monitoring methodologies, fostering harmonious
collaboration among teams. Monitoring modules are treated almost the same
way as other modules. A nuanced distinction lies in the manner by which these
modules interface with the adaptive runtime controller. This controller employs
distinct mechanisms to seamlessly fetch information from concurrent modules,
channeling output data to a standardized repository.

Consequently, the monitoring team finds themselves capacitated to devise
module definitions and implementations for monitoring on par with general mod-
ule practices. Leveraging the automation inherent to our framework, they are
further empowered to fabricate composite monitoring modules. Moreover, it is
worth mentioning that the equivalence of monitoring modules with other mod-
ules extends to the realm of monitoring, wherein monitoring modules themselves
are amenable to oversight through analogous monitoring modules. This confers
the capability for adaptive module selection to not merely ensure the fulfillment
of requirements by the monitored modules, but also to maintain the monitor-
ing modules’ correctness. Ultimately, this synergy culminates in an enhanced
performance exhibited by the monitored modules.

4.6 Adaptive Module Selection

Module selection involves searching and identifying module implementations that
align with a specific module definition and its requirements, resembling service
composition in web services. In our vision, selection emphasizes choosing existing
implementations, while composition focuses on generating new modules. This
process can occur at three stages in the module composition life cycle: design
time, deployment time, and runtime.

During design time, developers create and define a module tailored to fulfill
specific requirements. Deployment time involves installing and configuring the
composition in the runtime environment for execution. Runtime is when the
module is executed, and its performance and functionality are evaluated. Module
selection at runtime depends on algorithms that associate module definitions

38 M. H. N. Yousefi et al.

with implementations based on performance metrics and requirements, ensuring
the selection of the most suitable implementation.

Service selection algorithms prioritize QoS attributes such as response time,
success rate, and cost [11]. In machine learning development, we must ensure
QoS metrics while satisfying performance requirements, like accuracy and Mean
Squared Error (MSE) [17]. Addressing the interdependence of metrics is crucial,
considering modules correlations and user requirements correlations [27,33].

Our vision’s module selection consists of three primary stages, each present-
ing unique challenges:
– candidating: find suitable module implementations for a module definition.
– ranking: order top-performing module implementations for a scenario.
– choosing: determine if updating the production module is worthwhile.

Challenges during the candidating phase include ensuring implementation
satisfaction of the module definition and designing a scalable find-matching algo-
rithm. The level of granularity poses another challenge, as a module implemen-
tation may be a composite module. In our vision, find-matching algorithms’
input is the YAML-based descriptions of module definition and implementation.
Analogous to web-service selection [16], we incorporate the structural-semantic
approach enhances the candidate identification phase, using domain ontology
concepts, similarity measures, and structural properties analysis to select suit-
able module implementations.

Defining the scenario presents a significant challenge during the ranking
stage, given its reliance on variable factors such as incoming data streams, sens-
ing and operational environments, and requirements. The subsequent difficulty
lies in forecasting future scenarios and the corresponding performance of each
individual module within these hypothetical situations. In our vision, we propose
a pipeline incorporating a scenario prediction algorithm and a metamodel. This
metamodel is designed to estimate module performance utilizing the historical
data collected via monitoring modules.

Finally, the choosing phase entails the critical decision of whether to update
the existing module in the production environment, taking into account the costs
of redeployment and possible non-optimal performance measures. The effective-
ness of this phase is inextricably linked to the successful execution of the ranking
stage and the accuracy of future scenario prediction. Furthermore, it must take
into account the distinct overheads and deployment costs that may be associated
with different modules.

Designing a reliable and fast adaptive module selection involves numerous
interconnected choices across all phases. Understanding these choices’ influence
on each other and the overall system performance is essential. A holistic approach
is necessary to create a system that can adapt effectively to changing scenarios
and maintain optimal performance across various scenarios.

4.7 Life Cycle Management

Software life cycle management covers stages from inception to maintenance of
a software product. This process ensures software meets user and stakeholder

Machine Learning Development with Service-Oriented Computing 39

requirements, adheres to quality standards, and fits cost constraints [23]. Differ-
ences in life cycle management between machine learning (ML) and traditional
software development stem from ML’s data reliance and iterative model training,
contrasted with traditional software development’s deterministic approach.

In ML development, data is crucial throughout the entire life cycle, with data
collection, preprocessing, and feature engineering significantly affecting model
performance [39]. Model training in ML development involves iterative experi-
mentation with algorithms, hyperparameters, and data representations [34]. Val-
idation and testing in ML development involve assessing model generalization to
unseen data, which can be challenging due to overfitting and biases [36]. Deploy-
ing an ML model requires serving it in a production environment, monitoring
its performance, and updating or fine-tuning it as necessary [4].

Traditional software development has adopted CI/CD practices, but ML
development still faces challenges in integrating these practices due to the itera-
tive nature of model training and dependency on data [32]. Emerging tools such
as MLflow [43], TFX [4], and Kubeflow [5] address the unique requirements of
ML CI/CD but still leave room for improvement in aligning these practices with
traditional software development. Ensuring explainable predictions is crucial for
gaining user trust and ensuring ethical use in ML development [2].

Our vision incorporates “What-if” scenarios [35] into ML development to
facilitate validation, testing, and interpretability. Sensitivity analysis can help
identify potential weaknesses or areas of improvement and inform the selection
of features and parameters [38]. Counterfactual explanations provide insights
into how a model might behave if specific features or inputs were different,
supporting better decision-making and model understanding [42]. Automatic
scenario generation techniques allow developers to consider multiple plausible
future scenarios and their potential impacts on ML models or software systems
to inform model development and decision-making.

The What-If scenario component plays a crucial role in our vision, encom-
passing a range of possibilities that significantly enhance our machine learning
module’s adaptability and robustness.

Firstly, It engages with the aspect of “new data vs current modules”. In
essence, it consistently explores the hypothetical question, “What if an alterna-
tive equivalent module was operational instead of the currently running one?”
This means that it generates various scenarios where any active module is
replaced by an equivalent alternative, contributing to the system’s adaptabil-
ity.

Secondly, it contemplates “new modules vs historical data”. Whenever a new
module is introduced, the component seeks to answer, “What if these modules
were already integrated into our system?” This implies that it measures the per-
formance of the newcomer against collected historical data. This is accomplished
either by running the new module or estimating its performance. This provision
of the What-If scenario component aids in adaptive module selection, generating
more data to enhance performance.

40 M. H. N. Yousefi et al.

Lastly, it examines the interaction of “current modules vs unseen data”. Unlike
traditional software development, machine learning development does not allow
for extensive testing. To counter this limitation, the What-If scenario component
learns from the shortcomings of other equivalent modules, generating corner-case
scenarios to test modules against any unforeseen circumstances. This not only
ensures model robustness but also facilitates proactive identification of potential
issues, significantly improving the system’s resilience.

This component greatly aid in the process of adaptive module selection,
enabling the system to collect more data and consequently perform more effec-
tively. Ultimately, incorporating what-if scenarios in ML and traditional software
development can help bridge the gap between these domains by enhancing model
understanding and improving decision-making.

4.8 Adaptive Runtime Controller

A runtime controller is a software component responsible for managing and
orchestrating the execution of applications or services at runtime. It ensures
that the desired state of the system is maintained and adapts to any changes or
requirements that may arise during the execution. Kubernetes, a widely adopted
platform for orchestrating containerized services, has emerged as a best practice
in this context [8]. It offers numerous built-in features and solutions that simplify
application deployment, scaling, and management.

Machine learning development and our adaptive module selection require
frequent changes in the modules, depending on various factors such as the appli-
cation’s needs, user preferences, or environmental conditions. Kubernetes pro-
vides a mechanism called the operator pattern, which can be used to implement
this adaptive behavior [12]. An operator is a custom controller that extends the
functionality of the Kubernetes API by implementing custom control logic and
defining custom resource definitions (CRDs), which are stored in YAML format.

We designed CRDs to possess a one-to-one correspondence with module def-
initions and implementation, thereby making them straightforward and user-
friendly. This allows users to specify their requirements with minimal technical
acumen. In other words, the user-defined module definitions and implementa-
tions serve as the direct input to the controller, which represents the desired
state. The controller then translates this high-level desired state into technical
specifications. Kubernetes CRDs are translated into OpenAPI APIs, enabling
seamless integration with the Kubernetes API server.

The controller continually monitors the actual state of the system in the
cluster and attempts to match it with the desired state defined by the user. We
implemented modules, consisting of both module definition and module imple-
mentation, as Kubernetes CRDs. To support deploying modules as a service
and adaptive module selection mechanism, we developed several custom con-
trollers that extend the Kubernetes API. These custom controllers manage var-
ious aspects of the system, such as container deployment, storage, and commu-
nication.

Machine Learning Development with Service-Oriented Computing 41

However, since it is impossible to cover every possible deployment need and
to ensure the generality of our platform, we designed our CRD in a way that
allows more advanced users to develop their own custom controllers. These cus-
tom controllers can be used in a pluggable fashion, enabling users to tailor the
adaptive runtime controller to their specific needs and requirements. This flexi-
bility allows for a wide range of use cases and applications, making the adaptive
runtime controller a powerful tool for managing complex, dynamic systems.

In summary, the adaptive runtime controller leverages the power of Kuber-
netes and the operator pattern to provide a flexible and extensible platform
for managing and orchestrating modules in various applications. By designing
user-friendly CRDs and supporting custom controllers, the adaptive runtime
controller enables users to implement complex adaptive behavior with ease, ulti-
mately leading to more robust and responsive systems.

5 Conclusion

In this paper, we presented the “Everything as a Module” (XaaM) vision, a
comprehensive approach that aims to empower machine learning development
by addressing the unique challenges in machine learning and deviations from the
best practices of service-oriented software development. We investigated several
aspects, identified the gaps, and proposed solutions for bridging these gaps.

We also introduced an architecture to demonstrate how the various com-
ponents of the XaaM vision can be seamlessly integrated, enabling users to
efficiently manage and orchestrate complex systems. We believe that the XaaM
vision has the potential to revolutionize the way machine learning systems and
software development projects are designed, developed, and maintained, paving
the way for more adaptable, efficient, and scalable solutions. By continuing to
develop and refine the XaaM vision, we hope to contribute to the effective devel-
opment of production-grade machine learning applications.

Acknowledgements. This research has been sponsored by NWO C2D and TKI
HTSM Ecida Project Grant No. 628011003.

References

1. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: 2018 44th euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), pp. 50–59. IEEE (2018)

2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

3. Barry, D.K., Dick, D.: Chapter 3 - web services and service-oriented architectures.
In: Barry, D.K., Dick, D. (eds.) Web Services, Service-Oriented Architectures, and
Cloud Computing (Second Edition), pp. 15–33. The Savvy Manager’s Guides, Mor-
gan Kaufmann, Boston (2013)

42 M. H. N. Yousefi et al.

4. Baylor, D., et al.: TFX: a TensorFlow-based production-scale machine learning
platform. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1387–1395 (2017)

5. Bisong, E., Bisong, E.: Kubeflow and kubeflow pipelines. In: Building Machine
Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive
Guide for Beginners, pp. 671–685 (2019)

6. Bodor, A., Hnida, M., Najima, D.: MLOps: overview of current state and future
directions. In: Innovations in Smart Cities Applications Volume 6: The Proceed-
ings of the 7th International Conference on Smart City Applications, pp. 156–165.
Springer (2023). https://doi.org/10.1007/978-3-031-26852-6_14

7. Briese, C., Schlüter, M., Lehr, J., Maurer, K., Krüger, J.: Towards deep learning in
industrial applications taking advantage of service-oriented architectures. Procedia
Manuf. 43, 503–510 (2020)

8. Burns, B., Beda, J., Hightower, K., Evenson, L.: Kubernetes: up and running.
O’Reilly Media, Inc. (2022)

9. Cao, L.: Beyond AutoML: mindful and actionable AI and AutoAI with mind and
action. IEEE Intell. Syst. 37(5), 6–18 (2022)

10. Chaudhary, A., Choudhary, C., Gupta, M.K., Lal, C., Badal, T.: Microservices
in Big Data Analytics: Second International, ICETCE 2019, Rajasthan, India,
February 1st-2nd 2019. Revised Selected Papers, Springer Nature (2019). https://
doi.org/10.1007/978-981-15-0128-9

11. Ding, Z., Wang, S., Pan, M.: QoS-constrained service selection for networked
microservices. IEEE Access 8, 39285–39299 (2020)

12. Dobies, J., Wood, J.: Kubernetes operators: automating the container orchestration
platform. O’Reilly Media (2020)

13. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present Ulterior
Softw. Eng., 195–216 (2017)

14. Elshawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art
and open challenges. arXiv preprint arXiv:1906.02287 (2019)

15. Fantinato, M., Peres, S.M., Kafeza, E., Chiu, D.K., Hung, P.C.: A review on the
integration of deep learning and service-oriented architecture. J. Database Manage.
(JDM) 32(3), 95–119 (2021)

16. Garriga, M., et al.: A structural-semantic web service selection approach to improve
retrievability of web services. Inf. Syst. Front. 20, 1319–1344 (2018)

17. Gluzmann, P., Panigo, D.: Global search regression: a new automatic model-
selection technique for cross-section, time-series, and panel-data regressions. Stand
Genomic Sci. 15(2), 325–349 (2015)

18. Granlund, T., Kopponen, A., Stirbu, V., Myllyaho, L., Mikkonen, T.: MLOps
challenges in multi-organization setup: Experiences from two real-world cases. In:
2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI
(WAIN), pp. 82–88 (2021)

19. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622 (2021)

20. Idowu, S., Strüber, D., Berger, T.: Asset management in machine learning: state-
of-research and state-of-practice. ACM Comput. Surv. 55(7), 1–35 (2022)

21. Isdahl, R., Gundersen, O.E.: Out-of-the-box reproducibility: a survey of machine
learning platforms. In: 2019 15th International Conference on eScience (eScience),
pp. 86–95. IEEE (2019)

22. Kavikondala, A., Muppalla, V., Krishna Prakasha, K., Acharya, V.: Automated
retraining of machine learning models. Int. J. Innov. Technol. Explor. Eng. 8(12),
445–452 (2019)

https://doi.org/10.1007/978-3-031-26852-6_14
https://doi.org/10.1007/978-981-15-0128-9
https://doi.org/10.1007/978-981-15-0128-9
http://arxiv.org/abs/1906.02287

Machine Learning Development with Service-Oriented Computing 43

23. Kim, G., Humble, J., Debois, P., Willis, J., Forsgren, N.: The DevOps handbook:
how to create world-class agility, reliability, & security in technology organizations.
IT Revolution (2021)

24. Klaise, J., Van Looveren, A., Cox, C., Vacanti, G., Coca, A.: Monitoring and
explainability of models in production. arXiv preprint arXiv:2007.06299 (2020)

25. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine Learning Operations (MLOps):
overview, definition, and architecture. IEEE Access 11, 31866–31879 (2023)

26. Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P.: A survey of devops
concepts and challenges. ACM Comput. Surv. 52(6) (2019)

27. Li, D., Ye, D., Gao, N., Wang, S.: Service selection with QoS correlations in dis-
tributed service-based systems. IEEE Access 7, 88718–88732 (2019)

28. Mboweni, T., Masombuka, T., Dongmo, C.: A systematic review of machine learn-
ing devops. In: 2022 International Conference on Electrical, Computer and Energy
Technologies (ICECET), pp. 1–6. IEEE (2022)

29. Mäkinen, S., Skogström, H., Laaksonen, E., Mikkonen, T.: Who needs MLOps:
what data scientists seek to accomplish and how can MLOps help? In: 2021
IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI
(WAIN), pp. 109–112 (2021)

30. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2021)
31. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and direc-

tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering, 2003. WISE 2003, pp. 3–12. IEEE (2003)

32. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data management challenges
in production machine learning. In: Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 1723–1726 (2017)

33. Rabbani, I.M., Aslam, M., Enriquez, A.M.M., Qudeer, Z.: Service association factor
(SAF) for cloud service selection and recommendation. Inf. Technol. Control 49(1),
113–126 (2020)

34. Raschka, S., Mirjalili, V.: Python machine learning: machine learning and deep
learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd (2019)

35. Ravetz, J.R.: The science of ‘what-if?’. Futures 29(6), 533–539 (1997)
36. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:

Testing machine learning based systems: a systematic mapping. Empir. Softw.
Eng. 25, 5193–5254 (2020)

37. Ruf, P., Madan, M., Reich, C., Ould-Abdeslam, D.: Demystifying MLOps and
presenting a recipe for the selection of open-source tools. Appl. Sci. 11(19), 8861
(2021)

38. Saltelli, A., et al.: Global sensitivity analysis: the primer. John Wiley & Sons (2008)
39. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances

in Neural Information Processing Systems 28 (2015)
40. Symeonidis, G., Nerantzis, E., Kazakis, A., Papakostas, G.A.: MLOps - definitions,

tools and challenges. In: 2022 IEEE 12th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0453–0460 (2022)

41. Testi, M., et al.: MLOps: a taxonomy and a methodology. IEEE Access 10, 63606–
63618 (2022)

42. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31,
841 (2017)

43. Zaharia, M., et al.: Accelerating the machine learning lifecycle with MLflow. IEEE
Data Eng. Bull. 41(4), 39–45 (2018)

http://arxiv.org/abs/2007.06299

44 M. H. N. Yousefi et al.

44. Zhou, Y., Yu, Y., Ding, B.: Towards MLOps: a case study of ml pipeline plat-
form. In: 2020 International Conference on Artificial Intelligence and Computer
Engineering (ICAICE), pp. 494–500 (2020)

45. Zolkifli, N.N., Ngah, A., Deraman, A.: Version control system: a review. In: Pro-
cedia Computer Science, the 3rd International Conference on Computer Science
and Computational Intelligence (ICCSCI 2018): Empowering Smart Technology in
Digital Era for a Better Life, vol. 135, pp. 408–415 (2018)

Using the Client Cache for Content
Encoding: Shared Dictionary Compression

for the Web

Benjamin Wollmer1,3(B) , Wolfram Wingerath2 , Felix Gessert3 ,
Florian Bücklers3, Hannes Kuhlmann3, Erik Witt3, Fabian Panse1 ,

and Norbert Ritter1

1 University of Hamburg, Hamburg, Germany
{benjamin.wollmer,fabian.panse,norbert.ritter}@uni-hamburg.de

2 University of Oldenburg, Oldenburg, Germany
wolfram.wingerath@uni-oldenburg.de
3 Baqend GmbH, Hamburg, Germany

{fg,bw}@baqend.com

Abstract. As different approaches have demonstrated in the past, delta
encoding and shared dictionary compression can significantly reduce the
payload of websites. However, choosing a good dictionary or delta source
is still a challenge and has kept delta encoding from becoming practi-
cally relevant for today’s web. In this work, we demonstrate that the often
prohibitive costs of dictionary generation exhibited by earlier approaches
can be avoided by simply using cache entries for content encoding: We
divide web pages into different page types and use one actual page of
every type as a dictionary to encode pages of the same type. In an
experimental evaluation, we show that our approach outperforms cur-
rent industry standards by a factor of 5 in terms of compression ratio.
We discuss optimization and content normalization strategies as well as
application scenarios that are possible with our approach, but infeasible
with the current state of the art.

Keywords: Delta Encoding · Web · Shared Dictionary Compression

1 Introduction

Delta encoding is a compression method that reduces the size of a file by only
describing it as a delta (i.e., relative change) with respect to another file using
a dictionary that contains shared content. Our previous work shows how much
data can be saved when compressing web pages by finding the optimal dictio-
nary in the client cache and using it to calculate the delta dynamically [12,13].
However, using the smallest delta for every individual user and file is not feasible
in practice because of huge computational costs and a reduced cache hit rate on

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 45–55, 2023.
https://doi.org/10.1007/978-3-031-45728-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_3&domain=pdf
http://orcid.org/0000-0002-0545-8040
http://orcid.org/0000-0003-3512-5789
http://orcid.org/0000-0003-4991-9432
http://orcid.org/0000-0002-0675-4116
http://orcid.org/0000-0002-1502-1395
https://doi.org/10.1007/978-3-031-45728-9_3

46 B. Wollmer et al.

the CDN level1. Furthermore, client and server communication would suffer by
negotiating what the client cache offers. Current approaches therefore use syn-
thetic dictionaries that are created apriori and have to be made known to client
and server in advance; for example, Brotli [1] compression uses a shared dictio-
nary that is part of every major browser distribution and contains generic tokens
from web content. Approaches to use custom dictionaries for individual websites
have been implemented [2,4], but ultimately failed because of the high complex-
ity and computational costs of regenerating and redistributing new dictionaries
after website deployments [7].

In this work, we show how the process of choosing dictionaries can be simpli-
fied to a degree that allows it to happen at transmission time, while still main-
taining a compression ratio comparable to today’s static approaches. Instead of
creating a synthetic dictionary or finding the smallest delta possible, we map
every web page (i.e., file) to exactly one similar existing page as a dictionary.
Dictionaries in our approach are thus predefined and therefore require neither
costly computation nor negotiation when requesting new content. This opens up
various possibilities for improving infrastructure efficiency and user-perceived
performance in the web.

We make the following contributions:

C1 Simplification of Dictionary Selection
After discussing related work in Sect. 2, we show how the selection of a dic-
tionary can be simplified by simply choosing a random page from a set of the
same page type.

C2 Evaluation with Real-World Data
While shared dictionary compression is not available in any browser yet, we
use real-world data of Speed Kit’s caching architecture in Sect. 3 to calculate
the expected impact of our approach on the compression ratio.

C3 Practical Considerations & Open Challenges
In Sect. 4, we discuss how the complexity of shared dictionary compression
can be encapsulated in a CDN-like infrastructure to make our approach avail-
able as a plugin to existing websites. We also present lines of future research
to enable instant page load times through extensions of our work, such as
predictive preloading of web content or transformations of the dictionary files
to effectively turn them into generic templates (akin to app shells known from
progressive web apps).

2 Related Work

Delta Encoding describes a file as a sequence of copy and delete instructions
to build it from another file. While no implementation is used in major web
browsers today, there have been efforts to include delta encoding in the HTTP

1 Content delivery networks (CDNs) accelerate content delivery by caching resources
that are requested by multiple clients [6]. This is obviously not possible for deltas,
if they are computed for individual users.

Using the Client Cache for Content Encoding: SDC for the Web 47

standard by Mogul et al. [5]. While they showed that calculating the delta from
an old version to a new one can significantly reduce the payload, they did not
consider deltas between different files or a shared dictionary. VCDIFF, one of
the most prominent differentiation algorithms, was proposed by Korn et al., as
well as the name for the format of said algorithm [3]. There exists an open-source
implementation by Google2.

Shared Dictionary Compression algorithms use a dictionary for multiple
files instead of a dedicated dictionary for each file. Zsdt [2] or FemtoZip3 can
be used with a shared dictionary, but they have yet to be used for web con-
tent. Currently, the only exception in the context of the web is Brotli. Despite
the other approaches, Brotli uses a static dictionary known to the encoder and
decoder [1]. As a result, the dictionary does not need to be transferred. While
Brotli is currently the only supported shared dictionary algorithm for all major
browsers, its custom dictionary capabilities are currently unavailable in all major
implementations. However, there are attempts to bring shared dictionary com-
pression with Brotli to the major web browsers [9]. All of the above mentioned
shared dictionary compressors are able to train a custom dictionary from a set
of given files. Shared Dictionary Compression over HTTP (SDCH) was devel-
oped by Google [4]. The basic idea was to push dictionaries to the browser so
that the browser could use those to calculate the delta with VCDIFF to newly
requested files. While this feature was available in Chrome, it did not get well
adapted by the community: There are reports from LinkedIn claiming they could
reduce their payload by up to 81% for certain files [7], but they also stated that
the dictionary calculation took longer than their release cycles. Due to the low
adoption, SDCH was eventually unshipped [8].

Speed Kit is an architecture developed by Baqend that enables caching
dynamic content (e.g., HTML files) and various other performance optimizations
for websites [10] as well as an extensive real-user monitoring (RUM), processing
more than 650 million page loads every month [11]. We use Speed Kit’s RUM
data for our evaluation and discuss opportunities for implementing our approach
in the Speed Kit architecture in Sect. 4.

3 Selecting Raw Files as Dictionaries

Training a dictionary for shared dictionary compression usually involves an algo-
rithm that analyzes hundreds of files to be compressed with the dictionary to be
trained. The main goal is to find common strings (or byte arrays) across different
files and to extract them into the dictionary. Web pages are especially well-suited
for this kind of compression as they typically share many common strings like
div tags or CSS selectors. Also, websites often contain repeating elements which
are present on almost every page, such as the navigation header, the logo, search
components, or the footer. Pages on a website can further often be categorized
by their page type that subsumes a set of pages with the same purpose. Web
2 https://github.com/google/open-vcdiff.
3 https://github.com/gtoubassi/femtozip.

https://github.com/google/open-vcdiff
https://github.com/gtoubassi/femtozip

48 B. Wollmer et al.

analytics tools like Google Analytics4 routinely distinguish pages by their type,
so that our approach can use the page type information without any overhead
as it is readily available in virtually any production environment5. For example,
e-commerce websites typically define at least the product and listing page types.
While a page of type product describes a product on the website, a page of type
listing aggregates products of the same category. These pages are often generated
with templates on the server side, like handlebars6 or twig7, and therefore share
a lot of markup code by design. Transferring these repeating parts with every
request is still the standard for server-side rendering. We argue that these sim-
ilarities are sufficient to use pages8 of the same page type as a dictionary. This
has the additional benefit, that we can just use a visited page as a dictionary,
without the need of transferring an actual dictionary.

P1 P2* P3

Product HTMLs

Server Client

Cache

P3

P2*

Δ Δ

GET /p3.html

11

12

10

13 14

15

Fig. 1. The server marks one regular HTML of every page type as a dictionary(*). If
a client has already seen this HTML (P2), it can now use it as a dictionary to only
request small deltas to the requested file (P3), instead of the whole file.

Figure 1 shows the general idea of our approach. The server chooses one
dictionary for every page type (product in this case) and tags it (product 2 here)
(Step 0). This can be precomputed once and then be used by every request.
Note that this dictionary is just a regular HTML, but with a tag (e.g. HTTP
header) to mark it as a dictionary. Each website would have as much dictionaries
as it has page types and the dictionaries are not client specific, since every user
will use the same set of dictionaries. As a result the server would only handle
a couple of dictionaries. In the depicted case, the client cache already has the

4 https://analytics.google.com/analytics/web/provision.
5 The categorization within those page types is implemented by the website owner,

e.g. by URL regex.
6 https://handlebarsjs.com/.
7 https://twig.symfony.com/.
8 We only use pages within the same website as a dictionary, since browsers would

prohibit sharing content across different domains.

https://analytics.google.com/analytics/web/provision
https://handlebarsjs.com/
https://twig.symfony.com/

Using the Client Cache for Content Encoding: SDC for the Web 49

dictionary (Step 1), this can happen through preloading or by regularly visiting
the page (c.f. Section 4.1). The client then requests product 3, indicating it has
product 2 in its cache (Step 2). The server computes the delta between product
2 (the dictionary) and product 3 (Step 3) and sends it to the client (Step 4).
The client then applies the delta to product 2 and receives product 3 (Step 5).

3.1 Evaluation

As of today, no major browser distribution supports shared dictionary algorithms
with custom dictionaries. Therefore, we evaluated the expected benefits of this
approach by compressing real-world HTML files and leave tests using browser
implementations as a task for future work, to be conducted after release of
the required browser features. We used Brotli as the compressor, since there
are efforts to make Brotli’s custom dictionaries available within web browsers
(cf. Section 2). As we also have shown in our previous papers [12,13], Brotli can
achieve the highest compression ratio for shared dictionary compression and also
excels in decompression speed [1]. We measured our approach’s compression and
decompression time with Brotli on levels 6 and 11. Level 6 is essential since it is
the default level used for dynamic content. Level 11 can be used for static content,
which usually results in better compression ratios but a worse compression time.
The hardware we used in this experiment consists of a Ryzen 5950x, 64 GB
3600MHz RAM and a PCI 4.0 SSD to measure the timings.

The dataset is provided by Speed Kit and contains HTML files of the most
requested files of the last three days for six different websites. These are all e-
commerce platforms. We used the two most common page types for this work:
listing and product. We fetched a total of 1420 samples of the most requested
HTML pages, evenly distributed across all pages and pages types. For each page
type and website combination, we used every page as a dictionary for all other
pages of the same page type.

Fig. 2. Comparing the page-type dictionary to Brotli’s default dictionary shows that
our approach can save around 88% of transferred data.

50 B. Wollmer et al.

Size. Figure 2 shows how the data saving is distributed across the different
page types. We chose compression level 11 to show the best possible output, and
as shown, we could reduce the payload by 88% of Brotli compression with the
standard dictionary – the mean size of those deltas where in the range of 9 kB.
As a comparison, the maximum TCP package size is 64 kB. The files can be
small enough to fit into the initial congestion window, which might improve the
download performance. The relative results for Brotli on level 6 look similar and
are left out because of space restrictions.

Fig. 3. Generally, all analyzed websites benefit from the page-type dictionary; some
pages can save up to 93% of the size achieved by Brotli’s default.

The compression ratio was relatively stable within each website. Figure 3
shows the compression ratio for each website. The first four websites where able
to save more than 90% of the data, compared to Brotli’s default dictionary.
Website 3 performed exceptionally well, with a median saving of 93% of Brotli
size with its standard dictionary. Furthermore, while websites 5 and 6 did not
perform as well as the first four, they were still far ahead of the standard Brotli
compression. There was also no case where the dictionary approach suffered
from a worse compression ratio than the standard Brotli compression and is a
considerably safe alternative.

Performance. As Fig. 4a indicates, the custom dictionary also resulted in a
slightly faster compression time for most pages. This was less significant for the
default compression level 6, but on level 11, there were time savings for up to a
second. As Fig. 4b shows, the decompression time was generally stable through
different compression levels. But since the smaller dictionaries resulted in fewer
instructions, there was also a slight but negligible improvement (<3ms).

Using the Client Cache for Content Encoding: SDC for the Web 51

Fig. 4. Comparing the absolute difference using the custom dictionary to the standard
Brotli dictionary shows that the custom dictionary, almost in all cases, outperforms
the standard general purpose dictionary.

4 Practical Considerations

Using page-type dictionaries is feasible in practice. However, there are still some
practical considerations.

4.1 Downloading the Dictionary

As with every shared dictionary approach, this approach only works with a
given dictionary. Therefore, we cannot optimize the first-page load. But when
should we download the dictionary? A naïve approach would be to split the first
load of a journey9 into the dictionary and the delta and then download them
simultaneously. This approach has two critical problems: First, we introduce a
dependency within the critical rendering path. Normally, the browser can read
the HTML as a stream and start its work after receiving the first chunks, e.g.,
to resolve dependencies. While the decompression is streamable, it can only be
started if the dictionary is available. The dictionary itself is likely to be bigger
than the actual compressed file. As a result, the compressed file has to wait for the
dictionary, and we are essentially disabling the streaming process and therefore

9 A journey describes multiple consecutive page visits of one user.

52 B. Wollmer et al.

slowing down the rendering process. Second, our data showed that doing so
increases the total transferred data. This is unsurprising since we transfer all
data needed and the decompression operations.

Intuitively, one could also lazy load the dictionary while the browser is idle.
While this would not affect our performance, we still only shift the size problem.
Because now, the second page load is in total increased and only pays off after
loading a third web page. The solutions to this gamble are limited. One solution
would be to download the dictionary as a delta from the first page load while
idling. In total, this would already payoff with the second page load, without
affecting the performance of the first page load. The drawback is that the server
cannot precompute this delta since the users can use every page as an entry to
the website (e.g., through a google search or a link). This may not be a problem
since the calculation is usually in the range of milliseconds and is not time
critical because we are preloading this request. However, this approach will only
work for static content. Because personalized content usually gets dynamically
generated and will not be cached by the server. Caching it on the server side
to compute the dictionary delta later will result in some kind of sticky sessions,
which are unfavorable in a distributed system due to scalability reasons. So far,
we have only talked about new users to a website. This problem does not exist
for returning users. They can fully benefit from the first page load of a session
and, as described in Sect. 3, are likely to shrink the whole amount of HTML
bytes to the size of one HTML file. Of course, longer sessions benefit even more
from this approach.

4.2 Creating Template Dictionaries

Since server rendered pages are built on templates (cf. Section 3), one could also
use this property by simply rendering an "empty" page and using it as the dictio-
nary for this page type. A product page could be rendered without any product
information. This template should still be a valid HTML file to be renderable.
The dictionary can then act as a proxy once a page of this type is requested. Like
single-page applications, the browser can render this proxy template while the
actual delta is requested. Dynamically replacing the rendered template has some
caveats, like double javascript execution, and may need adjustment, as described
in [10], but could improve user-perceived performance. And while there are algo-
rithms to find common strings in a set of files (cf. Section 2: femtozip, zstd), to
the best of our knowledge, there is currently no algorithm available to extract a
valid HTML subset of a set of given HTML files. While developers could extract
said template by modifying their template engine, this approach would not be
feasible from a delta infrastructure on top of existing systems. To make delta
encoding feasible, this needs to be resolved. To test this approach, one could
choose the most straightforward way imaginable: Just opening a random HTML
file of a page type for a specific website and removing content that is specific
to this page and may change for another one, making sure that we still end up
with a valid HTML file. Since no specific domain knowledge is needed and the
page types are typically limited, this process could quickly be done. However,

Using the Client Cache for Content Encoding: SDC for the Web 53

more research for a templating algorithm is needed to automate and scale this
templating approach.

However, by deleting the text, the content collapses and will increase in size as
soon as the text of the delta arrives. This is generally poorly received by users and
should be avoided. Therefore, one can change the template generation process
from deleting the content to hiding it via the CSS attribute visibility=‘hidden’.
The increase in file size of the additional CSS attribute is neglectable since these
additions are just a few bytes after compression. Since this template still has the
content, it can again be used as a preloaded HTML and instantly be rendered.

4.3 Dictionary Transitions

As described in Sect. 3, most pages share the same header and footer. And even
though the main content does not share many similarities, compressing one page
type dictionary to another generally results in reasonable compression ratios.
This indicates that the other dictionaries can be easily derived after the browser
is populated with an arbitrary dictionary. Therefore, it can also improve per-
formance for the first page of an unseen page type. The same also applies to
updating deprecated dictionaries to the newest version. Since the dictionaries
are regular HTML files, they are invalidated using Speed Kit’s approach [10]. If
a deprecated dictionary is being used, the server can always just fallback to a
regular, non-delta response.

4.4 Predictive Preloading

Preload prediction determines which pages a user will likely navigate soon and
download them beforehand so that they are already available in the cache. The
page can then be instantly served from the cache without downloading it again.
This plays well with page-type dictionaries. While using a page-type dictionary
for compression entirely discards the dictionary calculation process, it also serves
as an actual page and is, therefore, present in the browser cache. With preload
prediction data, this dictionary can be chosen wisely to increase the cache hit
rate. Alternatively, one could use a highly frequented page, like a product adver-
tised on the home page.

4.5 Shared Dictionary Compression at Scale

As shown in Sect. 3, we can save 88% of the HTML payload. Applying these
numbers to the statistics provided by Similar Web10, this approach could save
700TB a month, just for the top 50 e-commerce websites. But shared dictionary
compression failed in the past due to its high complexity and slow adoption.
Adopting shared dictionary compression on an architecture like the one provided
by Speed Kit can eliminate this complexity for website providers and make
shared dictionary compression available as a plugin. Of course, this is also of
10 https://www.similarweb.com/top-websites/e-commerce-and-shopping/.

https://www.similarweb.com/top-websites/e-commerce-and-shopping/

54 B. Wollmer et al.

interest to the user. According to Similar Web, an average user journey consists
of 7.5 page loads. Depending on the website, this approach could download the
whole journey of HTML files for the byte "price" of one HTML (cf. Section 3.1).

5 Conclusion

In theory, shared dictionary compression (SDC) seems like the perfect fit for
transmitting web content as it can result in significantly better compression
ratios compared with today’s web compression standards such as Brotli. In prac-
tice, however, SDC has yet to be adopted in a web context, because negotiating
dictionaries between client and server has always turned out prohibitively com-
plex. In this paper, we show that HTML pages from the client cache can be
used as dictionaries to reduce the payload of HTML files by up to 88% for single
pages, as soon as browser implementations add support for custom dictionar-
ies with Brotli. In evaluating the compression ratio for our approach, we show
that the benefit of choosing the smallest delta is negligible when comparing it to
using an arbitrary file as a dictionary. We finally discuss how our approach could
innovate web content delivery through mechanisms like predictive preloading of
web content that are not feasible with the current state of the art.

References

1. Alakuijala, J., et al.: Brotli: a general-purpose data compressor. ACM TOI 37(1),
1–30 (2018)

2. Collet, Y., M. Kucherawy, E.: Zstandard Compression and the ’application/zstd’
Media Type. RFC 8878, February 2021

3. Korn, D., MacDonald, J., Mogul, J., Vo, K.: The VCDIFF Generic Differencing
and Compression Data Format. RFC 3284, June 2002

4. McQuade, B., Mixter, K., Lee, W.H., Butler, J.: A proposal for shared dictionary
compression over http (2016)

5. Mogul, J., et al.: Delta Encoding in HTTP. RFC 3229, January 2002
6. Pathan, M., Buyya, R.: A Taxonomy of CDNs, pp. 33–77. Springer, Heidelberg

(2008). https://doi.org/10.1007/978-3-540-77887-5_2
7. Shapira, O.: SDCH at LinkedIn (2015). https://engineering.linkedin.com/shared-

dictionary-compression-http-linkedin. Accessed Mar 2023
8. Sleevi, R.: Intent to Unship: SDCH (2016). https://groups.google.com/a/

chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ. Accessed Mar
2023

9. Weiss, Y., Meenan, P.: Compression dictionary transport (2023). https://github.
com/WICG/compression-dictionary-transport. Accessed Mar 2023

10. Wingerath, W., et al.: Speed Kit: A Polyglot & GDPR-Compliant Approach For
Caching Personalized Content. In: ICDE, Dallas, Texas (2020)

11. Wingerath, W., et al.: Beaconnect: continuous web performance A/B-testing at
scale. In: Proceedings of the 48th International Conference on Very Large Data
Bases (2022)

https://doi.org/10.1007/978-3-540-77887-5_2
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://engineering.linkedin.com/shared-dictionary-compression-http-linkedin
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/nQl0ORHy7sw/HNpR96sqAgAJ
https://github.com/WICG/compression-dictionary-transport
https://github.com/WICG/compression-dictionary-transport

Using the Client Cache for Content Encoding: SDC for the Web 55

12. Wollmer, B., Wingerath, W., Ferrlein, S., Panse, F., Gessert, F., Ritter, N.: The
case for cross-entity delta encoding in web compression. In: Proceedings of the
22nd International Conference on Web Engineering (ICWE) (2022)

13. Wollmer, B., Wingerath, W., Ferrlein, S., Panse, F., Gessert, F., Ritter, N.: The
case for cross-entity delta encoding in web compression (extended). J. Web Eng.
22(01), 131–146 (2023)

Smart*

Privacy in Connected Vehicles:
Perspectives of Drivers and Car

Manufacturers

Andrea Fieschi2 , Yunxuan Li1(B) , Pascal Hirmer1 , Christoph Stach1 ,
and Bernhard Mitschang1

1 IPVS, University of Stuttgart, Stuttgart, Germany
{yunxuan.li,pascal.hirmer,christoph.stach,
bernhard.mitschang}@ipvs.uni-stuttgart.de

2 Mercedes-Benz AG, Stuttgart, Germany
andrea.fieschi@mercedes-benz.com

Abstract. The digital revolution has led to significant technological
advancements in the automotive industry, enabling vehicles to process
and share information with other vehicles and the cloud. However, as
data sharing becomes more prevalent, privacy protection has become
an essential issue. In this paper, we explore various privacy challenges
regarding different perspectives of drivers and car manufacturers. We also
propose general approaches to overcome these challenges with respect to
their individual needs. Finally, we highlight the importance of collabora-
tion between drivers and car manufacturers to establish trust and achieve
better privacy protection.

Keywords: Connected Vehicles · Privacy · Anonymization

1 Introduction

Connected Vehicles (CVs) are a revolutionary advancement in the field of trans-
portation that combines traditional vehicles with modern technology to enhance
their capabilities. CVs are vehicles that are equipped with modern applica-
tions (apps) and are capable of accessing the internet, collecting and processing
real-time data from multiple sources, and interacting with their external envi-
ronments [3]. With these capabilities, CVs have become a significant source of
data extraction, providing insights into driving behavior, vehicle performance,
and other valuable data points. While these vehicle data can be useful for achiev-
ing autonomous driving or providing personalized services to drivers, they also
contain sensitive information that could potentially identify the driver. Hence,
privacy protection has become an emerging concern in the automotive industry.

Supported by SofDCar (19S21002), which is funded by the German Federal Ministry
for Economic Affairs and Climate Action, Mercedes-Benz AG, GSaME.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 59–68, 2023.
https://doi.org/10.1007/978-3-031-45728-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_4&domain=pdf
http://orcid.org/0009-0007-9126-6021
http://orcid.org/0000-0003-1907-9591
http://orcid.org/0000-0002-2656-0095
http://orcid.org/0000-0003-3795-7909
http://orcid.org/0000-0003-0809-9159
https://doi.org/10.1007/978-3-031-45728-9_4

60 A. Fieschi et al.

In domains such as IoT and smartphones, privacy protection solutions are
available. Nonetheless, Connected Vehicle Environments (CVEs) possess specific
characteristics that need to be taken into account [16]. The solution proposed
in other domains can be used as inspiration but not directly translated to the
CV domain. While CVs can communicate with various entities in CVEs, such
as roadside units, this paper focuses on privacy protection issues regarding data
exchange between vehicles and the cloud. For instance, car manufacturers collect
data in order to provide services. This data exchange and its privacy implications
are at the center of attention in our discussion.

In our previous work [7], we explored the significance of privacy in CVEs,
listing examples of data collection use cases, e.g., battery improvement, live traf-
fic monitoring, and “pay how you drive” car insurance. However, stakeholders,
such as individual drivers and car manufacturers, hold varying interests in pri-
vacy protection in CVEs. While drivers have a vested interest in protecting their
personal information, such as location and driving habits, car manufacturers seek
to improve their products through the analysis of privacy-protected data.

In this paper, we analyze the current situation, outline a first approach to
overcome the discussed privacy challenges while accommodating the individual
needs of both parties, and define the ground for future research. This paper
explores the key privacy challenges in the CVE from the perspectives of drivers
and car manufacturers, which are discussed in Sect. 2 and Sect. 3, respectively.
Thus, in Sect. 4, we outline the general requirements for cooperation and building
trust between drivers and car manufacturers. Finally, we summarize the paper
and give an outlook on future work in Sect. 5.

2 Privacy from the Driver’s Perspective

Based on domain expert discussions, we have derived a privacy attack model for
CVEs from the driver’s perspective. As depicted in Fig. 1, this model considers
the underlying CV as trusted-and-secure. This implies that any personal data
stored in the CV cannot be accessed or shared without the driver’s consent, and
all computations performed within the CV are secure and resilient to attempts
to compromise them. However, remote services, such as applications whose com-
putation is executed external to a CV, are considered as honest-but-curious.
That is, these services comply with legal and driver-consent policies regarding
the processing, storage, and sharing of personal data. Nevertheless, as drivers
lost control of their personal data when sharing them with remote services, they
still have concerns that remote services would derive sensitive information from
the collected data.

2.1 Privacy Challenges for Drivers

Despite the desire of drivers to protect their personal data, their general demand
is to continue utilizing as many user-dependent applications enabled by the CVs
as possible, such as using navigation or fatigue detection services. To ensure

Privacy in CVs: Perspectives of Drivers and Car Manufacturers 61

Uses

Statistic

Apps

Analytic
Provide Service

Share Data

Trusted and
Secure

Honest but
Curious

Hard Privacy Soft Privacy

Fig. 1. Privacy Attack Model from Driver’s Perspective for Car to Cloud Environment

the functionality of these services, certain vehicle data must be shared, such as
location data for navigation services. Furthermore, sharing a greater quantity
and higher quality of data allows the service provider to conduct more detailed
analyses and, therefore, offer better customized services. However, the increased
volume and precision of the data shared by drivers also pose greater privacy
risks, as they may reveal sensitive information about their driving behavior and
activities. Thus, a challenge of preserving privacy in CVEs is to balance the
trade-off between privacy protection and service quality.

Another challenge of preserving privacy in CVEs is to achieve Situation-
Awareness [11]. As the sensitivity of a data point is related to when and where
as well as for what purpose the data is being collected [8], drivers’ privacy
requirements can also change when the situation changes. For instance, drivers
may agree to share their unmodified location and speed data with a data col-
lection company for analysis purposes when they are driving adhere to traf-
fic regulations. However, in the occurrence of an accidental speeding violation,
drivers would revise their privacy requirements to hide their speeding behavior.
Hence, approaches to privacy protection in CVEs must consider the dynamic
and context-dependent nature of drivers’ privacy needs.

Although privacy is a highly concerning issue in many domains, users often
struggle to manage their privacy settings effectively. For instance, Ramokapane
et al. [13] found that many smartphone users find it difficult to customize privacy
features provided by their smartphone manufacturers, as they lack knowledge on
how to configure them. From our research project, we noticed that the aforemen-
tioned challenge is magnified in the automobile domain since CVs typically have
significantly more data sources and potential data consumers than smartphones.
Consequently, managing the fine-graind and situation-aware privacy policy for
a CV can easily create information and choice overhead for drivers. As a result,
the difficulties in managing privacy settings would contribute to the so-called
“privacy paradox” [12], where people claim to be concerned about their privacy
but still share a lot of private information.

62 A. Fieschi et al.

2.2 Privacy Protection Approaches for Drivers

In 2008, Danezis [6] proposed two concepts of privacy: hard privacy and soft
privacy. The concept of hard privacy aims to minimize the amount of personal
data shared, thereby decreasing the level of trust required between the data
subject and the data collector. On the other hand, the concept of soft privacy
assumes that the data subject does not have full control of their personal data
and, therefore, has to trust the honesty and competence of data controllers.
Under this assumption, soft privacy aims to ensure consent-based data processing
through policies, access control, and audit.

As depicted in Fig. 1, we argue that both concepts are essential in preserving
privacy in CVE. The general concept is to achieve hard privacy before vehicle
data leave the CV while ensuring soft privacy for data that is shared with differ-
ent remote services. To achieve data minimization of hard privacy, services must
provide drivers with essential metadata, such as what vehicle data are collected
and for what purpose. They should also support drivers in managing their pri-
vacy policies in a fine-granular manner. Based on the assumption that services
are honest-but-curious, the service’s metadata is considered reliable and will be
used to conduct data minimization.

In accordance with the concept of hard privacy, drivers are advised to block
any unnecessary data sharing for the desired service functionality based on the
information provided in the services’ metadata. This would provide a basic level
of privacy protection against the curious nature of different services. For the
data that are necessary for the computation of the desired service, data mini-
mization can still be achieved through different approaches, such as reducing the
accuracy of the vehicle data. To balance the trade-off between privacy protection
and service quality, different Privacy Enhancing Technologies (PETs) [15], such
as obfuscation and pseudonymization, can be utilized to distort or anonymize
vehicle data so that the sensitive information is removed and the perturbed data
are still precise enough to ensure service functionality. Furthermore, there is
the challenge of handling scenarios where the privacy requirements of drivers
may change depending on the situation. As a result, different PETs used in CVs
should be developed in a modular manner, and the data processing in CVs should
also support live adaptation, allowing for the dynamic integration, replacement,
or removal of PETs in the vehicle’s data pipeline.

To utilize service functionalities, it is inevitable that drivers have to share cer-
tain vehicle data with the corresponding service providers. As drivers no longer
have control over the shared data, we can only ensure soft privacy for them. To
mitigate privacy leakage risks, a Service Level Agreement (SLA) can be estab-
lished between the driver and the service provider before the driver uses the
service for the first time. Through the privacy section of the SLA, the service
provider should enable drivers to explicitly express how their shared data can
be further processed, stored, or published. However, as drivers usually do not
have insight into data processing, it is important for them to receive transparent
information regarding how their data is being processed by the service provider.

Privacy in CVs: Perspectives of Drivers and Car Manufacturers 63

Additionally, to assist drivers with a basic understanding of privacy in cus-
tomizing their privacy policies for CVs and managing their privacy preferences in
SLAs, user-friendly privacy management mechanisms, such as the privacy con-
text model dedicated to CVs [10], have to be developed. Overall, by adopting
the concepts of hard and soft privacy, we can strike a balance between protecting
drivers’ privacy while still ensuring various service functionalities.

3 Privacy from the Car Manufacturer’s Perspective

From the point of view of a data-collecting company, privacy protection is impor-
tant for multiple reasons. Firstly, companies have an ethical obligation to ensure
privacy protection for their users, thereby adhering to ethical guidelines and min-
imizing the risk of privacy violations. Secondly, legal compliance is crucial, as the
General Data Protection Regulation (GDPR), enforced by the European Union,
mandates strict restrictions and limitations on data collection to safeguard user
privacy. Lastly, the implementation of robust data protection measures can be
particularly appealing to customers. Prioritizing privacy and making it a core
value of a company will help gain further trust with the general public and add
value to its products.

3.1 Privacy Challenges for Car Manufacturers

From a data science perspective, CVs represent an immensely valuable source of
data, as they allow manufacturing companies to monitor how their products per-
form in real-world scenarios, gain insights into usage patterns and preferences,
and identify opportunities for improvement or redevelopment in the next itera-
tion. However, it is important to note that the data collected from these vehicles
can be closely linked to the behavior of the drivers. As a result, the improper
use of CVs can lead to the risk of leaking personal information, such as the
position of the car, their general behavior behind the wheel, and other habits
that are kept inside the vehicle. It is imperative that this information remains
secure and inaccessible to unauthorized parties, and if possible not linkable to a
specific person, i.e. anonymized. Drivers must have the assurance that any data
they choose to share will only be used to enhance their service and experience
and that none of the collected information will be used against them. Therefore,
manufacturers must ensure that adequate privacy measures are in place.

With regard to privacy, data collection use cases can be mainly divided in
user dependent and user independent use cases [7]. These come with different
and specific privacy challenges. User dependent use cases need to collect data
and send information back to the same specific user, so the data need to be
protected but connected to an identifiable source. User independent use cases
collect data to then provide a service to entire fleets, anonymization becomes
an option with the extra challenge of guaranteeing a high level of anonymity. In
Fig. 2 we have a graphical representation of these two kinds of data collection.

64 A. Fieschi et al.

It should be noted that the collection of data from cars raises privacy con-
cerns, not only for the driver but also for individuals who are merely in the
vicinity of the vehicle. Camera data, for instance, may include images of pedes-
trians that could potentially identify them and disclose their whereabouts at a
specific time. Additionally, companies must ensure that they do not collect data
that goes beyond what is necessary. If a driver declines to share their identity
in connection with the collected data, the data collector must ensure that the
driver’s identity cannot be inferred by analyzing patterns in the data.

Fig. 2. Manufacturer’s Perspective: Single customer-related services (left) and fleet-
focused services (right)

Offering strong privacy protection policies presents several challenges and dif-
ficulties for companies. Firstly, drivers must provide consent for data collection,
and the data can only be used for agreed purposes. Any further analysis of the
data is prohibited. Pre-processing may be necessary on board the vehicle before
data transfer, and communication channels must be secure. Another challenge is
the inability to use data retrospectively for unforeseen purposes, requiring new
data collection campaigns and new user agreements.

3.2 Privacy Protection Approaches for Car Manufacturers

If a privacy-conscious company wishes to provide even stronger protection, addi-
tional computational and design efforts are required. Changing data collection
campaigns, such as incorporating new data types to be gathered, may necessi-
tate redesigning and new user agreements have to be stipulated with the driver,
which can prolong the time needed to provide data to analysts. A significant
challenge is information loss, as data privacy often comes at the cost of sac-
rificing some information that raw data would convey. The trade-off between
privacy protection and information content requires consideration, as stronger
protection may necessitate relinquishing additional data.

This shows that privacy is not an element that can simply be added in hind-
sight as a plug-in element to the data flow chain. Privacy needs to be taken
into account during the development of the data collection use case, every pri-
vacy methodology should fit in a frame of privacy by the design. From the early
stage of design the developer should take into account the importance of privacy

Privacy in CVs: Perspectives of Drivers and Car Manufacturers 65

and it’s implications. Important elements to consider are: the data type needed
for the service and how they could be used to violate the users privacy; which
amount of information loss will occur with different PETs; how the data collec-
tion could be structured differently in order to have a better ratio of quality of
service and privacy protection.

A privacy-conscious car manufacturer models its data acquisition scenar-
ios after various privacy-preserving methodologies to protect individual privacy.
These methodologies include differential privacy [5], which involves perturbing
the data to achieve privacy protection; federated learning [9], which processes
the data on-board and collaboratively trains networks; homomorphic encryp-
tion [2], which protects the data during processing without decrypting the infor-
mation; and k-anonymization [14], which groups data-points into equivalence
classes of size k in order to protect the individual’s identity. Each of these privacy-
preserving approaches requires adaptation of the data collection scenario to meet
their respective paradigms. Companies can gain enhanced user trust and com-
petitive advantage by guaranteeing strong privacy policies. The trusted status of
the company can encourage users to share more data, resulting in added value
for the company, subsequently resulting in new and improved products for the
customers. In summary, companies offering strong privacy protection policies
must overcome numerous challenges and obstacles. However, the advantages of
gaining user trust and enhanced value outweigh the challenges. Companies can
achieve this by implementing robust security measures, ensuring transparency,
obtaining user consent, and complying with relevant privacy regulations.

4 Discussion

Privacy protection in CVEs is a complex task, as the perspectives of drivers
and car manufacturers may differ. From a driver’s point of view, preserving
the privacy of their personal data refers to balancing privacy protection and
service quality in their privacy policies. Additionally, the dynamic and context-
dependent nature of drivers’ privacy needs must also be recognized. To over-
come these challenges, we proposed a first approach in this paper, which ensures
drivers’ privacy by utilizing various PETs to achieve hard privacy before any
vehicle data leave the CV and to ensure soft privacy through SLAs for data that
is shared with different remote services.

However, achieving this goal requires the collaboration of remote service
providers and car manufacturers. Primarily, remote services must be transparent
about the data they collect and the purpose for which it will be used. Addi-
tionally, both service providers and car manufacturers should give drivers the
freedom to customize their privacy preferences in a precise manner, which may
include refusing requests for unnecessary vehicle data or reducing the quality
of data that is necessary for the desired service functionality. In return, drivers
must understand that these actions may result in a reduction in service quality.

From the car manufacturer’s perspective, there is a strong interest in making
privacy protection a priority and a key value of their company. That comes at

66 A. Fieschi et al.

their advantage since it also fulfills an ethical obligation and a legal compliance
requirement to protect users’ privacy. Collecting vehicles’ data comes with a var-
iegated constellation of challenges: providing high-performing services without
collecting more data than necessary, implementing a privacy-preserving struc-
ture that allows guaranteeing strong privacy protection, gaining the trust of the
drivers, and having them agree to share informative data about their cars.

A transparent data handling from the manufacturer needs to be matched
with users willing to express their privacy requirements and understand the
risks of agreeing to share data. Understanding that a very low amount of infor-
mation will not allow the service to be top-notch but guarantee a stronger level
of privacy is also a concept that the driver needs to understand fully; this should
by any means come with the implication that top-notch services cannot guaran-
tee privacy protection though, that always needs to be a priority. Drivers that
communicate privacy preferences and well-thought-out boundaries are of highly
valuable worth to a privacy-conscious car manufacturer.

Privacy protection in CVEs is not a one-sided issue. While implementing
excessive PETs within CVs would compromise data quality of shared data, the
scarcity of privacy protections within CVs also shifts greater responsibility to
car manufacturers to meet the driver’s privacy requirements. Thus, PETs used
in CVs must be chosen carefully to enable privacy protection while ensuring
sufficient data quality. However, there are still limited PETs available that are
designed specifically for the privacy protection of CVs. To tackle this challenge,
privacy mechanisms from other domains could be adapted in CVEs. For instance,
the PRIVACY-AWARE concept proposed by Alpers et al. [1] for mobile devices,
or the state-of-the-art PETs summarized by Curzon et al. [4] for smart cities.
Nevertheless, there is still room for developing new PETs dedicated to CVs that
can guarantee privacy without compromising service quality.

Car manufacturers and drivers have various challenges to overcome, various
sets of requirements they need to evaluate, and the common goal of safeguard-
ing people’s privacy. Cooperation between the two parties and efficient as well as
open communication about this topic is the way to be taken to improve privacy
while still allowing services to become more sophisticated. In the meantime, laws
and regulations governing the collection and processing of personal data should
be enhanced and improved regularly to keep pace with technological advance-
ments. With an infrastructure that allows drivers to fully express their privacy
preferences without burdening them with a cumbersome task, and with trans-
parent data handling from the data collectors’ side, the potential for enhanced
privacy protection and improved service performance can be greatly increased.

5 Summary and Future Work

In conclusion, privacy is a crucial factor to consider for both car manufacturers
and drivers. While car manufacturers need to implement robust privacy measures
to protect sensitive data collected from vehicles, drivers need to be aware of their
privacy rights and take steps to safeguard their personal information. Failure to

Privacy in CVs: Perspectives of Drivers and Car Manufacturers 67

prioritize privacy can lead to severe consequences such as data breaches or loss
of trust between manufacturers and customers. Therefore, it is imperative for all
stakeholders to recognize the importance of privacy in the automotive industry
and take appropriate measures to ensure that privacy is protected.

To better understand how car manufacturers can cooperate with drivers
regarding privacy protection, we plan to conduct a user study to comprehend
drivers’ privacy awareness and requirements in CVEs as well as interviews
with domain experts to gain insights into manufacturers’ strategies and legal
constraints. Furthermore, we also plan to research existing PETs specifically
designed for CVEs as well as PETs utilized in other relevant domains to assess
the feasibility and potential applicability of these technologies in the CVEs. This
would help us identify suitable PETs for CVs that can guarantee privacy pro-
tection without compromising service quality. Overall, our research will further
explore the effective approaches and mechanisms that facilitate collaboration in
privacy protection between car manufacturers and drivers in CVEs.

References

1. Alpers, S., et al.: PRIVACY-AVARE: an approach to manage and distribute pri-
vacy settings. In: ICCC’17, pp. 1460–1468 (2017)

2. Armknecht, F., et al.: A guide to fully homomorphic encryption. In: IACR Cryptol.
ePrint Arch., p. 1192 (2015)

3. Coppola, R., Morisio, M.: Connected Car: technologies, issues, future trends. ACM
Comput. Surv. 49(3), 1–36 (2016)

4. Curzon, J., et al.: A survey of privacy enhancing technologies for smart cities.
Pervasive Mobile Comput. 55, 76–95 (2019)

5. Cynthia, D., Aaron, R.: The algorithmic foundations of differential privacy.In:
Found. Trends Theor. Comput. Sci. 9.3-4, 211–407 (2014)

6. Danezis, G.: Talk: introduction to privacy technology (2007). http://www0.cs.ucl.
ac.uk/staff/G.Danezis/talks/Privacy Technology cosic.pdf

7. Fieschi, A., et al.: Anonymization use cases for data transfer in the automotive
domain. In: PerCom-PerVehicle’23, pp. 98–103 (2023)

8. Gharib, M., et al.: An ontology for privacy requirements via a systematic literature
review. J. Data Semant. 9(4), 123–149 (2020)

9. Konečný, J., et al.: Federated optimization: distributed optimization beyond the
datacenter. In: CoRR abs/1511.03575 (2015)

10. Li, Y., et al.: CV-Priv: towards a context model for privacy policy creation for
CVs. In: PerCom-CoMoRea’23, pp. 583–588 (2023)

11. Li, Y., et al.: Ensuring situation-aware privacy for connected vehicles. In: IoT’22.
Association for Computing Machinery, pp. 135–138 (2023)

12. Norberg, P., et al.: The privacy paradox: personal information disclosure intentions
versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007)

13. Ramokapane, K.M., et al.: Skip, Skip, Skip, Accept!!!: a study on the usability of
smartphone manufacturer provided default features and user privacy. In: PoPETs
2019.2, pp. 209–227 (2019)

14. Samarati, P., et al.: Generalizing data to provide anonymity when disclosing infor-
mation (Abstract). In: PODS’98. ACM Press (1998)

http://www0.cs.ucl.ac.uk/staff/G.Danezis/talks/Privacy_Technology_cosic.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/talks/Privacy_Technology_cosic.pdf

68 A. Fieschi et al.

15. Van Blarkom, G., et al.: Handbook of privacy and privacy-enhancing technologies.
In: PISA Consortium, The Hague 198, p. 14 (2003)

16. Wang, H., et al.: Architectural design alternatives based on cloud/edge/fog com-
puting for connected vehicles. IEEE Commun. Surv. Tutor. 22(4), 2349–2377
(2020)

Services in Smart Manufacturing:
Comparing Automated Reasoning
Techniques for Composition and

Orchestration

Flavia Monti, Luciana Silo, Francesco Leotta(B), and Massimo Mecella

Sapienza Università di Roma, Rome, Italy
{monti,silo,leotta,mecella}@diag.uniroma1.it

Abstract. In recent years, there has been an increase interest in using
intelligent methods to control manufacturing processes. Tens of resources
to be modeled and offered as services through Industrial APIs, may be
used in these processes and orchestrated throughout the various supply
chain companies. The orchestration must be flexible and adaptable to
disruption since the status of the various services/resources changes over
time in terms of their cost, quality, and likelihood of failure. Due to the
large amount of services involved and the complexity of their behaviors,
manually making judgments quickly becomes impractical, necessitating
the use of automated solutions to resolve the issue. By relying on the
resources information provided by proper Industrial APIs, we can make
current supply chains flexible and robust. In this work, we investigate the
potential and limitations of automated reasoning techniques to enable
adaptivity and resilience in smart manufacturing.

Keywords: Industrial APIs · Smart manufacturing · Automated
reasoning

1 Introduction

The concept of smart manufacturing, commonly also mentioned as Industry 4.0,
embodies a vision of industrial processes where computing devices are integrated
in most of the manufacturing steps. In particular, industrial processes are sup-
posed to be fully (or mostly) automated, adaptive to changes, flexible, evolvable,
resilient to errors and attentive to the more knowledgeable operators’ skills and
needs.

Nevertheless, processes in current manufacturing landscape, must not be con-
sidered isolated. Instead, they involve several companies along intricate supply
chains networks [3]. Such players co-operate together to accomplish various pro-
duction goals. They consist of loosely coupled, autonomous entities with equal

F. Monti and L. Silo—Contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 69–83, 2023.
https://doi.org/10.1007/978-3-031-45728-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-45728-9_5

70 F. Monti et al.

rights, and their organizational structure is dynamically adapted in accordance
with the tasks to be carried out [33]. Supply Chain Design (SCD) [22] is typically
a difficult job with numerous competing objectives. Facility location planning,
allocation of customers to distribution centers or factories and suppliers selection
are some of them. In addition, recovery strategies are a fundamental tactic for
dealing with disruption events caused, for instance, by broken machines or envi-
ronmental perturbation. The literature contains a variety of heading techniques
[31], including relational strategies such as supply chain collaboration, commu-
nication and information exchange [6]. In this sense, it is essential for alliances
to contribute to quickly recover from disruption and to collaboratively plan with
other supply chain partners. Furthermore, a flexible supply chain network struc-
ture is suitable for developing effective disruption risk recovery strategies [12].

In general, a common goal in this context is the development of the triple-
A supply chain, which consists of the simultaneous implementation of agility –
responding to short-term changes in demand or supply quickly, adaptability –
adjusting supply chain design to accommodate market changes, and alignment,
establishing incentives for supply chain partners to improve performance of the
entire chain [25]. We enrich such a notion by including resilience, as the ability
to react to disruptions along the chain. It is clear that the ability of a system to
adapt to certain conditions, e.g., a rescheduling of the production process, and
the capacity to continue the work despite disruptions, such as the breakdown of a
machine, are two crucial objectives in a smart manufacturing environment. And
besides, these are particularly challenging due to the dynamism and uncertainty
of manufacturing processes. As an example, machines are subject to wear and can
show unpredictable behaviors, so they may often not perform their job properly.

The overall amount of manufacturing resources in the supply chain is substan-
tial. Also, they belong to several different categories including software systems,
machines, robots, and human workers. Each resource offers a specific collection of
capabilities and has unique qualities, e.g., speed, costs, and probability of break.
Noteworthy, the very same functionality can be offered by different resources,
optionally from different categories (e.g., painting a part can be done either by a
machine or by a human), and the execution of a multi-party process requires an
accurate selection of resources in order to be completed in the most convenient
way. Such a selection though, cannot be considered permanent as characteristics
of resources change over time as well as needs and conflicting performance mea-
sures. Additionally, non-trivial constraints between resources may exist, making
the overall task of choosing actions and resources difficult to be performed manu-
ally. In this regard, the employment of Artificial Intelligence (AI) techniques can
simplify the task. In particular, specific automated reasoning techniques though
have their own expressiveness that, in turn, influences the computational costs.

In this paper, we explore how automated reasoning techniques, which are a
specific type of AI, can be used to enable adaptivity and resilience to multi-
party processes in smart manufacturing. In fact, it is claimed that the use of
specialized supporting technologies and techniques enable the advent of AI-
augmented Business Process Management Systems (ABPMSs) [13], an emerging

Services in Smart Manufacturing 71

class of process-aware information systems empowered by trustworthy AI tech-
nology which enhance the execution of business processes with the aim of making
them more adaptable, proactive, explainable, and context-sensitive. To this aim,
as proposed in [5], we model the manufacturing resources as components of a
Service Oriented Architecture (SOA). Each manufacturing resource involved in
the supply chain is a service accessible through Industrial Application Program-
ming Interfaces (APIs). Industrial APIs provide many features like accessing the
selected services, enabling quick integration, monitoring the behavior and status
information, and invoking commands. In particular, with respect to the status,
an Industrial APIs allows to access peculiar information about the Remaining
Useful Life (RUL) of a resource, the cost, and the probability of failure, which
evolves over time. We embed such an approach in a framework able to support
adaptivity and propose different AI methods to assist it.

In order to show the suitability of the different approaches, we apply them
to the tricky case of integrated circuits (chip) manufacturing, analyzing the effi-
ciency, adaptivity, and limitations of the different approaches. Although semicon-
ductor design activities are concentrated in specific regions of the USA, as well
as in Europe and Japan, semiconductor manufacturing is more widely dispersed.
The industries that provide manufacturing inputs and purchase finished semi-
conductor products are often dominated by large, multinational organizations
[26]. In addition, as witnessed by the recent evolution of international political
affairs, this production is strongly influenced by relationships among countries,
which may produce unpredictable effects on the supply chain.

The rest of the paper is structured as follows: Sect. 2 presents a framework
enabling adaptivity in smart manufacturing, while Sect. 3 presents the motivat-
ing case study we analyze. Section 4 presents the various approaches we investi-
gate to compute a resilient and adaptive plan for industrial production. Section 5
compares and discusses the presented approaches. Finally, relevant literature and
concluding remarks are presented in Sect. 6 and Sect. 7, respectively.

2 A Framework Supporting Adaptivity

We propose a service-based framework enabling adaptivity in smart manufac-
turing (see Fig. 1). We identify three main components, i.e., Industrial APIs,
Enactor and Controller, each characterized by fundamental roles.

On the one hand, we enable interoperability between the manufacturing
resources by modeling each of them as a service. The term resource encom-
passes here a wide range of actors including machines, humans, companies and
provided services. Thus, we create a service-based supply chain consisting of a
composition of services. Such services are realized as Industrial APIs. We con-
sider these as APIs provided by the resources and employing specific industrial
protocols (e.g., MQTT, OPC-UA) rather than classical ones (e.g., REST). The
Industrial APIs are used to represent the physical actors and perfectly describe
their functionalities (or tasks). They allow to monitor the behavior and status
information and allow to invoke commands. The core component of the Indus-
trial APIs is a server that allows the management of all the services involved

72 F. Monti et al.

Fig. 1. A service-based adaptive framework

in the process. The server is in turn composed of a WebSocket server and an
HTTP server. Particularly, it connects to the services via WebSockets in separate
communication channels, and exposes a set of APIs to manage external HTTP
requests. The defined APIs allow retrieving both the specification and the cur-
rent state of the services and request the execution of a task to be performed by
a service. Each manufacturing resource is described as a JSON file which is used
by the server to “build” the service. The JSON file contains specific elements:
(i) an id to specify the identifier of the service, e.g., name of the resource, (ii)
some attributes that contain the static characteristics of the service, e.g., actions
and costs, and (iii) some features that contains the dynamic characteristics of
the service, e.g., status, breaking and quality condition. The way attributes and
features are represented varies depending on the scenario in which the Industrial
APIs are used.

On the other hand, the enactor and controller components are responsible
both to manage and enable adaptivity in smart manufacturing. The enactor
acts as a middleware by interfacing with the Industrial APIs in order to check
whether the available services have changed (for instance, because of the wearing
out during the execution, some services may become unavailable). The controller,
which we modeled as a black box, represents the implementation of the adaptive
techniques. It takes as input the specification of the involved resources (in our
case a set of services) and the final target (in our case a manufacturing goal) and
provides as output an adaptive orchestration1. Such an orchestration contains
the specification of the identified services required to reach the final goal. Fol-
lowing the output of the controller, the enactor calls (HTTP requests through
the Industrial APIs) the designed services.

By taking into account the various possibilities for the inputs and outputs of
the controller, a conceptual classification of the potential strategies produced as
output by the controller can be specified. We can distinguish among the deter-
ministic and probabilistic behaviors of manufacturing resources and the complete

1 In a SOA, and in this paper specifically, orchestration and process can be considered
as equivalent.

Services in Smart Manufacturing 73

and under specification of the manufacturing goals. Three distinct categories of
strategies are described in the paragraphs that follow.

Instance Repair. The process behind the supply chain is well-defined. If an
unexpected exception happens (e.g., a machine breaks), automated reasoning is
employed in order to take the states of resources back to the expected ones. In
this case, adaptivity is applied locally, but the overall forthcoming orchestration
(i.e., the remaining part after the exception) remains unchanged.

Instance Planning. Every time that a new process instance is needed, auto-
mated reasoning is applied taking as input the most recent information about
resources and producing as output an entire orchestration specification. If, at a
certain point of the execution, something (e.g., a broken resource) prevents the
plan to be completed, automated reasoning is applied again.

Policy-Based. Automated reasoning is employed to obtain a policy, i.e., a func-
tion that for each state proposes the next action. Differently from the instance
planning case, here, if something unexpected happens, there is no need to reapply
planning, as all the possibilities have been already computed.

The intuitions of three methods implementing (i) an instance planning app-
roach based on deterministic services and loosely specified target, (ii) a policy-
based approach with stochastic behaviors and fully specified target, and (iii) a
policy-based approach with stochastic behaviors and a loosely specified target
are described in Sect. 4. We are not considering any instance repair approach
as we focused on the data perspective more than the control flow perspective,
which is fundamental as full adaptivity requires the process structure to be very
flexible. An example of a technique of this type, even if not applied in a smart
manufacturing scenario but in a ubiquitous computing one, has been proposed
and investigated in [30].

3 Motivating Case Study

In this section, we present the supply chain case study, i.e., ChipChain. It repre-
sents the chip supply chain production which involves several actors associated
with different operations2. The main goal is the production of chips and we dis-
tinguish two main phases, the raw materials and design assortment phase, and
the manufacturing process phase. The manufacturing operations involved in the
chip supply chain are outlined below:

– Raw materials and design assortment : consists of the collection of the chip
design (e.g., CAD model) and the essential raw materials, i.e., (silicon) wafer,

2 Cf. https://www.screen.co.jp/spe/en/process and https://www.asml.com/en/news/
stories/2021/semiconductor-manufacturing-process-steps.

https://www.screen.co.jp/spe/en/process
https://www.asml.com/en/news/stories/2021/semiconductor-manufacturing-process-steps
https://www.asml.com/en/news/stories/2021/semiconductor-manufacturing-process-steps

74 F. Monti et al.

silicon, boron, phosphor, aluminum, resistance, plastic, copper frame, and
chemicals. The design and the raw materials constitute the objects involved
in the manufacturing process.

– Manufacturing process: upon the assortment phase is completed, the manu-
facturing process begins. It represents the effective set of operations for the
manufacturing of chips. Such operations include: (i) cleaning of the silicon
wafers; (ii) deposition of thin film of conducting and isolating materials, e.g.,
silicon and aluminum; (iii) coating of the wafer surface with resistance; (iv)
exposing of the wafer with ultraviolet radiation; (v) “development” and (vi)
etching of the wafer; (vii) implantation of phosphor, boron ions or silicon;
(viii) creation of micro transistors through a heat processing; (ix) stripping
off of resistance (using chemicals); (x) separation of the wafer into individual
chips connected to a copper frame; (xi) testing phase of the chips; and (xii)
enclosing in plastic by leaving only the contact pins on the outside.

We based the manufacturing process in the United States (US), which is
home to the vast majority of the top semiconductor suppliers in the world3.
Additionally, we identified the list of states involved in the assortment phase.
In particular, we identified the countries that produced the raw materials and
considered them as the organizations part of the supply chain. In addition, we
determined the costs of carrying out each operation. The distance between the
US and the identified states is used to calculate them (if the object is made in
the US, the associated operation cost is unitary). The manufacturing process is
a different matter. Indeed, the manufacturing actors (machines and operators)
are located in a unique factory (in the US) and the cost of the operations is set
to 1. However, we take into account the possibility of more than one of the same
actor performing the same action, in which case their costs are increased by a
factor greater than 1.

4 Adaptive Supply Chain Approaches

In this section, we explain in detail how we implement the approaches used
for finding a manufacturing production plan that ensures adaptivity in the
ChipChain case study.

4.1 Instance Planning

Generally, by leveraging automated planning techniques, it is possible to auto-
matically orchestrate the supply chain in order to fulfill specific manufacturing
goals while respecting expected Key Performance Indicators (KPIs) [5]. Auto-
mated planning and scheduling (AI planning) has already proven its potential
and could have a huge impact on industrial manufacturing too. It concerns the

3 Cf. https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-
chain-mapping.

https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping
https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping

Services in Smart Manufacturing 75

automated synthesis of autonomous behaviors (i.e., plans) from a model that
describes the behavior of the environment in a mathematical and compact form.

Classical planning is one of the most basic models in planning and is con-
cerned with the selection of actions for achieving goals when the initial situation
is fully known and actions have deterministic effects [16]. A classical planning
problem [18] P = (A, I, γ,O) consists of a set of state variables A, a description
(i.e., a valuation over A) of the initial state of the system I, a goal γ repre-
sented as a formula over A, and a list of operations O over A that can lead to
state transition. State variables A and actions O constitute the planning domain
PD of the planning problem. The solution for a classical planning problem is
a sequence of operators (a plan) whose execution transforms the initial state I
into a state satisfying the goal G. The computation of the solution may not be
an easy task, however, over the years, many algorithms and heuristics have been
proposed and embedded into planning systems (known as planners) to perform
automated planning in an efficient way.

We propose a resilient and scalable approach based on classical planning for
the agile orchestration of services aiming at achieving a production goal and
adapting to failures by using the framework described in Sect. 2.

The manufacturing resources, represented as services with the Industrial
APIs, contain the list of actions runnable by the specific actor modeled in a
PDDL-like fashion (PDDL defined in the following). The JSON file describing
the services is structured as follows: the attributes value is actions-based and
each action contains the parameters, the requirements and the effects, both pos-
itive and negative, necessary upon the execution of such an action finally, the
features value contains the characteristics of the actors and their current status.

The controller component comprises two sub-modules, i.e., the translator and
the planner. The core module of the controller is the translator. It transforms
the service descriptions (acquired through HTTP requests) and a description of
the environmental context (i.e., the production goal and environmental context
description) into a planning problem specified in PDDL 2.2. (Planning Domain
Definition Language). PDDL [15] is a standard language to describe planning
domains and problems. There exist different versions of PDDL which provide an
increasing expressive power. The model of the planning problem is separated into
two main files: the domain and the problem descriptions. Such a division allows
for an intuitive separation of elements present in every specific problem of the
given domain (i.e., types, predicates, functions and actions), and elements that
determine the specific problem (i.e., available objects, initial state and goal). The
planner module represents a planning system able to generate a plan given the
domain and problem files. The current prototype of such an approach is based
on the FastDownward planner, which supports PDDL 2.2 [20]. The output of
the planner, i.e., a plan, contains the list of actions (or operations) needed to
reach the final goal by minimizing the total cost.

The enactor takes each action contained in the plan file produced by the
planner and makes HTTP requests to relative Industrial APIs to perform such
actions. Prior to the execution of an action, the current status (a feature) of

76 F. Monti et al.

the service is checked. On the one hand, if the status is available, the enac-
tor dispatches the action request. On the other hand, if the status is broken
(meaning that the service is unavailable), the enactor requests the controller the
re-calculation of the plan. Particularly, the new plan is generated starting from
the current environmental state where one or more services result broken.

4.2 Stochastic Policy

Typically, actors in industrial manufacturing can be thought of as stochastic
players. Indeed, their behaviors can be expressed as dependent on a probability
that indicates the possibility to act either as functioning or broken actors. In
this sense, the manufacturing process becomes a probabilistic planning prob-
lem. Adaptivity in such a scenario can be achieved by employing Markov Deci-
sion Processes (MDPs) to compose the services representing the manufacturing
actors. Particularly, MDPs are able to take into account both the probability
and cost of breaking upon the execution of an action enabling a full insight of
the entire supply chain.

A MDP [32] is a discrete-time stochastic control process containing (i) a set
Σ of states which represent the status of the service, (ii) a set A of actions i.e.,
the set of tasks that the service can perform, (iii) a transition function P that
returns for every state s and action a a distribution over the next state i.e., the
probability of the service to end in a certain status performing a certain task, (iv)
a reward function R that specifies the reward when transitioning from state s to
state s′ by executing action a, and (v) a discount factor λ ∈ (0, 1) which deter-
mines how important future rewards are to the current state. If λ = 0, the service
is “myopic” in being concerned only with maximizing immediate rewards. As λ
approaches 1, the method becomes more “farsighted”, more strongly considering
future rewards.

By relying on the framework described in Sect. 2, we propose a stochastic
policy approach that employs MDPs to orchestrate services in order to produce
an adaptive process. A formal description of such an approach is presented in
[10].

We define the actors as stochastic services modeled as MDPs and maintained
by the Industrial APIs. The JSON file describing the characteristic of the actors
contains the set of transitions an actor is able to perform and the informa-
tion relative to the initial, final, and current state. Each actor may represent
a complex breakable service that includes the set of states (i.e., Ready, Con-
figuration, Executing, Broken, Repairing) and actions, or may represent
a generic breakable service that includes a subset of states (i.e., Available,
Done, Broken) and a subset of actions. Moreover, each actor may represent
also human workers that can perform the same action of a machine and are
preferred when a machine becomes broken, or a warehouse. Such an approach
allows the flexibility required to model a manufacturing actor operating in its
environment. As an example, specific states can be defined to model unavail-
ability conditions (e.g., a broken machine) and the probability of ending in such
states. In addition, rewards can be used to model the costs of performing an

Services in Smart Manufacturing 77

operation. Different actors can offer the same operation and, as a consequence,
an actor chosen for a specific process instance could be discarded for the later
instance. The characteristics of the stochastic services is combined into a com-
munity of stochastic services, i.e., a stochastic system service. Intuitively, the
stochastic system service status includes the current status of all the composing
services, and a specific action performed on the system service changes only one
component of the current state, corresponding to the service selected to execute
that action.

Among others, we propose a model to define the manufacturing target by
using the concept of target service. Such a concept is used to denote a composite
service obtained by composing the functions of the stochastic services. Notice-
ably, the target service itself, as the stochastic services, is a particular case of
MDP. However, different from the stochastic services, in the vast majority of
cases, the target service is deterministic.

The solution technique of the proposed approach is based on finding an opti-
mal policy for the composition MDP. Given the specification of the stochastic
system service and the target service, we compute the composition MDP which
contains: the cartesian product between all the states of the target service and
the stochastic system service, all the actions of the services, the probability of
ending in a certain system state performing a system action, and the reward
function that is the reward observed from doing a system action summed to the
reward coming from the target. In practice, according to a specific target (man-
ufacturing goal), the composition MDP computes all the possible executions of
the manufacturing process, i.e., by combining together the specifications of all
the actors (stochastic services) and the goal it identifies all the possible status of
the actors at any step. The optimal policy of the composition MDP is computed
through policy iteration and/or value iteration [34].

By leveraging on the optimal policy, the enactor dispatches the HTTP
requests to the chosen services (Industrial APIs) according to the solution. Notice
that the policy assigns the services to each action taking into account both prob-
abilities and costs. It is not straightforward indeed to determine a-priori which
service a certain action must be assigned to. Additionally, before dispatching
the request, it checks whether the current status and the transition functions
have changed (for instance because of the wearing out during the execution).
We distinguish two different adaptive scenarios. On the one hand, when only
the status of an actor changes, the enactor is able to choose the next action to
be performed by checking the result of the optimal policy from the new state
formed. On the other hand, when both the status and the transition function of
an actor change, the enactor requests the re-computation of the optimal policy
from an up-to-date composition MDP which includes the latest condition of the
service.

4.3 Stochastic Constraint-Based Policy

It is quite common that the manufacturing process is represented using a struc-
tured process formalism, such as BPMN or Petri Nets [14]. We are doing more

78 F. Monti et al.

than that, we employ the flexible formalism named declare, directly based on
ltlf , to define the manufacturing process. This permits to model the process as
a set of logical conditions, so as to more easily specify those processes in which
human experience plays a key role or in which the rules of precedence between
operations cannot simply be modeled as a sequence.

The proposed technique is an extension of the previous approach. Note that
the definitions of both stochastic services and stochastic system service remain
the same. By contrast, the target specification of the manufacturing process is
represented as an ltlf formula ϕ [11] derived from the declare formalization.

The collection of services representing the actors can perform actions in P
and, moreover, to make our model richer we allow services to execute a broader
set of actions. In addition, we put each ltlf formula in conjunction in order to
compute the equivalent deterministic finite automaton (dfa) (made by Lydia
tool [9]), i.e., target dfa.

Given both the stochastic system service and the target dfa we compute
the composition MDP that in this case contains: the cartesian product between
all the states of the target dfa and the stochastic system service, the product
between the DFA action and the service that performs the action, the proba-
bility of ending in a certain system state performing a system action, and the
reward function formed by the reward observed from doing a system action. In
practice, according to a specific target (manufacturing goal), the composition
MDP computes all the possible executions of the manufacturing process, i.e., by
combining together the specifications of all the actors (stochastic services) and
the goal (ltlf formula), it identifies all the possible status of the actors at any
step.

We compute the optimal policy of the composition MDP, as in the previous
case through policy iteration and/or value iteration [34]. Such a policy contains
the specification of the optimal actions (and related services) to execute from
each possible state in order to reach the final goal. The enactor acts as a mid-
dleware that interfaces with the Industrial APIs in order to check whether the
current status and the transition functions have changed (for instance because of
the wearing out during the execution). As in the previous approach, we can dis-
tinguish two different resilience scenarios. On the one hand, when only the status
of an actor changes, the controller is able to choose the next action to be per-
formed by checking the result of the optimal policy from the new state formed.
On the other hand, when both the status and the transition function of an actor
change, the controller re-computes the optimal policy from an up-to-date com-
position MDP which includes the latest condition of the service. Through the
Industrial APIs, the enactor calls the services identified in the optimal policy
computed by the controller.

Services in Smart Manufacturing 79

5 Discussing the Approaches

We conduct preliminary tests by applying the proposed approaches to the Chip-
Chain case study4.

We divided the case study into two phases, i.e., the collection of the necessary
raw materials and chip design and the effective production process. Additionally,
we run several experiments by increasing the number of service copies available
for the fulfillment of a specific task involved in the process and we measure
the execution time and the memory usage. In the following we highlight some
important aspects we identify in the results.

Performance values vary greatly depending on the approach used to find the
adaptive process. In the planning approach, increasing the number of services,
time and memory consumption does not change significantly. This is possible
because planning solvers employ well-known heuristics able to derive, in an effi-
cient way, a solution. However, this approach does not consider the stochasticity
typical of an industrial context. In particular, does not take into account for
example the probability for a certain machine to end in a failure situation, rep-
resented instead in the stochastic approaches.

On the other hand, the values of the stochastic policy approaches increase
exponentially, as the number of services increases. This happens because of the
definition of the composition MDP. It consists of a cartesian product operation
that takes into account both the target and system service sets. Although the
target is static and well-defined, the system service may increase with the added
services resulting in an increment of memory consumption and execution time.
Additionally, the stochastic constraint-based policy approach is more time and
memory consuming with respect to the stochastic policy approach. This notable
difference derives from the target service concept where we define a set of log-
ical constraints between actions. Also, we consider the “auxiliary actions”, i.e.,
actions that do not concern the process being realized but are needed by the
services to get ready for the execution of main actions.

Even though planning is often a more effective strategy, it may not be the
only factor to consider when it comes to production. Depending on the situa-
tion, it is necessary to take into account not just how quickly calculations are
performed but also how the system is modeled and responds to unknown events.
As they reflect the stochasticity behaviors in the manufacturing domains, both
the stochastic techniques, which end up being much slower than planning, offer
more expressive power.

The proposed approaches are based on the definition of constraints regarding
the process execution. Depending on the used approach, such constraints are
modeled in a different way. The approach based on planning requires not to be
generic in the specification of the actions which are essential in the computation

4 Source codes of the implemented approaches, and tests, are available for repeatability
the instance planning approach at https://tinyurl.com/instanceplanning and the
two stochastic policy approaches at https://tinyurl.com/stochasticpolicy. The source
code of the Industrial APIs layer is available at https://tinyurl.com/IndustrialAPIs.

https://tinyurl.com/instanceplanning
https://tinyurl.com/stochasticpolicy
https://tinyurl.com/IndustrialAPIs

80 F. Monti et al.

of the plan (given a goal). On the other hand, it permits to model the involved
objects by monitoring the production progress.

The approach based on stochastic policy requires a full definition of the
manufacturing process (defined as an automaton). This is different in its exten-
sion which employs ltlf . Here the process is defined by specifying constraints
between the tasks. In the modeling, we do not include relationship effects pos-
sibly existing between the services (e.g., if the service A is used, then service B
cannot be used). In the case of planning, this type of constraint could be mod-
eled with the PDDL conditional effects which, however, have consequences in the
computation costs. It is not easy to model this behavior in the stochastic policy
approaches because the target service only knows manufacturing tasks and has
no idea of the services employed. A possibility could be to introduce related
constraints when the composition MDP is computed. Anyway, in this paper, we
model such constraints by increasing the services costs of affected services.

Moreover, in this paper we focus on a case study focusing on a batch pro-
duction, i.e., production of a batch of one product [19]. In this sense, we study
the adaptivity by taking into consideration the fact that a specific task of the
supply chain production is executed on a batch, thus if a decision is taken at
the beginning of a task, it is maintained until the end of it. Such an approach
influences adaptivity by discarding the possibility of adapting the production
inside a specific batch and considering only the adaptivity at the end of a task.

6 Related Works

In this paper, we focus on approaches leveraging automated reasoning tech-
niques to enable adaptation in smart manufacturing, specifically in the supply
chain context. We can contextualize our work in the broader research area that
applies automated planning techniques. We refer to automated planning as the
application of AI technologies to the problem of generating a correct and efficient
sequence of actions [28]. Furthermore, we can distinguish between classical plan-
ning, which deals with deterministic scenarios, and so-called decision-theoretic
planning [4], which deals with stochastic behavior.

Examples of classical planning in smart manufacturing are provided in sev-
eral works. The authors in [29] employ automated planning in order to cope with
exceptional and unanticipated events. In particular, planning is employed to fix
a process instance, restoring the conditions to continue with the standard, manu-
ally defined process. In [35], the authors show how to plan the assembly of small
trucks from available components and how to assign specific production operations
to available production resources. In [27], the authors develop an evaluation with
a physical smart factory that resolves detected exceptional situations and contin-
ues process execution. However, all the solutions based on classical planning do not
consider a crucial aspect of manufacturing production, i.e., the uncertainty typical
of the entire production process and of the manufacturing actors.

The application of decision-theoretic planning approaches might be a solution.
An example is [8], where the authors define a set of degrading planning domains.

Services in Smart Manufacturing 81

The planner tries to find a solution in the most restrictive, optimal domain. If dur-
ing the execution, assumptions of a plan are not verified, due for example to fail-
ures, more and more sub-optimal domains are employed. The approach focuses on
the entire process and the non-determinism of manufacturing actors is modeled.
Furthermore, MDPs are a widely used model for decision-making problems.

Nevertheless, the literature presents limited research on the application of
MDPs in the manufacturing domain. Authors in [21] propose a self-adaptive
Automated Guided Vehicles (AGVs) control model, depicted as an MDP, that
enables AGVs to avoid collisions efficiently, safely, and economically. The work
[7] presents a hierarchical MDP approach for adaptive multi-scale prognostics
and health management for smart manufacturing systems. The goal is to create
a policy for making sequential decisions that will maximize the expected gain
under the set of constraints. Authors in [2] use an MDP for finding an optimal
cost-effective maintenance decision based on the condition revealed at the time
of inspection on a single diesel engine. In these cases, the use of MDPs fits very
well in the manufacturing context and in particular non-deterministic domains,
because it always allows making the best choice.

Finally, in this paper, we discuss how to solve triple-A and resilience in smart
manufacturing processes by adopting a service-based approach and automated
reasoning techniques; this is not completely new, at least in the service comput-
ing literature, as seminal approaches go to [24] and more recently to [23]. An
interesting survey on how planning techniques, not including MDPs, have been
applied to service composition problems is [17].

7 Concluding Remarks

In this paper, we have proposed and discussed how automated reasoning tech-
niques can be employed with the goal of adaptivity and resilience in smart manu-
facturing supply chains. The need for these techniques emerges when the number
of resources involved and the constraints among them make a manual analysis
from human experts unfeasible. In this sense, we have outlined and discussed
the application of several techniques to a challenging use case concerning the
manufacturing of integrated circuits. Our service-based approach, and its appli-
cation to smart manufacturing, is another example of the challenges that service
composition will have to cope in the next few years, as discussed in [1].

With respect to AI, in this paper, we only consider automated reasoning,
without showing the potential of applying machine learning (especially rein-
forcement learning) techniques. If, on the one hand, machine learning approaches
do not require any manual modeling effort, they usually require datasets to be
trained, which are difficult to obtain in the smart manufacturing scenario, espe-
cially at a supply chain scale.

Also, this paper does not include approaches from classical numerical opti-
mization techniques. These techniques are available in the form of very fast
implementations. The main drawback is that modeling must be done in the form
of equations, which are more complex to compose and validate with respect to
formalisms employed in automated reasoning.

82 F. Monti et al.

Acknowledgements. This work is partially funded by the ERC project WhiteMech
(no. 834228), the PRIN project RIPER (no. 20203FFYLK), the Electrospindle 4.0
project (funded by Ministero per lo Sviluppo Economico, Italy, no. F/160038/01-
04/X41), the Piano Nazionale di Ripresa e Resilienza (PNRR), Missione 4 “Istruzione e
ricerca” - Componente 2 “Dalla ricerca all’impresa” - Investimento 1.3, funded by Euro-
pean Union - NextGenerationEU, and in particular by PE1 (CUP B53C22003980006)
and PE11 (CUP B53C22004130001).

References

1. Aiello, M.: A challenge for the next 50 years of automated service composition.
In: Troya, J., Medjahed, B., Piattini, M., Yao, L., Fernández, P., Ruiz-Cortés, A.
(eds.) Service-Oriented Computing - 20th International Conference, ICSOC 2022,
Proceedings. LNCS, vol. 13740, pp. 635–643. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-20984-0 45

2. Amari, S.V., McLaughlin, L., Pham, H.: Cost-effective condition-based mainte-
nance using Markov decision processes. In: RAMS 2006. Annual Reliability and
Maintainability Symposium, pp. 464–469. IEEE (2006)

3. Bicocchi, N., Cabri, G., Mandreoli, F., Mecella, M.: Dynamic digital factories for
agile supply chains: an architectural approach. J. Ind. Inf. Integr. 15, 111–121
(2019)

4. Blythe, J.: Decision-theoretic planning. AI Mag. 20(2), 37 (1999)
5. Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M., Sapio, F.: A con-

ceptual architecture and model for smart manufacturing relying on service-based
digital twins. In: 2019 IEEE International Conference on Web Services (ICWS),
pp. 229–236. IEEE (2019)

6. Chen, H.Y., Das, A., Ivanov, D.: Building resilience and managing post-disruption
supply chain recovery: lessons from the information and communication technology
industry. Int. J. Inf. Manage. 49, 330–342 (2019)

7. Choo, B.Y., Adams, S.C., Weiss, B.A., Marvel, J.A., Beling, P.A.: Adaptive multi-
scale prognostics and health management for smart manufacturing systems. Int.
J. Prognostics Health Manage. 7, 014 (2016)

8. Ciolek, D., D’Ippolito, N., Pozanco, A., Sardiña, S.: Multi-tier automated plan-
ning for adaptive behavior. In: Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, pp. 66–74 (2020)

9. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLF/LDLF
into deterministic finite automata. In: ICAPS, pp. 122–130. AAAI Press (2021)

10. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twins
composition in smart manufacturing via Markov decision processes. Comput. Ind.
149, 103916 (2023)

11. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI 2013 Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, pp. 854–860 (2013)

12. Dubey, R., Gunasekaran, A., Childe, S.J.: The design of a responsive sustainable
supply chain network under uncertainty. Int. J. Adv. Manuf. Technol. 80, 427–445
(2015)

13. Dumas, M., et al.: Ai-augmented business process management systems: a research
manifesto. ACM Trans. Manage. Inf. Syst. 14(1), 1–19 (2023)

https://doi.org/10.1007/978-3-031-20984-0_45
https://doi.org/10.1007/978-3-031-20984-0_45

Services in Smart Manufacturing 83

14. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-662-56509-4

15. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

16. Geffner, H.: Computational models of planning. Wiley Interdisc. Rev. Cogn. Sci.
4(4), 341–356 (2013)

17. Georgievski, I., Aiello, M.: Automated planning for ubiquitous computing. ACM
Comput. Surv. 49(4), 63:1–63:46 (2017)

18. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge
University Press, Cambridge (2016)

19. Groover, M.P.: Automation, Production Systems, and Computer-Integrated Man-
ufacturing. Pearson Education India (2016)

20. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246
(2006)

21. Hu, H., Jia, X., Liu, K., Sun, B.: Self-adaptive traffic control model with behavior
trees and reinforcement learning for AGV in Industry 4.0. IEEE Trans. Ind. Inform.
17(12), 7968–7979 (2021)

22. Ivanov, D., Dolgui, A., Sokolov, B., Ivanova, M.: Literature review on disruption
recovery in the supply chain. Int. J. Prod. Res. 55(20), 6158–6174 (2017)

23. Kaldeli, E., Lazovik, A., Aiello, M.: Domain-independent planning for services in
uncertain and dynamic environments. Artif. Intell. 236, 30–64 (2016)

24. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution
of web service requests. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 335–350. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-24593-3 23

25. Lee, H.L., et al.: The triple-A supply chain. Harvard Bus. Rev. 82(10), 102–113
(2004)

26. Macher, J.T., Mowery, D.C., Simcoe, T.S.: e-business and disintegration of the
semiconductor industry value chain. Ind. Innov. 9(3), 155–181 (2002)

27. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for
adaptive workflow management in smart factories. J. Intell. Inf. Syst. 61, 83–111
(2023)

28. Marrella, A.: Automated planning for business process management. J. Data
Semant. 8(2), 79–98 (2019)

29. Marrella, A., Mecella, M., Sardina, S.: Intelligent process adaptation in the
SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 1–43 (2016)

30. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical
processes through action-based formalisms. AI Commun. 31(1), 47–74 (2018)

31. Paul, S.K., Chowdhury, P.: Strategies for managing the impacts of disruptions
during COVID-19: an example of toilet paper. Global J. Flexible Syst. Manage
21, 283–293 (2020)

32. Puterman, M.L.: Markov Decision Processes (1994)
33. Stadtler, H.: Supply chain management: an overview. In: Stadtler, H., Kilger, C.

(eds.) Supply Chain Management and Advanced Planning: Concepts, Models, Soft-
ware, and Case Studies, pp. 3–28. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-540-74512-9 2

34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)
35. Wally, B., et al.: Leveraging iterative plan refinement for reactive smart manufac-

turing systems. IEEE Trans. Autom. Sci. Eng. 18(1), 230–243 (2020)

https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-540-24593-3_23
https://doi.org/10.1007/978-3-540-74512-9_2
https://doi.org/10.1007/978-3-540-74512-9_2

Pool Games in Various Information
Environments

Constantinos Varsos1(B) and Marina Bitsaki2

1 Centrum Wiskunde & Informatica, Amsterdam 1098 XG, The Netherlands
Konstantinos.Varsos@cwi.nl

2 University of Crete, Heraklion 700 13 Crete, Greece
marina@csd.uoc.gr

Abstract. The emergence of Blockchain digital technology provides one
of the most prominent transaction mechanisms in an increasing variety
of digital and augmented environments. In the Blockchain habitat, inter-
actions among autonomous agents, called miners, form mining pools that
aggregate computational power in order to increase their possible gains.
A Pool game models mining pools that compete against each other in
order to improve their outcome by strategically committing their miners.
Current studies in Pool games make the assumption that pools have com-
plete and correct information about the situation. In this work we drop
this assumption, studying Pool games under various information envi-
ronments such as incomplete information and erroneous information.

Keywords: Pool games · misinformation games · Bayesian games

1 Introduction

Nowadays, the emergence of digital environments, automated procedures, and
big data have brought into light many intangible, crowd-sourcing, and sophis-
ticated digital transaction methodologies. One of the emerging attractive solu-
tions that provide security, accessibility, and privacy in big data systems is the
Blockchain, see [3]. It was proposed in [12] to serve as the main concept in the dig-
ital economy, providing transparent and secure transactions in distributed and
decentralized environments (for more details see [5]). Hence, Blockchain tech-
nology provides an appealing and applicable methodology for versatile practices
from Insurance and Commerce to the Internet of Things and Security.

In practice, a Blockchain is a distributed synchronized secure database con-
taining validated blocks of transactions. A block is validated by special nodes,
called miners, via the solution of a computationally demanding problem, called
the proof-of-work puzzle. The miners compete against each other and the first
one to solve the problem, provides a full proof of work, and announces it. The
block is then verified by a predefined agreement protocol called consensus. After

Supported by ERCIM.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 84–101, 2023.
https://doi.org/10.1007/978-3-031-45728-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_6&domain=pdf
http://orcid.org/0000-0002-0833-6890
http://orcid.org/0000-0003-2262-7990
https://doi.org/10.1007/978-3-031-45728-9_6

Pool Games in Various Information Environments 85

the new block reaches the consensus, it is added to the distributed database,
and the miner that generated the block is rewarded according to the, commonly
and a priori known, protocol of the transaction.

In order to increase their outcome, miners form mining pools implemented by
a pool manager (see [10]), where all of them provide proof of work concurrently
and share their revenues accordingly. In this work, we focus on open pools that
allow any miner to join them. The utility of a pool is the total sum of the revenues
received by its miners. The information available to a pool includes the set of
its miners, a predefined protocol for the reward of newly generated blocks, and
the set of adversary pools.

As stated in [4], a miner may attack an adversary pool by providing par-
tial proof of work to its pool manager. The attacking miner shares the revenue
obtained in the pool but does not contribute, thus the utility of the attacked
pool deteriorates and becomes less attractive to other miners.

Therefore, pools may have incentives to commit miners attack and deliver
partial proof of work (called infiltration rate) to opponent pools in order to
improve their revenues, see [10]. Hence, the use of game-theoretical tools in the
Blockchain environment is a direct way to study, model and analyze these kinds
of interactions (see [1,4,11]).

In the literature, pools are aware of the number of miners at their disposal and
can estimate accurately the amount of attacking miners. Thus, they have com-
plete and correct information regarding the interaction with other pools. This is
a highly unrealistic scenario, as, in many situations, none of these assumptions
hold, due to the presence of side information, bounded rationality, computational
restrictions, etc. In this paper, we study the Pool game considering various infor-
mation environments as stated in the following subsection.

1.1 Contributions

A pool manager may experience several scenarios for modeling uncertainty or
erroneous beliefs with regards to the mining power (how many miners) or the
infiltration rate (how many attackers) of a pool. In order to cope with these
issues and provide a more realistic analysis of the Pool game setting, we plug in
the model of [4] incomplete and incorrect information, considering two cases.

First, we address the case where the pools have incomplete information
regarding the infiltration situation. In particular, the pools are not aware of
the size of the incoming attack. In Subsect. 4.1, we model this scenario using the
notion of Bayesian games as provided in [9], prove the convergence of revenues
and compute the equilibria of the Bayesian Pool game.

Second, in Subsect. 4.2, we consider the case where the pools have incorrect
information regarding the specifications of the interaction. More specifically, they
think they know the actual mining power of the pool and the accurate number
of incoming attacks. We model this scenario using the concept of misinformation
games as introduced in [16]. In order to cope with the iterative nature of the Pool
game, we apply the Adaptation Procedure, which was introduced in [14]. Hence,
the misinformed pools have the machinery to re-evaluate their information and

86 C. Varsos and M. Bitsaki

adapt their decisions in the next round. We prove the convergence of the revenues
and compute the equilibria of the misinformed Pool game.

Another contribution of this work is about the convergence of the revenues
of the Pool games for the case of complete-correct information. Namely, in
Lemma 1, Theorem 1, and Corollary 1 we prove the convergence of the den-
sity revenues for non-constant infiltration rates, as opposed to Lemma 1 in [4].

Summarizing the various information scenarios, in the correct-complete case,
[4], the pools know their mining power and estimate correctly the infiltration
rates. In the setting of incomplete information, pools know their mining power
but assign probabilities in the infiltration rate. In the setting of incorrect infor-
mation, pools know incorrectly their mining power and the infiltration rates
they face. Throughout our analysis, we assume that all of the pools are of equal
capabilities and all miners are identical.

2 Related Work

Several studies cope with complete and correct information settings (e.g. [2,4]).
The Pool game is presented in detail in [4]. A different approach is introduced
in [2], where the authors provide allocation methodologies so that the miners
cooperate, and avoid the development of centralized pools. In the same spirit,
in [8,17] authors introduced models where the miners can either cooperate or
employ a block withholding attack in a pool. In [10] authors study the Pool game
model, in the complete-correct information environment, from the perspective
of system rewards and punishments and analyze the outcome of the interaction.
Further, in [7] authors study models, where miners play a complete-information
stochastic game from the perspective of miners. In this study, we focus on the
cases of incomplete and incorrect information.

In the context of Bayesian games, authors in [19] consider the case where a
user knows the distribution of others’ valuations, and focuses on truthful mecha-
nisms. In [18] authors propose a characterization of Blockchain protocols regard-
ing the rational and Byzantine behaviors. Furthermore, in [6] authors present
a probabilistic model based on the information propagating over a Blockchain
habitat (e.g. a Bitcoin network). They probabilistically identify the users initiat-
ing the transactions and do not implement their framework in the case of incom-
plete information. Authors in [15] plug in Bayesian game theory into Blockchain
transactions, and provide an auction model.

In summary, existing works that apply game theory in Blockchain environ-
ments with incomplete information, mainly focus on the development of sufficient
and robust mechanisms that regulate the situation, rather than on interactions
among pools. To the best of our knowledge, there are no works that deal with
the situation where pools experience subjective views of information.

3 Preliminaries

We consider a normal-form game G = 〈N,S,U〉 that consists of a set of players
N , a set S = S1 × . . . × S|N | of players’ joint decisions, where Si is player’s

Pool Games in Various Information Environments 87

i set of pure strategies and a utility matrix U = (U1, . . . , U|N |), where Ui ∈
R

|S1|×...×|S|N|| is player’s i utility matrix.
A mixed strategy for player i that represents a probabilistic mixture of pure

strategies, is a tuple σi = (σi1, . . . , σi|Si|) where σij ≥ 0 and
∑

j σij = 1. Let
Σi be the set of all possible mixed strategies of player i. In a game with |N |
players, a strategy profile is an |N |-tuple σ = (σ1, . . . , σ|N |), σi ∈ Σi, and σ−i

is the strategy profile all but player i. Further, we will use the Forbenius norm
‖ · ‖ : Rn×m → R in Sect. 4.

The players’ behaviour in a normal-form game is predicted through the Nash
equilibrium:

Definition 1 (Nash equilibrium [13]). A strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
|N |)

is a Nash equilibrium, if and only if, for any i and for any σi ∈ Σi, fi(σ∗
i , σ∗

−i) ≥
fi(σi, σ

∗
−i), where fi is the utility function of player i, defined as fi : Σ → R,

such that:

fi(σi, σ−i) =
∑

k∈S1
· · ·

∑

j∈S|N|
Ui(k, . . . , j) · σ1,k · . . . · σ|N |,j , (1)

We denote a Nash equilibrium by ne and the set of nes in G by NE(G).

3.1 Incomplete Information

In classical game theory, incomplete information is addressed by Bayesian games.
A Bayesian normal-form game is defined as a tuple BG = 〈N,S,Θ, p, U〉, where
N,S are defined as previously. Θ = Θ1 × . . . × Θ|N | is the set of joint types
of players, p is a common prior distribution over the types, and U is the set of
utility functions, U = (U1, . . . , UN), whereas Ui : (S × Θ)i → R.

A player’s type is private information and is used to make decisions and
update her beliefs about the likelihood of opponents’ types (using the conditional
probability p(θ−i|θi), where θi ∈ Θi). In this setting, a pure strategy is given
by a mapping from the type space to the strategy space, si : Θi → Si. In other
words, si maps every information type θi ∈ Θi that player i has to the pure
strategy that she could play in that type. As in the case of correct-complete
information, a mixed strategy σi is a probabilistic mixture of pure strategies.

Each player calculates her expected utility given that she knows her own
type but not the types of the opponents (ex-interim concept)1 by the following
formula,

E[Ui(σ, θi)] =
∑

θ−i∈Θ−i

p(θ−i|θi)E[Ui(σ, (θi, θ−i))], (2)

where θi is the type of player i.
Player i’s best response curve to strategy profile σ−i is given by BRi(σ−i) =

argmaxσi∈Σi
E[U(σi, σ−i)].

Definition 2 (Bayes-Nash equilibrium, [9]). A Bayes-Nash equilibrium is
a mixed-strategy profile σ such that σi ∈ BRi(σ−i),∀i ∈ N .
1 There are also the concepts of ex-post, and ex-ante utilities, see [9].

88 C. Varsos and M. Bitsaki

Repeated Bayesian Games Consider a finite discrete time horizon T , with
T > 0. In our study we will analyze two cases: i) undiscounted utilities, and ii)
discounted utilities. In the first case, the utilities in BG are evaluated as limits of
arithmetic averages. In the latter case, we allow every player to evaluate her util-
ity sequence with a discount factor δ ∈ (0, 1). The utility formulas for both cases
are provided by Table 1. Further, the players’ types are intrinsic characteristics
and are fixed throughout the interaction.

Table 1. Utility formulas for the repeated Bayesian game.

case formula

Undiscounted 1
T

∑
t∈[T] Ui(σ

t, θi) i ∈ [|N |], T > 0

Discounted (1 − δ)
∑

t∈[T] δ
tUi(σ

t, θi)

3.2 Incorrect Information

Misinformation games were introduced in [16] and defined as a tuple mG = 〈G0

, G1, . . . , G|N |〉, where all Gi are normal-form games and G0 contains |N | players.
Further, G0 is called the actual game and represents the game that is actually
being played, whereas Gi (i ∈ N) represents the game that player i thinks that is
being played (called the game of player i). Moreover, no assumptions are made as
to the relation among G0 and Gis, thereby allowing all types of misinformation.

The outcome of a misinformation game is dictated by the equilibrium strategy
profiles that each player picks in her view.

Definition 3 (Natural misinformed equilibrium). A strategy profile σ∗ =
(σ∗,1

1 , . . . , σ
∗,|N |
|N |) is a natural misinformed equilibrium, if and only if, for any i

and for any σ̂i ∈ Σi
i , f i

i (σ
∗,i
i , σ∗,i

−i) ≥ f i
i (σ̂i, σ

∗,i
−i), where f i is the utility function

of player i in the game Gi and defined as: f i
i : Σi → R, such that:

f i
i (σ

i
i , σ

i
−i) =

∑

k∈Si
1

· · ·
∑

j∈Si
|N|

U i
i (k, . . . , j) · σi

1,k · . . . · σi
|N |,j , (3)

Further, we denote by NME(mG) the set of nmes in mG. Observe that players
obtain the utilities provided by G0, and not the utilities they realise in Gis.

Evidently, the misinformed players may come across an outcome different
than the one they expect in their own game. In the case where the interaction is
iterative, the misinformed players update their information according to choices
they made, the choices their opponents have made, and the corresponding infor-
mation that the environment provides to them. This process is formalized by the
Adaptation Procedure that was introduced in [14]. More specifically, the Adap-
tation Procedure occurs in discrete time steps t ∈ N0 = N ∪ {0}. It starts at
t = 0 with the misinformation game mG. Then, at each time step t ≥ 0, the

Pool Games in Various Information Environments 89

players choose a Nash strategy profile in their game, and new nmes are formed.
As the outcome and the respective utilities are announced, the players re-adjust
their choices and update their utilities according to the information they have
received. Formally, the Adaptation Procedure is provided by the following defi-
nition.

Definition 4 (Definition 4.4 in [14]). For a set M of misinformation games,
we set AD(M) = {mGu | mG ∈ M,u ∈ χ(σ), σ ∈ NME(mG)}. We define
as Adaptation Procedure of a set of misinformation games M to be the iterative
process such that:

{AD(0)(M) = M

AD(t+1)(M) = AD(t)(AD(M))

for t ∈ N0.

where χ(σ) is the set of indices associated with the strategies in the support of
the strategy profile σ and mGu is the updated game. Namely, u provides the
position in the subjective utility matrices where the update takes place, and is
determined by the strategic choices of the players.

The Adaptation Procedure terminates (see Definition 4.5 in [14]), if there
exists a time point t ∈ N0 such that any further iterations do not provide new
information to the players, that is AD(t+1)(M) = AD(t)(M). Interestingly, the
nme where the players do not obtain new information is stable; this is called
stable misinformed equilibrium sme. We denote by SME(mG) the set of smes
in mG.

4 The Pool Game

We consider the case where a set of N pools, with a total of m miners, compete
with each other in order to maximize their outcome. This situation is introduced
in [4] as the Pool game. In particular, the pools try to maximize their revenue
density by optimizing their infiltration rates to the adversaries. As stated in [4],
the revenue density of pool i is the ratio between the average revenue that miner
v earns and the average revenue it would have earned as a solo miner. We denote
the revenue density of pool i at time step t by ri(t).

In this study, the interaction is evolved in discrete time steps, and the total
number of miners that each pool has in its disposal remains constant throughout
the game. Moreover, each pool can compare the rates of partial and full proofs of
work it receives from its miners, in order to find the rate of infiltrators attacking
it, see [4]. Also, it can compute the revenue rates of each of the other pools.
Initially, we restate the basic concepts of Pool games in the case where each
pool has correct and complete information about the infiltration rates and the
density revenue.

Let mi(t) be the total number of miners in the disposal of pool i, whereas
mii(t) is the number of miners pool i assigns to mine honestly in pool i, and

90 C. Varsos and M. Bitsaki

mij(t) is the number of miners used by pool i to infiltrate pool j at time step
t (infiltration rate). Thus, in general, it holds mi(t) ≥ ∑

j mij(t). Clearly, in
each time step pool i mines with power mii(t), and shares its reward among
mi(t)+

∑
j∈[|N |]\{i} mji(t) members. For our analysis we use the following vector

that measures the direct mining revenue density,

u(t) =

(
m1(t) − ∑

j∈[|N |]\{1} m1j(t)

m1(t) +
∑

j∈[|N |]\{1} mj1(t)
, . . . ,

mN (t) − ∑
j∈[|N |]\{N} mNj(t)

mN (t) +
∑

j∈[|N |]\{N} mjN (t)

)T

Further, in time step t pool i gains revenue mij(t)rj(t − 1) through infiltrat-
ing pool j with mij(t) miners, and distributes it among members mi(t) +∑

j∈[|N |] mji(t). We construct the |N | × |N | infiltration matrix as follows

IR(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m11(t)
m1(t)+

∑
j mj1(t)

. . .
m1 |N|(t)

m1(t)+
∑

j mj1(t)

...
. . .

...

m|N|1(t)
m|N|(t)+

∑
j mj|N|(t)

. . .
m|N||N|(t)

m|N|(t)+
∑

j mj|N|(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

Plugin together the u(t) and IR(t) we end up with the density revenue vector
at time step t,

r(t) = u(t) + IR(t) · r(t − 1) with r(0) = u(0) (5)

Moreover, the direct mining rate, Ri(t), of pool i at time step t, is the number
of its miners, mi(t), minus the miners it uses for infiltration,

∑
j∈[|N |]\{i} mij(t),

and is divided by the total mining rate in the system, namely the number of all
miners apart from the perpetrators. So, we have the following formula

Ri(t) =
mi(t) − ∑

j∈[|N |]\{i} mij(t)

m − ∑
j∈[|N |]\{i}

∑
k∈[|N |]\{j} mjk(t)

(6)

Hence, for the revenue density of pool i we have

ri(t) =
Ri(t) +

∑
j∈[|N |]\{i} mij(t)rj(t)

mi(t) +
∑

j∈[|N |]\{i} mji(t)
(7)

with that we define the revenue density vector r(t) = (r1(t), . . . , rn(t))
T . In case

where |n| = 2, the infiltration rates are m12(t) and m21(t), and the formula (7)
takes the form

r1(m12(t),m21(t)) =
m22(t)R1(t) + m12(t)(R1(t) + R2(t))

m11(t)m22(t) + m11(t)m12(t) + m22(t)m21(t)
,

r2(m12(t),m21(t)) =
m11(t)R2(t) + m21(t)(R1(t) + R2(t))

m11(t)m22(t) + m11(t)m12(t) + m22(t)m21(t)

(8)

Pool Games in Various Information Environments 91

with m11(t),m22(t) > 0 and m1(t) + m2(t) ≤ m. Further, each pool controls
only its own infiltration rate. In each round of the Pool game, each pool will
optimize its infiltration rate of the other. Clearly, an equilibrium exists where
neither Pool1 nor Pool2 can improve its revenue by changing its infiltration rate.

As stated in [4], the values of m12(t),m21(t) at the equilibrium can be com-
puted by solving the following system of first-order ordinary differential equa-
tions ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∂r1(m12(t),m21(t))
∂m12(t)

= 0

∂r2(m12(t),m21(t))
∂m21(t)

= 0
(9)

In the rest of the analysis we assume that pool i has two pure strategies;
attack or to non-attack the adversary. The density revenue for the pure strategy
attack is ri, and for the pure strategy non-attack is r̃i. Hence the pure strategy
profiles are (attack, attack), (attack, non-attack), (non-attack, attack), and (non-
attack, non-attack). Moreover, from [4] we have the following ordering for the
density revenues of the pools

For Pool1 :

{
(attack, non − attack) > (non − attack, non − attack)

(attack, attack) > (non − attack, attack)

For Pool2 :

{
(non − attack, attack) > (non − attack, non − attack)

(attack, attack) > (attack, non − attack)

(10)

With this at hand we can produce the payoff matrix as provided in Table 2.

Table 2. Pool game with two pools, Fig. 9 in [4].

Pool1

Pool2 attack non-attack

attack (r1, r2) (r1, r̃2)

non-attack (r̃1, r2) (r̃1, r̃2)

Observe that the game provided by Table 2 is a Prisoner’s Dilemma, meaning
that (attack, attack) is a dominating pure strategy profile.

Moreover, in [4] it is proved that the pool revenues converge, in the case where
infiltration rates are constant. In the following we prove that the convergence of
density revenues holds for cases where the infiltration rates are not constant.

Lemma 1. Consider a Pool game with |N | pools, and mi(t), mij(t) non-zero
polynomials of equal degree d ∈ N with non-negative coefficients ∀i, j ∈ [|N |] and
∀t ∈ N. Then the pool density revenues converge.

92 C. Varsos and M. Bitsaki

Proof. Let mi(t) =
∑

k∈[d] αi,ktk and mij(t) =
∑

k∈[d] βij,ktk, with αi,k, βij,k ≥ 0
∀i, j, k. Observe that the elements of the IR(t) are

(IR(t))ij =
mii(t)

mi(t) +
∑

j mji(t)
=

∑
k∈[d] βii,ktk

∑
k∈[d] αi,ktk +

∑
j

∑
k∈[d] βji,ktk

Hence taking the limit we have,

lim
t→+∞(IR(t))ij = lim

t→+∞

∑
k∈[d] βii,ktk−d

∑
k∈[d] αi,ktk−d +

∑
j

∑
k∈[d] βji,ktk−d

=
βii,d

αi,d +
∑

j βji,d

In the (IR(t))ij the denominator can not be equal to 0, as mi(t), mij(t) are
non-zero polynomials. Hence, on the limit the IR(t) has constant elements, then
using Lemma 1 in [4] we conclude. �
In the rest of the analysis, we consider mi(t) as non-negative and continuous
functions in time ∀i, and we have the following result

Theorem 1. Consider a Pool game with |N | pools, with bounded u(t), and IR(t)
such that ‖IR(t)‖ ≤ 1 ∀t ∈ N. Then the pool density revenues converges to u(t).

Proof. From the Eq. (5) we have

r(t) − u(t) =
t∑

k=1

(
k∏

d=1

IR(t − d)

)

u(t − k) (11)

Now, fix t and consider the sequences {αk}k∈[t] := m(t − k) and {βk}k∈[t] :=
∏k

d=1 IR(t − d). Observe that since ‖IR(t)‖ ≤ 1 we have ‖∏k−1
d=0 IR(t − d)‖ ≤

∏k−1
d=0 ‖IR(t−d)‖ → 0, as t, k → ∞ thus, βk → 02. Further, from the assumptions

the αk is a bounded sequence, so
∑

k αkβk → 03. But
∑

k αkβk → 0 is the right-
hand side of (11). Thus, we conclude. �
Theorem 1 provides a pointwise convergence of r(t) on u(t). Also, using Theo-
rem 1 we can deduce the following remark.

Corollary 1. Consider a Pool game with |N | pools, with a convergent u(t), and
IR(t) such that ‖IR(t)‖ ≤ 1 ∀t ∈ N. Then the pool density revenues converges.

Until now we present the case where every pool at any time step knows
the revenue density of all other pools rj(t − 1) and its total infiltration rate∑p

j=1 mji(t). In the following two Subsections we will drop these assumptions
and we mitigate the cases where the pools have i) some distribution over the
revenue densities, and ii) incorrect revenue densities. Interestingly, as the Pool
game is an iterative Prisoner’s Dilemma, then it has a dominant equilibrium
strategy profile. Thus, in the case where a mediator provides side information
to the pools, this will not affect their choices. In a nutshell, a correlation device
can not alter the outcome of the Pool game in Table 2 (Fig. 1).
2 It holds, limn→∞ An = 0 iff the spectral radius of the square matrix A is less than 1,

which holds as the spectral radius of a matrix is less or equal than the matrix norm.
3 Intuitively, we use the fact that if αk is bounded and if βk → 0, then

∑
k αkβk → 0.

Pool Games in Various Information Environments 93

Fig. 1. Pool game with N = {Pool1, Pool2}.

4.1 Incomplete Information

From [4] we know that a pool can estimate the rates with which it is attacked.
Now, assume that the estimation has a level of uncertainty. E.g., at time t,
Pool2 estimates with probability p1 that Pool1 attacks her with the correct
infiltration rate m12(t) and with probability p2 that Pool1 attacks her with
infiltration rate m̂12(t), with p1 + p2 = 1. At the same time, the Pool1 does
not experience any uncertainty in her estimations, and believes that Pool2
attacks her with the correct infiltration rate m21(t). Hence, we have a Bayesian
game, where Pool1 has one type ΘPool1 = {θPool1,1} and Pool2 has two types
ΘPool2 = {θPool2,1, θPool2,2}. The density revenues r1, r2, r̃1, r̃2, r

′
1, r

′
2, r̂1, and r̂2

are compute via the formulas (6)–(8).

Table 3. Information types in Bayesian Pool game with two pools.

Pool1

Pool2 attack non-attack

attack (r1, r2) (r1, r̃2)

non-attack (r̃1, r2) (r̃1, r̃2)

(a) Types: θPool1,1, θPool2,1

Pool1

Pool2 attack non-attack

attack (r1, r′
2) (r1, r̂2)

non-attack (r̃1, r′
2) (r̃1, r̂2)

(b) Types: θPool1,1, θPool2,2

While the utility functions of the pools are given in Table 4.

Table 4. Utility functions uPool1 and uPool2 for the Bayesian Pool game from Table 3.

r c ΘPool1 ΘPool2 uPool1 uPool2

attack attack θPool1,1 θPool2,1 r1 r2

attack attack θPool1,1 θPool2,2 r′
1 r′

2

attack non-attack θPool1,1 θPool2,1 r̃1 r2

attack non-attack θPool1,1 θPool2,2 r′
1 r̂2

non-attack attack θPool1,1 θPool2,1 r̃1 r2

non-attack attack θPool1,1 θPool2,2 r̂1 r′
2

non-attack non-attack θPool1,1 θPool2,1 r̃1 r̃2

non-attack non-attack θPool1,1 θPool2,2 r̂1 r̂2

94 C. Varsos and M. Bitsaki

Using the methodology provided in Subsect. 3.1 we construct the induced utility
matrix provided in Table 5.

Table 5. Induced utility matrix.

s1s1 s1s2 s2s1 s2s2

s1 (r1, p1r2 + p2r
′
2) (r1, p1r2 + p2r̂2) (r1, p1r̃2 + p2r2) (r1, p1r̃2 + p2r̂2)

s2 (r̃1, p1r2 + p2r
′
2) (r̃1, p1r2 + p2r̂2) (r̃1, p1r̃2 + p2r2) (r̃1, p1r̃2 + p2r̂2)

Next, we can compute the Bayes-Nash equilibria. Then given the finite horizon
of the repeated procedure we can derive the final utility for each one of the pools.

Corollary 2. Consider the Bayesian Pool game BG. If all the utility matrices
in the Information types in the BG have constant infiltration rates, then the pool
revenues converge.

For notational convention, let IRi(t) be the infiltration matrix, and ri(t) be the
revenues density, in the ith Information type. Then, the Lemma 1 and Theorem 1
can be transfused in the case of Bayesian Pool games. Namely,

Lemma 2. Consider a Bayesian Pool game BG with |N | pools. If for all Infor-
mation types i ∈ Θ in the BG, mi

j(t), mi
jk(t) are non-zero polynomials of equal

degree d ∈ N with non-negative coefficients ∀i, j ∈ [|N |] and ∀t ∈ N, then the
pool density revenues converge.

Proof. From Lemma 1 in each ri(t) and the distribution p over the Θs we have
that limt→∞ r(t) = limt→+∞

∑
i piri(t) that converges. �

Corollary 3. Consider a Bayesian Pool game BG with |N | pools. If for all
Information types i ∈ Θ in the BG, ui(t) converge, and IRi(t) are such that
‖IRi(t)‖ ≤ 1 ∀t ∈ N, then the pool revenues converge.

4.2 Incorrect Information

In the previous Subsection we presented the case where the pools experience
uncertainty over the density revenues. Now, assume that the pools have incorrect
information regarding the mining power and the density revenues. E.g., at time
t, Pool1 knows the Pool game in Table 6b and the Pool2 knows the Pool game
in Table 6c, whereas the actual situation captured by Table 6a. This is a case of
incorrect information and is described by the misinformed Pool game mG with
density revenues matrices as provided in Table 6.

Pool Games in Various Information Environments 95

Table 6. Misinformed Pool game.

s1 s2

s1 (r1, r2) (r1, r̃2)

s2 (r̃1, r2) (r̃1, r̃2)

(a) Actual Game

s1 s2

s1 (ṙ1, ṙ2) (ṙ1, r̂2)

s2 (r̂1, ṙ2) (r̃1, r̂2)

(b) Pool1 game

s1 s2

s1 (r̄1, r̄2) (r̄1, r̂′
2)

s2 (r̂′
1, r̄2) (r̃1, r̂′

2)

(c) Pool2 game

From the analysis of Sect. 4 at each time step each pool will solve independently
the system (9). Namely,

Pool1 :

⎧
⎪⎪⎨

⎪⎪⎩

∂ṙ1(m1
12(t),m

1
21(t))

∂m1
12(t)

= 0

∂ṙ2(m1
12(t),m

1
21(t))

∂m1
21(t)

= 0
, Pool2 :

⎧
⎪⎪⎨

⎪⎪⎩

∂r̂′
1(m

2
12(t),m

2
21(t))

∂m2
12(t)

= 0

∂r̂′
2(m

2
12(t),m

2
21(t))

∂m2
21(t)

= 0

(12)
Then the agglomeration of the solution m1

12(t), from the left system, and m2
21(t)

from the right system, will provide the nme. Given the nme, the Adaptation
Procedure will evaluate the information of the pools and then the procedure will
proceed to the next time step. Thus, the matrices as given in Table 7.

Table 7. Misinformed Pool game after the first step of the Adaptation Procedure.

s1 s2

s1 (r1, r2) (r1, r̃2)

s2 (r̃1, r2) (r̃1, r̃2)

(a) Actual Game

s1 s2

s1 (r1, r2) (ṙ1, r̃2)

s2 (r̂1, ṙ2) (r̃1, r̂2)

(b) Pool1 game

s1 s2

s1 (r1, r2) (r̄1, r̂′
2)

s2 (r̂′
1, r̄2) (r̃1, r̂′

2)

(c) Pool2 game

Since all the games in mG are Prisoner’s Dilemmas, the Adaptation proce-
dure will update the (attack − attack) joint decision according the utilities of
the actual game, and will provide AD(1)(M), that is the misinformed Pool game
for the t = 1. Observe, that the ordering between r1 and r̂1, r̂′

1, and r2 and r̃2,
r̂′
2 affects the progress of the Adaptation Procedure. Namely,

Corollary 4. Given the misinformation game in Table 6, if r1 > max{r̂1, r̂
′
1}

and r2 > max{r̂2, r̂
′
2} then AD(1)(M) = AD(0)(M), and the Adaptation Proce-

dure terminates in one step.

In case the Corollary 4 holds, the misinformed Pool game has a unique sme,
that is (attack, attack). On the other hand,

Lemma 3. Given the misinformation game in Table 6, if r1 < max{r̂1, r̂
′
1} or

r2 < max{r̂2, r̂
′
2} then the Adaptation Procedure terminates at most in |S| steps.

Proof. From Proposition 4.11 in [14] we have that the Adaptation Procedure in
the misinformed Pool game Table 6 is finite. It is easy to see that at most the
Adaptation Procedure will update the total number of the joint pure strategies
of the misinformed game, that is |S|. �

96 C. Varsos and M. Bitsaki

In case where the Adaptation Procedure updates all the joint pure strategies
of the subjective Pool games, then we end up with a unique sme, that is
(attack, attack). In any intermediate situation where the Adaptation Procedure
terminates in time steps either t = 2 or t = 3, we need more information in order
to conclude about the smes.

Next, we have the following results regarding the convergence of the density
revenues. We start with the case where the infiltration rates are constant in all
games in the misinformation game.

Lemma 4. Consider the finite misinformation Pool game mG with constant
infiltration rates for all Gis and G0, then the pool density revenues converge.

Proof. From the Corollary 4 and Lemma 3 the Adaptation Procedure terminates.
Then, from Lemma 1 in [4] we conclude. �

Abusing notation, we denote as u0, ui the direct mining revenue densities,
and m0

ij , mi
ij are the infiltration rates in the actual game G0 and in the Gi

respectively.

Lemma 5. Consider the finite misinformation Pool game mG, then if mi
j(t),

mi
jk(t) are non-zero polynomials of equal degree d ∈ N with non-negative coeffi-

cients ∀i, j ∈ [|N |] and ∀t ∈ N, then the pool density revenues converge. �
Proof. Using Lemma 1 for each Gi we have that each ri(t) converges. Further,
from Lemma 3 the Adaptation Procedure for mG terminates in finite time, thus
the revenue densities converge for the mG.

Lemma 6. Consider the finite misinformation Pool game mG, ui(t) are
bounded, and IRi(t) are such that ‖IRi(t)‖ ≤ 1 ∀t ∈ N, then the pool revenues
converge.

Proof. Using Theorem 1 for each Gi we have that each ri(t) converges. Further,
from Lemma 3 the Adaptation Procedure for mG terminates in finite time, thus
the revenue densities converge for the mG. �

Interestingly, we can attain convergence of the density revenues of the mG
in the case where the subjective games Gi have general infiltration rates. This
is provided by te following result.

Corollary 5. Consider the finite misinformation Pool game mG, such that
u0(t) > ui(t), ∀i ∈ [|N |] and the Adaptation Procedure terminates after |S|
steps. If one of the following holds
– the infiltration rates of the G0 are constant
– the m0

i (t), and m0
ij(t) are non-zero polynomials with non-negative coefficients

of equal degree ∀i ∈ [|N |]
– ∀t the u0(t) converges and ‖IR0(t)‖ ≤ 1

Then the density revenues for the mG converge.

In the case where the assumptions of the Corollary 5 hold then SME(mG) =
{σ| σ := (σ1, . . . , σ|N |), σi ∈ nej for some nej ∈ NE(G0)}. In other words, the
sme’s of the mG are all the combinations of the Nash equilibria strategy profiles
of the pools in G0.

Pool Games in Various Information Environments 97

5 Numerical Experiments

The theoretical results of Sect. 4 cope with the Pool game in various information
environments. Here, we empirically demonstrate the evolution of the density
revenues of the Pool game, as provided by the equation r∗(t) = u∗(t) + IR∗(t) ·
r∗(t − 1) analyzed in Sect. 44, considering the cases of i) complete and correct
information, ii) incomplete information, and iii) incorrect information. In what
follows T = 1000, the number of pools is |N | = 2, where each one starts with
100 miners. As shown in Table 8 the number of miners does not remain constant.
Further, we take r(0) = (m∗

12(0),m
∗
21(0))

T for all cases.
To demonstrate our numerical results we use the functions provided in

Table 8. More specifically, we use linear functions (second column) to study the
case where pools attract miners that increase proportionally in time. Second,
we pick cubic functions (third column) as they are "relatively simple" polyno-
mial functions that experience critical points. Apparently, the properties of the
functions affect the behavior of the pools.

Table 8. Polynomial functions for m(t)s.

Figs. 2a, 3a, 3b, 4a, 4b Figs. 2b, 3c, 3d, 4c, 4d

m1(t) 200t + 100 6t3 + 10t2 + 4t + 100

m11(t) 110t + (100 − m12(0)) 5t3 + 7t2 + t + (100 − m12(0))

m12(t) 40t + m12(0) 4t3 + 2t2 + 2t + m12(0)

m2(t) 156t + 100 8t3 + 9t2 + 4t + 100

m21(t) 20t + m21(0) 3t3 + 3t2 + 2t + m21(0)

m22(t) 91t + (100 − m21(0)) 4t3 + 5t2 + t + (100 − m21(0))

Complete - Correct Information. In this case, the pools have complete and
correct information regarding the Pool game. In Figs. 2a, 2b we compute the
density revenues with initial values m11(0) = 60, m12(0) = 40, m21(0) = 10,
and m22(0) = 90. Further, the density revenue functions for the case where the
m(t)s are provided by Table 8.

Incomplete Information. For the case of incomplete information we provide
experiments both for the undiscounted and the discounted cases, as they were
presented in Subsect. 3.1, whereas we compute the density rates, using the set-
tings in Table 9. In Figs. 3 are shown both the undiscounted (Figs. 3a, 3c) and
the discounted cases (Figs. 3b, 3d). Further, in Figs. 3a, 3b, 3c, and 3d the m(t)s
are polynomial functions and are provided by Table 8. Clearly, the numerical
results are inline with Lemma 2, and Corollaries 2, and 3.

4 The asterisk refers to the different information environments.

98 C. Varsos and M. Bitsaki

Fig. 2. Realisations for the density revenues for the complete-correct information envi-
ronment.

Table 9. Initial infiltration rates, distribution over Information sets, and δ.

Case m11(0) m12(0) m21(0) m22(0) p δ

Undiscounted 90 10 30 70 .4 -
60 40 40 60 .6

Discounted 90 10 30 70 .4 .8

60 40 40 60 .6

Fig. 3. Realisations for the density revenues regarding incomplete information envi-
ronment, see Table 9.

Pool Games in Various Information Environments 99

Incorrect Information. The pools have subjective views regarding the Pool
game. This case is analysed using misinformation games, as presented in Sub-
sect. 3.2 for the values of Table 10. The asterisk in Table 10 simply implies that
these values are according to the game in the second column.

In Figs. 4a–4d we compute the density revenues as provided by the equations
(12), using polynomial infiltration rates, see Figs. 4a, 4b, 4c, and 4d. Since all the
actual and the subjective Pool games are in the class of Prisoners’ Dilemma the
misinformed Pool game has a unique nme. So, the Adaptation procedure will
terminate in one step. Observe that eventually, the density revenues converge to
the values close to the density revenues in the case of complete-correct informa-
tion. This happens because m(t)s are increasing functions and masking the effect
of the update. Thus, the structure of m(t)s can tune the effect of misinformation.
Finally, the numerical results are in line with Lemmas 4, 5, and 6.

Table 10. Initial infiltration rates for a misinformed Pool game.

Game m11(0) m12(0) m21(0) m22(0)

Actual 60 40 20 80

GPool1 70 30 20 80

GPool2 90 10 40 60

Fig. 4. Realisations for the density revenues regarding the settings that presented in
Table 10, for the incorrect information environment.

100 C. Varsos and M. Bitsaki

As a general remark, m(t)s influence the density revenues. In cases where
r(t) attain a critical point, the pools may have incentives to stop/continue the
interaction. For example, in Fig. 2b the pools attain the maximum density rev-
enues early in time. On the other hand, in Fig. 3b the pools attain the minimum
density revenues early and then they recover. As a result, the pools can exploit
the properties of m(t)s for their benefit.

6 Conclusions

In this paper, we transfuse and study the Pool game model, which was intro-
duced in [4], under different information environments. In particular, we consider
the cases where the pools i) experience uncertainty, and ii) have erroneous infor-
mation regarding the interaction. We provide theoretical results regarding the
convergence of the density revenues in all cases, and we generalize the conver-
gence results in [4]. In parallel, we demonstrate experimentally the theoretical
results in all the aforementioned information environments.

Our analysis provides several insights regarding the behavior of the pools.
First, we show experimentally, for all information environments, that the behav-
ior of the pools is affected severely by the formulas of infiltration rates. In that
direction, if the formulas are linear then we can expect the Pool game to con-
verge quicker compared to the case of cubic formulas. Second in case of incorrect
information the pools are not necessarily to understand the actual interaction
in order to converge.

As the Blockchain framework is becoming more and more involved in versatile
and demanding activities is of paramount importance to study and analyze it
in more realistic environments. With this work, we make a first step in this
direction. To that end, some future directions are to study protocols other than
withholding attacks, to develop a mechanism that regulates the efficiency of a
Pool game, and to measure the inefficiency of the Pool game due to uncertainty,
and misinformation.

Acknowledgements. We would like to thank Dr. Giorgos Flouris for the construc-
tive suggestions. Further, we would like to thank the anonymous reviewers for their
productive comments. This work was carried out during the tenure of the first author
in an ERCIM ‘Alain Bensoussan’ Fellowship Programme.

References

1. Altman, E., et al.: Blockchain competition between miners: a game theoretic per-
spective. In: Frontiers in Blockchain (2020)

2. Chen, Z., Sun, X., Shan, X., Zhang, J.: Decentralized mining pool games in
blockchain. In: 2020 IEEE International Conference on Knowledge Graph (ICKG),
pp. 426–432 (2020)

3. Deepa, N., et al.: A survey on blockchain for big data: approaches, opportunities,
and future directions. Future Gener. Comput. Syst. 131, 209–226 (2020)

Pool Games in Various Information Environments 101

4. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103 (2014)

5. Huang, H., Kong, W., Zhou, S., Zheng, Z., Guo, S.: A survey of state-of-the-art on
blockchains: Theories, modelings, and tools. arXiv:2007.03520 (2020)

6. Juhász, P., Stéger, J., Kondor, D., Vattay, G.: A Bayesian approach to identify
bitcoin users. PLoS ONE. 13, e0207000 (2016)

7. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, EC 2016, pp. 365–382 (2016)

8. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-
coin mining pools: a cooperative game theoretic analysis. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2015, pp. 919–927 (2015)

9. Leyton-Brown, K., Shoham, Y.: Essentials of Game Theory: A Concise Multidis-
ciplinary Introduction. Synthesis Lectures on Artificial Intelligence and Machine
Learning, pp. 1–88. Springer Nature, Switzerland (2008). https://doi.org/10.1007/
978-3-031-01545-8

10. Li, W., Cao, M., Wang, Y., Tang, C., Lin, F.: Mining pool game model and Nash
equilibrium analysis for pow-based blockchain networks. IEEE Access 8, 101049–
101060 (2020)

11. Liu, Z., et al.: A survey on applications of game theory in blockchain.
arXiv:1902.10865 (2019)

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
13. Nash, J.F.: Non-cooperative games. Ann. Math. 286–295 (1951)
14. Papamichail, M., Varsos, C., Flouris, G.: Implementing the adaptation procedure in

misinformation games. In: Proceedings of the 12th Hellenic Conference on Artificial
Intelligence (2022)

15. Shi, Z., Zhou, H., de Laat, C.T.A.M., Zhao, Z.G.: A Bayesian game-enhanced auc-
tion model for federated cloud services using blockchain. Future Gener. Comput,
Syst. 136, 49-66 (2022)

16. Varsos, C., Flouris, G., Bitsaki, M., Fasoulakis, M.: A study of misinformation
games. In: Pacific Rim International Conference on Artificial Intelligence (2021)

17. Wu, D.A., dong Liu, X., Yan, X., Peng, R., Li, G.: Equilibrium analysis of bitcoin
block withholding attack: a generalized model. Reliab. Eng. Syst. Saf. 185, 318–328
(2019)

18. Zappalà, P., Belotti, M., Potop-Butucaru, M.G., Secci, S.: Brief announcement:
game theoretical framework for analyzing blockchains robustness. In: International
Symposium on Distributed Computing (2020)

19. Zhao, Z., Chen, X., Zhou, Y.: Bayesian-Nash-incentive-compatible mechanism for
blockchain transaction fee allocation. arXiv:2209.13099 (2022)

http://arxiv.org/abs/2007.03520
https://doi.org/10.1007/978-3-031-01545-8
https://doi.org/10.1007/978-3-031-01545-8
http://arxiv.org/abs/1902.10865
http://arxiv.org/abs/2209.13099

Mixed Technologies

Operating with Quantum Integers: An
Efficient ‘Multiples of’ Oracle

Javier Sanchez-Rivero1(B), Daniel Talaván1, Jose Garcia-Alonso2,
Antonio Ruiz-Cortés3, and Juan Manuel Murillo1,2

1 COMPUTAEX, Cáceres, Spain
jszrivero@gmail.com

2 University of Extremadura, Cáceres, Spain
3 Universidad de Sevilla, Sevilla, Spain

Abstract. Quantum algorithms are a very promising field. However,
creating and manipulating these kind of algorithms is a very complex
task, specially for software engineers used to work at higher abstraction
levels. The work presented here is part of a broader research focused on
providing operations of a higher abstraction level to manipulate integers
codified as a superposition. These operations are designed to be com-
posable and efficient, so quantum software developers can reuse them
to create more complex solutions. Specifically, in this paper we present
a ‘multiples of’ operation. To validate this operation, we show several
examples of quantum circuits and their simulations, including its com-
position possibilities. A theoretical analysis proves that both the com-
plexity of the required classical calculations and the depth of the circuit
scale linearly with the number of qubits. Hence, the ‘multiples of’ oracle
is efficient in terms of complexity and depth. Finally, an empirical study
of the circuit depth is conducted to further reinforce the theoretical anal-
ysis.

Keywords: Quantum computing · Amplitude Amplification · Oracle ·
Multiples · Qiskit

1 Introduction

Quantum computing [17] uses quantum mechanics to perform computations in
a different manner than classical computing [18]. Nowadays, quantum comput-
ers are in the NISQ (Noisy Intermediate-Scale Quantum) Era [19], which means
their practical use is still limited by errors and the low number of qubits (quan-
tum bits). However, the recent developments on quantum devices have allowed
researchers to start testing on real quantum hardware the theoretical work on
quantum algorithms, which has been a very active field for decades [12].

Quantum algorithms are useful when they can solve certain problems faster
than any known classical algorithm [16]. This speedup is measured in terms of
asymptotic scaling of complexity [4]. The work presented here is part of ongoing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 105–124, 2023.
https://doi.org/10.1007/978-3-031-45728-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-45728-9_7

106 J. Sanchez-Rivero et al.

research aimed at providing programmers with operations on quantum states at
a higher level of abstraction than the base quantum gates. The design of these
operations aims at composability and efficiency, such that they can be reused to
create larger solutions. More specifically, our research has begun with the goal
of providing operations on a superposition quantum state that encodes integers
with size determined by the number of qubits in the state [20]. These operations
are not only useful for manipulating a quantum state encoding integers, they are
also more efficient than the same operations in the classical domain. In addition,
the quantum circuits that implement these operations are optimised in depth,
with respect to Qiskit’s automatic methods [23], as well as in the number of
qubits (ancilla and non-ancilla) they use [21].

In particular, this paper presents an operation that computes multiples.
Thus, given an integer and a quantum state that encodes integers, the oper-
ation phase-tags1 the configurations of the quantum state that correspond to
multiples of the given integer. While the complexity of finding the multiples in
the classical domain is O(2nN),2 the complexity of the operation presented here
is O(nN), where nN is the number of bits codifying the maximum size of the
wanted multiples, N . This is a logarithmic scaling in the total number of states,
which provides an exponential speedup with respect to classical calculations.

As mentioned before, in our research this ’multiples of’ is part of a larger set
of quantum operations on integers [20,21]. An important feature that we want
the whole set of operations to preserve is composability. Thus, all the resources
of this set are composable with each other and, for example, the ‘multiples of’
can be composed with a ‘less than’ operation to obtain the multiples of a given
integer a less than another given integer b. In particular, the operation ‘multi-
ples of’ can also be composed with itself to, for example, mark in a quantum
state the multiples of an integer a and then, in the resulting state, mark the
multiples of another integer b. Preserving composability offers the possibility to
reuse such operations to build more complex operations with a higher level of
abstraction. Achieving the best quality attributes, such as reusability or com-
posability, in each operation is important because their compositions will inherit
those attributes [14,24].

This paper is organized as follows. In Sect. 2 we provide the necessary back-
ground for this work. Next, the description of the ’multiples of’ operation is
presented in Sect. 4. The operation takes the shape of a quantum oracle and
the section details both the idea inspiring the oracle and the quantum circuit
exact implementation. In Sect. 5 some examples of circuits and simulations are
shown to prove the functionality of the oracle. Then, in Sect. 6, the complexity of
classical calculations as well as the quantum circuit is discussed. Section 7 shows
composability and further uses of the oracle. Finally, in Sect. 8, the conclusions
and future work are explored.

1 Phase-tagging a state is giving that state a π-phase.
2 Given k ∈ N, there are �N/k� multiples of k in [0, N]. As k is fixed, the number of

multiples grows linearly in N , O(N). Namely, if N = 2nN , then O(2nN).

‘Multiples of’ Oracle 107

2 Background

Oracles have been identified as a recurring pattern in quantum software [15,24].
Following this trend, the work presented here is built as an oracle for Grover’s
algorithm [9]. This algorithm searches for one quantum state in an unordered
database faster than any known classical algorithm. Its generalization is called
Amplitude Amplification [3,10] and allows to search for multiple values. This
algorithm works by applying two quantum operations: an oracle, which marks
with a π-phase the desired quantum states, and a diffuser, which tries to amplify
the amplitude of those marked states. Often, to reach a satisfactory amplifi-
cation, it is needed to repeat the pair oracle-diffuser several times. This pair
oracle-diffuser is usually called the Grover iterator.

The ‘multiples of’ oracle is built reusing two pieces of existing quantum
software, the linear multi-controlled gate [22] and the modulo addition [1,7].

In [22] the authors present an efficient implementation of a multi-controlled
gate whose depth scales linearly with the number of qubits and thus avoids the
polynomial growth of previous implementations. Furthermore, it does not require
the use of ancilla qubits. The linear multi-control gate outperforms Qiskit [23]
implementation from five qubits onwards, which supposes a clear improvement
for any meaningful use. Furthermore, the authors also conduct an analysis on
the utility of the linear multi-controlled gate on NISQ devices, showing that the
depth reduction can help achieve more accurate results. Because of these quality
attributes, we chose to reuse it in this work.

The modulo addition operation a + b mod k is defined as the remainder of
dividing a + b by k. In this work, this operation will only be performed with
values a, b < k. Hence, in our case, the modulo addition can be written as:

a + b mod k =
{

a + b if a + b < k
a + b − k if a + b ≥ k

a, b < k (1)

For this modulo addition we use the implementation presented in [1]. It is
heavily based on Draper’s algorithm [7] for quantum addition. This method uses
the quantum Fourier transform [6] and hence is done on the frequency domain3.
It allows the addition of an integer to a quantum superposed state without the
need to encode the integer in a quantum register. This reduces the number of
necessary qubits. The depth of this operation is linear on the number of qubits,
as it is a composition of linear-depth primitives.

Once the addition gate is built, the modulo addition conducts the following
operations [1]: adds a classical value a < k to a quantum state holding the
classical value b < k, and then it subtracts k if a + b ≥ k. This methods requires
two ancilla qubits to perform the operation, one for the overflowing of the sum,
and another one for checking whether it is needed to subtract k or not.

3 In the frequency domain, integers are represented by superposition of states with
the same different in phase between the state. That difference in phase is the unique
identifier of the integer [18].

108 J. Sanchez-Rivero et al.

This paper showcases how by carefully composing existing pieces of quantum
software a new non-trivial software can be obtained. The ideas hereby described
are the ones which allow to build the oracle ‘multiples of’, presented in detail in
Sect. 4.

3 Related Works

There are several approaches which seek to create higher-level quantum pro-
gramming languages. Quipper [8] is a scalable quantum programming language
which can be used to program several quantum algorithms, such as HHL [11].
Silq [2] is a high-level quantum language which focuses, among other objectives,
in the automatic uncomputation of operations usually required in quantum pro-
gramming. Another construction of higher-level quantum program is Classiq [5],
which researches in building oracles for arithmetic expressions. Latter one is the
closest to our work, previous ones focus on quantum primitives with a more
general approach. Operations in Classiq, range from addition or subtraction to
built-in functions such as Amplitude Estimation. These languages aim at cre-
ating a whole set of operations to be able to create quantum software without
the need of deep knowledge on quantum circuits. Our work follows the same
idea and attempts to create new more complex operations with efficient classical
calculations.

4 Implementation of the ‘Multiples of’ Oracle

In this section, we provide a description of the oracle. It comprises two differen-
tiated parts, the first one is the mathematical ideas inspiring the oracle, where
basic modulo theory shows a condition for identifying multiples. The second
part describes the quantum circuit of the oracle, how the multiples are given a
π-phase, and how to adapt the oracle for a full Amplitude Amplification imple-
mentation.

4.1 Mathematical Properties Inspiring the Oracle

A number M ∈ N is multiple of another number k if the remainder of the division
is 0, formally expressed as M ≡ 0 mod k. If M is not a multiple of k, then M �≡ 0
mod k.

The number M can be be expressed in binary form, also known as binary
decomposition:

M = am · 2m + am−1 · 2m−1 + . . . + a1 · 21 + a0 · 20 =
m∑
i=0

ai · 2i (2)

where ai ∈ {0, 1} and m = �log2 M�.

‘Multiples of’ Oracle 109

Let ri, with 0 ≤ ri < k, be the remainder of 2i when divided by k, formally:

2i ≡ ri mod k (3)

Then by the properties of the ring of remainders Zk it can be noticed that:

M ≡
m∑
i=0

ai · 2i ≡
m∑
i=0

ai · ri mod k (4)

Hence, M is a multiple of k if the sum of the remainders of the powers of 2
modulo k of its binary decomposition is equivalent to 0, formally:

M ≡ 0 mod k ⇐⇒
m∑
i=0

ai · ri ≡ 0 mod k (5)

Therefore, the ‘multiples of’ oracle is built in two parts, first adding the
remainders of the powers of two, and then giving a π-phase to those which are
0, thus the multiples.

4.2 Algorithm for the ‘Multiples of’ Oracle

This subsection provides a detailed explanation of the implementation of the
‘multiples of’ oracle.

Let k ∈ N be the number whose multiples want to be calculated. The quan-
tum circuit for the ‘multiples of k’ oracle consists of three registers of qubits.

The first is the input register, which holds the quantum states in which the
multiples will be searched. It is formed by n qubits and the i-th qubit of this
register is denoted qi. The number n is an input parameter and does not depend
on any other value. Thus, the numbers in which the multiples will be searched
range from 0 to N − 1, where N = 2n.

The second register holds the remainder of the numbers. At most, the remain-
der of dividing by k is k−1, hence the required number of qubits for this register
is nk = �log2(k − 1)�. The i-th qubit of this register is denoted rqi.

Finally, an ancilla register with two qubits is needed to perform the modulo
addition introduced in the Sect. 2, as described in detail in [1]. These qubits are
denoted ancilla0 and ancilla1. Both the registers and the ancilla registers are
initialized to state |0〉.

Algorithm 1 builds the circuit. It follows an explanation which describes it
thoroughly.

The remainders of each power of 2, ri ≡ 2i mod k, are added modulo k
to the remainders register, where the addition is controlled by the input qubit
qi. As the remainders register is initialized as |0〉 and ri < k ∀i, the result of
each modulo addition will never be larger than k, as shown in the definition of
this operation in Sect. 2. Figure 1 shows the general case of this implementation.
This image and all the others showing circuits have been done with the quantikz
package [13].

110 J. Sanchez-Rivero et al.

Data: Number of qubits n and a natural number k
Result: Quantum Circuit which gives a π-phase to all states representing

binary forms of natural numbers multiples of k
Calculate ri ≡ 2i mod k for i ∈ [0, n − 1] ; /* see Appendix A */

nk ← �log2(k − 1)�;
input register (q) ← QuantumRegister(n);
remainder register (rq) ← QuantumRegister(nk);
ancilla register ← QuantumRegister(2);
ntotal ← n + nk + 2;
circ ← QuantumCircuit(ntotal);
Initialize input register to |0〉;
for i = 0 to n − 1 do

circ+ = ModuloAddition(ri, nk + 2);
append circ+ to circ:

- Target: remainder register and ancilla register;
- Control: qi;

end
for j = 0 to nk − 1 do

X gate to rqj ;
end
CZnk gate to qubits rq0, . . . , rqnk−1;
; /* Target: rqnk−1, Control: rq0, . . . , rqnk−2 */

for j = 0 to nk − 1 do
X gate to rqj ;

end
for i = 0 to n − 1 do

circ− = ModuloSubstraction(ri, nk + 2);
append circ− to circ:

- Target: remainder register and ancilla register;
- Control: qi;

end
Algorithm 1: Algorithm for building the ‘multiples of’ oracle

After applying the modulo additions, the ancilla register is always at state
|00〉 [1]. The remainders register holds states from |0〉 up to |k − 1〉. From Eq. 5,
it can be seen that the multiples of k are those states of the form:

|rqnk−1 . . . rq1 rq0 qn−1 . . . q1 q0〉 = | 0 . . . 0 0︸ ︷︷ ︸
rq register

qn−1 . . . q1 q0︸ ︷︷ ︸
input register

〉 (6)

Hence, these states and only these ones will be given a π-phase by means of
the gate 7:

X⊗nk · CZnk · X⊗nk (7)

where CZnk is a multi-controlled Z-gate whose target is qubit rqnk−1 and
controlled by qubits rq0, . . . , rqnk−2. This gate is built using the linear multi-
controlled Z-gate introduced in Sect. 2. Figure 2 shows how this part of the circuit
is built.

‘Multiples of’ Oracle 111

. . .

. . .

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

rq1

...

rqnk−1

ancilla0

ancilla1

Fig. 1. Modulo addition of the remainders of the powers of 2.

. . .

. . .

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

X X

rq1 X X

... X X

rqnk−1 X Z X

ancilla0

ancilla1

Fig. 2. Oracle that marks multiples of k.

Afterwards, in order to apply the diffuser, it is required to return auxiliary
qubits to their initial states, that is, to perform an uncomputation on this register
[18]. As the multiples are already given a π-phase, if the modulo additions of the
remainders are uncomputed, the states would keep the phase. The circuit would
be as in Fig. 3.

112 J. Sanchez-Rivero et al.

.

.

...
...

.

.

.

.

.

.

.

q0

q1

...

qn−1

rq0

+ r0 mod k + r1 mod k + rn−1 mod k

X X

− r0 mod k − r1 mod k − rn−1 mod k

rq1 X X

... X X

rqnk−1 X Z X

ancilla0

ancilla1

Fig. 3. Oracle that marks multiples of k and returns all auxiliary qubits to state |0〉.

Finally, the diffuser can be applied to the input register (the rest of the regis-
ters, remainders and ancilla, are in the state |0〉). The complete implementation
is shown in Fig. 4.

oracle

input register: q H⊗n Diffuser

remainders register: rq
+ r mod k

X⊗nk CZnk X⊗nk

− r mod k
ancilla register: ancilla

Fig. 4. Implementation of ‘multiples of’ oracle plus diffuser with full superposition as
input.

A documentation for this ‘multiples of’ oracle following the guidelines pro-
posed in [21] can be found in the following repository.

5 Simulations and Results

In this section, we show some examples of the oracle, both the implementations
and the results, which are obtained by means of a simulator with no noise and
no error model applied. Different values for k, the number whose multiples are
calculated, and n, the number of input qubits4, are chosen to showcase the func-
tionality of the ‘multiples of’ oracle. We display the full circuit for the multiples
of 3 oracle with 4 qubits input as well as its simulation. We also show the full
circuit and the simulation of multiples of 5 with 6 qubits. We have chosen these
values for k and number of input qubits to improve readability of the circuits.

4 We codify all our integers as quantum states in these n qubits, hence the multiples
are calculated up to N = 2n integers.

‘Multiples of’ Oracle 113

In addition, we also show a simulation of multiples of 14 with 5 qubits using
one and two repetitions of the Grover iterator to showcase the difference in the
amplified amplitude in both cases.

We have used Qiskit [23] to generate the circuits and simulate them. To be
able to amplify the marked quantum states we have chosen a full superposition
of 0s and 1s as our input state and have applied the Grover’s algorithm diffuser
[18] after the oracle. All the simulations are conducted with 20,000 shots5 as it
is the maximum allowed by Qiskit.

5.1 Multiples of 3

The ‘multiples of 3’ oracle with 4 qubits as input can be found in Fig. 5. The
remainders of the powers of 2 when divided by 3 follow the cycle 1, 2, as:

20 ≡ 1 mod 3

21 ≡ 2 mod 3

22 ≡ 1 mod 3

(8)

As there are 4 input qubits, the remainders of the first 4 powers of 2 are added
in the remainders register. These 4 remainders are 1, 2, 1, 2, repeating the whole
cycle once.

q0

q1

q2

q3

rq0

+ 1 mod 3 + 2 mod 3 + 1 mod 3 + 2 mod 3

X X

− 1 mod 3 − 2 mod 3 − 1 mod 3 − 2 mod 3
rq1 X Z X

ancilla0

ancilla1

Fig. 5. Multiples of 3 oracle with a 4 qubits input register.

The result of simulating the entire circuit, including the initialisation of the
state, the shown oracle, and the diffuser, are shown on Fig. 6. The x-axis repre-
sents the final quantum states and the y-axis represents the relative frequency.
Desired states (multiples of 3) are in blue with a thick border, undesired states
(not multiples of 3) are in red without border. It can be noticed that with just one
repetition, the desired states are clearly amplified to differentiate the multiples
of 3 from the rest of the numbers.

5 Each shot is one simulation of the circuit, the final result is the aggregation of all
shots.

114 J. Sanchez-Rivero et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Numbers

0.0

0.1

0.2
Fr
eq
ue
nc
y

Multiples of 3
Not multiples

Fig. 6. Results of simulating the circuit of multiples of 3 with a 4 qubits input.

5.2 Multiples of 5

The ‘multiples of 5’ oracle with 6 qubits as input can be found in Fig. 7. The
remainders of the powers of 2 when divided by 5 follow the cycle 1, 2, 4, 3, as:

20 ≡ 1 mod 5

21 ≡ 2 mod 5

22 ≡ 4 mod 5

23 ≡ 3 mod 5

24 ≡ 1 mod 5

(9)

As there are 6 input qubits, the remainders of the first 6 powers of 2 are added
in the remainders register. These 6 remainders are 1, 2, 4, 3, 1, 2, repeating the
first remainders of the cycle, 1 and 2.

q0

q1

q2

q3

q4

q5

rq0

+ 1 mod 5 + 2 mod 5 + 4 mod 5 + 3 mod 5 + 1 mod 5 + 2 mod 5

X X

− 1 mod 5 − 2 mod 5 − 4 mod 5 − 3 mod 5 − 1 mod 5 − 2 mod 5

rq1 X X

rq2 X Z X

ancilla0

ancilla1

Fig. 7. Multiples of 5 oracle with a 6 qubits input register.

The result of simulating the full circuit, including the initialisation of the
state, the shown oracle and the diffuser; are shown on Fig. 8. It can be seen that,
in this case, the amplification with one iteration is almost perfect.

‘Multiples of’ Oracle 115

0 5 10 15 20 25 30 35 40 45 50 55 60
Numbers

0.00

0.05

0.10
Fr
eq
ue
nc
y

Multiples of 5
Not multiples

Fig. 8. Results of simulating the circuit of multiples of 5 with a 6 qubits input.

5.3 Multiples of 14

In this section, we show the results of simulating the ‘multiples of 14’ with 5
input qubits in full superposition with one and two repetitions of the Grover
iterator. The remainders of the powers of 2 are 1, 2, 4, 8, and 2. We do not
show the circuits for the sake of readability, however they can be found in the
provided repository.

Figure 9 shows the results of the simulation using one repetition. The total
amount of amplification of desired states is ≈ 64%. Although from an absolute
perspective this may not seem a favourable result, the three desired states (0,
14 and 28, multiples of 14 up to 31) have their amplitude enlarged by a factor
≈ 6.82. This amplification allows the distinction of multiples of 14 among the
input states.

On Fig. 10 are depicted the results of the simulation using two repetitions.
In this case, the total amount of amplification is ≈ 100%. This is the best
possible amplification and shows that this oracle may improve its applicability by
repeating the pair oracle-diffuser. However, the increased depth of this operation
has to be taken into account when implementing the operation in a real quantum
device.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq
ue
nc
y

Multiples of 14
Not multiples

Fig. 9. Results of simulating the circuit of multiples of 14 with a 5 qubits input with
one repetition of the Grover iterator.

116 J. Sanchez-Rivero et al.

Knowing the number of desired states, M , and the total number of states,
N , the number of repetitions to reach maximum amplification can be calculated
exactly [18]. Further analyses on the number of repetitions are conducted in [9]
[10].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq
ue
nc
y

Multiples of 14
Not multiples

Fig. 10. Results of simulating the circuit of multiples of 14 with a 5 qubits input with
two repetitions of the Grover iterator.

6 Complexity and Depth

In this section, we present both an analysis of the classical calculations required
to build the quantum oracle and also a theoretical and empirical study of the
depth of the resulting quantum oracle.

Let us bear in mind that k ∈ N is the number whose multiples want to be
calculated; n is the number of input qubits, in which the multiples of k are going
to be calculated; N = 2n is the total number of quantum states; and nk is the
required number of qubits to store the remainders of dividing by k (at most
k − 1).

6.1 Classical Calculations Complexity

In this subsection, we analyse the classical calculations needed to implement the
‘multiples of’ quantum oracle. This classical part is divided in two tasks. First
one is computing the remainders of the powers of 2 divided by k. Second task is
building the quantum circuit.

The first task consists on the calculations of the remainders ri ≡ 2i mod k,
0 ≤ ri < k and i ∈ [0, n − 1]. At most, only n remainders need to be calculated,
as only n modulo additions are conducted. Therefore, this operation is O(n) =
O(log N). The algorithm to do these computations can be found in Appendix A.

The second task is building the quantum circuit. The construction of the
controlled circuit ‘+r mod k’ which performs the modulo addition is linear on
the number of qubits [1]. In this case, the number of qubits on the remainders
register, nk. This means that the complexity of this operation is O(log k) =

‘Multiples of’ Oracle 117

O(nk). This is smaller than O(n), otherwise, k would be greater than N = 2n

and there would be only one multiple in those integers, the number 0.
Moreover, the complexity of appending the modulo addition circuits to the

full quantum circuit is linear on the number of qubits on the input register,
n, thus, O(n) = O(log N). The rest of needed appends (Hadamard, X and
multi-controlled Z) are also linear with the number of qubits. Therefore, the
complete procedure required in classical computations holds a complexity of
O(n) = O(log N).

It can be noted that for obtaining the multiples of a given number k up to
N classically, it is needed to calculate �N/k� multiples. Hence, as k is already
fixed, this calculation grows exponentially with the number of binary bits, nN ,
needed to encode N in binary form, O(N) = O(2nN). To apply our method, we
need to encode N in a quantum circuit and nN qubits are needed. As showed
above, the complexity of the classical computations of our method is O(nN),
hence, our method presents an exponential reduction of the complexity of the
classical computations.

6.2 Theoretical Analysis of Quantum Circuit Depth

As stated in Sect. 4.2, the quantum circuit consists of three registers of qubits,
the input qubits, which hold the information for all the possible numbers, formed
by n qubits, which is input from the user. The register which holds the remainder
of the numbers, which has nk = �log2(k − 1)� qubits. At most, the remainder
of dividing by k is k − 1, hence not more qubits are required. Finally, an ancilla
register with two qubits is needed to perform the modulo addition, as described
in detail in [1]. The depth of this circuit is determined by the depth of its two
reused oracles, the modulo addition and the phase-marking operation.

The modulo addition ‘+r mod k’ has linear depth on the number of qubits,
in this case O(nk) = O(log k), as it is applied on the remainders register. Once
k is chosen, the depth of this circuit is fixed. This operation needs to be applied
2n times, firstly to compute the remainders and afterwards to uncompute them.
Therefore, the depth of this operation is O(n) = O(log N).

The phase-marking operation requires a multi-controlled Z-gate. This is
implemented following [22], which provides a linear depth on the number of
qubits, O(nk) = O(log k). As stated in the previous Subsect. 6.1, this is upper-
bounded by O(n).

Therefore, the depth of the full implementation of the ‘multiples of’ oracle is
linear on the number of input qubits n, O(n) = O(log N).

6.3 Empirical Measurement of Circuit Depth

To further reinforce the depth complexity study, an empirical analysis is also
presented. In order to do this, we have generated the oracles for different numbers
of k, nk, and n. To properly perform this analysis, before measuring depth,
all the circuits have been transpiled using one of the IBM quantum computer

118 J. Sanchez-Rivero et al.

backends. In particular, the one used has been fake washington v2, which has
the same properties (gate set, coupling map, etc.) as the real quantum device
Washington.6.

Figure 11 shows the depth of the oracle with respect to the number of input
qubits n, for different values of k and nk. It can be noticed that the depth grows
linearly as the number of input qubits increases. This is an expected behaviour
as theoretically explained above.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of input qubits (n)

5000

10000

15000

20000

25000

30000

D
ep
th

k = 107 nk = 7
k = 58 nk = 6
k = 17 nk = 5
k = 12 nk = 4
k = 5 nk = 3
k = 3 nk = 2

Fig. 11. Depth (y-axis) against number of input qubits n (x-axis) for different values
of k.

It can also be noticed that the slope of the graphic grows as the number of
qubits in the remainders register nk increases. This is also an expected behaviour,
as the depth of the modulo addition grows linearly with the number of qubits on
which it is applied. This behaviour can be observed in Fig. 12. This figure shows
the growth of the depth with respect to the number k whose multiples are to be
computed. This analysis has been conducted by choosing several pseudo-random
numbers in each interval [2nk−1, 2nk), with nk ∈ {3, 4, 5, 6, 7}. These intervals
are delimited by vertical dotted lines on the figure. It can be observed that the
depth for each value holds mostly constant in these intervals. This means that
the depth increments are mainly caused by the growing number of nk qubits
required to store the remainders of k (largest number stored is k − 1).

Lines in both figures are mere visual guides and do not represent any data.

7 Composability and Further Uses

In this section, we show how the proposed oracle can be further reused by pro-
viding some examples. First, we showcase how the ‘multiples of’ oracle can be
composed with other oracles. Second, we explain how the oracle can be modi-
fied to obtain, instead of multiples of a number k, numbers with a determined
6 https://qiskit.org/documentation/apidoc/providers fake provider.html.

https://qiskit.org/documentation/apidoc/providers_fake_provider.html

‘Multiples of’ Oracle 119

0 20 40 60 80 100 120
Number k

2000

4000

6000

8000

10000

12000

14000
D
ep
th

nk = 3 nk = 4 nk = 5 nk = 6 nk = 7

9 input qubits
8 input qubits
7 input qubits
6 input qubits
5 input qubits

Fig. 12. Depth (y-axis) against k (x-axis) for different amounts of input qubits (n).
The corresponding value of nk for each k is displayed.

remainder when dividing by k. Last, both of these options are combined. Both
circuit and results of simulations are displayed in each case. The conditions for
the simulations are the same as previously described in Sect. 5.

7.1 Multiples and Less-Than Oracle

We show an example on how to obtain the multiples of a given number k smaller
than m. In order to do so, the ‘multiples of’ oracle and the ‘less-than’ oracle [20]
are composed7. However, this composition is not trivial since it must be applied
in an specific way. The oracle to compose with (‘less-than’ in this example) must
be applied controlled by the qubits in the remainders register rq0, . . . , rqnk−1

and targeted on the input register q0, . . . , qn−1. This oracle substitutes the multi-
controlled Z-gate which is used originally to mark all the multiples.

In this example, the choices are k = 5, m = 14, n = 5. Hence, the desired
states are the multiples of 5 smaller than 14 from 0 to 31. The implementation
of this oracle can be found in Fig. 13. The results of the simulation using only
one repetition of the Grover iterator is in Fig. 14. The results are, as expected,
the states amplified of the multiples of 5 less than 14.

7.2 Numbers with Any Remainder

This subsection shows how to change the multiples oracle in order to obtain
numbers with any remainder r when dividing by a given integer k. The operation
‘multiples of’ explained so far is the particular case r = 0. In this example, we
show the oracle taking k = 6, r = 3, n = 5, formally, p ≡ 3 mod 6. The oracle
can be found in Fig. 15. Notice that, when giving a π-phase with gate CCZ in
the remainders register, there are only X gates in the qubit rq2, hence marking

7 The ‘multiples of’ oracle can be combined with any other phase-marking oracle.

120 J. Sanchez-Rivero et al.

q0

< 14

q1

q2

q3

q4

rq0

+ 1 mod 5 + 2 mod 5 + 4 mod 5 + 3 mod 5 + 1 mod 5

X X

− 1 mod 5 − 2 mod 5 − 4 mod 5 − 3 mod 5 − 1 mod 5

rq1 X X

rq2 X X

ancilla0

ancilla1

Fig. 13. Multiples of 5 oracle combined with less than 14 oracle with a 5 qubits input.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.00

0.05

0.10

0.15

0.20

Fr
eq
ue
nc
y

Multiples of 5 less than 14
Otherwise

Fig. 14. Results of simulating the circuit of multiples of 5 less than 14 with a 5 qubits
input.

those states where |rq2 rq1 rq0〉 = |011〉 = |3〉 = |r〉. The results of the simulation
using only one repetition of the Grover iterator is shown in Fig. 16 and match
the expected results for this operation.

7.3 Numbers with Any Remainder and Range of Integers

This subsection shows how to combine the oracle of numbers with a determined
remainder when dividing by a number and the range of integers oracle presented
in [21]. For instance, here we show the oracle for integers p ≡ 5 mod 9 and
p ∈ [12, 28]. The oracle can be found in Fig. 17. Notice that, as in Subsect. 7.1,
there is an oracle controlled by the qubits in the remainders register. However,
in this case, the X gates are arranged such that the oracle is activated when the
qubits in the remainders register are in the state |rq3 rq2 rq1 rq0〉 = |0101〉 = |5〉.
The results of the simulation using only one repetition of the Grover iterator is
shown in Fig. 18.

‘Multiples of’ Oracle 121

q0

q1

q2

q3

q4

rq0

+ 1 mod 6 + 2 mod 6 + 4 mod 6 + 2 mod 6 + 4 mod 6 − 1 mod 6 − 2 mod 6 − 4 mod 6 − 2 mod 6 − 4 mod 6

rq1

rq2 X Z X

ancilla0

ancilla1

Fig. 15. Numbers p ≡ 3 mod 6 oracle with a 5 qubits input.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

Fr
eq
ue
nc
y

p ≡ 3 mod 6
Otherwise

Fig. 16. Results of simulating the circuit of numbers p ≡ 3 mod 6 with a 5 qubits
input.

q0

[12, 28]

q1

q2

q3

q4

rq0

+ 1 mod 9 + 2 mod 9 + 4 mod 9 + 8 mod 9 + 7 mod 9 − 1 mod 9 − 2 mod 9 − 4 mod 9 − 8 mod 9 − 7 mod 9

rq1 X X

rq2

rq3 X X

ancilla0

ancilla1

Fig. 17. Numbers p ≡ 5 mod 9 with p ∈ [12, 28] oracle with a 5 qubits input.

122 J. Sanchez-Rivero et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Numbers

0.0

0.1

0.2

0.3

Fr
eq
ue
nc
y

p ≡ 5 mod 9 and p ∈ [12, 28]
Otherwise

Fig. 18. Results of simulating the circuit of numbers p ≡ 5 mod 9 with p ∈ [12, 28]
with a 5 qubits input.

8 Conclusions

In this work, we have presented a method to build an efficient oracle for phase-
marking multiples of a given number. We have shown the theoretical ideas behind
this construction and how to build the quantum circuit. Moreover, we have con-
ducted a theoretical analysis of the complexity of both the classical calculations
needed to build the oracle and the oracle itself. The result of this analysis is that
our method leads to an exponential speedup over the classical one in terms of
the required classical computations. Finally, further functionalities are explored.
Through examples and simulations we show how to compose the ‘multiples of’
oracle with other oracles and also how numbers with other properties can be
obtained.

This work is one of the steps taken to create an efficient set of tools of
quantum software for working with integers. We hope these tools can be reused
by quantum software developers to create new quantum algorithms.

Acknowledgements. This work has been financially supported by the Ministry of
Economic Affairs and Digital Transformation of the Spanish Government through the
QUANTUM ENIA project call - Quantum Spain project, by the Spanish Ministry of
Science and Innovation under project PID2021-124054OB-C31, by the Regional Min-
istry of Economy, Science and Digital Agenda, and the Department of Economy and
Infrastructure of the Government of Extremadura under project GR21133, and by the
European Union through the Recovery, Transformation and Resilience Plan - NextGen-
erationEU within the framework of the Digital Spain 2026 Agenda.

We are grateful to COMPUTAEX Foundation for allowing us to use the supercom-
puting facilities (LUSITANIA II) for calculations.

Repository. The code used for this paper can be found in the following repository:

https://github.com/JSRivero/oracle-multiples

https://github.com/JSRivero/oracle-multiples

‘Multiples of’ Oracle 123

Appendix A

Data: Number of powers n and a natural number k
Result: List of remainders ri of 2i when divided by k

ri ≡ 2i mod k for i ∈ [0, n − 1]
list remainders ← list(n);
r ← 1 ; /* as 20 ≡ 1 mod k for any k ∈ N */

for i = 1 to n − 1 do
r′ ← 2 · r;
if r′ < k then

r ← r′

else
r ← r′ − k

end
list remainders[i] ← r

end
Algorithm 2: Algorithm for computing the remainders of the first n powers
of 2 when divided by k

It can be noticed that this algorithm performs at most 3 operations each
iteration, and has n iterations, hence its complexity is O(n).

References

1. Beauregard, S.: Circuit for shor’s algorithm using 2n+3 qubits (2002).
https://doi.org/10.48550/ARXIV.QUANT-PH/0205095, https://arxiv.org/abs/
quant-ph/0205095

2. Bichsel, B., Baader, M., Gehr, T., Vechev, M.: SILQ: a high-level quantum language
with safe uncomputation and intuitive semantics. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
286–300. PLDI 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3385412.3386007

3. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

4. Chivers, I., Sleightholme, J., Chivers, I., Sleightholme, J.: An introduction to algo-
rithms and the big o notation. Introduction to Programming with Fortran: With
Coverage of Fortran 90, 95, 2003, 2008 and 77, pp. 359–364 (2015)

5. Classiq: Classiq arithmetic oracle. https://docs.classiq.io/0-13/user-guide/builtin-
functions/arithmetic/arithmetic-expression.html

6. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring.
arXiv preprint quant-ph/0201067 (2002)

7. Draper, T.G.: Addition on a quantum computer (2000). https://doi.org/10.48550/
ARXIV.QUANT-PH/0008033, https://arxiv.org/abs/quant-ph/0008033

8. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: A
scalable quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013).
https://doi.org/10.1145/2499370.2462177

https://doi.org/10.48550/ARXIV.QUANT-PH/0205095
https://arxiv.org/abs/quant-ph/0205095
https://arxiv.org/abs/quant-ph/0205095
https://doi.org/10.1145/3385412.3386007
https://docs.classiq.io/0-13/user-guide/builtin-functions/arithmetic/arithmetic-expression.html
https://docs.classiq.io/0-13/user-guide/builtin-functions/arithmetic/arithmetic-expression.html
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
https://doi.org/10.48550/ARXIV.QUANT-PH/0008033
https://arxiv.org/abs/quant-ph/0008033
https://doi.org/10.1145/2499370.2462177

124 J. Sanchez-Rivero et al.

9. Grover, L.K.: A fast quantum mechanical algorithm for database search
(1996). https://doi.org/10.48550/ARXIV.QUANT-PH/9605043, https://arxiv.
org/abs/quant-ph/9605043

10. Grover, L.K.: Quantum computers can search rapidly by using almost any trans-
formation. Phys. Rev. Lett. 80(19), 4329–4332 (1998). https://doi.org/10.1103/
physrevlett.80.4329

11. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear sys-
tems of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/
10.1103/PhysRevLett.103.150502, https://link.aps.org/doi/10.1103/PhysRevLett.
103.150502

12. Hidary, J.D., Hidary, J.D.: A brief history of quantum computing. Quant. Comput.
Appl. Approach. 15–21 (2021)

13. Kay, A.: Tutorial on the quantikz package. arXiv preprint arXiv:1809.03842 (2018)
14. Klappenecker, A., Roetteler, M.: Quantum software reusability. Int. J. Found.

Comput. Sci. 14(05), 777–796 (2003)
15. Leymann, F.: Towards a pattern language for quantum algorithms. In: Feld, S.,

Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 218–230. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-14082-3 19

16. Montanaro, A.: Quantum algorithms: an overview. npj Quant. Inf. 2(1), 1–8 (2016)
17. National Academies of Sciences, Engineering, and Medicine and others: Quantum

computing: progress and prospects (2019)
18. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Phys.

Today. 54, 60 (2002)
19. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79

(2018)
20. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.:

Automatic generation of an efficient less-than oracle for quantum amplitude ampli-
fication (2023). https://doi.org/10.48550/ARXIV.2303.07120, https://arxiv.org/
abs/2303.07120

21. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.:
Some initial guidelines for building reusable quantum oracles (2023). https://doi.
org/10.48550/arXiv.2303.14959

22. da Silva, A.J., Park, D.K.: Linear-depth quantum circuits for multiqubit controlled
gates. Phys. Rev. A. 106, 042602 (2022). https://doi.org/10.1103/PhysRevA.106.
042602, https://link.aps.org/doi/10.1103/PhysRevA.106.042602

23. Qiskit, A., et al.: An open-source framework for quantum computing (2021).
https://doi.org/10.5281/zenodo.2573505

24. Zhao, J.: Quantum software engineering: Landscapes and horizons (2021). https://
doi.org/10.48550/ARXIV.2007.07047, https://arxiv.org/abs/2007.07047

https://doi.org/10.48550/ARXIV.QUANT-PH/9605043
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/physrevlett.80.4329
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/1809.03842
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.48550/ARXIV.2303.07120
https://arxiv.org/abs/2303.07120
https://arxiv.org/abs/2303.07120
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.1103/PhysRevA.106.042602
https://doi.org/10.1103/PhysRevA.106.042602
https://link.aps.org/doi/10.1103/PhysRevA.106.042602
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/ARXIV.2007.07047
https://doi.org/10.48550/ARXIV.2007.07047
https://arxiv.org/abs/2007.07047

Orchestrating Information Governance
Workloads as Stateful Services Using
Kubernetes Operator Framework

Cataldo Mega(B)

University of Stuttgart, Universitätsstraße 38, 56095 Stuttgart, Germany
cataldo.mega@ipvs.uni-stuttgart.de

Abstract. Regulatory compliance is forcing organizations to implement an infor-
mation governance (IG) strategy, but many are struggling to evolve their IG solu-
tions due to their legacy architecture, as they are not designed to adapt to new
business models and for the growing amount of unstructured data produced by a
potentiallyworldwide audience.One of the biggest problems faced is continuously
determining data value and adaptation of measures to keep risks and operational
costs under control. Oneway to solve this issue is to leverage cloud technology and
find an affordable approach to migrate legacy solutions to a cloud environment. In
most cases, this means de-composing monolithic applications, refactoring com-
ponents and replacing outdated homegrown deployment technologies with cloud-
native, automated deployment and orchestration services. Our goal is to show how
operational costs can be reduced by running refactored versions of IG solutions
in clouds with a minimum of human intervention. This paper discusses the steps
to evolve a legacy multi-tier IG solutions from physical to containerized environ-
ments by encapsulating human operator knowledge in cloud topology and orches-
tration artifacts, with the goal of enabling automated deployment and operation in
Kubernetes (K8s) managed execution environments.

Keywords: Information governance · IG workloads · cloud · stateful services

1 Introduction

Every company is subject to three basic business metrics; Value, cost and risk. They
form the basis of any Enterprise Information Management (EIM) system. IG adds gov-
ernance controls to information lifecycles and becomes the control authority for Infor-
mation Lifecycle Governance (ILG). ILG starts with the creation and extends to the
disposition of data. Data sets in the IG context represent governance metadata needed to
control how data is processed and to create an appropriate governance context derived
from applicable company policies, regulations and standards through the use of Records
Lifecycle Management (RLM). This means that governance records relate to the secu-
rity, classification, retention, and disposition of data. In practical terms, IG consists of
implementing an Information Governance Program (IGP) that helps to steer information
lifecycles based on actual data value. As a result, ILGworkflows through their processes

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 125–143, 2023.
https://doi.org/10.1007/978-3-031-45728-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_8&domain=pdf
http://orcid.org/0000-0002-2816-2699
https://doi.org/10.1007/978-3-031-45728-9_8

126 C. Mega

implement three key activities: 1) Use of analytics to determine andmaximize data value
as context erodes; 2) Enforce archiving of data onto tiered storage to ensure storage cost
declines as value declines; 3) Trigger disposal of obsolete data to avoid cost and eliminate
risk. As a result, in addition to actual business workloads, these activities also produce
typical ILG workloads that an EIM system must handle.

1.1 Problem Statement and Requirements

Today, legacy IG solutions operating in a global openmarket have to dealwith an increas-
ingworkload causedby international regulationpushing them to its operational andfinan-
cial limits. The root cause of these shortcomings is a monolithic solution design and a
production system running on a static IT infrastructure. These factors prevent flexibility
at component level and elasticity at IT resource level, and are therefore costly to operate
andmaintain. Oneway out of this situation is tomigrate these solutions to cloud environ-
ments and take advantage of the economies of scale where the sharing of IT resources
makes it possible to minimize operational costs and optimize resource consumption
through automation. Unlike traditional IT systems, clouds automate operational cost
control by monitoring key performance indicators that report on cloud resource con-
sumption, and more important make changes to the used infrastructure through dynamic
provisioning and de-provisioning requests. This paper proposes steps to evolve and adapt
the legacy architecture of IG solutions designed for bare metal production environments
tomodern cloud environments. To prove the feasibility of our approach, we implemented
a prototype of an IG solution running on a Kubernetes-managed (K8s) platform using
the operator pattern promoted by the Cloud Native Computing Foundation (CNCF) [1].

1.2 Contributions and Outline of this Paper

Contribution 1: We decomposed our IG solution, reworked its legacy design, and made
the necessary changes to automatically deploy and operate it in a K8s execution envi-
ronment. Major focus has been put into refactoring component and deployment models
and the consolidation of the tier-based high availability (HA) design before moving
from a bare-metal to a containerized on virtualized deployment model, shown on Fig. 3.
Contribution 2: We formalized the knowledge of human operators and implemented a
resilient IG solution that models HA, disaster recovery (DR) and scale-out by incorpo-
rating infrastructure operational logic into the design and implementation of stateless
and stateful cloud services running under the control of the K8s orchestrator.

The remainder of this paper is structured as follows: Sect.: 2 presents a blue-print for
IG solutions and an associated componentmodel thatwederived froma representative set
of IG use cases. Some background on the benefits that the cloud offers for IG workloads
is also provided. Section: 3 introduces the fundamental aspects of deployment topologies
for IG solutions and discusses traditional versus cloud-native deployment models. It also
briefly explains how K8s based workload orchestration works in the cloud. Section: 4
presents our solution approach. Section: 5 introduces the stateful IG solution prototype
and its services. Section: 6 details the prototype development and the system under test
(SUT) used. Section: 7 discusses the evaluation performed and the test results produced;
Sect.: 8 presents our conclusion and provides an outlook on future work.

Orchestrating Information Governance Workloads 127

2 Background

In order to bring together IG solutions and the cloud we need to look at the requirements
and workloads that regulations add to typical production systems.

IG requirements are mainly derived from corporate policies, regulations and stan-
dards. They influence the solutions design and define RLM control structures required
for EIM and RLM lifecycles processes as described by the following use cases (UC) out
of the EIM, RLM application domains:

• UC1 (EIM): Collect and classify enterprise data from known sources.
• UC2 (EIM): Load, store, index and secure data in enterprise repositories.
• UC3 (EIM): Search, access and retrieve information from the repositories.
• UC4 (RLM):Apply regulatory security, classification, retention, hold, and disposition

policies.
• UC5 (RLM): Support legal cases through e-discover, aggregate and transfer case data

on hold.

2.1 ILG Workload Models

By definition, a workload is defined as a representative mix of primitive operations
performed against a system. The workloads implied by the UC1 – UC5 use cases fall
into the following categories (details are discussed in Mega [5]):

• WL1: This workload is created by interactive users and external agents using web-
requests through Https/REST issued against the IG services APIs.

• WL2: Is an interactive- and bulk workload, using lower-level application logic per-
forming database operations consisting of a representativemix of primitive operations
like: Create, Retrieve, Update, Delete and Search (CRUDS).

• WL3: Is an interactive- and bulk workloads using low-level file system functions
against persisted files, consisting of digital objects of any type, format and size.

Together, use cases, workloads and real-world experience helped define an IG
solution and blueprint as shown in Fig. 1 below.

The blueprint consists of seven key solution components, listed as CM1 to CM7.
Going left to right there is: CM1: Aggregates the subcomponents Data Collection,

Classification, Assessment and Ingest. CM2:Content Services: ProvidingAccess, Index,
Search, Retrieval, Security and Management functions.

CM3: Records Services: These are, Classification, Retention, Disposition and Com-
pliance. CM4: Case Management Services: Consisting of e-Discovery, Legal Data
Requests, andHolds.CM5:ContentAnalytics:Related to, businessClassification, Statis-
tics, Reporting. CM6: Repository Services: Provide Information Retrieval, Catalog and
Archive functions. CM7: Platform Services: Address Compute, Storage, and Network
needs.

For a reference and comparison we looked at architectures published by California
Department of Technology [6],Alfresco [7], IBMCloudDesignCenter [3], IBMContent
Manager Enterprise Edition [4], IBM FileNet Content Manager [8], and other major
players in this domain. Workloads, similar to the one defined before, are discussed in
Mega [5] and in Lebutsch [9].

128 C. Mega

Lifecycles

Information Governance Services
IG Services: Classify, Retain, Dispose, e-Discover

K
no

w
n

D
at

a
So

ur
ce

s

Sources Pre-processing Processing & Persisting Post-processing Resources

CatalogDB

Repository
Content Management, Archive

Pl
at

fo
rm

 S
er

vi
ce

sPolicy driven
Data Collection

Relevant, Transient

Valuable

Data Classification
Process

Content Analytics
Analyze eDiscovery

Provenance, Quality

Integrity

Data Assessment

REP-Services: CRUD, Index, Search, Archive

File Storage

Object Storage

DB-Storage

Object-Storage

Dispose

Enterprise
Records

Case
Management

RLM

ILG

- Component - Process- WorkflowRecords Lifecycle Management (RLM)Information Lifecycle Management (ILG)

Process

Process

Full text index

CM2

CM3 CM4

CM5

CM6

CM7

CM1: Data Services: Collection, Classification, Assessment and Ingest.

CM2: Content Services: Access, Index, Search, Retrieval, Security, Management.

CM3: Records Services: Classification, Retention, Disposition, Compliance.

CM4: Case Management Services: e -Discovery, Legal Data Requests, Holds.

CM5: Content Analytics: Classification, Statistics, Reporting.

CM6: Repository services: Information Retrieval, Catalog, Archive.

CM7: Platform Services: Compute, Storage, and Network.

CM1

ObjectDB

Fig. 1. ILG Solution blueprint and component.

Platform Services
Resource Provisioning, De-

provisioning & Control

Repository Services

Http Server App-Server

Object Services

DB-Server
Repository Services

Scaled-out Storage

Data Services
Enterprise Records
Case Management

Catalog-DB

Files Full-text Index
Object-DB

Objects

Catalog

DB-ServerObj-Catalog

RM-Client

Full-Text ServerFull-Text Index

Rep-Manager

Obj-Server

FT-Services

CM-Client

Catalog
DB-Server

Requests

Tier1 -Cluster
Web-Server

LB1

App-Server
CM-Client

Web-Server

App-Server
RM-Client

Obj-Catalog
DB-Server

Https

Tier2 -Cluster

Tier3 -Cluster

Solution Components Deployment Components Deployment Topology

Storage -Cluster

decompose cloudify

Cloud Platform Services

Cluster, Deployment, Orchestration, Communication,

DNS, LB, Security, Infrastructure, Compute, Network, Storage

Fig. 2. Steps to create an ILG solution component model and deployment topology.

Both performed similar tests and used a deployment topology similar to that on
the far right of Fig. 2. Moving from left to right, we sketched the steps in which the
IG solution on the left is broken down into individual, self-sufficient components then
assembled into a deployment package along with platform components and arranged as
a deployable topology graph using a multi-tier application pattern, shown on the far left.

2.2 The Benefit of Clouds

Today’s cloud platforms offer dynamic resource provisioning, scalability and efficiency
to applications that are both containerized and virtualized - characteristics that legacy
IG solutions lack. Virtualization affects physical production environments; it transforms
physical infrastructure into purely virtual infrastructure through a Soft-ware Defined
Infrastructure (SDI) approach. Containerization is done at the solution level by breaking
down monolithic solutions into independent components that are suitable for running
inside containers.Our approach follows the concept of a composable solution that runs on
top of a composable infrastructure as coined by Gartner [2]. This approach suggests that
IT resources are dynamically allocated through APIs based on policies. Composable in
this context means striving for fully automated IT resource lifecycle management, where

Orchestrating Information Governance Workloads 129

application workload pattern and Service Level Agreements (SLA) trigger resource
provisioning and de-provisioning events. To prove this approach, we implemented a
prototype using the IBM Content Services Reference Architecture [3] guidelines and a
subset of IBM Content Management [4] family of products.

3 Foundation

Before cloud, there was a gap between cluster and cluster management. The topology
graph of Fig. 2 emphasizes this aspect were each tier is designed as a cluster of appli-
cations/resources pair configured to address the need for service resiliency and scale
using component-specific cluster management logic. IG solutions typically consists of
multiple tiers. Examples are a web server tier, an application server tier hosting a con-
tent repository for managing unstructured content, a database server tier for storing
meta data and a storage tier to persist digital content. Service high availability man-
dates that every tier withstands component failure therefore a high availability solution
requires a high availability configuration for every tier. The complexity of configur-
ing high availability holistically stems from the fact that different tier and server types
use different approaches to high availability, consisting of specific operational logic,
to holistically maintain a defined application state and meet established service level
agreements (SLA). SLAs are measured through key performance indicators like: health
(alive, dead), response time and throughput. On clouds, cluster operations are consoli-
dated, centralized and application agnostic. Cloud applications are deployed in container
together with their runtime environments, in units called Pod. Pod cluster management
is an integral part of the cloud platform and independent of application type. Pods are
the smallest deployable units in Kubernetes [10]. Cluster of Pods are centrally managed
by the K8s control plane, which acts as a replacement for the legacy, tier-specific cluster
management. This feature is the biggest advantage for a traditional multi-tier solution.
By migrating legacy applications from bare-metal to the cloud, it is possible to close
the gap between clusters and cluster management, simplifying and consolidating the
operation of an IG production system.

3.1 Virtualizing and Componentizing a Monolithic IG Solution

Figure 3 is a visual of the platform related migration steps necessary for moving IG
solutions from bare metal (left) through virtualization to containerized on virtualized
(right) cloud execution environments, as suggested by the CNCF [1].

The refactored IG solution design which we used to develop the prototype required
the following migration steps: 1) We decomposed the IG solution design in to smaller
independent components; 2) We then virtualized the production environment, selecting
OpenStack and KVM as the cloud platform/hypervisor technology (Gang [11]); 3) The
third step was to containerize the chosen components using Docker for the container
and Kubernetes for the cluster and orchestration technology (Trybek [12], Hagemann
[13]) and applied it to the stateless application-tier components; 4) The last step included
developing the stateful services based onKubernetes StatefulSets and the operator frame-
work (Wang [14]). Throughout development our focus was on the re-design but were

130 C. Mega

Physical Server

Network Storage

Operating System

App1 App2 App3

Physical Server

Network Storage

Host Operating System

Hypervisor

App1 App2

Guest OS

VM

Physical Server

Network Storage

Host Operating System

Container Engine

App1

Container

App2

Container

App3

Container

App3

Guest OS

VM

Physical Server

Network Storage

Host Operating System

Container Engine

App1
Container

App2
Container

Hypervisor

Guest OS

VM

Bare Metal Virtualized Containerized on Virtualized

Fig. 3. Migrating from bare metal to containerized on virtualized.

possible also replacement of old components with new cloud-ready technology. As an
example, physical components like load balancer (LB), compute server and some net-
works were replaced with virtual resources provisioned by the cloud platform. Web1

and application2 tiers-specific cluster management was replaced with K8s built-in Pod
cluster management. Only the management of the database cluster required a custom
developed database operator for the DB2 HA-reconciliation and cluster administration
logic.

3.2 Comparing Physical vs Virtual Infrastructure Models

Figure 4 shows the deployment topologies of both the original physical production
system versus the new virtual, cloud-based production platforms. On the left, you see
the legacy system deployed on bare metal servers, in a static, pre-configured production
environment. This configuration does not support dynamic topology changes as physical
resources are provisioned manually and on request. In these environments software trig-
gered dynamic pro(de)visioning events are not an option. In addition, tier-specific cluster
management requiresmore complex planning and labor intensive operator interventions.

The three clusters (Cluster1–3) on the left of Fig. 4 relate to the three tiers (T1 -T3),
web, application and database in a physical environment. The right side shows the same
configuration but with a K8s assisted deployment topology optimized for managing the
container on virtualized infrastructure. The benefit gained is a consolidated platform
built-in cluster management, including a centralized service orchestration facility. In
addition, the database specific cluster management is controlled alongside through the
K8s APIs using a custom database operator.

1 https://www.ibm.com/docs/en/ibm.
2 https://www.ibm.com/docs/en/was/9.0.5?topic=websphere-application-server-overview.

https://www.ibm.com/docs/en/ibm
https://www.ibm.com/docs/en/was/9.0.5?topic=websphere-application-server-overview

Orchestrating Information Governance Workloads 131

Database Tier
DB-Server

DB Vol – Table Spaces Content Data

Web-Tier
WS

App-Tier
AS

Https

FS

admin

network

private

public

Storage-Tier

M

M

T1

T2

T3

M

network
LB

Users

Pod DB-Server

Pod-WS

Pod-AS

VM

VM

VM

P
latfo

rm
 S

erv
ices

C
o

n
tro

l P
lan

e, O
rch

estrato
r,

M
an

ag
em

e
n
t

Infrastructure Services

Compute, Storage, Network,

DNS, Load Balancer, Firewall

K8s Communication Services

K8s-Cluster-3

K8s-Cluster-1

K8s-Cluster-2

DNS

Physical

Virtual

admin
private

public

LB - Physical Load Balancer

- Communication Links

- Physical Network Segments
WS

AS - Bare Metal App-Server

DB-Server - Bare Metal DB-Server

M

- Physical Storage-Server

L

- Physical Machine

- Topology Layer/Tier

FS - Filesystem Access

Https- Network Access

- Bare Metal Web-Server

DNS - Domain name Service

Cluster-3

Cluster-1

Cluster-2

Fig. 4. Migrating solutions from physical to virtual infrastructures.

3.3 Kubernetes Stateful Architecture and its Entities

For a better understanding of our solution approach, we introduce Kubernetes, its com-
ponents, resources and the operator framework at the high-level. The most important
components of K8s are: Controller, Scheduler, Configuration Database (ETCD), a Node
(VM), and the actual Operator.

The Deployment, Service and StatefulSets are K8s script resources that are required
to define deployment topology and runtime context using YAML grammar.

More specifically their definition is as follows:

• A Deployment is a declarative description of PODs, who carry stateless services.
• A StatefulSets3 is a declarative description of PODs, carrying stateful services.
• A Service is a declarative way to expose PODs to the external world. The Service

defines network access and load-balancing policies to PODs hosting applications that
provide the actual service.

• A Custom Resource Definition (CRD) is a declarative description representing a
resource known to, but not managed by K8s.

• A Custom Resource (CR) is a component implementing a custom control loop used
to manage a custom resource throughout its entire lifecycle. A CR carries the human
operator knowledge in form of resource specific implementation artifact.

• An Operator is a K8s extension that allows custom software to be management from
within Kubernetes using a CustomResource Definition (CRD) and the corresponding
Custom Resource (CR) component via K8s APIs.

By definition, an IG solution consists of components that provides both stateless
and stateful services. This means that the following 3 K8s resources must be used to

3 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

132 C. Mega

bring stateless and stateful services under the control of K8s: Deployments for stateless
services; StatefulSets for modeling stateful services and operators that use application-
specific management logic to control topology changes via APIs. Figure 5 shows the
control flow of an operator for managing the lifecycle based on state changes of a custom
resource.

Declarative
Requested State Controller

Operator Knowledge

Current State

Managed
Resource

Apply measure
to reach

requested State
External Events

Forces state
change

Compare
State

Post
changed state

3 6

4

5

1
2

Query state

Kubernetes Operator Pattern

Fig. 5. K8s control loop of the operator pattern.

In summary, Kubernetes manages the execution environment at and above the Pod
level, but not the application within the containers. The operator4pattern is intended to
close this gap. That is, human operator functionsweremade available to aK8s operator to
manage sets of services in an automated way via K8s APIs. For example, the imitation of
a human database operator through database-specific administration logic implemented
with scripts or program modules that specify setup, configuration and management of
the database in a production environment.

4 Solution Approach

For our IG solution design, we envisioned a 2-level hierarchy of five K8s operators.
The first operator on the left of Fig. 6 represents the top level ILG service operator,
who controls and monitors the four operators at the 2nd-level. These are the Repository
service, the Client service, the ObjServer service, and the DB service, which together
form the four-tiered deployment topology shown in Fig. 4. As can be seen, the web and
application tiers aremapped to three stateless services implemented asK8sDeployments.
The combined database and storage tier are implemented through a K8s StatefulSet,
which is used to control and manage the DB service operator, as shown in Fig. 6, bottom
right. The DB service operator contains the definition of the DB cluster and the logic
required to support high availability, read-scalability and disaster recovery.We deployed
and tested the prototype implementation in 2 phases. In the first phase, we focused on
the stateless services of the web and application tier, which are shown as the upper part
of the topology graph in Fig. 7. In the second phase, we developed and deployed the
underlying stateful repository services, including the database and storage tiers shown
in the image at the bottom of the topology graph.

4 https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Orchestrating Information Governance Workloads 133

Custom Resource Definition

Relation Type

… Operator

Declarative description of PODs carrying stateless services.Deployment

Service Exposes PODs to external world. Defines access and load-balancing policies.

StatefulSet Declarative description of PODs carrying stateful services.

.

Obj-Server Service Operator

managed by

Service
StatefulSet

Deployment
Service

Deployment
Service

Deployment

Service

Client Service

Repository Service

ObjServ Service

DB Service

create / change

create / manages

Repository Service Operator

DB-Service Operator

Client Service Operator

managed by

ILG Service

ILG CRD

managed by create / manages

managed by create / manages

managed by create / manages

Fig. 6. K8s operator hierarchy for managing ILG deployment topology.

By stateful database services we mean a service that is resilience to component
failures. In our context this might be database instance, a storage or a network failure.
The implemented solution is a shared-nothing database clusterwith at least 3 independent
database instances and a mechanism that replicates the database data using synchronous
or asynchronous replication.

The rest of this papers focuses on the aspect of highly available stateful database
services and the required orchestration logic used, which we derived from database
product guidelines and our own expertise.

4.1 K8s Operator Extended Control Loop

To support a stateful database service by running a cluster of database instances in con-
tainers on a virtualized in environment, it was necessary to design database-specific
cluster management using the components and a topology shown in Fig. 7. The integra-
tion of the database cluster and its execution environment is controlled by the StatefulSet
complemented by the DB2 operator, together they control the database overall state and
topology through the K8s control plane. The DB2 operator and respective custom con-
trol loop is shown in the lower left part of Fig. 7. It also shows the K8s and the DB2
control loops, so-called MAPE loops, a concept that is being discussed in Maurer [15].
MAPE stands for Monitor, Analyze, Plan and Execute, basically the chain of processes
that, through decision logic determines what activities must follow after a change of the
desired state of the stateful service. The MAPE process steps are: Monitor the target
resource state; Analyze and compare current state with the desired state; In case of mis-
alignments, Plan what activities to perform; Execute the reconciliation plan, taking the
necessary actions to align current state with desired service state.

4.2 Related Work

The prototype implementation work was done in the course of 4 master thesis at the
university of Stuttgart by Gang [11], Trybek [12], Hagemann [13] and Wang [14]. The
concept design around dynamic topology was published by Mega [5], Börner [16], and
contribution on how application might use the MAPE loop concept came from Ritter
[17]. A concept model of an ECM system including governance services was provided

134 C. Mega

Data Catalog
DB-Server

Http Server

CM-Clients

Http Server

Object Server

Object Catalog
DB-Server

Web Tier

Application Tier

Database Tier

DB Storage

Storage Tier

Object
Storage

DB Storage

Repository Manager

M A
PE

Deployment
Controller

M A
PE

StatefulSets
Controller

M A
PE

DB2
Operator

Monitoring Provisioning Management

DB specific
control & decision logic

K
u
b
ern

etes co
n
tro

l p
lan

e

Load Balancer

Repository Tier

Load Balancer

Fig. 7. ILG solution deployment topology and the K8s control loops.

by the IBM Cloud Architecture Center [3]. The CNCF [1] published white paper on the
operator pattern provided the ground work for our migration approach. Andrikopoulos
[18] in his paper outlines a generic introduction on how to adapt applications for the
cloud. Kubernetes best practices, specific to StatefulSets and operators came from Palak
[19] at Google, and aspects of EIM practices in companies from Chaki [20]. The Cali-
fornia Department of Technology [6] published an ECM reference architecture, that was
complemented by information management governance guidelines from Victoria State
Government [21] and other agencies, which we used to align our blueprint with. Maurer
et al. [15] elaborated on MAPE for autonomic management of cloud infrastructures.
Overall, our research lead to several academic sources on stateful services on cloud, but
none that address specifically the aspect of refactoring monolithic, legacy IG solutions
and none how to move them on cloud execution platforms.

5 The ILG Repository Stateful Service Prototype

Compared to stateless services, stateful services are more complex to design and to
implement because K8s was initially designed for stateless services only. Stateful ser-
vices were introduced later for integrating custom resources. For the prototype we chose
an IG solution based on IBM ECM [4] and other necessary components, consisting of
IBM Content Navigator, IBM Content Manager, IBM WebSphere Application Server
and the IBMDB2 database server. This decision was based on practical experience with
these products, in building ECM production systems that provide information gover-
nance services. A knowledge we have acquired through several customer projects. The
configuration of the prototype is designed to test scale-out, service availability and dis-
aster recovery and was translated into a set of K8s stateful services. The DB2 service
operator is used specifically to automate the management of the DB2 database cluster
through K8s APIs.

Orchestrating Information Governance Workloads 135

5.1 Kubernetes Stateful Services Cluster Setup

Figure 8 shows the multi-tiered deployment model of the refactored IG solution which
usesK8s automated operating concept. This setup, implements theweb tier withDocker-
compose and focused on the application and database tiers for our HA testing.

The application cluster at Tier-2 is managed by aK8sDeployment artefact not shown
in Fig. 8. Instead, the database cluster uses a K8s StatefulSet together with the DB2
operator as Tier-3. The DB2 StatefulSet defines, creates and controls the Pod cluster,
which consists of Pod1 - Pod4 running on Node1and Node2. It defines two service entry
points SVC-Read/Write and SVC-Read-only, and ensures that the persistent volumes
PV1 - PV4 are attached to the Pods. Each Pod consists of one container that hosts
one database instance. The StatefulSet also ensures that each Pod has an ordered, stable
identity, a unique network identifier and is bound to its persistent volume (PV), surviving
deletions and recreations. If a Pod fails or dies, then the StatefulSet control loop will
recreate the Pod with exactly the same identity and rebound them to the original PV,
ensuring the Pod can access the previously owned database data.

Primary

CM-Client / RM

Secondary

LBWeb-Tier-1

Application –Tier-2

Database -Tier-3

StorageStorage -Tier-4

StatefulSet

DB-Operator

K8s DB-Cluster

API

K8s
Controller

Controller
CR

API

CR

CRD

Auxiliary Auxiliary

Storage Storage Storage

Read-only Read/Write Svc

sync

PV1

DB-Instance DB-Instance DB-Instance DB-Instance
Pod2

Httpd

Workloads

K8s LB

PIP:443 PIP:443

NP:30001 NIP:30002

Node2 Node3

PIP:443->NIP:443

CIP:50001 CIP:50001

Svc

async

- CR-Description

- Container
- Pod

- Custom Resource

- Persistent VolumePV

Pod

- Node

- Load BalancerLB
- Public IPPIP
- Node IPNIP

Legend:

- Container IPCIP

- Service
CR

Node

CRD

443->30001 443->30002

Pod1 Pod3 Pod4

PV2 PV3 PV4

Node1

Pod Deployment
K8s

Node1 Master Pod

Worker Worker

async

Routing

Fig. 8. Deployment model of a K8s cluster of DB2 instances.

The K8s DB2 operator complements the StatefulSet by creating and managing the
cluster ofDB2 instances using theCRD.Theoperator itself is deployed in another Pod. Its
task is to create the DB2-CR using the DB2-CRD specification, once it is activated. Once
active, the Governor, which represents the DB2 cluster control loop, begins monitoring
the health of each database instance, continuously compares it to the desired state. If the
current state deviates from the desired state, the control loop triggers a series of actions,
to reconcile current state with the desired state using database-specific administration
logic.

Figure 9 details the DB2 cluster setup in an HA and DR configuration. Primary and
secondary instances have each a collocated Governor component.

All four DB-instances have a connection to the DB2 HADR component, which
implements the DB2 cluster management logic. Figure 9 also shows the different roles

136 C. Mega

assigned to each cluster members. The primary instance is the cluster leader and owns
the reference database. The principal standby instance is attached to the first instance
as a peer instance, and its database is the HA-synchronous replication target. Database
service fail-over is between primary and standby (the secondary) database instance.

Node

Node

Node

Node

Service network

Container
network

Fig. 9. Component model of a cluster of DB2 instances.

Optionally, there can be up to two auxiliary stand-by instances that can be used to
mitigate a production site outage. In this setup, only the primary servers both read/write
requests, while all others support read-only requests, forming a read-only scale-out
farm. Database operations that modify data are redirected to the primary instance. All
changes are propagated to all stand-by instances via log shipping using synchronous
or asynchronous replication mode. The synchronization source though, is always the
primary. These built-inDB2 capabilities enableHAandDRconfigurations to be realized,
with the positive side effect of supporting scale-out of read-only workloads. The roles of
primary and secondary are interchangeable. Fail-over and fallback is triggered by state
change events, and state reconciliation is based on the logic implemented through the
DB2 operator.

5.2 K8s DB2 Stateful Service Design and Implementation

According to the K8s Operator framework, an operator consists of the following com-
ponents: API, CRD, CR, a Controller and the resource specific management logic. The
operator itself is defined through a K8s ‘Deployment’ that describes security, roles,
accounts management and runs in its own Pod. Figure 10 shows the DB2 operator
components and their relationships. By definition, the K8s DB2 operator manages the
lifecycle of theDB2 resources, that is, creating andmanaging the cluster ofDB2 database
instances that are unknown to K8s and its native cluster management services. In our
prototype, the custom resource administration logic is spread among the operator Pod,
the DB2 instance Pods and the ETCD Pod. The constituent custom resource compo-
nents are: Governor, DB cluster controller, DB2 APIs, HADR and ETCD components
shown at the bottom of Fig. 10. The ETCD is a distributed key-value store that is used to

Orchestrating Information Governance Workloads 137

store the DB-cluster topology information in a look-up table, like: host name, role lock,
timestamp and other required configuration parameters.

< RoleBinding>
db2operator-rolebinding

< ClusterRole >

db2operator-role

< ServiceAccount >

db2operator-manager

< CR >

db2clusters-db2.examples.com

Kind: DB2-Cluster

< CRD >

DB2-Cluster

instance of

parse

bind

uses

uses

- Relation

- Description

- Operator

- Scripts

< API/Logic >
DB2-Cluster-types.go

< Controller >
DB2-Cluster-controller.go

- Component

DB2-HADR
take
over

< Docker Image >

manager

ETCD Governor

look up

get/set role

check

- Container

DB2

< Container>

< Container>

Controller-Manager

StatefulSet

create

Storage

PV

config

attach

StatefulSet

Deployment

create

deploy

deploy

Fig. 10. Components of the Kubernetes Operator for DB2.

The operator component model of Fig. 10 shows the Governor and the HADR com-
ponent as deployed collocated with the DB instance on every Pod, bottom tight. The
DB2 Controller and API, on the other hand, are hosted on the operator Pod, upper part.
A possible situation of “split-brain syndrome”, i.e. a situation in which both the primary
and the secondary instance try to restart at the same time, resulting in duplicate services,
is avoided using ETCD as an external reference point monitored by the Governor, as
shown on the bottom left in Fig. 10, overseeing the automated fail-over/fallback process.
Creating and managing the database topology is done by the DB2 Controller inside the
DB2 Operator.

6 DB2-Operator Prototype Test System Setup

We implemented and evaluated the prototype on our department’s cloud infrastructure.
The test environment consists of OpenStack, which is used to provision compute, stor-
age, network and virtual machines (VM). The VMs run an Ubuntu server, configured
with Docker, Compose and Kubernetes. The test infrastructure resources include 3 VMs
labeled Node1- Node3, the public and internal networks and 4 physical storage volumes
PV1-PV4, as shown in Fig. 11. This setup has one master and two worker K8s nodes.
The test system includes: an ETCD cluster, the Google Operator template, the HAProxy
load balancer and the DB2 Pod cluster. The actual database instances are loaded into the
containers using docker images. The DB2 operator artifacts consist of as set of kuber-
netes YAML scripts and the custom database cluster management tools, implemented as
Python, Go and Bash scripts. Figure 11 shows two aspects of our database test system
setup, consisting of four Pods, the test client and the HAProxy used as the load bal-
ancer. The database instances are configured to start automatically with the Pod using

138 C. Mega

startup shell scripts that start the DB2 database, the Governor component and the DB2
HADR component. The configuration on the left side of Fig. 11 highlights the routing
path for the read/write workload, represented by the service selector leading to the pri-
mary instance. The right side shows the same configuration with the routing path for the
read-only workload, represented by the service selector that leads to all instances, the
scale-out farm. Instance state, roles and network configuration are stored and updated
periodically in the ETCD key-value store and monitored by a watchdog.

CM-Client / RM

Storage Storage Storage Storage

Read/Write Svc

sync

PV1

DB2

Pod2

HAProxy

Node2

async

30001

Pod1 Pod3 Pod4

PV2 PV3 PV4

23307

DB2 DB2 DB2

30001

Primary Secondary Auxiliary Auxiliary
50000 50000 50000 50000

PVC PVC PVC PVC

Node3

DB-Cluster

Workload: Read/Write

Endpoint Endpoint

to primary
30001

Selector

CM-Client / RM

Storage Storage Storage Storage

Read-only Svc

PV1

DB2

Pod2

HAProxy

Node2
30002

Pod1 Pod3 Pod4

PV2 PV3 PV4

23308

DB2 DB2 DB2

30002

Primary Secondary Auxiliary Auxiliary
50000 50000 50000 50000

PVC PVC PVC PVC

Node3

DB-Cluster

Workload: Read/Write

Endpoint Endpoint

to all
30002

Selector

async

Internal Communication

External Communication

Synchronous replication

Asynchronous replication

VM

30001 Port

K8s Cluster

External Component

CRUD
Select

ETCD
Pod

Arbiter

State Table

Fig. 11. System under test (SUT) Prototype.

The initialization routines ensure that the K8s service instances receive the correct
labels and are associated with corresponding communication endpoints, i.e. their IP
addresses and ports. Endpoints configurations are dynamically updated when Pods die
or are recreated. Each database instance has a specific role and together represent theDB2
database HA-cluster. Figure 11 also outlines the external and internal communication
endpoints and lists the flow of user request for the different workload types.

This test setup includes the HA-Proxy component that plays the role of the request
dispatcher and load balancer. We have configured HA-Proxy to run outside of the K8s
cluster and to forward incoming client requests to the two worker nodes. HA-Proxy
provides a pair of public communications end-points that are linked to the DB service
entry points inside the K8s cluster, shown in Fig. 11. K8s Service artifacts act as service
proxies of the actual database service. In the case of a read-only workload, the K8s
selector (a built-in K8s LB) forwards requests to all Pods across the VM worker nodes
to ensure the request traffic is load balanced based on defined policies.

Orchestrating Information Governance Workloads 139

7 Tests, Results and Evaluation

Our test scenarios were created to evaluate the prototype in terms HA, DR and scale-out
capabilities. The actual verification tests were developed using a Python client applica-
tion that simulates an interactive multi-user database transaction workload. We ran sev-
eral load and scalability tests against the database HA-cluster and collected the results.
The external HA-Proxy server provided in-cluster response-time statistics, end-to-end
response-times were generated by our own client application. Results include request
response times, data throughput, the number of connections, as well as server status,
reaction time to failures and service recovery times.

Note: The tests carried out are only indicative and serve to verify the steps of platform
migration, estimate approximate effort and prove the feasibility of our approach.

7.1 Service Availability and Failover Scenario

The first test scenario shown in Fig. 12, simulates a failure of the database service by
simply deleting the Pod alongwith the primary database instance, see red lightning bolt at
T1. We then measured the time it took until the outage was discovered, the time at which
the database service was re-restored and verified the consistency of the database and its
data. The relevant HA metrics used are: Reaction time Trec = T2-T1; Fail-over time
Tfov= T3-T2; HA-service restore time Tha= T4-T3; and the auxiliary reconfiguration
time Taux = T5-T4. The sum over the partial times is the overall configuration reset
time. Using the interaction diagram of Fig. 12 we have following flow of events: At T1,
the Pod of the primary server is deleted and the primary lock (a timestamp) in ETCD is
no longer updated. T2 – is the case when the K8s Deployment control loop (C-loop in
the diagram) detects that the primary Pod has died, and re-creates the Pod with the same
data (PV1) but with new IP address and eventually on a different node; T3 - the Governor
on the secondary server detects that the timestamp of the primary lock exceeds the time
to live (TTL) and therefore declares it inactive. At this point the secondary takes on the
role of the primary. This is done by starting the DB2 HA-specific take-over process and
re-establishing the database service.

T4 is when the Governor on the new clone of the old primary Pod through the
ETCD database detects that there is a new active primary server and assigns itself the
role of the new secondary server, connects as peer, and starts the synchronous database
replication. At T5, the two Auxiliary instances become aware of the role change and
reconnect to the new primary instance, triggering the database replication, as shown
in the interaction diagram of Fig. 12. We performed 10x test runs of the HA failover
scenario and measured reaction-, failover- and service recovery times listed in Table 1.
The test results are displayed in seconds. The average measured reaction time of the K8s
control loop was about ~2 s, while the service recovery time was about ~14 s on average.

140 C. Mega

up

K8s
C-Loop Secondary

kill down?

.

failover

DB2
Governor
C-Loop

.

Role:primary

Auxiliary

DB2
Governor

.

Primary

.

.

check primary

down up Full reset

Time
T5

HA reset

.

ETCD

.

.
primary?

.

.

Primary-Pod

Primary*-Pod
create new

check
primary.

connect as Auxiliary
..

Primary*-Pod

Secondary

Role:secondar
y

connect as peer

x sec

TfTr To

..
. .

x sec

State

.

T1 T4T3

..
T2

Tr =T2–T1 – Reaction time

Loop

Legend

T1-Service down

T3-Service up

T2-Failover start

T4-HA reset

T5-Auxliary reset

To =T3–T2 Service recovery

Tf =T4–T3 – Failover time

Fig. 12. HA fail-over flow of events and reaction times.

Table 1. DB availability (HA) failover response time test results.

Trec (s) Tfov (s) Tha (s)

1 2.859 3.621 6.425

2 1.995 4.322 6.839

3 2.403 9.655 18.180

4 2.066 5.856 13.793

5 2.022 36.309 41.639

6 2.051 9.632 14.555

7 1.720 4.839 9.570

8 2.058 29.886 32.728

9 2.624 9.679 18.111

10 2.059 33.286 34.581

Avg. 2.186 14.709 19.642

The variations in failover time, i.e. the time it takes for the new secondary database
to restore HA-state, were approximately ~20 s, as this depends on the think time of the
governor’s control loop, which was configured to 30 s. In the worst case, this means a
30 s wait period before the role change happens, plus some time delay due to system
load, which explains the magnitude of the fluctuations in the Tf response time. The
results suggest that the reaction time of the K8s control loop is negligible compared to
the service recovery time. K8s rebuilds Pods faster than the time it takes for the custom
resource takes to restore service. In our test environment, service recovery seems to be
in the of range of minutes, while Pod cloning is in the range of tenths of seconds. Overall
though, the results obtained prove the feasibility of our approach.

Orchestrating Information Governance Workloads 141

7.2 Read-Only Workload Scalability Test

The first series of tests focuses on determining the response time characteristics of
the DB2-cluster under different loads. The test is to create an increasing number of
interactive (10–30) virtual users that send a series of SQL requests to a database table
that is replicated to the fourDB2-clustermembers. Theworkload itself consists of simple
select statements that are issued in a loop with a short think time in between. Each run is
repeated with 10, 20 and 30 simulated users against 1, then 2, then 3 and finally 4 DB2-
instances. Each user sends 1000 requests for a total workload of 10.000, 20.000 and in
the third iteration 30.000 read requests, which equates to 30.000 database transactions at
peak. Figure 13, shows the response time of Pod/ DB-instances (x-axis) and workloads
(colored horizontal lines).

Fig. 13. Average read response time by number of users and DB-instances. (Color figure online)

As can be seen, the three response time graphs all show that time gradually decreases
as Pods (instances) are added independent of the workload used: blue (10.000), orange
(20.000), grey (30.000). This is Easily explainable, because the workload is distributed
across all available instances. Instead, with a constant number of Pods, the response time
increases as the workload increases demonstrating the scale-out behavior of the system.

In the second scenario, load balancing across the DB2-cluster is evaluated. With
this test case, we investigated the distribution of work among the cluster members by
constant load. The results of the three set of tests are shown in Fig. 14. The vertical axis
shows the number of read requests generated by the virtual users in batches of 10.000,
20.000 and 30.000 transactions. For each batch, we repeated the test with 1,2,3 and 4
DB2-instances.

The graph shows the system load as color-coded sections of the vertical bars. The blue
area represents the primary, brown the secondary, grey the auxiliary-1 and yellow the
auxiliary-2 database instance. The number of transactions served by each DB2-instance
is proportional to the size of the section in the respective bar.

The result demonstrates, that using a constant workload with a growing number of
DB2-instances, the individual load on each instance decreases as the overall workload
is distributed across all cluster members.

Here, too, the test results confirm our claim. Therefore, migrating legacy IG solutions
to cloud execution environments is feasibility and with an affordable effort. Typical IG

142 C. Mega

solution capabilities such as HA, DR and scale-out are retained, benefiting automated
service delivery, flexible resource allocation, and reduced operational costs.

Fig. 14. Read-only workload. Response time and request

8 Conclusion and Outlooks

This paper explored the effort required to migrate a legacy IG solution designed to oper-
ate in a pre-configured, physical production environment to a dynamic software-defined
cloud infrastructure (SDI). The focus of this work was on refactoring the legacy solu-
tion design and successfully moving from a physical to a cloud environment. The benefit
gained from this is the ability to orchestrate ILGworkloads using stateful services in K8s
managed clusters. We have learned that cloud platforms provide cluster control mecha-
nisms and resource topology management across all solution tiers, which can simplify
and reduce the application-specific cluster management complexity. With Pod clusters
managed by K8s, Pod, Node, Network and Storage management is kept out of applica-
tion responsibility and centrally consolidated in the cloud platform. This makes applica-
tion layer-specific cluster management obsolete and solution design leaner. In addition,
built-in control loops with the cloud platform enables monitoring of resource health and
automatic triggering of provisioning and de-provisioning requests. Component specific
lifecycle management tasks are integrated as K8s extensions using the operator pattern.
Operators make it possible to take advantage of the elasticity of the cloud infrastructure
and react dynamically to changes in workload. The resulting effects are the avoidance of
manual interventions, gain in flexibility and the reduction of associated operating costs.

Our prototype leveraged the IBM ECM product stack, consisting of IBM Content
Navigator, IBMContentManager Enterprise Edition, along with the required IBMWeb-
Sphere Application Server and IBM DB2 database server. We have developed an IG
solution design as used by traditional ECM customers world-wide, most of whom still
run their systems on-premise on a physical infrastructure. Currently, all products support
virtualized environments, but not all support containerized in virtualized environments.
We couldn’t, find a customer story that holistically shows the migration of an IG solution
from physical to cloud, but several blogs explaining cloud implementations of individual
component. Future work could focus on real-world production deployments and repeat
our tests with more realistic workloads and database sizes.

Orchestrating Information Governance Workloads 143

References

1. CNCF, CNCF operator white paper. https://github.com/cncf/tag-app-delivery/blob/main/ope
rator-wg/whitepaper/Operator-WhitePaper_v1-0.md. Accessed 30 July 2023

2. Panetta, K.: Gartner keynote: the future of business is composable the future of business is
composable, 19 October 2020 https://www.gartner.com/smarterwithgartner/gartner-keynote-
the-future-of-business-is-composable. Accessed 30 July 2023

3. IBM, Content management: content services reference architecture. https://www.ibm.
com/cloud/architecture/architectures/contentManagementdomain/reference-architecture/.
Accessed1 Mar 2023

4. IBM Corporation, “IBM Content Manager Enterprise Edition components,” IBM Corpora-
tion, Online (2023)

5. Mega, C., Waizenegger, T., Lebutsch, D., Schleipen, S., Barney, J.M.: Dynamic cloud service
topology adaption for minimizing resources while meeting performance goals. IBM J. Res.
Dev. 58, 1–10 (2014)

6. California department of technology , enterprise content management reference architecture,
California department of technology 1325 J Street, Suite 1600, Sacramento, CA 95814 (2014)

7. Alfresco, Alfresco Content Services (2021). https://www.alfresco.com/platform
8. IBM Corporation, “FileNet P8 baseline architecture,” IBM Corporation, Online (2023)
9. Lebutsch, D., Bolik, C., Hennecke, M.: Content management as a service—financial archive

cloud. Datenbank-Spektrum 10, 131–142 (2010)
10. kubernetes.io, “Kubernetes Concepts,” 30 July 2023. https://kubernetes.io/docs/concepts/.

Accessed 30 July 2023
11. Shao, G.: About the design changes required for enabling ECM systems to exploit cloud

technology (2020)
12. Trybek, C.: Investigating the orchestration of containerized enterprise content management

worklaods in cloud environments using open source cloud technology based on kubernets
and docker (2021)

13. Hagemann, P.: About the design changes required for enabling ECM systems to exploit cloud
technology (2021)

14. Wang, X.: Orchestrating stateful database services in cloud environments using Kubernetes
stateful services framework, OPUS - publication server of the University of Stuttgart (2022)

15. Maurer, M., Breskovic, I., Emeakaroha, V.C., Brandic, I.: Revealing the MAPE loop for the
autonomic management of Cloud infrastructures. In: 2011 IEEE Symposium on Computers
and Communications (ISCC) (2011)

16. Andreas, B.: Orchestration and provisioning of dynamic system topologies, Stuttgart (2011)
17. Ritter, T., Mitschang, B., Mega, C.: Dynamic provisioning of system topologies in the cloud.

In: Enterprise Interoperability V, London (2012)
18. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the cloud

environment – challenges and solutions in migrating applications to the cloud. Computing
95, 493–535 (2013)

19. Bhatia, P., Tee, J.X.: Best practices for building Kubernetes Operators and state-
ful apps. https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-
building-kubernetes-operators-and-stateful-apps. Accessed 20 October 2018

20. Chaki, S.: Enterprise information management in practice (2015)
21. .StateGovernmentofVictoria, “Information Management Maturity Measurement” (2019)
22. IBM Corporation, “IBM Enterprise Content Management Performance Methodology,” IBM

Corporation, Online (2015)
23. IBM Corporation, “IBM FileNet Content Manager 5.2High Volume Scalability,” IBM SWG,

Online (2014)
24. IBM Corporation, “IBM Content Services,” IBM Corporation, Online (2022)

https://github.com/cncf/tag-app-delivery/blob/main/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://www.gartner.com/smarterwithgartner/gartner-keynote-the-future-of-business-is-composable
https://www.ibm.com/cloud/architecture/architectures/contentManagementdomain/reference-architecture/
https://www.alfresco.com/platform
https://kubernetes.io/docs/concepts/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

Towards Serverless Data Exchange Within
Federations

Boris Sedlak1(B) , Victor Casamayor Pujol1 , Praveen Kumar Donta1 ,
Sebastian Werner2 , Karl Wolf2 , Matteo Falconi3, Frank Pallas2 ,

Schahram Dustdar1 , Stefan Tai2, and Pierluigi Plebani3

1 Distributed Systems Group, TU Wien, 1040 Vienna, Austria
{b.sedlak,v.casamayor,pdonta,dustdar}@dsg.tuwien.ac.at

2 Information Systems Engineering, Technische Universität Berlin, Berlin, Germany
{sw,kw,fp,st}@ise.tu-berlin.de

3 Politecnico di Milano, Milan, Italy
{matteo.falconi,pierluigi.plebani}@polimi.it

Abstract. In this paper, we propose a novel approach for sharing
privacy-sensitive data across federations of independent organizations,
taking particular regard to flexibility and efficiency. Our approach ben-
efits from data meshes and serverless computing – such as flexible ad-
hoc composability or minimal operational overheads – to streamline data
sharing phases, and to effectively and flexibly address the specific require-
ments of highly variable data sharing constellations.

Based on a realistic scenario of data sharing for medical studies in a
federation of hospitals, we propose a five-phase data product lifecycle and
identify the challenges that each phase poses. On this basis, we delineate
how our approach of serverless data exchange addresses the identified
challenges. In particular, we argue that serverless data exchange facili-
tates low-friction data sharing processes through easily usable, customiz-
able, and composable functions. In addition, the serverless paradigm pro-
vides high scalability while avoiding baseline costs in non-usage times.
Altogether, we thus argue that the serverless data exchange paradigm
perfectly fits federated data sharing platforms.

Keywords: Data Exchange · Data Mesh · Serverless Computation

1 Introduction

Data are one of the most valuable assets in many organizations, equally driv-
ing business processes and machine learning algorithms. To further exploit its
potential value, data can be combined and extended with assets that are shared

Funded by the European Union (TEADAL, 101070186). Views and opinions
expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the European Union nor the
granting authority can be held responsible for them.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, pp. 144–153, 2023.
https://doi.org/10.1007/978-3-031-45728-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45728-9_9&domain=pdf
http://orcid.org/0009-0001-2365-8265
http://orcid.org/0000-0003-2830-8368
http://orcid.org/0000-0002-8233-6071
http://orcid.org/0000-0001-8051-7226
http://orcid.org/0000-0003-4607-7823
http://orcid.org/0000-0002-5543-0265
http://orcid.org/0000-0001-6872-8821
http://orcid.org/0000-0001-8245-226X
https://doi.org/10.1007/978-3-031-45728-9_9

Towards Serverless Data Exchange Within Federations 145

between organizations, rather than sinking into the oblivion of data silos. This
is motivated by data as a commodity, generating revenue, or from a research
perspective, sharing data within a federation on a give-and-take basis. However,
data often contains confidential business insights or personal information; thus
the effort to share the data in a secure, trusted, performant, and efficient way –
avoiding, for instance, accidental data leaks – becomes crucial. At the same time,
the way in which data is needed depends on the data consumer. This usually
leads to the creation of several copies of the initial dataset, each tailored to a
specific consumer. All of these aspects contribute to additional friction in data
management that in many cases hampers, if not blocks, data sharing [2,7]. We
argue that the solution must be aware of these frictions and address most of
them through careful distribution of responsibilities among actors [4] and appli-
cations. Moreover, we argue that a federated data exchange platform can leverage
federated resources not only to reduce friction but also to improve performance,
energy consumption, and transparency.

This paper introduces a novel data exchange architecture that combines
serverless computing advantages with principles of the data mesh [6]. Addition-
ally, we propose a novel data sharing lifecycle and address the critical respon-
sibilities and challenges within these novel federated data exchange platforms.
Lastly, we pinpoint the prospect of leveraging serverless data exchange to mini-
mize friction and unlock optimization potential within the federated context.

In the remainder of this paper, we present a motivating scenario from the
medical sector in Sect. 2, a data sharing lifecycle in Sect. 3, including responsibil-
ities and challenges of data exchange in federations, and in Sect. 4 introduce our
proposed serverless data exchange architecture. Finally, in Sect. 5, we summarize
this paper and identify potential future work.

2 Motivating Scenario

The analysis of large and diverse patient datasets is essential for the successful
implementation of medical trials; however, this only becomes possible through
the aggregation of various sources. In this context, the current challenge is to
simplify the data exchange among hospitals, which requires a lot of effort in
selecting and preparing the data in compliance with internal regulations and
general norms (e.g., GDPR), common data formats (e.g., OMOP), as well as
agreements on semantics (e.g., SNOMED).

Based on what is already happening in this community, federations recog-
nizing the importance of data sharing to the advancement of medical studies
are under establishment (e.g., Elixir1). This association, led by domain experts,
would share and enforce an agreement on data discovery, metadata standards,
and access functions, and partially automate the enactment of data access poli-
cies. From a researcher’s perspective, this simplifies the search for data that
meet the medical study’s requirements and allows quick assembly of large pools
of diverse patient data. Nevertheless, additional aspects contribute to the friction
1 https://elixir-europe.org.

https://elixir-europe.org

146 B. Sedlak et al.

Federation

Hospital B Data

Hospital A's
dataset

Hospital B's
dataset

Hospital C's
dataset

Catalog [3 patients]

Study Promoter
Policies

Query
Interface

[10000 patients]

[50 patients]
3. Query

Requirements2. Matching
Datasets

1. Request
Study

Hospital B
Hospital B Data

6. Receive Data

Data

D
is
co

ve
ry

A
na

ly
si
s 4. Request

Access

5. Prepare
Data &
Policies

Fig. 1. Study Promoter Workflow

when sharing data and the scenario reported in Fig. 1 helps to describe them. In
particular, we visualize the two phases required to enable a joint study in this
type of federation: discovery, i.e., the search for relevant patient datasets, and
the analysis of actual data.

To find relevant data, (1) the federation’s data catalog (as established in
data mesh [6]) provides the ability to search through datasets by filtering based
on metadata (e.g., data types, usage consent). The study promoter can use the
catalog (2) to find datasets that match their requirements, e.g., patients with a
certain pathology or within an age range. The catalog can further (3) provide the
number of accessible patients in desired datasets, for example, by querying how
many patients consented to the study’s purpose. This provides the promoter
with a means of selecting the most favorable data providers to enter into an
agreement with. After deciding which dataset to use, the analysis phase begins.

Before the data can be accessed directly, (4–5) an agreement must be reached
between the study promoter and the data provider(s) to determine the rules
for using and accessing the data. As soon as the promoter reaches an agree-
ment with the organizations that offer the fitting datasets, the promoter can
request the actual data. First, the provider has to establish access policies to
ensure that only data that is relevant and contained within the agreement is
exposed. Then, transformations imposed by the agreement must be performed
to ensure interoperability between formats (e.g., unstructured historical patient
data, MRI imagery), fulfillment of legal obligations, and compliance with feder-
ation guidelines. Both the location of transformations and computations (e.g.,
analysis steps) must be chosen to ensure compliance with regard to privacy,
performance, and sustainable use of the federation’s resources. Aggregated and
transformed data from different sources in the federation can, in turn, themselves
become data sources for other members of the federation if properly accompanied
by a set of metadata and policies, and if permitted by the agreement with the
original data providers. This allows federation members to reuse and enhance
data products without wasting resources by re-performing expensive transfor-
mations.

Towards Serverless Data Exchange Within Federations 147

3 Federated Data Product Lifecycle

In data mesh [6], a data product is defined as the smallest unit of architecture.
Depending on the data product’s domain, a specific team is in charge of man-
aging its lifecycle. Revising this definition in a federated setting, we propose a
federated data product as the shareable and comparable unit. It is built, accord-
ing to the service orientation principles, by the data provider and, through the
associated API that mediates the access, the data consumer (i.e., the study pro-
moter in Fig. 1) can obtain the data and can combine it with other accessed
data products. On this basis, it is also fundamental to define the lifecycle of the
federated data products, to offer a systematic and holistic approach to address
organizational and technical hurdles (i.e., friction) in exchanging data across
organizations by identifying responsibilities, objectives, and design requirements
in each phase of a federated data product, akin to the data mesh lifecycle [3].

The lifecycle that we envision is divided into five phases. In the following,
we describe each phase and extract responsibilities and challenges (see Table 1)
that a federated sharing platform must address to enable data sharing. Here,
we assume the data provider has already joined the federation, including the
necessary processes for interacting with other users.

Data Onboarding: Within the first phase of a federated data product life-
cycle, data collected by the data provider is prepared for storage and sharing.
This includes the data classification, the setup of necessary ingestion – either a
one-off transfer or a streaming setup – including necessary transformations, and
the assignment of storage policies. Once the domain experts have assembled the
data, they need to specify the data product’s metadata in accordance with the
federation’s metadata model. To ensure that operations on the data comply with
internal rules, respective policies are attached (e.g., security, confidentiality or
access policies or policies that require more complex data transformations to be
performed) and provided alongside the metadata. The federated data product
is considered onboarded once it is properly described, typically using a domain-
specific language [6], and an initial version of it is placed in storage in line with
its attached storage policies, e.g., within the EU, using a minimum redundancy,
or a given level of encryption.

Publishing: Once the federated data product is onboarded, it can be made
available to the federation by publishing it to a shared data catalog. This catalog
of federated data products must allow consumers to discover data that match
their requirements through its metadata. To avoid inconsistencies, the catalog
must reflect the latest status of federated data products, e.g., their availability
and assigned policies. Additionally, the metadata (e.g., the number of avail-
able records) may vary in-between potential consumers based on their identity
and access context; these constraints must be reflected through consumer-aware
policies. This entails that the metadata provided during the onboarding phase
might be enriched further. As part of this phase, domain experts can specify the

148 B. Sedlak et al.

capabilities necessary to consume the federated data product, e.g., the required
resources or required product policies enforcement tools.

Table 1. Summary of the challenges for a federated data exchange platform

ID Challenge Description Lifecycle
phase

C1 Shared metadata
model

A domain-specific metadata model to aid the discovery and
matching of federated data products

Onboarding

C2 Policy language Usage of a sophisticated policy language to enable
platform-supported lawful and trustworthy data exchange

C3 Data control
plane

A control plane enabling domain experts to specify and
update policies as data changes

C4 Stretched data
lake

A policy-based data placement approach utilizing storage
and streaming across federated resources

C5 Federated data
catalog

Ensure that all members of the federation can discover all
federated data products

Publishing

C6 Consistent
metadata

Keeping browsable metadata (e.g., policies, number of
records) in sync with the federated data product

C7 Matchmaking Support the aligning and matching of consumer
requirements to product metadata

C8 Context-aware
discovery

Support interactive negotiation queries for
consumer-specific metadata, based on product policies,
consumer’s access purpose, and context

C9 Consumer
transformations

Support required consumer transformations, e.g., ensuring
format capabilities, storage policy needs

C10 Shared
agreements

Ensure that agreements are available in a standardized and
immutable format

Sharing

C11 Enforceable
agreements

Support codifying agreement policies in an unequivocal,
automatically enforceable way

C12 Trust
mechanisms

Ensure or prove bilateral compliance with accepted
agreements (e.g., monetary incentives [8] or trustworthy
transformations [5])

C13 Data lineage Enforcing and capturing agreed-upon consumption
contexts, purposes, and transformations

Consumption

C14 On-demand
transformations

Support smart and on-demand transformations to comply
with policies, i.e., allocation of computations within the
federation

C15 Federated access
control

Support fitting access control mechanisms, compatible with
policies and execution environments

C16 Enforceable
deletions

Support the deletion of all copies of a federated data
product, possibly including derivatives

Discontinue

C17 Observable
lifecycle actions

Support the audit of all data consumption actions to find
and discontinue a federated data product

C18 Maintain
knowledge

Preserve functions and system optimization for future
improvement

Sharing: Once the federated data product is published, interested members
of the federation can request the data. This is the first occasion where data
providers and consumers need to interact. Consumption of federated data prod-
ucts can be bound to various terms and conditions and implies that both parties
come to an agreement on how the data can be consumed. Agreements restrict the
consumption in various dimensions, e.g., by posing an end date, stating the pur-
pose of the data consumption, or including transformations that the data must

Towards Serverless Data Exchange Within Federations 149

undergo. These transformations can range from projection and selection mecha-
nisms to advanced analysis and are defined by domain experts. Thus, agreements
are a central part of the sharing processes and govern the rights, responsibil-
ities, and obligations (e.g., technical or legal) of both parties. The agreement
is typically formalized in a contract that both parties sign, a process that the
federated sharing platform must support. From this agreement, the platform
can derive the policies that must be enforced, e.g., setting up an access control
and/or transformation mechanism or a shared identity provider.

Consumption: Ultimately, the dataset is consumed according to the conditions
that were formalized; compulsory operations (obligations) included in the agree-
ment must be performed by the federated sharing platform. To support audit
mechanisms, all interactions with the dataset must be documented, which also
improves data lineage, i.e., provide information on how the original data had
been altered. At the same time, access logs must comply with privacy guidelines
themselves. Moreover, the federated sharing platform can ease the consumption
of federated data products, e.g., by providing means to filter the data, move
it to a different location or perform a purpose-based transformation to ensure
compliant consumption [9]. We assume that the data consumer can initiate the
consumption as needed after a sharing agreement is reached. The consumption
can be continuous, intermittent, or a one-time event. Thus, the federated sharing
platform must support on-demand, continuous, and bulk transformations.

Discontinue: Once the federated data product is no longer needed, or the data
provider decides to no longer provide it, it can be discontinued. This phase is
the last in the lifecycle and is the counterpart to the onboarding phase. Here, all
active sharing agreements are terminated and the data product is removed from
the catalog. This process may require prior notification to the data consumers,
e.g., to allow them to adjust their applications or to ensure that they can remove
all copies of the federated data product. Here, the federated control plane should
provide the functionality to ensure that the federated data product is removed
from all controlled locations where it was stored, e.g., by allowing an audit of data
consumption logs or by providing a means to remove all copies of the federated
data product across the shared environment. However, additional nontechnical
means such as legal agreements should be in place to ensure compliance.

4 Serverless Data Exchange

This section presents a novel architecture to exchange data products in a fed-
eration between organizations while addressing the challenges in Table 1. We
leverage properties of serverless computing to enable trustworthy data sharing
with minimal operational overhead [10], establishing the concept of serverless
data as the capacity to manage the data lifecycle. Figure 2 depicts the serverless
architecture we propose as a backbone for the federated sharing platform, fol-
lowing the presented lifecycle phases of a data product. This outlines an initial

150 B. Sedlak et al.

proposal; however, we are aware that implementing this architecture presents
further technical challenges not covered here.

Data Onboarding: Whenever a data provider (e.g., a hospital) offers data
products to other members of the federation, the architecture for serverless
data exchange provides capabilities to integrate data as a single logical prod-
uct, regardless of physical (distributed) storage. Policies, supplied by domain
experts (C3), can be attached to the federated data product before it is exposed
through the catalog. Consider that most of the policies at the onboarding phase
concern the storage, e.g., where within the federation the product may be stored.
Given that policies also depend on the data consumer, the architecture provides

Fig. 2. Serverless data exchange within a federation. Data Product #1 is onboarded
using storage provisioned by the Control plane. Domain Experts supply metadata and
policies (1a) which are attached to the federated data product; this might include
serverless functions new to the federation that extend the existing function repository
(1b). Data Product #1 is registered by its provider through the federation-wide data
catalog (2a), including mandatory policies and functions. The consumer, who is also
part of the federation, uses the catalog to browse registered data products (3a) that
can be matched to his/her requirements. The consumer then establishes an agreement
with both providers (3b) on how data are delivered, i.e., formats, how and where
data are transformed according to policies, retention period at the consumer, etc. The
consumer requests the data through the catalog by providing the agreement (4a), which
is received by the providers’ Query Interface (QI) (4b). The QI then instructs individual
data products to provide the data to the consumer (4c). Processing of data according
to serverless functions can occur at various locations, e.g., at premises provided by the
providers or the consumer, or at ad-hoc nodes on any site provided by the Control
plane (4d). Finally, the consumer is served the data (4e) as specified in the agreement.

Towards Serverless Data Exchange Within Federations 151

capacities to attach further policies at the following stages. In general, policies
might contain references to functions (C2) that already exist in the federation;
nevertheless, ad-hoc functions can be supplied by federation members.

Publishing: The federated data product is published by its provider using
a federation-wide catalog (C5), which logically acts as a unified entity for the
entire federation. However, the catalog’s implementation can be distributed in
the federation (e.g., a distributed database (C6)); custom instances can be ready
on-demand thanks to the serverless functions available at the federation. The
catalog includes references to federated data products and their metadata (C1),
including all policies attached up to that moment. The purpose of the catalog
is to make federated data products discoverable in the federation, allowing each
member to search the catalog for products that meet their requirements (C7-8).

Sharing: When federated data products match the requirements of a consumer
(e.g., study promoter), during the sharing phase, all concerned parties need to
agree on how data will be provided. Policies specific to the agreement can be
supplied, which can either originate from the federation’s function repository
(C11), be incorporated by agreement members, or be provided by third-party
entities. All in all, the architecture provides an extendable and composable frame-
work that may include any type of function within the agreement. Agreement
members (or rather their domain experts) can customize functions by supply-
ing individual implementations or creating multiple versions of functions. These
functions can be composed to generate serverless data processing pipelines [10]
(C9) that transparently manage the transfer of federated data products and con-
version from the provider to the consumer. Agreements themselves are stored by
all concerned parties (C10) and serve as proof of trust between them (C12); in
this regard, the architecture envisions a Trust plane that ensures proper agree-
ment compliance.

Consumption: The separation of invocation from execution given by the
serverless paradigm enables the data provider and consumer to have an exe-
cution tailored to their needs. The execution of functions can be optimized by
the architecture’s Control plane using the computing continuum [1] of the fed-
eration (C4), e.g., to minimize resource usage or energy consumption. The pro-
posed approach for serverless data facilitates on-demand access to federated data
products; hence, functions are created, provisioned, and executed by triggering
consumption events (C14). Afterward, they are evicted and the federation infras-
tructure is freed thanks to the scale-to-0 capability of serverless computing. The
Trust plane has observability over data transformations, providing data lineage
awareness (C13) and access control mechanisms (C15). Federation members can
access published data products according to agreements, i.e., consumers provide
a copy of an agreement and identity, which determines how data are prepared
and served.

152 B. Sedlak et al.

Discontinue: When the agreement finishes (e.g., maximum number of access
or time exceeded) or one of the parties withdraws from the agreement, data are
no more available. As a consequence, all resources utilized for consumption are
released by the Control plane (C16); this includes all processing facilities to run
serverless functions and consolidated storage for optimizing data consumption.
The Control plane will leverage data lineage capabilities from the Trust plane
to find all elements that must be discontinued (C17). Interestingly, all of the
serverless functions in use, as well as Control plane optimization decisions, are
kept within the federation for future use and continuous improvement (C18).

By seamlessly integrating serverless capabilities with federated data prod-
ucts, we aim to alleviate the provisioning burden of the data provider and elimi-
nate obstacles that impede the exchange of data products, such as the discussed
challenges. This relies heavily on components such as the Control plane and
Trust plane, which provide resources and establish trust between the parties.

5 Conclusion and Future Work

We proposed a federated data platform that combines serverless computing and
data mesh to reduce friction in data exchange across organizational boundaries,
such as sharing medical research data. We delineated a five-step data product
lifecycle, identified the associated technical challenges, and sketched an over-
all architecture to address them. Our argument is that through serverless data
exchange, domain experts can handle complex data behavior, even for ad-hoc
and non-continuous data sharing scenarios. Serverless principles support this by
providing scalability, flexible placement, and composability of functions.

Having established the conceptual foundations, future work comprises the
prototypical implementation and use case-driven evaluation of the platform and
its components. This includes aspects such as the allocation of serverless func-
tionality along the compute continuum, consideration of trust-related issues, and
questions of overall platform management and control across the federation.

Despite the conceptual nature of considerations presented, we see strong
points for serverless data exchange to gain significant momentum. Our five-phase
data product lifecycle, our identified technical challenges, and our serverless data
exchange architecture shall guide and drive respective future activities.

References

1. Dustdar, S., Pujol, V.C., Donta, P.K.: On distributed computing continuum sys-
tems. IEEE Trans. Knowl. Data Eng. 35(4), 4092–4105 (2023). https://doi.org/
10.1109/TKDE.2022.3142856

2. Edwards, P., et al.: Science friction: data, metadata, and collaboration. Soc. Stud.
Sci. 41, 667–90 (2011). https://doi.org/10.2307/41301955

3. Eichler, R., et al.: From data asset to data product - the role of the data provider
in the enterprise data marketplace. In: Service-Oriented Computing, pp. 119–138
(2022). https://doi.org/10.1007/978-3-031-18304-1_7

https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.2307/41301955
https://doi.org/10.1007/978-3-031-18304-1_7

Towards Serverless Data Exchange Within Federations 153

4. Eschenfelder, K.R., Shankar, K.: Of seamlessness and frictions: transborder data
flows of European and US social science data. In: Sundqvist, A., Berget, G., Nolin,
J., Skjerdingstad, K.I. (eds.) iConference 2020. LNCS, vol. 12051, pp. 695–702.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43687-2_59

5. Heiss, J., Busse, A., Tai, S.: Trustworthy pre-processing of sensor data in data
on-chaining workflows for blockchain-based IoT applications. In: Hacid, H., Kao,
O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp.
133–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_9

6. Machado, I.A., Costa, C., Santos, M.Y.: Data mesh: concepts and principles of a
paradigm shift in data architectures. Procedia Comput. Sci. 196, 263–271 (2022)

7. Sedlak, B., Casamayor Pujol, V., Donta, P.K., Dustdar, S.: Controlling data gravity
and data friction: from metrics to multidimensional elasticity strategies. In: IEEE
SSE 2023. IEEE, Chicago (2023). (Accepted)

8. Sober, M., et al.: A blockchain-based IoT data marketplace. Cluster Comput., 1–23
(2022). https://doi.org/10.1007/s10586-022-03745-6

9. Ulbricht, M.R., Pallas, F.: CoMaFeDS: consent management for federated data
sources. In: 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), pp. 106–111 (2016). https://doi.org/10.1109/IC2EW.2016.30

10. Werner, S., Tai, S.: Application-platform co-design for serverless data processing.
In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS,
vol. 13121, pp. 627–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-91431-8_39

https://doi.org/10.1007/978-3-030-43687-2_59
https://doi.org/10.1007/978-3-030-91431-8_9
https://doi.org/10.1007/s10586-022-03745-6
https://doi.org/10.1109/IC2EW.2016.30
https://doi.org/10.1007/978-3-030-91431-8_39
https://doi.org/10.1007/978-3-030-91431-8_39

Author Index

A
Alnazer, Ebaa 3

B
Bitsaki, Marina 84
Bücklers, Florian 45

D
Degeler, Viktoriya 24
Donta, Praveen Kumar 144
Dustdar, Schahram 144

F
Falconi, Matteo 144
Fieschi, Andrea 59

G
Garcia-Alonso, Jose 105
Georgievski, Ilche 3
Gessert, Felix 45

H
Hirmer, Pascal 59

K
Kuhlmann, Hannes 45

L
Lazovik, Alexander 24
Leotta, Francesco 69
Li, Yunxuan 59

M
Mecella, Massimo 69
Mega, Cataldo 125
Mitschang, Bernhard 59

Monti, Flavia 69
Murillo, Juan Manuel 105

P
Pallas, Frank 144
Panse, Fabian 45
Plebani, Pierluigi 144
Pujol, Victor Casamayor 144

R
Ritter, Norbert 45
Ruiz-Cortés, Antonio 105

S
Sanchez-Rivero, Javier 105
Sedlak, Boris 144
Silo, Luciana 69
Stach, Christoph 59

T
Tai, Stefan 144
Talaván, Daniel 105

V
Varsos, Constantinos 84

W
Werner, Sebastian 144
Wingerath, Wolfram 45
Witt, Erik 45
Wolf, Karl 144
Wollmer, Benjamin 45

Y
Yousefi, Mostafa Hadadian Nejad 24

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Aiello et al. (Eds.): SummerSOC 2023, CCIS 1847, p. 155, 2023.
https://doi.org/10.1007/978-3-031-45728-9

https://doi.org/10.1007/978-3-031-45728-9

	 Preface
	 Organization
	 Contents
	Distributed Systems
	Understanding Real-World AI Planning Domains: A Conceptual Framework
	1 Introduction
	2 Fundamentals and Problem Statement
	2.1 Artificial Intelligence (AI) Planning
	2.2 Planning Domain Knowledge
	2.3 Designing AI Planning Systems
	2.4 Problem Statement

	3 Approach
	3.1 Methodology
	3.2 Running Example: Sustainable Buildings Domain

	4 The Framework
	4.1 Objectives
	4.2 Tasks
	4.3 Quantities
	4.4 Determinism
	4.5 Agents
	4.6 Constrains
	4.7 Qualities

	5 Conclusions and Future Work
	References

	Empowering Machine Learning Development with Service-Oriented Computing Principles
	1 Introduction
	2 Background
	2.1 Service-Oriented Computing
	2.2 Machine Learning Development

	3 Related Work
	4 Methods
	4.1 Modularity by Design
	4.2 Module Composition
	4.3 Proposed Architecture
	4.4 Version Control
	4.5 Continuous Monitoring
	4.6 Adaptive Module Selection
	4.7 Life Cycle Management
	4.8 Adaptive Runtime Controller

	5 Conclusion
	References

	Using the Client Cache for Content Encoding: Shared Dictionary Compression for the Web
	1 Introduction
	2 Related Work
	3 Selecting Raw Files as Dictionaries
	3.1 Evaluation

	4 Practical Considerations
	4.1 Downloading the Dictionary
	4.2 Creating Template Dictionaries
	4.3 Dictionary Transitions
	4.4 Predictive Preloading
	4.5 Shared Dictionary Compression at Scale

	5 Conclusion
	References

	Smart*
	Privacy in Connected Vehicles: Perspectives of Drivers and Car Manufacturers
	1 Introduction
	2 Privacy from the Driver's Perspective
	2.1 Privacy Challenges for Drivers
	2.2 Privacy Protection Approaches for Drivers

	3 Privacy from the Car Manufacturer's Perspective
	3.1 Privacy Challenges for Car Manufacturers
	3.2 Privacy Protection Approaches for Car Manufacturers

	4 Discussion
	5 Summary and Future Work
	References

	Services in Smart Manufacturing: Comparing Automated Reasoning Techniques for Composition and Orchestration
	1 Introduction
	2 A Framework Supporting Adaptivity
	3 Motivating Case Study
	4 Adaptive Supply Chain Approaches
	4.1 Instance Planning
	4.2 Stochastic Policy
	4.3 Stochastic Constraint-Based Policy

	5 Discussing the Approaches
	6 Related Works
	7 Concluding Remarks
	References

	Pool Games in Various Information Environments
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Preliminaries
	3.1 Incomplete Information
	3.2 Incorrect Information

	4 The Pool Game
	4.1 Incomplete Information
	4.2 Incorrect Information

	5 Numerical Experiments
	6 Conclusions
	References

	Mixed Technologies
	Operating with Quantum Integers: An Efficient `Multiples of' Oracle
	1 Introduction
	2 Background
	3 Related Works
	4 Implementation of the `Multiples of' Oracle
	4.1 Mathematical Properties Inspiring the Oracle
	4.2 Algorithm for the `Multiples of' Oracle

	5 Simulations and Results
	5.1 Multiples of 3
	5.2 Multiples of 5
	5.3 Multiples of 14

	6 Complexity and Depth
	6.1 Classical Calculations Complexity
	6.2 Theoretical Analysis of Quantum Circuit Depth
	6.3 Empirical Measurement of Circuit Depth

	7 Composability and Further Uses
	7.1 Multiples and Less-Than Oracle
	7.2 Numbers with Any Remainder
	7.3 Numbers with Any Remainder and Range of Integers

	8 Conclusions
	References

	Orchestrating Information Governance Workloads as Stateful Services Using Kubernetes Operator Framework
	1 Introduction
	1.1 Problem Statement and Requirements
	1.2 Contributions and Outline of this Paper

	2 Background
	2.1 ILG Workload Models
	2.2 The Benefit of Clouds

	3 Foundation
	3.1 Virtualizing and Componentizing a Monolithic IG Solution
	3.2 Comparing Physical vs Virtual Infrastructure Models
	3.3 Kubernetes Stateful Architecture and its Entities

	4 Solution Approach
	4.1 K8s Operator Extended Control Loop
	4.2 Related Work

	5 The ILG Repository Stateful Service Prototype
	5.1 Kubernetes Stateful Services Cluster Setup
	5.2 K8s DB2 Stateful Service Design and Implementation

	6 DB2-Operator Prototype Test System Setup
	7 Tests, Results and Evaluation
	7.1 Service Availability and Failover Scenario
	7.2 Read-Only Workload Scalability Test

	8 Conclusion and Outlooks
	References

	Towards Serverless Data Exchange Within Federations
	1 Introduction
	2 Motivating Scenario
	3 Federated Data Product Lifecycle
	4 Serverless Data Exchange
	5 Conclusion and Future Work
	References

	Author Index

