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Abstract. This paper investigates the vibration of an internal ring gear
within a planetary gear train. The motivation for this research comes
from the the wind industry, in which the ring gear becomes more and
more flexible with the increase of the power scale. In this paper, the gear
is modeled as an thin-walled elastic ring which is connected to the frame
with finite number of constraints, such as bolts or pins. The meshing
force between the planet gear and the ring gear is modeled as a sinusoidal
function of time acting along the line of action. By assuming the mode
shape and taking advantage of the orthogonality of the mode shapes,
the governing equation of motion in the form of ordinary differential
equation is obtained, and solved numerically. The results are compared
against published work, and it shows they agree very well.
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1 Introduction

Planetary gear trains (PGT) are widely used in various industrial and military
applications. Research on its dynamics and vibration started in late 1970s, and
many publications can be found in scientific journals and conference proceedings.
Review on these research works were made by Yang and Dai [1], and Cooley and
Parker [2]. In the published works, the lumped parameter models are most often
used. PGTs are also widely adopted in wind power systems. In such systems, the
internal gear within the PGTs becomes more and more flexible with the never-
stop increase in power and size. This fact makes the lumped parameter modeling
in PDT dynamics unrealistic. In addition, the meshing force between the planet
gear and the ring gear(internal gear) moves constantly along the circumference,
bringing the moving load effect into the dynamics. In this case, two factors,
namely the flexibility of the internal gear, and the moving gear meshing load,
call for careful consideration in the dynamics modeling. This is the motivation
of this paper.

The paper is organized as below: Sect. 1 presents the problem statement,
and introduces a very brief literature review. The dynamic model is developed
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in Sect. 2. In Sect. 3 the solution strategy in presented and simulation results
are outlined. A case study is presented in Sect. 4. The conclusions are drawn in
Sect. 5.

2 Dynamic Model

The internal gear is simplified as an thin-walled elastic ring. The thickness of
the ring is taken as the thickness measured from the pitch circle of the gear as
shown in Fig. 1(a). In Fig. 1(b), the ring is represented by its center line, and
the constrains in the form of bolts or pins are shown. The displacements of a
specific point on the center line are represented by a tangential component w
and a radial component u. The meshing force is along the line of action and
shown as F . The constrain supports, generally 3 or 4, divide the whole ring into
several segments as shown in Fig. 1(c). In general the division is made equally.

Fig. 1. Modeling of internal gear
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For simplicity, the following two assumptions are made

1. The effects of rotary inertia and shear deformations are neglected.
2. The center line of the ring remains inextensible.

With the assumption of inextensibility, the following relation exists.

u =
∂w

∂θ
(1)

where θ is the position angle shown in Fig. 1(c).
Then the vibration of the ring can be represented by only the tangential

component w as below:

∂6w(θ, t)
∂θ6

+ 2
∂4w(θ, t)

∂θ4
+

∂2w(θ, t)
∂θ2

+
R4ρA

EI

∂2

∂t2

[
∂2w(θ, t)

∂t2
− w(θ, t)

]

=
R4

EI

(
∂f

∂θ
− p

)
δ(θ − ωct) (2)

where f and p are the meshing force component along the radial and tangential
directions, respectively. ωc is the moving angular velocity of the meshing force.
In the case of PGT, it is the rotation velocity of the carrier. δ is the Dirac delta
function. It is used to represent the concentrated meshing force. E and ρ are
the elastic modulus and the density of the material. A is the area of the cross
section.

For the sake of brevity, the derivation of the equation is not presented here.
It can be found in classical texts on continuous system vibration, such as the
paper by Chidamparam [3] and the book by Rao [4].

At a support θs, the boundary and continuous conditions can be developed
easily based on the form of constrains. If the supports are pins, the following
conditions apply.

u|θs
= 0 (3)

w|θs
= 0 (4)

∂2w

∂θ2
|θs

=
∂2w

∂θ2
|θs+ 2π

n
(5)

∂3wn+1

∂θ3
|θs

=
∂3wn

∂θ3
|θs+ 2π

n
(6)

where n is the number of the constrains and θs is the angle position of the
constraint. The subscripts n and n+1 indicate the adjacent two segments of the
ring.

The meshing force between the planet gear and the internal ring gear is
simplified as a sinusoidal function with the meshing frequency.

F = Fs + F0 cos(ωmt + θ0) (7)

where Fs and F0 are the mean meshing force and the amplitude of the varying
force, respectively.



Vibration of Internal Gear in Planetary Gear Trains Under Moving Load 887

3 Solution Strategy

Equation (2) is treated by introducing the following two relations.

w(θ, t) =
∞∑

j=1

[Ψj(θ)qj(t)] (8)

qj(t) = Dje
iωjt (9)

where i =
√−1.

Inserting Eqs. (8) and (9) into Eq. (2), and retaining only the first term give

d6Ψ
dθ6

+ 2
d4Ψ
dθ4

+
(

1 − R4ρAω2

EI

)
d2Ψ
dθ2

+
R4ρAω2

EI
= 0 (10)

To this point, the partial differential equation (PDE) is transformed into the
form of ODE.

Assuming the solution of Eq. (10) has the following form:

Ψ(θ) = A1e
Υ1θ + A2e

Υ2θ + A3e
Υ3θ + A4e

Υ4θ + A5e
Υ5θ + A6e

Υ6θ (11)

and taking advantage of the following orthogonality.

∫ θf

0

[
dΨi

dθ

dΨj

dθ
+ ΨiΨj

]
=

{
0 if i �= j

1 if i = j
(12)

With all the above, the solution of the equation can be represented in the form
below.

q̈k + ω2
kqk = Q0k sin(P0kt) + Q0k cos(P0kt) + Q1k sin(P1kt)

+ Q2k cos(P1kt) + Q3k sin(P2kt) + Q4k cos(P2kt) (13)

The coefficients in this equation are as below:

Q0k =

√
2

k2 + 1
ωm cos σF0

ωcρA
√

θf

(14)

Q1k =
Gk

2
(sin θ0 + cos θ0) +

Hk

2
(sin θ0 + cos θ0) (15)

Q2k =
Gk

2
(cos θ0 + sin θ0) − Hk

2
(cos θ0 + sin θ0) (16)

Q3k =
Gk

2
(sin θ0 − cos θ0) +

Hk

2
(sin θ0 + cos θ0) (17)

Q4k =
Gk

2
(sin θ0 + cos θ0) +

Hk

2
(cos θ0 − sin θ0) (18)

P0k =
kωcπ

θf
(19)
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P1k = ωm − kωcπ

θf
(20)

P2k = ωm +
kωcπ

θf
(21)

4 Case Study

A symmetrically pin-supported internal spur gear ring is studied. The gear is
connected to the frame through 4 pins equally separated. The parameters used
in the simulation are given in Table 1.

Table 1. Parameters of simulation

Definition Parameter Value Unit

Outer radius of ring R0 0.520 m

Inner radius of ring Ri 0.500 m

Density ρ 7800 kg/m3

Thickness t 0.02 m

Face width b 0.110 m

Young’s modulus E 210 GPa

Carrier rotational speed ωc 12.57 rad/s

Meshing force angular speed ωm 3.5 rad/s

Meshing force amplitude F0 50 N

Mean meshing force Fs 75 N

Meshing phase angle θ0 0 rad

Pressure angle σ 24.6 o

4.1 Natural Frequencies and Mode Shapes

The first 4 natural frequencies are obtained. To validate, the results are compared
against existing publication [5]. The results are given in Table 2.

Table 2. Natural frequencies

Method ω1 (Hz) ω2 (Hz) ω3 (Hz) ω4 (Hz)

Current work 98.26 222.64 532.06 628.20

[5] 96.63 273.83 523.83 847.62

Clearly the results obtained by the two method agree very well.
The vibration mode shapes corresponding to the 4 natural frequencies are

given in Fig. 2
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Fig. 2. Mode shapes

4.2 Dynamic Coefficient

The ratio of the maximum dynamic deflection to the static deflection of the
middle of any the segment can is defined as the dynamic coefficient. It is often
used as a measure of the moving load effect. The effect is shown in Fig. 3.

It can be seen clearly that the dynamic coefficient is way bigger than unit,
indicating the moving load has a significant effect on the dynamics. In addition,
the maximum deflection appears later then the mid point of the segment. This
is reasonable under the moving load condition.

5 Conclusion

This paper investigates the dynamics of an internal gear within a PGT to the
moving meshing load. The gear is modelled as an thin-walled elastic ring. The
meshing force is represented as a sinusoidal force along the line of action. The
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Fig. 3. Deflection

free response is first studied, and the first 4 orders of natural frequencies and
mode shapes are obtained. Comparison is made against published work. It is
found that the moving load has a significant effect on the deflection of the gear;
thus, the effect on dynamics is not negligible.
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