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Abstract. The failure of railway axles can lead to catastrophic accidents, with the
human and economic consequences that this entails. The vibratory performance of
a freight train bogie is studied in this work aiming to identify the defects induced
in the wheelset. The defects are generated mechanically with four severity levels.
The bogie is tested in a roller rig test bench and vibration signals are recorded from
sensors placed in the axle boxes of thewheelset. These signals are decomposed into
several sub-signals using the Empirical Mode Decomposition. Then, the spectral
power of these sub-signals is used as input for a Feedforward Neural Network to
classify the vibration signals according to the defect level. The results show that
the trained network can accurately identify the presence or absence of wheelset
defects and their severity.

Keywords: Empirical Mode Decomposition · Feedforward Neural Network ·
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1 Introduction

Increasing the reliability and availability of rolling stock is a key point to success in the
competitive rail market and, also, an opportunity to reduce derailments, which occur
more frequently in freight trains than in passenger trains [1]. But this strategy needs a
good maintenance system able to detect failures on the rolling stock before an incident
occurs.

Vibration analysis is one of the most used techniques for studying the condition of
rolling stock, as it can detect several types of defects in components such as bearings
[2], springs [3], wheel flats [4] or axle cracks [5]. One of the techniques usually applied
to vibration signals is the Empirical Mode Decomposition (EMD), proposed by Huang
et al. [6], which has proved to be an effective method to detect faults in bogies [7],
wheelsets [8], and even in tracks [9].
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In the current Industry 4.0 context [10], Artificial Neural Networks (ANNs) play a
relevant role in the automatization of maintenance and fault identification. ANNs have
been successfully applied for the identification of faults in bogies [11] and wheelsets [7,
12].

In this work, the dynamic behaviour of a freight train bogie with known axle defects
is studied to train an ANN able to identify the axle’s health condition. To that end, a
freight bogie is equipped with a measurement system and tested in a roller test rig.

2 Experimental System

The tests were performed in a laboratory over a freight bogie, as shown in Fig. 1. The
bogie is of type Y-21 Cse and is installed on a roller test rig that is composed of a rolling
system, a loading system and a measurement system.

The maximum axle load of the Y-21 Cse bogie is 20 tons (this includes the own
weight of the bogie) and the maximum speed is 100 km/h. The distance between axles
is 2000 mm and the track gauge is 1668 mm. The nominal diameter of the wheels is
920 mm when new.

Fig. 1. Experimental system.

The front axle of the bogie rests in four steel rollers distributed in pairs. One roller of
each pair is moved by an electric motor, being the two motors controlled electronically
to rotate at the same speed and direction. The other two rollers are pulled by the wheel.
The power transmitted to the rolling system allows the movement of the bogie wheels
up to an equivalent speed of 80 km/h. The rotating direction of the wheels is established
by the rotating direction of the rollers.

The rear axle of the bogie is fastened to the test rig foundation using slings, so the
rear wheels are pressed down to a fixed rail section.

The nominal diameter of the four rollers of the test rig is 350 mm and the rolling
surface has a UIC 60 profile with an inclination of 2.5°.
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The loading system is composed of two hydraulic cylinders that pull down a steel
frame (in yellow in Fig. 1) by using two double chains. This way, the bogie is pressed
against the rollers and the contact between the wheels and the rollers is assured. The
loading system is designed in a way that the pull force is applied directly to the loaded
axle.

The accelerations on the axle boxes and the wheel speed are acquired and prepro-
cessed by two IMx-R units which convert analogue signals to digital signals and store
them in a computer.

Six uniaxial accelerometers are installed on the two axle boxes of the front wheelset,
three on each side. The accelerometers are placed at the same point and oriented in
the three space directions: longitudinal, axial and vertical directions. The technical
characteristics of the accelerometers are specified in Table 1.

Table 1. Accelerometer technical characteristics.

Characteristic SI

Sensitivity 10.2 mV/(m/s2)

Measurement range ± 490 m/s2

Frequency range (± 3 dB) 0.52 Hz to 8 kHz

Temperature range −54 to + 121 °C

Size (Length ×Width x Height) 41.9 × 18.8 × 21.5 mm

The failure of the wheelset is simulated by cutting the axle with a circular saw
to create a transversal crack in the centre of the wheelset (see Fig. 2). Four wheelset
conditions are established based on the crack depth e, which is defined as seen on Fig. 2.
These conditions are named d0, d1, d2 and d3 according to the values of the crack depth
that are shown in Table 2. The sampling parameters used for acquiring the vibration
signals are detailed in Table 3.

Ver�cal

Axial

Longitudinal

Defect

Fig. 2. Location (left) and shape and depth (right) of the defect.
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Table 2. Crack depths.

Wheelset condition Crack depth e (mm)

d0 (healthy wheelset) 0

d1 5.7

d2 10.9

d3 15

Table 3. Parameters of the signals measured.

Sampling frequency (Hz) Acquisition time for each signal (s) Number of points

12800 1.28 16384 (214)

3 Signal Processing

In this work, a combination of EMD [6] and a Feedforward Neural Network (FNN) [13]
is proposed for identifying the condition of the wheelset. To achieve this goal, the first
step is the extraction of the first six Intrinsic Mode Functions (IMF). This task is carried
out by using the algorithm proposed by Rilling [14]. As a result of the algorithm, the
original signal x(t) can be reconstructed from the addition of a set of NE components ci
and a residue rN .

x(t) =
NE∑

i=1

ci(t) + rN (t) (1)

Then, the power spectral density of the extracted IMF is obtained fromEq. (2), where
Δt is the sample time,N is the number of data points in the signal, and X(f) is the Fourier
transform of the signal. Then, the signal’s spectral power is computed. Therefore, we
obtain six spectral power values for each signal that are used as input for the neural
network.

S(f ) = �T

N
|X (f )|2 (2)

An FNN is used for classifying the signals according to the wheelset condition.
Therefore, the signals will be classified into four groups named d0, d1, d2 and d3. The
structure of the neural network is as follows: the first layer is an input layer, the second
layer is a fully connected layer followed by an activation function and another fully
connected layer, a softmax function is laid next and, finally, an output layer.

The softmax layer is intended to normalize the output of the neural network [15].
To do this with n values, it is needed to find a vector in which each element must be
between 0 and 1 and the entire vector must sum to 1. The softmax function is defined as
given in Eq. (3), where zi are the inputs and k is the number of classes in the response
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variable.

softmax(z)i = exp(zi)∑k
j=1 exp

(
zj

) (3)

4 Results

To perform the tests, the loading system is set at 10 t, which is half the maximum axle
load of the bogie and applied to the front axle (Fig. 1). The speed is established at 50 km/h
(wheel rotating frequency 4.97 Hz). Vibration signals are acquired in these conditions in
both directions: forward, which corresponds to the clockwise (cw) rotation of the right
wheel, and backwards, which corresponds to the counterclockwise (ccw) rotation of the
right wheel. The wheel diameter of the wheelset tested is 890 mm.

Vibrations were recorded in the three space directions, in both axle boxes, but we
will only focus on vertical vibrations in this work. The left and right sides are defined
following the travel direction shown in Fig. 1.

After applying the EMD to the recorded signals, six sub-signals called IMF are
extracted from each signal (Fig. 3). Then, the PSD (Fig. 4) and the spectral powers of
these sub-signals are obtained. These data are combined with the wheelset condition to
create tables that work as the input for the neural network. In all cases, 80% of the data
is used for training and the remaining 20% is used for testing.

Fig. 3. Signal decomposition into six IMF and a residue.

The parameters of the FNN are varied in order to optimize the network and obtain the
best results. This optimization is carried out using Bayesian methods and provides two
possible solutions, depending on the criterion used. The “Bestpoint hyperparameters”
criterion finds the set of hyperparameters that minimizes the upper confidence interval
of the classification error objective model. The “Minimum error hyperparameters” finds
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Fig. 4. PSD of the six IMF extracted from one signal in each wheelset condition.

the hyperparameters that minimize the observed classification error. Figure 5 shows the
results of the optimization process, highlighting the points for the best hyperparameters
and for theminimumerror, which, in this case, are the same point. The final configuration
of the network is shown in Table 4.

Fig. 5. Neural network optimization process.

This FNN configuration is employed to classify the recorded vibration signals
grouped in five data sets that arise from the test settings: vibrations on the left side
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in clockwise and counterclockwise directions, right side vibrations in clockwise and
counterclockwise directions, and a combination of all data.

During the training process, the output of the network is validated, which leads to
a validation accuracy rate. The accuracy rates of validation and testing for each data
set are summarized in Table 5. As can be observed, the accuracy of the FNN tested is,
in general, above 90%. The best results are obtained for the fourth data set, which is
composed of the vibration signals recorded on the right side of the axle in ccw direction.
In this case, the ANN classifies correctly 100% of the observations both in validation
and testing. On the other hand, changing the rotating direction yields the worst results:
the validation accuracy of RHS cw (right side, cw direction) is only 84.4%, increasing
up to 94.55% when testing.

Figures 6, 7, 8, 9 and 10 show the ROC (Receiver Operating Characteristics) [16]
curves obtained from the training and testing of the FNN with the data set of Table 5.
These figures illustrate the accuracy achieved by identifying the four defect levels.

Regarding the LHS cw data set (see Fig. 6), it can be observed that the area under
the curve (AUC), which is directly related to the accuracy of the model, is above 0.998
during the training phase. So it could classify correctly above 99.8% of data.

Table 4. Configuration of the FNN

Parameter Value

Number of fully connected layers 2

Activation function Tanh

Standardize data Yes

Regularization strength (Lambda) 2.5536·10–6

First layer size 289

Second layer size 79

Table 5. Accuracy results

Data set Validation accuracy (%) Test accuracy (%)

LHS cw 98.65 96.36

LHS ccw 96.62 100

RHS cw 84.4 94.55

RHS ccw 100 100

LHS + RHS cw + ccw 93.65 95.18

The curve related to the testing phase reveals that the network can classify correctly
all signals with defect levels 0 and 1, and has more difficulties in identifying signals
within d2 or d3, although the ability to correctly classify data is above 99%.
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Similar results are obtained when the wheelset is tested in the opposite rotating
direction. The ROC curves of tests in the left side and ccw direction are shown in Fig. 7.
The ability of the network to produce good scores during the training phase is above
99.3%. When tested, the network can classify correctly all the signals (100% accuracy)
in one of the four defect levels defined.

Fig. 6. ROC curves LHS clockwise data.

On the other hand, the classification of vibration signals recorded in the right hand
of the bogie shows more differences between the rotating directions. Figure 8 illustrates
the ROC curves corresponding to the right side of the axle and the clockwise direction.
As can be seen, during the training stage, the network exhibits a good ability to identify
adequately signals with defect levels d1 and d3. However, it shows some difficulties in
identifying the signals that correspond to defect levels d0 and d2. In these cases, the
AUC is just above 0.85. Results are better in the testing phase, where the ability to hit
increases up to 90%.

The ability of the network to correctly classify the right side vibrations when the
direction is set counterclockwise is 100%, as can be seen in Fig. 9. Network can classify
correctly all the vibration signals both in the training phase and the testing phase. The
AUC is 1 in all defect levels.

The last data set comprises the vibration signals recorded on both sides of the bogie
(left and right) and both rotating directions (cw and ccw). The ROC curves (see Fig. 10)
show good agreement between the predicted defect level and the actual defect level. The
ability to hit is above 98% both in the training phase and the testing phase. Defect levels
d1 and d3 are identified more precisely than defect levels d0 and d2.

5 Conclusions

This work uses a set of parameters based on the Empirical Mode Decomposition for
feeding a Feedforward Neural Network with the aim of identifying the condition of a
freight train bogie. Vibration signals are recorded in four different conditions: healthy
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Fig. 7. ROC curves LHS counterclockwise data.

Fig. 8. ROC curves RHS clockwise data.

axle, slight defect, medium defect and severe defect, which are identified as defect levels
d0, d1, d2 and d3, respectively.

The structure of the ANN is optimized by using Bayesian methods and, then, tested
with five data sets coming from the tests performed over the bogie in a roller-rig test
bench. Hence, vibration data are split according to the rotating direction of the axle and
the side in which accelerations were measured.

In this work, 80% of the data is used for training and validating the ANN, and the
remaining 20% is used for testing purposes. During the training and validating phase,
the results show a good performance of the network in the identification of the wheelset
condition, with accuracy rates above 90% in all cases except one, in which the precision
is 84%. Accuracy rates are greater in the testing phase, with values above 94%. In several
scenarios, the FNN correctly identifies the class of all vibration data (accuracy rate is
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Fig. 9. ROC curves RHS counterclockwise data.

Fig. 10. ROC curves combining all data.

100%). Therefore, it can be concluded that the combination of EMD and the proposed
FNN is a good strategy to identify the operating condition of the bogie.
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