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Abstract. Mechanical vibration and acoustic noise of gear mechanism
due to fabrication and elastic deformation is prevented by purposely
given fluctuation of meshing contact cycle. The authors came up with
the idea that the pinion and variable rack that achieve non-constant
transmission ratio is applied to cylindrical gear pair, and have derived
equations of a spur variable gear called “cylindrical variable ratio gear”
and showed numerical example previously. In this paper, equations for
helical gear pair is newly derived, and consider the constraint to achieve
a continuum and periodic fluctuation of transmission. Next, the authors
considered evaluation conditions of contact ratio and tip thickness, and
show the numerical example that meets those conditions. After that, the
numerical example is validated by experiment measuring angular dis-
placement. The result showed that the gear pair fabricated for the exper-
iment achieved a target angular displacement, and was demonstrated the
feasibility of proposed calculation method.

Keywords: Cylindrical gear pair · Tooth profile generation ·
Non-constant ratio · Noise and vibration

1 Introduction

Transmission error of gear mechanism in electric vehicles due to fabrication and
elastic deformation causes mechanical vibration and acoustic noise [1]. One of
the most popular methods to reduce such vibration and noise is tooth profile
modification [2]. On the other hand, some researchers focus on the gear pairs
that change cycle of meshing contact to prevent the vibration. Karpov et al.
[3] investigated the prevention of resonance oscillations by using non-circular
gears. Neubauer et al. [4] came up with the idea of uneven inequidistant gears
that have uneven teeth positions and uneven teeth thickness to randomize the
periodic excitation. The latter does not cause the fluctuation of transmission
ratio in theory, but it cannot be applied to arbitrary gear ratio and both require
modification of both of input and output gears.

Then, the authors came up with an idea that helical pinion and rack gears
that achieve non-constant transmission ratio [5] can be applied to a cylindrical
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gear pair. The gear pair that consists of a typical involute gear and a typical gear
called “cylindrical variable ratio gear” achieves a target non-constant transmis-
sion ratio while rotating. Previously, the authors have proposed the calculation
method of the spur gear pair and illustrated a numerical example [6]. In this
paper, the authors will derive a calculation scheme of the helical gear pair’s tooth
profiles at first. After that, some evaluation indices to identify usable solution
regions between various combination of design parameter values, and numerical
example based on the proposed method will be shown. Finally, the transmis-
sion ratio of numerical example is experimentally validated by measuring the
input/output relationship of angular displacement.

2 Theory of the Cylindrical Variable Ratio Gear Pair

2.1 Definition of the Cylindrical Variable Ratio Gear Pair

First, let us consider the mechanism of gear meshing. In general, a gear pair
must contact smoothly without interference or divergence. It can be expressed
in the following three conditions [7].

1. Both tooth surfaces of the gear pair must be differentiable curves.
2. Both tooth surfaces of the gear pair must tangent at contact point, i.e., they

have a common normal.
3. On the contact point, the velocity components of both gears in the direction

of the common normal must be equal.

From the left side of Fig. 1, these conditions can be written as

v = O1Pω1 cos α′ = O2Pω2 cos α′, (1)

where v and α′ denote a velocity component of both gears in the direction of the
common normal on the contact point and contact pressure angle, respectively.
The definition of transmission ratio is written as i21 = ω2/ω1, so the relationship
between the transmission ratio and the instantaneous pitch point is written as

i21 =
O1P
O2P

. (2)

Then, the contact points whose normal line passes through the instantaneous
pitch point are determined by the transmission ratio. From the above-explained
fundamentals, it can be said that once a specification of an involute gear on
the driving side to describe its tooth shape and a target transmission ratio as
a function of the involute gear’s rotation angle are given, tooth surface of the
conjugate on the driven side can be calculated as a set of the instantaneous
contact points. Then, the authors define such gear as a cylindrical variable ratio
gear which meshes an involute gear and achieves fluctuating transmission ratio.
The cylindrical variable ratio gear pair has the following characteristics.
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1. One of the gear pair is an involute gear, and the other one, a cylindrical
variable ratio gear, is a non-involute gear.

2. Both of them have tip and root circles. Basically, the tip and root circles of
the cylindrical variable ratio gear are determined accordingly to those of the
involute gear.

The calculation process will be explained in the following.
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Fig. 1. Left figure shows the meshing condition of a gear pair. Upside gear is an involute
gear, and downside gear is conjugate to the involute gear. v is the velocity component
of both gears in the direction of the common normal on the contact point. Right figure
shows the coordinate frame. O−XY Z is static. O1−X1Y1Z1 and O2−X2Y2Z2 rotate
with involute gear and cylindrical variable ratio gear, respectively.

2.2 Derivation of the Cylindrical Variable Ratio Helical Gear’s
Tooth Surface

As a preparation to determine theoretical equations, three-dimensional Cartesian
coordinate frames shown in the right side of Fig. 1 are determined. O − XY Z is
considered as a static coordinate frame, and other two coordinate frames are fixed
to the involute gear and the cylindrical variable ratio gear which are rotating.
For each of those moving coordinates, O1−X1Y1Z1 and O2−X2Y2Z2, its origin,
O1or2, and Z1or2 axis determine the rotation center and axis of rotation parallel
to the Z axis, respectively. The identify number, 1 and 2, are assigned to the
involute gear and the cylindrical variable ratio gear, respectively. The origin of
the involute gear, O1, is coincide with O, and O2 is located at �a = (0,−a, 0)T,
then a represents the distance of rotation centers. The angular displacements of
those gears, θ1or2 are determined by the angle between X1or2 axis and Y axis,
as shown in the left side of Fig. 1. It should be noted that initial direction of X1

and X2 axes and angular displacement are inverted as shown in the left side of
Fig. 1, according to the input-output relationship of the gear transmission.
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Position vector �r1 that represents the teeth surface of the involute helical
gear on the moving coordinate O1 − X1Y1Z1 is written as

�r1 =
(
r1x r1x r1z

)T
, (3)

where

⎧
⎪⎨

⎪⎩

r1x = rb1 cos (σ1 + u1 + φ1) + rb1u1 sin (σ1 + u1 + φ1)
r1y = rb1 sin (σ1 + u1 + φ1) − rb1u1 cos (σ1 + u1 + φ1)
r1z = l

.

Here, the radius of a base cylinder, rb1 = (mt1z1 cos αt1) /2, is calculated by
the transverse module, mt1, number of teeth, z1, and transverse pressure angle,
αt1. Under the consideration of a transverse plane like left side of Fig. 2, σ1 is the
angle between the direction of X1 axis and the generation point of the involute
curve, A1, and u1 is the angle between generation point of the involute curve
and the tangent point of the base cylinder, N1, and the normal of tooth surface.
φ1 is the angle calculated as φ1 = (l tan β) /r1 by the helix angle, β, and the
radius of pitch circle, r1 = mt1z1/2. Next, let us consider the equation (3) in the
static coordinate O − XY Z. The equation is written as

�r = M
θ1−π/2
Z1

�r1, (4)

where M
θ1−π/2
Z1

is the rotation matrix that means θ1 − π/2 radian rotation
around Z1 axis.

Considering the static coordinate O − XY Z, the angle of tangent point of
the base cylinder and the normal of meshing tooth surface is the instantaneous
pressure angle, α′. Therefore, it can be written as

σ1 + u1 + θ1 = α′. (5)

The equation means that the gear pair contact on the instantaneous meshing
line fulfills the instantaneous transmission ratio. Then, u1 is calculated by the
angular displacement of the involute gear, so the contact point of the gear pair
can be calculated only by θ1. Finally, considering the contact point in the moving
coordinate frame O2 − X2Y2Z2, position vector �r2 that represents the teeth
surface of cylindrical variable ratio gear is calculated as

�r2 = M
θ2−π/2
Z2

(
M

θ1−π/2
Z1

�r1 − �a
)

, (6)

where the output rotation angle, θ2 =
∫

i21θ1, is determined by the transmission
ratio, i21 and rotation angle, θ1, so the teeth surface of a cylindrical variable
ratio gear is calculated as Eqs. (5) and (6) by θ1.

2.3 Constraint to Achieve Periodic Fluctuation of Transmission

To make an endless and continuum rotation of the gear pair happen, a cylindrical
variable ratio gear must satisfy the constraint on the transmission ratio. From
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Fig. 2. The meshing condition of a cylindrical variable ratio gear.

the definition of transmission ratio, the relationship of input-output angular
displacement is written as

∫
i21dθ1 =

∫
dθ2. (7)

Then, let us assume that a cylindrical variable ratio gear can accomplish
a full-turn rotation. At that time, the involute gear’s corresponding rotation
angle can be calculated by a pitch angle, 2π/z1, times the teeth number of the
cylindrical variable ratio gear, z2. Therefore, Eq. (7) can be rewritten as

∫ 2πz2
z1

0

i21dθ1 = 2π. (8)

Here, transmission ratio can be represented as sum of constant component,
i21c = z1/z2, and variable component, i21v. By neglecting the constant compo-
nent, Eq. (8) can be rewritten only by using the variable component as

∫ 2πz2
z1

0

i21vdθ1 = 0. (9)

From the Eq. (9), sum of variable component with respect to the period of
the involute gear should be 0. On the other hand, a cylindrical variable ratio
gear does not have the constraint of constant part because the teeth of involute
gear is uniform, so the gear ratio can be determined by arbitrary integer pair.

3 Numerical Example

3.1 Evaluation Conditions of Cylindrical Variable Ratio Gear

To obtain practical gear tooth profiles, the authors propose the following evalu-
ation conditions of cylindrical variable ratio gear.
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a. Contact ratio should be greater than 1.
b. Tip thickness should be greater than 0.

Considering the meshing contact of a cylindrical variable ratio gear pair as that of
an involute gear pair at the moment, each parameters can be calculated roughly
by an instantaneous transmission ratio as

ε =
1
2π

{z1 (tan αa1 − tan α′) + z2 (tan αa2 − tan α′)} , (10)

where cos αa1 =
rb1

ra1
, cos αa2 =

rb2

ra2
. (11)

In the same way, tip thickness can be written as

ba =
π

2z2
− (invαa2 − α′) . (12)

However, a cylindrical variable ratio gear cannot be evaluated without excep-
tions by those parameters. Above contact ratio represents the average of num-
ber of meshing contact points in instantaneous transmission ratio, so continuous
meshing contact may be maintained even if such contact ratio is less than 1 in
the gear whose transmission ratio varies depending on the rotation angle. Above
tip thickness also does not represent exact one of a cylindrical variable ratio gear,
because the tips of the left and right tooth surfaces may not contact at same
time (they may not have same transmission ratio). The exact contact ratio of a
cylindrical variable ratio gear can be calculated by number of contact points, so
it will be discussed in the following subsection.

3.2 Number of Meshing Teeth

Number of meshing teeth which can be counted as the number of teeth acrossing
an instantaneous meshing line. Therefore, by investigating weather each of all
teeth meshes or not with respect to every input angle, the number of meshing
teeth, namely contact points, in every moment can be calculated. The range
of the angular displacement is minimum value from ∠O2O1B2 or ∠O2O1N1

to ∠O2O1B1 or ∠O2O1N2 as shown in the left side of Fig. 3. ∠O2O1N1 and
∠O2O1N2 is instantaneous pressure angle, α′, and ∠O2O1B2 and ∠O2O1B1

is calculated by tip circle and meshing line (instantaneous transmission ratio).
Since the tip circle of a cylindrical variable ratio gear is constant, the range of
the input angle is calculated by the equation of the involute gear’s teeth surface
and meshing line. First, the point on involute gear’s tooth surface in the left side
of Fig. 3 is written as {

r = rb1

√
(tan αk) + 1

θ = σ1 + invαk + θ1
, (13)



Tooth Profile Calculation of a Cylindrical Gear 71

where αk is a variable. ”inv” is involute function (invαk = tan αk − αk). The
equation about B1, B2, N1 and N2 is written as

O1B1 = ra1, (14)
∠O2O1B1 = α′ − αa1, (15)

O1B2 =
rb1

cos
{

arctan (rb1+rb2) tanα′−rb2 tanαa2
rb1

} , (16)

∠O2O1B2 = α′ − arctan
(rb1 + rb2) tan α′ − rb2 tan αa2

rb1
, (17)

O1N1 = rb1, (18)
∠O2O1N1 = α′, (19)

O1N2 =
rb1

cos
{

arctan(rb1+rb2) tanα′
rb1

} , (20)

∠O2O1N2 = α′ − arctan
(rb1 + rb2) tan α′

rb1
. (21)

By substituting the above to r and θ of Eq. (13), the angular displacements,
θ1, at both ends of the meshing line can be obtained. The number of meshing
teeth can be calculated because each tooth contributes to meshing within the
range of each angular displacement. By using values in Table 1, the transmission
ratio i21 with respect to angular displacement of involute gear can be written as
the upper right of Fig. 3, and the graph with the angular displacement on the
horizontal axis and the number of meshing teeth on the vertical axis is shown
as bottom right of Fig. 3. From the right side of Fig. 3, the number of meshing
teeth tends to decrease when the transmission ratio is large and increase when
the transmission ratio is small. If the driving torque is constant, the pressure on
the teeth surface increases as the transmission ratio decreases, and the number
of contact teeth tends to increase, so the characteristic is advantageous for load
capability.

3.3 Illustration of Cylindrical Variable Ratio Gear Pair

After considering equations from (9) to (21), the teeth surface of cylindrical
variable ratio gear can be calculated by Eqs. (5) and (6). Then, the appearance
of cylindrical variable ratio gear pair on X−Y plane by using numerical example
in Table 1 is shown in left side of Fig. 4. The teeth thickness of a cylindrical
variable ratio gear changes due to variable transmission ratio.

4 Experimental Validation

4.1 Fabrication of a Setup

By using the numerical example in Table 1 discussed in the previous section, a
pair of gear specimens are fabricated to perform experimental validation to check
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Table 1. List of design variables and values for numerical example. Subscript numbers,
1 and 2, indicate an involute gear and a cylindrical variable ratio gear, respectively.
(A cylindrical variable raito gear is the conjugate to involute gear, so its shift coef. Is
not defined. However, considering the involute gear which has same design variables,
it can be calculated by center distance etc.)

Symbols Units Meanig Numerical examples

mn1, mn2 mm Normal module 2.5

αn1, αn2 deg Normal pressure angle 20

zt1, z2 – Number of teeth 23, 55

β deg Helix angle 30

ha1, ha2 mm Addendum mn1,n2

hf1, hf2 mm Dedendum 1.25mn1,n2

x1, x2 – Shift coef 0, −0.038

a mm Center distance 112.50

i21 – Transmission ratio 23/55 (1 + 0.03 cos θ1)

ω1

ω2

rb2

rb1

N1

O2

O1

N2

P

α’

ra2

B2

B1

ra1 αa1

αa2

Fig. 3. Left figure shows meshing line of an involute gear pair. Right figure consists of
two figures; above shows transmission ratio, and below figure shows the the number of
meshing teeth. The number of meshing teeth tends to decrease when the transmission
ratio is large and increase when the transmission ratio is small.

weather the target transmission ratio can actually be achieved. Transmission
ratio affect angular velocity, so the authors fabricated an experimental equipment
to measure the angular displacement while rotating. The right side of Fig. 4
shows the experimental setup. The driven gear which is on the right side in the
figure is a cylindrical variable ratio gear, and the other is an involute gear. An
encoder is attached to the axis which rotates with the cylindrical variable ratio
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Fig. 4. Left figure shows a cylindrical variable ratio gear pair of numerical example.
The above gear is involute gear and the below gear is cylindrical variable ratio gear.
Teeth thickness changes due to variable transmission ratio. Right figure shows the
experimental setup for a cylindrical variable ratio gear pair. The pinion on the left side
is an involute gear, and the gear on the right side is a cylindrical variable ratio gear.

gear, and the angular displacement of that can be measured. The motor rotate
100/23 � 4.34 rpm constantly, and the encoder measures at 5ms intervals. The
time of experiment is 3, 901s � 1h.

4.2 Experimental Result

Raw data measured by the encoder contains the constant component of the
transmission ratio. The waveforms which is removed that are obtained by sub-
tracting the linear approximation from the raw data. Then, upper left of Fig. 5
shows the comparison of the fluctuation of angular displacement between experi-
mental value and theoretical one, and lower left of Fig. 5 shows the experimental
error which is calculated by subtracting theoretical value from experimental one.
From lower left of Fig. 5, the maximum error is 0.115 deg, and the percentage is
6.7%. Therefore, considering the experimental values as a sine wave, the ampli-
tude and period of the fluctuation is calculated by extremum of experimental
data smoothed by moving average as the right of Fig. 5. From the figure, each
experimental error of them is calculated as 0.81% and 0.22%, respectively. From
the result, cylindrical variable ratio gear manufactured for experiment almost
achieved the fluctuation of transmission ratio same as theory.

5 Conclusion

In this paper, the cylindrical variable ratio gear’s equation of helical gear pair
which achieves the fluctuation of transmission ratio was derived, and the authors
considered evaluation conditions and numerical example. Therefore, the numer-
ical example was fabricated for experiment, and measured the fluctuation of the
angular displacement. Each experimental errors of them were small, 0.81% and
0.22%, respectively, and the result demonstrated the numerical example was
validated.
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Fig. 5. Left figures show the result of experimental validation. Upper left shows the
comparison of the fluctuation of angular displacement between experimental value
which removed the constant part of transmission ratio and theoretical one. Lower left
shows the error which is calculated by subtracting theoretical value from experimental
one. Right figure shows the experimental data smoothed by moving average and its
extremum, and comparison of mean experimental value and theoretical one.
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