
Coupled Dynamics of an Oscillator
Moving in Contact with a Periodically

Supported String on Foundation

Anirvan DasGupta(B)

Department of Mechanical Engineering, IIT, Kharagpur 721302, India

anir@mech.iitkgp.ac.in

Abstract. The dynamics of a single degree-of-freedom oscillator mov-
ing at a constant velocity in contact with a periodically supported taut
string on a continuous foundation is studied. The main objective is to
assess the effect of various parameters on the contact stability of the
system. The string is assumed to be of infinite extent, and the contact is
assumed to be smooth. The system is modeled using the idea of periodic
continuation of sub-structure, and the dynamical variables are solved
using Fourier transformation and periodicity conditions. The interaction
force between the oscillator and the string is determined analytically
using the compatibility condition at the contact. The role of the string
support parameters and the oscillator parameters on the contact stability
are clearly brought out.
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1 Introduction

The dynamics of a one-dimensional elastic continuum carrying a traveling trans-
verse force is a classical problem [1]. This has relevance to the dynamics of bridges
and railway lines under moving loads in general, and coupled dynamics of the
conductor-pantograph system in electric trains in particular [2,3]. The problem
presents significant complexity when the elastic continuum is periodically sup-
ported. Moreover, for realistic modeling, the load is considered to be a traveling
discrete dynamical system, which adds to the complexity. Addressing this issue
motivates the present work.

The dynamics of elastic continua under moving constant force or interaction
force of a travelling mechanical systems has been studied by many researchers.
Some of these studies relate to fundamental aspects of dynamics of continuous
structures (such as string and beams) subjected to moving loads. Gavrilov [4]
and Metrikine [5] studied the response of an infinite string on a foundation when
subjected to a moving point load. The dynamics of an infinite stretched string
on Winkler foundation carrying a moving mass has been presented by Gavrilov
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[6]. Fox [7] studied the dynamics of periodically supported string subjected to a
travelling time-dependent force and a travelling rigid mass. A two-level periodi-
cally supported catenary system under a moving constant force has been studied
in [8]. Metrikine [9] studied the parametric instablity of a point mass moving
on periodically supported infinite string. Mazilu [10] studied the travelling load
response of an infinite homogeneous structure consisting of two continuously
supported beams numerically using Green’s function method. Beams supported
on an elastic half-space subjected to a moving load has been studied in [11].
Dynamic response of beams under moving loads has been presented in [12,13].
Jezequel [14] analyzed the dynamics of a periodically supported beam to mov-
ing load. Dynamics of periodically supported beams on a foundation has been
analyzed in [15,16].

There exists a substantial body of research literature on modeling of catenary-
pantograph dynamics that approach the problem completely numerically [17].
Most works either consider the load to be a constant force or a point mass. In
recent years, there is a renewed interest in analytical modeling to understand the
pantograph-catenary interaction dynamics [18,19]. In this work, we follow the
approach of [8] to first determine the basic response of a periodically supported
infinite string on a Winkler foundation to a travelling harmonic force. Using this
solution, we expand the string and the oscillator response in Fourier harmonics
of the force, and use the contact compatibility condition to solve the steady-state
response of the system analytically. Any type of oscillator can be considered in
the proposed method. We study the effect of certain parameters on the response
of the system. A normalized figure of merit is defined to track the effect of these
parameters on the stability of contact between the oscillator and the string.

2 Mathematical Modeling

2.1 Equations of Motion

Consider a taut string of infinite extent, as shown in Fig. 1, placed on a visco-
elastic foundation (shaded), and periodically supported at discrete points. Such
a system is an idealization of a two-level catenary system with periodic supports
at the poles. The single degree of freedom tunable oscillator in contact with the
string is also shown. The contact between the oscillator and the string, assumed
to be force-closed, will be considered stable as long as the interaction force is in
the positive vertical direction (upwards) on the string.

The equation of motion of the taut string between the nth and (n + 1)th

periodic supports with a moving point force may be written as

μsW,ττ + ΓsW,τ + ΣsW − TW,XX = F (τ)Δ(X − Voτ), (1)

for nd ≤ X ≤ (n + 1)d, where μs and W = W (x, t) are, respectively, the mass
per unit length and transverse displacement field of the string, Γs and Σs are
the coefficients of damping and stiffness distributions of the foundation, T is
the string tension, F (τ) is the (unknown) interaction force, Vo is the velocity of
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Fig. 1. Schematic figure of an oscillator moving in contact with a periodically supported
string on a visco-elastic foundation.

travel of the force, d is the distance between any two supports, and Δ(·) is the
Dirac-delta distribution. The equation of motion of the oscillator may be written
as

MoŸ + KopY + KosZ = −F (τ), CoŻ + KosZ = CoẎ , (2)

where Mo, Kop, Kos and Co are, respectively, the mass, primary stiffness, sec-
ondary stiffness and damping parameters of the system, and Y and Z are the
displacement variables as shown in Fig. 1. It may be noted that maintenance of
contact requires the satisfaction of the compatibility condition

W (V τ, τ) = Y (τ). (3)

The form of the system (2) is versatile, and can be tuned within the following
extreme possibilities (a) compliant undamped oscillator (Kos = 0, or Co = 0),
(b) stiff undamped oscillator (Co → ∞), and (c) damped oscillator (Kos → ∞).

The equations of motion (1)-(2) may be non-dimensionalized to obtain

w,tt + γsw,t + σsw − w,xx = f(t)δ(x − vot), (n − 1) ≤ x ≤ n, (4)
moÿ + kopy + kosz = −f(t), coż + kosz = coẏ, (5)

where we have used the non-dimensional quantities

w = W/d, y = Y/d, z = Z/d, x = X/d, t = τc/d,

γs =
Γsd

μsc
, σs =

Σsd
2

μsc2
, f(t) =

F (τ)
μsc2

, δ(·) =
Δ(·)

d
,

mo =
Mo

μsd
, kop =

Kopd

μsc2
, kos =

Kosd

μsc2
, co =

Co

μsc
, vo =

Vo

c
,

and c =
√

T/μs is the transverse wave speed in the string. With the above
definitions, the non-dimensional stiffness and damping coefficients at the periodic
support points are, respectively, Kp = κpd

μsc2 and Dp = δp
μsc , where κp and δp are

the corresponding dimensional values.



608 A. DasGupta

2.2 Solution Procedure

We are interested in determining the steady-state solution of the system. To
this end, we first solve the string equation (4), and the oscillator equations (5)
separately for an unknown harmonic force with (non-dimensional) frequency of
the form pΩ for arbitrary choice of integer p = 0, 1, . . . N (p = 0 corresponds to
a constant force), where Ω = 2πvo is the fundamental frequency of forcing. In
non-dimensional terms, therefore, one can write f(t) = eipΩt, which represents
a unit (complex) amplitude force, and i =

√−1.
Using the method of Fourier transform, one can formally write the solution

of (4) for the pth harmonic in the nth span as

wp(x, t) =
1
2π

∫ ∞

−∞
ŵp

n eiωtdω (6)

where

ŵp
n = a+

n eiksx + a−
n e−iksx +

(1/vo)ei(pΩ−ω)x/vo

(pΩ − ω)2/v2
o − k2

s

,

a+
n and a−

n are arbitrary constants of integration for the nth span, and ks =√
(ω2 − σs − iωγs). It may be noted that the solution (6) is valid span-wise.

Thus, in the nth span with n − 1 ≤ x ≤ n, one can put x = n − 1 + χ, where
χ ∈ [0, 1]. One may express the integrand in (6) as

Ĥp
n(χ, ω, t) =

[
a+

n eiksχ + a−
n e−iksχ +

ei(pΩ−ω)(n−1+χ)/vo

vo[(pΩ − ω)2/v2
o − k2

s ]

]
eiωt, (7)

where certain constant factors appearing in the homogeneous solution are
absorbed in the unknown constants of integration. At the junction of the nth

and (n + 1)th span, the displacement and force compatibility conditions can be
expressed as, respectively,

Ĥp
n(1, ω, t) = Ĥp

n+1(0, ω, t), (8)

and −Ĥp
n,x(1, ω, t) + Ĥp

n+1,x(0, ω, t) = (Kf + iωDf )Ĥp
n+1(0, ω, t). (9)

These two conditions involve 4 unknowns, namely (a+
n , a−

n , a+
n+1, a

−
n+1). Since

we are interested in steady-state periodic solutions, we impose the periodicity
condition

Ĥn+1(χ, ω, t) = Ĥn(χ, ω, t − 1/vo), (10)

where 1/vo is the time to cover one span. This leads to the relations a+
n+1 =

a+
n e−iω/vo , and a−

n+1 = a−
n e−iω/vo . Using these relations in the compatibility

conditions (8)-(9), one can eliminate (a+
n+1, a

−
n+1), and solve for (a+

n , a−
n ) to com-

pletely determine the integrand (7). Finally, the solution under unit harmonic
forcing can then be obtained from (6). It may be noted that the solution, with
the periodicity condition imposed, is identical for any span. We focus on the
point of contact (considered at x = vot) of the string with the oscillator. The
displacement at that point may be expressed as w(vot, t). Since the solution is
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periodic with fundamental frequency Ω = 2πvo, one can decompose the string
displacement at x = vot as

wp(vot, t) =
∞∑

q=−∞
aqpeiqΩt, (11)

where the complex constants aqp can be determined using the standard method
of projections.

The next step is to determine the interaction force f(t) between the oscillator
and the string. Since we expect the interaction force to also be periodic, we
expand it in Fourier series as

f(t) =
∞∑

p=0

fp

2
eipΩt + c.c., (12)

where fp are complex amplitudes, and the complex conjugate (c.c.) part is
treated separately for ease of representation. The displacement of the string
at the point of contact with the oscillator can now be written as

w(vot, t) =
∞∑

p=0

[(
a0p

fp

4
+ a∗

0p

f∗
p

4

)
+

∞∑

q=1

(
aqp

fp

2
+ a∗

(−q)p

f∗
p

2

)
eiqΩt + c.c.

]

(13)

Define a row matrix E = [1, eiΩt, ei2Ωt, . . .]. Then one can write

w(vot, t) = E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑∞
p=0

(
a0p

fp
4

+ a∗
0p

f∗
p

4

)

∑∞
p=0

(
a1p

fp
2

+ a∗
(−1)p

f∗
p

2

)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ c.c. = E(Af + Bf∗) + c.c., (14)

where f = [f0, f1, . . .]T is a column vector containing the (unknown) complex
force amplitudes, and the matrices A and B can be read out from the preceding
expression.

Now the motion of the oscillator under the same interaction force (12) can
be written from (5) as

y(t) = E

⎡

⎢⎢⎢⎢
⎣

y0
2 − f0

2Z(0)

− f1
2Z(Ω)

− f2
2Z(2Ω)

...

⎤

⎥⎥⎥⎥
⎦

+ c.c. = E(y0 + Cf) + c.c., (15)

where y0 = [y0
2 , 0, . . .]T is a column matrix with y0 as the unforced position of

the oscillator, C = Diag[− 1
2Z(0) , − 1

2Z(iΩ) , . . .] is a diagonal matrix, and

Z(pΩ) = −mop
2Ω2 + kop +

ipΩcokos

ipΩco + kos
. (16)



610 A. DasGupta

The compatibility condition between the string and the oscillator (3) requires
w(vot, t) = y(t) at each harmonic (elements in E), implying, from (14)-(15),
(A − C)f + Bf∗ = y0, which solves as

f =
[
(A − C) − B(A∗ − C∗)−1B∗]−1 [

I − B(A∗ − C∗)−1
]
y0, (17)

where I is the identity matrix. The interaction force at the point of contact can
now be expressed using (12) as

f(t) =
1
2
(Ef + E∗f∗). (18)

The contact between the string and the oscillator will be maintained if and
only if f(t) > 0.

3 Numerical Results and Discussion

We have eight non-dimensional parameters in the problem. We fix the values of
Kf = 1500, Df = 20, mo = 2. For numerical computations, only a finite number
of terms are retained in all the infinite sums presented in the previous section.
In order to understand the effect of variation of the other parameters on the
stability of contact, a normalized Figure of Merit (FoM) is proposed of the form

J =
1
2

√√
√√

∫ 1/vo

0
[ f(t) − |f(t)| ]2 dt

∫ 1/vo

0
[ f(t) ]2 dt

, (19)

which captures the severity of loss of contact over a span of the string. It may
be noted that J ∈ [0, 1].

Fig. 2. Variation of (a) contact force, and (b) contact transverse displacement with
travel distance over a span between two support points at certain values of travel
speeds. The values of vo are in the same order that the arrow marking line cuts the
curves.
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For the numerical calculations, we start by taking the (non-dimensional)
parameter values as γs = 0.6, σs = 2.0, Dp = 0.5, Kp = 3.5, mo = 0.6, co = 0.2
and kop = kos = 0.4. The value of y0 = 0.0182 is considered. The variations
of interaction force between the oscillator and the string, and the displacement
of the string at the point of contact over one span of travel for certain values
of travel speed are presented is Fig. 2. It is observed from Fig. 2(a) that the
interaction force becomes negative just after crossing a support point over a
range of travel speed. This implies that the contact between the oscillator and
the string will be lost in this phase. However, below a critical value of travel
speed, the force is positive throughout, and hence, contact will be maintained
throughout. Detailed calculation yields the non-dimensional critical speed for
the chosen parameter values as vc

o = 0.48. The variation of displacement of the
string at the contact point over the span in shown in Fig. 2(b). It is to be noted
that, with increasing travel speed of the oscillator, the mean displacement is
higher, though with a lower variation in the displacement over the span.

Fig. 3. Snapshots of the string for t ∈ [−1.2, 1.2] in steps of 0.3. Horizontal axis: x,
and vertical axis: w

Snapshots of the string at certain time instants are presented in Fig. 4. In
the figure, the supports are located at the labeled points. The oscillator location
is marked by the highest peak position on the string. The wave reflections are
clearly seen as the oscillator crosses the support points.

In order to improve the contact force variation and increase the critical speed,
we study the effect of parameter variation on the FoM. The variation of J with
variation of the oscillator mass mo and support damping Dp are shown in Fig. 3.
It is observed that increasing (reducing) the mass (support damping) improves
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Fig. 4. Variation of the FoM value of J with variation of (a) oscillator mass mo, and
(b) support damping Dp.

the FoM. This opens up an approach to tuning the system parameters to achieve
a lower value of J , and possibly increasing the critical speed.

Table 1. Parameter values considered for various cases

Case γs σs Dp mo

I 0.6 2.0 0.5 0.6

II 0.6 2.0 0.1 0.6

III 0.6 4.0 0.1 0.6

IV 1.2 4.0 0.1 0.6

V 1.2 4.0 0.1 1.2

Next, we vary the parameters in steps to successively reduce the value of J .
Five sets of parameter values that are varied are presented in Tab. 1. The rest of
the parameters are held fixed. The variations of J with travel speed for the five
cases are plotted in Fig. 5(a). It is clearly observed that with each successive case,
the FoM exhibits marked improvement with the value of J showing a significant
drop. The critical speed for each of the cases considered is shown in Fig. 5(b). It
may be noted that the critical could be improved from vc

o = 0.48 for Case I to
vc

o = 0.697 for Case V.
For the data of Case V, the variation of contact force and displacement of

the string at the contact point with distance traveled is shown in Fig. 6. It is
observed from Fig. 6(a) that the negativity and variation of contact force is much
restricted compared to that observed in Fig. 2(a). Comparing Figs. 2(b) and 6(b),
we observe the reduction in variation of the string displacement at the contact
point. The shape of the string at certain time instants t ∈ [−1.2, 1.2] in steps
of 0.3 with the travel speed vo = vc

o = 0.697 is presented in Fig. 7. Comparing
this figure with the one in Fig. 3 reveals some striking differences. Firstly, the
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Fig. 5. (a) Variation of J with speed of travel vo for the cases presented in Tab. 1. (b)
Critical speed of travel of the oscillator for different cases.

Fig. 6. Variation of (a) contact force, and (b) contact transverse displacement with
travel distance over a span between two support points at certain values of travel
speeds for the data of Case V in Tab. 1. The values of vo are in the same order that
the arrow marking line cuts the curves.

amplitude of displacement at the contact point is lower in the case of Fig. 7.
Further, the reflected wave amplitude is also lower compared to that observed
in Fig. 3.

The mean 〈y〉 and standard deviation 〈〈y〉〉 of the variation of contact force
and string displacement at the contact point with travel speed of the oscillator
are presented for Cases I and V in Fig. 8. As noted before, at lower speeds, the
variation in the displacement (as indicated by 〈〈y〉〉) is higher. For Case I, the
mean and standard deviation values are higher due to lower values of oscillator
mass and foundation stiffness and damping. However, at higher travel speed
of the oscillator, the standard deviation is found to increase marginally due to
lowering of dynamic stiffness of the string.
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Fig. 7. Snapshots of the string for t ∈ [−1.2, 1.2] in steps of 0.3 with vo = 0.697 and
parameters corresponding to Case V in Tab. 1. Horizontal axis: x, and vertical axis: w

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

)b()a(
vo vo

〈y〉 〈〈y〉〉

Case I

Case V

Case I

Case V

Fig. 8. Variation of (a) mean and (b) standard deviation of contact point displacement
with travel speed for two cases tabulated in Table 1.

4 Summary and Outlook

A study of the coupled dynamics of an oscillator moving in contact with a
periodically supported taut string on a visco-elastic foundation is studied. The
major objective was to study the causal effect of various parameters on the
contact stability. The evolution of the contact force is obtained analytically, and
the contact stability is assessed using a figure of merit function defined herein.
The critical travel speed of the oscillator for stable contact is determined and
improved by appropriate choice of parameters. The role of certain parameters
on the contact stability is clearly brought out. This work is expected to lead to
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a better understanding of the coupled dynamics and improvement in design. In
future, we intend to study closely the wave dynamics when the oscillator crosses
a support point. Mitigation of disturbance propagation is an important aspect
for future studies. This will be particularly relevant for dynamics of multiple
pantographs interacting with the overhead cable.
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