
Analysis of Transmission Errors and Load
Sharing of Compound Stepped Planetary Gear

Drives Considering Mesh Phasing

Qi-You Zhuang and Shyi-Jeng Tsai(B)

National Central University, Jhong-Li District, 320 Taoyuan City, Taiwan
sjtsai@cc.ncu.edu.tw

Abstract. The compound stepped planetary gear (CSPG) drive has a higher speed
ratio than simple planetary gear drives, but the selection of gear teeth for CSPG
drives is more stringent due to their complex structure. Based on the involute
geometry, a gear mesh analysis model is developed. From this model, the essential
conditions for correct assembly of CSPG set and design guidelines are proposed.
Under consideration of eccentric of carrier, the general equations of contact posi-
tions and clearance of CSPG set are derived. Based on the relations of loaded
deformation and displacement, the influence of mesh phases on loaded trans-
mission error and load sharing among planets is discussed. Four study cases are
chosen for influence analysis of the meshing phases on transmission errors and
load sharing.
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1 Introduction

Planetary gear drives are widely used in various transmission application due to their
advantageous features such as coaxial input and output shaft arrangement, high power
density, and high-speed ratio. Compound stepped planetary gear drives (CSPG), in par-
ticular, have gained widespread use due to their superior performance under space con-
straints. CSPG employs two compound planet gears of different sizes on the planet shaft,
as shown in Fig. 1, forming a stepped structure, which enables it to attain a higher speed
ratio compared to simple planetary gear sets. However, this design requires careful con-
sideration of gear teeth number selection and planet timing during assembly to achieve
proper gear mesh.

To ensure that the CSPG gear teeth meet the assembly requirements, Myers [1]
proposed a calculation method, which AGMA 6123 [2] uses as a reference to establish
several calculation examples. Despite its usefulness, the equations in this method do not
reveal the geometric relationship between the number of teeth and the assembly timing,
making it unsuitable for establishing design guidelines for deigning CSPG.

Apart from fulfilling assembly requirements, the numbers of teeth in CSPG also
affect mesh phasing, which in turn affects transmission performance [3, 4]. The observed
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differences in transmission errors and load distribution among the planets in a planetary
gear set are the direct result of different meshing phases. Generally, simple planetary
gear sets with three planets have two types of mesh phasing: in-phase and sequential
phases. However, in CSPG, due to the design of compound planets, the mesh phasing
between the sun gear (S) and the planet gears (PS), as well as between the planet gears
(PA) and the annulus gear (A), are independent of each other. In other words, there can
be a total of four possible combinations of in-phase meshing and sequential meshing.

Previous studies [5] introduced an analytical method based on involute geometry to
analyze gear mesh and planet load distribution in simple planetary gear drives. Addi-
tionally, the same approach was utilized to determine the transmission error caused by
eccentric errors [6, 7]. The present study aims to extend this analytical method to facili-
tate its application to CSPG. By utilizing the proposed analysis model, design guidelines
for selecting tooth numbers of CSPG can be established. Moreover, the impact of the
eccentric error of the carrier on transmission error and planet gear load distribution
among four distinct meshing phase combinations of CSPG can be compared.

Fig. 1. Schematic diagram and section view of CSPG

2 Geometrical Relations for Gear Meshing

2.1 Basic Meshing Relations of Engaged Tooth Pairs

Contact Positions of each Engaged Tooth. The fundamental meshing relations for the
contact positions of the teeth in the annulus-planet (A-PA) and sun-planet (S-PS) gear
pairs can be established using the generalized geometrical relation illustrated in Fig. 2.
Accordingly, the rolling angle (ξ) of each contact tooth can be determined based on the
geometrical relations. The relationships among these angles do not differ from those of
a simple planetary gear set, as demonstrated in [5], except for the tooth positions on the
compound planet gears (PA and PS).

Relation for the Compound Planet due to Alignment. As depicted in Fig. 2, the
reference tooth LD of planet gears PA and PS will undergo rotation by an angle ϕY from
the initial position LA. Given that the contact position ξPAi of planet gear PA and the
rotation angle ϕY are known, the contact position of planet gear PS can be:

ξPSi = XPSiτPS − XPAiτPA + ψbPSi + ψbPAi − π + αwPSi + αwPAi − ξPAi (1)
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The integersX in Eq. (1) represent the number of intermediate teeth between the con-
tact tooth of planet gears (PA and PS) and the reference tooth, which can be determined
with integer function int from Fig. 2(b) as,

XPAi = int

(
ϕY

τPA

)
; XPSi = int

(
π − ϕY

τPA

)
(2)

Tooth Clearances. If the contact positions of the engaged teeth of the sun gear,
determined according to the two distinct relations in Fig. 2, are dissimilar, a clearance
between the engaged teeth of the sun S and planet gear PS exists. The difference in the
rolling angle can be expressed as follows:

δPSi = ξSi - I − ξSi - II = 	
 + 	� (3)

In the given equation, 	
 represents the angular difference associated with the
positional deviation of each gear and the tooth thickness deviation of the planet gear.
Its value will not be zero in the presence of errors, and can be expressed with involute
function inv as,

	
 = (
zPS
zS

+1)(invαwPSi − invαwPS1) − zPS
zS

( |zA|
zPA

− 1

)
(invαwPAi − invαwPA1)+

− zPS
zS

[	ψbPS + 	ψbPA] + (
zPS
zS

|zA|
zPA

+1)	γASi

(4)

On the contrary, 	� denotes the angular difference that are the angle between the
engaged teeth of every gear. Provided that the planets are appropriately assembled, 	�

holds a value of zero; otherwise, it retains a non-zero value as:

	� = 2π

zSzPA

{
zPS|zA|+zSzPA

nP
−

[
int(

zS
nP

)+(XPSi − XPS1)

]
zPA

−
[
int(

|zA|
nP

)(XPAi − XPA1)

]
zPS

}
(5)

2.2 Essential Conditions for Correct Assembly

Fundamental prerequisite for the assembly of the compound planets is the absence
of clearance, signified by 	ξi = 0. In the ideal scenario where 	
 = 0, the angular
difference 	� for tooth-number relations must also be equal to zero. Equation (5) can
be utilized to derive the assembly relation with XPA1 set to 0, i.e.,

zSzPA + |zA|zPS
nP

=
[
int(

zS
nP

) + (XPSi − XPS1)

]
· zPA +

[
int(

|zA|
nP

) − XPAi

]
· zPS, (6)

where all the variables X are integer. Equation (6) is valid only when the item on the left
side of the equation must be also an integer, i.e.,

zPRzS + |zR|zPS = nP · X . (7)
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Fig. 2. Generalized geometric relation of gear mesh in CSPG

Equation (7) is the basic requirement to be fulfilled for assembly of the equally
spaced compound planets.

Design Rules and Timing Sequence. Except for essential requirement of Eqs. (6),
(7) must be also valid, where XPAi is the aligning number of teeth of planet i at assembly,
and the variable difference XPsi–XPS1 must be also an integer, i.e.,

XPSi − XPS1 =
[
zS
nP

− int(
zS
nP

)

]
+

[ |zA|
nP

− int(
|zA|
nP

) + XPAi

]
· zPS
zPA

∈ integer (8)

The tooth numbers of the gears can be determined according to the classified six
rules listed in Table 1 which are based on the equality requirement of Eq. (8). This
classification is more systematic and understandable than the existing literature [1, 2].

2.3 Meshing Relations due to the Presence of Eccentric Error of the Carrier

Considering the presence of the eccentric error eS of the carrier, the positions of the
compound planets relative to the sun and the annulus gear will be deviated and varied
with the rotation angle ϕC, Fig. 3. This change can be characterized by the deviation
angles ϑAS1 and ϑASi, which are respectively the function of ϕC and affect the relative
rotation angle ϕCA, the separation angle γASi, the working pressure angles αwPA1,i,
αwPS1,i and the center distances aw1,i. The positions of each contact tooth are varied by
these deviated parameters, and a clearance δi between engaged teeth of the planet PSi
and the sun gear S is caused accordingly. The relevant relations are derived as follows.

Basic Relations due to the Error. As the relations in Fig. 3 show, the deviation
angles ϑAS1 and ϑASi can be derived based on the law of sines as

tan ϑAS1 = − eC sin ϕC

aC1 + eC cosϕC
, tan ϑASi = − eC sin(γCi + ϕC)

aCi + eC cos(γCi + ϕC)
. (9)
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Table 1. Assembly conditions and corresponding meshing phasing

Rule Tooth number Installation
type

Mesh phasing

zS |zA| zPS zPA S-PS A-PA

A1 nPX1 nPX2 mutually prime Specific In-phase In-phase

A2 nPX1 nPX2 CP X3 CP X4 Interval In-phase In-phase

A3 nPX1 nPX2 XN zPA zPA Random In-phase In-phase

B1 nPX1–|zA|XN �= nPX2 XN·zPA zPA, XN �=
nPX3

Random Seq.-phase Seq.-phase

B2 nPX1 �= nPX2 XN·zPA zPA, XN =
nPX3

Random In-phase Seq.-phase

C not in the above relations, but acc. to Eq. (8) Depending on the factorizing

The rotation angle ϕCA and the separation angle γASi, can be calculated accordingly,

ϕCA = ϕC + ϑAS1, γASi = γCi − ϑAS1 + ϑASi, or	γASi = γASi − γCi = ϑASi − ϑAS1.

(10)

The center distances aw1. And awi.are calculated according to the law of cosines,
i.e.,

aw1 =
√
a2C1 + e2C + 2aC1eC cosϕC, awi =

√
a2Ci + e2C + 2aCieC cos(ϕC + γCi). (11)

The pressure angle αwPA1,i, αwPS1,i are equal to

cosαwPA1,i = mA · (|zA| + zPA) · cosα0

2 · aw1,i , cosαwPS1,i = mS · (zS + zPS) · cosα0

2 · aw1,i . (12)

Fig. 3. Deviated positions of the planets relative to the sun and annulus gear

Rotation Angle of the Sun Gear ϕS-P1 is determined according to the geometric
relation in Fig. 3, i.e., ϕS = σS + ξS1 − ξS0 + XSτS . With ξS1 and ξS0, ϕS-P1 can be
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calculated based on the gear mesh of sun and planet 1,

ϕS - P1 = (uST + 1)ϕC + (uST + 1)ϑAS1 + XSτS − zPS
zS

(XPS1 − XPS0)τPS+

+
[
zPS
zS

+ 1

]
(invαwPS1 − invαwPS0) − zPS

zS

( |zA|
zPA

− 1

)
(invαwPA1 − invαwPA0)

(13)

Non-loaded Transmission Error (NLTE) is determined as the difference of the
actual and the ideal value of the rotation angle ϕS of the sun gear under a given rotation
angle ϕC of the carrier. Because of multiple compound planets, the actual angle ϕS must
be involved all the contact conditions of the planet-sun gear pairs. The eccentricity error
of the carrier may also cause flank interference in sun-planet gear pairs other than sun-
planet 1. The sun gear must rotate reversely to avoid the interference. Therefor the result
transmission error NLTE is equal to

NLTE = ϕS − (uST + 1)ϕC + min(δi)

rbS
, i = 2, · · · , n, and only ifδi < 0. (14)

3 Analysis Model for Shared Loads on Contact Tooth Pairs

The shared loads among the planets in the planetary gear sets are calculated based on
the relations of loaded deformation and displacement, as well as the load equilibrium
of the planets and the sun gear. The loaded deformation w of the engaged tooth pair is
equal to the product of the compliance f of the tooth and the acting load F according
to Hook’s law, i.e., w = F·f . The compliance f involves the influences of Hertz contact
and tooth bending deformation and is varied with the contact position of the tooth, more
details can be found in [1, 2].

The load relationship of a compound planetary gear mechanism is no different from
that of a simple planetary gear set, except for the differences in the load equilibrium of
the compound planets, i.e., for the ith planet gear the equation is valid,

rbPA ·
tPAi∑
j=1

FPAi,j = rbPS ·
tPSi∑
j=1

FPSi,j (15)

The complete equations for the CSPG. With nP planets, nPA planet-annulus tooth
pairs and nPS planet-sun tooth pairs in contact can be expressed in a matrix [1, 2],

⎡
⎢⎢⎣

fPA 0 −rbPAI 0
0 fPS rbPSI −rbSJ

rbPAI −rbPSI 0 0
0 rbSJT 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
FPA

FPS

�P

λS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
	PS

0
Tin

⎤
⎥⎥⎦ (16)

In the equation, fPA is nPA × nPA matrix of compliance, fPS nPS × nPS matrix of
compliance, I nP × nP unit matrix and J nP × 1 unit vector. The tooth clearances
δPSi calculated from Eq. (3) due to errors are integrated in vector �PS. The unknown
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variables to be solved, including the acting force on the contact tooth pairs, the rotational
deformation angles of planets and sun, are all integrated separately into vectorsFPA,FPA,
�P, and λS.

Loaded Transmission Error (LTE) is the sum of NLTE and deformation angle λS
calculated from Eq. (3),

LTE = NLTE + λS (17)

4 Numerical examples

Four study cases are chosen for influence analysis of themeshing phases on transmission
errors and load sharing, see Tables 2, 3, and 4. All possible combinations ofmesh phasing
of the gear pairs S-PS and PA-A are included in the cases, Table 3. The eccentric error
of the carrier is 2.5 μm, which is the limit for precision machining.

Table 2. Common gearing data used in study cases

Unit Sun S Planet PS Planet PR Annulus A

Normal module mn mm 1 1 1 1

Pressure angle αP deg 20 20 20 20

Face width b Mm 10 10 10 10

Planet number nP – 3

E-modulus E MPa 207,000 207,000 207,000 207,000

Poison’s ratio ν – 0.3 0.3 0.3 0.3

Input Torque T Nm 80 – – –

Input Speed Rpm 1,400 --

Table 3. Essential data of study cases, tooth numbers and mesh characteristics

Study case Tooth number Design rule Installation
type

Mesh phasing

zS zPS zPR zR S-PS PA-A

Case 1 18 43 20 −81 A1 Specific In-phase In-phase

Case 2 17 44 22 −83 B1 Random Seq.-phase Seq.-phase

Case 3 18 45 22 −85 C Specific In-phase Seq.-phase

Case 4 17 43 21 −81 C Specific Seq.-phase In-phase
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Table 4. Gear pair data of study cases

Study case Total ratio Center distance a Profile-shifting factor

xS xPS xPR xR

Case 1 10.675 30.5 0.3049 −0.3049 0.517 − 0.517

Case 2 10.765 30.5 0.3327 −0.3327 0.4946 − 0.4946

Case 3 10.659 31.5 0.3134 −0.3134 0.4930 −0.4930

Case 4 10.756 30.0 0.3285 −0.3285 0.5062 −0.5062

5 Analysis Results

5.1 Loaded Transmission Error

Using the calculation in Eq. (17), when the planetary gear set is loaded, transmission
errors can be caused due to the tooth deformation. Since the loaded transmission error
analysis result with error-free condition does not have long wave variation, but only
short wave variation under the mesh of tooth pairs, the results of four cases are shown
in the smaller range of carrier angle, see the left side of Fig. 4.

• In Case 1, the planets mesh with the sun gear and the annulus gear both in-phase
simultaneously, resulting in the highest amplitude of the overall transmission error
with a peak-to-peak value of about 5 μm.

• In Case 2, the sun-planet gear pairs and the annulus-planet gear pairs are in sequential-
phase simultaneously, causing the smallest peak-to-peak value of LTE among all
cases, about 1 μm.

• In Case 3, the sun-planet gear pairs are in-phase, and the annulus-planet gear pairs in
sequential-phase, which causes the LTE trend to be closer to Case 2 but with a larger
peak-to-peak value of about 2 μm.

• In Case 4, the sun-planet gear pairs are in sequential-phase, and the annulus-planet
gear pair in-phase, resulting in an LTE trend closer to Case 1, but with a smaller
peak-to-peak value of about 4 μm.

If an eccentric error of the carrier is present, additional periodic variations in trans-
mission errors will occur. The results in the right side of Fig. 4 demonstrates the effect.
In comparison to the error-free LTE, the high-frequency wave remains unchanged, while
the low-frequency wave is affected by the carrier’s eccentricity.

5.2 Load Sharing Among Planets—Error-Free

Figure 5 demonstrate that the mesh phasing of the sun-planet gear pairs and the annulus-
planet gear pairs affect the load sharing among planets under error-free condition.
Because of in-phase mesh of all the gear pairs in Case 1, each engaged tooth pair has
the same mesh position and meshing stiffness at any given time, resulting in an equally
load distribution among the planets. In contrast, the occurrence of sequential phase mesh
between sun-planet pairs or annulus-planet pairs, or both, in Case 2, 3, and 4, results in
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Fig. 4. Loaded transmission errors

uneven distribution of planetary loads. In Case 2, both the sun-planet pairs and annulus-
plant pairs mesh sequential-phase, causing significant fluctuations in load sharing with
clear sequential variation. The maximum load sharing factor Kγ is about 1.54. Similar
results can be also found in Case 3 withKγ = 1.50, where the mesh of the sun-planet pair
is in-phase, and annulus-planet pairs sequential-phase. Comparatively, the load sharing
in Case 4 is relatively smaller than that in Case 3. The significant difference between
Cases 3 and 4 is attributed to the waveform period. In Case 4, the planets mesh with the
sun gear in sequential phase, resulting in a reduced period of the load sharing waveform.

5.3 Load Sharing Among Planets—With Eccentric Error of Carrier

Taking the eccentric error of the carrier into consideration, the load sharing curve can be
regarded as a combination of a short-periodwave and a long-periodwave, as illustrated in
Fig. 6. The long-periodwave is causedmainly by the eccentric error, and the short-period
wave is dependent on the mesh phasing.

The short-period load sharing in Case 1 varies minor fluctuations due to eccentric
error which cause deviations in the contact position, instead of remaining constant as
expected. The load sharing variation in short period is similar to the variation under the
error-free condition in the other cases, and all are influenced by the mesh phasing of the
gear pairs.
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Fig. 5. Load sharing among planets without eccentric error of carrier
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6 Conclusion

This paper proposes a set of general equations for determining contact positions and
load-deformation relationships of CSPG sets, from which the correct number of teeth
for assembly can be derived. A gear meshing and load analysis model was also modified
to account for the presence of eccentric error in the carrier. To explore the effects of
different combinations of mesh phasing in CSPG, transmission errors and load sharing
were analyzed. Based on these findings, the following conclusions can be drawn:

• The number of gear teeth in CSPG can be easily determined using the proposed
equations and design guidelines, which are more systematic and easier to understand
than existing literature [1, 2].

• According to the factorizing of the sun gear and the annulus gear respectively, CSPG
can have four different combinations of mesh phasing. The mesh phase of the sun
gear and annulus gear significantly affects transmission error and load sharing among
planets.

• If the planets mesh with the sun and annulus all in-phase (Case 1), it will result in a
larger transmission error, but the load among the planets will be evenly distributed.

• If the planets mesh with the sun and annulus sequentially (Case 2), the transmission
error will decrease, but load sharing among the planets will be uneven.

• Themesh phasing of planet-annulus gear pair has a greater impact on the transmission
performance than that of planet-sun gear pair. The transmission performance of Case
1 is similar to that of Case 4, and the same is true for Case 2 and Case 3.

• The eccentric error of the carrier results in long-periodic fluctuations in transmission
error and load sharing, while mesh phasing only affects short-periodic variations that
can be influenced by profile errors or profile modifications.
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