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Abstract. Belief functions constitute a particular class of lower proba-
bility measures which is expressive enough to allow the representation of
both ignorance and probabilistic information. Nevertheless, the decision
models based on belief functions proposed in the literature are limited
when considered in a dynamical context: either they drop the principle of
dynamical consistency, or they limit the combination of lotteries, or relax
the requirement for a transitive and complete comparison. The present
work formally shows that these requirements are indeed incompatible as
soon as a form of compensation is looked for. We then show that these
requirement can be met in non compensative frameworks by exhibiting
a dynamically consistent rule based on first order dominance.

1 Introduction

Belief functions [2,23] constitute a particular class of lower probability measures
which is expressive enough to allow the representation of both ambiguity and risk
(as an example, it perfectly captures the information on which Ellsberg’s para-
dox [8] is built). That is why many decision models based on belief functions have
been proposed, e.g. Jaffray’s linear utility [16,17], Choquet integrals [1,11,13],
Smet’s pignistic approach [24,25], Denoeux and Shenoy’s interval-valued utility
theory [4,5], among others (for more details, the reader can refer to the excellent
survey proposed by [3]). Nevertheless, these approaches are often limited when
considered in a dynamical context: either they drop the principle of dynamical
consistency (this is the case for the Choquet utility), or they limit the combina-
tion of lotteries to be purely probabilistic (as in Jaffray’s approach) and/or the
class of simple lotteries (as in [6,10]), or drop the requirement for a transitive
and complete comparison of the decisions (as in [5]).

The present work proposes two impossibility theorems that highlight the
incompatibility of the axioms of lottery reduction, completeness and transitivity
of the ranking, and independence (and thus, dynamical consistency) when a form
of compensation is looked for. We then relax compensation and show that these
axioms can be compatible by exhibiting a complete and transitive decision rule
which basically relies on first order dominance
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The next section introduces the background on evidential lotteries; the impos-
sibility theorems are presented in Sect. 3. Section 4 finally presents the non-
compensatory decision rule.

2 Background and Notations

In this section we present the notations and background on which the further
development rely.

Let X the set of all the possible consequences of the available decisions. X is
assumed to be finite A mass function is a mapping f from 2X to [0, 1] such that∑

A⊆X f(A) = 1 and f(∅) = 0
The mass function f induces the following belief and plausibility functions:

Bel(A) =
∑

B⊆A

f(B) Pl(A) =
∑

B∩A �=∅
f(B)

A set A ⊆ X such that f(A) > 0 is called a focal element of f . Let Support(f) =
{A, f(A) > 0} be the set of focal elements of f . If all focal sets are singletons,
then Bel = Pl and it is a probability measure.

In a static, one-step probabilistic decision problem, a possible decision is a
probability distributions on a set X of outcomes - a simple “lottery” [26]. The
definition naturally extends to the theory of evidence:

Definition 1 (Simple Evidential Lottery).
A simple evidential lottery is a mass function on X . In particular:

– A simple Bayesian (or “linear”) lottery is a mass functions on X the focal
elements of which are singletons;

– A set lottery is a simple lottery with a single focal element A ⊆ X , A �= ∅;
– A constant lottery provides some consequence x ∈ X for sure: it contains

only one focal element, {x}.
M will denote the set of simple evidential lotteries and P the set of simple

Bayesian lotteries. For the sake of readability and by abuse of notation A shall
denote the set lottery on A, {x} shall denote the constant lottery on x and X
shall denote both the set of consequences and the set of constant lotteries.

Example 1 (Ellsberg’s paradox [8]). Consider an urn containing 90 balls: 30
balls are red, while the remaining 60 balls are either black or yellow in unknown
proportions. Hence a mass distribution of {Red, Y ellow,Black}: f({Red}) = 1

3 ,
f({Y ellow,Black}) = 2

3 Four possible gambles are presented to the agent:

– A: the agent gets 100 if red is drawn, 0 otherwise;
– B: the agent gets 100 if black is drawn, 0 otherwise;
– C: the agent gets 100 if red or yellow is drawn, 0 otherwise;
– D: the agent gets 100 if black or yellow is drawn, 0 otherwise.
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A majority of the agents prefers A to B and D to C [8]. But whatever the utility
function considered, there exist no probability distribution such that (i) the
expected utility of A is greater than the one of B and (ii) the expected utility
of D is greater than the one of C. Ellsberg’s example can on the contrary be
handled in the framework of belief functions - the four gambles corresponding
to the following simple lotteries (notice that fA and fD are Bayesian):

fA({100}) = 1
3 , fA({0}) = 2

3 ; fC({0, 100}) = 2
3 , fC({100}) = 1

3 ;
fB({100, 0}) = 2

3 , fB({0}) = 1
3 ; fD({0}) = 1

3 , fD({100}) = 2
3 .

A compound lottery is a bpa on (simple or compound) lotteries.

Definition 2 (Compound Evidential Lottery).
A compound lottery is a mass function on a set of simple or compound lotteries
F . We shall use the notation f = α1 · F1 + . . . + αk · Fk where Fi ⊆ F and f
and αi = f(Fi).

Example 2 (An Ellsberg’s based compound lottery [5]). Consider two urns: U1
contains 90 balls, 30 of which are black, and 60 are red or yellow. U2 is identical
to Ellsberg’s urn. In the first stage you are allowed to draw one ball B1 from U1:

– If B1 is black or red, you are allowed to draw one ball from U2 at the second
stage, and you get 100 if it is red, and 0 otherwise (lottery A of Example 1);

– If B1 is yellow, you are allowed to draw one ball from U2, and you get 100 if
it is black, and 0 otherwise (lottery B of Example 1).

This is captured by the compound lottery h({fA}) = 1
3 and h({fA, fB}) = 2

3
(Fig. 1).

Fig. 1. The compound lottery of Example 2 and its reduction

The reduction of a compound lottery is a simple lottery considered as equiva-
lent to the compound one. When evidential lotteries are dealt with, the operation
of reduction is based in Dempster’s rule on combination1. It is defined by:

1 A good reference for evidential lottery reduction is Denoeux and Shenoy’s work [4].
Jaffrays’ work [17] can also be cited but is limited to probabilistic mixtures of bpas.
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Definition 3. Redl is the simple lottery defined by:
∀A ⊆ X , Redl(A) =

∑
H,l(H)>0 f(H) · mH(A),

where mH(A) =
∑

(B1, . . . , B|H|),
s. t. A = B1 ∪ . . . ∪ B|H|

and ∀hi ∈ H,Bi ∈ Support(Hi)

∏

Bi,i=1,|H|
hi(Bi)

The reduction of a simple lottery is the lottery itself. In the following, we
shall in particular consider compound lotteries mixing two lotteries only:

Definition 4. A binary compound lottery on f and g is a compound lottery
whose only possible focal elements are {f}, {g} and {f, g}. Such a lottery is
denoted α · f + β · g + γ · fg (with α + β + γ = 1)

It is easy to see that the reduction of the binary lottery l = α ·f +β ·g+γ ·fg
is the lottery Redl defined by

∀A ⊆ X , Redl(A) = α · Redf (A)+β · Redg(A)+γ
∑

B∪C=A

(Redf (B) · Redg(C))

As a matter of fact, suppose that f and g are simple; the compound lottery l
involves three focal elements:

– {f}, of probability α provides a series of sets A: here, each A is obtained with
a probability α · f(A)

– {g}, of probability β provides a series of sets A: each A is obtained with a
probability β · g(A)

– {f, g} of probability γ: the disjunction of f and g is considered: each time f
provides a set B with probability f(B) and g provides a set C with probability
g(C), the disjunction provides a set A = B∪C, with probability γ ·f(B)·g(C)

Because a set A can be obtained in several ways, the mass of probability of A is
the sum of the probabilities of getting this set in the different branches.

It can be shown that the reduction of any compound lottery is equivalent
to a binary compound lottery. For the sake of simplicity and without loss of
generality, the next sections consider binary lotteries only.

A decision rule amounts to a preference relation � on the lotteries. The rule
of expected utility for instance makes use of a utility function u on X : for any
two distributions f, g ∈ P, f �EU g iff the expected value of the utility according
to f is at least equal to the expected value of the utility according to g.

Considering credal lotteries (i. e. sets of probability distributions) [12] have
proposed a rule based on the lower expectation of the utility. When applied on
the set P(f) = {p,∀A,Bel(A) ≤ P (A) ≤ Pl(A)}, the lower expectation of the
utility is equal to the Choquet integral based on the Bel measure [11,13,22]. So,
for any simple evidential lottery f , one shall maximize

Ch(f) = ΣAf(A) · minx∈Au(x)



Decision with Belief Functions and Generalized Independence 31

Example 3. Choquet integrals capture many situations which cannot be cap-
tured by expected utility, and in particular the Ellsberg paradox. Setting
u(x) = x is easy to check that:

Ch(fA) = 1
3 ∗ 100 = 10/3

Ch(fB) = 2
3 ∗ min(0, 100) = 0

Ch(fC) = 1
3 ∗ 100 + 2

3 ∗ min(0, 100) = 100/3
Ch(fD) = + 2

3 ∗ 100 = 200/3

So, Ch(fA) > Ch(fB) and Ch(fD) > Ch(fC), which captures Ellsberg’ Example
Jaffray’s approach leads to the same values and the same preference order when
letting αB∗(a),B∗(a) = 1 whatever a (i. e. following the most cautious approach).

Lottery reduction allows to consider the rule in a dynamical context: to compare
compound lotteries, compare their reductions. Nevertheless it may happen that
the Choquet value of the reduction of l = α · f + β · h + γf · h outperforms the
one of l′ = α ·g+β ·h+γ ·g ·h while Ch(g) > Ch(f) (see Example 4). In decision
trees this means that if an agent prefers l to l′ ex-ante, then when reaching f
he can be tempted to exchange it for g: the Choquet integral is not dynamically
consistent. This can lead to Dutch Books [19] or a negative value of information
[27] - this also makes the use of dynamic programming algorithms difficult.

Example 4. Let x, y, z ∈ X with u(x) 
 u(y) 
 u(z). Choose p such that 1 >
p · u(x) + (1 − p) · u(z) > u(y). Finally, let f = p · x + (1 − p) · z and g = y. It
holds that Ch(f) = p · u(x) + (1 − p) · u(z) > Ch(g) = u(y).

Consider h = 1 · f · y and h′ = 1 · g · y. h′ always provides consequence y, so
Ch(h′) = u(y). h has two focal elements, m({x, y}) = p and m({z, y}) = 1 − p,

so Ch(h) = p · u(y) + (1 − p) · u(z). So Ch(h) < Ch(h′).

Jaffray [16] circumvents the difficulty by considering linear compound lotteries
only, i. e. compound lotteries of the form λ · f + (1 − λ) · g (this kind of linear
modelhas been more recently studied by [14,21]) Giang [10] also restricts the
framework to recover dynamical consistency, assuming that all the simple lot-
teries are consonant. In the same line of thought, Dubois et Al. [6] limit lotteries
to hybrid probability-possibility functions. We shall also cite other approaches,
like Smets’s pignistic utility [25]. Nevertheless, each approaches either restrict
the field of application (like Jaffray’s), or the requirement of a complete and
transitive order, or is not dynamically consistent.

3 Toward Impossibility Theorems

The decision rules on evidential lotteries are often limited when considered in a
dynamical context: either they drop the principle of dynamical consistency (e.
g. the Choquet integral), or they restrict themselves to particular classes of lot-
teries (as in Jaffray’s approach), or they drop the requirement for a transitive an
complete comparison of the decisions (as in [5]). All circumvent an implicit diffi-
culty, that the current work aims at highlighting, under the form of impossibility
theorems. To this extend, let us first present the main axioms.
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Consider a relation � on the set of simple and compound evidential lotteries
that can be built on a set of consequences X - � may be e.g. the preference
relations built by the Choquet rule or by Jaffray’s linear utility. Let 
 denote
the asymmetric part of � and ∼ its symmetric part. A first requirement is that
the preference can compare any act to any other in a transitive way:

Axiom 1 (Completeness and transitivity (A1)). � is complete and transitive

I. e. , ∼ is transitive and defines equivalence classes, totally ordered by 
.
Jaffray’s linear utility and the Choquet integral do satisfy axiom A1, while the
rule defined by Denoeux and Shenoy [5] defines a transitive but incomplete
preference (it may happen that neither f � g nor g � f)

Independence. The crucial axiom when comparing lotteries is the axiom of
independence, which ensures the dynamical consistency of the decision rule. This
axiom has been proposed by Von Neumann and Morgenstern in the context of
probabilistic lotteries: for any 0 < α ≤ 1, f � g ⇐⇒ α · f + (1 − α) · h �
α · g + (1 − α)h.

Axiom 2 (Independence). For any probabilistic lotteries f, g, h ∈ P,

– if 0 < α ≤ 1 then f 
 g ⇒ α · f + (1 − α) · h > α · g + (1 − α)h

We extends this axiom to evidential lotteries in two steps:

Axiom 3 (Generalized Weak Independence (wGI)). For any evidential lotteries
f, g, h, any α, β, γ ∈ [0, 1] such that α+β +γ = 1: f � g ⇒ α ·f +β ·h+γ ·fh �
α · g + β · h + γ · gh

A direct but important consequence of wGI is that, when two lotteries are
indifferent to each other, the one can be replaced by the other in any composition.

Proposition 1 (Substitution). If wGI holds, then for any evidential lotteries
f and g such that f ∼ g, and any h, h ∼ hf←g

where hf←g is the compound lottery in which f is replaced by g, i. e. hf←g(A) =
h(A) if g /∈ A hf←g(A) = h(A) + h(A ∪ {f}) if g ∈ A

The Von Neumann’s and Morgenstern’s independence requirement moreover
requires that if α > 0 then f 
 g ⇒ α · f + β · h + γ · fh 
 α · g + β · h + γ · gh -
one recognizes here the principle of independence proposed by Jensen [18] and
used by Jaffray [16] in his axiomatization of the linear utility. We shall use the
following generalization of Von Neumann and Morgernstern’s axiom:

Axiom 4 (Generalized Independence (GI)). For any evidential lotteries f, g, h,
any α, β, γ ∈ [0, 1] such that α + β + γ = 1:

(i) f � g ⇒ α · f + β · h + γ · fh � α · g + β · h + γ · gh (wGI)
(ii) If α > 0 then f 
 g ⇒ α · f + β · h + γ · fh 
 α · g + β · h + γ · gh

Generalized Independence is fundamental in the context of special decision
since it guaranty the dynamic consistency and dynamic programming [20].
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Lottery Reduction. A fundamental notion for the comparison of compound
lotteries is the equivalence of a compound lottery and its reduction; comparing
compound lotteries then amounts at comparing their reductions. By construc-
tion, all the rules presented in the previous Section do satisfy lottery reduction

Axiom 5 (Lottery Reduction (LR)). For any evidential compound lottery l ∼
Redl

As soon as GI holds, the substitution property applies, and the axiom of lottery
reduction implies that any compound lottery can be replaced by its reduction:
for any two lotteries f , h, h ∼ hf←Redf

.
The previous axioms obviously imply a form of monotony w. r. t. ambiguity:

an ambiguity between a decision and another cannot be better than getting the
best one for sure, or worst that getting the worst one for sure.

Proposition 2 (Monotony w. r. t. ambiguity). If LR, GI and A1 holds,
then,

(i) for any f, g such that f � g, f � 1 · fg � g
(ii) for any x1, x2 ∈ X such that {x1} � {x2}, {x1} � {x1, x2} � {x2}.
Proof. By GI, f � g implies 1 · fg � 1 · gg. By LR, 1 · gg ∼ g - so by transitivity
1 · fg � g. Similarly f � g implies by GI 1 · ff � 1 · fg and LR and A1 then
imply f � 1·fg. Item (ii) is a particular case item (i), setting f = {x1}, g = {x2}

Certainty Equivalence. The notion of certainty equivalence is often used
in decision theory, in particular for the elicitation of the utility functions and
uncertainty measures. The certainty equivalent of a decision is a constant act
that identifies the certain amount that generates indifference to a given decision.
When considering ambiguous acts, and typically set-decisions, we shall require
that any such act admits a certainty equivalent.

Axiom 6 (Restricted certainty equivalent (RCE)).
For any non empty subset A of X , ∃x ∈ X such that A ∼ x

Compensation. The GI axiom ensures dynamical consistency when comparing
lotteries. It is not obeyed by the Choquet integral (see Example 4). Neverthe-
less the Choquet integral ensures a form of compensation under uncertainty,
classically captured by the so-called “continuity” axiom [18].

Axiom 7 (Continuity). For any evidential lotteries f, g and h such that f 

g 
 h there exists λ, θ ∈ (0, 1) such that λf + (1 − λ)h 
 g 
 θf + (1 − θ)h

This axiom, proposed by Jensen [18] in its axiomatization of expected utility
and taken up by Jaffray [16] in his axiomatization of a linear utility theory of
belief functions, claims that a bad lottery h can always be compensated by a
good lottery f (λf + (1 − λ)h 
 g) and a good lottery f can be deteriorated by
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a bad one (g 
 θf + (1 − θ)h). This axiom states in particular that there exists
neither a probability distribution that is infinitely desirable nor a probability
distribution that is undesirable.

The continuity axiom expresses a form of compensation under probabilistic
uncertainty (under risk). We shall finally consider compensation under ambigu-
ity: an ambiguity between two possible outcomes is always better than getting
the worst of them for sure, but worse than getting the best of them for sure.

Axiom 8 (Compensation under ambiguity (C)).
If {x1} 
 {x2} then {x1} 
 {x1, x2} 
 {x2}

This axiom strengthens monotony w. r. t. ambiguity, which is a natural con-
sequence of A1, GI and LR.

Most rules encountered in the literature generally the axiom of continuity
(e. g. Jaffray’s and the Choquet integral; this axiom is one on the stone edges
of Jaffray’s characterization), but are not fully compensatory with respect to
ambiguity and either relax the axiom of independence, or the composition of
lotteries. This suggests that there may be some range of incompatibility between
theses properties as soon as ambiguous compound lotteries are allowed.

The main results of this paper is that as soon as a transitive rule based on
lottery reduction applies on evidential lotteries without any restriction, it cannot
satisfies both Generalized Weak Independence Axiom and the Compensation
Axiom and/or Continuity and allow more than two distinct consequences

Theorem 1. If there exists two distinct consequences in X which are not equiv-
alent for �, then A1, wGI, LR, RCE and C are inconsistent.

Proof. Suppose that ∃x1, x3 ∈ X such that {x1} 
 {x3}. Then by C, {x1} 

{x1, x3} 
 {x3}. By CE, there exists a x2 such that {x1, x3} ∼ {x2}. So,
∃x1, x2, x3 ∈ X such that x1 
 x2 
 x3

– Suppose first {x2} ∼ {x1, x3}. By C, {x1} 
 {x2} implies {x1} 
 {x1, x2} 

{x2}. Moreover {x2} ∼ {x1, x3} implies 1 · {x1} · {x2} ∼ 1 · {x1} · {x1x3}
by wGI. By LR, 1 · x1, {x1x3} ∼ {x1, x3} and 1 · {x1} · {x2} ∼ {x1, x2}. By
substitution (which derives from wGI and A1) {x1, x2} ∼ {x1, x3}.
From {x2} ∼ {x1, x3} and A1, we also get {x1, x2} ∼ {x2} which contradicts
{x1} 
 {x1, x2} 
 {x2}.

– Suppose now that {x2} 
 {x1, x3}. By wGI, we get 1 · {x2}.{x2, x3} � 1 ·
{x1, x3}, {x2, x3}. By LR, 1 · {x2}. {x2, x3} ∼ {x2, x3} and 1 · {x1, x3} ·
{x2, x3} ∼ {x1, x2, x1}. By substitution {x2, x3} � {x1, x2, x3}.
But by C {x2} 
 {x2, x3} and thus, because {x1} 
 {x2} we get {x1} 

{x2, x3} by A1; by C again, {x1} 
 {x2, x3} implies 1 · {x1} · {x2, x3} 

{x2, x3} - LR and substitution, then imply {x1, x2, x3} 
 {x2, x3}

– Let us finally suppose that {x1, x3} 
 {x2}. On the one hand by wGI we get 1·
{x1, x2}·{x1, x3} � 1·{x2}·{x1, x2}; by LR, 1·{x1, x2}·{x1, x3} ∼ {x1, x2, x3}
and 1 · x2 · {x1, x2} ∼ {x1, x2}. So, by substitution {x1, x2, x3} � {x1, x2}
By C we have {x1, x2} 
 {x2} and {x2} 
 {x3}, so by A1, {x1, {x2}} 
 {x3}.
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By CE, there exists a x such that x ∼ {x1, x2}, so by A1 x 
 {x3}. By C,
this impies x 
 {x, x2}. By substitution, we get {x} 
 1 · {x1, x2}{x3}. By
LR, 1 · {x1, x2}{x3} ∼ {x1, x2, x3}. Thus by A1, {x} 
 {x1, x2, x3}. Since
{x} ∼ {x1, x2}, by A1, we get {x1, x2} 
 {x1, x2, x3}, which contradicts
{x1, x2, x3} � {x1, x2}

So neither x2 � {x1x3} nor {x1, x3} � {x2} which contradicts axiom A1.

Theorem 2. If there exists a group of at least four consequences in X which
are pairwise distinct for �, then A1, wGI, LR and C are inconsistent.

Proof (Theorem 2). Let {x1} 
 {x2} 
 {x3} 
 {x4}. Let us observe that, thanks
to the continuity axiom λ{x1}+(1−λ){x3} 
 {x2} 
 θ{x1}+(1−θ){x3}. Then:

– By LR 1 · λ{x1} + (1 − λ){x3} · {x1, x3} ∼ {x1, x3} ∼ 1 · θ{x1} + (1 −
θ){x3}·{x1, x3} and 1 ·{x2}·{x1, x3} ∼ {x1, x2, x3}. By wGI and A1 we have
{x1, x3} ∼ {x1, x2, x3}

– By LR 1 · λ{x1} + (1 − λ){x3} · {x2, x3} ∼ λ{x1, x2, x3} + (1 − λ){x2, x3},
1 · θ{x1} + (1 − θ){x3} · {x2, x3} ∼ θ{x1, x2, x3} + (1 − θ){x2, x3} and 1 · x2 ·
{x2, x3} ∼ {x2, x3}. By substitution {x1, x3} ∼ {x1, x2, x3}. wGI and A1then
imply λ{x1, x3} + (1 − λ){x2, x3} � {x2, x3} � θ{x1, x3} + (1 − θ){x2, x3}.
Since λ, θ ∈ (0, 1) we get {x1, x3} � {x2, x3} and {x2, x3} � {x1, x3}. Hence
by A1 we have {x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

– By LR 1 · λ{x1} + (1 − λ)x3 · {x1, x2} ∼ λ{x1, x2}{+(1 − λ){x1, x2, x3},
1 · θx1 + (1 − θ)x3 · {x1, x3} ∼ θ{x1, x3} + (1 − θ){x1, x2, x3} and 1 · x2 ·
{x1, x2} ∼ {x2, x3}. By substitution {x2, x3} ∼ {x1, x2, x3}, wGI and A1 we
have λ{x1, x2} + (1 − λ){x2, x3} � {x1, x2} � θ{x1, x2} + (1 − θ){x2, x3}.
Since λ, θ ∈ (0, 1) we get {x2, x3} � {x1, x2} and {x1, x2} � {x2, x3}. Hence
by A1 we have {x1, x2} ∼ {x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

– By Proposition 2, {x1} 
 {x2} 
 {x3} implies {x1, x2} � {x2} and
{x2} � {x2, x3}; but the previous point has shown that {x1, x2} ∼ {x2, x3} -
hence, by A1, {x2} � {x2, x3}. Using A1 we have {x1} 
 {x2} ∼ {x1, x2} ∼
{x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

We thus get {x2} ∼ {x2, x3}. Applying the same reasoning to x2, x3 and x4 we
obtain that {x2} 
 {x3} ∼ {x2, x3} ∼ {x3, x4} ∼ {x2, x4} ∼ {x2, x3, x4} - hence
{x3} ∼ {x2, x3}

From {x2} ∼ {x2, x3} and{x3} ∼ {x2, x3}, we get by A1 {x2} ∼ {x3} which
contradicts {x2} 
 {x3}
The decision rules proposed in the literature escape the impossibility theorems
in some ways: either by restricting the composition of lotteries (like Jaffray’s
approach), by relaxing the axiom of independence (like the pignistic and Choquet
approaches), or the by relaxing axiom of completeness as done by Denoeux and
Shenoy. The above impossibility theorems justify these approaches: it shows for
instance that relaxing completeness is a way to keep the other axioms - and
especially continuity.
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4 A Dominance-based Rule for the Comparison
of Evidential Lotteries

The question is then to determine whether there is a way to satisfy the principle
of independence without dropping Axiom A1 or lottery reduction nor restricting
either type of lottery considered nor their composition of lotteries to the linear
case. The answer is actually yes - in this section, we provide a cautious rule
which applies on evidential lotteries without any restriction, and satisfies the
above principles.

Consider a set of consequences X equipped with a complete and transitive
preference relation ≥ and let f ≥ x be the event “f provides a consequence as
least as good as x”. For a simple lottery, Bel(f ≥ x) = ΣA,∀y∈A,u(y)≥u(x) m(A)
measures to what extent the DM is certain to reach as least a consequence as
good as x; for a compound, let Bel(f ≥ x) = Bel(Redf ≥ x). The cumulative
belief vector for f is thus f = (Bel(f ≥ x))x∈X )

The rule is based on the lexicographic comparison of the cumulative belief
vectors. Recall that for any two real vectors of same length a �lexi b iff there
exists a i∗ such that for any i < i∗, ai = bi and ai∗ > bi∗

Definition 5 (Lexi-Bel dominance rule).

f �lexiBel
g iff (Bel(f ≥ x))x∈X ) �lexi (Bel(g ≥ x))x∈X )

i. e. f �lexiBel g iff ∃x∗ ∈ X s. t. ∀y < x∗, Bel(f ≥ y) = Bel(g ≥ y) and Bel(f ≥
x∗) > Bel(g ≥ x∗)

Example 5. Let us consider again the lotteries at work in Ellsberg’s paradox. For
each of the four lotteries, the probability of getting at least the worst consequence
is obviously equal to 1. Moreover: Bel(A ≥ 100) = 1

3 , Bel(B ≥ 100) = 0,
Bel(C ≥ 100) = 1

3 , Bel(D ≥ 100) = 2
3 . The cumulative vectors are A = (1, 1

3 ),
B = (1, 0), C = (1, 1

3 ), D = (1, 2
3 ). Thus A 
lexiBel

B and D 
lexiBel
C

Proposition 3. �lexiBel
is complete, transitive and satisfies axioms LR, RCE

and GI.

Proof.

– A1 is obeyed since the lexi comparison of vectors is complete and transitive.
– Lottery reduction is satisfied by construction.
– Consider any A ⊆ X and the consequence a = minA It holds that Bel(A ≥

x) = 1 if x ≥ a and Bel(A ≥ x) = 0 if x > a. In the same way, Bel(a ≥ x) = 1
if x ≥ a and Bel(a ≥ x) = 0 if x > a. So, the set decision A and the constant
decision {(a)} have the same cumulative vector. Hence they are equivalent
for the lexi bel decision rule. Restricted CE thus holds.

– As to GI, it holds that for any h, f
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Bel(Reduction(αf + βh + γfh) ≥ x)
(a) = α

∑
B⊆[x,+∞[ f(B) + β

∑
B⊆[x,+∞[ h(B)

+ γ
∑

B⊆[x,+∞[

∑
C∪D=B f(C)h(D)

(b) = αBel(f ≥ x) + βBel(h ≥ x) + γ · (Bel(f ∪ h ≥ x))
(c) = αBel(f ≥ x) + βBel(h ≥ x) + γ · Bel(f ≥ x) · Bel(h ≥ x)
Step (a) follows from definition of the reduction and the definition of the Bel
measure. Step (b) follows from the definition of the union of two mass functions
( (f ∪ h)(B) =

∑
C∪D=B f(C)h(D)). Then step (c) is based on Prop. 2 in [7].

Suppose that f ∼lexiBel
g, i. e. that Bel(f ≥ x) = Bel(g ≥ x) ∀x; Then for

each x, α ·Bel(f ≥ x)+β ·Bel(h ≥ x)+ γBel(f ≥ x) ·Bel(h ≥ x) = α ·Bel(g ≥
x) + β · Bel(h ≥ x) + γBel(g ≥ x) · Bel(h ≥ x), i. e. the cumulative vectors of
the two compound lotteries are equal - so αf +βh+γfh ∼lexiBel

αg +βh+γgh.
Suppose that f 
lexiBel

g, i. e. that there exists a x∗ such that ∀x <
x∗, Bel(f ≥ x) = Bel(g ≥ x) and Bel(f ≥ x∗) > Bel(g ≥ x∗) For each
x < x∗, Bel(αf + βh + γfh ≥ x) = Bel(αg + βh + γgh ≥ x) as previously.
Moreover, Bel(f ≥ x∗) > Bel(g ≥ x∗). So, if α > 0 or Bel(h ≥ x∗) > 0
the value of Bel(αf + βh + γfh ≥ x∗) is strictly greater than the value of
Bel(αg +βh+γgh ≥ x∗). The first compound lottery is strictly preferred to the
second one. When α = 0 and Bel(h ≥ x∗) = 0 Bel(αf +βh+ γfh ≥ x) = 0 and
Bel(αg + βh + γfg ≥ x) = 0 for each x ≥ x∗, i. e. the two compound lotteries
are equivalent for ∼lexiBel

So, if f �lexiBel
g the first compound lottery is weakly preferred to the second

one and α > 0, f 
lexiBel
g leads to a strict preference: GI is obeyed.

So, the lexi-Bel rule do satisfy the axioms looked for - this proves their com-
patibility. This rule is nevertheless very pessimistic. Beyond its characterization,
further work include the proposition of more optimistic rules, e.g. using the
principles that we have developed in the possibilistic context [9].

5 Conclusion

This paper shows that the axioms of lottery reduction, completeness and tran-
sitivity of the ranking, and independence (and thus, dynamical consistency) can
be compatible when considering evidential lotteries in their full generality, but
this supposes to reject the compensation principles, and in particular the con-
tinuity axiom and the principle of compensation under ambiguity. The impossi-
bility theorems presented in this paper provide a first step toward the handling
of independence in decision with belief functions. The next step is to consider
more general lotteries, based on families of probabilities (“credal lotteries”). It is
worth noticing that, unless in particular cases, the rules proposed for imprecise
probabilities in their full generality either relax completeness or are dynamically
inconsistent: Troffaes and Huntley [15] for instance relax completeness. Miranda
and Zaffalon [28] preserve it for particular lower probabilities. Further work
includes the investigation of an impossibility theorem in the credal context.
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