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Abstract. In recent years, there has been a significant upsurge in
the interest surrounding Quantum machine learning, with researchers
actively developing methods to leverage the power of quantum technol-
ogy for solving highly complex problems across various domains. How-
ever, implementing gate-based quantum algorithms on noisy interme-
diate quantum devices (NISQ) presents notable challenges due to lim-
ited quantum resources and inherent noise. In this paper, we propose
an innovative approach for representing Bayesian networks on quantum
circuits, specifically designed to address these challenges. Our aim is to
minimize the required quantum resource needed to implement a Quan-
tum Bayesian network (QBN) on a quantum computer. By carefully
designing the sequence of quantum gates within the dynamic circuit,
we can optimize the utilization of limited quantum resources while mit-
igating the impact of noise. Furthermore, we present an experimental
study that demonstrates the effectiveness and efficiency of our proposed
approach. Through simulations and experiments on NISQ devices, we
show that our dynamic circuit representation significantly reduces the
resource requirements and enhances the robustness of QBN implemen-
tation. These findings highlight the potential of our approach to pave
the way for practical applications of Quantum Bayesian networks on
currently available quantum hardware.
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1 Introduction

Quantum algorithms are typically expressed in terms of quantum circuits, which
describe a computation as a sequence of elementary quantum logic gates acting
on qubits. There are many ways of implementing a given algorithm with an avail-
able set of elementary operations, and it is advantageous to find an implementa-
tion that uses the fewest resources especially on near-term device (NISQ machine)
[5,10]. The width of the quantum circuit is key for evaluating the potential of
its successful execution on that particular machine. Optimizing this metric when
implementing quantum Bayesian Networks will be the aim of our work.
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The first tentative to define Quantum Bayesian networks were introduced
by Tucci [14] as an analog to classical Bayesian networks. He proposed that
the conditional probabilities in a classical Bayesian networks can be represented
using quantum complex amplitudes. Tucci argued that there could be infinite
possible quantum Bayesian networks for a given classical Bayesian network. Fol-
lowing Tucci ideas, Moreira & Wichert [7] proposed quantum-like Bayesian net-
works, where the marginal and conditional probabilities were represented using
quantum probability amplitudes. To determine the parameters of a quantum
Bayesian network, a heuristic method was used that considered the similarity
between two dimensional vectors corresponding to the two states of the ran-
dom variables. In 2014 [6] discussed the principles of quantum circuit design
to represent a Bayesian network with discrete nodes that have two states, and
also discussed the circuit design for implementing quantum rejection sampling
for inference and recently, Borujeni et al. [1], proposed Compositional Quantum
Bayesian Network (C-QBN) to represent a discrete Bayesian network and dis-
cuss the decomposition of complex gates using elementary gates, so that they
can be implemented on available quantum computing platforms. In this paper,
we optimize the circuit construction of Compositional Quantum Bayesian net-
work by reducing the width with mid-circuit hardware measurement. We reuse
the qubit that represents a variable from the Bayesian network once it doesn’t
step in the calculation of another event in the chain rule.

This paper is organized as follows: we will first introduce Quantum comput-
ing. Then we will moves to present classical and quantum Bayesian networks
mainly the work of Borujeni et al. on Quantum Bayesian networks and her
approach named (C-QBN) and finally we will detail the proposed method for
optimizing a quantum circuit to represent a Bayesian network.

2 Basic Quantum Computation

Quantum computers can solve some computational problems exponentially faster
than classical computers, which may lead to several applications in field of
machine learning. To store and manipulate the information, they use their own
quantum bits also called ‘Qubits’ unlike other classical computers which are
based on classical computing that uses binary bits 0 and 1 individually.

Instead of using high and low voltages to represent the 1’s and 0’s of binary
data, we generally use the two spin states of an electron, |1〉 and |0〉 [3,12].

Any measurement made on this states will always yield one of the two states
with no way of knowing which one. If we prepare an ensemble of identical sys-
tems then quantum mechanics will assure that we will observe the result 1 with
probability |α|2 and the result 0 with probability |β|2. Normalization of the state
to unity guarantees:

|α|2 + |β|2 = 1

Information stored in a 2-states quantum system is called a quantum bit or
qubit: besides storing classical 1 and 0 information there is also the possibility
of storing information as a superposition of 1 and 0 states.
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To represent the state of a qubit, we can use the Bloch sphere. For instance,
if we have a qubit that is initially prepared in state |1〉 and then apply the NOT
operator (also known as the Pauli-X gate), we will find the qubit in state |0〉.
This operation corresponds to a rotation of the qubit state vector by 180◦ around
the X-axis of the Bloch sphere.

The reversible logic gates used in classical computing (such as AND, OR, and
NOT) have quantum analogues that are implemented using unitary operators
that act on the basis states of a qubit. These quantum gates are also reversible
and can be used to perform quantum computations. The basic quantum gates
include:

– The Hadamard gate, which creates a superposition of the |0〉 and |1〉 states.
– The Pauli gates which have four different types: RX , RY and RZ gates cor-

responding to the three axes of the Bloch sphere (X, Y , and Z), and the
identity gate. The RX gate, also known as the NOT gate, flips the value of
a qubit from |0〉 to |1〉or vice versa. The RY gate is similar to the RX gate,
but also introduces a phase shift around the Y-axis.

– The CNOT gate, which entangles two qubits and flips the second if the first
is in the |1〉 state.

– The Measurement gate, which is used to extract classical information from a
quantum state by collapsing a qubit to one of its possible classical states.

These gates form the basis for constructing more complex quantum circuits. The
impact of hardware on quantum algorithms is significant, as the performance of
a quantum algorithm is ultimately limited by the quality and capabilities of
the underlying quantum hardware. These hardware limitations can affect the
performance of quantum algorithms in several ways that can be summarized as
follows:

– Number of qubits and the available gate set on the hardware can limit
the size and complexity of the quantum circuits that can be implemented
efficiently. Certain quantum algorithms require a large number of qubits or
a specific gate set to perform optimally. If the hardware lacks the required
number of qubits or gate set, the algorithm may not be implementable or
may produce suboptimal results.

– Coherence time of the qubits determines how long they can maintain their
quantum state before they decohere and become classical. Longer coherence
times are generally better for implementing quantum algorithms, as they
allow for more operations to be performed before the quantum state is lost.
If the coherence time is too short, the algorithm may not be able to be
implemented or may perform poorly.

– Connectivity of the qubits on the hardware determines how easy it is to
implement certain types of quantum circuits, such as those involving entan-
glement. If the qubits are not well-connected, it may be difficult or impossible
to implement certain algorithms efficiently.

– Error rates of the gates and measurements on the hardware can limit the
accuracy and reliability of the quantum computation. High error rates can
lead to a loss of coherence and errors in the final result of the algorithm.
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Therefore, as quantum hardware continues to improve, it is expected that the
performance and applicability of quantum algorithms will also improve. This is
why the development of high-quality and scalable quantum hardware is one
of the key challenges in the field of quantum computing. Meanwhile one of the
techniques to cushion the impact of hardware on quantum algorithm is to reduce
the size of quantum circuit.

3 Quantum Bayesian Networks

In this section, we first introduce classical Bayesian networks and then their
most recent quantum representation proposed by Borujeni et al. [1].

3.1 Classical Bayesian Networks

Bayesian networks [8], are among the most powerful probabilistic graphical mod-
els representing knowledge and reasoning under uncertainty. Bayesian networks
are widely used in artificial intelligence, machine learning, and decision analysis
for tasks such as diagnosis, prediction, and decision-making under uncertainty.
They can be used to model complex systems and make predictions about their
behavior, even in the presence of missing or noisy data.

Formally, a Bayesian network BN = 〈G,P 〉 has two components:
(i) The graphical component composed of a Directed Acyclic Graph (DAG) G =
(V,E), where G is a DAG with nodes (or vertices V ) representing variables and
edges E representing the dependencies between variables.
(ii) The numerical component P composed of a set of conditional probability
distributions PXi

= P (Xi | Pa(Xi)) for each node Xi ∈ V in the context of its
parents Pa(Xi). The set of all these conditional probability tables P is used to
define the joint probability distribution over all variables in the network using a
chain rule expressed as:

P (X1.....Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

Example 1. Figure 1 shows an example of a Bayesian network with four binary
nodes V = {A,B,C,D} that we will use in the rest of the article.

Inference is a crucial task in Bayesian networks that involves calculating
probabilities of interest based on observations or evidences. The two most com-
mon types of inference are computing marginal probabilities of a subset of vari-
ables and conditional probabilities of a subset of variables given evidence about
another subset of variables. Inference is an optimization problem that involves
manipulating the joint probability distribution of the Bayesian network, which
can be computationally expensive for large and complex networks. It has been
proven that this problem is NP-hard [2]. The problem of inference in Bayesian
networks has been an active research area for decades, leading to many proposed
algorithms and techniques for efficient computation of probabilities [4,9].
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Fig. 1. A 4-nodes Bayesian network

3.2 Compositional Quantum Bayesian Networks C-QBN

Recently, Borujeni et al. [1] introduced a systematic method for designing a quan-
tum circuit to represent a discrete Bayesian network. This method (outlined by
Algorithm 1) is mainly based on mapping each variable in a Bayesian network to
one or more qubits (depending on its cardinality). Then, it computes associated
gates (via the Gates function) by first calculating the probability amplitudes of
the qubit states from conditional probabilities, following by obtaining the prob-
ability amplitudes of the associated quantum states through the application of
rotational gates. In this representation four gates are used: Hadamard gates X
(green), Pauli gates RY (purple), CNOT gates and measurement gates (black).

Note the use of extra qubits (ancilla bits) that are not part of the input or
output of a quantum circuit but are instead used to perform intermediate compu-
tations that help to improve the efficiency and accuracy of quantum algorithms.
The use of ancilla bits is a common technique in quantum computing.

Example 2. To illustrate the transformation procedure (Algorithm1), we recon-
sider the Bayesian network of Fig. 1. This generates a five-qubit circuit repre-
sented in Fig. 2. Qubits q0, q1, and q2and q3 are associated to A, B, C, D,
respectively, while q4 is the ancilla qubit associated to the decomposition on the
rotation gate relative to the node D which has 2 parents.

The resulting quantum circuit can then be used to compute the joint proba-
bility of any configuration, or the marginal probability of a subset of variables,
by assigning the corresponding values as input of the quantum circuit.

In the proposed method, each node X in the Bayesian network is mapped
onto a qubit in a quantum circuit. As mentioned earlier, qubits are a scarce
resource in quantum computing, and reducing the number of qubits required to
represent the network can provide a significant advantage in representing more
complex networks and performing more sophisticated analyses. This is the main
idea that we propose in the following section.

4 Optimized Representation of Quantum Bayesian
Networks

In this section, we present an optimized Algorithm that reduces the size of a
given quantum Bayesian network circuit compared to Algorithm 1.
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Algorithm 1: Transformation of a BN into a QC
Input : BN =< G = (V,E), P >
Output: A quantum circuit QC
QC ← an empty quantum circuit
for each X in topological order of V do

Create a qubit qX
AX ← empty
for each Y in Pa(X) do

Create ancilla qubit ax

Add ax to AX

end
for i in |Dom(Pa(X))| − 2 do

Create ancilla qubit ax

Add ax to AX

end
GX ← Gates(X,PX , qX , Ax)
Add GX to QC

end
for each X in V do

Measure(qX , QC)
end

Fig. 2. Quantum circuit of Bayesian network of Fig. 1 (Algorithm 1)
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The idea is to take advantage of the structure of the DAG in the given
Bayesian network to measure and reuse the qubit that represents a node mid-
way through, by using the standard measurement gate before applying further
quantum gates. This allows us to reuse a qubit after computing the probability
amplitude of all its child nodes.

The optimized version, outlined by Algorithm 2, starts by initializing an
empty quantum circuit QC and creating a list Palist that contains all the par-
ents of each node. This list will serve as an indicator to know if there are still
nodes that have not been mapped to the circuit and that require the presence
of their parents to calculate their probability amplitude. Otherwise, the qubit
relative to this node will be measured and added to Availablelist to be reused for
another variable. Then, it iterates over the nodes in V in a topological order1.
For each node X, it computes the number of extra qubits n needed by the quan-
tum gates to represent its probability distribution. It also computes the number
of qubits k required to represent the probability distribution even with the reuse
of the reinitialized qubits in Availablelist. If the node has no parents, it cre-
ates a new qubit for it and computes the quantum gates that implement the
node’s probability distribution GX(X,PX , qX , AX). Then If Pa(X) is already in
Pa list, the algorithm checks if Available list is empty. Then it creates a new
qubit and build its gates. Or it uses a qubit from Available list.

After that, we update the Palist and the Available list, and perform mid-
circuit measurement if needed, based on the requirements of the not-yet-built
nodes, with regard to the presence of their parent nodes, to compute their prob-
ability amplitude. Finally, we measure all the qubits that have not yet been
measured in V and add these measurements to QC. The resulting quantum cir-
cuit can be used to compute the joint probability distribution of the Bayesian
network BN.

Example 3. Given the BN in Fig. 1, let us consider the following topologi-
cally order [A,B,C,D]. We have Pa list = [Pa(A), Pa(B), Pa(C), Pa(D)] =
[A,B,C]. We start by considering node A, which is binary and root node. Since
A has no parents, we allocate only one qubit, denoted q0, to build its gates and
add them to the quantum circuit. We do not make any modifications to the
available Parent list Pa list. Next, we move to the variable B. Similar to A, we
allocate one qubit q1 and build its gates.

Then, we handle variable C which is a parented node with Pa(C) = A. To
compute its gates, we need the values from A gates because the values expressed
by its conditional probability table P (C | A) are based on A. After computing
the probability amplitudes of the qubits q2 and adding the gates to the circuit,
we delete A from Pa list and add its relative qubit to Available list because no
further nodes in the topological list are dependent on it. This allows us to apply
a measurement gate to q0 then a reset gate, enabling its reuse to map another
variable and reducing the global width of the circuit.

1 A numbering of the vertices of a DAG such that every edge from a vertex numbered
i to a vertex numbered j satisfies i < j i.e. ancestors before descendants.
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Finally, we move to the last node D, which has two parents. This requires
the use of an extra ancilla qubit (q3), which is added to the node itself, and only
one qubit from Available list is added to the circuit of Fig. 3. This will act on
global width of the final circuit by reducing it from 5 qubits using Algorithm 1 to
4 qubits using our optimized algorithm.

Fig. 3. Optimized Quantum circuit of BN in Fig. 2 (Algorithm 2)

5 Experiments

To evaluate the effectiveness of our algorithm, we analyze the Bayesian network
shown in Fig. 4, which consists of 10 binary nodes. It is worth noting that this
network was previously used in [1], where Algorithm 1 required 12 qubits to
transform it into a quantum circuit, while our optimized version only needs 6
qubits. Our main objective is to assess the accuracy of our model in terms of
marginal probabilities. To achieve this, we compare the results obtained through
an exact inference algorithm applied to the original Bayesian network with those
obtained by measuring the quantum circuits generated by Borujeni’s algorithm
and our optimized approach. We use the mps method from Qiskit Aer, an open-
source quantum circuit simulator [11], to simulate the quantum circuits and also
execute them on a real quantum machine with 7 qubits (IBM Perth).

We ran the Bayesian network circuit five times on the simulatorwithout any
hardware noise and on a real quantum computer, each with 20,000 shots.

To investigate the effect of width reduction of QBN circuits using the two
approaches described in Algorithm 1 and 2, we computed the root mean square
error (RMSE) expressed by:

RMSE =

√√√√
∑N

i=1

(
P (Xi = 0) − P̂ (Xi = 0)

)2

N
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Algorithm 2: Optimized transformation of a BN into a QC
Input : BN =< G = (V,E), P >
Output: A quantum circuit QC
Pa list ← ⋃

X∈V Pa(X)
Available list ← {}
QC ← an empty quantum circuit
for each X in topological order of V do

n ← extra qubit(Pa(X))
k ← n − |Available list|
if k > 0 then

Create k qubit(s) AX

end
/* check if we need to add additional qubits */

if Pa(X) /∈ Pa list then
Create a qubit qX
GX ←Gates(X, PX , qX , Ax)

else
if Available list = {} then

Create a qubit qX
GX ← Gates(X, PX , qX , Ax)

else
GX ←Gates(X, PX , qX , Ax)
Delete(Available list,qX)

end

end
if Count(Pa list, Pa(X)) = 1 then

Measure(qPa(X), QC)
Reset(qPa(X),AX)
Add(Available list, qPa(X), AX)

else if Count(Pa list, Pa(X)) > 1 then
Delete(Pa list, Pa(X))
Reset(AX)
Add(Available list, AX)

else
Reset( AX)
Add(Available list, AX)

Add GX to QC
end
for each not measured X in V do

Measure(qX , QC)
end
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Fig. 4. A 10-node Bayesian network [13]

where N is the number of nodes in the Bayesian network, P (Xi = 0) is the
exact probability computed from the full joint distribution, and P̂ (Xi = 0) is
the probability from the quantum circuit. This measure will indicate the extent
to which a set of marginal probabilities computed with a simulator and a real
quantum computer deviates from the exact values. The results showed that the
RMSE of the optimized circuit is lower than the one generated by Algorithm 1
(3% versus 7%). This improvement is particularly noteworthy given the size of
the initial network, and is attributed to the efficient reuse of qubits enabled by
our approach.

Note that the circuit generated by Algorithm 1 exceeded the 7 qubits avail-
able on the real quantum machine we used, and thus could not be executed.
Therefore, we only tested the optimized circuit generated by Algorithm 2 on a
real quantum computer.

Clearly, the reduction in the width of the quantum circuit has the potential
to improve the error rate as it reduces the number of physical qubits required to
implement the circuit. This, in turn, minimizes the complexity of the hardware
and mitigates some sources of errors (Table 1).
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Table 1. Exact, then mean values of marginal probabilities of the 10 node Bayesian
network on the simulator with the two approaches and on IBM perth quantum com-
puter

Marginal Exact
probability

Simulator Quantum computer

IBM perth

Algorithm 2Algorithm 1 Algorithm 2

P(X1 = 0) 0.431 0.441 0.455 0.651

P(X2 = 0) 0.863 0.867 0.867 0.567

P(X3 = 0) 0.976 0.976 0.974 0.670

P(X4 = 0) 0.570 0.563 0.549 0.576

P(X5 = 0) 0.527 0.528 0.518 0.522

P(X6 = 0) 0.980 0.981 0.981 0.884

P(X7 = 0) 0.977 0.977 0.978 0.899

P(X8 = 0) 0.026 0.026 0.0285 0.701

P(X9 = 0) 0.956 0.956 0.955 0.507

P(X10 = 0) 0.240 0.462 0.331 0.464

RMSE 7% 3% 30%

6 Conclusion and Perspectives

We have proposed an optimized version to design a quantum circuit to represent
Bayesian networks based on C-QBN approach. Our approach takes advantage of
the structure of the DAG in Bayesian networks to measure and reuse the qubit
that represents a node midway through, by using the standard measurement
gate before applying further quantum gates. This allows us to reuse a qubit
after computing the probability amplitude of all its child nodes.

This technique has been shown to reduce the width of the quantum circuit
even on small networks, as demonstrated by the example with 10 nodes, where
it resulted in a reduction of half the number of qubits required to implement the
QBN circuit. As a result, the reduction in the number of required qubits leads to
a simplification of the hardware and helps to alleviate certain sources of errors.

While our first experiments with two examples showed promising results,
further investigation on more complex Bayesian networks is needed to fully eval-
uate the effectiveness of our technique in reducing the width of quantum circuits.
As access to quantum hardware with larger numbers of qubits becomes avail-
able under certain conditions, we plan to test our approach on more challenging
problems. In addition, we will investigate the potential benefits of reducing the
number of qubits required for implementing a quantum circuit, which could pro-
vide additional resources for improving the overall reliability of the computation.
One approach we will explore is integrating error correction techniques directly
into the circuit design, which could further reduce error rates.
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