
A Ring-Based Distributed Algorithm
for Learning High-Dimensional Bayesian

Networks

Jorge D. Laborda1,2(B) , Pablo Torrijos1,2 , José M. Puerta1,2 ,
and José A. Gámez1,2

1 Instituto de Investigación en Informática de Albacete (I3A), Universidad de
Castilla-La Mancha. Albacete, 02071 Albacete, Spain

{Pablo.Torrijos,Jose.Puerta,Jose.Gamez}@uclm.es
2 Departamento de Sistemas Informáticos. Universidad de Castilla-La Mancha.

Albacete, 02071 Albacete, Spain
JorgeDaniel.Laborda@uclm.es

Abstract. Learning Bayesian Networks (BNs) from high-dimensional
data is a complex and time-consuming task. Although there are
approaches based on horizontal (instances) or vertical (variables) parti-
tioning in the literature, none can guarantee the same theoretical prop-
erties as the Greedy Equivalence Search (GES) algorithm, except those
based on the GES algorithm itself. In this paper, we propose a directed
ring-based distributed method that uses GES as the local learning algo-
rithm, ensuring the same theoretical properties as GES but requiring less
CPU time. The method involves partitioning the set of possible edges and
constraining each processor in the ring to work only with its received sub-
set. The global learning process is an iterative algorithm that carries out
several rounds until a convergence criterion is met. In each round, each
processor receives a BN from its predecessor in the ring, fuses it with its
own BN model, and uses the result as the starting solution for a local
learning process constrained to its set of edges. Subsequently, it sends
the model obtained to its successor in the ring. Experiments were car-
ried out on three large domains (400–1000 variables), demonstrating our
proposal’s effectiveness compared to GES and its fast version (fGES).

Keywords: Bayesian network learning · Bayesian network
fusion/aggregation · Distributed machine learning

1 Introduction

A Bayesian Network (BN) [9,13,18] is a graphical probabilistic model that
expresses uncertainty in a problem domain through probability theory. BNs
heavily rely on the graphical structure used to produce a symbolic (relevance)
analysis [16], which gives them an edge from an interpretability standpoint.
The demand for explainable models and the rise of causal models make BNs a
cutting-edge technology for knowledge-based problems.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 123–135, 2024.
https://doi.org/10.1007/978-3-031-45608-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_10&domain=pdf
http://orcid.org/0000-0002-6844-3970
http://orcid.org/0000-0002-8395-3848
http://orcid.org/0000-0002-9164-5191
http://orcid.org/0000-0003-1188-1117
https://doi.org/10.1007/978-3-031-45608-4_10

124 J. D. Laborda et al.

A BN has two parts: A graphical structure that stores the relationships
between the domain variables, such as (in)dependences between them, alongside
a set of parameters or conditional probability tables that measure the weight
of the relationships shown in the graph. Experts in the problem domain can
help build both parts of the BN [12]. Unfortunately, this task becomes unsus-
tainable when the scale of the problem grows. Nonetheless, learning BNs with
data is a well-researched field, and even though learning the structure of a BN
is an NP-hard problem [6], a variety of proposals have been developed to learn
BNs from data [3,5,7,22]. Additionally, a number of studies have delved into
high-dimensional problems [2,21,25].

The main focus of this paper is to address the problem of structural learning
of BNs in high-dimensional domains to reduce its complexity and improve the
overall result. To do so, we use a search and score approach within the equivalence
class search space [1] while dividing the problem into more minor problems that
can be solved simultaneously. Furthermore, our work exploits the advantages of
modern hardware by applying parallelism to the majority of the phases of our
algorithm.

To achieve these improvements, our research applies, as its core component,
the recent proposal for BN fusion [19] alongside an initial partitioning of all
of the possible edges of the graph and the GES algorithm [5]. Therefore, in
a few words, our algorithm starts by dividing the set of possible edges into
different subsets and performing parallel learning of various networks, where
each process is restricted to its according subset of edges. Once the batch has
finished, the resulting BN is used as input for the following process, creating a
circular system where the output of one process is the input of the following
process. Our experiments were performed over the three largest BNs in the
bnlearn repository [23], showing that our algorithm reduces the time consumed
while achieving good representations of these BNs.

The remainder of this paper is organized as follows: Section 2 provides a
general introduction to BNs. Next, in Sect. 3, our proposal is explained in detail.
In Sect. 4, we describe the methodology used to perform our experiments and
present the results obtained. Finally, in Sect. 5, we explain the conclusions we
have arrived at throughout our work.

2 Preliminaries

2.1 Bayesian Network

A Bayesian Network (BN) [9,13,18] is a probabilistic graphical model frequently
used to model a problem domain with predominant uncertainty. A BN is formally
represented as a pair B = (G,P) where G is a Directed Acyclic Graph (DAG)
and P is a set of conditional probability distributions:

– The DAG is a pair G = (V,E), where V = {X1, . . . Xn} is the set of vari-
ables of the problem domain, and E is the set of directed edges between the

Ring-Based Distributed Learning High-Dimensional BNs 125

variables: E = {X → Y | X ∈ V, Y ∈ V,X �= Y } G is capable of rep-
resenting the conditional (in)dependence relationships between V using the
d-separation criterion [18].

– P is a set of conditional probability distributions that factorizes the joint
probability distribution P (V) by using the DAG structure G and Markov’s
condition:

P (V) = P (X1, . . . , Xn) =
n∏

i=1

P (Xi|paG(Xi)), (1)

where paG(Xi) is the set of parents of Xi in G.

2.2 Structural Learning of BNs

Structural learning of BNs is the process of creating their DAG G by using
data1. This problem is an NP-hard problem [6]; however, many solutions have
been developed to learn BNs. We can classify these approaches into two groups:
constraint-based and score+search solutions. In addition, some hybrid algo-
rithms have also been developed (e.g., [2,25]). The constraint-based algorithms
use hypothesis tests to identify the conditional independences found in the data,
while the score+search methods apply a search algorithm to find the best struc-
ture for a given score function or metric, which depends entirely on the given
data. So, these approaches need a search method to find promising structural
candidates and a scoring function to evaluate each candidate. We will only con-
sider discrete variables and focus on the score+search methods.

We can see score+search methods as optimization problems where, given a
complete dataset D with m instances over a set of n discrete variables V, the
objective is to find the best DAG G∗ within the search space of the DAGs of
the problem domain Gn, by means of a scoring function f(G : D) that measures
how well a DAG G fits the given data D:

G∗ = arg max
G∈Gn

f(G : D) (2)

Different measurements have been used in the literature. The scoring func-
tions can be divided into Bayesian and information theory-based measures
(e.g., [4]). Our work focuses on using the Bayesian Dirichlet equivalent uniform
(BDeu) score [8], but any other Bayesian score could be used in our proposal.
This score is a particular case of BDe where a uniform distribution over all the
Dirichlet hyperparameters is assumed.

BDeu(G | D) = log(P (G))+
n∑

i=1

⎡

⎣
qi∑

j=1

[
log

(
Γ (η

qi
)

Γ (Nij + η
qi

)

)
+

ri∑

k=1

log

(
Γ (Nijk + η

riqi
)

Γ (η
riqi

)

)]⎤

⎦ , (3)

1 In this paper, we only consider the case of complete data, i.e., no missing values in
the dataset.

126 J. D. Laborda et al.

where ri is the number of states for Xi, qi is the number of state configurations
of PaG(Xi), Nij and Nijk are the frequencies computed from data for maximum
likelihood parameter estimation, η is a parameter representing the equivalent
sample size and Γ () is the Gamma function.

A state-of-the-art algorithm for structural learning is the Greedy Equivalence
Search (GES) [5]. This algorithm performs a greedy approach over the equiva-
lence space, using a scoring metric to search in two stages: Forward Equivalence
Search (FES) and Backward Equivalence Search (BES). The FES stage is in
charge of inserting edges into the graph, and when no further insertions improve
the overall score, the BES stage begins to delete edges from the graph until
there are no further improvements. It is proven that under certain conditions,
GES will obtain an optimum BN representation of the problem domain. In our
work, we use an alternative approach to GES, as described in [1], where the FES
stage is carried out in a totally greedy fashion while maintaining the BES stage
intact. This improvement has been proven to be as effective as GES and to retain
the same theoretical properties. To use this last algorithm as a control one, we
implemented a parallel version of GES where the checking phase of the edges
to add or delete is carried out in a distributed manner by using the available
threads.

Apart from GES, we also consider Fast Greedy Equivalence Search (fGES)
[20] as a competing hypothesis to test our proposal. fGES improves the original
GES algorithm by adding parallel calculations.

2.3 Bayesian Network Fusion

Bayesian Network Fusion is the process of combining two or more BNs that share
the same problem domain. The primary purpose of the fusion is to generate
a BN that generalizes all the BNs by representing all the conditional indepen-
dences codified in all the input BNs. BN fusion is an NP-hard problem; therefore,
heuristic algorithms are used to create an approximate solution [17]. To do so,
the algorithm relies on a common ordering σ of variables, and the final result
depends strongly on the ordering σ used.

In a recent work [19], a greedy heuristic method (GHO) is proposed to find
a good ordering for the fusion process. To achieve a good order, GHO must
find an order that minimizes the number of transformations needed. This is
accomplished by using the cost of transforming a node into a sink throughout
all DAGs, being used as a scoring method to evaluate orders and using it in a
heuristic to find a good order.

3 Ring-Based Distributed Learning of BNs

Learning BNs for high-dimensional domains is a particularly complex process
since it requires a much higher number of statistical calculations, which increases
the iterations needed for the learning algorithms to converge. To reduce the
computational demand of the learning process, we propose executing several

Ring-Based Distributed Learning High-Dimensional BNs 127

simpler learning processes in parallel that reduce the time spent on the algorithm.
We call our proposal Circular GES (cGES); it is illustrated in Fig. 1, and the
scheme is depicted in Algorithm 1.

Fig. 1. Graphical description of the proposed approach considering four processes

We can divide the algorithm into three stages:

1. Edge partitioning. Given an input dataset D, with V = {X1, . . . , Xn}, as well
as the set of possible edges E = {X → Y | X ∈ V, Y ∈ V,X �= Y }, this step
splits E into k subsets E1, . . . ,Ek, such that E = E1 ∪ · · · ∪ Ek. This is done
by using a score-guided complete-link hierarchical clustering that partitions E
into k clusters of edges Ei, where each possible edge can only be assigned to
one and only one cluster of edges Ei. First, we create k clusters of variables by
using the BDeu score (3) [8] difference to measure the similarity or correlation
between two variables:

s(Xi,Xj) = BDeu(Xi ← Xj |D) − BDeu(Xi �← Xj |D). (4)

Where, if s(Xi,Xj) (4) is positive, then adding Xj as a parent of Xi has
an overall positive effect. The higher the score, the more related are the two
variables. s(Xi,Xj) is asymptotically equivalent to the mutual information.
It’s symmetric but non-negative, and it only measures the similarity of two
variables, not the distance between them. We find a similar case in [14].
To apply the complete link approach of the hierarchical clustering, we com-
pute the similarity between clusters Cr and Cl as follows:

s(Cr, Cl) =
1

|Cr| · |Cl|
∑

Xi∈Cr

∑

Xj∈Cl

s(Xi,Xj) (5)

128 J. D. Laborda et al.

Algorithm 1: cGES(D,k)
Data: D, dataset defined over V = {X1, . . . , Xn} variables;

k, the number of parallel processes;

l, the limit of edges that can be added in a single GES process;

Result: G∗
r = (V,E), the resulting DAG learnt over the dataset D.

1 {E1, . . . ,Ek} ← EdgePartitioning(D, k)

2 go ← True

3 Gr ← ∅
4 for (i = 1, . . . , k) do
5 Gi ← ∅
6 while go do
7 /* Learning Stage */

8 for (i = 1, . . . , k) do in parallel

9 Ĝ ← Fusion.edgeUnion(Gi, Gi−1)

10 Gi ← GES(init = Ĝ, edges = Ei, limit = l,D)

11 /* Convergence Checking */

12 go ← False

13 for (i = 1, . . . , k) do
14 if (BDeu(G∗, D) − BDeu(Gi, D) ≥ 0) then
15 Gr ← Gi

16 go ← True

17 /* Fine Tuning */

18 G∗
r ← GES(init = Gr, edges = E, limit = ∞, D)

19 return G∗

With the k clusters of variables, we create the same number of clusters of
edges. First, we assign all the possible edges among the variables of cluster
Ci to the subset Ei. Next, we distribute all the remaining edges of variables
belonging to different clusters. We attempt to balance the size of the resulting
subsets by assigning the resulting edge with the end variables belonging to two
clusters to the subset with the smallest number of edges. Finally, we obtain k
disjoint subsets of edges. The execution of this step occurs only once, at the
beginning of the algorithm, and the resulting subsets are used to define the
search space of each process of the learning stage.

2. Learning stage. In this stage, k processes learn the structure of a BN. Each
process i receives the BN learned by its predecessor (i − 1) process and its
Ei edge cluster as input. In every iteration, all the processes are executed in
parallel, where each process is limited to their assigned Ei edge cluster. Each
process works as follows: First, the process starts by carrying out a BN fusion

Ring-Based Distributed Learning High-Dimensional BNs 129

[19] between the predecessor’s BN and the BN the process has learned so far.
If it is the first iteration, the fusion step is skipped since no BNs have been
learned yet, and we use an empty graph as starting point. Next, with the
result of the fusion as a starting point, a GES algorithm is launched where
the edges considered for addition and deletion are restrained to the edges
of its Ei cluster. Furthermore, an additional option is to limit the number
of edges that can be added in each iteration, resulting in a shorter number
of iterations and avoiding introducing complex structures that would later
be pruned during the merging process. After a preliminary examination, this
limitation was set to (10/k)

√
n, ensuring that the limitation is tailored to the

size of the problem, as well as to the number of subsets E1, . . . ,Ek used.
Once each process learns a BN, it is used as input for the next process, creating
a ring topology structure. All the processes are independent and are executed
in parallel. Each inner calculation needed by GES is also performed in parallel.
As noted in the above section, we use the parallel version of GES, and all
the processes store the scores computed in a concurrent safe data structure
to avoid unnecessary calculations. Finally, when an iteration has finished, the
convergence is checked by comparing whether any of the resulting BNs has
improved its BDeu score over the best BN constructed so far. When no BN
has outperformed the up to now best BN, the learning stage finishes.

3. Fine tuning. Once the learning stage has finished, the parallel version of
the GES algorithm is executed using the resulting BN as a starting point.
This time, the GES algorithm uses all the edges of E without adding any
limitation. As we expect to start from a solution close to the optimal, this
stage will only carry out a few iterations. Since we apply a complete run
of GES (FES+BES) over the resulting graph, all the theoretical properties
of GES will be maintained as they are independent of the starting network
considered.

It is important to notice that, by using this ring topology, the fusion step
only takes two networks as input, thus avoiding obtaining very complex (dense)
structures and so reducing overfitting. Furthermore, throughout each iteration,
the BNs generated by each process will be of greater quality, generalizing better
with each iteration since more information is shared. By limiting the number of
edges added, the complexity of each BN is smaller, and the fusions make smaller
changes, creating more consistent BNs in each process. A general overview of
the learning stage can be seen in Fig. 1.

4 Experimental Evaluation

This section describes the experimental evaluation of our proposal against com-
peting hypotheses. The domains and algorithms considered, the experimental
methodology, and the results obtained are described below.

130 J. D. Laborda et al.

4.1 Algorithms

In this study, we examined the following algorithms:

– An enhanced version of the GES algorithm [5] introduced in [1] (see Sect. 2.2).
Notably, the implementation in this study incorporates parallelism to expe-
dite the computational processes. In each iteration, to find the best edge to
be added or deleted, the computation of the scores is implemented in parallel
by distributing them among the available threads.

– The fGES algorithm, introduced in [20].
– The proposed cGES algorithm (see Sect. 3). We evaluate this algorithm with

2, 4, and 8 edge clusters, as well as limiting and non-limiting configurations
for the number of edges inserted in each iteration.

4.2 Methodology

Our methodology for evaluating Bayesian network learning algorithms involved
the following steps:

First, we selected three real-world BNs from the Bayesian Network Reposi-
tory in bnlearn [23] and sampled 11 datasets of 5000 instances for each BN. The
largest BNs with discrete variables, namely link, pigs, and munin, were cho-
sen for analysis. For each BN, Table 1 provides information about the number
of nodes, edges, parameters in the conditional probability tables, the maximum
number of parents per variable, average BDeu value of the empty network, and
the structural Hamming distance between the empty network and the moralized
graph of the original BN (SMHD) [10].

Table 1. Bayesian networks used in the experiments.

Network Features

Nodes Edges Parameters Max parents Empty BDeu Empty SMHD

Link 724 1125 14211 3 −410.4589 1739

Pigs 441 592 5618 2 −459.7571 806

Munin 1041 1397 80592 3 −345.3291 1843

We considered several evaluation scores to assess the algorithms’ efficiency
and accuracy. These included the CPU time required by each algorithm for
learning the BN model from data, the BDeu score [8] measuring the goodness
of fit of the learned BN with respect to the data normalized by the number
of instances as in [24], and the Structural Moral Hamming Distance (SMHD)
between the learned and original BN, measuring the actual resemblance between
the set of probabilistic independences of the moralized graph of the two models
(see, e.g., [11]).

Our methodology tested the configuration of each algorithm on the 11 sam-
ples for each of the three BNs. The results reported are the average of these

Ring-Based Distributed Learning High-Dimensional BNs 131

runs for each evaluation score. This approach allowed us to systematically eval-
uate the performance of the BN learning algorithms across multiple datasets and
provide comprehensive insights into their efficiency and accuracy.

4.3 Reproducibility

To ensure consistent conditions, we implemented all the algorithms from scratch,
using Java (OpenJDK 8) and the Tetrad 7.1.2-22 causal reasoning library. The
experiments were conducted on machines equipped with Intel Xeon E5-2650
8-Core Processors and 64 GB of RAM per execution running the CentOS 7
operating system.

To facilitate reproducibility, we have made the datasets, code, and execution
scripts available on GitHub3. Specifically, we utilized the version 1.0 release
for the experiments presented in this article. Additionally, we have provided a
common repository on OpenML4 containing the 11 datasets sampled for each
BN referencing their original papers.

4.4 Results

Table 2 present the corresponding results for the BDeu score (2a), Structural
Moral Hamming Distance (SMHD) (2b), and execution time (2c) of each algo-
rithm configuration discussed in Sect. 4.1. The notation cGES-l refers to the
variant of cGES that imposes limitations on the number of added edges per
iteration, while the numbers 2, 4, and 8 indicate the number of processes in the
ring. The algorithm exhibiting the best performance for each Bayesian network
is highlighted in bold to emphasize the superior results.

These results lead us to the following conclusions:

– Of the algorithms evaluated, fGES stands out as the least effective option,
producing subpar results or exhibiting significantly longer execution times
when obtaining a good result. In terms of the quality of the BN generated,
fGES yields unsatisfactory outcomes, as evidenced by low BDeu scores and
high SMHD values in the pigs and link networks. Furthermore, when aiming
to construct a reasonable network, fGES requires substantially longer exe-
cution times compared to both GES and all cGES variants. This is evident
in the case of the munin network.

– Upon comparing the versions of cGES, namely cGES-l and cGES, which
respectively impose limits on the number of edges that can be added by
each FES run to (10/numClusters)

√
nodes and have no such restriction, it

becomes evident that cGES-l outshines cGES in terms of performance. In
most cases, cGES-l demonstrates superior performance in generating high-
quality BNs compared to cGES. Additionally, it consistently achieves an

2 https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2.
3 https://github.com/JLaborda/cges.
4 https://www.openml.org/search?type=data&uploader id=%3D 33148&tags.tag=

bnlearn.

https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2
https://github.com/JLaborda/cges
https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags.tag=bnlearn
https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags.tag=bnlearn

132 J. D. Laborda et al.

Table 2. Results (BDeu, SHMD and CPU Time)

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs −345.1826 −334.9989 −335.6668 −335.8876 −335.5411 −335.1105 −335.1276 −335.1865

Link −286.1877 −228.3056 −228.3288 −227.1207 −226.4319 −227.6806 −227.9895 −227.2155

Munin −186.6973 −187.0736 −187.1536 −186.7651 −187.8554 −186.9388 −187.2936 −187.4198

(a) BDeu score

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs 309.00 0.00 31.00 36.91 21.00 4.36 4.18 5.18

Link 1370.45 1032.36 1042.18 953.18 940.64 937.91 952.64 941.55

Munin 1489.64 1468.45 1531.18 1521.38 1668.89 1503.25 1558.30 1623.22

(b) Structural Moral Hamming Distance (SHMD)

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs 20.26 175.43 122.47 108.08 121.80 76.59 58.06 73.84

Link 41.12 746.54 694.08 463.92 447.62 383.04 276.72 286.56

Munin 12331.31 2000.00 1883.78 1330.62 1454.72 1433.19 895.76 791.36

(c) CPU Time (seconds)

impressive speed-up, with execution times reduced by approximately a half
compared to cGES. These findings highlight the effectiveness of the edge
limitation strategy employed in cGES-l and its significant impact on the
learning process’s quality and efficiency.

– When comparing the algorithms based on the number of ring processes (pro-
cesses or edge subsets), it is challenging to establish a consistent pattern
regarding the quality of the BNs generated. While there is a general trend
of cGES performing slightly better with more partitions and cGES-l with
fewer, this pattern may vary depending on the BN. However, regarding exe-
cution time, it is evident that using 4 or 8 clusters improves the efficiency
compared to using 2 clusters. In particular, as the size of the BN increases,
using 8 clusters tends to yield better execution times.

– Lastly, comparing the fastest variant of cGES in two out of three BNs (cGES-
l 4) with GES yields noticeable speed improvements. pigs, link, and munin
BNs experience speed-ups of 3.02, 2.70, and 2.23, respectively. These values
are significant considering that both algorithms run parallel utilizing 8 CPU
threads. Notably, the reduced speed-up execution time does not come at the
cost of lower-quality BNs. In fact, GES performs better on pigs and munin
BNs, while cGES-l 4 excels with the link BN. However, these differences in
performance are not as pronounced as those observed with the BN generated
by fGES on the pigs and link networks.

Ring-Based Distributed Learning High-Dimensional BNs 133

5 Conclusions

Our study introduces cGES, an algorithm for structural learning of Bayesian Net-
works in high-dimensional domains. It employs a divide-and-conquer approach,
parallelism, and fusion techniques to reduce complexity and improve learning
efficiency. Our experimentation demonstrates that cGES generates high-quality
BNs in significantly less time than traditional methods. While it may not always
produce the absolute best solution, cGES strikes a favourable balance between
BN quality and generation time. Another important point to be considered is
that cGES exhibits the same theoretical properties as GES, as an unrestricted
GES is run by taking the network identified by the ring-distributed learning
process as its starting point.

As future works, the algorithm’s modular structure opens up possibilities for
applications such as federated learning [15], ensuring privacy and precision.

Acknowledgements. This work has been funded by the Government of Castilla-La
Mancha and “ERDF A way of making Europe” under project SBPLY/21/180225/
000062. It is also partially funded by MCIN/AEI/10.13039/501100011033 and “ESF
Investing your future” through PID2019–106758GB–C33, TED2021-131291B-I00 and
FPU21/01074 projects. Furthermore, this work has been supported by the University
of Castilla-La Mancha and “ERDF A Way of Making Europe” under project 2023-
GRIN-34437. Finally, this work has also been funded by the predoctoral contract with
code 2019-PREDUCLM-10188, granted by the University of Castilla-La Mancha.

References

1. Alonso-Barba, J.I., delaOssa, L., Gámez, J.A., Puerta, J.M.: Scaling up the greedy
equivalence search algorithm by constraining the search space of equivalence
classes. Int. J. Approximate Reasoning 54(4), 429–451 (2013). https://doi.org/
10.1016/j.ijar.2012.09.004

2. Arias, J., Gámez, J.A., Puerta, J.M.: Structural learning of Bayesian networks
via constrained hill climbing algorithms: adjusting trade-off between efficiency and
accuracy. Int. J. Intell. Syst. 30(3), 292–325 (2015). https://doi.org/10.1002/int.
21701

3. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using
constraints. J. Mach. Learn. Res. 12, 663–689 (2011). http://jmlr.org/papers/v12/
decampos11a.html

4. de Campos, L.M.: A scoring function for learning Bayesian networks based on
mutual information and conditional independence tests. J. Mach. Learn. Res. 7,
2149–2187 (2006). http://jmlr.org/papers/v7/decampos06a.html

5. Chickering, D.M.: Optimal structure identification with greedy search. J.
Mach. Learn. Res. 3(Nov), 507–554 (2002). http://www.jmlr.org/papers/v3/
chickering02b.html

6. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of bayesian
networks is np-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004). https://www.jmlr.
org/papers/v5/chickering04a.html

https://doi.org/10.1016/j.ijar.2012.09.004
https://doi.org/10.1016/j.ijar.2012.09.004
https://doi.org/10.1002/int.21701
https://doi.org/10.1002/int.21701
http://jmlr.org/papers/v12/decampos11a.html
http://jmlr.org/papers/v12/decampos11a.html
http://jmlr.org/papers/v7/decampos06a.html
http://www.jmlr.org/papers/v3/chickering02b.html
http://www.jmlr.org/papers/v3/chickering02b.html
https://www.jmlr.org/papers/v5/chickering04a.html
https://www.jmlr.org/papers/v5/chickering04a.html

134 J. D. Laborda et al.

7. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning Bayesian networks by hill climb-
ing: efficient methods based on progressive restriction of the neighborhood. Data
Mining Knowl. Discov. 22(1), 106–148 (2011). https://doi.org/10.1007/s10618-
010-0178-6

8. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combi-
nation of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995). https://
doi.org/10.1007/BF00994016

9. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-68282-2

10. de Jongh, M., Druzdzel, M.J.: A comparison of structural distance measures for
causal Bayesian network models. In: Klopotek, M., Przepiorkowski, A., Wierzchon,
S.T., Trojanowski, K. (eds.) Recent Advances in Intelligent Information Systems,
Challenging Problems of Science, Computer Science series, pp. 443–456. Academic
Publishing House EXIT (2009). https://doi.org/10.1007/978-3-030-34152-7

11. Kim, G.-H., Kim, S.-H.: Marginal information for structure learning. Stat. Comput.
30(2), 331–349 (2019). https://doi.org/10.1007/s11222-019-09877-x

12. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A
Guide to Construction and Analysis, 2nd edn. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-5104-4

13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. The MIT Press, Cambridge
(2009)

14. Krier, C., François, D., Rossi, F., Verleysen, M.: Feature clustering and mutual
information for the selection of variables in spectral data, pp. 157–162 (2007)

15. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, meth-
ods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020). https://
doi.org/10.1109/MSP.2020.2975749

16. Lin, Y., Druzdzel, M.J.: Computational advantages of relevance reasoning in
Bayesian belief networks. In: Proceedings of the Thirteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 342–350. UAI 1997, Morgan Kaufmann Pub-
lishers Inc. (1997)

17. Peña, J.: Finding consensus Bayesian network structures. J. Artif. Intell. Res.
(JAIR) 42, 661–687 (2011). https://doi.org/10.1613/jair.3427

18. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

19. Puerta, J.M., Aledo, J.A., Gámez, J.A., Laborda, J.D.: Efficient and accurate
structural fusion of Bayesian networks. Inf. Fusion 66, 155–169 (2021). https://
doi.org/10.1016/j.inffus.2020.09.003

20. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million vari-
ables and more: the fast greedy equivalence search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic
resonance images. Int. J. Data Sci. Anal. 3(2), 121–129 (2016). https://doi.org/10.
1007/s41060-016-0032-z

21. Scanagatta, M., Campos, C.P.D., Corani, G., Zaffalon, M.: Learning Bayesian net-
works with thousands of variables. In: Proceedings of the 28th International Con-
ference on Neural Information Processing Systems, vol. 2, pp. 1864–1872. NIPS
2015, MIT Press (2015)

22. Scanagatta, M., Salmerón, A., Stella, F.: A survey on Bayesian network structure
learning from data. Progress Artif. Intell. 8(4), 425–439 (2019). https://doi.org/
10.1007/s13748-019-00194-y

https://doi.org/10.1007/s10618-010-0178-6
https://doi.org/10.1007/s10618-010-0178-6
https://doi.org/10.1007/BF00994016
https://doi.org/10.1007/BF00994016
https://doi.org/10.1007/978-0-387-68282-2
https://doi.org/10.1007/978-3-030-34152-7
https://doi.org/10.1007/s11222-019-09877-x
https://doi.org/10.1007/978-1-4614-5104-4
https://doi.org/10.1007/978-1-4614-5104-4
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.1613/jair.3427
https://doi.org/10.1016/j.inffus.2020.09.003
https://doi.org/10.1016/j.inffus.2020.09.003
https://doi.org/10.1007/s41060-016-0032-z
https://doi.org/10.1007/s41060-016-0032-z
https://doi.org/10.1007/s13748-019-00194-y
https://doi.org/10.1007/s13748-019-00194-y

Ring-Based Distributed Learning High-Dimensional BNs 135

23. Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat.
Softw. 35(3), 1–22 (2010). https://doi.org/10.18637/jss.v035.i03

24. Teyssier, M., Koller, D.: Ordering-based search: a simple and effective algorithm
for learning Bayesian networks, pp. 584–590. UAI 2005, AUAI Press, Arlington,
Virginia, USA (2005)

25. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006). https://
doi.org/10.1007/s10994-006-6889-7

https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7

	A Ring-Based Distributed Algorithm for Learning High-Dimensional Bayesian Networks
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Network
	2.2 Structural Learning of BNs
	2.3 Bayesian Network Fusion

	3 Ring-Based Distributed Learning of BNs
	4 Experimental Evaluation
	4.1 Algorithms
	4.2 Methodology
	4.3 Reproducibility
	4.4 Results

	5 Conclusions
	References

