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Preface

The biennial European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU) is a major forum for advances in the theory
and practice of reasoning under uncertainty. Contributions are provided by researchers
in advancing the state of the art and by practitioners using uncertainty techniques in
applications. The scope of the ECSQARU conferences encompasses fundamental top-
ics, as well as practical issues, related to representation, inference, learning, and decision
making both in qualitative and numeric uncertainty paradigms. The formalisms studied
in this volume include argumentation frameworks, decision theory, Bayesian networks,
non-monotonic inference, explainability, dialogues, learning and human factors.We also
included papers accepted in the special track on AI and heterogeneous data organised
by Salem Benferhat.

Previous ECSQARU events were held in Prague (2021), Belgrade (2019), Lugano
(2017), Compiegne (2015), Utrecht (2013), Belfast (2011), Verona (2009), Hammamet
(2007), Barcelona (2005), Aalborg (2003), Toulouse (2001), London (1999), Bonn
(1997), Fribourg (1995), Granada (1993), and Marseille (1991).

ECSQARU 2023 was held in Arras (France) during 19–22 September 2023. The 35
papers in this volume were selected from 46 submissions, after a rigorous peer-review
process by the members of the Program Committee and some external reviewers. Each
submission was reviewed by three reviewers. ECSQARU 2023 also included invited
talks by outstanding researchers in the field: Eduardo Fermé, Jesse Davis, and Rafael
Peñaloza.

We would like to thank all those who submitted papers, the members of the Program
Committee and the external reviewers for their valuable reviews, the chairs of the spe-
cial track and the associated workshops, as well as the members of the local Organizing
Committee, for all their support and contributions to the success of the conference. In
addition to the main program of paper presentations, ECSQARU 2023 hosted two work-
shop programs: (i) ExplanationsMeet Uncertainties organized byWassila Ouerdane and
Sébastien Destercke, with the support of the working group Explicon of GDR RADIA;
and (ii) Neuro-symbolic AI organized by PierreMonnin and Fatiha Sais with the support
of the working group MHyIA of GDR RADIA and the AFIA Association.

Finally, we are thankful to CNRS and University of Artois for their financial and
logistic support. We are also thankful to Springer Nature for funding the Best Paper
Award and collaborating smoothly on the proceedings.

August 2023 Zied Bouraoui
Srdjan Vesic
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Reasoning about Tree Ensembles

Jesse Davis

KU Leuven, Leuven, Belgium
jesse.davis@kuleuven.be

Tree ensembles such as (gradient) boosted trees and random forests are a popular class of
models that are often used in practice. Unfortunately, merely achieving good predictive
performance is insufficient for a deployed model because it is important to assess other
factors such as a model’s robustness and explainability. However, like other expressive
model classes (e.g., neural networks), it is challenging to learn robust models where
decisions can be explained. For example, it is often possible to flip an example’s predicted
label by applying a tiny, specifically constructed perturbation. This type of behavior is
undesirable because it degrades a model’s performance and erodes a user’s trust in the
model. This talk will argue that the solution to this problem is to develop techniques
that are able to reason about a learned model’s behavior. Moreover, I will advocate that
using such approaches is a key part of evaluating learning pipelines because it can help
debug learned models and the data used to train them. I will present two approaches for
gaining insight into how amodel will behavior. First, I will discuss a generic approach for
verifying whether a learned tree ensemble exhibits a wide range of behaviors. Second,
I will describe an approach that identifies whether the tree ensemble is at a heightened
risk of making a misprediction in a post-deployment setting. Throughout the talk I will
use several illustrative examples from real-world applications, with an emphasis on
applications in professional soccer.

https://orcid.org/0000-0002-3748-9263


Mixing Time and Uncertainty. A Tale of Superpositions

Rafael Peñaloza

University of Milano-Bicocca, Italy
rafael.penalozanyssen@unimib.it

Formalisms capable of dealing with time and uncertainty are necessary for modelling
the existing knowledge of (business) processes which must interact with an unreliable
environment. Yet, combining time and uncertainty is far from trivial and can easily lead
to undecidability, making those formalisms useless in practice. A recent proposal for
probabilistic temporal logic uses the idea of quantum superposition, where an object
simultaneously has and does not have a property, until it is observed. We apply this
superposition semantics to Linear Temporal Logic, and show how it can be used for
Business Process Modelling tasks.

https://orcid.org/0000-0002-2693-5790


On Belief Update According to Katsuno & Mendelzon:
Novel Insights

Eduardo Fermé

University of Madeira, Portugal
eduardo.ferme@staff.uma.pt

The aim of Belief Change Theory is to provide a formal framework for understanding
how an agent’s beliefs evolve in response to new evidence.Over the past 35 years, various
operators have been proposed to handle different types of situations and evidence. The
core of this theory consists of belief revision operators, which are designed to update
an agent’s beliefs based on more reliable evidence. The standard model is the AGM
revision, proposed by Alchourrón, Gärdenfors and Makinson.

Another important class of operators are update operators proposed by Katsuno and
Mendelzon in 1991 (KM-update). The difference between revision and update operators
is that revision operators aim to correct an agent’s beliefs, whereas update operators aim
to incorporate the results of a change in the world, without presuming that the agent’s
previous beliefs were incorrect. This difference is often summarized as belief revision
being concerned with changing beliefs in a static world, while update is concerned with
the evolution of beliefs in a dynamic world.

In this presentation, we will showcase recent research that revolves around the KM-
update model of belief change.

1. The model’s efficacy in accurately capturing changes occurring in the world. We will
introduce some philosophical and technical aspects on this point. KM-update assumes
that any situation can be updated into one satisfying that input, which is unrealistic.
To solve this problem, we must relax either the success or the consistency principle.
We propose and characterize a model where not all the input are “reachable”.

2. The interconnection between KM update and AGM revision. We will examine the
relationship between these two approaches.

3. The iteration of update. We will explore the methodology of incorporating iterative
updates, drawing inspiration from the work of Darwiche and Pearl of iterated AGM
revision.

By delving into these areas, we aim to provide a comprehensive understanding of
KM-Update and its associated research developments.

https://orcid.org/0000-0002-9618-2421
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Cautious Decision-Making for Tree
Ensembles

Haifei Zhang1,2(B) , Benjamin Quost1,2(B) ,
and Marie-Hélène Masson1,3(B)

1 UMR CNRS 7253 Heudiasyc, 60200 Compiègne, France
{haifei.zhang,benjamin.quost,mylene.masson}@hds.utc.fr

2 Université de Technologie de Compiègne, 60200 Compiègne, France
3 IUT de l’Oise, Université de Picardie Jules Verne, 60000 Beauvais, France

Abstract. Cautious classifiers are designed to make indeterminate deci-
sions when the uncertainty on the input data or the model output is too
high, so as to reduce the risk of making wrong decisions. In this paper, we
propose two cautious decision-making procedures, by aggregating trees
providing probability intervals constructed via the imprecise Dirichlet
model. The trees are aggregated in the belief functions framework, by
maximizing the lower expected discounted utility, so as to achieve a
good compromise between model accuracy and determinacy. They can
be regarded as generalizations of the two classical aggregation strategies
for tree ensembles, i.e., averaging and voting. The efficiency and per-
formance of the proposed procedures are tested on random forests and
illustrated on three UCI datasets.

Keywords: Cautious decision making · Belief functions · Lower
expected utility · Ensemble learning

1 Introduction

Tree ensembles like random forests are highly efficient and accurate machine-
learning models widely applied in various domains [5,17]. Tree outputs consist of
precise class probability estimates based on counts of training instances falling in
the leaf nodes. Decisions are classically made either by averaging the probabilities
or by majority voting. However, trees may lack robustness when confronted with
low-quality data, for instance for noisy samples, or samples located in low-density
regions of the input space. To overcome this issue, previous works have proposed to
use the imprecise Dirichlet model (IDM) so as to replace precise class probability
estimates with a convex set of probability distributions (in the form of probability
intervals) whose size depends on the number of training samples [4,22].

The joint use of the IDM and decision trees is not new, it has been explored
in two directions. First, it has been used to improve the training of single trees
or tree ensembles. Credal decision trees (CDT) [3,12] and credal random forests
(CRF) [1] use the maximum entropy principle to select split features and values
from the probability intervals obtained via the IDM, thus improving robustness to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-45608-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_1&domain=pdf
http://orcid.org/0000-0003-4488-1631
http://orcid.org/0000-0002-0456-9953
http://orcid.org/0000-0002-5269-8450
https://doi.org/10.1007/978-3-031-45608-4_1
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data noise. To enhance the generalization performance of tree ensembles trained
on small datasets, data sampling and augmentation based on the IDM probabil-
ity intervals have been proposed to train deep forests [20] and weights associated
with each tree in the ensemble can be learned to further optimize their combina-
tion [21]. Second, the probability intervals given by the IDM can also be used to
make cautious decisions, thereby reducing the risk of prediction error [4,16]. A
cautious decision is a set-valued decision, i.e., a cautious classifier may return a
set of classes instead of a single one when the uncertainty is too high. An impre-
cise credal decision tree (ICDT) [2] is a single tree where set-valued predictions
are returned by applying the interval dominance principle [19] to the probability
intervals obtained via the IDM.

In tree ensembles, applying cautious decision-making strategies becomes more
complex. One approach consists in aggregating the probability intervals given by
the trees—for example by conjunction, disjunction, or averaging—before making
cautious decisions by computing a partial order between the classes, e.g., using
interval dominance [6,10]. Another approach consists in allowing each tree to make
a cautious decision first, before pooling them. The Minimum-Vote-Against (MVA)
is such an approach, where the classes with minimal opposition are retained [13].
It should be noted that MVA generally results in precise predictions, whereas dis-
junction and averaging often turn out to be inconclusive. Even worse, using con-
junction very frequently results in empty predictions due to conflict.

In [24,25], we have proposed a generalized voting aggregation strategy for
binary cautious classification within the belief function framework. In the present
paper, we generalize these previous works in the multi-class case. After recall-
ing background material in Sect. 2, we propose in Sect. 3 two cautious decision-
making strategies in the belief function framework, which generalize averaging
and voting for imprecise tree ensembles. These strategies are axiomatically prin-
cipled: they amount to maximizing the lower expected discounted utility, rather
than the expected utility as done in the conventional case. Our approach can be
applied to any kind of classifier ensemble where classifier outputs are probability
intervals; however, it is particularly well-suited to tree ensembles. The experi-
ments reported in Sect. 4 show that a good compromise between accuracy and
determinacy can be achieved and that our algorithms remain tractable even in
the case of a high number of classes. Finally, a conclusion is drawn in Sect. 5.

2 Preliminaries

2.1 Imprecise Dirichlet Model and Trees

Let H = {h1, . . . , hT } be a random forest with trees ht trained on a classification
problem of K ≥ 2 classes. Let ht(x) be the leaf in which a given test instance
x ∈ X falls for tree ht, and let ntj denote the number of training samples of
class cj in ht(x).

The IDM consists in using a family of Dirichlet priors for estimating the class
posterior probabilities P(cj |x, ht), resulting in interval estimates:
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Itj =
[
p

tj
, ptj

]
=

[
ntj

Nt + s
,
ntj + s

Nt + s

]
, j = 1, . . . , K, (1)

where Nt =
∑K

j=1 ntj is the total number of instances in ht(x), and s can be
interpreted as the number of additional virtual samples with unknown actual
classes also falling in ht(x). In the case of trees, the IDM, therefore, provides a
natural local estimate of epistemic uncertainty, i.e., the uncertainty caused by
the lack of training data in leaves.

2.2 Belief Functions

The theory of belief functions [7,18] provides a general framework for mod-
eling and reasoning with uncertainty. Let the frame of discernment Ω =
{c1, c2, . . . , cK} denote the finite set that contains all values for our class variable
C of interest.

A mass function is a mapping m : 2Ω → [0, 1], such that
∑

A⊆Ω m(A) = 1.
Any subset A ⊆ Ω such that m(A) > 0 is called a focal element of m. The value
m(A) measures the degree of evidence supporting C ∈ A only; m(Ω) represents
the degree of total ignorance, i.e., the belief mass that could not be assigned to
any specific subset of classes. A mass function is Bayesian if focal elements are
singletons only, and quasi-Bayesian if they are only singletons and Ω.

The belief and plausibility functions can be computed from the mass function
m, which are respectively defined as

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A �=∅
m(B), (2)

for all A ⊆ Ω. In a nutshell, Bel(A) measures the total degree of support to A,
and Pl(A) the degree of belief not contradicting A. These two functions are dual
since Bel(A) = 1 − Pl(A), with A = Ω \ A. The mass, belief, and plausibility
functions are in one-to-one correspondence and can be retrieved from each other.

2.3 Decision Making with Belief Functions

A decision problem can be seen as choosing the most desirable action among
a set of alternatives F = {f1, . . . , fL}, according to a set of states of nature
Ω = {c1, . . . , cK} and a corresponding utility matrix U of dimensions L × K.
The value of uij ∈ R is the utility or payoff obtained if action fi, i = 1, . . . , L is
taken and state cj , j = 1, . . . , K occurs.

Assume our knowledge of the class of the test instance is represented by a
mass function m: the expected utility criterion under probability setting may be
extended to the lower and upper expected utilities, respectively defined as the
weighted averages of the minimum and maximum utility within each focal set:

EU(m, fi, U) =
∑

B⊆Ω

m(B)min
cj∈B

uij , EU(m, fi, U) =
∑

B⊆Ω

m(B)max
cj∈B

uij . (3)
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We obviously have EU(m, fi, U) ≤ EU(m, fi, U), the equality applies when m
is Bayesian. Note that actions fi are not restricted to choosing a single class.
Based on Eq. (3), we may choose the action with the highest lower expected
utility (pessimistic attitude), or with the highest upper expected utility (opti-
mistic attitude). More details on decision-making principles in the belief func-
tions framework can be found in [9].

2.4 Evaluation of Cautious Classifiers

Unlike traditional classifiers, cautious classifiers may return indeterminate deci-
sions so that classical evaluation criteria are no longer applicable. We mention
here several evaluation criteria to evaluate the quality of such set-valued predic-
tions: the determinacy counts the proportion of samples that are determinately
classified; the single-set accuracy measures the proportion of correct determinate
decisions; the set accuracy measures the proportion of indeterminate predictions
containing the actual class; the set size gives the average size of indeterminate
predictions; finally, the discounted utility calculates the expected utility of pre-
dictions, discounted by the size of the predicted set as explained below.

Let A be a decision made for a test sample with actual class c. Zaffalon et
al. [23] proposed to evaluate this decision using a discounted utility function uα

which rewards cautiousness and reliability as follows:

uα(A, c) = dα(|A|)1(c ∈ A), (4)

where |A| is the cardinality of A and dα(.) is a discount ratio that adjusts
the reward for cautiousness, which is considered preferable to random guessing
whenever dα(|A|) > 1/|A|. The u65 and u80 scores are two notable special cases:

d65(|A|) =
1.6
|A| − 0.6

|A|2 , d80(|A|) =
2.2
|A| − 1.2

|A|2 . (5)

Theorem 1. Given the utility matrix U of general term uAj = uα(A, cj) with
cj ∈ Ω and A ⊆ Ω an imprecise decision, the lower expected utility EU(m,A,U)
is equal to dα(|A|)Bel(A).

Proof. Following Eq. (3), and taking any A ⊆ Ω as action, we have

EU(m,A,U) =
∑

B⊆Ω

m(B) min
cj∈B

[dα(|A|)1(cj ∈ A)]

= dα(|A|)
∑

B⊆Ω

m(B) min
cj∈B

1(cj ∈ A)

= dα(|A|)
∑
B⊆A

m(B) = dα(|A|)Bel(A).

Indeed, for any B ∩ A �= ∅ such that B � A, there obviously exists cj ∈ B such
that cj /∈ A: thus, mincj∈B 1(cj ∈ A) = 1 iff B ⊆ A.
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3 Cautious Decision-Making for Tree Ensembles

Classical belief-theoretic combination approaches such as the conjunctive rule,
which assumes independence and is sensitive to conflict, are in general not well-
suited to combining tree outputs. This calls for specific aggregation strategies,
such as those proposed below.

Algorithm 1: Cautious Decision Making by Averaging

Input: Tree outputs
{

(p
tj

, ptj), t = 1, . . . , T, j = 1, . . . , K
}

, discount ratio dα

Output: Decision A
1 for j = 1, . . . , K do

2 m({cj}) = 1/T × ∑T
t=1 p

tj

3 m(Ω) = 1 − ∑K
j=1 m({cj})

4 Sort classes by decreasing mass: m({c(1)}) ≥ m({c(2)}) ≥ · · · ≥ m({c(K)})
5 A = ∅
6 bel = 0
7 mleu = 0 // Maximum lower EU

8 for i = 1, . . . , K do
9 bel = bel + m({c(i)})

10 leu = dα(i) × bel // Lower EU

11 if leu > mleu then
12 mleu = leu
13 A = A ∪ {c(i)}
14 Return A

3.1 Generalization of Averaging

We assume that the output of each decision tree ht is no longer a precise prob-
ability distribution, but a set of probability intervals as defined by Eq. (1). As
indicated in [8], the corresponding quasi-Bayesian mass function is

mt({cj}) = p
tj

, j = 1, . . . , K; mt(Ω) = 1 −
K∑

j=1

mt({cj}). (6)

These masses can then be averaged across all trees:

m({cj}) =
∑T

t=1 mt({cj})
T

, j = 1, . . . ,K; m(Ω) =
∑T

t=1 mt(Ω)
T

. (7)

To make a decision based on this mass function, we build a sequence of nested
subsets A ⊆ Ω by repeatedly aggregating the class with the highest mass, and we
choose the subset A� which maximizes EU(A) := EU(m,A,U) over all A ⊆ Ω.
Note that there exists several kinds of decision-making strategies resulting in
imprecise predictions [11]; maximizing the lower EDU is a conservative strategy,
and can be done efficiently using the algorithms presented below.
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Theorem 2. Consider the mass function in Eq. (7) with classes sorted by
decreasing mass: m({c(j)}) ≥ m({c(j+1)}), for j = 1, . . . ,K − 1. Scanning the
sequence of nested subsets {c(1)} ⊂ {c(1), c(2)} ⊂ · · · ⊂ Ω makes it possible to
identify the subset A� = arg maxEU(A) in complexity O(K).

Algorithm 2: Tree aggregation via interval dominance

Input: Tree outputs
{

(p
tj

, ptj), t = 1, . . . T, j = 1, . . . , K
}

Output: Mass function m
1 m(A) = 0, ∀A ⊆ Ω
2 for t = 1, . . . , T do
3 DC = ∅ // set of dominated classes

4 for j = 1, . . . , K do
5 for j′ = 1, . . . , K and j′ �= j do
6 if ptj < p

tj′ then

7 DC = DC ∪ cj

8 break

9 NDC = Ω \ DC // non-nominated classes

10 m(NDC) = m(NDC) + 1
T

11 Return m

Proof. Since the masses m({c(j)}) are sorted in a decreasing order, the
focal element with the highest belief among those of cardinality i is A�

i =
{c(j), j = 1, . . . , i}, i.e. Bel(A�

i ) =
∑i

j=1 m({c(j)}) ≥ Bel(B), for all B ⊆
Ω such that |B| = i. Since dα(|A|) only depends on |A|, A�

i maximizes the lower
EU over all subsets of size i. As a consequence, keeping the subset with maximal
lower EU in the sequence of nested subsets defined above gives the maximizer
A� in time complexity O(K).

The overall procedure, hereafter referred to as CDM Ave (standing for “cau-
tious decision-making via averaging”), extends classical averaging for precise
probabilities to averaging mass functions across imprecise trees, is summarized
in Algorithm 1. Note that a theorem similar to Theorem 2 was proven in [14],
which addressed set-valued prediction in a probabilistic framework for a wide
range of utility functions. Since the masses considered here are quasi-Bayesian,
the procedure described in Algorithm 1 is close to that described in [14]. The
overall complexity of Algorithm 1 is O(K log K)—due to sorting the classes by
decreasing mass.

3.2 Generalization of Voting

We now address the combination of probability intervals via voting. Our app-
roach consists to identify first, for each tree, the set of non-dominated classes as
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per interval dominance, i.e., trees vote for the corresponding subset of classes.
Then, we again compute the subset A� maximizing EU(A) over all A ⊆ Ω.

Algorithm 3: Cautious Decision Making by Voting
Input: Mass function m from Alg 2, cardinality bound M , discount ratio dα

Output: Decision A
1 m = Alg 2 (Itj , t = 1, . . . T , and j = 1, . . . , K)
2 FE = ∅ // Focal Elements

3 Ω′ = ∅ // Considering Classes

4 A = ∅
5 mleu = 0 // Maximum lower EU

6 for i = 1, . . . , M do
7 d = dα(i)
8 if mleu > d then
9 Return A // Early Stopping

10 else
11 FE = FE ∪ {B : m(B) > 0, |B| = i, B ⊆ Ω}
12 Ω′ = Ω′ ∪ {c : c ∈ B, B ∈ FE}
13 for all B ⊆ Ω′ and |B| = i do
14 bel =

∑
C∈FE,C⊆B m(C)

15 leu = d × bel // Lower EU for B
16 if leu > mleu then
17 mleu = leu
18 A = B

19 Return A

Algorithm 2 describes how interval dominance can be used to aggregate all
tree outputs into a single mass function m, in time complexity O(TK2). In this
approach, the focal elements of m can be any subset of Ω. Since m is not quasi-
Bayesian anymore, maximizing the lower EU requires in principle to check all
subsets of Ω in the decision step: the worst-case complexity of O(2K) prohibits
using this strategy for datasets with large numbers of classes.

In order to reduce the complexity, we exploit three tricks: (i) we arbitrarily
restrict the decision to subsets A ⊆ Ω with cardinality |A| ≤ M , which reduces
the complexity to O(

∑M
k=1

(
K
k

)
); then, we can show that (ii) when searching

for a maximizer of the lower EU by scanning subsets of classes of increasing
cardinality, we can stop the procedure when larger subsets are known not to
further improve the lower EU (see Proposition 1); and (iii) during this search,
for a given cardinality i, only subsets A composed of classes appearing in focal
elements B such that |B| ≤ i need to be considered.

Proposition 1. If the lower EU of a subset A ⊆ Ω is (strictly) greater than
dα(i) for some i > |A|, then it is (strictly) greater than that of any subset B ⊆ Ω
with cardinality |B| ≥ i.
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Proof. Let A ⊂ Ω be a subset of classes (typically, the current maximizer of the
lower EU in the procedure described in Algorithm 3). Assume that EU(A) >
dα(i) for some i > |A|. Since Bel(B) ≤ 1 for all B ⊆ Ω, then EU(A) > EU(B)
for all subsets B such that |B| = i. The generalization to all subsets B such that
|B| ≥ i comes from dα(i) being monotone decreasing in i.

Proposition 2. The subset A�
i ⊆ Ω maximizing the lower EU among all A

such that |A| = i is a subset of Ωi which is the set of classes appearing in focal
elements B such that |B| ≤ i.

Proof. Let Ωi be the set of classes appearing in focal elements of cardinality less
or equal to i, for some i ∈ {1, . . . , K}. Assume a subset A of cardinality i is such
that A = A1 ∪ A2, with A ∩ Ωi = A1, then, Bel(A) = Bel(A1). If A2 �= ∅, then
EU(A) < EU(A1) since |A1| < |A|: classes cj /∈ Ωi necessarily decrease EU(A).
Moreover, since Bel(A) sums masses m(B) of subsets B ⊆ A, any focal element
B such that |B| > i does not contribute to Bel(A).

The procedure described in Algorithm 3, hereafter referred to as CDM Vote
(standing for “cautious decision-making via voting”), extends voting when votes
are expressed as subsets of classes and returns the subset A� = arg max EU(A)
among all subsets A ⊆ Ω such that |A| ≤ M ≤ K. It generalizes the method
proposed in [24,25] for binary cautious classification. It is computationally less
efficient than CDM Ave, even if time complexity can be controlled, as it will be
shown in the experimental part.

4 Experiments and Results

We report here two experiments. First, we study the effectiveness of controlling
the complexity of CDM Vote. Then we compare the performances of both ver-
sions of CDM with two other imprecise tree aggregation strategies (MVA and
Averaging). In both experiments, we used three datasets from the UCI: letter,
spectrometer, and vowel, with a diversity in size (2000, 531, and 990 samples),
number of classes (26, 48, and 11), and number of features (16, 100, and 10). We
applied the scikit-learn implementation of random forests with default parameter
setting: n estimators=100, criterion=‘gini’, and min samples leaf=1 [15]. We have
set the parameter M to 5 in Algorithm 3.

4.1 Decision-Making Efficiency

First, we studied the time complexity as a function of the number of labels. For a
given integer i, we first picked i labels at random and extracted the corresponding
samples. Then, we trained a random forest with the parameter s of the IDM
set to 1, and processed the test data using CDM Vote. During the test phase,
we recorded for each sample the elapsed time of the entire process (interval
dominance plus maximizing lower expected discounted utility), and the elapsed
time needed to maximize the lower EU after having applied interval dominance,
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respectively referred to as ID+MLEDU and MLEDU. For each i, we report
average times per 100 inferences, computed over 10 repetitions of the above
process. Since for high values of i, decision-making would be intractable without
any control of the complexity, we compared the efficiency when using all tricks
in Sect. 3.2 with that when using only the two first ones.

Fig. 1. Decision-making time complexity of CDM Vote according to the number of
labels (for 100 samples). Left: ID+MLEDU, right: MLEDU only.

Figure 1 shows that for a small number of labels (e.g., less than 15), trick
3 (filtering out subsets A �⊆ Ωi) does not significantly improve the efficiency,
as the time required for interval dominance dominates. However, for a large
number of labels, the time required for maximizing the lower EU dominates,
and filtering out subsets A �⊆ Ωi accelerates the procedure. Apart from interval
dominance, this filtering step accelerates the decision-making process regardless
of the number of labels, as shown in the right column of Fig. 1. This experiment
demonstrates that CDM Vote remains applicable with a large number of labels.
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4.2 Cautious Decision-Making Performance Comparison

We compared CDM Ave and CDM Vote with Minimum-Vote-Against (MVA)
and Averaging (AVE) according to the metrics listed in Sect. 2.4. For each metric,
each dataset, and each aggregation approach, we used 10-fold cross-validation:
the results (mean and standard deviation) are reported in Tables 1(a) to 1(c),
with the best results printed in bold. In each CV fold, the optimal value of s
for each model is determined by a separate validation set using the u65 score.
CDM Vote and CDM Ave also make decisions using the d65 discount ratio.

Table 1. Cautious decision-making performance comparisons.

(a) Dataset: vowel (11 labels)

Criteria MVA AVE CDM Vote CDM AVE

Determinacy 0.995±0.007 0.918±0.032 0.874±0.036 0.867±0.038

Single-set accuracy 0.952±0.024 0.982±0.015 0.991±0.013 0.994±0.011

Set accuracy 0.944±0.168 0.974±0.063 0.967±0.056 0.962±0.053

Set size 2.0±0.0 2.418±0.275 2.054±0.064 2.056±0.064

u65 score 0.950±0.025 0.948±0.019 0.944±0.016 0.941±0.017

u80 score 0.950±0.024 0.960±0.017 0.963±0.013 0.960±0.013

(b) Dataset: letter (26 labels)

Criteria MVA AVE CDM Vote CDM AVE

Determinacy 0.988±0.008 0.772±0.026 0.816±0.026 0.811±0.026

Single set accuracy 0.861±0.026 0.964±0.016 0.943±0.018 0.949±0.016

Set-accuracy 0.717±0.259 0.949±0.030 0.710±0.078 0.728±0.071

Set size 2.077±0.208 12.197±1.390 2.139±0.058 2.163±0.062

u65 score 0.855±0.026 0.809±0.023 0.852±0.021 0.856±0.020

u80 score 0.856±0.026 0.826±0.022 0.871±0.020 0.876±0.019

(c) Dataset: spectrometer (48 labels)

Criteria MVA AVE CDM Vote CDM AVE

Determinacy 0.978±0.023 0.544±0.071 0.480±0.063 0.499±0.064

Single-set accuracy 0.550±0.068 0.694±0.074 0.700±0.076 0.690±0.077

Set accuracy 0.741±0.280 0.817±0.080 0.722±0.097 0.712±0.099

Set size 2.067±0.222 9.582±3.213 2.132±0.072 2.121±0.065

u65 score 0.545±0.066 0.538±0.050 0.571±0.051 0.568±0.052

u80 score 0.546±0.066 0.580±0.052 0.626±0.055 0.621±0.055

The results show that MVA often tends to be determinate, while AVE and
CDM tend to be more cautious, without a clear difference between both latter.
The same can be observed for the single-set accuracy which is negatively corre-
lated to determinacy. AVE always achieves the highest set accuracy, due to a high
average set size of indeterminate predictions, in contrast to MVA. Our approach
turns out to be in-between. According to the u65 and u80 scores, CDM turns
out to provide a better compromise between accuracy (single-set accuracy and
set accuracy) and cautiousness (determinacy and set size) than MVA and AVE.
However, there is no significant difference between CDM Vote and CDM Ave.
Moreover, since the average cardinality of predictions is around 2, setting M = 5
has no influence on the performances. In summary, our approaches seem to be
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appropriate for applications requiring highly reliable determinate predictions
and indeterminate predictions containing as few labels as possible.

5 Conclusions and Perspectives

In this paper, we proposed two aggregation strategies to make cautious deci-
sions from trees providing probability intervals as outputs, which are typically
obtained by using the imprecise Dirichlet model. The two strategies respectively
generalize averaging and voting for tree ensembles. In both cases, they aim at
making decisions by maximizing the lower expected discounted utility, thus pro-
viding set-valued predictions. The experiments conducted on different datasets
confirm the interest of our proposals in order to achieve a good compromise
between model accuracy and determinacy, especially for difficult datasets, with
a limited computational complexity.

In the future, we may further investigate how to make our cautious decision-
making strategy via voting more efficient and tractable for classification problems
with a high number of classes. We may also compare both our cautious decision-
making strategies with other cautious classifiers beyond tree-based models.
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Abstract. In today’s rapidly evolving industrial landscape, control
room operators must grapple with an ever-growing array of tasks and
responsibilities. One major challenge facing these operators is the poten-
tial for task overload, which can lead to decision fatigue and increased
reliance on cognitive biases. To address this issue, we propose the use of
dynamic influence diagrams (DID) as the core of our decision support
system. By monitoring the process over time and identifying anomalies,
DIDs can recommend the most effective course of action based on a prob-
abilistic assessment of future outcomes. Instead of letting the operator
choose or search for the right procedure, we display automatically the
optimal procedure according to the model. The procedure is streamlined
compared to the traditional approach, focusing on essential steps and
adapting to the system’s current state. Our research tests the effective-
ness of this approach using a simulated formaldehyde production envi-
ronment. Preliminary results demonstrate the ability of DIDs to effec-
tively support control room operators in making informed decisions dur-
ing times of high stress or uncertainty. This work represents an important
step forward in the development of intelligent decision support systems
for the process industries.

Keywords: Dynamic influence diagram · Decision support · Process
industry · Workload · Situation awareness

1 Introduction

Modern control room environments present unique challenges to operators who
must effectively manage complex processes in real-time. These challenges include
task overload, uncertain decision-making situations, and the pressure to meet
competing demands, all of which contribute to operator fatigue. Addressing these
challenges necessitates innovative solutions that enhance operator resilience and
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support improved decision-making. In a previous study [3], Bayesian networks
were employed as decision support tools and anomaly detectors, offering the
advantage of constructing a reliable model for optimal decision-making. By uti-
lizing dynamic Bayesian networks (DBN) [1] the process can be continuously
monitored over time. Another study [4] extensively describes the use of DBNs
for fault diagnosis and event prediction in the industry. Additionally, influence
diagrams [1], which are based on the Bayesian network framework, have been
widely studied to be an effective decision-support tool in industrial settings [5].
A promising approach in this regard is the application of dynamic influence
diagrams (DID) as the core component of a decision support system.

This paper aims to contribute to the understanding of the application of
DID in industry contexts, specifically focusing on its utilization in formaldehyde
production management to enhance control room operator decision-making. Uti-
lizing a high-fidelity simulation test, we evaluate the impact of DID on reducing
operator workload and improving situational awareness when facing abnormal
events. The paper begins with Sect. 2 by providing background information on
dynamic influence diagrams, followed by a detailed examination of the case study
and the model construction process in Sect. 3. In Sect. 4 we assess the model’s
performance in a preliminary study and discuss its limitations. Section 5 con-
cludes the paper.

2 Methodology

In this section, we introduce the dynamic influence diagram framework that will
be used to build the decision support system.

2.1 Influence Diagram

An influence diagram is a graphical representation that depicts the relation-
ships between variables in a decision problem [1]. It is a variant of a Bayesian
network that incorporates decision nodes, chance nodes, and utility nodes to
facilitate decision-making under uncertainty. Decision nodes represent choices
or actions that can be taken, chance nodes represent uncertain events or states
of the world, and utility nodes represent the preferences or values associated
with different outcomes. Influence diagrams provide a structured framework for
modeling and analyzing complex decision problems, allowing decision-makers to
assess the expected utility of different choices and make informed decisions. A
limited memory influence diagram is used to relax the perfect recall of the past
and the total order of the decisions assumptions (see [1]). We define the discrete
limited memory influence diagram as follows:

Definition 1. (Discrete Influence Diagram) [1] A (discrete) influence diagram
N = (X,G,P, U) consists of:

– A DAG G = (V,E) with nodes V and directed links E encoding dependence
relations and information precedence.
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– A set of discrete random variables XC and discrete decision variables XD,
such that X = XD ∪ XC represented by nodes of G.

– A set of conditional probability distributions P containing one distribution
P (Xv|Xpa(v)) for each discrete random variable Xv given its parents Xpa(v).

– A set of utility functions U containing one utility function u(Xpa(v)) for each
node v in the subset VU ⊆ V of utility nodes.

To identify the decision option with the highest expected utility, we compute
the expected utility of each decision alternative. If A is a decision variable with
options a1, . . . , am, H is a hypothesis with states h1, . . . , hn, and ε is a set of
observations in the form of evidence, then we can compute the probability of
each outcome of the hypothesis hj and the expected utility of each action ai.
The utility of an outcome (ai, hj) is U(ai, hj) where U(·) is our utility function.
The expected utility of performing action ai is

EU(ai) =
n∑

j=1

U(ai, hj)P (hj |ε) (1)

where P (·) represents our belief in H given ε. The utility function U(·) encodes
the preferences of the decision maker on a numerical scale.

We use the maximum expected utility principle to take the best decision,
meaning selecting an option a∗ such that

a∗ = argmaxai∈A EU(ai) (2)

2.2 Dynamic Influence Diagram

Dynamic influence diagrams introduce discrete time to the model. The time-
sliced model is constructed based on the static network, with each time slice
having a static structure while the development of the system over time is spec-
ified by the links between variables of different time slices. The temporal links
of a time slice are the set of links from variables of the previous time slice into
variables of the current time slice. The interface of a time slice is the set of
variables with parents in the previous time slice. A dynamic model can be seen
as the same model put one after the other, each model representing the system
state at a single time step and the connections from one time step to the next
time step represent the influence of the past state of the system on the current
state of the system as illustrated in Fig. 1. In our experiment, we use a model
with a finite horizon dynamic influence diagram.

3 Simulation and Validation

We utilize a formaldehyde production simulator to assess the potential of
dynamic influence diagrams as decision support for operators in control rooms.
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Fig. 1. Structure of a dynamic model with 10 time-slices. We calculate “Pressure T+1”
at time T using Mg and Vg. Then “Pressure T+1” is used to calculate the amount of
substance Mg at T+1.

3.1 Test Environment/Formaldehyde Production Scenario

Our study employs a simulated interface of a modified formaldehyde produc-
tion plant, as outlined in [2]. The plant approximates a production rate of
10,000 kg/hr of 30% formaldehyde solution, generated via the partial oxida-
tion of methanol with air. The simulator comprises six sections, namely: Tank,
Methanol, Compressor, Heat Recovery, Reactor, and Absorber. With the inclu-
sion of 80 alarms of varying priority levels, the simulator also accounts for nui-
sance alarms (irrelevant alarms). The simulator’s main screen is visible in Fig. 2
and the detail tank mimic can be seen in Fig. 3. To test the efficiency of our
decision support, we created two scenarios:

1. Pressure indicator control failure. In this scenario, the automatic pressure
management system in the tank ceases to function. Consequently, the opera-
tor must manually modulate the inflow of nitrogen into the tank to preserve
the pressure. During this scenario, the cessation of nitrogen flow into the tank
results in a pressure drop as the pump continues to channel nitrogen into the
plant.

2. Nitrogen valve primary source failure. This scenario is an alternative version
of the first one. In this case, the primary source of nitrogen in the tank fails.
The operator has to switch to a backup system. While the backup system
starts slowly the operator has to regulate the pump power to maintain the
pressure inside the tank stable

3.2 Construction of the Model

In this section, we provide a detailed explanation of the process involved in
constructing the dynamic influence diagram. This diagram can be seen in Fig. 4.
The primary objective of this model is to detect anomalies and offer the operator
an optimal procedure to follow.

Anomalies Detection. An anomaly is identified when a variable deviates from
its intended set point or the default value preordained by the automatic con-
trol mode. For the purpose of anomaly detection, we utilize conflict analysis as
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Fig. 2. Process flow diagram of the Production. The formaldehyde is synthesized by
combining methanol and compressed air, heating the mixture, initiating a chemical
reaction in the Reactor, and finally diluting the solution in the Absorber to obtain the
appropriate concentration. At the bottom is the different mimic that the operator can
open on another screen for a process flow diagram of a specific part of the plant (see
Fig. 3)

Fig. 3. Overview of the Tank section. On the left, we can see the nitrogen flow control
panel. In the middle, the process flow diagram of the tank with all the possible alarms.
And on the right the graph of the physical value that need to be monitored by the
operator
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Fig. 4. Model designed for the scenarios. Pink nodes indicate decision variables: “Auto”
(on/off states), “Set point” (representing nitrogen flow or pump power set points), and
“System” (Primary/Secondary states reflecting the system in use for nitrogen flow).
Yellow nodes represent random variables like physical values, faults, and alarms. Striped
nodes indicate past variables affecting the current state. Green nodes are cost associated
with a specific state of the parent’s nodes. We made the assumption that each decision
are independent from the states of the system (Color figure online)

described in [1] within the influence diagram. Conflict in the influence diagram
context is assumed when the evidence disseminated through the model exhibits
inconsistencies or contradictions. Specifically, a conflict arises when the product
of the individual probabilities of each evidence exceeds the joint probability of
all evidence. Consider a set of evidence, ε = (ε1, . . . , εn). We define the measure
of conflict as follows:

conf(ε) = conf([ε1, . . . , εn]) = log(
∏

i

P (εi)
P (ε)

) (3)

A conflict is flagged if conf(ε) > 0. Such conflicts can often be rationalized by
a hypothesis, denoted by h, with a low probability of occurrence. If conf(ε∪h) <
0, it implies that h accounts for the conflict. In our model, h represents a fault
within the system. Consequently, if a fault is capable of explaining a conflict, it
is detected and identified as such.

Parameter and Structure Specification. The parameter specification relies
on these physical equations related to the process as outlined in [2]. Owing to
the discretization of the variables, we utilize a sampling technique to formu-
late the resultant Conditional Probability Table (CPT). To demonstrate this
methodology, we consider the calculation of pressure from our case study.

The pressure is contingent on two variables, Mg_dt (mole) and VG_dt (m3),
abiding by the perfect gas law:

PV = nRT (4)
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In our experiment, the corresponding physical equation is:

P = Mg_dt ∗ 8.314 ∗ 1000 ∗ 298/(28 ∗ VG_dt) (5)

where P is expressed in Pascal, MG_dt in Kg, and VG_dt in m3. The temper-
ature, 298, is in degrees Celsius, 8.314 J/(mol *K) is the perfect gas constant,
and 28 is the molecular mass of methanol (kg/kmol), which is divided by 1000
to convert to (kg/mol).

We build the structure of the model according to the formula. The pressure
depends on Mg_dt and VG_dt. We link them to the Pressure node. We also use
this formula to set the expression in the pressure node. The graph can be seen
in Fig. 5. Additionally, it is worth mentioning that Mg_dt and VG_dt serve as
intermediate variables in order to avoid directly connecting all variables to the
pressure node, which would result in a too-large conditional probability table. It
has also the benefit to display the model of the different physical equations in a
comprehensible way.

The CPT is generated by employing a sampling method. In this study, we
sampled 25 values within each interval for each state interval of the parent nodes
Mg_dt and VG_dt. Subsequently, we estimate the probability of a point falling
within the state intervals of “Pressure T+1” after applying the formula.

Fig. 5. Example for the calculation of the Pressure

Utility. We employ nodes within the model to encapsulate the potential out-
comes, which signify the ultimate incidents that may occur in the industrial
plant. Post the propagation of the observed values and decisions via the influence
diagram, we ascertain the likelihood of these consequences. Each consequence
node is coupled with a utility node that encapsulates the financial impact asso-
ciated with the probable outcomes. For instance, the financial implication of a
tank explosion is estimated to be one million dollars. These cost assessments
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are derived based on references such as [8]. The likelihood of a tank explosion is
influenced by other contributing factors, such as pressure or flow rates.

Dynamic Model. We employ a dynamic influence diagram for real-time pro-
cess monitoring, aiming to predict critical events and provide operators with
advanced warnings. The model operates over a span of 10 time steps, each step
representing 1min. Hence, the model provides a future projection of the system
state at 1-minute intervals over the next 10min. This time frame was chosen to
accurately capture the system dynamics.

With this setup, we can alert the operator to any impending critical event
within the next 10min and offer them an optimal course of action to either avert
or mitigate the event. In our simulation, approximating the dynamic model with
a 10-time step model is sufficient for addressing the scenario which lasts for
15min. It’s also worth noting that adding further time steps does not influence
the recommendations provided across different scenarios.

3.3 Use of the Model

The model is used to detect anomalies and propose the optimal set of actions
for the operator. We can separate the use of the model into 3 different steps:

1. First, the current state of the process is assessed by inserting observable data.
The decision node “Auto Mode” has by default state “on” and the “System”
node has by default state “Primary”. During this phase, anomalies are identi-
fied by considering all hypotheses that reduce conflicts. Additionally, potential
critical events are predicted.

2. Next, we incorporate both the observed data and the anomaly identified in the
previous stage. We then evaluate various actions for their maximum utility
in each time step, thereby formulating an optimal set of actions intended to
either prevent or mitigate a potentially critical event. (Given that the actions
are examined sequentially for their utility, they should be logically ordered
to ensure they are presented correctly to the operator.)

3. Finally, the operator is presented with the optimal procedure, which outlines
the recommended course of action based on the preceding analyses.

Example 1. In the first scenario of our study, an issue arises with the nitrogen
flow being lower than expected due to a malfunction in the automatic control
system. The evidence on node “Auto” being in the state “on” creates a conflict
with the nitrogen flow value since, in auto mode, the flow of nitrogen should
be higher. By setting the “Fault” node to the state of “control valve failure”,
the conflict is resolved. At this stage, the model represents the current state of
the system, considering the failure. Upon analysis, it is found that switching
the “Auto” mode to the state “off” and manually adjusting the set point of the
nitrogen flow to a value between 3.5–4.5m3/h are the actions with the maxi-
mum utility. These two actions are then recommended to the operator with the
indication of the failure.
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By utilizing this approach, we employ a single model to evaluate the current
state of the system, forecast future states, and suggest the optimal procedure
for the operator. It is crucial to emphasize that these procedures are contin-
uously updated and can adapt to system changes. This framework provides a
solid foundation for developing efficient procedures. Those procedures presented
to the operator are shorter compared to the standard procedure as it focuses
solely on the necessary action. A classical procedure consists of troubleshooting,
action, and monitoring phases. The decision support system assists the operator
in decision-making without replacing the initial procedure. Instead, it comple-
ments the existing procedure by offering recommendations in difficult situations.
This approach offers a comprehensive solution, enhancing operators’ decision-
making processes and ultimately improving overall system performance.

4 Results and Discussion

A preliminary study was done to assess the performance of the decision support
system. The performance was asses in terms of workload and situation awareness.

4.1 Assessment of DID’s Effectiveness in Situational Response

The pilot study evaluated the impact DIDs on reducing workload and enhancing
situational awareness, initial findings indicate positive outcomes. Two groups
of participants were formed: one without decision support and the other with
decision support. The first group comprised three participants, while the second
group consisted of four. All participants experienced three different scenarios.
Following each scenario, the workload and situational awareness were assessed
using the raw-NASA-TLX [6] and SART [7] questionnaires. The raw NASA-TLX
results are shown in Fig. 6, and the SART results are displayed in Fig. 7. We
calculated the average scores across all scenarios within each group.

The group utilizing decision support demonstrated a lower workload, except
in performance and physical demand. One plausible explanation for the observed
variations in the physical demand variable could be its lack of relevance to
this study, leading participants to interpret it differently. Moreover, the decision
support system group exhibited improved situational awareness, particularly in
terms of concentration, information gain, and information quality. However, the
questionnaire show also an increase in task complexity. Additionally, when asked
questions about the understanding of the situation at three different times of
the task to assess their situation awareness the score of the participant with-
out decision support was 3.8/5 and 2.8/5 for those with. This result balances
the questionnaire result and indicates potentially people following blindly the
recommendation without clearly understanding the situation. Individuals using
decision support demonstrated faster response and problem resolution compared
to those without it. The limited number of instructions the decision support sys-
tem provided resulted in nearly immediate response times when followed by the
users.
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These findings, while based on a small sample size, indicate the potential of
DIDs to enhance significantly decision-making for control room operators and
improve overall safety in complex industrial processes. To further validate these
results, more participants will be included in future studies.

Fig. 6. Raw NASA-TLX for G1 without support and G2 with support.

4.2 Limitations and Future Improvements

A noteworthy constraint of the model lies in effectively conveying the set of rec-
ommended actions to the operator. While it is possible to develop an optimal
course of action for the ensuing 10min, communicating this information effec-
tively poses a significant challenge. Striking an equilibrium between providing
exhaustive details about required actions and the cause of the deviation-which
could potentially overwhelm the operator and offering sparse information which
may lead to operator distrust in the decision support system is essential.

Moreover, as the current model is relatively compact, identifying the anomaly
that explains the conflict is straightforward. However, for a more expansive model
with multiple possible anomalies, a more precise algorithm may be required. In
this regard, a conflict localization algorithm has been proposed in [9] to concen-
trate solely on the specific sections of the model where the conflict originates.

The process of discretization plays a pivotal role in the results. If the pressure
is discretized with large intervals, the model may overlook the impact of changes
in the nitrogen flow variable. Conversely, if the discretization of the pressure
variable is too granular, it could substantially enlarge the Conditional Proba-
bility Table (CPT) of the “MG_dt” variable. This could result in a model with
such high computational demands that its live use becomes impractical. Balanc-
ing the need for precise outcomes with maintaining manageable sizes for CPT
presents a formidable task. Potential developments to address this challenge can
be found in [10].
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Fig. 7. SART questionnaire for G1 without support and G2 with support.

Further consideration of these support systems involves the need for produc-
tive cooperation between the operator and the system. The support should be
carefully designed to help the operator and not be a nuisance. The concept of
human-automation decision-making is explored in detail in [11].

One potential enhancement to the model could be to consider the opera-
tor’s physical and mental state to tailor the decision support accordingly. In this
approach, the model would account not only for system data but also operator-
specific data, thereby providing personalized and optimal decision support. Note-
worthy research has already been conducted in this area, as referenced in [12].

5 Conclusion

In this paper, we propose the use of dynamic influence diagrams (DIDs) as a
decision support system to enhance control room operator decision-making in
the context of formaldehyde manufacturing. The study highlights the challenges
faced by control room operators, such as task overload and cognitive biases, and
presents DIDs as a solution to address these issues. By monitoring the process
over time and detecting anomalies, DIDs can provide operators with support for
the most effective course of action. The effectiveness of the approach is tested
using a simulated formaldehyde production environment, and the results demon-
strate some evidence of reduced workload but also potentially reduced situation
awareness when using the support system. The result needs to be put in the
perspective of the few number of participants and this research is continuing to
produce more statistically significant results. The research represents an impor-
tant step towards developing intelligent decision support systems for the process
industries. However, effectively conveying the instructions to the operator can
be challenging. Future research will be focused on adapting the support to the
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state of the operator. Overall, the use of DIDs shows promise in enhancing
control room operator decision-making and improving situational awareness in
industrial settings.
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Abstract. Belief functions constitute a particular class of lower proba-
bility measures which is expressive enough to allow the representation of
both ignorance and probabilistic information. Nevertheless, the decision
models based on belief functions proposed in the literature are limited
when considered in a dynamical context: either they drop the principle of
dynamical consistency, or they limit the combination of lotteries, or relax
the requirement for a transitive and complete comparison. The present
work formally shows that these requirements are indeed incompatible as
soon as a form of compensation is looked for. We then show that these
requirement can be met in non compensative frameworks by exhibiting
a dynamically consistent rule based on first order dominance.

1 Introduction

Belief functions [2,23] constitute a particular class of lower probability measures
which is expressive enough to allow the representation of both ambiguity and risk
(as an example, it perfectly captures the information on which Ellsberg’s para-
dox [8] is built). That is why many decision models based on belief functions have
been proposed, e.g. Jaffray’s linear utility [16,17], Choquet integrals [1,11,13],
Smet’s pignistic approach [24,25], Denoeux and Shenoy’s interval-valued utility
theory [4,5], among others (for more details, the reader can refer to the excellent
survey proposed by [3]). Nevertheless, these approaches are often limited when
considered in a dynamical context: either they drop the principle of dynamical
consistency (this is the case for the Choquet utility), or they limit the combina-
tion of lotteries to be purely probabilistic (as in Jaffray’s approach) and/or the
class of simple lotteries (as in [6,10]), or drop the requirement for a transitive
and complete comparison of the decisions (as in [5]).

The present work proposes two impossibility theorems that highlight the
incompatibility of the axioms of lottery reduction, completeness and transitivity
of the ranking, and independence (and thus, dynamical consistency) when a form
of compensation is looked for. We then relax compensation and show that these
axioms can be compatible by exhibiting a complete and transitive decision rule
which basically relies on first order dominance

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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The next section introduces the background on evidential lotteries; the impos-
sibility theorems are presented in Sect. 3. Section 4 finally presents the non-
compensatory decision rule.

2 Background and Notations

In this section we present the notations and background on which the further
development rely.

Let X the set of all the possible consequences of the available decisions. X is
assumed to be finite A mass function is a mapping f from 2X to [0, 1] such that∑

A⊆X f(A) = 1 and f(∅) = 0
The mass function f induces the following belief and plausibility functions:

Bel(A) =
∑

B⊆A

f(B) Pl(A) =
∑

B∩A �=∅
f(B)

A set A ⊆ X such that f(A) > 0 is called a focal element of f . Let Support(f) =
{A, f(A) > 0} be the set of focal elements of f . If all focal sets are singletons,
then Bel = Pl and it is a probability measure.

In a static, one-step probabilistic decision problem, a possible decision is a
probability distributions on a set X of outcomes - a simple “lottery” [26]. The
definition naturally extends to the theory of evidence:

Definition 1 (Simple Evidential Lottery).
A simple evidential lottery is a mass function on X . In particular:

– A simple Bayesian (or “linear”) lottery is a mass functions on X the focal
elements of which are singletons;

– A set lottery is a simple lottery with a single focal element A ⊆ X , A �= ∅;
– A constant lottery provides some consequence x ∈ X for sure: it contains

only one focal element, {x}.
M will denote the set of simple evidential lotteries and P the set of simple

Bayesian lotteries. For the sake of readability and by abuse of notation A shall
denote the set lottery on A, {x} shall denote the constant lottery on x and X
shall denote both the set of consequences and the set of constant lotteries.

Example 1 (Ellsberg’s paradox [8]). Consider an urn containing 90 balls: 30
balls are red, while the remaining 60 balls are either black or yellow in unknown
proportions. Hence a mass distribution of {Red, Y ellow,Black}: f({Red}) = 1

3 ,
f({Y ellow,Black}) = 2

3 Four possible gambles are presented to the agent:

– A: the agent gets 100 if red is drawn, 0 otherwise;
– B: the agent gets 100 if black is drawn, 0 otherwise;
– C: the agent gets 100 if red or yellow is drawn, 0 otherwise;
– D: the agent gets 100 if black or yellow is drawn, 0 otherwise.
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A majority of the agents prefers A to B and D to C [8]. But whatever the utility
function considered, there exist no probability distribution such that (i) the
expected utility of A is greater than the one of B and (ii) the expected utility
of D is greater than the one of C. Ellsberg’s example can on the contrary be
handled in the framework of belief functions - the four gambles corresponding
to the following simple lotteries (notice that fA and fD are Bayesian):

fA({100}) = 1
3 , fA({0}) = 2

3 ; fC({0, 100}) = 2
3 , fC({100}) = 1

3 ;
fB({100, 0}) = 2

3 , fB({0}) = 1
3 ; fD({0}) = 1

3 , fD({100}) = 2
3 .

A compound lottery is a bpa on (simple or compound) lotteries.

Definition 2 (Compound Evidential Lottery).
A compound lottery is a mass function on a set of simple or compound lotteries
F . We shall use the notation f = α1 · F1 + . . . + αk · Fk where Fi ⊆ F and f
and αi = f(Fi).

Example 2 (An Ellsberg’s based compound lottery [5]). Consider two urns: U1
contains 90 balls, 30 of which are black, and 60 are red or yellow. U2 is identical
to Ellsberg’s urn. In the first stage you are allowed to draw one ball B1 from U1:

– If B1 is black or red, you are allowed to draw one ball from U2 at the second
stage, and you get 100 if it is red, and 0 otherwise (lottery A of Example 1);

– If B1 is yellow, you are allowed to draw one ball from U2, and you get 100 if
it is black, and 0 otherwise (lottery B of Example 1).

This is captured by the compound lottery h({fA}) = 1
3 and h({fA, fB}) = 2

3
(Fig. 1).

Fig. 1. The compound lottery of Example 2 and its reduction

The reduction of a compound lottery is a simple lottery considered as equiva-
lent to the compound one. When evidential lotteries are dealt with, the operation
of reduction is based in Dempster’s rule on combination1. It is defined by:

1 A good reference for evidential lottery reduction is Denoeux and Shenoy’s work [4].
Jaffrays’ work [17] can also be cited but is limited to probabilistic mixtures of bpas.
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Definition 3. Redl is the simple lottery defined by:
∀A ⊆ X , Redl(A) =

∑
H,l(H)>0 f(H) · mH(A),

where mH(A) =
∑

(B1, . . . , B|H|),
s. t. A = B1 ∪ . . . ∪ B|H|

and ∀hi ∈ H,Bi ∈ Support(Hi)

∏

Bi,i=1,|H|
hi(Bi)

The reduction of a simple lottery is the lottery itself. In the following, we
shall in particular consider compound lotteries mixing two lotteries only:

Definition 4. A binary compound lottery on f and g is a compound lottery
whose only possible focal elements are {f}, {g} and {f, g}. Such a lottery is
denoted α · f + β · g + γ · fg (with α + β + γ = 1)

It is easy to see that the reduction of the binary lottery l = α ·f +β ·g+γ ·fg
is the lottery Redl defined by

∀A ⊆ X , Redl(A) = α · Redf (A)+β · Redg(A)+γ
∑

B∪C=A

(Redf (B) · Redg(C))

As a matter of fact, suppose that f and g are simple; the compound lottery l
involves three focal elements:

– {f}, of probability α provides a series of sets A: here, each A is obtained with
a probability α · f(A)

– {g}, of probability β provides a series of sets A: each A is obtained with a
probability β · g(A)

– {f, g} of probability γ: the disjunction of f and g is considered: each time f
provides a set B with probability f(B) and g provides a set C with probability
g(C), the disjunction provides a set A = B∪C, with probability γ ·f(B)·g(C)

Because a set A can be obtained in several ways, the mass of probability of A is
the sum of the probabilities of getting this set in the different branches.

It can be shown that the reduction of any compound lottery is equivalent
to a binary compound lottery. For the sake of simplicity and without loss of
generality, the next sections consider binary lotteries only.

A decision rule amounts to a preference relation � on the lotteries. The rule
of expected utility for instance makes use of a utility function u on X : for any
two distributions f, g ∈ P, f �EU g iff the expected value of the utility according
to f is at least equal to the expected value of the utility according to g.

Considering credal lotteries (i. e. sets of probability distributions) [12] have
proposed a rule based on the lower expectation of the utility. When applied on
the set P(f) = {p,∀A,Bel(A) ≤ P (A) ≤ Pl(A)}, the lower expectation of the
utility is equal to the Choquet integral based on the Bel measure [11,13,22]. So,
for any simple evidential lottery f , one shall maximize

Ch(f) = ΣAf(A) · minx∈Au(x)
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Example 3. Choquet integrals capture many situations which cannot be cap-
tured by expected utility, and in particular the Ellsberg paradox. Setting
u(x) = x is easy to check that:

Ch(fA) = 1
3 ∗ 100 = 10/3

Ch(fB) = 2
3 ∗ min(0, 100) = 0

Ch(fC) = 1
3 ∗ 100 + 2

3 ∗ min(0, 100) = 100/3
Ch(fD) = + 2

3 ∗ 100 = 200/3

So, Ch(fA) > Ch(fB) and Ch(fD) > Ch(fC), which captures Ellsberg’ Example
Jaffray’s approach leads to the same values and the same preference order when
letting αB∗(a),B∗(a) = 1 whatever a (i. e. following the most cautious approach).

Lottery reduction allows to consider the rule in a dynamical context: to compare
compound lotteries, compare their reductions. Nevertheless it may happen that
the Choquet value of the reduction of l = α · f + β · h + γf · h outperforms the
one of l′ = α ·g+β ·h+γ ·g ·h while Ch(g) > Ch(f) (see Example 4). In decision
trees this means that if an agent prefers l to l′ ex-ante, then when reaching f
he can be tempted to exchange it for g: the Choquet integral is not dynamically
consistent. This can lead to Dutch Books [19] or a negative value of information
[27] - this also makes the use of dynamic programming algorithms difficult.

Example 4. Let x, y, z ∈ X with u(x) 
 u(y) 
 u(z). Choose p such that 1 >
p · u(x) + (1 − p) · u(z) > u(y). Finally, let f = p · x + (1 − p) · z and g = y. It
holds that Ch(f) = p · u(x) + (1 − p) · u(z) > Ch(g) = u(y).

Consider h = 1 · f · y and h′ = 1 · g · y. h′ always provides consequence y, so
Ch(h′) = u(y). h has two focal elements, m({x, y}) = p and m({z, y}) = 1 − p,

so Ch(h) = p · u(y) + (1 − p) · u(z). So Ch(h) < Ch(h′).

Jaffray [16] circumvents the difficulty by considering linear compound lotteries
only, i. e. compound lotteries of the form λ · f + (1 − λ) · g (this kind of linear
modelhas been more recently studied by [14,21]) Giang [10] also restricts the
framework to recover dynamical consistency, assuming that all the simple lot-
teries are consonant. In the same line of thought, Dubois et Al. [6] limit lotteries
to hybrid probability-possibility functions. We shall also cite other approaches,
like Smets’s pignistic utility [25]. Nevertheless, each approaches either restrict
the field of application (like Jaffray’s), or the requirement of a complete and
transitive order, or is not dynamically consistent.

3 Toward Impossibility Theorems

The decision rules on evidential lotteries are often limited when considered in a
dynamical context: either they drop the principle of dynamical consistency (e.
g. the Choquet integral), or they restrict themselves to particular classes of lot-
teries (as in Jaffray’s approach), or they drop the requirement for a transitive an
complete comparison of the decisions (as in [5]). All circumvent an implicit diffi-
culty, that the current work aims at highlighting, under the form of impossibility
theorems. To this extend, let us first present the main axioms.
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Consider a relation � on the set of simple and compound evidential lotteries
that can be built on a set of consequences X - � may be e.g. the preference
relations built by the Choquet rule or by Jaffray’s linear utility. Let 
 denote
the asymmetric part of � and ∼ its symmetric part. A first requirement is that
the preference can compare any act to any other in a transitive way:

Axiom 1 (Completeness and transitivity (A1)). � is complete and transitive

I. e. , ∼ is transitive and defines equivalence classes, totally ordered by 
.
Jaffray’s linear utility and the Choquet integral do satisfy axiom A1, while the
rule defined by Denoeux and Shenoy [5] defines a transitive but incomplete
preference (it may happen that neither f � g nor g � f)

Independence. The crucial axiom when comparing lotteries is the axiom of
independence, which ensures the dynamical consistency of the decision rule. This
axiom has been proposed by Von Neumann and Morgenstern in the context of
probabilistic lotteries: for any 0 < α ≤ 1, f � g ⇐⇒ α · f + (1 − α) · h �
α · g + (1 − α)h.

Axiom 2 (Independence). For any probabilistic lotteries f, g, h ∈ P,

– if 0 < α ≤ 1 then f 
 g ⇒ α · f + (1 − α) · h > α · g + (1 − α)h

We extends this axiom to evidential lotteries in two steps:

Axiom 3 (Generalized Weak Independence (wGI)). For any evidential lotteries
f, g, h, any α, β, γ ∈ [0, 1] such that α+β +γ = 1: f � g ⇒ α ·f +β ·h+γ ·fh �
α · g + β · h + γ · gh

A direct but important consequence of wGI is that, when two lotteries are
indifferent to each other, the one can be replaced by the other in any composition.

Proposition 1 (Substitution). If wGI holds, then for any evidential lotteries
f and g such that f ∼ g, and any h, h ∼ hf←g

where hf←g is the compound lottery in which f is replaced by g, i. e. hf←g(A) =
h(A) if g /∈ A hf←g(A) = h(A) + h(A ∪ {f}) if g ∈ A

The Von Neumann’s and Morgenstern’s independence requirement moreover
requires that if α > 0 then f 
 g ⇒ α · f + β · h + γ · fh 
 α · g + β · h + γ · gh -
one recognizes here the principle of independence proposed by Jensen [18] and
used by Jaffray [16] in his axiomatization of the linear utility. We shall use the
following generalization of Von Neumann and Morgernstern’s axiom:

Axiom 4 (Generalized Independence (GI)). For any evidential lotteries f, g, h,
any α, β, γ ∈ [0, 1] such that α + β + γ = 1:

(i) f � g ⇒ α · f + β · h + γ · fh � α · g + β · h + γ · gh (wGI)
(ii) If α > 0 then f 
 g ⇒ α · f + β · h + γ · fh 
 α · g + β · h + γ · gh

Generalized Independence is fundamental in the context of special decision
since it guaranty the dynamic consistency and dynamic programming [20].
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Lottery Reduction. A fundamental notion for the comparison of compound
lotteries is the equivalence of a compound lottery and its reduction; comparing
compound lotteries then amounts at comparing their reductions. By construc-
tion, all the rules presented in the previous Section do satisfy lottery reduction

Axiom 5 (Lottery Reduction (LR)). For any evidential compound lottery l ∼
Redl

As soon as GI holds, the substitution property applies, and the axiom of lottery
reduction implies that any compound lottery can be replaced by its reduction:
for any two lotteries f , h, h ∼ hf←Redf

.
The previous axioms obviously imply a form of monotony w. r. t. ambiguity:

an ambiguity between a decision and another cannot be better than getting the
best one for sure, or worst that getting the worst one for sure.

Proposition 2 (Monotony w. r. t. ambiguity). If LR, GI and A1 holds,
then,

(i) for any f, g such that f � g, f � 1 · fg � g
(ii) for any x1, x2 ∈ X such that {x1} � {x2}, {x1} � {x1, x2} � {x2}.
Proof. By GI, f � g implies 1 · fg � 1 · gg. By LR, 1 · gg ∼ g - so by transitivity
1 · fg � g. Similarly f � g implies by GI 1 · ff � 1 · fg and LR and A1 then
imply f � 1·fg. Item (ii) is a particular case item (i), setting f = {x1}, g = {x2}

Certainty Equivalence. The notion of certainty equivalence is often used
in decision theory, in particular for the elicitation of the utility functions and
uncertainty measures. The certainty equivalent of a decision is a constant act
that identifies the certain amount that generates indifference to a given decision.
When considering ambiguous acts, and typically set-decisions, we shall require
that any such act admits a certainty equivalent.

Axiom 6 (Restricted certainty equivalent (RCE)).
For any non empty subset A of X , ∃x ∈ X such that A ∼ x

Compensation. The GI axiom ensures dynamical consistency when comparing
lotteries. It is not obeyed by the Choquet integral (see Example 4). Neverthe-
less the Choquet integral ensures a form of compensation under uncertainty,
classically captured by the so-called “continuity” axiom [18].

Axiom 7 (Continuity). For any evidential lotteries f, g and h such that f 

g 
 h there exists λ, θ ∈ (0, 1) such that λf + (1 − λ)h 
 g 
 θf + (1 − θ)h

This axiom, proposed by Jensen [18] in its axiomatization of expected utility
and taken up by Jaffray [16] in his axiomatization of a linear utility theory of
belief functions, claims that a bad lottery h can always be compensated by a
good lottery f (λf + (1 − λ)h 
 g) and a good lottery f can be deteriorated by
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a bad one (g 
 θf + (1 − θ)h). This axiom states in particular that there exists
neither a probability distribution that is infinitely desirable nor a probability
distribution that is undesirable.

The continuity axiom expresses a form of compensation under probabilistic
uncertainty (under risk). We shall finally consider compensation under ambigu-
ity: an ambiguity between two possible outcomes is always better than getting
the worst of them for sure, but worse than getting the best of them for sure.

Axiom 8 (Compensation under ambiguity (C)).
If {x1} 
 {x2} then {x1} 
 {x1, x2} 
 {x2}

This axiom strengthens monotony w. r. t. ambiguity, which is a natural con-
sequence of A1, GI and LR.

Most rules encountered in the literature generally the axiom of continuity
(e. g. Jaffray’s and the Choquet integral; this axiom is one on the stone edges
of Jaffray’s characterization), but are not fully compensatory with respect to
ambiguity and either relax the axiom of independence, or the composition of
lotteries. This suggests that there may be some range of incompatibility between
theses properties as soon as ambiguous compound lotteries are allowed.

The main results of this paper is that as soon as a transitive rule based on
lottery reduction applies on evidential lotteries without any restriction, it cannot
satisfies both Generalized Weak Independence Axiom and the Compensation
Axiom and/or Continuity and allow more than two distinct consequences

Theorem 1. If there exists two distinct consequences in X which are not equiv-
alent for �, then A1, wGI, LR, RCE and C are inconsistent.

Proof. Suppose that ∃x1, x3 ∈ X such that {x1} 
 {x3}. Then by C, {x1} 

{x1, x3} 
 {x3}. By CE, there exists a x2 such that {x1, x3} ∼ {x2}. So,
∃x1, x2, x3 ∈ X such that x1 
 x2 
 x3

– Suppose first {x2} ∼ {x1, x3}. By C, {x1} 
 {x2} implies {x1} 
 {x1, x2} 

{x2}. Moreover {x2} ∼ {x1, x3} implies 1 · {x1} · {x2} ∼ 1 · {x1} · {x1x3}
by wGI. By LR, 1 · x1, {x1x3} ∼ {x1, x3} and 1 · {x1} · {x2} ∼ {x1, x2}. By
substitution (which derives from wGI and A1) {x1, x2} ∼ {x1, x3}.
From {x2} ∼ {x1, x3} and A1, we also get {x1, x2} ∼ {x2} which contradicts
{x1} 
 {x1, x2} 
 {x2}.

– Suppose now that {x2} 
 {x1, x3}. By wGI, we get 1 · {x2}.{x2, x3} � 1 ·
{x1, x3}, {x2, x3}. By LR, 1 · {x2}. {x2, x3} ∼ {x2, x3} and 1 · {x1, x3} ·
{x2, x3} ∼ {x1, x2, x1}. By substitution {x2, x3} � {x1, x2, x3}.
But by C {x2} 
 {x2, x3} and thus, because {x1} 
 {x2} we get {x1} 

{x2, x3} by A1; by C again, {x1} 
 {x2, x3} implies 1 · {x1} · {x2, x3} 

{x2, x3} - LR and substitution, then imply {x1, x2, x3} 
 {x2, x3}

– Let us finally suppose that {x1, x3} 
 {x2}. On the one hand by wGI we get 1·
{x1, x2}·{x1, x3} � 1·{x2}·{x1, x2}; by LR, 1·{x1, x2}·{x1, x3} ∼ {x1, x2, x3}
and 1 · x2 · {x1, x2} ∼ {x1, x2}. So, by substitution {x1, x2, x3} � {x1, x2}
By C we have {x1, x2} 
 {x2} and {x2} 
 {x3}, so by A1, {x1, {x2}} 
 {x3}.
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By CE, there exists a x such that x ∼ {x1, x2}, so by A1 x 
 {x3}. By C,
this impies x 
 {x, x2}. By substitution, we get {x} 
 1 · {x1, x2}{x3}. By
LR, 1 · {x1, x2}{x3} ∼ {x1, x2, x3}. Thus by A1, {x} 
 {x1, x2, x3}. Since
{x} ∼ {x1, x2}, by A1, we get {x1, x2} 
 {x1, x2, x3}, which contradicts
{x1, x2, x3} � {x1, x2}

So neither x2 � {x1x3} nor {x1, x3} � {x2} which contradicts axiom A1.

Theorem 2. If there exists a group of at least four consequences in X which
are pairwise distinct for �, then A1, wGI, LR and C are inconsistent.

Proof (Theorem 2). Let {x1} 
 {x2} 
 {x3} 
 {x4}. Let us observe that, thanks
to the continuity axiom λ{x1}+(1−λ){x3} 
 {x2} 
 θ{x1}+(1−θ){x3}. Then:

– By LR 1 · λ{x1} + (1 − λ){x3} · {x1, x3} ∼ {x1, x3} ∼ 1 · θ{x1} + (1 −
θ){x3}·{x1, x3} and 1 ·{x2}·{x1, x3} ∼ {x1, x2, x3}. By wGI and A1 we have
{x1, x3} ∼ {x1, x2, x3}

– By LR 1 · λ{x1} + (1 − λ){x3} · {x2, x3} ∼ λ{x1, x2, x3} + (1 − λ){x2, x3},
1 · θ{x1} + (1 − θ){x3} · {x2, x3} ∼ θ{x1, x2, x3} + (1 − θ){x2, x3} and 1 · x2 ·
{x2, x3} ∼ {x2, x3}. By substitution {x1, x3} ∼ {x1, x2, x3}. wGI and A1then
imply λ{x1, x3} + (1 − λ){x2, x3} � {x2, x3} � θ{x1, x3} + (1 − θ){x2, x3}.
Since λ, θ ∈ (0, 1) we get {x1, x3} � {x2, x3} and {x2, x3} � {x1, x3}. Hence
by A1 we have {x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

– By LR 1 · λ{x1} + (1 − λ)x3 · {x1, x2} ∼ λ{x1, x2}{+(1 − λ){x1, x2, x3},
1 · θx1 + (1 − θ)x3 · {x1, x3} ∼ θ{x1, x3} + (1 − θ){x1, x2, x3} and 1 · x2 ·
{x1, x2} ∼ {x2, x3}. By substitution {x2, x3} ∼ {x1, x2, x3}, wGI and A1 we
have λ{x1, x2} + (1 − λ){x2, x3} � {x1, x2} � θ{x1, x2} + (1 − θ){x2, x3}.
Since λ, θ ∈ (0, 1) we get {x2, x3} � {x1, x2} and {x1, x2} � {x2, x3}. Hence
by A1 we have {x1, x2} ∼ {x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

– By Proposition 2, {x1} 
 {x2} 
 {x3} implies {x1, x2} � {x2} and
{x2} � {x2, x3}; but the previous point has shown that {x1, x2} ∼ {x2, x3} -
hence, by A1, {x2} � {x2, x3}. Using A1 we have {x1} 
 {x2} ∼ {x1, x2} ∼
{x2, x3} ∼ {x1, x3} ∼ {x1, x2, x3}

We thus get {x2} ∼ {x2, x3}. Applying the same reasoning to x2, x3 and x4 we
obtain that {x2} 
 {x3} ∼ {x2, x3} ∼ {x3, x4} ∼ {x2, x4} ∼ {x2, x3, x4} - hence
{x3} ∼ {x2, x3}

From {x2} ∼ {x2, x3} and{x3} ∼ {x2, x3}, we get by A1 {x2} ∼ {x3} which
contradicts {x2} 
 {x3}
The decision rules proposed in the literature escape the impossibility theorems
in some ways: either by restricting the composition of lotteries (like Jaffray’s
approach), by relaxing the axiom of independence (like the pignistic and Choquet
approaches), or the by relaxing axiom of completeness as done by Denoeux and
Shenoy. The above impossibility theorems justify these approaches: it shows for
instance that relaxing completeness is a way to keep the other axioms - and
especially continuity.
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4 A Dominance-based Rule for the Comparison
of Evidential Lotteries

The question is then to determine whether there is a way to satisfy the principle
of independence without dropping Axiom A1 or lottery reduction nor restricting
either type of lottery considered nor their composition of lotteries to the linear
case. The answer is actually yes - in this section, we provide a cautious rule
which applies on evidential lotteries without any restriction, and satisfies the
above principles.

Consider a set of consequences X equipped with a complete and transitive
preference relation ≥ and let f ≥ x be the event “f provides a consequence as
least as good as x”. For a simple lottery, Bel(f ≥ x) = ΣA,∀y∈A,u(y)≥u(x) m(A)
measures to what extent the DM is certain to reach as least a consequence as
good as x; for a compound, let Bel(f ≥ x) = Bel(Redf ≥ x). The cumulative
belief vector for f is thus f = (Bel(f ≥ x))x∈X )

The rule is based on the lexicographic comparison of the cumulative belief
vectors. Recall that for any two real vectors of same length a �lexi b iff there
exists a i∗ such that for any i < i∗, ai = bi and ai∗ > bi∗

Definition 5 (Lexi-Bel dominance rule).

f �lexiBel
g iff (Bel(f ≥ x))x∈X ) �lexi (Bel(g ≥ x))x∈X )

i. e. f �lexiBel g iff ∃x∗ ∈ X s. t. ∀y < x∗, Bel(f ≥ y) = Bel(g ≥ y) and Bel(f ≥
x∗) > Bel(g ≥ x∗)

Example 5. Let us consider again the lotteries at work in Ellsberg’s paradox. For
each of the four lotteries, the probability of getting at least the worst consequence
is obviously equal to 1. Moreover: Bel(A ≥ 100) = 1

3 , Bel(B ≥ 100) = 0,
Bel(C ≥ 100) = 1

3 , Bel(D ≥ 100) = 2
3 . The cumulative vectors are A = (1, 1

3 ),
B = (1, 0), C = (1, 1

3 ), D = (1, 2
3 ). Thus A 
lexiBel

B and D 
lexiBel
C

Proposition 3. �lexiBel
is complete, transitive and satisfies axioms LR, RCE

and GI.

Proof.

– A1 is obeyed since the lexi comparison of vectors is complete and transitive.
– Lottery reduction is satisfied by construction.
– Consider any A ⊆ X and the consequence a = minA It holds that Bel(A ≥

x) = 1 if x ≥ a and Bel(A ≥ x) = 0 if x > a. In the same way, Bel(a ≥ x) = 1
if x ≥ a and Bel(a ≥ x) = 0 if x > a. So, the set decision A and the constant
decision {(a)} have the same cumulative vector. Hence they are equivalent
for the lexi bel decision rule. Restricted CE thus holds.

– As to GI, it holds that for any h, f
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Bel(Reduction(αf + βh + γfh) ≥ x)
(a) = α

∑
B⊆[x,+∞[ f(B) + β

∑
B⊆[x,+∞[ h(B)

+ γ
∑

B⊆[x,+∞[

∑
C∪D=B f(C)h(D)

(b) = αBel(f ≥ x) + βBel(h ≥ x) + γ · (Bel(f ∪ h ≥ x))
(c) = αBel(f ≥ x) + βBel(h ≥ x) + γ · Bel(f ≥ x) · Bel(h ≥ x)
Step (a) follows from definition of the reduction and the definition of the Bel
measure. Step (b) follows from the definition of the union of two mass functions
( (f ∪ h)(B) =

∑
C∪D=B f(C)h(D)). Then step (c) is based on Prop. 2 in [7].

Suppose that f ∼lexiBel
g, i. e. that Bel(f ≥ x) = Bel(g ≥ x) ∀x; Then for

each x, α ·Bel(f ≥ x)+β ·Bel(h ≥ x)+ γBel(f ≥ x) ·Bel(h ≥ x) = α ·Bel(g ≥
x) + β · Bel(h ≥ x) + γBel(g ≥ x) · Bel(h ≥ x), i. e. the cumulative vectors of
the two compound lotteries are equal - so αf +βh+γfh ∼lexiBel

αg +βh+γgh.
Suppose that f 
lexiBel

g, i. e. that there exists a x∗ such that ∀x <
x∗, Bel(f ≥ x) = Bel(g ≥ x) and Bel(f ≥ x∗) > Bel(g ≥ x∗) For each
x < x∗, Bel(αf + βh + γfh ≥ x) = Bel(αg + βh + γgh ≥ x) as previously.
Moreover, Bel(f ≥ x∗) > Bel(g ≥ x∗). So, if α > 0 or Bel(h ≥ x∗) > 0
the value of Bel(αf + βh + γfh ≥ x∗) is strictly greater than the value of
Bel(αg +βh+γgh ≥ x∗). The first compound lottery is strictly preferred to the
second one. When α = 0 and Bel(h ≥ x∗) = 0 Bel(αf +βh+ γfh ≥ x) = 0 and
Bel(αg + βh + γfg ≥ x) = 0 for each x ≥ x∗, i. e. the two compound lotteries
are equivalent for ∼lexiBel

So, if f �lexiBel
g the first compound lottery is weakly preferred to the second

one and α > 0, f 
lexiBel
g leads to a strict preference: GI is obeyed.

So, the lexi-Bel rule do satisfy the axioms looked for - this proves their com-
patibility. This rule is nevertheless very pessimistic. Beyond its characterization,
further work include the proposition of more optimistic rules, e.g. using the
principles that we have developed in the possibilistic context [9].

5 Conclusion

This paper shows that the axioms of lottery reduction, completeness and tran-
sitivity of the ranking, and independence (and thus, dynamical consistency) can
be compatible when considering evidential lotteries in their full generality, but
this supposes to reject the compensation principles, and in particular the con-
tinuity axiom and the principle of compensation under ambiguity. The impossi-
bility theorems presented in this paper provide a first step toward the handling
of independence in decision with belief functions. The next step is to consider
more general lotteries, based on families of probabilities (“credal lotteries”). It is
worth noticing that, unless in particular cases, the rules proposed for imprecise
probabilities in their full generality either relax completeness or are dynamically
inconsistent: Troffaes and Huntley [15] for instance relax completeness. Miranda
and Zaffalon [28] preserve it for particular lower probabilities. Further work
includes the investigation of an impossibility theorem in the credal context.
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Abstract. Weighted abduction computes hypotheses that explain input
observations. It employs parameters, called weights, to output hypotheses
suitable for each application. This versatility makes it applicable to plant
operation, cybersecurity or discourse analysis. However, the hypotheses
selected by an abductive reasoner from among possible hypotheses may be
inconsistent with the user’s knowledge such as an operator’s or analyst’s
expertise. In order to resolve this inconsistency and generate hypotheses
in accordance with the user’s knowledge, this paper proposes two user-
feedback dialogue protocols in which the user points out, either positively
or negatively, properties of the hypotheses presented by the reasoner, and
the reasoner regenerates hypotheses that satisfy the user’s feedback. As a
minimum requirement for user-feedback dialogue protocols, we then prove
that our protocols necessarily terminate under certain reasonable condi-
tions and achieve a fixed target hypothesis if the user determines the pos-
itivity or negativity of each pointed-out property based on whether the
target hypothesis has that property.

Keywords: Logic · Abduction · Dialogue · Hypothesis · Feedback

1 Introduction

Abduction is inference to the best explanation: given a set of observations, abduc-
tion generates a set, called a hypothesis, of causes that account for the observa-
tions and selects the most plausible hypothesis by some criterion [1,9]. Several
frameworks for abduction have been proposed, including plausibility criteria and
reasoning processes (cf. [9]). Among others, weighted abduction (WA) generates
proofs, called hypothesis graphs, of the observations from causes in first-order
logic, and employs parameters, called weights, to select hypothesis graphs suit-
able for each application. This versatility makes it applicable to plant operation
[8], cybersecurity [7], discourse analysis [4,6] or plan ascription [2]. As examples,
let us see an application in plant operation [8] and another in cybersecurity [7].

Example 1. An abductive reasoner is used to compute an operation plan for a
plant in [8]. To illustrate this, let us consider a simple structure consisting of
a faucet F and a pipe P coming out of it. Assume that the target state is the
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high flow in P (Hold(P, High)). With Hold(P, High) as an input observation, the
reasoner outputs the hypothesis graph below (the hypergraph is simplified from
one in [8]):

Hold(F, No)

Open(F)

Action
Hold(F, High)

Cause-Effect
Hold(P, High)

This hypothesis graph expresses that opening F (Open(F)) changed its flow from
no flow (Hold(F, No)) to high flow (Hold(F, High)), which caused the high flow
in P (Hold(P, High)). In [8], this hypothesis is seen as an operational procedure
where Open(F) leads to Hold(P, High). �

Example 2. In [7], abductive reasoning is applied to cybersecurity. Below is an
example of an output of its reasoner: (the nodes with * are observations)

Execution(Time1) CommandAndControl(time2) Exfiltration(Time3)

UserExecution(Time1) RemoteFileCopyC2(time2) DataCompressed(Time3)

SuspiciousLink
(Time1, Host1, LinkFile1)(*)

PsScript
ForRemoteFileCopy

(time2, host2, script1)

PsScript
ForDataCompression

(Time3, Host3, Script2)(*)

This is in the form of a TTP (Techniques, Tactics and Procedures) framework (cf.
[5,11]). The terms starting with a capital letter, such as Time1, are constants, and
the terms starting with a lower-case letter, such as host2, are variables, which are
implicitly existentially quantified. The vertical edges express end-means relation
while the horizontal ones the chronological order. �

However, in terms of real-world use, the output hypothesis may be inconsis-
tent with the user’s knowledge. For example, the plant operator possibly knows
that F cannot be opened temporarily, and the security analyst may think that
PsScriptForRemoteFileCopy is obsolete as a means to RemoteFileCopyC2. To
address this issue, user-feedback functions are proposed in [7], by which the user
can give feedback on nodes in the hypothesis graphs presented by the reasoner.
However, these functions are ad-hoc. In particular, it is theoretically unclear
whether feedback on nodes has sufficient expressivity so that the user can achieve
the hypothesis graph that is most plausible to him if he gives enough feedback.

This is partly due to the absence of a formal definition of a hypothesis graph
in applications. The notion of a hypothesis graph in applications is extended
from the original notion of a hypothesis graph, i.e. a proof in first-order logic.
For example, hyperedge Action in Example 1 is not implication since Hold(F, No)
contradicts Hold(F, High) and the arguments of Hold are many-sorted; precisely,
the first argument is a component of the plant and the second is a state of
the component. In Example 2, the edges are not implication, as we mentioned,
and the hypothesis graph contains many-sorted constants and variables, such as
Time1 and host2.
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Contributions of This Paper. To address these issues, we propose a formal defi-
nition of an extended hypothesis graph and two user-feedback dialogue protocols
based on the definition. More precisely, our contributions are as follows.

1. We introduce a variant of second-order logic whose language contains many-
sorted constants and variables as well as second-order predicate symbols
whose arguments are first-order literals. We then define the notions of a
hypothesis and a hypothesis graph such as ones in Examples 1 and 2.

2. Using our definitions of a hypothesis and a hypothesis graph, we propose
two user-feedback dialogue protocols in which the user points out, either
positively or negatively, properties of the hypotheses/hypothesis graphs pre-
sented by the abductive reasoner, and the reasoner regenerates hypothe-
ses/hypothesis graphs that satisfy the user’s feedback. As a minimum require-
ment for user-feedback protocols, we prove that our protocols necessarily ter-
minate under certain reasonable conditions and achieve a fixed target hypoth-
esis/hypothesis graph if the user determines the positivity or negativity of
each pointed-out property based on whether the target hypothesis/hypothesis
graph has that property.

Organisations. In Sect. 3, we propose formal definitions of an extended hypoth-
esis and an extended hypothesis graph. We then propose two user-feedback dia-
logue protocols on them and prove that they satisfy the minimum requirement
mentioned above in Sect. 4.

2 Related Work

Several definitions of a hypothesis have been proposed based on first-order logic
[9, Section 2.2]. In particular, a hypothesis graph in WA is a proof in first-order
logic consisting of literals [10]. Thus, the edges between literals of a hypothesis
graph express implication. Extending this definition, we propose a definition of a
hypothesis graph that is allowed to contain many-sorted constants and variables
and arbitrarily labelled hyperedges between literals.

Dialogue protocols have also been proposed in which a system and a user
cooperate in seeking for a proof or a plausible hypothesis. An inquiry dialogue
[3] is one of such protocols. Its goal is to construct a proof of a given query such
as ‘he is guilty’ in propositional logic. Using this protocol, the user can obtain all
minimal proofs and find the one that seems most plausible to him. However, this
cannot be applied to extended hypotheses/hypothesis graphs, because there can
be an infinite number of possible extended hypotheses/hypothesis graphs (see
also Examples 8 and 9, infra). The work [7] proposes user-feedback functions
on nodes in extended hypothesis graphs presented by the abductive reasoner.
However, these functions lack theoretical and empirical backups. In contrast, we
theoretically prove that our protocols enjoy several desirable properties.
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3 Hypotheses and Hypothesis Graphs

In this section, we first introduce a variant of many-sorted second-order logic and
then define, in the logic, the notions of a hypothesis and a hypothesis graph such
as ones in Examples 1 and 2. Throughout this section, we take the hypergraph
in Example 1 as our running example.

3.1 Language

We first define the language, which is second-order in the sense that the argu-
ments of a second-order predicate symbol are first-order literals.

Definition 1. An alphabet is a tuple Σ = (S, C,P,R,V1,V2) such that: (1) S
is a finite set of sorts σ; (2) C is an S-indexed family (Cσ)σ∈S of finite sets Cσ

of first-order constant symbols c : σ of sort σ; (3) P is a non-empty finite set
of first-order predicate symbols p : (σ1, . . . , σn), where (σ1, . . . , σn) indicates the
sorts of its arguments; (4) R is a finite set of second-order predicate symbols
R; (5) V1 is an S-indexed family (Vσ)σ∈S of sets Vσ of first-order variables x : σ
of sort σ; (6) V2 is a set of second-order variables X. We also use the first-order
equality symbol = : (σ, σ) for each σ ∈ S and the second-order one = as logical
symbols, that is, these symbols are interpreted in the standard manner. We often
suppress the sorts of symbols and variables if they are clear from the context.

Note that an alphabet does not contain function symbols, following the orig-
inal definition of WA [10]. In this paper, we fix an arbitrary alphabet Σ =
(S, C,P,R,V1,V2) except in examples.

Example 3. An alphabet for Example 1 consists of S = {comp, state} Ccomp =
{F, P}, Cstate = {High, No}, P = {Hold : (comp, state), Open : (comp)} and R =
{Action, Cause-Effect}. Here, comp means the sort of components. �

Definition 2 (Language). The set L of formulae, the set T2 of second-order
terms and the set L of first-order literals for Σ are defined by the following
rules1:

L � Φ ::= A | X | T = T | R(T, . . . , T) | ¬Φ | Φ ∨ Φ | (∃x : σ)Φ | (∃X)Φ,
T2 � T ::= X|L, L � L ::= A|¬A.

Here, A ranges over the set of first-order atomic formulae, which are defined as
usual, and X over V2. We write a formula in L in typewriter font.

Other logical connectives ⊥, ∧, →, ↔, ∀x : σ and ∀X are defined as usual. The
notions of freely occurring of a first-order/second-order variable and a sentence
are also defined as usual. We denote the set of sentences by LS . We also denote,
by Termσ, the set of first-order terms, i.e. first-order constants and variables, of
sort σ ∈ S. We use the notation ∗p for p ∈ P to denote either p or ¬p.
1 Following the original definition of WA, we restrict the arguments of second-order

predicates to first-order literals, which is used to prove Theorems 16 and 28.
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3.2 Semantics

A structure has two components to interpret a formula of each order. In partic-
ular, it interprets first-order literals and second-order predicate symbols.

Definition 3. A structure for Σ is a pair (M, I) consisting as follows.

– The first component M = ((Mσ)σ∈S , (Cσ)σ∈S , (pM)p∈P) is a first-order
structure consisting of:

• a non-empty set Mσ for each σ ∈ S, called the domain of σ;
• Cσ : Cσ → Mσ for each σ ∈ S;
• pM ⊆ Mσ1 × · · · × Mσn

for each p : (σ1, . . . , σn) ∈ P.
– The second component I = (I, (RI)R∈R) is a pair of:

• I = {∗p(e1, . . . , en) | ∗ ∈ {ε,¬}, p : (σ1, . . . , σn) ∈ P and ei ∈
Mσi

for i = 1, . . . , n}, where ε is the null string; and
• an n-ary relation RI on I for each R ∈ R, where n is the arity of R.

We often write (c : σ)M to mean Cσ(c : σ).

Example 4. The hypothesis graph in Example 1 determines the structure (M, I)
such that: the first component M consists of Mcomp = {F, P}, Ccomp = {(F, F ),
(P, P )}, Mstate = {High,No}, Cstate = {(High,High), (No, No)}, HoldM =
{(F,No), (F,High), (P,High)}, OpenM = {F}; and the second one I consists
of I = {∗Hold(o, s) | ∗ ∈ {ε,¬}, o ∈ Mcomp and s ∈ Mstate} ∪ {∗Open(o) | ∗ ∈
{ε,¬} and o ∈ Mcomp}, ActionI = {(Hold(F,No), Open(F ), Hold(F,High)},
and Cause-EffectI = {(Hold(F,High), Hold(P,High)}. �

For a structure (M, I), a first-order assignment is an S-indexed family
μ1 = (μσ)σ∈S of mappings μσ : Vσ → Mσ and an second-order assignment
is a mapping μ2 : V2 → I. The interpretation of terms is given as follows:

Definition 4. Let (M, I) be a structure and μ1 = (μσ)σ∈S and μ2 a first-order
and a second-order assignment, respectively.

1. A first-order term is interpreted as usual: (c : σ)M[μ1] = (c : σ)M for any
c : σ ∈ Cσ; (x : σ)M[μ1] = μσ(x : σ) for any x : σ ∈ Vσ.

2. A second-order term is interpreted as follows: ∗p(t1, . . . , tn)(M,I)[μ1, μ2] =
∗p(tM

1 [μ1], . . . , tM
n [μ1]) for any ∗p(t1, . . . , tn) ∈ L and X(M,I)[μ1, μ2] =

μ2(X) for any X ∈ V2.

Definition 5 (Interpretation). Let (M, I) be a structure and μ1 and μ2 be
a first-order and a second-order assignment, respectively. For any formula Φ ∈
L, the statement that Φ is satisfied in M by μ1 and μ2 (notation: (M, I) |=
Φ[μ1, μ2]) is inductively defined as follows.

1. The Boolean connectives are interpreted as usual.
2. The first-order symbols and quantifiers are also interpreted as usual:

(M, I) |= t1 = t2[μ1, μ2] ⇔ t1M[μ1] = t2M[μ1];
(M, I) |= p(t1, . . . , tn)[μ1, μ2] ⇔ (tM

1 [μ1], . . . , tM
n [μ1]) ∈ pM;

(M, I) |= (∃x : σ)Φ[μ1, μ2] ⇔ (M, I) |= Φ[μ1(e/(x : σ)), μ2] for some e ∈ Mσ.
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3. The second-order variables, symbols and quantifiers are interpreted by the
following clauses:

(M, I) |= X[μ1, μ2] ⇐⇒
{

(e1, . . . , en) ∈ pM (μ2(X) = p(e1, . . . , en))
(e1, . . . , en) /∈ pM (μ2(X) = ¬p(e1, . . . , en))

(M, I) |= T1 = T2[μ1, μ2] ⇐⇒ T
(M,I)
1 [μ1, μ2] = T

(M,I)
2 [μ1, μ2]

(M, I) |= R(T1, . . . , Tn)[μ1, μ2] ⇐⇒ (T(M,I)
1 [μ1, μ2] . . . , T

(M,I)
n [μ1, μ2]) ∈ RI

(M, I) |= (∃X)Φ[μ1, μ2] ⇐⇒ (M, I) |= Φ[μ1, μ2(l/X)] for some l ∈ I.

Here, the assignment μ1(e/(x : σ)) (resp. μ2(l/X)) is the same as μ1 (resp. μ2)
except that it assigns e to x : σ (resp. l to X).

We say that a formula Φ is valid in a structure (M, I) if (M, I) |= Φ[μ1, μ2] for
any assignments μ1 and μ2 and that Φ is valid in a class C of structures if Φ
is valid in any structure in C . For sets Γ and Δ of formulae in L and a class
C of structures, we say that Γ logically implies Δ in C (notation: Γ |=C Δ) if
any pair of a structure (M, I) in C and an assignment [μ1, μ2] satisfying any
formula in Γ also satisfies any formula in Δ. We also say that Γ and Δ are
logically equivalent in C and write Γ ↔C Δ if both Γ |=C Δ and Δ |=C Γ hold.

In what follows, when we consider a class C of structures, we assume that we
have Mσ = M ′

σ and (c : σ)M = (c : σ)M′
for any (M, I), (M′, I ′) ∈ C , σ ∈ S

and c : σ ∈ Cσ.

Example 5. One can use a set T of sentences, i.e. a theory, to restrict
the structures to the class C (T ) of those validating all sentences in T .
For example, in the settings in Example 1, if its theory T contains Φ :=
(∀XYZ)[Action(X, Y, Z) → (X = Hold(F, No)) ∧ (Y = Open(F)) ∧ (Z =
Hold(F, High)) ∧ X ∧ Y ∧ Z], then any (M, I) ∈ C (T ) satisfies (i)
ActionI ⊆ {(Hold(F,No), Open(F ), Hold(F,High))} and (ii) HoldM ⊇
{(F,No), (F,High)} and OpenM ⊇ {F} if ActionI �= ∅. �

Definitions of a Hypothesis and a Hypothesis Graph. We conclude this
section by defining the notions of a hypothesis and a hypothesis graph. The
notion of a hypothesis is defined as follows:

Definition 6 (Hypotheses). Let O be a set of sentences and C a class of
structures. A hypothesis H for O in C is a finite set of sentences such that
H ∪ O �|=C ⊥. We denote the set of hypotheses for O in C by H(O,C ).

Remark 1. According to [9, Section 4], the minimum requirements for a set H
of sentences to be an ordinary first-order hypothesis for a set O of observations
under a theory T are that H implies O under T and that H in conjunction with
O is consistent with T . Since an extended hypothesis graph does not necessarily
implies the observations as in Example 2, we adopt only the semantical coun-
terpart H ∪ O �|=C ⊥ of the latter condition. However, all results below in this
paper, except for Examples 6, 7, 8 and 9 hold even if any condition is imposed
on H in Definition 6. �
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A hypothesis graph is a special case of a formula graph, defined below:

Definition 7. A formula graph is a pair (V, (ER)R∈R) such that: (1) V is a finite
set of first-order literals; (2) ER for each R ∈ R is a tuple of first-order literals
in V whose length is equal to the arity of R. We denote the set of all formula
graphs by FG. For a formula graph G = (V, (ER)R∈R), we call the cardinality |V |
of V the size of G and write |G|.

Due to its finiteness, a formula graph G = (V, (ER)R∈R) can naturally be trans-
lated into the (first-order) existential closure of

∧
V ∧

∧
{R(l1, . . . , ln) | R ∈

R and (l1, . . . , ln) ∈ ER}. We denote this sentence by Sent(G). Using this trans-
lation, the notion of a hypothesis graph is defined:

Definition 8 (Hypothesis Graphs). A formula graph G is a hypothesis
graph for a set O of sentences in a class C of structures if {Sent(G)} is a
hypothesis for O in C . We denote, by HG(O,C ), the set of hypothesis graphs for
O in C .

Example 6. Consider the hypergraph, here referred to as G0, the structure
(M, I) and the sentence Φ in Example 1, 4 and 5, respectively. Then,
(M, I) validates Sent(G0) ∧ Hold(P, High) and thus we have {Sent(G0)} ∪
{Hold(P, High)} �|=C ({Φ}) ⊥ since (M, I) is in C ({Φ}). Hence, {Sent(G0)} and
G0 are hypothesis and a hypothesis graph for {Hold(P, High)} in C ({Φ}), respec-
tively. �

4 User-Feedback Dialogue Protocols

In this section, we first propose an abstract user-feedback dialogue (UFBD)
protocol between an abductive reasoner and its user, and then obtain two UFBD
protocols as its instances: one is on hypotheses and the other is on hypothesis
graphs.

4.1 Abstract User-Feedback Dialogue Protocol

We define an abstract UFBD protocol, on the basis of the notion of feedback on
properties and see that, if the user gives feedbacks on properties based on the
properties of a fixed target, the protocol achieves the target if it terminates.

Let X be a set, which shall be instantiated, and P a set of properties. We call
a mapping Prop : X → ℘(P ) a property assignment function. In the rest of this
subsection we fix an arbitrary property assignment function Prop : X → ℘(P ),
except in Example 7. Pairs (p, pos) and (p, neg) for any p ∈ P are called feedbacks
(FBs) on P . Using these notions, the abstract UFBD protocol is defined:

Definition 9. A user-feedback dialogue (UFBD) on Prop is a finite or an infi-
nite sequence D = X1,F1,X2,F2, . . . ,Xi,Fi, . . . of a set Xi ⊆ X and a set Fi of
FBs on P (i = 1, 2, . . .) that satisfies the conditions below for each index i.
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1. Conditions on Xi.
(a) For any X,X ′ ∈ Xi, X and X ′ have distinct sets of properties, i.e

Prop(X) �= Prop(X ′) if X �= X ′.
(b) For any X ∈ Xi, X satisfies all previous FBs, i.e. for any j < i, (i) p ∈

Prop(X) for any (p, pos) ∈ Fj and (ii) p �∈ Prop(X) for any (p, neg) ∈
Fj.

(c) Xi contains multiple elements if there are multiple elements in X that
have distinct sets of properties and satisfy all previous FBs.

(d) Xi is non-empty if there is an element in X that satisfies all previous
FBs.

(e) If Xi is a singleton or empty, it is the last set of D.
2. Conditions on Fi.

(a) For any (p, f) ∈ Fi, p appears in Xi, i.e there is an element X ∈ Xi such
that p ∈ Prop(X).

(b) For any (p, f) ∈ Fi, p has not been pointed out, i.e. for any j < i and
(p′, f ′) ∈ Fj, we have p �= p′.

(c) Fi is non-empty if there is a property p ∈ P that appears in Xi and has
not been pointed out.

(d) If Fi is empty, it is the last set of D.

Intuitively, X in a UFBD is the set of possible hypotheses/hypothesis graphs.
The abductive reasoner is required to present at least one hypothesis/hypothesis
graph in X that satisfies all previous FBs if there is such a hypothesis/hypothesis
graph in X and to present multiple ones if there are multiple ones that have
distinct sets of properties and satisfy all previous FBs, whilst the user is required
to give at least one FB if there is a property that has not been pointed out
and appears in the hypotheses/hypothesis graphs presented by the reasoner. To
illustrate Definition 9, we give an example:

Example 7. Let X be the set {G0, G1, G2}, where G0 is the hypothesis graph in
Example 1 and G1, G2 are those defined below:

Hold(F, No)

Open(F)

Action
Hold(F, High)

Hypothesis graph G1

Hold(F, High)

O

Cause-Effect
Hold(P, High)

Hypothesis graph G2

Let also P be FG and Prop : X → ℘(P ) be the function defined by Prop(G) =
{G′ | G′ is a subgraph of G} for any G ∈ X (see Definition 18 for the definition
of a subgraph). Then, the sequence X1 := {G1, G2},F1 := {(G1, pos), (G2, pos)},
X2 := {G0} is a UFBD on Prop. This sequence is intended to appear as follows:
(1) X is the set of possible hypothesis graphs; (2) the abductive reasoner gen-
erates and presents, to the user, hypothesis graphs G1 and G2 in X as X1; (3)
the user gives FBs (G1, pos) and (G2, pos) as F1, which require that G1 and G2

should be contained as subgraphs; (4) the reasoner regenerates and presents the
only graph G0 in X that contains G1 and G2 as its subgraphs as X2. �
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Let us assume X �= ∅ and fix an element X ∈ X as a target. We next consider
the case where the positivity or negativity f of each FB (p, f) is determined based
on whether X has the property p.2

Definition 10. A UFBD D on Prop towards X is a UFBD such that, for each
index i and (p, f) ∈ Fi, f = pos if p ∈ Prop(X) and f = neg if p /∈ Prop(X).

We see below that, if a dialogue terminates, its last set is the singleton of an
element in X that has exactly the same properties as X.

Lemma 11. Let D = X1,F1, . . . ,Xi (i ≥ 1) be a finite UFBD on Prop towards
X with |Xi| ≥ 2. Then, there is a non-empty set Fi of FBs on P such that the
sequence D,Fi is again a UFBD on Prop towards X.

Proof. Take arbitrary distinct two elements X1 and X2 in Xi. Then, we have
Prop(X1) �= Prop(X2) by Condition 1a of Definition 9. Therefore, there is a
property p ∈ P such that p ∈ Prop(X1)\Prop(X2) or p ∈ Prop(X2)\Prop(X1).
Define Fi := {(p, f)}, where f = pos if p ∈ Prop(X) and f = neg if p /∈
Prop(X). Then, D,Fi is a UFBD on Prop towards X. ��

Lemma 12. Let D = X1,F1, . . . ,Xi,Fi be a finite UFBD on Prop towards
X. Then, there exists a set Xi+1 ⊆ X such that D,Xi+1 is a UFBD on Prop
towards X.

Proof. If D is empty, this is trivial by Definition 9. Otherwise, we use the fact
that Fi �= ∅, which is proved by Condition 1e of Definition 9 and Lemma 11. ��

Theorem 13. Let D be a finite UFBD on Prop towards X such that there is
no set A satisfying that D,A is a UFBD on Prop towards X. Then, the last set
of D is the singleton of an element X ′ ∈ X with Prop(X ′) = Prop(X).

Proof. The last set of D is not a set of FBs by Lemma 12 and it does not
contain multiple elements by Lemma 11. It is also non-empty by Condition 1d of
Definition 9 since X satisfies all previous FBs. Thus, it is a singleton {X ′} ⊆ X .
Hence, we obtain Prop(X ′) = Prop(X) by Condition 1c of Definition 9 since X ′

satisfies all previous FBs by Condition 1b of Definition 9. ��

4.2 User-Feedback Dialogues on Hypotheses

A UFBD protocol on hypotheses is obtained by substituting the following prop-
erty assignment function PropH for Prop:

Definition 14. Let C be a class of structures and O a set of sentences. We
define a function PropH(O,C ) : H(O,C ) → ℘(LS/↔C ) by PropH(O,C )(H) =
{[Φ]↔C

| H |=C Φ} for any H ∈ H(O,C ). Here, LS/↔C is the set of equivalence
classes of LS for the logical equivalence relation ↔C on LS.

2 The case where the target is a subset of X is a part of our future work.
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Proposition 15. PropH(O,C )(H) = PropH(O,C )(H ′) and H ↔C H ′ are
equivalent for any O ⊆ LS, class C of structures and H,H ′ ∈ H(O,C ).

There is an infinite UFBD on PropH:

Example 8. Consider a single-sorted language such that C = {0}, P = {p} and
R = {R}. Let C be the class of all structures (M, I) such that the domain
M is the set N of natural numbers including 0, and 0M = 0 and pM = N,
and let O be {p(0)}. Define a hypothesis H0 to be {p(0) ∧ R(p(0), p(0))} and Hn

(n = 1, 2, . . .) to be the existential closure of the conjunction of {p(0)},
∧

{p(xi) |
0 < i ≤ n},

∧
{R(p(0), p(x1)), R(p(xn), p(0))},

∧
{R(p(xi), p(xi+1)) | 0 < i < n},∧

{0 �= xi | 0 < i ≤ n} and
∧

{xi �= xj | 0 < i < j ≤ n}. Note that, for n, n′ =
0, 1, . . ., Hn and Hn′ do not logically imply each other in C if n �= n′. Hence,
Hi = {H2i−1,H2i} and Fi = {([H2i−1]↔C

, neg), ([H2i]↔C
, neg)} for i = 1, 2, . . .

give an infinite UFBD H1,F1,H2,F2, . . . on PropH(O,C ) (towards H0). �

Restricting the class C , we obtain the halting property:

Theorem 16. Let C be a class of structures (M, I) and O a set of sentences.
Suppose that the shared domain Mσ is finite for any sort σ ∈ S. Then, there
is no infinite UFBD on PropH(O,C ). Hence, there is no infinite UFBD on
PropH(O,C ) towards any H ∈ H(O,C ).

Proof. This is proved by the fact that C and thus LS/↔C is finite since Mσ is
finite for any sort σ ∈ S. ��

Using Theorem 13 and Proposition 15, we also obtain:

Theorem 17. Let D be a finite UFBD on PropH(O,C ) towards H ∈ H(O,C )
such that there is no set A satisfying that D,A is a UFBD on PropH(O,C )
towards H. Then, the last set of D is a singleton {H ′} ⊆ H(O,C ) with
H ′ ↔C H.

4.3 User-Feedback Dialogues on Hypothesis Graphs

A UFBD on hypothesis graphs is also obtained by instantiating Prop. We first
define several notions for defining a property assigning function for hypothesis
graphs, and then see that any UFBD on hypothesis graphs achieves a fixed target
hypothesis graph under a certain reasonable condition.

Formula Subgraphs, Embeddings and Isomorphisms. The notion of a
formula subgraph is defined as below:

Definition 18 (Formula Subgraphs). A formula graph (V, (ER)R∈R) is called
a formula subgraph (or subgraph for short) of a formula graph (V ′, (E′

R)R∈R)
if V and ER for each R ∈ R are subsets of V ′ and E′

R, respectively.

The notion of an embedding is defined using that of substitution.
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Definition 19. Let σ be a sort in S. A mapping ασ : Termσ → Termσ is a
substitution of σ if it satisfies ασ(c : σ) = c : σ for any c : σ ∈ Cσ.

Definition 20. Let G = (V, (ER)R∈R) and G′ = (V ′, (E′
R)R∈R) be formula

graphs. By a homomorphism (h, α) from G to G′ (notation: (h, α) : G →
G′), we mean a pair of a mapping h : V → V ′ and an S-indexed family
α = (ασ)σ∈S of substitutions ασ of σ ∈ S such that: (1) h(∗p(t, . . . , tn)) =
∗p(ασ1

(t1), . . . , ασn
(tn)) holds for any ∗p(t1, . . . , tn) ∈ V , where (σ1, . . . , σn)

is the sorts of the arguments of p; and (2) (l1, . . . , lm) ∈ ER implies
(h(l1), . . . , h(lm)) ∈ E′

R for any R ∈ R and l1, . . . , lm ∈ V , where m is the
arity of R.

Definition 21 (Embeddings). A homomorphism (h, α) : G → G′ is called an
embedding of G into G′ if h and ασ for each σ ∈ S are injective. A formula
graph G can be embedded into G′ if there is an embedding of G into G′.

An embedding entails logical implication in the converse direction:

Proposition 22. Let G and G′ be formula graphs. If G can be embedded into
G′, then Sent(G′) logically implies Sent(G) in any class of structures.

The notion of an isomorphism is defined as below:

Definition 23 (Isomorphisms). An isomorphism (h, α) : G → G′ is a homo-
morphism such that h and ασ for each σ are bijective and their inverse mappings
constitute a homomorphism (h−1, (α−1

σ )σ∈S) : G′ → G. Formula graphs G and
G′ are isomorphic (notation: G � G′) if there is an isomorphism between them.

By Proposition 22, we also have:

Proposition 24. If two formula graphs G and G′ are isomorphic, then Sent(G)
and Sent(G′) are logically equivalent in any class of structures.

UFBDs on Hypothesis Graphs. In what follows, we arbitrarily fix a class C
of structures and a set O of sentences, except in Example 9. Using the notions
defined above, we obtain a UFBD protocol on hypothesis graphs by substituting
the following property assignment function PropG for Prop:

Definition 25. We define a function PropG(O,C ) : HG(O,C ) → ℘(FG/�)
by PropG(O,C )(G) = {[G′]� | G′ can be embedded into G} for any G ∈
HG(O,C ).

We define the size |g| of g ∈ FG/� to be |G| for some G ∈ g, which is well-
defined. We have the following equivalence for PropG:

Proposition 26. PropG(O,C )(G) = PropG(O,C )(G′) and G � G′ are equiv-
alent for any G,G′ ∈ HG(O,C ).

A UFBD on PropG does not necessarily terminate:
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Example 9. We use the settings in Example 8 and define G0 to be the formula
graph (V (0), E

(0)
R ) = ({p(0)}, {(p(0), p(0))}) and Gn (n = 1, 2, . . .) to be the

formula graph (V (n), E
(n)
R ) such that V (n) is the union of the sets {p(0)}, {p(xi) |

0 < i ≤ n)}, {0 �= xi | 0 < i ≤ n} and {xi �= xj | 0 < i < j ≤ n} and E
(n)
R is the

union of {(p(0), p(x1)), (p(xn), p(0))} and {(p(xi), p(xi+1)) | 0 < i < n}. Then,
we have Sent(Gn) = Hn for n = 0, 1, . . .. Therefore, for n, n′ = 0, 1, . . ., Gn and
Gn′ cannot be embedded into each other if n �= n′ by Proposition 22 since Hn and
Hn′ do not logically imply each other in C if n �= n′. Hence, Gi = {G2i−1, G2i}
and Fi = {([G2i−1]�, neg), ([G2i]�, neg)} for i = 1, 2, . . . constitute an infinite
UFBD G1,F1,G2,F2, . . . on PropG(O,C ) (towards G0). �

Imposing the following condition, we obtain the halting property:

Definition 27. Let n be a natural number in N. A finite or an infinite UFBD
G1,F1, . . . ,Gi,Fi, . . . on PropG(O,C ) with Condition 2e for n is a UFBD on
PropG(O,C ) such that, for each index i, there is an FB (g, f) ∈ Fi with |g| ≤ n.

Theorem 28. Let n be a natural number in N. There is no infinite UFBD on
PropG(O,C ) with Condition 2e for n.

Proof. This is proved by the fact that there are at most finitely many formula
graphs whose size is less than or equal to n up to isomorphism for any n ∈ N. ��

We conclude this section by proving a result similar to Theorems 13 and 17.

Lemma 29. Let D = G1,F1, . . . ,Gi (i ≥ 1) be a UFBD on PropG(O,C )
towards G ∈ HG(O,C ) with Condition 2e for n > |G| and suppose that |Gi| ≥ 2.
Then, there is a non-empty set Fi of FBs such that D,Fi is a UFBD on
PropG(O,C ) towards G with Condition 2e for n.

Proof. There is a non-empty set F ′
i of FBs such that D,F ′

i is a UFBD on
PropG(O,C ) towards G by Lemma 11. If F ′

i contains a positive FB (g, pos),
we have |g| ≤ |G| < n. Hence, suppose f = neg and |g| > n for any (g, f) ∈ F ′

i .
Let ([G′]�, neg) be an FB in F ′

i and G′′ a subgraph of G′ with |G| < |G′′| ≤ n.
Define Fi to be (F ′

i − {([G′]�, neg)}) ∪ {([G′′]�, neg)}. Then, D,Fi is a UFBD
on PropG(O,C ) towards G with Condition 2e for n. ��

Lemma 30. Let D = G1,F1, . . . ,Gi,Fi be a finite UFBD on PropG(O,C )
towards G ∈ HG(O,C ) with Condition 2e for n > |G|. Then, there is a set
Gi+1 ⊆ HG(O,C ) such that D,Gi+1 is a UFBD on PropG(O,C ) towards G
with Condition 2e for n.

Proof. This is proved in a way similar to the proof of Lemma 12. ��

Theorem 31. Let D be a finite UFBD on PropG(O,C ) towards G ∈ HG(O,C )
with Condition 2e for n > |G|. Suppose that there is not a set A such that D,A
is a UFBD on PropG(O,C ) towards G with Condition 2e for n. Then, the last
set of D is the singleton of a hypothesis graph isomorphic to G.
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Proof. This is proved in a way similar to the proof of Theorem 13. By Lemmata
29 and 30, the last set is a singleton {G′} ⊆ HG(O,C ) with PropG(O,C )(G′) =
PropG(O,C )(G), which implies G′ � G by Proposition 26. ��

5 Conclusion and Future Work

In this paper we have defined the notions of a hypothesis and a hypothesis graph
that may contain many-sorted constants and variables as well as second-order
predicates symbols whose arguments are first-order literals. We have then pro-
posed two user-feedback dialogue protocols on hypotheses/hypothesis graphs,
and shown that our protocols necessarily terminate and a fixed target hypoth-
esis/hypothesis graph is achieved under certain reasonable conditions even if
there is an infinite number of hypotheses/hypothesis graphs. Our next step is to
empirically verify the usefulness of our protocols in real-world applications, e.g.
whether a plausible hypothesis can be achieved in a practical number of turns.
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Abstract. Miller recently proposed a definition of contrastive (counter-
factual) explanations based on the well-known Halpern-Pearl (HP) defi-
nitions of causes and (non-contrastive) explanations. Crucially, the Miller
definition was based on the original HP definition of explanations, but
this has since been modified by Halpern; presumably because the original
yields counterintuitive results in many standard examples. More recently
Borner has proposed a third definition, observing that this modified HP
definition may also yield counterintuitive results. In this paper we show
that the Miller definition inherits issues found in the original HP defini-
tion. We address these issues by proposing two improved variants based
on the more robust modified HP and Borner definitions. We analyse our
new definitions and show that they retain the spirit of the Miller defini-
tion where all three variants satisfy an alternative unified definition that is
modular with respect to an underlying definition of non-contrastive expla-
nations. To the best of our knowledge this paper also provides the first
explicit comparison between the original and modified HP definitions.

1 Introduction

Research on explainable AI (XAI) has seen a massive resurgence in recent years,
motivated in large part by concerns over the increasing deployment of opaque
machine learning models [1,2]. A common criticism of XAI however is that it
exhibits an over-reliance on researcher intuition [3,12,16]. In Miller’s seminal
survey for the XAI community on insights from philosophy and social science [16]
he advocates an important theory on human explanations: that they are causal
answers to contrastive why-questions. Subsequently Miller proposed a definition
of contrastive explanations [17] based on the well-known Halpern-Pearl (HP)
definitions of actual causes [6] and (non-contrastive) explanations [9] formalised
via structural equation models [20]. These formal definitions are each designed
to capture aspects of causes and explanations as understood in philosophy, social
science, and law, e.g. [5,10,11,13,14]. An interesting research question then is
to what extent existing work in XAI satisfies these formal definitions.

Before this kind of theoretical analysis can be fully realised it is necessary to
address a crucial limitation of the Miller definition: it is based on a definition of
non-contrastive explanations that is now known to yield counterintuitive results
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in many standard examples. More precisely, the Miller definition is based on
the original HP definition of explanations [9] although a modified HP definition
has since been proposed by Halpern [7]. Unlike with his detailed comparisons
between the various definitions of actual causes [6–8], Halpern did not explicitly
compare these two definitions, so limitations with the original are not entirely
clear. Informally Halpern argues that the modified HP definition yields explana-
tions that correspond more closely to natural language usage; in particular that
it captures a notion of sufficient causes where the original did not. More recently,
Borner has shown that the modified HP definition may also yield counterintuitive
results in some examples [4]; he argues that this is due to the modified HP defi-
nition failing to fully capture its own notion of sufficient causes, and proposes a
third definition that appears to resolve these issues.

The objective of this paper is to lay the groundwork for a theoretical analysis
of existing work in XAI with respect to the Miller definition of contrastive expla-
nations. Firstly, we illustrate why the original HP definition is problematic and
argue that the modified HP and Borner definitions offer more robust alterna-
tives; to the best of our knowledge this constitutes the first explicit comparison
between the original and modified HP definitions. Secondly, we show that the
Miller definition inherits and even amplifies issues exhibited by the original HP
definition. Thirdly, we address these issues by proposing two improved variants
of the Miller definition based on the modified HP and Borner definitions. Finally,
we analyse our new definitions and show that they retain the spirit of the Miller
definition where all three variants satisfy an alternative unified definition that is
modular with respect to a given definition of non-contrastive explanations.

The rest of this paper is organised as follows: in Sect. 2 we recall the original
HP and Miller definitions; in Sect. 3 we recall and compare the modified HP and
Borner definitions; in Sect. 4 we propose and analyse two new variants of the
Miller definition; and in Sect. 5 we conclude.

2 Background

If Xi is a variable, then D(Xi) denotes the non-empty set of values of Xi, called
its domain. If X = {X1, . . . , Xn} is a set of variables, then D(X) = D(X1) ×
· · · × D(Xn) is the domain of X. Each tuple x = (x1, . . . , xn) ∈ D(X) is called
a setting of X where xi is the value of Xi in x.

2.1 Structural Equation Models

Here we recall the framework of structural equation models [20]. A signature is
a set S = U ∪ V where U is a non-empty set of exogenous variables and V is a
non-empty set of endogenous variables with U ∩ V = ∅. A structural equation
for endogenous variable Xi is a function fi : D(S \ {Xi}) → D(Xi) that defines
the value of Xi based on the setting of all other variables. A causal model is
a pair (S, F ) where S = U ∪ V is a signature and F = {fi | Xi ∈ V } is a set
of structural equations. A causal setting is a pair (M,u) where M is a causal
model and u is a setting of U , called a context. As is common in the literature,
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we assume that causal models exhibit no cyclic dependencies. This guarantees a
causal setting has a unique solution (i.e. a setting of S), called the actual world.

For convenience we write e.g. Xi := min{Zj , Zk} to mean that the structural
equation for Xi is defined as fi(z) = min{zj , zk} for each setting z of Z =
S \ {Xi}. If X ⊆ V is a set of endogenous variables and x is a setting of X, then
X ← x is an intervention. An intervention X ← x on causal model M = (S, F )
yields a new causal model MX←x = (S, [F \ FX ] ∪ F ′

X) where FX = {fi ∈ F |
Xi ∈ X} and F ′

X = {Xi := xi | Xi ∈ X}. In other words, an intervention X ← x
on causal model M replaces the structural equation of each variable Xi ∈ X
with a new structural equation that fixes the value of Xi to xi.

A primitive event is a proposition Xi = xi where Xi is an endogenous variable
and xi is a value of Xi. A primitive event Xi = xi is true in causal setting (M,u),
denoted (M,u) |= (Xi = xi), if the value of Xi is xi in the actual world of
(M,u). An event ϕ is a logical combination of primitive events using the standard
logical connectives ∧, ∨, and ¬. Let (M,u) |= ϕ denote that event ϕ is true
in causal setting (M,u) by extending entailment of primitive events to logical
combinations in the usual way. A conjunction of primitive events is abbreviated
X = x, and may be interpreted set-theoretically as its set of conjuncts {Xi =
xi | Xi ∈ X}. We abuse notation in the Boolean case where e.g. X1 = 1∧X2 = 0
may be abbreviated as X1 ∧¬X2. If ϕ is an event and X ← x is an intervention,
then [X ← x]ϕ is a causal formula. A causal formula [X ← x]ϕ is true in causal
setting (M,u), denoted (M,u) |= [X ← x]ϕ, if (MX←x, u) |= ϕ.

We refer the reader to [7, Chapter 4] for a discussion on the expressiveness
of structural equation models and their various extensions, including the intro-
duction of norms, typicality, and probability.

2.2 Non-contrastive Causes and Explanations

Here we recall the HP definition of actual causes [6] and the original HP definition
of explanations [9]. It is worth noting that there are in fact three HP definitions
of actual causes [6,8]; the one recalled here is the most recent, known as the
modified definition, and described by Halpern as his preferred [7].

Actual Causes: A conjunction of primitive events X = x is an actual cause
of event ϕ in causal setting (M,u) if:

AC1 (M,u) |= (X = x) ∧ ϕ
AC2 There is a set of variables W ⊆ V and a setting x′ of X such that if

(M,u) |= (W = w) then (M,u) |= [X ← x′,W ← w]¬ϕ
AC3 X = x is minimal relative to AC1–AC2

Intuitively, AC1 requires that X = x and ϕ occur in the actual world of (M,u),
while AC3 requires that all conjuncts of an actual cause are necessary. Perhaps
less intuitive is AC2, known as the but-for clause [10]: but for X = x having
occurred, ϕ would not have occurred. AC2 is what makes this a counterfactual
definition of causality, where ϕ is said to counterfactually depend on X = x.

Some additional terminology follows. A conjunction of primitive events X =
x is a weak actual cause of event ϕ in causal setting (M,u) if it satisfies AC1 and
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AC2. It is worth highlighting that weak actual causes were called sufficient causes
in the original HP definition [8], which is also the term used by Miller [17]. In [7]
however it is clear that Halpern no longer regards this as an adequate definition of
sufficient causes, so we have replaced the term. We use terms partial and part of
to refer to subsets and elements from relevant conjunctions, respectively. Halpern
suggests [7] that an actual cause may be better understood as a complete cause,
with each part of an actual cause understood simply as a cause.

Explanations (Original HP Definition): An epistemic state K ⊆ D(U)
is a set of contexts considered plausible by an agent (called the explainee) prior
to observing event ϕ. A conjunction of primitive events X = x is an explanation
of event ϕ in causal model M relative to epistemic state K if:

EX1 (M,u) |= ϕ for each u ∈ K
EX2 X = x is a weak actual cause of ϕ in (M,u) for each u ∈ K such that

(M,u) |= (X = x)
EX3 X = x is minimal relative to EX2
EX4 (M,u) |= ¬(X = x) and (M,u′) |= (X = x) for some u, u′ ∈ K

Intuitively, EX1 requires that the occurrence of explanandum ϕ is certain, while
EX2 requires that X = x includes an actual cause of ϕ in any plausible context
where X = x occurs. Similar to AC3, EX3 requires that all conjuncts of the
explanation are necessary. Finally, EX4 requires that the occurrence of X = x is
uncertain; in effect the explainee can use an explanation to revise its epistemic
state by excluding some context(s) previously considered plausible.

2.3 Contrastive Causes and Explanations

Here we recall the Miller definitions of contrastive causes and contrastive expla-
nations [17]. The event ϕ in Sect. 2.2 is now replaced with a pair 〈ϕ,ψ〉, called
the fact and contrast case, respectively. Miller considered two contrastive vari-
ants: bi-factual (ψ is true) and counterfactual (ψ is false). In this paper we focus
on the counterfactual variants, where ψ is also called the foil.

Contrastive Causes: A pair of conjunctions of primitive events 〈X =
x,X = x′〉 is a contrastive cause of 〈ϕ,ψ〉 in causal setting (M,u) if:

CC1 X = x is a partial cause of ϕ in (M,u)
CC2 (M,u) |= ¬ψ
CC3 There is a non-empty set of variables W ⊆ V and a setting w of W such

that X = x′ is a partial cause of ψ in (MW←w, u)
CC4 xi = x′

i for each Xi ∈ X
CC5 〈X = x,X = x′〉 is maximal relative to CC1–CC4

Contrastive variants of non-contrastive causes (e.g. actual causes) are defined by
substituting the word cause as appropriate. Intuitively, CC1 and CC2 require
that in the actual world, the fact occurs and the foil does not. CC1 and CC3 then
say that contrastive causes need only reference parts of complete causes that are
relevant to both fact and foil. CC4 captures what Lipton calls the difference
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condition [14]. Finally, while contrastive causes are not required to reference
complete causes, CC5 ensures that information is not discarded unnecessarily.

Contrastive Explanations (Miller Definition): A pair of conjunctions
of primitive events 〈X = x,X = x′〉 is a contrastive explanation of 〈ϕ,ψ〉 in
causal model M relative to epistemic state K if:

CE1 (M,u) |= ϕ ∧ ¬ψ for each u ∈ K
CE2 〈X = x,X = x′〉 is a contrastive weak actual cause of 〈ϕ,ψ〉 in (M,u) for

each u ∈ K such that (M,u) |= (X = x)
CE3 〈X = x,X = x′〉 is minimal relative to CE2
CE4 (a) (M,u) |= ¬(X = x) and (M,u′) |= (X = x) for some u, u′ ∈ K

(b) There is a non-empty set of variables W ⊆ V and a setting w of W
such that w = x where (MW←w, u) |= ¬(X = x′) and (MW←w, u′) |=
(X = x′) for some u, u′ ∈ K

Intuitively, contrastive explanations are a natural extension to the original HP
definition of (non-contrastive) explanations where there is a direct mapping from
CE1–CE4 to EX1–EX4. The main difference is that explanandum and explana-
tion have been replaced with pairs, capturing fact and foil, with the definition
relying on contrastive causes rather than (non-contrastive) causes.

3 Alternative Non-contrastive Explanations

Here we recall the modified HP definition and compare to the original HP defini-
tion, then recall the Borner definition and compare to the modified HP definition.

3.1 Original HP vs. Modified HP Definition

Explanations (Modified HP Definition): A conjunction of primitive events
X = x is an explanation of event ϕ in M relative to epistemic state K if:

EX1’ For each u ∈ K:
(a) There is a conjunct Xi = xi that is part of an actual cause of ϕ in (M,u)

if (M,u) |= (X = x) ∧ ϕ
(b) (M,u) |= [X ← x]ϕ

EX2’ X = x is minimal relative to EX1’
EX3’ (M,u) |= (X = x) ∧ ϕ for some u ∈ K

In addition, an explanation is non-trivial if:

EX4’ (M,u) |= ¬(X = x) ∧ ϕ for some u ∈ K

According to Halpern [7], EX1’ requires that X = x is a sufficient cause of ϕ in
any plausible context where X = x and ϕ occur. Similar to EX3, EX2’ requires
that all conjuncts of an explanation are necessary. EX3’ then requires that there
is a plausible context where X = x occurs given observation ϕ. Finally, EX4’
requires that the occurrence of X = x is uncertain given ϕ.



Modifications of the Miller Definition of Contrastive Explanations 59

Three important differences can be observed between the original and modi-
fied HP definitions. Firstly, EX2 requires that an explanation includes an actual
cause in all relevant contexts from K, while EX1’(a) only requires that an expla-
nation intersects an actual cause in the same contexts. Secondly, EX1 requires
that the occurrence of ϕ is certain, while EX1’(b) only requires that the expla-
nation is sufficient to bring about ϕ in any plausible context. Thirdly, EX4
requires that the occurrence of X = x is uncertain, while EX4’ requires this only
for non-trivial explanations. Together with the view that an actual cause is a
complete cause, these observations seem to support the claim that the modified
HP definition better captures a notion of sufficient causes.

Example 1 (Disjunctive forest fire [8]). Consider a causal model with endoge-
nous variables V = {L,MD,FF} where L is a lightning strike, MD is a match
being dropped, and FF is a forest fire. The (Boolean) exogenous variables are
U = {UL, UMD} and the structural equations are L := UL, MD := UMD, and
FF := L∨MD. Intuitively, either lightning or match is enough to start the forest
fire. Let K be the epistemic state containing all contexts. The explanandum is
FF. The modified HP explanations are (i) L, (ii) MD, and (iii) FF. Both (i) and
(ii) are non-trivial. Conversely, there are no original HP explanations.

Example 2 (Overdetermined forest fire [4]). Consider a variation on the causal
model from Example 1. The endogenous variables are V ′ = V ∪ {B} where B is
a benzine spillage. The (Boolean) exogenous variables are U ′ = U ∪ {UB} and
the new structural equations are B := UB and FF := (MD ∧ B) ∨ L. Intuitively,
lightning is enough to start the forest fire, whereas the match requires that
benzine is also present. Let K be the epistemic state satisfying UL∧(¬UMD∨UB).
The explanandum is FF. The modified HP explanations are (i) L, (ii) MD, and
(iii) FF. Only (ii) is non-trivial. Conversely, the original HP explanations are (i)
L ∧ ¬MD, (ii) L ∧ MD, (iii) L ∧ ¬B, and (iv) L ∧ B.

Examples 1–2 are examples from the literature where the modified HP def-
inition seems more well-behaved than the original. In Example 1 the original
HP definition fails to yield any explanations even when an intuitive one exists
according to natural language usage, e.g. L or MD as an explanation of FF.
Conversely, in Example 2 the modified HP definition yields fewer explanations
than the original, but this is because the original references seemingly irrelevant
information, e.g. L on its own is not an explanation of FF. These results play out
in many other examples, typically with the original HP definition either failing to
yield any explanations (because EX1 and EX4 are too strong), or yielding results
that contain irrelevant information (because EX2 is problematic). In Sect. 3.2 we
will elaborate on modified HP explanation (ii) from Example 2.

3.2 Modified HP vs. Borner Definition

Borner examines the modified HP definition based on a closely related definition
of sufficient causes proposed by Halpern [7]. Note that Borner used an earlier
HP definition of actual causes but we assume AC1–AC3 throughout.
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Sufficient Causes: A conjunction of primitive events X = x is a sufficient
cause of event ϕ in causal setting (M,u) if:

SC1 (M,u) |= (X = x) ∧ ϕ
SC2 There is a conjunct Xi = xi that is part of an actual cause of ϕ in (M,u)
SC3 (M,u′) |= [X ← x]ϕ for each u′ ∈ D(U)
SC4 X = x is minimal relative to SC1–SC3

The difference between weak actual causes (previously called sufficient causes)
and sufficient causes (as per this definition) is that the latter replaces AC2 with
SC2–SC3, whereas the former simply drops AC3. As a consequence, weak actual
causes are required to include an actual cause, but SC2 only requires a sufficient
cause to intersect an actual cause. The key condition is SC3, which requires that
a sufficient cause is sufficient to bring about ϕ in any context.

Clearly the modified HP definition is related to this definition of sufficient
causes: EX1’(a) is just SC2 applied to each context from K where X = x and ϕ
occur, while EX1’(b) is a weakening of SC3 to contexts from K. The weakening
of SC3 can be understood by Halpern’s suggestion that it may be too strong to
require SC3 to hold even in unlikely contexts [7]. Borner however suggests [4]
that the modified HP definition is an attempt to adhere to this guideline: take
any X = x where the explainee believes, if X = x is true, then X = x would be
a sufficient cause of ϕ, but then remove any conjunct of X = x that is (i) already
believed or (ii) deducible from K and the remaining conjuncts of X = x. Borner
argues that, while either (i) or (ii) may be a reasonable guideline, the modified
HP definition appears to arbitrarily alternate between whether it follows (i) or
(ii), and this occasionally leads to counterintuitive results.

Explanations (Borner Definition): A conjunction of primitive events X =
x is a potential explanation of event ϕ in M relative to epistemic state K if:

E1–E2 There is a (possibly empty) conjunction of primitive events S = s with
X ∩ S = ∅ such that for each u ∈ K:
(a) (X = x)∧(S = s) is a sufficient cause of ϕ in (M,u) if (M,u) |= (X = x)
(b) (M,u) |= (S = s)

E3–E4 Same as EX3’–EX4’

Alternatively, X = x is an actual explanation if E1–E3 are satisfied and:

E5 (M,u) |= (X = x) ∧ ϕ for each u ∈ K

In addition, a potential explanation is parsimonious if:

E6 X = x is minimal relative to E1–E2

Intuitively, E1–E2(a) requires that X = x is a partial sufficient cause in any plau-
sible context where X = x occurs, while E1–E2(b) requires that X = x should
only omit information from a sufficient cause if the occurrence of that informa-
tion is certain. E3 is just EX3’, while E4 is just EX4’. For actual explanations, E5
is a much stronger variant of E3, and for parsimonious potential explanations,
E6 is comparable to EX2’. In original and modified HP explanations, explicit
minimality clauses serve to exclude irrelevant information. In potential Borner
explanations the minimality clause appears indirectly in E1–E2(a) via SC4.
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Example 3 (Example 2 cont.). Consider the causal model, epistemic state, and
explanandum from Example 2. The (parsimonious) potential Borner explanation
is B ∧ MD. The actual Borner explanations are (i) L and (ii) FF. Conversely,
recall that the modified HP explanations are (i) L, (ii) MD, and (iii) FF.

Example 4 (Suzy and Billy [4]). Consider a causal model with endogenous vari-
ables V ′′ = {SS,ST,SH,BS,BT,BH,BB} where SS is Suzy being sober, ST is
Suzy throwing, SH is Suzy hitting the bottle, and BB is the bottle breaking,
with BS, BT, and BH the same for Billy. The (Boolean) exogenous variables
are U ′′ = {USS, UST, UBS, UBT} and the structural equations are SS := USS,
ST := UST, BS := UBS, BT := UBT, SH := SS ∧ ST, BH := (BS ∧ BT ) ∧ ¬SH,
and SH := SH ∨BH. Intuitively, Suzy and Billy are perfect throwers when sober,
although Suzy throws harder than Billy, and if the bottle is hit then it always
breaks. Let K be the epistemic state satisfying (UBS∧UBT)∨(UBS∧USS∧UST).
The explanandum is BB. The (parsimonious) potential Borner explanations are
(i) SS ∧ ST, (ii) SH, and (iii) BH. The actual Borner explanation is BB. Con-
versely, the modified HP explanations are (i) BS∧SS, (ii) BS∧ST, (iii) SS∧ST,
(iv) BT∧ ¬SS, (v) BT∧SS, (vi) BT∧ ¬ST, (vii) BT∧ST, (viii) BT∧ ¬SH, (ix)
SH, (x) BH, and (xi) BB. All except (xi) are non-trivial.

Example 3 says that MD is a modified HP explanation of FF, without refer-
ence to B, even though both events are required to start the fire. According to
Borner, this is due to the modified HP definition assuming logical omniscience;
technically the explainee can deduce B from K given MD, so the modified HP
definition says that B is irrelevant. Borner argues that this assumption is unreal-
istic in humans [11], with its effect being to “confront human agents with riddles
by only presenting the smallest possible amount of clues by which an agent can
in principle deduce the full explanation.” The Borner definition addresses this by
permitting B ∧MD as a potential explanation. Comparing Examples 3–4 we see
the alternating behaviour of the modified HP definition raised by Borner; BS∧SS
and BS∧ST are modified HP explanations, although BS is deducible from K. In
this example the modified HP definition seems unable to discard what amounts
to causally irrelevant information in relation to BT, e.g. both BT ∧ ¬SS and
BT∧SS are modified HP explanations. On the other hand, the Borner definition
permits no explanation that references BT, which could support Halpern’s view
that to require SC3 to hold even in unlikely contexts may be too strong.

4 Alternative Contrastive Explanations

Here we propose and analyse two improved variants of the Miller definition based
the modified HP and Borner definitions.

Definition 1 (Contrastive explanations: modified HP variant). A pair
of conjunctions of primitive events 〈X = x,X = x′〉 is a contrastive explanation
of 〈ϕ,ψ〉 in causal model M relative to epistemic state K if:

CH1 For each u ∈ K:
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(a) There is a pair 〈Xi = xi,Xi = x′
i〉 that is part of a contrastive actual

cause of 〈ϕ,ψ〉 in (M,u) if (M,u) |= (X = x) ∧ ϕ ∧ ¬ψ
(b) There is a pair of (possibly empty) conjunctions of primitive events

〈S = s, S = s′〉 with X ∩ S = ∅ such that:
– (M,u) |= [X ← x, S ← s]ϕ
– There is a non-empty set of variables W ⊆ V and a setting w of W

such that w = x where (MW←w, u) |= [X ← x′, S ← s′]ψ
(c) xi = x′

i for each Xi ∈ X
(d) 〈X = x,X = x′〉 is maximal relative to CH1(a)–CH1(c)

CH2 〈X = x,X = x′〉 is minimal relative to CH1
CH3 (M,u) |= (X = x) ∧ ϕ ∧ ¬ψ for some u ∈ K

In addition, a contrastive explanation is non-trivial if:

CH4(a) (M,u) |= ¬(X = x) ∧ ϕ for some u ∈ K
(b) There is a non-empty set of variables W ⊆ V and a setting w of W such

that w = x where (MW←w, u) |= ¬(X = x′) ∧ ψ for some u ∈ K

Definition 1 extends EX1’–EX4’ in the spirit of CE1–CE4 by replacing causes
with contrastive causes and incorporating the foil ψ as appropriate. The addi-
tional conditions in CH1–CH2 are due to what we already know about modified
HP explanations, i.e. that they do not perfectly capture sufficient causes and
instead integrate a restricted notion of sufficient causes within the definition of
explanations itself. As a consequence, there is no convenient definition of con-
trastive causes that is adequate for Definition 1, and the key characteristics from
CC1–CC5 must be integrated directly: the use of partial causes in CC1/CC3 is
handled by CH1(b), the difference condition from CC4 is handled by CH1(c),
and the maximality condition from CC5 is handled by CH1(d).

Definition 2 (Contrastive explanations: Borner variant). A pair of con-
junctions of primitive events 〈X = x,X = x′〉 is a potential contrastive explana-
tion of 〈ϕ,ψ〉 in causal model M relative to epistemic state K if:

CB1–CB2 There is a pair of (possibly empty) conjunctions of primitive events
〈S = s, S = s′〉 with X ∩ S = ∅ such that for each u ∈ K:
(a) 〈X = x ∧ S = s,X = x′ ∧ S = s′〉 is a contrastive sufficient cause of ϕ

in (M,u) if (M,u) |= (X = x)
(b) (M,u) |= (S = s)
(c) There is a non-empty set of variables W ⊆ V and a setting w of W such

that w = x where (MW←w, u) |= (S = s′)
CB3–CB4 Same as CH3–CH4

Alternatively, X = x is an actual contrastive explanation if CB1–CB3 and:

CB5 (M,u) |= (X = x) ∧ ϕ ∧ ¬ψ for each u ∈ K

In addition, a potential contrastive explanation is parsimonious if:

CB6 〈X = x,X = x′〉 is minimal relative to CB1–CB2



Modifications of the Miller Definition of Contrastive Explanations 63

Definition 2 extends E1–E6 in the spirit of CE1–CE4 by incorporating con-
trastive causes and the foil as appropriate. Compared to Definition 1 this is a
more straightforward translation of the non-contrastive definition, since it is able
to build on the definitions of contrastive sufficient causes (i.e. CC1–CC5 under
SC1–SC4). The biggest change is the inclusion of CB1–CB2(c), which says that
E1–E2(b) should also hold for S = s′ under an appropriate intervention.

Example 5 (Example 2 cont.). Consider the causal model and epistemic state
from Example 2.1 The explanandum is 〈FF,¬FF〉. The Miller contrastive expla-
nations are (i) 〈¬MD,MD〉, (ii) 〈MD,¬MD〉, (iii) 〈¬B,B〉, and (iv) 〈B,¬B〉.
The modified HP contrastive explanations are (i) 〈MD,¬MD〉, (ii) 〈L,¬L〉, and
(iii) 〈FF,¬FF〉. Only (i) is non-trivial. The potential Borner contrastive expla-
nations are (i) 〈MD,¬MD〉 and (ii) 〈B,¬B〉. Both (i) and (ii) are parsimonious.
The actual Borner contrastive explanations are (i) 〈L,¬L〉 and (ii) 〈FF,¬FF〉.

Example 5 demonstrates that the definitions of contrastive explanations
inherit characteristics of their corresponding non-contrastive definitions, includ-
ing the potential for counterintuitive results. Example 2 said that L ∧ ¬MD was
an original HP explanations of FF, which we said was counterintuitive because
¬MD was seemingly irrelevant, but in Example 5 we see that 〈¬MD,MD〉 is an
original HP contrastive explanations of 〈FF,¬FF〉, which is not only irrelevant
but seemingly nonsensical. Conversely, Example 3 said that L was an explana-
tion of FF according to both modified HP and (actual) Borner definitions, and
here we see intuitively that 〈L,¬L〉 is a contrastive explanation of 〈FF,¬FF〉
for corresponding variants. These examples suggest that the definitions of con-
trastive explanations not only inherit, but potentially amplify counterintuitive
behaviour exhibited by their corresponding non-contrastive definitions. There is
a clear reason for this: Miller proved that his definition of contrastive explana-
tions was equivalent to an alternative definition that depends directly on the
original HP definition of non-contrastive explanations [17]. As we will now show,
this alternative Miller definition can in fact be understood as a modular defini-
tion of contrastive explanations where equivalence also holds for Definitions 1–2
when instantiated with the appropriate non-contrastive definition. A trivial gen-
eralisation of this alternative Miller definition is as follows:

Definition 3 (Contrastive explanations: modular variant). A pair of
conjunctions of primitive events 〈X = x,X = x′〉 is a contrastive explanation of
〈ϕ,ψ〉 in causal model M relative to epistemic state K under a given definition
of (non-contrastive) explanations if:

CE1’ X = x is a partial explanation of ϕ in M relative to K
CE2’ There is a non-empty set of variables W ⊆ V and a setting w of W such

that X = x′ is a partial explanation of ψ in MW←w relative to K
CE3’ xi = x′

i for each Xi ∈ X
CE4’ 〈X = x,X = x′〉 is maximal relative to CE1’–CE3’

1 Note that (contrastive) explanations are not limited to Boolean domains.
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Theorem 1. The Miller definition is equivalent to Definition 3 under original
HP explanations if (M,u) |= ¬ϕ ∨ ¬ψ for each u ∈ K.

Proof. The theorem requires that CE1–CE4 is equivalent to CE1’–CE4’ under
EX1–EX4 if the theorem condition holds, i.e. (M,u) |= ¬ϕ∨¬ψ for each u ∈ K.
The proof2 is the same as for Theorem 6 in [17] except that the theorem condition
makes explicit an assumption that was implicit in Miller’s proof; this assumption
is required to prove (in the right-to-left case) that if a pair satisfies CE1’–CE4’
under EX1–EX4 then it must also satisfy CE1 and CC2 via CE2. ��
Theorem 2. Definition 1 is equivalent to Definition 3 under modified HP expla-
nations if (M,u) |= ¬ϕ ∨ ¬ψ for each u ∈ K.

Proof. For modified HP contrastive explanations, the theorem requires that
CH1–CH3 is equivalent to CE1’–CE4’ under EX1’–EX3’ if the theorem condition
holds. Non-trivial modified HP contrastive explanations require that CH1–CH4
is equivalent to CE1’–CE4’ under EX1’–EX4’ if the condition holds. The proofs
follow the same approach as the proof for Theorem 1. ��
Theorem 3. Definition 2 is equivalent to Definition 3 under Borner explana-
tions if (M,u) |= ¬ϕ ∨ ¬ψ for each u ∈ K.

Proof. For potential Borner contrastive explanations, the theorem requires that
CB1–CB4 is equivalent to CE1’–CE4’ under E1–E4 if the theorem condition
holds. Actual Borner contrastive explanations require that CB1–CB3, CB5 is
equivalent to CE1’–CE4’ under E1–E3, E5 if the condition holds. Parsimonious
potential Borner contrastive explanations require that CB1–CB4, CB6 is equiv-
alent to CE1’–CE4’ under E1–E4, E6 if the condition holds. Again the proofs
follow the same approach as the proof for Theorem 1. ��

Theorem 1 is just a restating of the previous result from Miller except that
we have added a condition that formalises his assumption of incompatibility
between fact and foil [17, Section 4.1]; this assumption is necessary for the theo-
rem to hold. Theorems 2–3 then show that the result generalises for the two other
variants. On the one hand, these theorems demonstrate that Definitions 1–2 suc-
cessfully capture the modified HP and Borner definitions. On the other hand,
they demonstrate that Definitions 1–2 also successfully capture the Miller def-
inition. This suggests both a strength and weakness of the Miller definition:
Definition 3 offers a conceptually simpler interpretation of contrastive expla-
nations, yet also highlights the elevated status of non-contrastive explanations.
Therefore it is crucial to choose a non-contrastive definition that is robust.

5 Conclusion

In this paper we demonstrated generalisability of Miller’s definition of contrastive
explanations, which was previously bound to the original HP definition of non-
contrastive explanations. We showed that there are at least two other variants of
2 Full proofs are available in an online preprint appendix.
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the Miller definition, each derived from a different definition of non-contrastive
explanations. All three variants have a unified modular interpretation under the
relevant non-contrastive definition. However, if the underlying non-contrastive
definition yields counterintuitive results (as with the original HP definition), then
these are inherited by the contrastive definition. Our new variants address this
by supporting non-contrastive definitions that are more robust than the original
HP definition without changing the spirit of the Miller definition. This conclusion
implies that future research may focus on developing more robust definitions of
non-contrastive explanations, insofar as one accepts Miller’s original definition.

We suggested in Sect. 1 that formal definitions of contrastive explanations
offer an interesting foundation for theoretical analyses of existing work in XAI.
One example that is particularly well-suited to such an analysis is an approach
to XAI for machine learning known as counterfactual explanations [18,24], which
we will abbreviate here as ML-CEs. The standard formulation [23] is as follows:
if f : X → Y is a trained classifier, x ∈ X is a datapoint such that f(x) = y
is the prediction for x, and y′ ∈ Y is an alternative (counterfactual) prediction
such that y = y′, then an ML-CE is a datapoint x′ ∈ X such that f(x′) = y′. The
choice of x′ from the range of valid ML-CEs is based on some goodness heuristic
(constructed from e.g. Manhattan distance, Hamming distance, or closeness to
the data manifold), yet these heuristics often have little theoretical or empirical
justification [12]. Nonetheless, ML-CEs have gained significant prominence in
XAI since first introduced in 2018, with recent surveys having identified over
350 papers on the topic [12,22]. The particular relevance of ML-CEs to our work
is that they can be easily captured by structural equation models; the alter-
ation of feature values from x to x′ can then be interpreted as a form of causal
attribution (as per the HP definition of actual causes). What remains then is to
understand to what extent these causes can be regarded as explanations, and
what role is served by the various heuristics. Some initial work in this direction
has been completed by Mothilal et al. [19] who proposed a bespoke definition of
(non-contrastive) explanations and showed that it could provide a unified inter-
pretation of ML-CEs and feature attribution methods in XAI [15,21]. However,
broader justifications for this bespoke definition remain unclear (e.g. applied to
standard examples it appears less robust than the HP and Borner definitions),
nor does it consider how ML-CEs can be understood as contrastive explanations.
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Abstract. Efficient computation of hard reasoning tasks is a key issue in
abstract argumentation. One recent approach consists in defining approx-
imate algorithms, i.e. methods that provide an answer that may not
always be correct, but outperforms the exact algorithms regarding the
computation runtime. One such approach proposes to use the grounded
semantics, which is polynomially computable, as a starting point for
determining whether arguments are (credulously or skeptically) accepted
with respect to various semantics. In this paper, we push further this idea
by defining various approaches to evaluate the acceptability of arguments
which are not in the grounded extension, neither attacked by it. We have
implemented our approaches, and we describe the result of their empiri-
cal evaluation.

Keywords: Abstract argumentation · Approximate reasoning

1 Introduction

Designing algorithms that are computationally effective is an important issue for
many fields of Artificial Intelligence. Traditionally, existing approaches addressed
for automated reasoning can be divided into two families responding to different
philosophies, namely complete or approximate approaches. While the former aim
to produce the correct answer however long it takes to produce it, the latter focus
on responding as quickly as possible at the expense of the risk of missing it.

Among many symbolic representations offered by the literature of Artificial
Intelligence to model a problem, Abstract Argumentation [9] is an intuitive and
convenient framework to reason with conflicting pieces of information. Classical
semantics for reasoning with an abstract argumentation framework (AF) are
based on the notion of extension, i.e. sets of collectively acceptable arguments.
However, a potential drawback of this framework is the high complexity of many
classical reasoning tasks for most of the semantics [10]. Among recent approaches
for solving these problems, many exact algorithms (which always provide a cor-
rect answer, but may require an exponential runtime in the worst case since
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the problems at hand are theoretically intractable) have been proposed (e.g. the
SAT-based approaches by [11,15,19]). Fewer approximate algorithms have been
proposed. We are particularly interested in the Harper++ approach [20], which
consists in using the grounded semantics (which is polynomially computable) as
a shortcut for determining which arguments are acceptable with respect to vari-
ous extension-based semantics. Indeed, it is known that any argument belonging
to the (unique) grounded extension also belongs to all the extensions for sev-
eral classical semantics, while an argument which is attacked by the grounded
extension cannot belong to any extension (again, for most classical semantics).
Thus, the question is how to determine the acceptability of other arguments,
those which do not belong to the grounded extension nor are attacked by it.
Harper++ proposes to consider that all these arguments should be credulously
accepted (i.e. belong to at least one extension), and none of them should be skep-
tically accepted (i.e. none of them belongs to any extension). In this paper, we
study the question of approximating the acceptability of these arguments, and
propose two families of approaches to solve this problem. In the first one, we com-
pare the out-degree and in-degree of arguments (i.e. the number of arguments
they attack or which attack them), and in the second one we rely on a classical
gradual semantics, namely h-categorizer [3]. Each of these families of approaches
depends on some parameters. We show that they generalize the Harper++ algo-
rithm in the sense that setting some value to the parameters induces that our
approaches have the same behaviour as Harper++. Then, we empirically eval-
uate the accuracy of our approaches, i.e. the ratio of correct answers that we
obtain. Finally, we show that our approach is (as expected from an approximate
algorithm) significantly faster than a SAT-based exact algorithm.

In Sect. 2 we recall background notions of abstract argumentation and the
Harper++ approach. We describe our new methods for approximating the
acceptability of arguments in Sect. 3. Section 4 presents our experimental eval-
uation and we analyse the results in Sect. 5. We describe some related work in
Sect. 6, and Sect. 7 concludes the paper.

2 Background

2.1 Abstract Argumentation

Let us first recall some basic notions of abstract argumentation [9].

Definition 1. An argumentation framework (AF) is a directed graph F =
〈A,R〉 where A is a finite and non-empty set of arguments and R ⊆ (A × A) is
an attack relation over the arguments. We say that a ∈ A (resp. S ⊆ A) attacks
b ∈ A if (a, b) ∈ R (resp. ∃c ∈ S s.t. (c, b) ∈ R). Then, S ⊆ A defends an
argument a if S attacks all the arguments that attack a.

Reasoning with an AF can then be achieved through the notion of extension,
i.e. sets of arguments which are collectively acceptable. An extension S must sat-
isfy some requirements, namely conflict-freeness i.e. no arguments in S attack
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each other, and admissibility i.e. S must be conflict-free and defend all its ele-
ments. Conflict-free and admissible sets are denoted by cf(F) and ad(F). Then,
Dung defines four semantics which induce different sets of extensions. Thus, a
set of arguments S ⊆ A is:

– a complete extension iff S ∈ ad(F) and S does not defend any argument
outside of S;

– a preferred extension iff S is a ⊆-maximal admissible set;
– a stable extension iff S ∈ cf(F) and S attacks every a ∈ A \ S;
– a grounded extension iff S is a ⊆-minimal complete extension.

We use co(F), pr(F), stb(F) and gr(F) for representing these sets of exten-
sions.

It is well known [9] that, for every AF F , stb(F) ⊆ pr(F) ⊆ co(F), and
|gr(F)| = 1. For these reasons, any argument a ∈ E (where E is the unique
grounded extension) belongs to every complete extension (since E is the unique
⊆-minimal one), and thus to every preferred and stable extension (which are all
complete extensions as well). And similarly, any argument b attacked by E is
attacked by an argument a which belongs to every stable, preferred or complete
extension, so b does not belong to any stable, preferred or complete extension.
Finally, given an extension-based semantics σ, an argument is credulously (resp.
skeptically) accepted w.r.t. σ if it belongs to some (resp. each) σ-extension. This
is denoted by a ∈ credσ(F) (resp. a ∈ skepσ(F)).

Example 1. Figure 1 gives an example of AF F = 〈A,R〉. Its extensions and sets
of (credulously and skeptically) accepted arguments for the four extension-based
semantics described previously are also given.

Fig. 1. An example of AF F (left) with the extensions and accepted arguments for the
four semantics σ ∈ {co, pr, stb, gr} (right).

2.2 Harper++ for Approximate Reasoning

From the previous observation on the relation between the grounded extension
and the other semantics, one can notice that using the grounded extension as an
approximation of reasoning with other semantics makes sense, especially since
computing the grounded semantics is achieved in polynomial time, while other
semantics are generally computationally hard [10]. This has conducted to an
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empirical evaluation of the similarity between the grounded semantics and the
other forms of reasoning in argumentation [7]. A consequence of this work is the
development of the approximate argumentation solver Harper++ [20], which
works as follows. First consider an AF F = 〈A,R〉, an argument a ∈ A, and a
reasoning task among DS-σ and DC-σ, corresponding to the skeptical and cred-
ulous acceptability, i.e. checking whether the argument a belongs to skepσ(F) or
credσ(F). Then, for any semantics, Harper++ computes the grounded extension
E of F , and answers:

– YES if a belongs to E,
– NO if a is attacked by some b ∈ E,
– otherwise, YES if the problem is DC-σ, and NO if the problem is DS-σ.

This last category of arguments corresponds to the UNDEC arguments with
respect to the grounded labelling [5]. We use IN(F) to denote the set of argu-
ments which belong to the grounded extension of F , OUT(F) for the arguments
attacked by a member of the grounded extension, and UNDEC(F) for the last
category. Formally, the Harper++ approach works as follows:

Definition 2. Given F = 〈A,R〉 an AF, a ∈ A an argument and x ∈
{DC,DS}, the function Acc++ is defined by:

Acc++(F , a, x) =

⎧
⎨

⎩

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and x = DC),

NO otherwise.

Example 2. Continuing the previous example, since the grounded extension is
empty, all the arguments belong to UNDEC(F). So, Acc++(F , ai,DC) = Y ES
and Acc++(F , ai,DS) = NO for all ai ∈ A. This means, for instance, that
Acc++ answers correctly for 3 arguments for the problem DC-stb, and for 3
arguments for the problem DS-stb.

3 New Approaches to Acceptability Approximation

A natural question is then whether one can find a better way to approximate the
acceptability of arguments with respect to the stable, preferred and complete
semantics when they belong to UNDEC(F). We propose two approaches for
addressing this issue, respectively based on a comparison between the out-degree
and the in-degree associated with the considered argument on one side, and on
an evaluation of its acceptability using a gradual semantics on the other side.

3.1 ARIPOTER-degrees: ARgumentatIon ApPrOximaTE
Reasoning Using In/Out Degrees of Arguments

First, let us define some additional notations. Given an AF F = 〈A,R〉 and an
argument a ∈ A, define a+ = {b ∈ A | (a, b) ∈ R} and a− = {b ∈ A | (b, a) ∈ R},
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i.e. the set of arguments attacked by a or attacking a, respectively. We call in-
degree of a the number of attackers of a, i.e. |a−|, and out-degree of a the number
of arguments attacked by a i.e. |a+|.

The intuition behind this approach is that an argument which attacks more
arguments than the number of its attackers has good chances to defend itself,
and then being accepted. Then, given some k ∈ R, we assume that a is accepted
when |a+| ≥ k × |a−|.
Definition 3. Given F = 〈A,R〉 an AF, a ∈ A an argument and k ∈ R, the
function AccOut/In is defined by:

AccOut/In(F , a, k) =

⎧
⎨

⎩

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and |a+| ≥ k × |a−|),

NO otherwise.

This means that arguments in IN(F) and OUT(F) are respectively accepted
and rejected, as expected, and UNDEC arguments are considered as accepted
iff their out-degree is at least k times higher than their in-degree. We will see in
Sect. 5 that this parameter can be adapted according to the type of AF evaluated
and the problem considered.

Example 3. We continue the previous example. Fixing k = 1, we observe that
AccOut/In(F , ai, 1) = Y ES for ai ∈ {a, b} and AccOut/In(F , aj , 1) = NO for
aj ∈ {c, d}. So this approach provides a correct answer to e.g. DC-stb for 3
arguments, and to DS-stb for 3 arguments as well.

3.2 ARIPOTER-hcat: ARgumentatIon ApPrOximaTE Reasoning
Using the H-Categorizer Semantics

Our second approach is to use gradual semantics to assess the acceptability
of UNDEC arguments. A gradual semantics [2] is a function mapping each
argument in an AF to a number representing its strength, classically in the
interval [0, 1]. As explained in [1], the acceptability of an argument is, in this
case, related to its strength in the sense that only “strong” arguments can be
considered accepted. It should also be noted that existing gradual semantics use
evaluation criteria that differ from extension-based semantics, such as the quality
or quantity of direct attackers, but does not necessarily satisfy the condition of
conflict-freeness. However, although these two families of semantics are different,
certain aspects of gradual semantics can be used to try to assess whether an
argument seems acceptable or not in the context of extension-based semantics.
For example, a characteristic shared by most gradual semantics is that the less
an argument is attacked, the stronger it is. This suggests that an argument
with a high score is more likely to belong to an extension. The aim of our
approach is therefore to accept UNDEC arguments whose score is greater than
a given threshold w.r.t. some gradual semantics. Although our approach can be
generalised to all gradual semantics, we focus here on the h-categorizer semantics
[3]. This gradual semantics uses a function whose purpose is to assign a value
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which captures the relative strength of an argument taking into account the
strength of its attackers which takes into account the strength of their attackers,
and so on. Formally, given an AF F = 〈A,R〉 and a ∈ A, h-cat(F , a) =

1
1+

∑
b∈a− h-cat(F,b) .

To use this gradual semantics for deciding the acceptability an UNDEC
argument a, we consider that a is accepted if h-cat(F , a) ≥ τ with τ ∈ [0, 1].

Definition 4. Given F = 〈A,R〉 an AF, a ∈ A an argument and τ ∈ [0, 1], the
function Acch-cat is defined by:

Acch-cat(F , a, τ) =

⎧
⎨

⎩

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and h-cat(F , a) ≥ τ),

NO otherwise.

Example 4. Again, continuing the previous example, we see that h-cat(F , a) =
h-cat(F , b) ≈ 0.62, h-cat(F , c) ≈ 0.45 and h-cat(F , d) ≈ 0.69. So, setting
τ = 0.5 allows Acch-cat to give perfect answers to DC-σ queries for the AF F ,
and τ = 0.65 leads to perfect answers to DS-σ queries for F , for σ ∈ {stb, pr}.

3.3 Relationships Between Approaches

Both our new approaches generalize the Harper++ approach, i.e. by choosing
a good value for τ or k, our approach recovers the result of Harper++ for the
UNDEC arguments (it is obvious that arguments in IN(F) or OUT(F) are
treated equally by Harper++ and our new approaches).

Proposition 1. For any AF F = 〈A,R〉 and a ∈ A, the following hold:

– Acc++(F , a,DC) = AccOut/In(F , a, 0);
– Acc++(F , a,DC) = Acch-cat(F , a, 0).

Proof. Recall that Harper++ considers as accepted any UNDEC argument
in the case of credulous acceptability, i.e. Acc++(F , a,DC) = Y ES if a ∈
UNDEC(F). Obviously, with k = 0, the inequality |a+| ≥ k × |a−| is sat-
isfied for any argument, which means that AccOut/In(F , a, 0) = Y ES when
a ∈ UNDEC(F). Similarly, any argument has a h-categorizer value greater
than 0, so Acch-cat(F , a, 0) = Y ES when a ∈ UNDEC(F). 	

Proposition 2. For any AF F = 〈A,R〉 and a ∈ A, the following hold:

– Acc++(F , a,DS) = AccOut/In(F , a, |A| + 1);
– Acc++(F , a,DS) = Acch-cat(F , a, 1).

Proof. We know that Acc++(F , a,DS) = NO when a ∈ UNDEC(F).
For the approach based on the out-degree and in-degree, observe that for

a ∈ UNDEC(F), |a+| cannot be greater than the number of arguments in the
AF, and |a−| cannot be equal to 0 (because otherwise, a would belong to IN(F)).
So, by setting k = |A| + 1 the inequality |a+| ≥ k × |a−| can never be true. This
means that for any argument a ∈ UNDEC(F), AccOut/In(F , a, |A| + 1) = NO.
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Consider now Acch-cat, i.e. the approach based on h-categorizer. We know
that only unattacked arguments have a value of h-categorizer equal to 1, and
these arguments are in IN(F). So for any a ∈ UNDEC(F), h-cat(a) < 1. This
means that for any such argument, Acch-cat(F , a, 1) = NO. 	


4 Experimental Settings

We focus on four decision problems: DC-stb, DS-stb, DC-pr and DS-pr. Recall
that DC-σ is NP-complete for σ ∈ {stb, pr}, and DS-σ is coNP-complete for
σ = stb and ΠP

2 -complete for σ = pr [10]. Among Dung’s classical semantics,
we ignore the grounded semantics since it is polynomially computable and at the
base of all the approaches described here. We also ignore the complete semantics
because DS-co is equivalent to DS-gr, and DC-co is equivalent to DC-pr.

4.1 Benchmarks

Random Graphs. We consider an experimental setting representing three dif-
ferent models used during the ICCMA competition [12] as a way to generate
random argumentation graphs: the Erdös-Rényi model (ER) which generates
graphs by randomly selecting attacks between arguments; the Barabási-Albert
model (BA) which provides networks, called scale-free networks, with a structure
in which some nodes have a huge number of links, but in which nearly all nodes
are connected to only a few other nodes; and the Watts-Strogatz model (WS)
which produces graphs which have small-world network properties, such as high
clustering and short average path lengths.

The generation of these three types of AFs was done by the AFBench-
Gen2 generator [6]. We generated a total of 9460 AFs almost evenly dis-
tributed between the three models (3000 AFs for the WS model and 3230
AFs for the ER and BA model)1. For each model, the number of arguments
varies among Arg = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The parameters used
to generate graphs are as follows: for ER, 19 instances for each (nbArg, pAtt)
in Arg × {0.15, 0.2, . . . , 0.95}; for BA, 17 instances for each (nbArg, pCyc) in
Arg× {0, 0.05, 0.1, . . . , 0.9}; for WS, 5 instances for each (nbArg, pCyc, β, K) in
Arg× {0.25, 0.5, 0.75} × {0, 0.25, 0.5, 0.75, 1} × {k ∈ 2N s.t. 2 ≤ k ≤ nbArg− 1}.
We refer the reader to [6] for the meaning of the parameters. For each instance,
an argument is randomly chosen to serve as the query for DC and DS problems.

In the following, we collectively refer to the group of AFs generated using the
Erdös-Rényi model (resp. Barabási-Albert model and Watts-Strogatz model) as
rER (resp. rBA and rWS). Finally, the notation randomAF refers to the union of
these three groups.

1 The set of instances can be found at the following address:
https://cloud.parisdescartes.fr/index.php/s/diZAz5sTzWbNCMt.

https://cloud.parisdescartes.fr/index.php/s/diZAz5sTzWbNCMt
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Instances from ICCMA 2019/2021. We have also selected the “2019” set of
instances from the ICCMA 2021 competition [16]. These instances were sampled
from the ICCMA 2019 competition benchmarks in order to provide challenging
instances, but not too challenging (in order to avoid a high number of timeouts,
which does not help to rank solvers). For our purpose, these instances are also
relevant since we want to compare the approximate methods with an exact
method, which could often reach the timeout if the instances are too hard. This
set of instances is made of 107 AFs, distributed as follows:

– A1 (2), A2 (10), A3 (13), A4 (4), B1 (1), B2 (10), B3 (16), B4 (1), C1 (5),
C2 (6), C3 (1), T2 (8), T3 (13), T4 (5) (instances from ICCMA 2017 [12]),

– S (1), M (7) (instances from [22]),
– N (4) (instances from [13]).

The number of arguments in these AFs varies between 102 and 8034 arguments.
In the following, we collectively refer to this group of AFs as iccma19.

5 Empirical Analysis

A Python implementation of the SAT-based encoding from [15], called Pygarg,
was used to obtain the correct answers, allowing us to evaluate the solvers accu-
racy, i.e. the ratio of instances that are correctly solved. We can also compare
the runtime of approximate algorithms with the runtime of exact algorithms.

5.1 Solving Time

Table 1 contains the running time of the exact solver Pygarg, our two approx-
imate solvers (ARIPOTER-hcat2 and ARIPOTER-degrees3) and the approxi-
mate solver Harper++ on iccma19. Note that we have chosen to display only
the time taken by the solvers to solve the problem, without including the import
time. Indeed, the import time is the same for both exact and approximate
approaches, and takes an average of 0.1 s for these instances. As expected, we
observe that the running time of approximate reasoning is effectively much lower
(always under one second) with respect to exact solvers. This clearly justifies the
interest of using approximate approaches in practice whenever possible.

5.2 Accuracy

Now we provide the accuracy of our solvers on the benchmarks from Sect. 4.1.

2 https://github.com/jeris90/approximate hcat.
3 https://github.com/jeris90/approximate inout.

https://github.com/jeris90/approximate_hcat
https://github.com/jeris90/approximate_inout
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Table 1. Average running time (in seconds, rounded to 10−4) of Pygarg, ARIPOTER-
hcat, ARIPOTER-degrees and Harper++ on iccma19. This time includes only the
solving of the problem (and not the import of the graph).

solver DC-pr DC-stb DS-pr DS-stb

Pygarg 57.0923 24.0770 48.6878 39.8206

ARIPOTER-hcat 0.0148 0.0169 0.0201 0.0168

ARIPOTER-degrees 0.0019 0.0020 0.0019 0.0019

Harper++ 0.0019 0.0020 0.0019 0.0019

Instances randomAF - Table 2 shows the accuracy of the different approximate
solvers on random instances. Columns represent the decision problems (DC-pr,
DC-stb, DS-pr, DS-stb), and rows correspond to solvers for each family of
instances (rER, rBA, rWS) and for the full set of instances randomAF. For each
family of instances, the highest accuracy for each problem is bold-faced.

Let us start by focusing on the last line (randomAF). We observe that
ARIPOTER-hcat reaches the best accuracy for the credulous acceptability prob-
lems with around 93% correct answers. It is followed by ARIPOTER-degrees
(� 83%) and finally Harper++ (� 42%). For DS-pr, ARIPOTER-degrees
slightly dominates the other approaches. Note however that the three solvers
have an excellent accuracy with more than 97% correct answers. Finally, the
accuracy for DS-stb is globally lower than the other problems. Indeed, it is bet-
ter solved by ARIPOTER-degrees with around 78% correct answers. This can
be explained by the particularity of the stable semantics whose set of extensions
may be empty, which implies that all arguments are skeptically accepted.

We also study the results specifically for each family of instances. Indeed,
unlike Harper++, our approaches are parameterised and the optimal choice of
parameters may depend on both the topology of the graphs and the problem to
be solved. For example, ARIPOTER-degrees and ARIPOTER-hcat obtain the
best results (more than 95% correct answers) for all problems except DS-stb
on rER and rWS when the parameter values are high. Conversely, the accuracy is
highest when the parameter values are minimum for the DS-stb problem. For
these two families of instances, we can also see that Harper++ has a very low
accuracy on all problems except DS-pr. Finally, for the instances from rBA, it
is interesting to note that the results returned by the three approximate solvers
match perfectly with the exact solvers. This is explained first by the fact that
more instances are directly “solved” by the grounded semantics (1925 against
245 for rER and 161 for rWS). The second reason comes from the way these
AFs are constructed because it allows each argument to appear in at least one
extension.

Instances iccma19 - We have also computed the accuracy of our solvers on
the instances iccma19. As we do not know the exact structure of the AFs, we
have chosen to use the values of k and τ that obtained the best accuracy for the
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Table 2. Accuracy comparison of the three approximate solvers for rER, rBA, rWS and
randomAF, with the values of k (for ARIPOTER-degrees) or τ (for ARIPOTER-hcat)
between brackets.

Instances Solver DC-pr DC-stb DS-pr DS-stb

rER Harper++ 0.125387 0.121053 0.960991 0.220433

ARIPOTER-degrees 0.951084 (8) 0.951084 (10) 0.961610 (8) 0.841796 (0)

ARIPOTER-hcat 0.950464 (1) 0.950464 (1) 0.960991 (1) 0.841796 (0.1)

rBA Harper++ 1.0 1.0 1.0 1.0

ARIPOTER-degrees 1.0 (0) 1.0 (0) 1.0 (|A|) 1.0 (|A|)
ARIPOTER-hcat 1.0 (0) 1.0 (0) 1.0 (1) 1.0 (1)

rWS Harper++ 0.100333 0.098333 0.977333 0.18

ARIPOTER-degrees 0.953333 (|A|) 0.953333 (|A|) 0.977333 (|A|) 0.863 (0)

ARIPOTER-hcat 0.953333 (1) 0.953333 (1) 0.977333 (1) 0.863 (0.1)

randomAF Harper++ 0.416068 0.413953 0.979443 0.473784

ARIPOTER-degrees 0.830550 (8) 0.830550 (10) 0.979655 (8) 0.780233 (0.1)

ARIPOTER-hcat 0.932135 (0.5) 0.930444 (0.5) 0.979443 (1) 0.764799 (0.1)

Table 3. Accuracy comparison of the three approximate solvers for iccma19, with the
values of k (for ARIPOTER-degrees) or τ (for ARIPOTER-hcat) between brackets.

Instances Solver DC-pr DC-stb DS-pr DS-stb

iccma19 Harper++ 0.754902 0.757009 0.971154 0.826923

ARIPOTER-degrees 0.794118 (|A|) 0.813084 (|A|) 0.971154 (|A|) 0.548077 (0.1)

ARIPOTER-hcat 0.794118 (0.5) 0.813084 (0.5) 0.971154 (1) 0.538462 (0.1)

instances randomAF (see Table 2). Thus, we have k = |A| and τ = 0.5 for DC-pr;
k = |A| and τ = 0.5 for DC-stb; k = |A| and τ = 1 for DS-pr; and k = τ = 0.1
for DS-stb. The results can be found in Table 3.

The first observation is that, once again, ARIPOTER-degrees and
ARIPOTER-hcat return results that are very similar for the four problems stud-
ied. In comparison with previous results, we can see that the accuracy is slightly
lower for the DC problems, but is still around 80% of correct answers. However,
this decrease is more significant for the DS-stb problem where our solvers obtain
an accuracy which is around 0.54. Indeed, contrary to the random instances, most
of which have no stable extensions (i.e., all arguments are skeptically accepted),
here 94 instances over 107 have at least one extension, so determining skeptical
acceptability is not trivial. Finally, it is interesting to note that for the DS-pr
problem, the accuracy remains extremely high (around 0.97) and is therefore a
serious alternative to the exact approach.

6 Related Work

Besides Harper++, the only approaches in the literature on approximate reason-
ing in abstract argumentation are based on machine learning approaches. Among
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them, the solver AFGCN [17] participated to ICCMA 2021. This solver is based
on Graph Convolutional Networks. While AFGCN globally performed better
than Harper++ regarding the accuracy of the result, the computation time was
much higher (and it is reasonable to assume that our approaches would also out-
perform AFGCN regarding runtime). The other approaches [8,14,18] also use
graph neural networks to predict the acceptability of arguments. While these
approaches can achieve really high accuracies, they require learning data and
time for performing this learning task, which is not the case with Harper++
and our new approaches. An empirical comparison of these techniques with ours
is an interesting idea for future work. Finally, in structured argumentation, an
approach has been proposed to solve problems in ASPIC+ by using only a sub-
set of the full set of arguments, thus diminishing drastically the runtime while
attaining a high accuracy [21]. A direct comparison of our approach with this
method is not relevant, since the framework is not the same. However, adapting
the idea of argument sampling to abstract argumentation and comparing this
method with ours is also an interesting track for future research.

7 Conclusion

We have studied new approaches for approximate reasoning in abstract argumen-
tation, solving credulous and skeptical acceptability problems. We have shown
that our two solvers (ARIPOTER-degrees and ARIPOTER-hcat) are competi-
tive, in terms of accuracy, with respect to the state of the art approach which was
implemented in the solver Harper++ at the last ICCMA competition. They also
clearly outperform a standard SAT-based approach for solving these problems.

We are planning to extend this work in three directions. First, we would like
to continue studying how to select the parameters that give the best accuracy in
relation to the type of AF, the semantics, and the inference task. Second, it would
be interesting to extend our approaches for reasoning with other extension-based
semantics (e.g. ideal, stage, semi-stable, etc.), using other gradual semantics
instead of h-categorizer (or an extension of it [4]), and the comparison with the
approaches using machine learning. Third, we would like to determine the cases
(e.g. types of graph and their characteristics such as the number of nodes, the
density of the attack relation, etc.) where the use of an approximate solver would
become preferable to the use of an exact solver.
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Abstract. Incomplete Argumentation Frameworks (IAFs) enrich clas-
sical abstract argumentation with arguments and attacks whose actual
existence is questionable. The usual reasoning approaches rely on the
notion of completion, i.e. standard AFs representing “possible worlds”
compatible with the uncertain information encoded in the IAF. Recently,
extension-based semantics for IAFs that do not rely on the notion of com-
pletion have been defined, using instead new versions of conflict-freeness
and defense that take into account the (certain or uncertain) nature
of arguments and attacks. In this paper, we give new insights on this
reasoning approach, by adapting the well-known grounded semantics to
this framework in two different versions. After determining the compu-
tational complexity of our new semantics, we provide a principle-based
analysis of these semantics, as well as the ones previously defined in the
literature, namely the complete, preferred and stable semantics.

1 Introduction

Abstract argumentation has received much attention since the seminal paper
by Dung [12]. An Argumentation Framework (AF) is generally defined as a
directed graph where nodes represent arguments, and edges represent attacks
between these arguments. Since then, many generalizations of Dung’s frame-
work have been proposed, introducing the notion of support between arguments
[2], weighted attacks [13] or weighted arguments [19], preferences between argu-
ments [1], and so on.

In this paper, we focus on one such generalization of abstract argumentation,
namely Incomplete Argumentation Frameworks (IAFs) [5,7,8] in which argu-
ments and attacks can be defined as uncertain, meaning that the agent reasoning
with such an IAF is not sure whether these arguments or attacks actually exist
(e.g. whether they will actually be used at some step of the debate). This is
particularly meaningful when modelling an agent’s knowledge about her oppo-
nent in a debate [10,11], since it is a reasonable assumption that agents are not
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always able to assess precisely the uncertainty degree of a piece of information
(e.g. meaningful probabilities may not be available). We push further a recent
study of semantics defined for reasoning with IAFs, based on the idea that basic
principles of argumentation semantics (namely conflict-freeness and defense) can
be adapted to take into account the nature of the pieces of information in the
IAF (certain or uncertain) [7,16,18]. While the initial work on this topic focuses
on Partial AFs (which are IAFs without uncertain arguments) and the preferred
semantics [7], the general IAF model and other semantics (namely complete and
stable) have also been studied in [16,18]. Now we focus on the adaptation of the
last classical semantics initially defined by Dung, namely the grounded seman-
tics. For all the semantics defined in the literature and in the present paper,
we also investigate the principles they satisfy, following the principle-based app-
roach for analysing argumentation semantics [3,4,20]. Proofs are omitted for
space reasons.

2 Background

Definition 1. An Argumentation Framework (AF) [12] is a directed graph F =
〈A,R〉 where A represents the arguments and R ⊆ A × A represents the attacks
between arguments.

In this paper we assume that AFs are always finite, i.e. A is a finite set of
arguments. We say that an argument a ∈ A (resp. a set S ⊆ A) attacks an
argument b ∈ A if (a, b) ∈ R (resp. ∃a ∈ S such that (a, b) ∈ R). Then, S ⊆ A
defends a ∈ A if ∀b ∈ A such that (b, a) ∈ R, S attacks b. A set of arguments
S ⊆ A is called conflict-free when ∀a, b ∈ S, (a, b) �∈ R. In this case we write
S ∈ cf(F). [12] defined several semantics for evaluating the acceptability of
arguments, based on the characteristic function ΓF of an AF:

Definition 2. Given an AF F = 〈A,R〉, the characteristic function of F is
ΓF : 2A → 2A defined by

ΓF (S) = {a | S defends a}

Now, given S ⊆ cf(F) a conflict-free set of arguments, S is

– admissible iff S ⊆ ΓF (S),
– a complete extension iff S = ΓF (S),
– a preferred extension iff it is a ⊆-maximal admissible set,
– the unique grounded extension iff it is the ⊆-minimal complete extension.

These sets of extensions are denoted (resp.) by ad(F), co(F), pr(F) and
gr(F). Finally, a last classical semantics is not based on the characteristic func-
tion: S ∈ cf(F) is a stable extension iff S attacks all the arguments in A \ S.
The stable extensions are denoted st(F). We sometimes write σ(F) for the set
of extensions of F under an arbitrary semantics σ ∈ {cf, ad, co, pr, gr, st}.
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Fig. 1. Examples of AF (left) and IAF (right)

Table 1. Extensions of the AF F

Semantics σ Extensions σ(F)

co {{a1}, {a1, a3}, {a1, a4, a6}}
pr {{a1, a3}, {a1, a4, a6}}
st {{a1, a4, a6}}
gr {{a1}}

Example 1. Figure 1a describes F = 〈A,R〉, where the nodes represent A and
the edges represent R. Its extensions for the co, pr, st and gr semantics are given
in Table 1.

Various decision problems can be interesting: σ-Ver is the verification that
a given set of arguments is a σ extension of a given AF, σ-Cred and σ-Skep
consist (resp.) in checking whether a given argument belongs to some or each
σ-extension of a given AF. Finally, σ-Exist (resp. σ-NE) is the check whether
there is at least one (resp. one non-empty) σ-extension for a given AF.

Incomplete Argumentation Frameworks (IAFs) generalize AFs by adding a
notion of uncertainty on the presence of arguments and attacks, i.e. an IAF
is a tuple I = 〈A,A?,R,R?〉 where A,A? are disjoint sets of arguments, and
R,R? are disjoint sets of attacks over A ∪ A?. The arguments and attacks in
A and R certainly exist, while those in A? and R? are uncertain. See [17] for
a recent overview of IAFs. In this paper, we focus on the IAF semantics from
[7,16,18]. The intuition behind this approach consists in adapting the notions
of conflict-freeness and defense to IAFs, in order to define well-suited notions of
admissibility and the corresponding semantics.

Definition 3. Let I = 〈A,A?,R,R?〉 be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is weakly (resp. strongly) conflict-free iff ∀a, b ∈ S ∩ A (resp.
a, b ∈ S), (a, b) �∈ R (resp. (a, b) �∈ R ∪ R?).

Definition 4. Let I = 〈A,A?,R,R?〉 be an IAF, S ⊆ A∪A? a set of arguments,
and a ∈ A ∪ A? an argument. S weakly (resp. strongly) defends a iff ∀b ∈ A
(resp. b ∈ A ∪ A?) s.t. (b, a) ∈ R (resp. (b, a) ∈ R ∪ R?), ∃c ∈ S ∩ A s.t.
(c, b) ∈ R.
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The weak (resp. strong) conflict-free and admissible sets of an IAF I are
denoted by cfw(I) and adw(I) (resp. cfs(I) and ads(I)). Combining weak
(resp. strong) conflict-freeness with weak (resp. strong) defense yields a notion of
weak (resp. strong) admissibility, and the corresponding preferred and complete
semantics.

Definition 5. Let I = 〈A,A?,R,R?〉 be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is a

– weak (resp. strong) preferred extension of I if S is a ⊆-maximal weak (resp.
strong) admissible set,

– weak (resp. strong) complete extension of I if S is a weak (resp. strong)
admissible set which does not weakly (resp. strongly) defend any argument
outside of S.

These semantics are denoted by prx(I) and cox(I), with x ∈ {w, s}. The
stable semantics has been adapted as well.

Definition 6. Let I = 〈A,A?,R,R?〉 be an IAF, and S ⊆ A ∪ A? a set of
arguments. S is a weak (resp. strong) stable extension iff it is a weak (resp.
strong) conflict-free set s.t. ∀a ∈ A \ S (resp. a ∈ (A ∪ A?) \ S), ∃b ∈ S ∩ A s.t.
(b, a) ∈ R.

We use stx(I) with x ∈ {w, s} to denote the weak and strong stable extensions
of an IAF.

Example 2. Figure 1b describes an IAF I = 〈A,A?,R,R?〉 where the dotted
nodes (resp. edges) represent the uncertain arguments A? (resp. attacks R?).
Certain arguments and attacks are represented as previously. Its extensions are
given in Table 2.

Table 2. Extensions of the IAF I

Semantics σ Extensions σ(F)

cow {{a1, a2, a4, a6, a7}}
prw {{a1, a2, a4, a6, a7}}
stw {{a2, a4, a6, a7}, {a2, a4, a5, a6, a7},

{a1, a2, a4, a6, a7}, {a1, a2, a4, a5, a6, a7}}
cos {{a1}, {a1, a6}}
prs {{a1, a6}}
sts ∅

The complexity of reasoning with these semantics has been established in
[16,18], the results are summarized in Table 3.
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3 Grounded Semantics

Now we fulfill the landscape of extension-based semantics for IAFs by defining
weak and strong variants of the grounded semantics. Following Dung’s original
approach, we define characteristic functions of an IAF, corresponding to the
notions of weak and strong defense from Definition 4.

Definition 7 (Characteristic Functions). Given an IAF I = 〈A,A?,
R,R?〉, the x-characteristic function of I (where x ∈ {w, s}) is defined by

Γx,I(S) = {a ∈ A ∪ A? | S x-defends a}
We show that the results by Dung regarding the characteristic function of

an AF [12, Section 2.2] can be adapted to our framework. The following lemmas
are easy to prove. First, the x-characteristic function preserves the x-conflict-
freeness.

Lemma 1. Given an IAF I = 〈A,A?,R,R?〉, x ∈ {w, s} and S ⊆ A ∪ A?, if
S ∈ cfx(I) then Γx,I(S) ∈ cfx(I).

The following lemma also shows that the usual relation between admissibility
and the characteristic function(s) also works for the strong and weak admissible
sets defined in [16,18].

Lemma 2. Given an IAF I = 〈A,A?,R,R?〉, x ∈ {w, s}, and S ⊆ A∪A? such
that S ∈ cfx(I), S ∈ adx(I) if and only if S ⊆ Γx,I(S).

Also, the correspondence between fixed-points of the characteristic functions
and the strong and weak complete extensions holds in our framework as well.

Lemma 3. Given an IAF I = 〈A,A?,R,R?〉, x ∈ {w, s}, and S ⊆ A∪A? such
that S ∈ cfx(I), S ∈ cox(I) if and only if S = Γx,I(S).

Now, we prove that the Γx,I functions are monotonic.

Lemma 4. Given an IAF I = 〈A,A?,R,R?〉, x ∈ {w, s}, and two sets of
arguments S, S′ ⊆ A ∪ A? such that S, S′ are x-conflict-free, if S ⊆ S′ then
Γx,I(S) ⊆ Γx,I(S′).

Finally we define the grounded semantics of IAFs:

Definition 8. Given an IAF I = 〈A,A?,R,R?〉 and x ∈ {w, s}, the unique
x-grounded extension of I is the fixed point obtained by iteratively applying the
x-characteristic function of I using ∅ as the starting point.

This means that we can compute the x-grounded extension with Algorithm 1,
which follows the usual approach for computing the grounded extension of an
argumentation framework: take the arguments which do not need to be defended
(i.e. compute Γx,I(∅), in the case where x = w, these are the arguments which
are not certainly attacked by certain arguments; in the case where x = s it
means that they are not attacked at all). Then, while it is possible, we add to
the extension arguments that are defended by the arguments already member of
the extension. The process stops when nothing can be added anymore.
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Algorithm 1. Computation of the x-grounded extension
Require: I = 〈A, A?, R, R?〉, x ∈ {w, s}
1: result = Γx,I(∅)
2: while result �= Γx,I(result) do
3: result = Γx,I(result)
4: end while
5: return result

Example 3. Continuing the previous example, we have grw(I) = {{a1, a2, a4, a6,
a7}} and grs(I) = {{a1}}.

From Lemma 4, we deduce that the iterations of the loop (line 2 in Algo-
rithm 1) only add arguments to the result being constructed. So the number of
iterations of this loop is bounded by the number of arguments, which means that
this process is polynomial, as well as all the classical decision problems for these
semantics. The P-hardness comes from the known results for standard AFs [14].

Proposition 1. For x ∈ {w, s}, the problems grx-Ver, grx-Cred and grx-Skep
are P-complete, grx-Exist is trivial, and grx-NE is in L.

From Lemma 3, it is obvious that the x-grounded extension of an IAF is also
a x-complete extension. It is also the case that any complete extension must
contain the arguments which do not need to be x-defended, and then it must
contain all the arguments from the x-grounded extension. So the x-grounded
extension can be characterized as the (unique) ⊆-minimal x-complete extension,
similarly to the “classical” grounded extension. This implies that the coNP upper
bound for cox-Skep [16] can be made more precise, since cox-Skep = grx-Skep.

Corollary 1. For x ∈ {w, s}, cox-Skep is P-complete.

Table 3 summarizes the known complexity results for reasoning with the
semantics of IAFs. Grey cells correspond to new results provided in this paper,
while the other cells correspond to results from [16] (for σx-Ver, σx-Cred and
σx-Skep) and [18] for (σx-Exist and σx-NE).

4 Principle-Based Analysis of IAF Semantics

Now we study the properties of the extension-based semantics of IAFs. More
precisely, we focus on some principles already mentioned in the literature [3,
20]. However, we do not mention some principles which are not relevant here,
like admissibility or reinstatement, which do not make sense if they are directly
applied to IAFs. Since our semantics have been defined to satisfy weak or strong
counterparts of admissibility (except weak stable semantics), there is nothing
to prove regarding these principles adapted to IAFs. We adapt to IAFs several
principles from the literature, and show which ones are satisfied by our semantics.
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Table 3. Complexity of σx-Ver, σx-Cred, σx-Skep, σx-Exist and σx-NE for σ ∈
{cf, ad, gr, st, co, pr} and x ∈ {w, s}. C-c means C-complete.

Semantics σx σx-Ver σx-Cred σx-Skep σx-Exist σx-NE

cfx in L in L trivial trivial in L

adx in L NP-c trivial trivial NP-c

grx P-c P-c P-c trivial in L

stx in L NP-c coNP-c NP-c NP-c

cox in L NP-c P-c trivial NP-c

prx coNP-c NP-c ΠP
2 -c trivial NP-c

The I-maximality principle states that no extension should be a proper subset
of another extension.

Principle 1. An extension-based semantics σ satisfies the I-maximality prin-
ciple if, for any AF I = 〈A,A?,R,R?〉, ∀S, S′ ∈ σ(I), if S ⊆ S′ then S = S′.

Proposition 2. I-maximality is satisfied by sts as well as prx and grx for x ∈
{w, s}. It is not satisfied by cox for x ∈ {w, s}, nor by stw.

Roughly speaking, the next principle states that if an argument belongs to
an extension, and is attacked by another extension, then there should be a third
one which abstains to give a status to this argument (i.e. this argument does
not belong to the third extension, and is not attacked by it).

Given S ⊆ A ∪ A?, S+ = {a ∈ A ∪ A? | ∃b ∈ S s.t. (b, a) ∈ R ∪ R?} is the
set of arguments attacked by S.

Principle 2. An extension-based semantics σ satisfies the allowing abstention
principle if, for any IAF I = 〈A,A?,R,R?〉, and any a ∈ A ∪ A?, if there are
two extensions S1, S2 ∈ σ(I) such that a ∈ S1 and a ∈ S+

2 , then there is a third
extension S3 ∈ σ(I) such that a �∈ S3 ∪ S+

3 .

Proposition 3. For x ∈ {w, s}, grx satisfies allowing abstention. For σ ∈
{pr, st} and x ∈ {w, s}, σx does not satisfy allowing abstention. Finally, cos
satisfies it, and cow does not satisfy it.

Notice that allowing abstention can be considered either as trivially satis-
fied (as in [20]) or non-applicable (as in [3]) for single-status semantics like the
grounded semantics. Here we use the first option for presenting the results.

The next principle is based on the notion of contaminating framework. To
define it, we need to introduce I1  I2 = 〈A1 ∪ A2,A?

1 ∪ A?
2,R1 ∪ R2,R?

1 ∪ R?
2〉.

Definition 9. Two IAFs I1 = 〈A1,A?
1,R1,R?

1〉 and I2 = 〈A2,A?
2,R2,R?

2〉 are
disjoint if (A1 ∪ A?

1) ∩ (A2 ∪ A?
2) = ∅.

An IAF I∗ is contaminating for a semantics σ if and only if for any I disjoint
from I∗, σ(I∗) = σ(I∗  I).
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The existence of such a contaminating IAF I∗ can be seen as a weakness of
the semantics, because adding I∗ to another IAF I somehow causes a crash of
the reasoning in I.

Principle 3. An extension-based semantics σ satisfies the crash resistance prin-
ciple iff there is no contaminating IAF for σ.

Proposition 4. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies crash resis-
tance. For x ∈ {w, s}, stx does not satisfy crash resistance.

A set of arguments is called isolated if none of its elements attacks or is
attacked by an argument outside the set.

Definition 10. Given an IAF I = 〈A,A?,R,R?〉, a set of arguments S ⊆
A ∪ A? is called isolated in I if

((S × ((A ∪ A?) \ S)) ∪ (((A ∪ A?) \ S) × S)) ∩ (R ∪ R?) = ∅
Given an IAF I = 〈A,A?,R,R?〉 and S ⊆ A ∪ A?, I↓S is the IAF defined

by I↓S = 〈A ∩ S,A? ∩ S,R ∩ (S × S),R? ∩ (S × S)〉.
Principle 4. An extension-based semantics σ satisfies the non-interference
principle iff for any IAF I = 〈A,A?,R,R?〉, and for any S ⊆ A ∪ A? isolated
in I, σ(I↓S) = {E ∩ S | E ∈ σ(I)}.
Proposition 5. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies non-
interference. For x ∈ {w, s}, stx does not satisfy non-interference.

Finally, the three last principles are based on the notion of unattacked sets
of arguments, i.e. sets that can attack arguments from outside, but which are
not attacked by arguments from the outside (notice that these sets do not have
to be conflict-free).

Definition 11. Given an IAF I = 〈A,A?,R,R?〉, the set of arguments S ⊆
A ∪ A? is called unattacked in I if and only if ∀a ∈ (A ∪ A?) \ S, ∀b ∈ S,
(a, b) �∈ R ∪ R?.

The set of unattacked sets of I is denoted by US(I).

Principle 5. An extension-based semantics σ satisfies the directionality prin-
ciple iff for any IAF I = 〈A,A?,R,R?〉 and any S ∈ US(I), σ(I↓S) = {E ∩ S |
E ∈ σ(I)}.

As in Dung’s framework, directionality implies non-interference, which
implies crash resistance.

The next principles are weaker versions of directionality, where there is only
an inclusion relation between σ(I↓S) and {E ∩ S | E ∈ σ(I)} instead of an
equality. This means that a semantics which satisfies directionality obviously
satisfies both of them, but a semantics which does not satisfy directionality may
satisfy one of them (but not both).
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Principle 6. An extension-based semantics σ satisfies the weak directionality
principle iff for any IAF I = 〈A,A?,R,R?〉 and any S ∈ US(I), σ(I↓S) ⊇
{E ∩ S | E ∈ σ(I)}.
Principle 7. An extension-based semantics σ satisfies the semi-directionality
principle iff for any IAF I = 〈A,A?,R,R?〉 and any S ∈ US(I), σ(I↓S) ⊆
{E ∩ S | E ∈ σ(I)}.
Proposition 6. For σ ∈ {co, pr, gr} and x ∈ {w, s}, σx satisfies directionality.
For x ∈ {w, s}, stx does not satisfy directionality.

Table 4. Satisfaction (✓) or non-satisfaction (✗) of the principles

Principles co gr pr st cos grs prs sts cow grw prw stw

I-max ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Allow. abst ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Crash resist ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Non inter ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Direct ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Weak Direct ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?? ✓ ✓ ✓ ??

Semi-Direct ✓ ✓ ✓ ✗ ✓ ✓ ✓ ?? ✓ ✓ ✓ ??

Let us discuss the results of our principle-based analysis, summarized in
Table 4. In most of the cases, the semantics of IAFs have the same properties as
their counterpart for standard AFs. We notice few exceptions, and some open
questions. First, while strong complete semantics has the same properties as the
complete semantics of AFs, it is not the case of the weak complete semantics
which does not satisfy allowing abstention. Also, while classical stable semantics
of AFs and strong stable semantics of IAFs satisfy I-maximality, it is not the
case for the weak stable semantics of IAFs. Then, while it is known that the
stable semantics of AFs satisfy weak directionality (and thus does not satisfy
semi-directionality), the status of strong and weak stable semantics regarding
these properties is still open.

5 Related Work

While our approach for defining semantics for IAFs is, in a way, the original
one (since it was initially proposed for Partial AFs in [7]), most of the work on
reasoning with IAFs is based on the notion of completions [5,6,17], i.e. standard
AFs that correspond to one possible way to “solve” the uncertainty in the IAF.
Using completions, all classical decision problems can be adapted in two versions:
the possible view (the property of interest is satisfied in some completions) and
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the necessary view (the property of interest is satisfied in all the completions).
This reasoning approach captures the intuition that the agent reasoning with the
IAF uses it to represent a set of possible scenarios and must accept arguments
if they are acceptable in some/all scenarios. On the contrary, the approach from
[7,18] which is also followed in the current paper considers that the agent uses
directly the structure of the IAF for reasoning, instead of using the structure of
the (exponentially many) completions of the IAF. Studying whether there are
relations between the “completion-based” and the “direct” semantics of IAFs is
an interesting question for future work.

6 Conclusion

This paper describes new results on a new family of reasoning approaches for
Incomplete Argumentation Frameworks (IAFs), inspired by the original seman-
tics for Partial AFs, a subclass of IAFs. We have shown that Dung’s grounded
semantics can be adapted to IAFs in two variants, namely weak and strong
grounded semantics. As it is usually the case, reasoning with such semantics
is doable in polynomial time. Then, we have established which principles from
the literature are satisfied by our new semantics, as well as the extension-based
semantics for IAFs defined in previous work.

Among possible interesting tracks for future research, of course we plan
to fill the gaps regarding the stable semantics in the principle-based analy-
sis, i.e. removing the question marks in Table 4. Also, it would be interesting
to study whether there are connections between the acceptability of argument
with respect to our semantics and their status with respect to completion-based
reasoning methods. Then, we wish to apply our semantics in a context of con-
trollability [9,15] and automated negotiation [11]. Also, it would be interesting
to parameterize the weak semantics by the number of uncertain conflicts that
can be contained in a weak extension, in a way in the same spirit as weighted
argumentation frameworks [13].
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Abstract. Assessing argument strength is a key step in an argumentation pro-
cess, therefore a plethora of methods, called semantics, have been developed for
the purpose. Their comparison can be carried out using two complementary for-
mal tools: the formal properties they satisfy and the ranking they produce.

It has been shown that the two gradual semantics Mbs and EMbs are strongly
equivalent, i.e., they return the same ranking of arguments when applied to flat
argumentation graphs. This paper goes even further by characterizing the whole
equivalence class to which they belong. It shows that every instance of the class
is based on a numerical series and refines the ranking provided by the grounded
semantics. We discuss an instance, hence novel semantics, of the class.

Keywords: Argumentation · Semantics · Equivalence

1 Introduction

Argumentation is a reasoning approach based on the justification of claims by argu-
ments (see [8,20,21] for more on its multiple applications). An argumentation system
is made of an argumentation graph and a semantics. The former is a graph whose nodes
are arguments and edges represents attacks, i.e., conflicts. The latter is a formal method,
called semantics, that is used to assess argument strength. Several methods have been
proposed in the literature; they can be classified into three families: extension seman-
tics that have been initiated in [15], gradual semantics introduced in [14] and ranking
semantics defined in [2] (see [1] for a discussion on their differences and applications).

Several efforts have been made in the last ten years to understand the theoretical
foundations of semantics and to compare the plethora of existing methods. For this
purpose, two complementary approaches have been investigated. The first consists in
defining formal properties and comparing methods based on these properties (see [3,4,
7,9,10,12,13] for more on properties). We have shown in [5] that satisfying the same
properties does not mean that semantics evaluate in a similar way arguments of a graph.
Hence, we proposed the second approach which compares the rankings of semantics.
We have shown that the two gradual semantics Mbs ([4]) and EMbs ([6]) are strongly
equivalent, i.e., they produce the same ranking when applied to flat graphs.

This paper contributes to the understanding of the mathematical foundations of
gradual semantics. It provides a characterization of the whole equivalence class to
which belong Mbs and EMbs. We show that every instance of the class is based on a
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certain type of numerical series, which are composed of two sub-series: an increasing
and a decreasing one. Every instance of the class refines the ranking provided by the
grounded semantics proposed in [15]. Indeed, it keeps its strict comparisons and breaks
some ties. We discuss an instance, hence novel semantics, of the class.

The paper is structured as follows: Sect. 2 is devoted to background, Sect. 3 intro-
duces the equivalence class whose instance is discussed in Sect. 4. The last section is
devoted to some concluding remarks and perspectives.

2 Background

Throughout the paper, we focus on flat argumentation graphs, i.e., graphs whose nodes
are arguments and edges represent attacks (i.e. conflicts) between arguments. We denote
by Args the universe of all arguments.

Definition 1 (AG). An argumentation graph (AG) is a tuple G = 〈A,R〉 where A is
a finite subset of Args and R ⊆ A × A. We denote by AG the set of all argumentation
graphs built from Args.

Argument strength is assessed using formal methods, called semantics. There are
three families of semantics in the literature: i) extension semantics that identify accept-
able sets of arguments [15], ii) gradual semantics that assign a value from a given
ordered scale to each argument [14], and iii) ranking semantics that rank-order argu-
ments [2]. Below we focus on the second family and consider the unit interval as scale.

Definition 2 (Gradual Semantics). A gradual semantics is a function σ assigning to
any G = 〈A,R〉 ∈ AG a weighting Degσ

G : A → [0, 1]. For any a ∈ A, Degσ
G(a)

represents the strength of a. We denote by Sem the set of all possible gradual semantics.

Examples of gradual semantics are Mbs and EMbs which were defined in [4] and
[6] respectively for weighted graphs, i.e., graphs where arguments have initial weights.
Their definitions in case of a flat graph G = 〈A,R〉 are as follows: For any a ∈ A,

DegMbsG (a) = 1
1+max

bRa
DegG(b) DegEMbsG (a) = e

−max
bRa

DegEMbsG (b)

Let us now recall some basic notions on an arbitrary binary relation � on a set X
of objects, which may be arguments, criteria, . . ..

– For any x ∈ X , x � x (Reflexivity)
– For all x, y, z ∈ X , if x � y and y � z, then x � z (Transitivity)
– For all x, y ∈ X , x � y or y � x (Total)

The notation x � y is a shortcut for x � y and y 	� x, and x ≈ y is a shortcut for
x � y and y � x. If a binary relation � is reflexive and transitive, then it is called a
preordering; the latter is total if � is total.

The values assigned by a gradual semantics to arguments of an argumentation graph
can be used to rank the arguments from strongest to weakest as follows.
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Definition 3 (Ranking). Let σ ∈ Sem andG = 〈A,R〉 ∈ AG. A ranking induced from
σ is a binary relation �σ

G on A such that for all a, b ∈ A,

a �σ
G b iff Degσ

G(a) ≥ Degσ
G(b).

Property 1. For all σ ∈ Sem and G = 〈A,R〉 ∈ AG, �σ
G is a total preordering.

Example 1. Consider the argumentation graph G1 depicted in the figure below:

a b

c

d e f

g

a b c d e f g
Mbs 1 0.50 0.50 0.66 0.60 0.62 0.61
EMbs 1 0.36 0.36 0.69 0.50 0.60 0.56

For any x ∈ {Mbs, EMbs}, we have the following ranking of the seven arguments:

a �x d �x f �x g �x e �x b ≈x c.

Example 2. Consider now the following argumentation graph G2.

a b

c

d e f

g

a b c d e f g
Mbs 0.61 0.61 0.61 0.61 0.61 0.61 0.61
EMbs 0.56 0.56 0.56 0.56 0.56 0.56 0.56

For any x ∈ {Mbs, EMbs}, we have the following ranking of the seven arguments:

a ≈x b ≈x c ≈x d ≈x e ≈x f ≈x g.

We proposed in [5] a novel approach to understand links between semantics. It con-
sists of comparing the rankings induced by pairs of semantics. Two notions were par-
ticularly investigated: refinement and strong equivalence. A semantics refines another if
it agrees with its strict comparisons of arguments and may break some of its ties. Two
semantics are strongly equivalent if they produce the same ranking.

Definition 4. Let σ1, σ2 ∈ Sem.

– σ1 refines σ2 iff ∀G ∈ AG, �σ2
G ⊆ �σ1

G .
– σ1 and σ2 are strongly equivalent iff ∀G ∈ AG, �σ1

G = �σ2
G .

Property 2 ([5]). The following properties hold:

– Let σ1, σ2, σ3 ∈ Sem. If σ1, σ2 are strongly equivalent and σ1 refines σ3, then σ2

refines σ3.
– Mbs and EMbs are strongly equivalent.

Below is a list of notations that are used in the rest of the paper.

Notations: Let G = 〈A,R〉 ∈ AG and E ⊆ A. We denote by E+ the set {a ∈ A |
∃b ∈ E s.t. (b, a) ∈ R} and Eo = A \ (E ∪ E+). Let � be a preordering on a set
X and X1,X2 ⊆ X . We abuse notation and write X1 � X2 (resp. X1 ≈ X2) iff
∀x ∈ X1,∀y ∈ X2, x � y (resp. x ≈ y).
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3 Equivalence Class of Semantics

The notion of strong equivalence structures the universe Sem of gradual semantics into
equivalence classes. In this section, we characterize the whole equivalence class which
contains Mbs and EMbs. Let us first introduce a family of numerical series that are
mainly made of two (increasing and decreasing) sub-sequences.

Definition 5 (S∗). We define S∗ to be the set containing any numerical series S =
(Sn)n≥1 which satisfies the following conditions:

– for any n ≥ 1, Sn ∈ [0, 1]
– S contains two sub-series S1 = (Sn

1 )
n≥1 and S2 = (Sn

2 )
n≥1 s.t. for any n ≥ 1:

• Sn
1 is strictly decreasing and Sn

2 is strictly increasing
• lim

n→∞ Sn
1 ≥ lim

n→∞ Sn
2

We present next a sequence that is based on the Fibonacci numbers and show that it
is a member of the set S∗.

Proposition 1. Let {Fn}n≥0 be the Fibonacci series where F 0 = 0, F 1 = 1, and
Fn = Fn−1 + Fn−2 for n > 1. The series {Un}n≥1 where Un = Fn

Fn+1 is in S∗.
Consequently, S∗ 	= ∅.

Let us now recall the notion of defence between arguments as introduced in [15].

Definition 6 (Defence). Let G = 〈A,R〉 ∈ AG, E ⊆ A and a ∈ A. We say that E
defends a if ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ E such that (c, b) ∈ R, and define
F(E) = {a ∈ A | E defends a}.1

Example 1 (Cont.) Consider again the flat graph G1.

a b

c

d e f

g

– F(∅) = {a}
– F(F(∅)) = {a, d}
– F(F(F(∅))) = {a, d, f}
– F(F(F(F(∅)))) = F(F(F(∅)))

In what follows, we define a family of gradual semantics that are based on series
of the set S∗. Every instance (i.e., semantics) of the family partitions the set of argu-
ments into three groups. It assigns to arguments of the first group values taken from
the decreasing sub-sequence of the series on which it is based. The exact value of
an argument depends on the iteration at which it appears for the first time in the set
Gr =

⋃

n≥1

Fn(∅). The arguments of the second group are assigned values from the

increasing sub-sequence and the value of an argument depends on the first appearance
of its strongest attacker in Gr. Finally, the semantics ascribes the same value, which is
between the limits of the two sub-sequences, to all arguments of the third group.

1 F is the so-called characteristic function in [15].
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Definition 7 (Sem∗). Let G = 〈A,R〉 ∈ AG. A gradual semantics σ ∈ Sem based on a
series S ∈ S∗ is a mapping from A to S ∪ {δ}, with lim

n→∞ Sn
1 ≥ δ ≥ lim

n→∞ Sn
2 , such

that for any a ∈ A,

– Degσ
G(a) = Si

1 if a ∈ F i(∅) and a /∈
i−1⋃

j=1

F j(∅).

– Degσ
G(a) = Si

2 if F i(∅) attacks a and
i−1⋃

j=1

F j(∅) does not attack a.

– Degσ
G(a) = δ otherwise.

We denote by Sem∗ the set of all semantics that are based on a series from S∗.

Example 1 (Cont.) Assume σ ∈ Sem∗ and σ is based on S ∈ S∗. According to Defini-
tion 7, Degσ

G1
(g) = δ with lim

n→∞ Sn
1 ≥ δ ≥ lim

n→∞ Sn
2 .

– a ∈ F1(∅)
– d ∈ F2(∅) \ F1(∅)
– f ∈ F3(∅) \

2⋃

i=1

F i(∅)

– Degσ
G1

(a) = S1
1

– Degσ
G1

(d) = S2
1

– Degσ
G1

(f) = S3
1

– Degσ
G1

(b) = S1
2

– Degσ
G1

(c) = S1
2

– Degσ
G1

(e) = S2
2

Example 2 (Cont.) In the argumentation graph G2, for any i ∈ N, F i(∅) = ∅. Hence,
for any σ ∈ Sem∗ such that σ is based on S ∈ S∗, with lim

n→∞ Sn
1 ≥ δ ≥ lim

n→∞ Sn
2 , the

following holds: ∀x ∈ A2, Degσ
G2

x) = δ (i.e., all arguments inG2 get the value δ).

We show next that the set Sem∗ is non-empty as it contains Mbs and EMbs.

Proposition 2. It holds that {Mbs, EMbs} ⊆ Sem∗.

We show below that all semantics in the set Sem∗ are pairwise strongly equivalent.

Theorem 1. For all σ, σ′ ∈ Sem∗, σ and σ′ are strongly equivalent.

We go one step further by showing that Sem∗ is the whole equivalence class as it
contains all semantics that are strongly equivalent to Mbs.

Theorem 2. For any σ ∈ Sem, if σ and Mbs are strongly equivalent, then σ ∈ Sem∗.

We show next that every semantics of the class Sem∗ refines the grounded semantics
from [15]. Indeed, it keeps all its strict rankings and breaks some ties. Before presenting
the formal result, let us first recall the grounded extension and the ranking it induces.
The latter considers arguments of the grounded extension as equally strong and strictly
stronger than all remaining arguments. Arguments that are attacked by the extension
are equally strong and strictly weaker than all remaining arguments.

Definition 8 (�g). Let A ∈ AG. The grounded extension of G is the set Gr =
∞⋃

n=1
Fn(∅). It induces a total preordering �g such that Gr �g Gro �g Gr+ and for

any x ∈ {Gr, Gr+, Gro}, for all a, b ∈ x, a ≈g b.
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Theorem 3. For any σ ∈ Sem∗, σ refines the grounded semantics.

From the definition of the ranking �g and the previous result, it follows that any
semantics σ ∈ Sem∗ preserves the strict ordering of �g.

Theorem 4. For any σ ∈ Sem∗, the strict relations Gr �σ Gro �σ Gr+ hold.

Example 1 (Cont.) The grounded extension of the flat graph is Gr = {a, d, f}. Hence,
a ≈g d ≈g f �g g �g b ≈g c ≈g e. However, for any σ ∈ Sem∗, we have the
following ranking: a �σ d �σ f �σ g �σ e �σ b ≈σ c.

Example 2 (Cont.) The grounded extension of the graph is empty (i.e., Gr = ∅). Hence,
a ≈g b ≈g c ≈g d ≈g e ≈g f ≈g g. Furthermore, for any σ ∈ Sem∗, we have the
same ranking, i.e., �σ=�g .

4 Another Instance of the Equivalence Class

We have seen in the previous section that the equivalence class Sem∗ contains at least
two semantics: Mbs and EMbs. In what follows, we discuss another instance of the class.
It is based on the well-known Jacobsthal series [16] J = (J n)n≥1 where:

Jn =

⎧
⎪⎨

⎪⎩

0 if n = 0
1 if n = 1
Jn−1 + 2Jn−2 if n ≥ 2

(1)

From J , we define a novel series which belongs to the set S∗.

Proposition 3. It holds that J = (J n+1

2n )n≥0 ∈ S∗.

We now characterize the gradual semantics which is based on the above series J.
Like Mbs and EMbs, its only considers the strongest attacker of an argument when com-
puting its strength. Furthermore, it takes half of that attacker’s strength.

Theorem 5. Let G = 〈A,R〉 ∈ AG, a ∈ A and Jac a mapping from A to [0, 1] such

that for any a ∈ A, DegJacG (a) = 1 −
max
bRa

DegJacG (b)

2 . The following hold:

– Jac is based on the series J,
– Jac ∈ Sem∗,
– for any a ∈ A, DegJacG (a) ∈ [12 , 1].

Example 1 (Cont.) The values of the arguments are summarized in the table below.

a b c d e f g

Mbs 1 0.50 0.50 0.66 0.60 0.62 0.61

EMbs 1 0.36 0.36 0.69 0.50 0.60 0.56

Jac 1 0.5 0.5 0.75 0.625 0.69 0.66
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In the example, Jac assigns higher values than Mbs, EMbs. The following result
confirms that this property is valid in general. It also shows that Mbs assigns higher
values than EMbs but only to arguments that are attacked by the grounded extension.

Theorem 6. Let G = 〈A,R〉 ∈ AG and a ∈ A. It holds that: DegJacG (a) ≥ DegMbsG (a),
DegJacG (a) ≥ DegEMbsG (a), If a ∈ Gr+, then DegMbsG (a) > DegEMbsG (a)

5 Conclusion

The paper contributed to setting up the mathematical foundations of computational
argumentation and more precisely of gradual semantics. It defined a mathematical coun-
terpart of a large class of semantics. In particular, it showed that a number of semantics
including Mbs, EMbs and Jac can be defined with numerical series having specific char-
acteristics. Furthermore, those semantics provide all the same ranking of arguments of
a flat graph while they may assign different values to the same argument. This shows
that a ranking is more expressive than the numbers assigned to arguments. Finally,
the semantics of the class refine the grounded extension and the value of an argument
depends on the iteration at which it appears for the first time in the grounded extension,
or is attacked by the latter. This characterization allowed us to define a very efficient
algorithm which computes strengths of arguments.

This work lends itself to several developments, in order to have a full understanding
of existing semantics. First, we plan to analyse the same set of semantic when applied to
weighted graphs (nodes and/or edges have basic weights). Second, we will investigate
the equivalence class to which belongs the well-known h-Categorizer [11].

Appendix: Proofs

Lemma 1. Let S ∈ S∗. For all x ∈ S1, y ∈ S2, the following hold: x > y, x >
lim

n→∞ Sn
1 , y < lim

n→∞ Sn
2 .

Proof. Let S ∈ S∗. Let lim
n→∞ Sn

1 = x and lim
n→∞ Sn

2 = y. Since S1 is strictly decreasing,

then x < Sn
1 , ∀n. Since S2 is strictly increasing, then y > Sn

2 , ∀n. Since lim
n→∞ Sn

1 ≥
lim

n→∞ Sn
2 , then we get for any n > 1, Sn

1 > x ≥ y > Sn
2 , so Sn

1 > Sn
2 . �

Lemma 2. Let σ ∈ Sem∗ be based on a series S and takes its values from S ∪ {δ}. For
any G = 〈A,R〉 ∈ AG, for any a ∈ A, the following hold: i) If a ∈ ⋃

n≥1

Fn(∅), then
Degσ

G(a) > δ. ii) If a is attacked by
⋃

n≥1

Fn(∅), then Degσ
G(a) < δ.

Proof. Let G = 〈A,R〉 ∈ AG. Since A is finite, the authors in [18] proposed an algo-
rithm which runs in O(|A| + |R|) for computing the grounded extension, i.e., the set
⋃

j≥1

F j(∅). Hence, ∃i ≤ |A| + |R| such that
i⋃

j=1

F j(∅) =
i−1⋃

j=1

F j(∅). From Defini-

tion 7 and Lemma 1, if a ∈ ⋃

n≥1

Fn(∅), then Degσ
G(a) > δ, and if a is attacked by

∈ ⋃

n≥1

Fn(∅), then Degσ
G(a) < δ. �
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Lemma 3. For any i ∈ N, Ji = 1 − Ji−1

2 .

Proof. From [17], ∀n ≥ 0, J n = 2n−(−1)n

3 . Then, J n+1 = 2n − J n. Since Jn =
J n+1

2n , we get Jn = 2n−Jn

2n = 1 − Jn

2n = 1 −
Jn

2n−1

2 = 1 − Jn−1

2 . �

Lemma 4. Let 〈A,R〉 ∈ AG, a, b ∈ A and i ∈ N.

– If a ∈
i⋃

j=1

F j(∅) and b /∈
i⋃

j=1

F j(∅), then DegJacG (a) > DegJacG (b).

– If the set
⋃ F i≥1(∅) attacks a and does not attack b, then DegJacG (a) < DegJacG (b).

Proof. Let G = 〈A,R〉 ∈ AG and a, b ∈ A.
� Let us show the first property.

Let (P) be the following property: If a ∈
i⋃

j=1

F j(∅) and b /∈
i⋃

j=1

F j(∅), then
DegJac(a) > DegJac(b). We show by induction that (P) holds for every i ∈ N.

Case i = 1 a ∈ F1(∅), thus DegJacG (a) = 1. Since b /∈ F1(∅), then Attackers(b) 	= ∅
and so DegJacG (b) < 1.

Case i > 1 Assume that (P) holds at step i and let us show that it holds also for i + 1.

Assume a ∈
i+1⋃

j=1

F j(∅) and b /∈
i+1⋃

j=1

F j(∅). If a ∈
i⋃

j=1

F j(∅), then by assumption

DegJac(a) > DegJac(b).

Assume now that a ∈ F i+1(∅)\( i⋃

j=1

F j(∅)). Since a, b /∈ F1(∅), then Att(a) 	= ∅
and Att(b) 	= ∅. There are two cases:

•
i+1⋃

j=1

F j(∅) does not attack b. Thus, ∀y ∈ Attackers(b), Attackers(y) 	= ∅. LetD

be the set of arguments defending b. Note that D = D1 ∪D2 where D1 ⊆
i+1⋃

j=1

F j(∅)

and D2 ∩ ( i+1⋃

j=1

F j(∅)) = ∅. Note also that D2 	= ∅ since b /∈
i+1⋃

j=1

F j(∅).

If D1 ⊆
i⋃

j=1

F j(∅), then by assumption D1 >m D2, hence

max
yRb

DegJac(y) = max
(yRb) and Attackers(y)⊆D2

DegJac(y).

By assumption F i >m D2, hence

max
xRa

DegJac(x) < max
(yRb) and Attackers(y)⊆D2

DegJac(y).

Thus, DegJac(a) > DegJac(b).

Assume now that D1 ⊆
i+1⋃

j=1

F j(∅). Hence, D1 = D′
1 ∪ D′′

1 such that D′
1 ⊆
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F i+1(∅) \ ( i⋃

j=1

F j(∅)) and D′′
1 ⊆

i⋃

j=1

F j(∅). By assumption D′′
1 >m D′

1 and

D′′
1 >m D2. So, max

yRb
DegJac(y) = max

(yRb) and Attackers(y)⊆D′
1∪D2

DegJac(y). Fur-

thermore, F i >m D′
1,D2.

Then, max
xRa

DegJac(x) < max
(yRb) and Attackers(y)⊆D′

1∪D2

DegJac(y).

•
i+1⋃

j=1

F j(∅) attacks b. Let j be the smallest integer such that Fj(∅) attacks b. There

are two cases:
• Case j ≤ i. Fj(∅) contains the strongest attackers of b since by assumption

F j(∅) >m F j+k(∅), ∀k ∈ N, and F j(∅) >m Attackers(b) \ ( i+1⋃

j=1

F j(∅)).

Since a ∈ F i+1(∅) and
i+1⋃

j=1

F j(∅) is conflict-free, then Attackers(a) ∩
( i+1⋃

j=1

F j(∅)) = ∅ and thus F j(∅) >m Attackers(a). Consequently,

DegJac(a) > DegJac(b).
• Case j = i + 1. Let Attackers(b) = X ∪ Y such that X ⊆ F i+1(∅) \

( i⋃

j=1

F j(∅)) and Y ⊆ A such that Y ∩ ( i+1⋃

j=1

F j(∅)) = ∅. Since b /∈
i+1⋃

j=1

F j(∅),

then b is defended by arguments that do not belong to
i+1⋃

j=1

F j(∅). Let D be the

set of those defenders. By assumption, F i(∅) >m D, hence

max
xRa

DegJac(x) < max
(yRb) and Attackers(y)⊆D

DegJac(y).

Furthermore, max
(yRb) and Attackers(y)⊆D

DegJac(y) ≤ max
(yRb)

DegJac(y). Thus,

DegJac(a) > DegJac(b).

� Let us show the second property. Assume that
⋃F i≥1(∅) attacks a and does not

attack b. Since a is attacked by
⋃ F i≥1(∅), then ∃a′ ∈ Attackers(a) ∩ (

⋃ F i≥1(∅)).
Furthermore, Attackers(b) ∩ (

⋃ F i≥1(∅)) = ∅. From the first property of this
Lemma 4, DegJac(a′) > DegJac(b′), ∀b′ ∈ Attackers(b). Hence, max

xRa
DegJac(x) >

max
yRb

DegJac(y). Thus, DegJac(b) > DegJac(a). �

Proof of Proposition 1. Recall that the Fibonacci numbers, i.e. elements of the
Fibonacci sequence {Fn}n≥0, are defined as follows: F 0 = 0 F 1 = 1 Fn =
Fn−1 + Fn−2 for n > 1. We get the sequence of so-called Fibonacci numbers:
〈0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .〉. Consider now the sequence {Un}n≥1 defined as
follows: Un = Fn

Fn+1 . It contains two sub-sequences: The decreasing sub-sequence

U1 = 〈1, 2
3
,
5
8
,
13
21

,
34
55

,
89
144

,
233
377

, . . .〉 (2)
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made of the numbers that are at odd positions in S, and the increasing sub-sequence

U2 = 〈1
2
,
3
5
,
8
13

,
21
34

,
55
89

,
144
233

, . . .〉 (3)

which contains the numbers that are at even positions in U .
Clearly, for any n ≥ 1, Fn ∈ [0, 1]. From [19], the two sub-sequences converge,

furthermore they have the same limit. Indeed, lim
n→∞ Un

1 = lim
n→∞ Un

2 = 1
ϕ . where ϕ =

1+
√
5

2 is the so-called golden ratio. Finally, it is also well-known that Un
2 < 1

ϕ <

Un
1 , ∀n ≥ 1. Hence, U ∈ S∗. Consequently, S∗ 	= ∅. �

Proof of Proposition 2. In [5], Theorem 6 shows that Mbs is based on the series
(Un)n≥1 recalled in Lemma 1. Lemma 1 states that U ∈ S∗, then Mbs ∈ Sem∗. The-
orem 7 in [5] shows that EMbs is based on the well-known exponential series which is
also in S∗, then EMbs ∈ Sem∗. �

Proof of Proposition 3. From [17], ∀n ≥ 0, J n = 2n−(−1)n

3 (called Binet formulae).

Since J = (J n+1

2n )n≥0, it follows that Jn = 1
3 (2 + (− 1

2 )
n). Let J1 = (Jn

1 )
n≥0 and

J2 = (Jn
2 )

n≥0 be two sub-series of J such that for any n ≥ 0: Jn
1 = J2n and

Jn
2 = S2n+1. We show that J1 is strictly decreasing while J2 is strictly increasing.

Obviously, Jn+1
1 −Jn

1 = 1
3 (2+ (12 )

n+1)− 1
3 (2+ (12 )

n) = − 1
3 × 1

2n+1 . Since 1
2n+1 > 0,

then Jn+1
1 − Jn

1 < 0 and so Jn
1 > Jn+1

1 .
In a similar way we have Jn+1

2 − Jn
2 = 1

3 (2− ( 12 )
n+1)− 1

3 (2− ( 12 )
n) = 1

3 × 1
2n+1 .

Since 1
2n+1 > 0, then Jn+1

1 − Jn
1 > 0 and so Jn

1 < Jn+1
1 .

Obviously, Jn
1 > Jn

2 because
2n+1+1

3
2n >

2n+1−1
3
2n . Since Jn

1 is strictly decreasing
with J11 = 1 then ∀n, Jn ≤ 1. From [16], ∀n ≥ 0, J n ≥ 0 and thus Jn ≥ 0.

Finally, it is easy to check that lim
n→∞ Jn

1 = lim
n→∞ Jn

2 = 2
3 . Then, J ∈ S∗. �

Proof of Theorem 1. Let σ, σ′ ∈ Sem∗ which are based on the series S and S ′ respec-
tively. Let 〈A,R〉 ∈ AG, a, b ∈ A and Gr =

⋃

j≥1

F j(∅).
� Let us show the implication: (a �σ b) ⇒ (a �σ′ b). Assume that a �σ b, thus

Degσ(a) > Degσ(b). From Lemma 2, there are four possibilities:

Case 1 a ∈ Gr and b /∈ Gr. From Definition 7, Degσ′
(a) ∈ S ′

1 and Degσ′
(b) ∈

S ′
2 ∪ {δ′}. From Lemma 1, Degσ′

(a) > Degσ′
(b).

Case 2 a ∈ Gro and b ∈ Gr+. From Definition 7, Degσ′
(a) = δ′ and Degσ′

(b) ∈ S ′
2.

From Lemma 1, Degσ′
(a) > Degσ′

(b).
Case 3 a, b ∈ Gr. Since S1 is decreasing, then ∃i, j ∈ N such that i < j and a ∈ F i(∅)\

(
⋃i−1

k=1 Fk(∅)) and b ∈ Fj(∅) \ (
⋃j−1

k=1 Fk(∅)). From Definition 7, Degσ′
(a) = S ′i

1

and Degσ′
(b) = S ′j

1. Since S ′
1 is also decreasing and i < j, then Degσ′

(a) >
Degσ′

(b).
Case 4 a, b ∈ Gr+. From Definition 7, ∃i, j ∈ N such that i > j and a is attacked by

F i(∅) and not attacked by ⋃i−1
k=1 Fk(∅), and b is attacked by Fj(∅) and not attacked

by
⋃j−1

k=1 Fk(∅). It follows that Degσ′
(a) = S ′i

2 and Degσ′
(b) = S ′j

2. Since S ′
2 is

increasing and i > j, then Degσ′
(a) > Degσ′

(b).
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� To show the implication: (a �σ′ b) ⇒ (a �σ b), it is sufficient to follows exactly
the same reasoning as for the above case. �

Proof of Theorem 2. Let σ ∈ Sem and assume σ is strongly equivalent to Mbs, i.e., for
anyG = 〈A,R〉 ∈ AG,�Mbs

G =�σ
G. LetG = 〈A,R〉 ∈ AG. We denote by Gr, Gr+, Gro

the following sets: Gr = Gr1 ∪ . . . ∪ Grn where Gri = F i(∅) \ (
i−1⋃

j=1

)F j(∅)
Gr+ = Gr1+ ∪ . . . ∪ Grn

+ where Gri
+ = {a ∈ A | Gri attacks a},

Gro = A \ (Gr ∪ Gr+). From strong equivalence of σ and Mbs, it follows that:

– ∀a, b ∈ Gri (i ∈ {1, . . . , n}), Degσ
G(a) = Degσ

G(b) = vi and ∀c ∈ Grj , with j > i,
Degσ

G(a) > Degσ
G(c). Hence, the sequence V = (v1, . . . , vn) is strictly decreasing.

– ∀a, b ∈ Gri
+, Deg

σ
G(a) = Degσ

G(b) = ui and ∀c ∈ Grj
+, with j > i, Degσ

G(a) <
Degσ

G(c). Hence, the sequence U = (u1, . . . , un) is strictly increasing.
– ∃δ ∈ [0, 1] such that for any a ∈ Gro, Degσ

G(a) = δ.

From Theorem 8 in [5], Gr �Mbs Gro �Mbs Gr+. From strong equivalence of σ and
Mbs, we have Gr �σ Gro �σ Gr+. Hence, ∀a,∈ Gr, ∀b ∈ Gro, Degσ

G(a) > δ. Hence,
the sequence (V n)n≥1 is bounded (and strictly decreasing) and so it converges, i.e.,
lim

n→∞ V n = l ≥ δ. Similarly, ∀a,∈ Gr+, ∀b ∈ Gro, Degσ
G(a) < δ. Thus, the sequence

(Un)n≥1 is thus bounded (and strictly increasing). So, it converges, i.e., lim
n→∞ Un =

l′ ≤ δ. It follows that lim
n→∞ V n ≥ lim

n→∞ Un. Finally, the sequence (Sn)n≥1 composed

of (V n) and (Un) is an element of S∗. Thus, σ ∈ Sem∗. �

Proof of Theorem 3. Let σ ∈ Sem∗. From Proposition 2, Mbs ∈ Sem∗, thus it is strongly
equivalent to σ. From Theorem 10 in [5], Mbs refines the grounded semantics. From
Property 2, σ refines the grounded semantics. �

Proof of Theorem 5. Let 〈A,R〉 ∈ AG, a ∈ A, and i ∈ N.

� Let: (P ) DegJacG (a) = Ji
1 if a ∈ F i(∅) \

i−1⋃

j=1

F j(∅),

(Q) DegJacG (a) = Ji
2 if F i(∅) attacks a and

i−1⋃

j=1

F j(∅) does not attack a.

We prove by induction that the property P ∧ Q is true for any i ∈ N.

Case i = 1. F1(∅) = {x ∈ A | Attackers(a) = ∅}. Furthermore, DegJac(a) = 1 =
J11 if Attackers(a) = ∅, and so (P) holds for i = 1.
By definition of Jac, for any a ∈ A, DegJac(a) = 1

2 iff ∃b ∈ Attackers(a) such
that DegJac(b) = 1. Hence, DegJac(a) = 1

2 = J12. Thus, (Q) holds for i = 1.
Case i > 1. Assume that the property P&Q is true at step i and let us show that it holds

at step i + 1.

Assume a ∈ F i+1(∅) \ ( i⋃

j=1

F j(∅)). Hence, Attackers(a) 	= ∅ and a is defended by

F i(∅), i.e., ∀b ∈ Attackers(a), ∃c ∈ F i(∅) such that cRb. There are two sub-cases:
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–
i−1⋃

j=1

F j(∅) does not attack any b ∈ Attackers(a). Thus, ∀b ∈ Attackers(a),

DegJac(b) = Ji
2 (by assumption). Then, DegJac(a) = 1 − Ji2

2 = Ji+1
1 . (from

Lemma 3).

–
i−1⋃

j=1

F j(∅) attacks some b ∈ Attackers(a). This means that ∃j < i such that

Fj(∅) attacks b and
j−1⋃

k=1

Fk(∅) does not attack b. By assumption, DegJac(b) = Jj
2.

But since a /∈
i⋃

k=1

Fk(∅), then ∃b′ ∈ Attackers(a) such that F i(∅) attacks b′

and
i−1⋃

k=1

Fk(∅) does not attack b′. Thus, by assumption, DegJac(b′) = Ji
2. Since the

subsequence {J2}n is strictly increasing, then Ji
2 > Jj

2 and so max
bRa

DegJac(b) = Ji
2

and DegJac(a) = 1 − Ji2
2 = Ji+1

1 (from Lemma 3).

Assume now that F i+1(∅) attacks a and
i⋃

j=1

F j(∅) does not attack a. Thus,

Attackers(a) = X1 ∪ X2 such that: X1 ⊆ F i+1(∅) \ ( i⋃

j=1

F j(∅)) and X2 ∩
( i+1⋃

j=1

F j(∅)) = ∅. From Property (P) above, ∀b ∈ X1, DegJac(b) = Ji+1
1 . There are

two possibilities:

– i) X2 = ∅. Hence, DegJac(a) = 1 − Ji+1
1
2 = Ji+1

2 .
– ii) X2 	= ∅. From Lemma 4, X1 >m X2. So, max

bRa
DegJac(b) =

max
(bRa) and b∈X1

DegJac(b). So, DegJac(a) = 1 − Ji+1
1
2 = Ji+1

2 .

� Let now a ∈ A such that a /∈ ⋃ F i≥1(∅) and a is not attacked by
⋃ F i≥1(∅).

From Lemma 4, for all b ∈ Gr, DegJac(a) < DegJac(b) and from the first property of
Theorem 5, DegJac(a) < Ji

1 for all i ∈ N. From Lemma 4, for all c ∈ Gr+, DegJac(a) >
DegJac(c) and from the second property of Theorem 5, DegJac(a) > Ji

2 for all i ∈ N.
Hence, for all i ∈ N, Ji

1 > DegJac(a) > Ji
2. Deg

Jac(a) = lim
n→∞ Jn

1 = lim
n→∞ Jn

2 = 2
3 . �

Proof of Theorem 6. Let 〈A,R〉 ∈ AG and a ∈ A. Let U and E be the series on which
Mbs and EMbs are based.

Case 1 a ∈ Gr. If Att(a) = ∅, then Degx
G(a) = 1 for any x ∈ {Jac, Mbs, EMbs}.

Assume now Att(a) 	= ∅. Then, for any n ≥ 1, Jn > 2
3 since Jn

1 is decreasing and
lim

n→∞ Jn
1 = 2

3 . It is also easy to check that J21 > E2
1 > U2

1 and J31 > E3
1 > F3

1 . Note

also that E3
1 < lim

n→∞ Jn
1 and since it is strictly decreasing then, for any i ≥ 3, E i

1 < Ji
1.

Similarly, U3
1 < lim

n→∞ Jn
1 and since it is strictly decreasing then, for any i ≥ 3, U i

1 < Ji
1.
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Case 2 a ∈ Gr+. From Proposition 2, both U2 and E2 are decreasing and lim
n→∞ En

2 =

Ω and lim
n→∞ Un

2 = 1
ϕ . Note that J22 = 0.625 > Ω and J22 > 1

ϕ . Since E2 and U2

are increasing, then ∀i ≥ 2, E i
2 < Ω and U i

2 < 1
ϕ . Then, ∀i ≥ 2, DegJacG (a) >

DegEMbsG (a) and DegJacG (a) > DegMbsG (a). For specific case of i = 1, DegJacG (a) = 0.5
and DegMbsG (a) = 0.5 and DegEMbsG (a) ≈ 0.36.

Case 3 a ∈ Gro. Then, DegJacG (a) = 2
3 , Deg

Mbs
G (a) = 1

ϕ ≈ 0.61 and DegEMbsG (a) = Ω ≈
0.571. Hence, 1

ϕ < 2
3 and Ω < 2

3 . �
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Abstract. Preferences in abstract argumentation frameworks allow to
represent the comparative strength of arguments, or preferences between
values that arguments promote. In this paper, we reconsider the approach
by Amgoud and Vesic, which computes the extensions of a preference-
based argumentation framework by aggregating preferences and attacks
into a new attack relation in a way that it favors preferred arguments
in conflicts, and then simply applying Dung’s semantics to the resulting
graph. We argue that this approach is too rigid in some situations, as it
discards other sensible (even if less preferred) alternatives. We propose a
more cautious approach to preference-based argumentation, which favors
preferred arguments in attacks, but also does not discard feasible alterna-
tives. Our semantics returns a set of extensions and a preference relation
between them. It generalizes the approach by Amgoud and Vesic, in
the sense that the extensions identified by their semantics will be more
preferred than other extensions.

Keywords: Abstract Argumentation · Preferences · Dung’s Semantics

1 Introduction

In the last couple of decades, argumentation has emerged as an increasingly
important field of artificial intelligence research [7,9,16]. It was used as a for-
malism for solving problems in various fields, like non-monotonic reasoning [14],
decision making [1,18], paraconsistent logics [12,17], and in the domains of law
and medicine [7]. The simplest, and in the same time the most popular formal
models are so called Dung’s (abstract) argumentation frameworks [11]. They
are just directed graphs where vertices represent the arguments and the edges
represent conflict between the arguments. Dung [11] proposed several semantics
for evaluating the arguments, whose goal is to identify jointly acceptable sets of
arguments (called extensions).

For some applications, Dung’s argumentation frameworks appear too simple
for proper modelling all aspects of an argumentation problem. One such short-
coming is the lack of ability to represent comparative strength of arguments, an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 109–120, 2024.
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aspect which typically occurs if an argument relies on certain information while
another argument relies on less certain ones [4], or when different arguments pro-
mote values of different importance [8]. This calls for augmenting argumentation
frameworks with preferences over arguments [2,4,5,8,10,13,15]. Whenever argu-
mentation frameworks are extended with preferences, the central question still
remains how arguments are evaluated.

In early papers on preference-based argumentation [2,8], an attack is ignored
if the target argument is preferred to its attacker. The extensions are then iden-
tified by applying Dung’s semantics to the reduced argumentation framework
with remaining attacks. This approach has been criticised in [4,6], as the result-
ing extensions are not necessarily conflict-free. Consider the following example,
essentially taken from [6].

Consider an individual who wants to buy a violin. An expert says that the
violin is made by Stradivari, which is why it’s an expensive violin (we represent
this with argument a). Suppose that the individual has brought their child along
to the store. This child then states that the violin was not made by Stradivari
(argument b). It is clear that b attac a. On the other hand, a is preferred to b,
since the expert should be a lot better at determining whether a violin is a proper
Stradivarius or not than a child.

Since b is preferred to a, the above mentioned method [2,8] will ignore the
attack from b to a, so every Dung’s semantics will accept both arguments, while
there is clearly a conflict between them. To overcome this issue, Amgoud and
Vesic [5] proposed a technical solution: to invert the direction of an attack in
the case that its target is more preferred than the attacker. This approach pre-
serves conflicts between pairs of arguments, thus ensuring conflict-freeness of
extensions. Moreover, in any conflict it favors preferred arguments. In the violin
example, any Dung’s semantics will accept a and discard b, which is sensible
given the disbalance between expertise levels.

Kaci et al. [13] argued that the proposal of Amgoud and Vesic [5] contains an
implicit strong constraint that an argument never never able to attack a preferred
argument. While we in general agree with the idea of Amgoud and Vesic that
the preferred arguments should be favored when involved in an attack, regard-
less of its direction, we also agree with Kaci et al. that in some situation original
direction of the attack should also be considered. To illustrate our position, let
us slightly modify the above violin example by replacing the child with another
expert, just slightly less reputed. In this situation, the argumentation graph
doesn’t change, but intuitively acceptance of {b} becomes a sensible alternative -
even if less preferred than acceptance of {a}. While ideally we would like distin-
guish between two scenarios by saying “how strongly” is one argument preferred
to another one, that is not possible due to purely qualitative nature of preference
relations. This calls for more cautions approach, which does not automatically
discard possibly sensible alternatives.

In this paper, we propose a more cautious approach to preference-based
argumentation, which favors preferred arguments in attacks, but also does not
discard feasible alternatives. In the violin example, it will return two exten-
sions, {a} and {b}, with the first one being more preferred to the second one.
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In general, it returns a set of extensions and a preference relation between them.
The extensions that fully favor preferred arguments in attacks (i.e., the exten-
sions identified by Amgoud and Vesic [5]) will be more preferred than any other,
and the remaining extensions which correspond to feasible, but less likely alter-
native scenarios will also be ordered according to their to feasibility.

Technically, we propose a two-step procedure for generating possible exten-
sions and preferences over them. In the first step, we extract multiple argumen-
tation graphs from the same preference-based argumentation framework, where
each of them corresponds to a feasible scenario, and we define an order over
them induced by the given preference order over arguments. In the example
from above, we will extract two graphs: one in which b attacks a, and one in
which the attack is inverted. The latter graph will be more preferred than the
former. We noted that in more complex graphs there is more than one sensible
way to define a preference order over the extracted graphs, so we first proposed
some guiding principles that each such order should satisfy. We then provided
two concrete orders that satisfy the principles. In the second step, we define a
preference relation over extensions of extracted graphs, using previously defined
order over the graphs as a starting point. We first deal with the case when the
preference order over graphs is total, in which case we employ a variant of lexi-
cographic order. Then we show that we can properly generalize that idea to the
case when the order over extracted graphs is partial.

2 Preference-Based Argumentation Frameworks

Dung [11] defined an abstract argumentation frameworks (AFs) as a pair con-
sisting of a set of arguments and attacks, a binary relation between arguments.

Definition 1 (Dung’s Argumentation Framework). A Dung’s Argumen-
tation Framework (AF) is a tuple: G = 〈A, def 〉, where A represents a set of
arguments and def ⊆ A × A is a set of attacks between arguments.

Note that we denote the attack relation by def (from defeat), in order to distin-
guish this relation from the “attack” relation in preference-based argumentation.

Definition 2. Let G = 〈A, def 〉 be an AF.

– A set of arguments S ⊂ A is said to be conflict-free if and only if there are
no a, b ∈ S such that (a, b) ∈ def .

– A set of arguments S ⊂ A is said to attack an argument b if and only if there
exists some a ∈ S such that (a, b) ∈ def .

– A set of arguments S ⊂ A defends an argument a if and only if ∀b ∈ A if
(b, a) ∈ def , then S attacks b.

Acceptable sets of arguments, called extensions are defined by acceptability
semantics proposed by Dung in [11].

Definition 3. Let G = 〈A, def 〉 be an AF and B ⊆ A a set of arguments.
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– An argument a ∈ A is acceptable with respect to B if and only if for ∀a′ ∈ A:
if (a′, a) ∈ def , then B attacks a′.

– B is admissible if and only if it is conflict-free and each element in B is
acceptable with respect to B.

– B is a preferred extension if and only if it is a maximal (with respect to ⊆)
admissible set

– B is a stable extension if and only if B is conflict-free and ∀a ∈ A\B, ∃b ∈ B
such that (b, a) ∈ def .

– B is a complete extension if and only if B is admissible and ∀a ∈ A, if B
defends a, then a ∈ B.

– B is the grounded extension if and only if B is the minimal (with respect
to ⊆) complete extension.

For σ ∈ {preferred, stable, complete, grounded}, we write E ∈ σ(G) to
denote that E is a σ extension of G.

In [2], Dung’s AFs were extended with preferences over arguments.

Definition 4 (Preference Argumentation Framework). A Preference
Argumentation Framework (PAF) is a tuple F = 〈A, att ,≥〉, where A is a set
of arguments, att ⊆ A × A is an attack relation between arguments and ≥ is the
preference relation.

Following [2], in this paper we use term preference relation for a (partial or
total) preorder (i.e., a reflexive and transitive binary relation). We use a > b as
an abbreviation for a ≥ b ∧ ¬(b ≥ a).

In [5] attacks are referred to as critical attacks if it is an attack from a less
preferred to a more preferred argument.

Definition 5 (Critical Attack). The set of all critical attacks in any PAF
F = 〈A, att ,≥〉 is defined as follows:

Critical(F) = {(a, b) | ∀a, b ∈ A : (a, b) ∈ att ∧ b > a}.

Amgoud and Vesic [5] proposed a method which takes a PAF and uses the
attacks and preferences over arguments to identify which arguments defeat which
other arguments. The method entails inverting the direction of critical attacks.

Definition 6. Let F = 〈A, att ,≥〉 be a PAF. Then, G = 〈A, def 〉 is the reduced
AF of F if def = {(a, b) | (a, b) ∈ att ∧ b ≯ a} ∪ {(b, a) | (a, b) ∈ att ∧ b > a}.

After applying this method to a PAF, Dung’s acceptability semantics are
applied to the reduced AF to identify the extensions of the PAF.

3 Extracting Multiple AFs from a Single PAF

In this section, we propose a method for extracting multiple AFs from a single
PAF, and determining preferences between these AFs. In the case of violin and
example, two different AFs will be created: one in which the direction of the
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critical attack has been inverted, and the other in which its direction is main-
tained. The former graph will be preferred to the latter one. Our method for
extracting AFs from a PAF based on the reduction method proposed in [5], but
differs from it in that not necessarily the direction of all critical attacks will be
inverted.

Definition 7 (Extracting AFs from a PAF). Let F = 〈A, att ,≥〉 be a
PAF. If R ⊆ Critical(F) is a set of critical attacks, then G = 〈A, def 〉 is an AF
extracted from F , where

def = {(a, b) | (b, a) ∈ R} ∪ (att\R).

Let IG denote the set of attacks in AF G which are obtained by inverting the
direction of attacks in PAF F , i.e., IG = {(a, b) | (b, a) ∈ R}. Let S(F) denote
the set of all of the AFs that can be extracted from PAF F .

Next we develop a method to define preferences over S(F). This method, called
an AF preference method, is a function which maps each PAF F to a prefer-
ence order over AFs extracted from F . While multiple of these methods can be
defined, some basic conditions state that any AF preference method should be
a transitive and reflexive order.

Definition 8. An AF preference method (AFpm) is a function m that maps
each PAF F into �F

m, where �F
m⊆ S(F)×S(F), and �F

m is a preference relation.

We use the following abbreviations: G1 F
m G2 is the conjunction G1 �F

m G2

and G2 ��F
m G1, while G1 ≈F

m G2 denotes G1 �F
m G2 and G2 �F

m G1. If F is
clear from context, we will write G1 �m G2 instead of G1 �F

m G2. We will also
omit m whenever it is clear from context or it is irrelevant.

The above definition is not very restrictive, as the only constraint is that any
AF preference method has to be a reflexive and transitive relation. Following
the general approach of Amgoud and Vesic [4] which favors preferred arguments
in conflicts, we use principle based approach to describe the subclass of AF
preference methods which enforces that it is preferable to invert the direction of
critical attacks rather than maintain their direction.

Our first principle formalizes that idea in the case of simplest setting that
roughly correspond to the violin example: there are only two arguments, which
means that they can only contain one critical attack. However, we show that
our two principles already ensure that the idea will be respected by all extracted
graphs (see Theorem 1).

Principle 1 (Inversion Preference). Let F = 〈{a, b}, att ,≥〉 be a PAF such
that (a, b) ∈ Critical(F). Let G1, G2 ∈ S(F) such that IG1 = {(b, a)} and
IG2 = ∅. Then G1 F

m G2.

Our second principle ensures that an AF preference method orders AFs in a
consistent way in different PAFs,m i.e., that its strategy does not change when
we switch from one framework to another one. Consider two AFs G1 and G2
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that are extracted from the same PAF F such that G1 �F
m G2. By adding an

argument a to both G1 and G2 and to add the same attacks from and to a,
two new AFs are created, G′

1 and G′
2. The second principle then enforces that

G′
1 �m G′

2. However, since G′
1 and G′

2 no longer contain the same arguments as
F , they can no longer be extracted from F . Instead, a new PAF, F ′ needs to
be defined which contains all the arguments of F and a. To go towards a formal
definition of the second principle, a notion of reducing a PAF or AF with respect
to a set of arguments is required.

Definition 9 (Reduction with respect to a set of arguments).
Let G = 〈A, def 〉 be an AF. The reduced AF of G with respect to arguments
A′ ⊂ A is G|A′ = 〈A′, def ′〉, where def ′ = def ∩ (A′ × A′).

Let F = 〈A, att ,≥〉 be a PAF. The reduced PAF of F with respect to argu-
ments A′ ⊂ A is F|A′ = 〈A′, att ′,≥′〉, where att ′ = att ∩ (A′ × A′) and
≥′=≥ ∩(A′ × A′).

With the notation of a reduction with respect to a set of arguments present,
it is possible to define the second principle formally.

Principle 2 (Expansion). Let PAF F = 〈A, att ,≥〉. For any A′ ⊂ A, let Q
be a PAF such that Q = F|A′ . Let Q1, Q2 ∈ S(Q) and let G1, G2 ∈ S(F) such
that Q1 = G1|A′ , Q2 = G2|A′ and IG1\IQ1 = IG2\IQ2 . If Q1 �Q

m Q2, then
G1 �F

m G2.

Now that these two principles have been defined, we are ready to propose a
class of AF preference methods that all capture the intuition properly that it is
preferable to invert critical attacks rather than maintaining the critical attacks
in extracted AFs.

Definition 10 (Inversion-based AFpm). An Inversion-based AFpm is an
AFpm that respects Principle 1 and Principle 2.

We now show that for any two AFs that are extracted from the same PAF,
if they are ordered using an inversion-based AFpm, it is preferred to invert the
direction of any critical attack rather than to maintain its direction.

Theorem 1. Let m be an inversion-based AFpm. Let F be a PAF, where (a, b) ∈
Critical(F). Let G1, G2 ∈ S(F) such that (b, a) /∈ IG2 and IG1 = IG2 ∪ {(b, a)}.
Then, G1 F

m G2.

The previous result provides the most and the last preferred extracted graph
of a PAF, regardless of the choice of the inversion-based AFpm.

Corollary 1. Let m be an inversion-based AFpm and let F = 〈A, att ,≥〉 be a
PAF.

1. If G1 is the reduced graph of F (according to Definition 6) and G ∈ S(F)
such that G1 �= G, then, G1 F

m G.
2. For every G ∈ S(F) if G �= 〈A, att〉 then G F

m 〈A, att〉.
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Definition 10 does not determine a unique inversion-based AFpms. Now we pro-
pose two different methods, both of them guided by the idea that we prefer
graphs in which we invert “more”, but with two different interpretations of
“more”: first using the subset relation, and then using cardinality.

Definition 11. Let F be a PAF. Then s maps F to a preference relation �F
s

such that for any AFs G1, G2 ∈ S(F) G1 �F
s G2 if and only if IG1 ⊇ IG2 .

This method obviously gives birth to preference relations that are partial
preorders. On the other hand, the following method defines a total preorder over
S(F) for every PAF F .

Definition 12. Let F be a PAF. Then c maps F to a preference relation �F
c

such that for any AFs G1, G2 ∈ S(F), G1 �F
c G2 if and only if |IG1 | ≥ |IG2 |.

Both mappings defined above satisfy Definition 10.

Theorem 2. Both s and c are inversion-based AF preference methods.

Note that the strategy of c is to “weight” every critical attack equally: only
the number of inversions matters. We might also search for other methods which
violates that assumption; for example one might prefer to invert the attack from
the weakest argument in a framework to the strongest one, than to invert some
other critical attack.

On the other hand, the strategy of s is more cautious. It is easy to see that
the total order defined by c extends the partial order defined by s. In fact, we
can show that s is the most cautious inversion-based AFpm, in the sense that
any other inversion-based AFpm is a further refinement of s.

Theorem 3. For any inversion-based AFpm m and any PAF F , if G1 �F
s G2,

then G1 �F
m G2.

4 Preferences over Extensions of a PAF

In the previous section a single PAF F was used to generate multiple differ-
ent AFs and to generate preferences between these different AFs based on an
inversion-based AFpm. In this section, preferences over extensions of elements of
S(F) will be defined. In the following two subsections, different definitions will
be given to determine the preferences over extensions depending on whether the
preference order over S(F) is a total order or not. Throughout this section, we
write E1 �F E2 to denote that E1 is an extension that is at least as preferred
as E2 (according to some considered semantics σ). If F is clear from context, it
may be omitted for convenience, which means E1 � E2 will be used.
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4.1 Preferences over Extensions When � over S(F) It Total

In this subsection we define preferences over extensions when there exists a total
preference order over S(F), using a variant of lexicographical order. To illustrate
the idea, imagine that for some PAF F , G1, . . . , G4 ∈ S(F) are all extracted
graphs of F that contain some of E1, . . . , E4 as an extension of given semantics
σ. Let the total preference order over S(F) rank G1, . . . , G4 as represented by
Fig. 1. Below each of the AFs, extensions of that specific AF according to σ are
written.

G1

E1

E2

G2

E1

G3

E3

G4

E2

E4

Fig. 1. Representation of total order

For instance, since E1 ∈ σ(G1) and E2 ∈ σ(G1), we need to look at the
extensions of the next most preferred AF, G2. Since E1 ∈ σ(G2) but E2 /∈ σ(G2),
it must be the case that E1 is preferred to E2. In Table 1, the extensions are
ordered according to lexicographical order of the sequences of numbers, where 1
means that Ei is an extension of Gj , and 0 that it is not.

Table 1. Lexicographical order of Fig. 1.

G1 G2 G3 G4

E1 1 1 0 0

E2 1 0 0 1

E3 0 0 1 0

E4 0 0 0 1

Since any extension may only appear once in an AF, all of the values in
Table 1 are either 1 or 0. This is the case because there are only strict preferences
between AFs in Fig. 1. However, it is possible for AFs extracted from the same
PAF to be equally preferred. In that case we will “group” some AFs together.

Definition 13 (Class of all equally preferred AFs). For any PAF F and
AF G ∈ S(F), let [G]Fm represent the class of all AFs in S(F) that are equally
preferred to G according to AFpm m, i.e., [G]Fm = {G′ ∈ S(F) | G ≈F

m G′}.
Informally, in such case we would replace the individual graphs in the first row

of Table 1 with the classes defined above, and ordered according to the assumed
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total order. Then the remaining rows would contain positive integers that indi-
cate how many AFs from a class contains Ei as an extension. Lexicographic
order of those rows will define preference order over Ei’s.

We now introduce a notion that will also be useful in the rest of this section.

Definition 14. Let σ be a Dung’s semantics. For two sets of arguments E and
E′ and for any set of AFs S, we say that E is preferred to E′ wrt. S, and we write
Prσ(E,E′, S), if and only if |{G ∈ S | E ∈ σ(G)}| > |{G′ ∈ S | E′ ∈ σ(G′)}|.

In other words, if the amount of times E is an extension of elements of S is
higher than the amount of times E′ is an extension of the elements of S under
acceptability semantics σ, then Prσ(E,E′, S).

As has been shown in this section, whenever a preference order over AFs
is a total order, we can use those AFs to create a table counting the amount
of times an extension is an extension of AFs that are equally preferred to each
other. The extension that is counted the most often in the most preferred AF
then becomes the most preferred extension. In the case of a tie, the second
most preferred class of AFs is counted, until a difference has been observed. If
there are no differences in any of the classes of equally preferred AFs between 2
extensions E1 and E2, they are equally preferred to each other. ?In terms of a
formal definition, Definition 14 can be used to help express this.

Definition 15. Extension E is preferred to extension E′, E �F E′ if and only
if ∃G : Prσ{E,E′, [G]Fm}, ∀G′ if G′  G, then it is cannot be the case that
Prσ{E′, E, [G′]Fm}.

In other words, if E �F E′, there needs to exist a group of equally preferred
AFs, [G], where E is an extension more often than E′ (Prσ{E,E′, [G]}). Note
that the preference relation over extensions is a transitive relation. Moreover,
for any AF G′ which is preferred to G, in that class of equally preferred AFs,
[G′], E′ is not allowed to be an extension more often than E.

4.2 Preferences over Extensions When � over S(F) Is Partial

The previous method is only applicable if the underlying AFpm always provides
a total order. In particular, it can’t be applied to s (Definition 11).

Let F be any random PAF such that Critical(F) = {(a, b), (c, d)}. Let IG1 =
{(b, a), (d, c)}, IG2 = {(b, a)}, IG3 = {(d, c)} and IG4 = ∅. We use inversion-
based AFpm s to determine the preferences between these four different AFs.
It is clear that G2 and G3 are incomparable. The AFs are represented in Fig. 2
with preferences between them.

Since G2 and G3 are incomparable AFs, the preference order ‘branches’.
Similarly to preferences over extensions when S(F) is totally ordered, we

would like to prefer extension E1 over extension E2 if we cannot find a reason
why E2 is preferred to E1. In other words, if for any AF G2 such that E2 ∈ σ(G2),
there exists an AF G1 such that G1  G2 and E1 ∈ σ(G1), then E1 would be
preferred to E2. Compared to the case where S(F) is totally ordered by some
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G1

E1

G2

E2

G3

E3

G4

E2

E4

s

s s

s

Fig. 2. Representation of partial order

�F , AFs being incomparable makes the method a bit more complex, as different
‘branches’ can exist (such as in Fig. 2). To be able to express that an extension
E is preferred to another extension E′, it needs to be checked that whenever
E′ is an extension of an AF G′, that E is an extension of an AF G such that
G  G′.

Since that it could be possible that some AFs extracted from the PAF F are
equally preferred under some AF preference method, we employ Definition 14.

Definition 16. For any PAF F and all AFs extracted from F , S(F), E is
preferred to E′, denoted by E �F E′, if and only if ∀G′ : Prσ(E′, E, [G′]Fm) →
∃G : (Prσ(E,E′, [G]Fm) ∧ G  G′).

Theorem 4 (Transitivity). If E1 � E2 and E2 � E3 then E1 � E3.

At the end of the section, we prove that the method proposed for partial
order properly generalize the method for the total order proposed in the previous
subsection. In other words, if S(F) is totally ordered, both methods will give
the same preferences over extensions.

Theorem 5. For any PAF F such that S(F) is totally ordered, the order of
extensions found by using Definition 16 is exactly the same as found by using
Definition 15.

Finally, from Corollary 1 it follows that the extensions identified by Amgoud
and Vesic [4] will be more preferred than other extensions.

5 Conclusion

This paper proposes a cautious approach to preference-based argumentation,
which favors preferred arguments in attacks, but also does not discard feasible
alternatives. Our semantics returns a set of extensions and a preference relation
between them. We generalize the proposal by Amgoud and Vesic [4], which avoid
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the problem of conflicting extensions present in early approaches to preference-
based argumentation [3,8,15]. There are two more reduction approaches in the
literature [13]. Similarly as [4], those approaches reduce a PAF to an AF and
return the extensions of that AF, therefore they discard all other possible AFs
and they do not define preferences over extensions.
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Abstract. Learning Bayesian Networks (BNs) from high-dimensional
data is a complex and time-consuming task. Although there are
approaches based on horizontal (instances) or vertical (variables) parti-
tioning in the literature, none can guarantee the same theoretical prop-
erties as the Greedy Equivalence Search (GES) algorithm, except those
based on the GES algorithm itself. In this paper, we propose a directed
ring-based distributed method that uses GES as the local learning algo-
rithm, ensuring the same theoretical properties as GES but requiring less
CPU time. The method involves partitioning the set of possible edges and
constraining each processor in the ring to work only with its received sub-
set. The global learning process is an iterative algorithm that carries out
several rounds until a convergence criterion is met. In each round, each
processor receives a BN from its predecessor in the ring, fuses it with its
own BN model, and uses the result as the starting solution for a local
learning process constrained to its set of edges. Subsequently, it sends
the model obtained to its successor in the ring. Experiments were car-
ried out on three large domains (400–1000 variables), demonstrating our
proposal’s effectiveness compared to GES and its fast version (fGES).

Keywords: Bayesian network learning · Bayesian network
fusion/aggregation · Distributed machine learning

1 Introduction

A Bayesian Network (BN) [9,13,18] is a graphical probabilistic model that
expresses uncertainty in a problem domain through probability theory. BNs
heavily rely on the graphical structure used to produce a symbolic (relevance)
analysis [16], which gives them an edge from an interpretability standpoint.
The demand for explainable models and the rise of causal models make BNs a
cutting-edge technology for knowledge-based problems.
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A BN has two parts: A graphical structure that stores the relationships
between the domain variables, such as (in)dependences between them, alongside
a set of parameters or conditional probability tables that measure the weight
of the relationships shown in the graph. Experts in the problem domain can
help build both parts of the BN [12]. Unfortunately, this task becomes unsus-
tainable when the scale of the problem grows. Nonetheless, learning BNs with
data is a well-researched field, and even though learning the structure of a BN
is an NP-hard problem [6], a variety of proposals have been developed to learn
BNs from data [3,5,7,22]. Additionally, a number of studies have delved into
high-dimensional problems [2,21,25].

The main focus of this paper is to address the problem of structural learning
of BNs in high-dimensional domains to reduce its complexity and improve the
overall result. To do so, we use a search and score approach within the equivalence
class search space [1] while dividing the problem into more minor problems that
can be solved simultaneously. Furthermore, our work exploits the advantages of
modern hardware by applying parallelism to the majority of the phases of our
algorithm.

To achieve these improvements, our research applies, as its core component,
the recent proposal for BN fusion [19] alongside an initial partitioning of all
of the possible edges of the graph and the GES algorithm [5]. Therefore, in
a few words, our algorithm starts by dividing the set of possible edges into
different subsets and performing parallel learning of various networks, where
each process is restricted to its according subset of edges. Once the batch has
finished, the resulting BN is used as input for the following process, creating a
circular system where the output of one process is the input of the following
process. Our experiments were performed over the three largest BNs in the
bnlearn repository [23], showing that our algorithm reduces the time consumed
while achieving good representations of these BNs.

The remainder of this paper is organized as follows: Section 2 provides a
general introduction to BNs. Next, in Sect. 3, our proposal is explained in detail.
In Sect. 4, we describe the methodology used to perform our experiments and
present the results obtained. Finally, in Sect. 5, we explain the conclusions we
have arrived at throughout our work.

2 Preliminaries

2.1 Bayesian Network

A Bayesian Network (BN) [9,13,18] is a probabilistic graphical model frequently
used to model a problem domain with predominant uncertainty. A BN is formally
represented as a pair B = (G,P) where G is a Directed Acyclic Graph (DAG)
and P is a set of conditional probability distributions:

– The DAG is a pair G = (V,E), where V = {X1, . . . Xn} is the set of vari-
ables of the problem domain, and E is the set of directed edges between the
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variables: E = {X → Y | X ∈ V, Y ∈ V,X �= Y } G is capable of rep-
resenting the conditional (in)dependence relationships between V using the
d-separation criterion [18].

– P is a set of conditional probability distributions that factorizes the joint
probability distribution P (V) by using the DAG structure G and Markov’s
condition:

P (V) = P (X1, . . . , Xn) =
n∏

i=1

P (Xi|paG(Xi)), (1)

where paG(Xi) is the set of parents of Xi in G.

2.2 Structural Learning of BNs

Structural learning of BNs is the process of creating their DAG G by using
data1. This problem is an NP-hard problem [6]; however, many solutions have
been developed to learn BNs. We can classify these approaches into two groups:
constraint-based and score+search solutions. In addition, some hybrid algo-
rithms have also been developed (e.g., [2,25]). The constraint-based algorithms
use hypothesis tests to identify the conditional independences found in the data,
while the score+search methods apply a search algorithm to find the best struc-
ture for a given score function or metric, which depends entirely on the given
data. So, these approaches need a search method to find promising structural
candidates and a scoring function to evaluate each candidate. We will only con-
sider discrete variables and focus on the score+search methods.

We can see score+search methods as optimization problems where, given a
complete dataset D with m instances over a set of n discrete variables V, the
objective is to find the best DAG G∗ within the search space of the DAGs of
the problem domain Gn, by means of a scoring function f(G : D) that measures
how well a DAG G fits the given data D:

G∗ = arg max
G∈Gn

f(G : D) (2)

Different measurements have been used in the literature. The scoring func-
tions can be divided into Bayesian and information theory-based measures
(e.g., [4]). Our work focuses on using the Bayesian Dirichlet equivalent uniform
(BDeu) score [8], but any other Bayesian score could be used in our proposal.
This score is a particular case of BDe where a uniform distribution over all the
Dirichlet hyperparameters is assumed.

BDeu(G | D) = log(P (G))+
n∑

i=1

⎡

⎣
qi∑

j=1

[
log

(
Γ ( η

qi
)

Γ (Nij + η
qi

)

)
+

ri∑

k=1

log

(
Γ (Nijk + η

riqi
)

Γ ( η
riqi

)

)]⎤

⎦ , (3)

1 In this paper, we only consider the case of complete data, i.e., no missing values in
the dataset.
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where ri is the number of states for Xi, qi is the number of state configurations
of PaG(Xi), Nij and Nijk are the frequencies computed from data for maximum
likelihood parameter estimation, η is a parameter representing the equivalent
sample size and Γ () is the Gamma function.

A state-of-the-art algorithm for structural learning is the Greedy Equivalence
Search (GES) [5]. This algorithm performs a greedy approach over the equiva-
lence space, using a scoring metric to search in two stages: Forward Equivalence
Search (FES) and Backward Equivalence Search (BES). The FES stage is in
charge of inserting edges into the graph, and when no further insertions improve
the overall score, the BES stage begins to delete edges from the graph until
there are no further improvements. It is proven that under certain conditions,
GES will obtain an optimum BN representation of the problem domain. In our
work, we use an alternative approach to GES, as described in [1], where the FES
stage is carried out in a totally greedy fashion while maintaining the BES stage
intact. This improvement has been proven to be as effective as GES and to retain
the same theoretical properties. To use this last algorithm as a control one, we
implemented a parallel version of GES where the checking phase of the edges
to add or delete is carried out in a distributed manner by using the available
threads.

Apart from GES, we also consider Fast Greedy Equivalence Search (fGES)
[20] as a competing hypothesis to test our proposal. fGES improves the original
GES algorithm by adding parallel calculations.

2.3 Bayesian Network Fusion

Bayesian Network Fusion is the process of combining two or more BNs that share
the same problem domain. The primary purpose of the fusion is to generate
a BN that generalizes all the BNs by representing all the conditional indepen-
dences codified in all the input BNs. BN fusion is an NP-hard problem; therefore,
heuristic algorithms are used to create an approximate solution [17]. To do so,
the algorithm relies on a common ordering σ of variables, and the final result
depends strongly on the ordering σ used.

In a recent work [19], a greedy heuristic method (GHO) is proposed to find
a good ordering for the fusion process. To achieve a good order, GHO must
find an order that minimizes the number of transformations needed. This is
accomplished by using the cost of transforming a node into a sink throughout
all DAGs, being used as a scoring method to evaluate orders and using it in a
heuristic to find a good order.

3 Ring-Based Distributed Learning of BNs

Learning BNs for high-dimensional domains is a particularly complex process
since it requires a much higher number of statistical calculations, which increases
the iterations needed for the learning algorithms to converge. To reduce the
computational demand of the learning process, we propose executing several
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simpler learning processes in parallel that reduce the time spent on the algorithm.
We call our proposal Circular GES (cGES); it is illustrated in Fig. 1, and the
scheme is depicted in Algorithm 1.

Fig. 1. Graphical description of the proposed approach considering four processes

We can divide the algorithm into three stages:

1. Edge partitioning. Given an input dataset D, with V = {X1, . . . , Xn}, as well
as the set of possible edges E = {X → Y | X ∈ V, Y ∈ V,X �= Y }, this step
splits E into k subsets E1, . . . ,Ek, such that E = E1 ∪ · · · ∪ Ek. This is done
by using a score-guided complete-link hierarchical clustering that partitions E
into k clusters of edges Ei, where each possible edge can only be assigned to
one and only one cluster of edges Ei. First, we create k clusters of variables by
using the BDeu score (3) [8] difference to measure the similarity or correlation
between two variables:

s(Xi,Xj) = BDeu(Xi ← Xj |D) − BDeu(Xi �← Xj |D). (4)

Where, if s(Xi,Xj) (4) is positive, then adding Xj as a parent of Xi has
an overall positive effect. The higher the score, the more related are the two
variables. s(Xi,Xj) is asymptotically equivalent to the mutual information.
It’s symmetric but non-negative, and it only measures the similarity of two
variables, not the distance between them. We find a similar case in [14].
To apply the complete link approach of the hierarchical clustering, we com-
pute the similarity between clusters Cr and Cl as follows:

s(Cr, Cl) =
1

|Cr| · |Cl|
∑

Xi∈Cr

∑

Xj∈Cl

s(Xi,Xj) (5)
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Algorithm 1: cGES(D,k)
Data: D, dataset defined over V = {X1, . . . , Xn} variables;

k, the number of parallel processes;

l, the limit of edges that can be added in a single GES process;

Result: G∗
r = (V,E), the resulting DAG learnt over the dataset D.

1 {E1, . . . ,Ek} ← EdgePartitioning(D, k)

2 go ← True

3 Gr ← ∅
4 for (i = 1, . . . , k) do
5 Gi ← ∅
6 while go do
7 /* Learning Stage */

8 for (i = 1, . . . , k) do in parallel

9 Ĝ ← Fusion.edgeUnion(Gi, Gi−1)

10 Gi ← GES(init = Ĝ, edges = Ei, limit = l,D)

11 /* Convergence Checking */

12 go ← False

13 for (i = 1, . . . , k) do
14 if (BDeu(G∗, D) − BDeu(Gi, D) ≥ 0) then
15 Gr ← Gi

16 go ← True

17 /* Fine Tuning */

18 G∗
r ← GES(init = Gr, edges = E, limit = ∞, D)

19 return G∗

With the k clusters of variables, we create the same number of clusters of
edges. First, we assign all the possible edges among the variables of cluster
Ci to the subset Ei. Next, we distribute all the remaining edges of variables
belonging to different clusters. We attempt to balance the size of the resulting
subsets by assigning the resulting edge with the end variables belonging to two
clusters to the subset with the smallest number of edges. Finally, we obtain k
disjoint subsets of edges. The execution of this step occurs only once, at the
beginning of the algorithm, and the resulting subsets are used to define the
search space of each process of the learning stage.

2. Learning stage. In this stage, k processes learn the structure of a BN. Each
process i receives the BN learned by its predecessor (i − 1) process and its
Ei edge cluster as input. In every iteration, all the processes are executed in
parallel, where each process is limited to their assigned Ei edge cluster. Each
process works as follows: First, the process starts by carrying out a BN fusion
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[19] between the predecessor’s BN and the BN the process has learned so far.
If it is the first iteration, the fusion step is skipped since no BNs have been
learned yet, and we use an empty graph as starting point. Next, with the
result of the fusion as a starting point, a GES algorithm is launched where
the edges considered for addition and deletion are restrained to the edges
of its Ei cluster. Furthermore, an additional option is to limit the number
of edges that can be added in each iteration, resulting in a shorter number
of iterations and avoiding introducing complex structures that would later
be pruned during the merging process. After a preliminary examination, this
limitation was set to (10/k)

√
n, ensuring that the limitation is tailored to the

size of the problem, as well as to the number of subsets E1, . . . ,Ek used.
Once each process learns a BN, it is used as input for the next process, creating
a ring topology structure. All the processes are independent and are executed
in parallel. Each inner calculation needed by GES is also performed in parallel.
As noted in the above section, we use the parallel version of GES, and all
the processes store the scores computed in a concurrent safe data structure
to avoid unnecessary calculations. Finally, when an iteration has finished, the
convergence is checked by comparing whether any of the resulting BNs has
improved its BDeu score over the best BN constructed so far. When no BN
has outperformed the up to now best BN, the learning stage finishes.

3. Fine tuning. Once the learning stage has finished, the parallel version of
the GES algorithm is executed using the resulting BN as a starting point.
This time, the GES algorithm uses all the edges of E without adding any
limitation. As we expect to start from a solution close to the optimal, this
stage will only carry out a few iterations. Since we apply a complete run
of GES (FES+BES) over the resulting graph, all the theoretical properties
of GES will be maintained as they are independent of the starting network
considered.

It is important to notice that, by using this ring topology, the fusion step
only takes two networks as input, thus avoiding obtaining very complex (dense)
structures and so reducing overfitting. Furthermore, throughout each iteration,
the BNs generated by each process will be of greater quality, generalizing better
with each iteration since more information is shared. By limiting the number of
edges added, the complexity of each BN is smaller, and the fusions make smaller
changes, creating more consistent BNs in each process. A general overview of
the learning stage can be seen in Fig. 1.

4 Experimental Evaluation

This section describes the experimental evaluation of our proposal against com-
peting hypotheses. The domains and algorithms considered, the experimental
methodology, and the results obtained are described below.
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4.1 Algorithms

In this study, we examined the following algorithms:

– An enhanced version of the GES algorithm [5] introduced in [1] (see Sect. 2.2).
Notably, the implementation in this study incorporates parallelism to expe-
dite the computational processes. In each iteration, to find the best edge to
be added or deleted, the computation of the scores is implemented in parallel
by distributing them among the available threads.

– The fGES algorithm, introduced in [20].
– The proposed cGES algorithm (see Sect. 3). We evaluate this algorithm with

2, 4, and 8 edge clusters, as well as limiting and non-limiting configurations
for the number of edges inserted in each iteration.

4.2 Methodology

Our methodology for evaluating Bayesian network learning algorithms involved
the following steps:

First, we selected three real-world BNs from the Bayesian Network Reposi-
tory in bnlearn [23] and sampled 11 datasets of 5000 instances for each BN. The
largest BNs with discrete variables, namely link, pigs, and munin, were cho-
sen for analysis. For each BN, Table 1 provides information about the number
of nodes, edges, parameters in the conditional probability tables, the maximum
number of parents per variable, average BDeu value of the empty network, and
the structural Hamming distance between the empty network and the moralized
graph of the original BN (SMHD) [10].

Table 1. Bayesian networks used in the experiments.

Network Features

Nodes Edges Parameters Max parents Empty BDeu Empty SMHD

Link 724 1125 14211 3 −410.4589 1739

Pigs 441 592 5618 2 −459.7571 806

Munin 1041 1397 80592 3 −345.3291 1843

We considered several evaluation scores to assess the algorithms’ efficiency
and accuracy. These included the CPU time required by each algorithm for
learning the BN model from data, the BDeu score [8] measuring the goodness
of fit of the learned BN with respect to the data normalized by the number
of instances as in [24], and the Structural Moral Hamming Distance (SMHD)
between the learned and original BN, measuring the actual resemblance between
the set of probabilistic independences of the moralized graph of the two models
(see, e.g., [11]).

Our methodology tested the configuration of each algorithm on the 11 sam-
ples for each of the three BNs. The results reported are the average of these
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runs for each evaluation score. This approach allowed us to systematically eval-
uate the performance of the BN learning algorithms across multiple datasets and
provide comprehensive insights into their efficiency and accuracy.

4.3 Reproducibility

To ensure consistent conditions, we implemented all the algorithms from scratch,
using Java (OpenJDK 8) and the Tetrad 7.1.2-22 causal reasoning library. The
experiments were conducted on machines equipped with Intel Xeon E5-2650
8-Core Processors and 64 GB of RAM per execution running the CentOS 7
operating system.

To facilitate reproducibility, we have made the datasets, code, and execution
scripts available on GitHub3. Specifically, we utilized the version 1.0 release
for the experiments presented in this article. Additionally, we have provided a
common repository on OpenML4 containing the 11 datasets sampled for each
BN referencing their original papers.

4.4 Results

Table 2 present the corresponding results for the BDeu score (2a), Structural
Moral Hamming Distance (SMHD) (2b), and execution time (2c) of each algo-
rithm configuration discussed in Sect. 4.1. The notation cGES-l refers to the
variant of cGES that imposes limitations on the number of added edges per
iteration, while the numbers 2, 4, and 8 indicate the number of processes in the
ring. The algorithm exhibiting the best performance for each Bayesian network
is highlighted in bold to emphasize the superior results.

These results lead us to the following conclusions:

– Of the algorithms evaluated, fGES stands out as the least effective option,
producing subpar results or exhibiting significantly longer execution times
when obtaining a good result. In terms of the quality of the BN generated,
fGES yields unsatisfactory outcomes, as evidenced by low BDeu scores and
high SMHD values in the pigs and link networks. Furthermore, when aiming
to construct a reasonable network, fGES requires substantially longer exe-
cution times compared to both GES and all cGES variants. This is evident
in the case of the munin network.

– Upon comparing the versions of cGES, namely cGES-l and cGES, which
respectively impose limits on the number of edges that can be added by
each FES run to (10/numClusters)

√
nodes and have no such restriction, it

becomes evident that cGES-l outshines cGES in terms of performance. In
most cases, cGES-l demonstrates superior performance in generating high-
quality BNs compared to cGES. Additionally, it consistently achieves an

2 https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2.
3 https://github.com/JLaborda/cges.
4 https://www.openml.org/search?type=data&uploader id=%3D 33148&tags.tag=

bnlearn.

https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2
https://github.com/JLaborda/cges
https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags.tag=bnlearn
https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags.tag=bnlearn
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Table 2. Results (BDeu, SHMD and CPU Time)

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs −345.1826 −334.9989 −335.6668 −335.8876 −335.5411 −335.1105 −335.1276 −335.1865

Link −286.1877 −228.3056 −228.3288 −227.1207 −226.4319 −227.6806 −227.9895 −227.2155

Munin −186.6973 −187.0736 −187.1536 −186.7651 −187.8554 −186.9388 −187.2936 −187.4198

(a) BDeu score

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs 309.00 0.00 31.00 36.91 21.00 4.36 4.18 5.18

Link 1370.45 1032.36 1042.18 953.18 940.64 937.91 952.64 941.55

Munin 1489.64 1468.45 1531.18 1521.38 1668.89 1503.25 1558.30 1623.22

(b) Structural Moral Hamming Distance (SHMD)

Network Algorithm

fGES GES cGES 2 cGES 4 cGES 8 cGES-l 2 cGES-l 4 cGES-l 8

Pigs 20.26 175.43 122.47 108.08 121.80 76.59 58.06 73.84

Link 41.12 746.54 694.08 463.92 447.62 383.04 276.72 286.56

Munin 12331.31 2000.00 1883.78 1330.62 1454.72 1433.19 895.76 791.36

(c) CPU Time (seconds)

impressive speed-up, with execution times reduced by approximately a half
compared to cGES. These findings highlight the effectiveness of the edge
limitation strategy employed in cGES-l and its significant impact on the
learning process’s quality and efficiency.

– When comparing the algorithms based on the number of ring processes (pro-
cesses or edge subsets), it is challenging to establish a consistent pattern
regarding the quality of the BNs generated. While there is a general trend
of cGES performing slightly better with more partitions and cGES-l with
fewer, this pattern may vary depending on the BN. However, regarding exe-
cution time, it is evident that using 4 or 8 clusters improves the efficiency
compared to using 2 clusters. In particular, as the size of the BN increases,
using 8 clusters tends to yield better execution times.

– Lastly, comparing the fastest variant of cGES in two out of three BNs (cGES-
l 4) with GES yields noticeable speed improvements. pigs, link, and munin
BNs experience speed-ups of 3.02, 2.70, and 2.23, respectively. These values
are significant considering that both algorithms run parallel utilizing 8 CPU
threads. Notably, the reduced speed-up execution time does not come at the
cost of lower-quality BNs. In fact, GES performs better on pigs and munin
BNs, while cGES-l 4 excels with the link BN. However, these differences in
performance are not as pronounced as those observed with the BN generated
by fGES on the pigs and link networks.
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5 Conclusions

Our study introduces cGES, an algorithm for structural learning of Bayesian Net-
works in high-dimensional domains. It employs a divide-and-conquer approach,
parallelism, and fusion techniques to reduce complexity and improve learning
efficiency. Our experimentation demonstrates that cGES generates high-quality
BNs in significantly less time than traditional methods. While it may not always
produce the absolute best solution, cGES strikes a favourable balance between
BN quality and generation time. Another important point to be considered is
that cGES exhibits the same theoretical properties as GES, as an unrestricted
GES is run by taking the network identified by the ring-distributed learning
process as its starting point.

As future works, the algorithm’s modular structure opens up possibilities for
applications such as federated learning [15], ensuring privacy and precision.
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Abstract. In this paper, we consider two-layer Bayesian networks. The
first layer consists of hidden (unobservable) variables and the second layer
consists of observed variables. All variables are assumed to be binary. The
variables in the second layer depend on the variables in the first layer.
The dependence is characterised by conditional probability tables rep-
resenting Noisy-AND or simple Noisy-AND. We will refer to this class
of models as BN2A models. We found that the models known in the
Bayesian network community as Noisy-AND and simple Noisy-AND are
also used in the cognitive diagnostic modelling known in the psychome-
tric community under the names of RRUM and DINA, respectively. In
this domain, the hidden variables of BN2A models correspond to skills
and the observed variables to students’ responses to test questions. In
this paper we analyse the identifiability of these models. Identifiability is
an important concept because without it we cannot hope to learn correct
models. We present necessary conditions for the identifiability of BN2As
with Noisy-AND models. We also propose and test a numerical approach
for testing identifiability.

Keywords: Bayesian networks · BN2A networks · Cognitive
Diagnostic Modeling · Psychometrics · Model Identifiability

1 Introduction

Bayesian networks [10,12,13] are a popular framework for modelling probabilistic
relationships between random variables. The topic of this paper is the learning of
a special class of Bayesian Networks (BNs) - two-layer BNs, where the first layer
consists of hidden (unobservable) variables, which are assumed to be mutually
independent, and the second layer consists of observed variables. All variables
are assumed to be binary. The variables in the second layer depend only on
the variables in the first layer. The dependence is characterised by conditional
probability tables (CPTs), which represent either Noisy-AND or simple Noisy-
AND. In case the CPTs are represented by Noisy-OR models, the corresponding
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BN is traditionally called BN2O [1], in case the CPTs are represented by Noisy-
AND models, the corresponding BN will be called BN2A as a parallel to the
BN2O models. In Fig. 1 we give an example of a directed bipartite graph that
can define the structure of a BN2O or a BN2A model.

Y7 Y6 Y5 Y4 Y3 Y2 Y1

X5 X4 X3 X2 X1

Fig. 1. An example of a directed bipartite graph.

Noisy-AND and simple Noisy-AND models are examples from the family
of canonical models of CPTs [3,9]. The study of these models is motivated by
practical applications. BN2O models are well suited for medical applications,
where the hidden variables of the first layer correspond to diseases and the
observed variables of the second layer correspond to observed symptoms. In this
application, it is natural to assume that a symptom will occur if the patient has
a disease that causes that symptom, unless its influence is inhibited with some
probability. Therefore the CPTs are modelled using Noisy-OR models. BN2A
models are used in psychometrics for cognitive diagnostic modelling of students.
In this case, the hidden variables correspond to the student’s skills and the
observed variables correspond to the student’s responses to test questions. A
typical test question requires all related skills to be present, unless a missing
skill is compensated by another knowledge or skill. This relationship is well
represented by Noisy-AND models.

The work most closely related to ours is [5], but the main difference is that it
assumes all hidden variables can be mutually dependent, whereas we assume that
all hidden variables are mutually independent. The legitimacy of this assumption
depends on the context of the application. Our motivation for the independence
of the hidden variables is the ability to clearly distinguish between them and their
effect on the observed variables. The assumption of hidden node independence
has a significant impact on the identifiability of the model. In addition, BN2A
with leaky Noisy-AND, corresponding to RRUM in CDM, has not been analysed
in [5].

This paper is structured as follows. In Sect. 2 we formally introduce the BN2A
models. First, we discuss both options for CPTs, leaky Noisy-AND and simple
Noisy-AND models, but in the rest of the paper we restrict our analysis to
leaky Noisy-AND. In Sect. 3, we analyse the identifiability of BN2A models,
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since identifiability is an important issue for models with hidden variables. Sev-
eral conditions for the identifiability of these models are given in this section.
Testing the identifiability condition based on the rank of the Jacobian matrix is
practically non-trivial, so we propose and test a numerical approach in Sect. 4.
Finally, we summarise the contribution of this paper in Sect. 5.

2 BN2A Models

Let X denote the vector (X1, . . . , XK) of K hidden variables, and similarly let
Y denote the vector (Y1, . . . , YL) of L observed dependent variables. The hidden
variables are also called attributes or skills in the context of cognitive diagnostic
models (CDMs), or diseases in the context of medical diagnostic models (MDMs).
The observed dependent variables are also called items in CDMs or symptoms
in MDMs. All variables are assumed to be binary, taking states from {0, 1}. The
state space of the multidimensional variable X is denoted X and is equal to the
Cartesian product of the state spaces of Xk, k = 1, . . . ,K:

X = ×K
k=1Xk = {0, 1}K . (1)

Similarly, the state space of multidimensional variable Y is denoted Y and is
equal to the Cartesian product of state spaces of Y�, � = 1, . . . , L:

Y = ×L
�=1Y� = {0, 1}L . (2)

The basic building blocks of a BN2A model are conditional probability tables
(CPTs) specified in the form of a Noisy-AND model. Let Y� be an observed
dependent variable and pa(Y�) be the subset of indexes of related variables from
X. They are referred to as the parents of Y�.

Definition 1 (Noisy-AND model).
A conditional probability table P (Y�|Xpa(Y�)) represents a Noisy-AND model if

P (Y� = y�|Xpa(Y�) = xpa(Y�)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q�,0 ·
∏

i∈pa(Y�)

(q�,i)(1−xi) if y� = 1

1 − q�,0 ·
∏

i∈pa(Y�)

(q�,i)(1−xi) if y� = 0.
(3)

Note that if xi = 1 then (q�,i)(1−xi) = 1 and if xi = 0 then (q�,i)(1−xi) = q�,i.
The interpretation is that if Xi = 1, then this variable definitely enters the AND
relation with the value 1. If Xi = 0, then there is still a probability q�,i that
it enters the AND relation with value 1. The model also contains an auxiliary
parent X0 which is always 0 and thus enters the AND relation with probability
q�,0 for the value 1. This probability is traditionally called leak probability and
allows non-zero probability of Y� = 0 even if all parents of Y� have value 1 (Y� = 1
if and only if all parents enter the AND relation with value 1). In CDM, this
model is known as the Reduced Reparametrized Unified Model (RRUM) [7] and
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it is a special case of the Generalized Noisy Inputs, Deterministic AND (GNIDA)
gate model [2].

It is convenient to extend the vector x with the value 0 as its first element,
i.e., we redefine x = (0, x1, . . . , xK) so that we can write the formula (3) as

P (Y� = y�|Xpa(Y�) = xpa(Y�)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi) if y� = 1

1 −
∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi) if y� = 0.
(4)

The prior probability of the hidden attribute for k = 1, . . . ,K is defined as

P (Xk = xk) = (pk)xk(1 − pk)(1−xk) , (5)

which means that if xk = 1 then it is pk and if xk = 0 then it equals 1 − pk.
Another model of a CPT commonly known in the area of CDM as Determin-

istic Input Noisy AND (DINA) gate [11], corresponds to a CPT model called
Simple Noisy-AND model in the context of canonical models of BNs [3].

Definition 2 (Simple Noisy-AND model). A conditional probability table
P (Y�|Xpa(Y�)) represents a Simple Noisy-AND model if

P (Y� = y�|Xpa(Y�) = xpa(Y�))

=

{
(1 − s�)π(x,Y�) · (g�)1−π(x,Y�) if y� = 1

1 − (1 − s�)π(x,Y�) · (g�)1−π(x,Y�) if y� = 0 ,
(6)

where

π(x, Y�) =
∏

i∈pa(Y�)

xi . (7)

In the context of CDMs, the parameter s� represents the so-called slip probabil-
ity, i.e. the probability of giving incorrect answer despite all required skills were
present. The parameter g� represents guessing probability, i.e. the probability of
guessing the correct answer despite the absence of a required skill. Due to space
constraints, we will not analyze the simple noisy-AND model in this paper. We
present its definition to show how it differs from leaky noisy-AND and link it to
the existing literature in the CDM and BN communities.

Now we are ready to define a special class of Bayesian network models with
hidden variables, called BN2A models.

Definition 3 (BN2A model). A BN2A model is a pair (G,P ), where G is
a directed bipartite graph with its nodes divided into two layers. The nodes of
the first layer correspond to the hidden variables X1, . . . , XK and the nodes of
the second layer correspond to the observed variables Y1, . . . , YL. All edges are
directed from a node of the first layer to a node of the second layer. The symbol P
refers to the joint probability distribution over the variables corresponding to the



140 I. Pérez and J. Vomlel

nodes of the graph G. The probability distribution is parameterized by a vector
of model parameters r:

r = (p,q) =
(
(pk)k∈{1,...,K}, (q�,k)�∈{1,...,L},k∈{0}∪pa(Y�)

)
. (8)

We will use E(G) to denote the set of edges of a bipartite graph G and
V1(G) and V2(G) as the sets of nodes of the first layer and the second layer
of G, respectively. The bipartite graph G can also be specified by an incidence
matrix and in the context of CDM is traditionally denoted by Q. A Q-matrix is
an L × K binary matrix, with entries Ql,k ∈ {0, 1} that indicate whether or not
the �th observed dependent variable is linked to the kth hidden variable.

Definition 4 (The joint probability distribution of a BN2A model).
The joint probability distribution of a BN2A model is defined for all (x,y),x ∈
X,y ∈ Y as1

P (X = x,Y = y) =
L∏

�=1

P (Y� = y�|Xpa(Y�) = xpa(Y�)) ·
K∏

k=1

P (Xk = xk). (9)

Conditional probabilities P (Y� = y�|Xpa(Y�) = xpa(Y�)) for � = 1, . . . , L are leaky
Noisy-AND models and P (Xk) for k = 1, . . . , K are independent prior probabil-
ities of hidden variables.

The joint probability distribution over the observed variables of a BN2A
model for all y ∈ Y is computed as

P (Y = y) =
∑

x∈X

(
L∏

�=1

P (Y� = y�|Xpa(Y�) = xpa(Y�)) ·
K∏

k=1

P (Xk = xk)

)

.(10)

3 Identifiability of BN2A

The models we call BN2A have recently gained great interest in many
areas, including psychological and educational measurement, where sub-
jects/individuals need to be classified according to hidden variables based on
their observed responses (to test items, questionnaires, etc.). For these mod-
els, identifiability affects the classification of subjects according to their hid-
den variables, which depends on the precision of the parameter estimates. With
non-identifiable models we can lead to erroneous conclusions about subjects’
classification.

A parametric statistical model is a mapping from a finite-dimensional param-
eter space Θ ⊆ R

d to a space of probability distributions, i.e.

p : Θ → PΘ, θ �→ pθ . (11)

1 Symbol xpa(�) denotes the subvector of x whose values corresponds to variables
Xi, i ∈ pa(Y�).
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The model is the image of the map p, and it is called identifiable if the parameters
of the model can be recovered from the probability distributions, that is, if the
mapping p is one-to-one.

Following [5] we define the joint strict identifiability of the BN2A model,
which is the identifiability of the model structure (represented by a bipartite
graph or equivalently by a Q-matrix) as well as the model parameters.

Definition 5 (Joint Strict Identifiability). A BN2A model (G,P ) is strictly
identifiable if there is no BN2A model (G′, P ′) with G′ �= G or P �= P ′ or both,
except for a permutation of hidden variables, such that for all y ∈ Y

P (Y = y) = P ′(Y = y) . (12)

Joint identifiability may be too restrictive, for example, in cases where it consid-
ers as unidentifiable models where only very few model parameter values cause
models to be unidentifiable. Therefore a weaker concept seems more practical.

Definition 6 (Joint Generic Identifiability). A BN2A model (G,P ) is
generically identifiable if the set of P ′ of BN2A models (G′, P ′) violating condi-
tion (12) has Lebesgue measure zero.

Table 1. Results of the first three questions from the Mathematics Matura Exam

Y2 = 0 Y2 = 1

Y3 = 0 Y3 = 1 Y3 = 0 Y3 = 1

Y1 = 0 1517 2403 203 1121

Y1 = 1 875 4482 241 3614

To illustrate the importance of the concept of identifiability, consider the data
in Table 1 representing the results of the first three questions of the Mathemat-
ics Matura Exam - a national secondary school exit exam in Czechia. The table
represents the results of n = 14456 subjects who took the exam in the spring of
2021. The values 0 and 1 correspond to a wrong and a correct answer, respec-
tively. Next, we analyze two examples of BN2A models which are graphically
represented in Fig. 2.

Example 1 (Identifiability). In this example we consider model (a) from Fig. 2.
This model will be referred as model 1-3-1 in Table 2 where it corresponds to its
third column. We can see the Table 1 as a 2×2×2 tensor, this tensor has rank 2,
then we can decompose it using Algorithm 1 from [6]. From this decomposition,
we can recover the parameters of the 1-3-1 model from the system of seven
equations for y ∈ {0, 1}3\(1, 1, 1):

P (y) = p1

3∏

i=1

qyi

i0 (1 − qi0)1−yi + (1 − p1)
3∏

i=1

(qi0qi1)yi(1 − qi0qi1)1−yi , (13)
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Fig. 2. BN2A models from Example 1 and Example 2

where P (y) for y ∈ {0, 1}3\(1, 1, 1) are computed as relative frequencies from
Table 1. By solving this system of equations we get:

r = (p1, q10, q20, q30, q11, q21, q31) ≈ (0.317, 0.522, 0.903, 0.679, 0.086, 0.576, 0.318).

Since the solution is unique, then this model is identifiable, i.e., the vector r is
uniquely determined from the data presented in Table 1.

Example 2 (Non-Identifiability). Now we will consider model (b) from Fig. 2.
This model will be referred as model 2-1-2 in Table 2 where it corresponds to
its fourth column. Again, we use the data presented in Table 1 to compute the
probability distribution of Y1 as its relative frequency. In this way we get P (Y1 =
1) ≈ 0.637, which enters the left hand side of equation

P (Y1 = 1) =
∑

x∈X1×X2

⎛

⎝(pk)xk(1 − pk)(1−xk)
∏

i∈{0}∪pa(Y�)

(q�,i)(1−xi)

⎞

⎠ . (14)

The five parameters of this model must satisfy just this equation, therefore
we can fix some parameters and find different solution vectors r1 and r2. For
example, both of the following vectors satisfy (14)

r1 = (p1, p2, q10, q11, q12) ≈ (0.716,0.9, 0.8, 0.4, 0.6)
r2 = (p1, p2, q10, q11, q12) ≈ (0.842,0.7, 0.8, 0.4, 0.6) .

In this model, X1 and X2 represent two skills needed to correctly answer question
Y1. Both parameter vectors, r1 and r2, satisfy the model, but while in r1 the
prior probability of X1 is smaller than the prior probability of X2, in r2 the
opposite is true. In this case, the model is non-identifiable.

Remark 1. The fact that the number of hidden variables is greater than the
number of observed variables, as in Example 2, is not a condition for a model
to be non-identifiable. For this we can consider the 6-5-2 model, following the
pattern of Table 2 we can see that the number of parameters (R = 15) is less
than the number of free parameters of the joint probability distribution over the
observed variables (S = 31), then, according to Theorem 1, this model could be
identifiable.
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Various methods have been proposed to check the identifiability – one com-
mon approach is to estimate the dimension of the image of the mapping p. This
is usually done by computing the rank of the Jacobian matrix of p [14].

Now, we will specify the Jacobian matrix of a BN2A network representing
a probability distribution P (y),y ∈ Y. Each row of the Jacobian matrix corre-
sponds to one configuration y ∈ Y of the multivariable Y. Let S = |Y| denote
the number of configuration of Y. Each column of the Jacobian matrix corre-
sponds to an element of the parameter vector r whose number of entries is given
by

R = K + L +
L∑

�=1

M� where M� = |pa(Y�)| . (15)

For k = 1, . . . , K

∂P (y)
∂pk

=
∑

x∈X

P (X = x,Y = y)
(pk)xk(1 − pk)1−xk

(16)

and for � = 1, . . . , L and k ∈ {0} ∪ pa(Y�)

∂P (y)
∂q�,k

=
∑

x∈X

(1 − xk)
P (X = x,Y = y)

(q�,k)y�(1 − q�,k)(1−y�)
. (17)

Note that the terms presented in the denominators of all the fractions in for-
mulas (16) and (17) are also present in the corresponding numerators of these
fractions. That is, they only serve to cancel the corresponding term from the
numerator of the fraction. Thus, the Jacobian matrix is

J =

⎛

⎜
⎜
⎜
⎜
⎝

∂P (y1)
∂r1

. . .
∂P (y1)

∂rR

. . . . . . . . .
∂P (yS)

∂r1
. . .

∂P (yS)
∂rR

⎞

⎟
⎟
⎟
⎟
⎠

. (18)

Since the mapping from the parameter space to the probability space over
the observable variables is a polynomial, we get the following lemma as a special
case of Theorem 1 from [4].

Lemma 1. The rank of the Jacobian matrix J of a BN2A model is equal to an
integer constant r almost everywhere.2

The rank condition is intuitively clear but practically non-trivial to apply. As
the number of variables increases, the dimension of the Jacobian matrix grows
rapidly. For the second smallest model from Table 2 that could be identifiable, the
dimension of J matrix is 15×14, and each entry contains a degree 13 polynomial.
However, simple checks can be performed to quickly rule out identifiability can
be performed. Next, we give a necessary condition for the identifiability of a
BN2A model.
2 The set of exceptions has Lebesgue measure zero.
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Theorem 1. Let K be the number of hidden variables in the first layer of a
BN2A model with CPTs represented by Noisy-AND models, L the number of
observed variables in the second layer, and M� = |pa(Y�)| for � = 1, . . . , L. If

R = K + L +
L∑

�=1

M� > 2L − 1 = S (19)

then the BN2A model is NOT identifiable.

Proof. For the rank of any matrix, it holds that it is lower or equal to the
minimum of the number of columns and the number of rows. Recall that S is
the number of rows of the Jacobian matrix J and R is the number of model
parameters and also the number of columns of J . If R > S then the rank of the
Jacobian matrix J is lower than the number of model parameters and the BN2A
model is not identifiable. 	


In Fig. 3 we visualize the necessary condition for the identifiability of BN2A
models from Theorem 1 for K = L − 1, L, L + 1. The minimal S corresponds to
models with the minimum number of parents pa(Y�) (which is greater than or
equal to one) and the maximal S to models with the maximum number of parents
pa(Y�) which is K. This means that the actual value of R is always between the
blue and red lines. There is a threshold value of L for model identifiability so that
no model with a lower L is identifiable (in Fig. 3 it is 3, 4, and 5, respectively).
On the other hand, if L is greater than another threshold value (in Fig. 3 this
threshold is 5, 6, and 6, respectively) then Theorem 1 does not rule out any
BN2A models as unidentifiable.
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Fig. 3. Minimal S, maximal S, and R for BN2A models with K = L − 1, L, L + 1

In Table 2 we give examples of BN2A models, all of which have the same num-
ber of parents |pa(Y�)| = M� = M for all � ∈ {1, . . . , L}. Note that |pa(Y�)| ≤ K
and if it holds with equality then the BN2A model is fully connected. This table
indicates the identifiability according to Theorem 1, i.e., if the number of free
BN2A parameters R is greater than the number of free parameters of the joint
probability distribution over the observed variables S, then BN2A is not iden-
tifiable. The columns corresponding to BN2A models that satisfy the necessary
identifiability condition of Theorem 1 are printed with a gray background.
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Table 2. Examples of different BN2A models. Columns printed with a gray background
correspond to models for which Theorem 1 does not exclude their identifiability.

K 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3

L 1 2 3 1 2 3 4 1 2 3 4 5 3 4 5

M 1 1 1 2 2 2 2 3 3 3 3 3 2 2 2

|p| = K 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3

|q| = L · (M + 1) 2 4 6 3 6 9 12 4 8 12 16 20 9 12 15

R = |p| + |q| 3 5 7 5 8 11 14 7 11 15 19 23 12 15 18

S = 2L − 1 1 3 7 1 3 7 15 1 3 7 15 31 7 15 31

Using algebraic manipulations on the smallest BN2A model from Table 2
that satisfies the necessary condition of Theorem 1 (K = 1, L = 3, M = 1),
we observe that the corresponding Jacobian matrix has the full rank almost
everywhere. This model is identifiable if its parameters satisfy the conditions of
Theorem 2.

Theorem 2. The Jacobian matrix of the BN2A model with K = 1, L = 3, and
M = |pa(Y�)| = 1 for � = 1, 2, 3 has the full rank if and only if

0 < p1 < 1 (20)
0 < q�,0 ≤ 1 for � = 1, 2, 3 (21)
0 ≤ q�,1 < 1 for � = 1, 2, 3. (22)

Proof. We will compute the determinant of the Jacobian matrix with seven rows
corresponding to seven configurations y from {0, 1}3\(1, 1, 1) and seven columns
corresponding to seven model parameters of vector r. The BN2A model with
K = 1, L = 3, and M = 1 is identifiable iff rank(J) = 7. Using algebraic
manipulations we get the determinant of the Jacobian matrix

det J = −p31 · (1 − p1)3 ·
L∏

�=1

q3�,0 · (1 − q�,1)2 . (23)

From this formula, it follows that the determinant is non-zero and, consequently,
rank(J) = 7 if and only if the assumptions of Theorem 2 are satisfied. 	


The following lemma indicates that adding an edge from Xk to Y� with
q�,k = 1 cannot make the model identifiable.

Lemma 2. If the rank of the Jacobian matrix J of a BN2A model (G,P ) is less
than the number of its model parameters R, then the rank of the Jacobian matrix
J ′ of a BN2A model (G′, P ′) with E(G)′ = E(G)∪{Xk → Y�} and with q�,k = 1
is also less than the number of its model parameters.
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Proof. Note that if q�,k = 1 then (q�,k)(1−xi) = 1 for both xi = 1 and xi = 0. This
means that the first R columns of the new Jacobian matrix J ′ are equivalent
to the columns of J . Only one new column is added to J , so the rank of J ′

is at most the rank of J plus one. The rank of J is less than the number of
parameters of the BN2A model (G,P ), so the rank of J ′ is also less than the
number of parameters of the BN2A model (G′, P ′). 	


4 Computational Experiments

Lemma 1 ensures that the rank of J is a constant almost everywhere. There-
fore, we can use the idea proposed in [8] to compute the rank of the Jacobian
matrix numerically. We choose one hundred random points in the parameter
space and compute the determinant of the Jacobian matrix (and its submatrices
if necessary) at these points. In this way, one can almost certainly determine the
maximum rank of the Jacobian matrix.

In the next three examples, we apply this approach to the analysis of the
simplest BN2A models from Table 2 that were not ruled out as identifiable. We
use computations in rational arithmetic using Mathematica software to avoid
rounding errors. This arithmetic is of infinite precision, which is important when
deciding whether the determinant is exactly zero.

Example 3. Let us take a closer look at the BN2A model for K = 2, L = 4,
and M = 2. Theorem 1 does not rule out identifiability of this model. Using
computations with the rational arithmetic we derive that the determinant of the
Jacobian matrix is zero, which implies that the model is not identifiable, if any
of the following conditions holds3:

• ∃k ∈ {1, 2} such that pk ∈ {0, 1}.
• ∃� ∈ {1, 2, 3, 4} such that q�,0 = 0.
• ∃� ∈ {1, 2, 3, 4} such that q�,1 = 1.
• ∃{�1, �2} ⊆ {1, 2, 3, 4}, �1 �= �2 such that q�1,j = q�2,j for all j ∈ {0, 1, 2}.
• ∃{�1, �2} ⊆ {1, 2, 3, 4}, �1 �= �2 and {�3, �4} = {1, 2, 3, 4}\{�1, �2} such that

q�1,0 = q�2,0, q�3,0 = q�4,0, q�1,2 = q�2,1, q�2,2 = q�1,2, q�3,2 = q�4,1, and
q�4,2 = q�3,2.

Note that the last but one condition means that the leaky Noisy-AND models of
Y�1and Y�2 are identical. This effectively reduces this model to the BN2A model
for K = 2, L = 3, and M = 2, for which Theorem 1 rules out identifiability.
All of the above possibilities are exceptions that form a set of Lebesgue measure
zero. We compute the determinant for 100 random points from the parameter
space which implies that we can be almost sure that the rank of the Jacobian
matrix is 14 and the model could be identified.

3 We do not claim that this list is exclusive.
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Example 4. Using computations with the rational arithmetic4, we derive that
for 100 randomly selected points from the parameter space of the BN2A model
for K = 3, L = 5, and M = 3 from Table 2 the rank of the Jacobian matrix is
23, suggesting that the model can be generically identifiable.

Example 5. Using rational arithmetic computations, we observed that for all
100 randomly selected points from the parameter space of the BN2A model for
K = 3, L = 4, and M = 2 from Table 2, the determinant of the Jacobian matrix
was zero. We decided to perform symbolic computations that revealed that the
determinant is zero regardless of the parameter values. This implies the model
is not identifiable.

The presented examples illustrate different roles that the proposed numerical
computations can play in deciding the identifiability of a BN2A model. The
source code used in the examples is available as Mathematica notebooks and
PDF files at: https://www.vomlel.cz/publications#h.w2xm776ugu54.

5 Discussion

In this paper, we analyzed the identifiability of BN2A networks, i.e., Bayesian
networks where CPTs are represented by Noisy-AND models having the struc-
ture of a bipartite graph where all nodes from the first layer are hidden. Corre-
sponding results also hold for BN2O networks, where CPTs are represented by
Noisy-OR models, since it is easy to transform one class into the other by simply
relabeling the states of the observed variables (state 0 to 1 and vice versa). Due
to space limitations, we only present results for BN2A networks. The reason for
our preference of BN2A over BN2O is that BN2A models have not been widely
studied in the BN community, although models similar to BN2A are widely used
as cognitive diagnostic models in psychometrics.

Perhaps the most important practical observation is that many small-sized
BN2A models are unidentifiable, but as their size increases, the proportion of
models ruled out as unidentifiable decreases. It should also be noted that the
BN2A and BN2O models require a number of parameters proportional to K ·L.
This is significantly less than the number of parameters of bipartite Bayesian
networks with general CPTs, which can be exponential in K. This implies, espe-
cially for models with a higher number of parents, that the class of identifiable
BN structures is substantially larger for the BN2A and BN2O networks.

The study of the identifiability of statistical models has a long history, but it
is still a topic of current research. For example, the so-called Jacobian conjecture,
which relates identifiability to the determinant of the Jacobian matrix, is still
considered an open problem. In this paper, we have not presented any new deep
theoretical results, but rather we have shown how the question of identifiability
of a popular class of BN models can be addressed practically.
4 We emphasize that there is no hope of getting correct results with finite-precision real

arithmetic since, e.g., in one run, the absolute values of the computed determinants
were in the interval [10−37, 10−72] for this model.

https://www.vomlel.cz/publications#h.w2xm776ugu54
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Abstract. Normative monitoring of black-box AI systems entails
detecting whether input-output combinations of AI systems are accept-
able in specific contexts. To this end, we build on an existing app-
roach that uses Bayesian networks and a tailored conflict measure called
IOconfl. In this paper, we argue that the default fixed threshold associ-
ated with this measure is not necessarily suitable for the purpose of nor-
mative monitoring. We subsequently study the bounds imposed on the
measure by the normative setting and, based upon our analyses, propose
a dynamic threshold that depends on the context in which the AI system
is applied. Finally, we show the measure and threshold are effective by
experimentally evaluating them using an existing Bayesian network.

Keywords: Bayesian Networks · Conflict Measures · Responsible AI ·
Normative Monitoring

1 Introduction

Given the omnipresence of AI systems, it is important to be able to guarantee
their safety and reliability within their context of use, especially when the AI
system is a black-box that is not easily interpretable or sufficiently transparent.
To this end, we previously introduced a novel framework for model-agnostic
normative monitoring under uncertainty [8,9]. Since the exact design underlying
the system being monitored is irrelevant, we simply refer to it as the ‘AI system’;
our only assumption is that this system has excellent general performance on the
task for which it is designed. However, the AI system can be employed in different
environments in each of which additional context-specific rules, protocols, or
other types of values or norms exist or emerge, which need to be adhered to. To
determine whether the AI system operates acceptably in the context of a given
environment, we need to monitor the system for adhering at run-time, preferably
using interpretable and model-agnostic methods.

The framework for normative monitoring under uncertainty includes, in addi-
tion to the AI system, a normative model and a monitoring process [8,9]. The
normative model captures the input-output pairs of the AI system, as well as
variables that describe information that is relevant to the specific environment
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 149–159, 2024.
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and context in which the AI system operates. In some situations, this context
may dictate that the output provided by the AI system is undesirable or unac-
ceptable. In that case, a warning has to be issued by the monitoring process
when it compares the input-output pair of the AI system against the normative
model.

Previously, we proposed the use of Bayesian Networks (BNs) to implement
the normative model and we adjusted a conflict measure for BNs to compare
the in-context behaviour of the AI system against the normative model [9]. The
adjusted measure, IOconfl, comes with an intrinsic threshold that can be used
to determine whether or not to flag an input-output pair of the AI system as
possibly unacceptable in the current context. However, the suitability of this
threshold for the purpose of normative monitoring was not investigated.

In the current paper, we therefore further study and evaluate the adjusted
measure and the intrinsic threshold for the normative monitoring setting. We
analyse the bounds imposed on the IOconfl measure by our normative setting
and propose a new dynamic, context-specific, threshold. In addition, we com-
pare different measures and thresholds in a controlled experimental setting and
demonstrate that our proposed measure and threshold serve to take context into
account and result in flagging behaviour that is different from the considered
alternatives.

Our paper is organised as follows. After providing preliminaries in Sect. 2,
we further review different measures in Sect. 3. In this section, we also discuss
the suitability of the related thresholds for the purpose of monitoring. In Sects. 4
and 5, we analyse the bounds on the IOconfl measure and define the dynamic
threshold. We experimentally evaluate the use of the measure and impact of the
chosen threshold in Sect. 6 and conclude the paper with Sect. 7.

2 Preliminaries

In this section we introduce our notations and provide formal definitions of the
different components in our framework. A schematic overview of the framework is
given in Fig. 1 (see [9] for further details). The framework assumes that both the
AI system and the normative model can be interpreted as probabilistic models
that somehow represent or reflect a probability distribution Pr over a set of
random variables, that is, both models capture the dependencies along with
their uncertainties as present in a part of the real world (the target system).

We use capital letters to denote variables, bold-faced in case of sets, and
consider distributions Pr(V) over a set of random variables V. Each variable
V ∈ V can be assigned a value v from its domain Ω(V ); a joint value assignment
(or configuration) v1∧ . . .∧vn to a set of n variables V = {V1, . . . , Vn} is denoted
by v ∈ Ω(V) =×n

i=1
Ω(Vi). The normative model and AI system can now be

defined as follows (generalised from [9]):

– the AI system represents a joint distribution PrS(VS) over a set of variables
VS = IS ∪ OS , where IS and OS are non-empty sets of input variables and
output variables, respectively;
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Fig. 1. Overview of the framework for normative monitoring under uncertainty, includ-
ing (1) a normative model, (2) an AI system, and (3) a monitoring process.

– the normative model represents a joint distribution PrN (VN ) over a set of
variables VN = IN ∪ON ∪A, where IN and ON result from (easy) mappings
IS → IN and OS → ON , and A = C ∪ H is a set of additional variables,
including a non-empty set of context variables C and possibly other hypoth-
esis or hidden variables H.

Superscripts indicate the type of model that the variables and distributions
belong to, where S refers to the AI system and N to the normative model.
Without loss of generality and for ease of exposition, we take IS = IN and
OS = ON = {O} in this paper.

In the current paper we assume that the normative model is implemented by a
Bayesian network. Bayesian networks (BNs) are probabilistic graphical models
that are interpretable and can be handcrafted [6]. Interpretability and trans-
parency of (part of) the normative model is important since it includes variables
specific to the context in which the AI system operates, and we assume that
expert knowledge is needed to design and interact with it. To be precise, a BN
B = (G,Pr) is a compact representation of a joint probability distribution Pr(V)
that combines an acyclic directed graph G, with nodes V and directed edges that
describe the (in)dependences among V, with local distributions specified for each
variable, conditional on its parents in the graph G [3]. As such, BNs allow for
computing any probability of interest from their distribution, which facilitates
the computation of various measures that could be employed in the monitoring
process to flag for unacceptable input-output pairs.

3 Measures and Thresholds

In our normative monitoring setting we want to flag an input-output pair of the
AI system when the input-output combination is considered to be undesirable
or unacceptable in the current context, according to the normative model. To
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determine the extent to which the AI system’s input-output pair is acceptable, a
measure and a corresponding threshold are required to determine when to raise
a flag. In this section we review two measures used for the purpose of Anomaly
Detection (AD), a setting related to ours. In addition, we consider a measure
proposed explicitly for the normative monitoring setting. Subsequently we will
discuss the associated thresholds and argue that the choice of such a threshold,
even for measures that have a seemingly intrinsic one, is not trivial.

3.1 Measures

The purpose of AD is to determine whether a set of observations in the real
world should be classified as anomalous [1]. To this end, the observed behaviour
is typically compared against a model of normal behaviour using one of many
anomaly detection techniques. Among such techniques are Bayesian networks,
used in combination with a likelihood measure [4] or a measure of conflict [7].

Johansson and Falkman [4], for example, train a BN to represent normal
maritime vessel behaviour and use the likelihood Pr(v) of an instance of ves-
sel behaviour v to detect anomalous behaviour. An instance is flagged when
its probability of occurrence is low. However, rare behaviour is not necessarily
anomalous [5]. To overcome this issue, likelihood of an instance v = v1∧ . . .∧vn,
n ≥ 2, can be compared to the probability of the observations occurring inde-
pendently: (Pr(v1) · . . . · Pr(vn))/Pr(v). This conflict measure, introduced by
Jensen et al. [2], was used by Nielsen and Jensen [7] to detect anomalies in pro-
duction plants based upon sensor readings. In case of normal behaviour, again
captured by a BN, the sensor readings should be positively correlated, regardless
of whether their combination is rare. An instance is flagged when the combina-
tion of observations seems internally incoherent.

In the normative monitoring setting, we want to detect input-output pairs
for which the output seems inconsistent with the input in the context prescribed
by the normative model. For this it does not matter whether or not the input-
output pair is rare. To this end we proposed an adapted version of the conflict
measure, IOconfl(o, i | c) [9]:

IOconfl(o, i | c) = log
PrNc (o) · PrNc (i1 ∧ . . . ∧ in)

PrNc (o ∧ i1 ∧ . . . ∧ in)
(1)

where i = i1 ∧ . . . ∧ in, n ≥ 1, is input for the AI system, o is the associated
output returned by the AI system, and PrNc (·) is a short hand for PrN (· | c)
with c a configuration for one or more of the context variables C from the
normative model. Note that the IOconfl measure differs from the original conflict
measure by separating only the marginal over the output o from the joint over
the inputs i1, . . . , in, which effectively eliminates the effect of conflict within the
input of the AI system [9]. Moreover, the IOconfl measure takes into account the
specific context prescribed by the normative model. The probabilities in Eq. 1
are therefore computed from the normative model, and conditioned on a specific
context c.
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3.2 Thresholds

In the monitoring process, any measure needs a threshold to decide between
flagging or not flagging. The likelihood measure, aside from only detecting rare
cases, requires a threshold δ to be set to capture when a case is rare enough to
flag: Pr(v) ≤ δ. The choice of threshold must be based on expert knowledge,
taking into account the cost of false positives and false negatives in the domain
of application [4]. A benefit of the Jensen conflict measure is that the choice of
threshold appears easy, since it has an intrinsic threshold of 0: if the measure
exceeds log 1 = 0 then it is more likely to find the combination of observations
assuming they are independent (the product of marginals) rather than by assum-
ing their dependencies as captured in the BN’s joint distribution. According to
the BN, therefore, the instance is incoherent if its conflict value exceeds 0.

The same intrinsic threshold of log 1 = 0 seems an intuitively appealing
default threshold for the adjusted conflict measure IOconfl. Using this threshold
would entail that an input-output pair of the AI system is flagged when the
input and its associated output are not correlated positively according to the
normative model. This situation is, however, not necessarily what we want to
flag. Instead, we want to find a threshold that enables flagging for a situation
where, according to the context prescribed by the normative model, the output
is not acceptable given the input. To reconsider the choice for this intrinsic
threshold, we study how the constraints imposed by the normative monitoring
setting affect the values of the IOconfl measure.

4 Bounding IOconfl

To better understand the IOconfl measure from Eq. 1, we will study its bound-
aries under various conditions specific to the normative monitoring setting.
Firstly, we assume that the AI system returns the output that is most likely,
according to PrS , given the input, i.e. the AI system returns (ties disregarded):

o∗ = arg max
ok∈Ω(O)

PrS(ok | i)

Thus, if outcome variable O has r values, then PrS(o∗ | i) ∈ [1r , 1].
To facilitate our analysis of IOconfl(o, i | c) with o = o∗, we disregard the

log term and rewrite the remaining expression using the definition of conditional
probability. Recall that {O} = OS = ON ; we thus consider boundaries on α as
defined by:

α
def=

PrNc (o∗) · PrNc (i)
PrNc (o∗ ∧ i)

=
PrNc (o∗)

PrNc (o∗ | i) (2)

In general, the IOconfl measure can take on any value in the interval (−∞,∞),
and therefore α ∈ (0,∞). Here we exclude the possibility of a degenerate ‘prior’
where PrNc (o∗) = 0 or PrNc (o∗) = 1, since in that case PrNc (o∗ | i) = PrNc (o∗) for
all i. Given that PrNc (o∗ | i) ≤ 1, we now in fact find a lower bound: PrNc (o∗) ≤ α.
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To find an upper bound, we first consider the special case where the AI system
and the normative model have the same distribution over the shared variables,
and no context variables are observed. That is, PrNc = PrN and PrN (o∗ | i) =
PrS(o∗ | i) ∈ [1r , 1] too. We now find the following boundaries on α:

α =
PrN (o∗)

PrN (o∗ | i) =
PrN (o∗)
PrS(o∗ | i) ∈ [PrN (o∗), r · PrN (o∗)] (3)

In this case, the conflict between o and i as computed from the normative model
is equivalent to the conflict we would compute for the AI system, had we known
the distribution PrS . This is however not the aim of normative monitoring.

Upon including context we must generally assume that PrNc 	= PrS and
PrNc (o∗ | i) 	= PrS(o∗ | i). In fact, o∗ need not be the most likely value of O given
i according to PrNc .1 We will distinguish three cases where according to PrNc
o∗ is (1) definitely not the most likely value, (2) not guaranteed to be the most
likely value, and (3) definitely the most likely value. These three cases, together
with the associated range of posterior probabilities, are illustrated in Fig. 2.

Fig. 2. The range of values for PrNc (o | i) for which o is or is not guaranteed to be the
most likely value of O given i in context c.

In the first case, we have that PrNc (o∗ | i) < 1
r . As a result, we may find

values of α > r · PrNc (o∗), which means that the upper-bound in Eq. 3 may no
longer hold and all we know is that α ∈ [PrNc (o∗),∞). In the second case, we
have that PrNc (o∗ | i) ∈ [ 1r , 1

2 ) and, as a result, α ∈ (2PrNc (o∗), r · PrNc (o∗)]. In
this case we either have that o∗ is the most likely value given i in PrNc too, or
there exists an o ∈ Ω(O), o 	= o∗, with PrNc (o | i) > PrNc (o∗ | i). Note that for
binary-valued output variables (r = 2), this case does not exist. Finally, in the
third case, PrNc (o∗ | i) ≥ 1

2 , resulting in α ∈ [PrNc (o∗), 2PrNc (o∗)]. Here o∗ is
the most likely value (disregarding ties) given i in both PrNc and PrS . Figure 3
summarises the intervals found for α in the different cases.

5 Choosing a Threshold

Recall that the IOconfl measure has an intrinsic threshold of 0 = log 1 which cor-
responds to α = 1. We will now use our above analyses to propose an alternative
threshold on α, and hence on IOconfl.
1 Even without including context, there can be various reasons why o∗ need not be

the most likely value of O given i in PrN , for one thing because the normative model
is not designed to make predictions regarding the value of O.
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Fig. 3. Bounds on α, depending on PrNc (o∗) and r = |Ω(O)|. The top line corresponds
to cases (2) and (3); the second line to case (1). r ·PrNc (o∗) and 2PrNc (o∗) coincide for
binary-valued O.

From our analyses above we have that in the absence of context-specific
information, α ∈ [PrN (o∗), r · PrN (o∗)] for an r-ary output variable, under the
assumption that PrN = PrS (Eq. 3). Whether or not α can exceed the default
flagging threshold of 1, therefore depends on the number of possible values of
output variable O and the prior PrN (o∗). More specifically, α can only exceed 1
if PrN (o∗) > 1

r > PrN (o∗ | i). That is, it can only flag cases for which the output
from the AI system is a priori the most likely, or possibly most likely, according
to both the AI system and the normative model (see Fig. 2), and becomes less
likely upon observing input i.

The above case captures a situation in which the normative model is not truly
exploiting any context-specific information and hence does not add anything on
top of what the AI system is doing. Assuming that the AI system is in essence
an accurate model for the task it is designed to perform, we should therefore
refrain from flagging in cases where PrNc and PrS agree. This suggests that an
appropriate threshold on α for this case is r · PrNc (o∗).

For the cases in which the provided context actually makes a difference in
the normative model, we expect to find that PrNc 	= PrS . As a result, α can
become larger than r · PrNc (o∗), which happens when PrNc (o∗ | i) < 1

r , i.e. the
normative model considers the combination o∗∧i less likely than the combination
o′ ∧ i for some o′ ∈ Ω(O), o′ 	= o∗. In the given context, therefore, the output
returned by the AI system may not be acceptable, which should be a reason for
the monitoring system to flag. We note that differences between PrNc and PrS

can of course also be due to the AI system and the normative model representing
different joint distributions over their shared variables; however, this is not easily
verified since PrS is in fact unknown to us.

Given the above, we propose to flag an input-output instance o∗ ∧ i whenever
α > r · PrNc (o∗), that is, for

IOconfl(o∗, i) > τ, where τ
def= log(r · PrNc (o∗)) (4)

Note that τ is in fact below the default threshold of 0 whenever PrNc (o∗) < 1
r .

The proposed threshold τ is a dynamic threshold, which depends on the
output predicted by the AI system and additional context taken into account by
the normative model. Since the normative model is a transparent BN, both the
number of values r for O and PrNc (o∗) are known, so we can easily determine
this context-specific threshold.
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6 Experimental Evaluation

The adjusted conflict measure, IOconfl, and the corresponding dynamic thresh-
old are specifically designed for monitoring input-output pairs in a context. In
this experiment, we evaluate the flagging behaviour of different monitoring pro-
cesses, that is, combinations of measures and thresholds, to qualitatively estab-
lish the impact of varying contexts.

6.1 Experimental Set-Up

For our experiment we need a normative model, an AI system, a monitor-
ing process and test cases. As normative model we use an existing Bayesian
network, the CHILD network2 [10], which was manually elicited from medical
experts at the Great Ormond Street Hospital for Sick Children in London, and
developed for preliminary diagnosis of congenital heart diseases using informa-
tion reported over the phone. In this network, we let O = {Disease}, I =
{GruntingReport, CO2Report, XrayReport, LVHreport}, and the context vari-
ables be C = {BirthAsphyxia, Age}; H consists of the remaining 13 variables.

To simulate an AI system with IS = I and OS = O, we construct a BN
with PrS(OS , IS) = PrN (O, I) by using GeNIe3 to marginalise out the variables
C∪H from the original CHILD network. Although in practice the distributions
PrS and PrN over the shared variables might not be exactly the same, they both
approximate part of the target system and should therefore be rather similar.
Assuming PrS and PrN to be equivalent in the experiment, allows us to evaluate
the impact of the context on flagging behaviour in isolation.

The monitoring process computes the measure and decides for a given input-
output instance and context whether or not to flag, based upon the thresholds;
we implemented a script for these computations using SMILE. In this experi-
ment, we compare three monitoring processes: J0, the original Jensen conflict
measure with its intrinsic threshold of 0; I0, the IOconfl measure with the intrin-
sic threshold 0; and Iτ , the IOconfl measure with dynamic threshold τ .

As test cases we use 240 configurations from Ω(I) × Ω(O) × Ω(C): each
of the 40 possible value assignments i ∈ Ω(I) is paired with its most likely
value o∗ ∈ Ω(O) according to the AI system (PrS), and every resulting input-
output instance is subsequently considered in each of 6 possible contexts ck ∈
Ω(C). For each of the 240 configurations, we compute both the IOconfl and
the original conflict measure, as well as the dynamic threshold, using PrNck

from
the original CHILD network. Note that context is also included for the original
conflict measure to enable a fair comparison. For both measures, we determined
how many and which test cases were flagged using the intrinsic threshold and,
for IOconfl, our dynamic threshold.

2 Available from https://www.bnlearn.com/bnrepository/discrete-medium.html.
3 The experiment was executed using the GeNIe Modeler and the SMILE Engine by

BayesFusion, LLC (http://www.bayesfusion.com/).

https://www.bnlearn.com/bnrepository/discrete-medium.html
http://www.bayesfusion.com/
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Table 1. Number of contexts in which a specific input-output instance is flagged by a
process; the remaining 40− 13 = 27 instances are never flagged.

Instance ID 1 2 3 4 5 6 7 8 9 10 11 12 13 # cases
Process J0 2 4 1 0 2 0 0 1 6 6 4 1 1 28

I0 0 0 3 1 0 3 1 0 0 0 0 3 1 12
Iτ 0 0 0 1 1 0 1 0 0 1 0 0 1 5

6.2 Results and Discussion

For the three monitoring processes J0, I0 and Iτ , we find the following flagging
results for the 240 test cases. There are 38 cases in which at least one monitoring
process flags: process J0 flags 28 times; process I0 flags 12 times; and process
Iτ flags five times (see Table 1). Six cases are flagged by two processes and only
a single case is flagged by all three monitoring processes. We conclude that what
these monitoring processes measure and flag differs notably. In addition, we note
that the frequency with which they flag differs: the original conflict measure flags
far more often than the IOconfl measure, even when using the same intrinsic
threshold, and the fewest cases are flagged with the dynamic threshold.

To consider the effect of context, we look at which instances were flagged
and in which contexts. A total of 13 input-output instances are flagged by the
monitoring processes, in at least one context (see Table 1). For each 0 and 6 in
Table 1 the context did not matter, since a process either flags in none of the
contexts or in all. In all other cases, we find that context affects the flagging
behaviour. Let F (Iτ ) = {4, 5, 7, 10, 13} denote the set of all instances (IDs)
flagged by process Iτ , and let F (I0 ) and F (J0 ) be likewise defined. We then
find that none of these three sets is a subset of either of the other two sets,
and that each set partly overlaps with both other sets. This shows that the
three processes truly differ in the way they take context into account for a given
instance. Consider e.g. the instance GruntingReport = no ∧ CO2Report = x7_5
∧ XrayReport = Asy_Patchy ∧ LVHreport = no ∧ Disease = Fallot (ID 10
in Table 1), this instance is flagged in all six contexts by process J0, and in
none of the contexts by process I0. However, IOconfl in combination with the
dynamic threshold (process Iτ ) flags in one specific context only (see Table 2).
We conclude that for this input-output instance only process Iτ flags context-
specifically. It indicates that for babies younger than 3 days with birth asphyxia,
diagnosing fallot should be questioned, despite the input indicating this output.

Table 2. Example of flagging behaviour of the monitoring processes for one input-
output instance (ID 10) in six different contexts.

Context Age x_3_days x_3_days x_10_days x_10_days x1_30_days x1_30_days

Variables BirthAsphyxia yes no yes no yes no

Flagged J0 yes yes yes yes yes yes

by I0 no no no no no no

Iτ yes no no no no no
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Note that we cannot determine whether any combination of measure and
threshold is better than another from this experiment, since we have no ground
truth available. Such an assessment would require insight into the quality of the
CHILD network as well as the expertise of a paediatric cardiologist.

Overall, we conclude that the choice between measures and thresholds mat-
ters and is not trivial, and that the IOconfl measure in combination with the
dynamic threshold seems to be a conservative combination that evidently suc-
ceeds in flagging context-specifically.

7 Conclusion and Future Research

In monitoring processes, any measure must be accompanied by a threshold in
order to determine whether to flag an observed instance. We considered several
measures for flagging input-output instances from an AI system in a norma-
tive monitoring setting. In particular, we reconsidered the default threshold for
the BN-specific IOconfl measure and studied the measure’s boundary conditions
to arrive at a new dynamic threshold. This dynamic threshold depends on the
context in which the input-output pair of the AI system is observed and the
distribution over the output variable, both according to the normative model.
As such it is capable of taking context of use into account, as intended. We com-
pared the use of the IOconfl measure with both default and dynamic thresholds
in a small controlled experiment; in addition, we compared the IOconfl mea-
sure against the original conflict measure from which it was derived. We found
that each combination of measure and threshold results in different flagging
behaviour, confirming that decisions about which to use are indeed not trivial.

The actual choice for a suitable measure and threshold will depend on the
domain and the costs of false positive and false negative warnings. We can there-
fore not conclude that one is necessarily better than the other. In future research,
we would like to further study theoretical differences between the measures and
evaluate their use with domain experts for realistic tasks. Moreover, we can
study to what extent the attribution method by Kirk et al. [5] can be employed
to explain the reason for flagging in terms of violation of the rule, protocol or
other type of norm captured by the normative modelled. Finally, to fulfill all
steps in our framework for monitoring under uncertainty, future research is nec-
essary into methods for eliciting norms from domain experts and for capturing
these in models such as Bayesian networks.
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Abstract. In recent years, there has been a significant upsurge in
the interest surrounding Quantum machine learning, with researchers
actively developing methods to leverage the power of quantum technol-
ogy for solving highly complex problems across various domains. How-
ever, implementing gate-based quantum algorithms on noisy interme-
diate quantum devices (NISQ) presents notable challenges due to lim-
ited quantum resources and inherent noise. In this paper, we propose
an innovative approach for representing Bayesian networks on quantum
circuits, specifically designed to address these challenges. Our aim is to
minimize the required quantum resource needed to implement a Quan-
tum Bayesian network (QBN) on a quantum computer. By carefully
designing the sequence of quantum gates within the dynamic circuit,
we can optimize the utilization of limited quantum resources while mit-
igating the impact of noise. Furthermore, we present an experimental
study that demonstrates the effectiveness and efficiency of our proposed
approach. Through simulations and experiments on NISQ devices, we
show that our dynamic circuit representation significantly reduces the
resource requirements and enhances the robustness of QBN implemen-
tation. These findings highlight the potential of our approach to pave
the way for practical applications of Quantum Bayesian networks on
currently available quantum hardware.

Keywords: Bayesian networks · Quantum circuit · Qiskit

1 Introduction

Quantum algorithms are typically expressed in terms of quantum circuits, which
describe a computation as a sequence of elementary quantum logic gates acting
on qubits. There are many ways of implementing a given algorithm with an avail-
able set of elementary operations, and it is advantageous to find an implementa-
tion that uses the fewest resources especially on near-term device (NISQ machine)
[5,10]. The width of the quantum circuit is key for evaluating the potential of
its successful execution on that particular machine. Optimizing this metric when
implementing quantum Bayesian Networks will be the aim of our work.
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The first tentative to define Quantum Bayesian networks were introduced
by Tucci [14] as an analog to classical Bayesian networks. He proposed that
the conditional probabilities in a classical Bayesian networks can be represented
using quantum complex amplitudes. Tucci argued that there could be infinite
possible quantum Bayesian networks for a given classical Bayesian network. Fol-
lowing Tucci ideas, Moreira & Wichert [7] proposed quantum-like Bayesian net-
works, where the marginal and conditional probabilities were represented using
quantum probability amplitudes. To determine the parameters of a quantum
Bayesian network, a heuristic method was used that considered the similarity
between two dimensional vectors corresponding to the two states of the ran-
dom variables. In 2014 [6] discussed the principles of quantum circuit design
to represent a Bayesian network with discrete nodes that have two states, and
also discussed the circuit design for implementing quantum rejection sampling
for inference and recently, Borujeni et al. [1], proposed Compositional Quantum
Bayesian Network (C-QBN) to represent a discrete Bayesian network and dis-
cuss the decomposition of complex gates using elementary gates, so that they
can be implemented on available quantum computing platforms. In this paper,
we optimize the circuit construction of Compositional Quantum Bayesian net-
work by reducing the width with mid-circuit hardware measurement. We reuse
the qubit that represents a variable from the Bayesian network once it doesn’t
step in the calculation of another event in the chain rule.

This paper is organized as follows: we will first introduce Quantum comput-
ing. Then we will moves to present classical and quantum Bayesian networks
mainly the work of Borujeni et al. on Quantum Bayesian networks and her
approach named (C-QBN) and finally we will detail the proposed method for
optimizing a quantum circuit to represent a Bayesian network.

2 Basic Quantum Computation

Quantum computers can solve some computational problems exponentially faster
than classical computers, which may lead to several applications in field of
machine learning. To store and manipulate the information, they use their own
quantum bits also called ‘Qubits’ unlike other classical computers which are
based on classical computing that uses binary bits 0 and 1 individually.

Instead of using high and low voltages to represent the 1’s and 0’s of binary
data, we generally use the two spin states of an electron, |1〉 and |0〉 [3,12].

Any measurement made on this states will always yield one of the two states
with no way of knowing which one. If we prepare an ensemble of identical sys-
tems then quantum mechanics will assure that we will observe the result 1 with
probability |α|2 and the result 0 with probability |β|2. Normalization of the state
to unity guarantees:

|α|2 + |β|2 = 1

Information stored in a 2-states quantum system is called a quantum bit or
qubit: besides storing classical 1 and 0 information there is also the possibility
of storing information as a superposition of 1 and 0 states.
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To represent the state of a qubit, we can use the Bloch sphere. For instance,
if we have a qubit that is initially prepared in state |1〉 and then apply the NOT
operator (also known as the Pauli-X gate), we will find the qubit in state |0〉.
This operation corresponds to a rotation of the qubit state vector by 180◦ around
the X-axis of the Bloch sphere.

The reversible logic gates used in classical computing (such as AND, OR, and
NOT) have quantum analogues that are implemented using unitary operators
that act on the basis states of a qubit. These quantum gates are also reversible
and can be used to perform quantum computations. The basic quantum gates
include:

– The Hadamard gate, which creates a superposition of the |0〉 and |1〉 states.
– The Pauli gates which have four different types: RX , RY and RZ gates cor-

responding to the three axes of the Bloch sphere (X, Y , and Z), and the
identity gate. The RX gate, also known as the NOT gate, flips the value of
a qubit from |0〉 to |1〉or vice versa. The RY gate is similar to the RX gate,
but also introduces a phase shift around the Y-axis.

– The CNOT gate, which entangles two qubits and flips the second if the first
is in the |1〉 state.

– The Measurement gate, which is used to extract classical information from a
quantum state by collapsing a qubit to one of its possible classical states.

These gates form the basis for constructing more complex quantum circuits. The
impact of hardware on quantum algorithms is significant, as the performance of
a quantum algorithm is ultimately limited by the quality and capabilities of
the underlying quantum hardware. These hardware limitations can affect the
performance of quantum algorithms in several ways that can be summarized as
follows:

– Number of qubits and the available gate set on the hardware can limit
the size and complexity of the quantum circuits that can be implemented
efficiently. Certain quantum algorithms require a large number of qubits or
a specific gate set to perform optimally. If the hardware lacks the required
number of qubits or gate set, the algorithm may not be implementable or
may produce suboptimal results.

– Coherence time of the qubits determines how long they can maintain their
quantum state before they decohere and become classical. Longer coherence
times are generally better for implementing quantum algorithms, as they
allow for more operations to be performed before the quantum state is lost.
If the coherence time is too short, the algorithm may not be able to be
implemented or may perform poorly.

– Connectivity of the qubits on the hardware determines how easy it is to
implement certain types of quantum circuits, such as those involving entan-
glement. If the qubits are not well-connected, it may be difficult or impossible
to implement certain algorithms efficiently.

– Error rates of the gates and measurements on the hardware can limit the
accuracy and reliability of the quantum computation. High error rates can
lead to a loss of coherence and errors in the final result of the algorithm.
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Therefore, as quantum hardware continues to improve, it is expected that the
performance and applicability of quantum algorithms will also improve. This is
why the development of high-quality and scalable quantum hardware is one
of the key challenges in the field of quantum computing. Meanwhile one of the
techniques to cushion the impact of hardware on quantum algorithm is to reduce
the size of quantum circuit.

3 Quantum Bayesian Networks

In this section, we first introduce classical Bayesian networks and then their
most recent quantum representation proposed by Borujeni et al. [1].

3.1 Classical Bayesian Networks

Bayesian networks [8], are among the most powerful probabilistic graphical mod-
els representing knowledge and reasoning under uncertainty. Bayesian networks
are widely used in artificial intelligence, machine learning, and decision analysis
for tasks such as diagnosis, prediction, and decision-making under uncertainty.
They can be used to model complex systems and make predictions about their
behavior, even in the presence of missing or noisy data.

Formally, a Bayesian network BN = 〈G,P 〉 has two components:
(i) The graphical component composed of a Directed Acyclic Graph (DAG) G =
(V,E), where G is a DAG with nodes (or vertices V ) representing variables and
edges E representing the dependencies between variables.
(ii) The numerical component P composed of a set of conditional probability
distributions PXi

= P (Xi | Pa(Xi)) for each node Xi ∈ V in the context of its
parents Pa(Xi). The set of all these conditional probability tables P is used to
define the joint probability distribution over all variables in the network using a
chain rule expressed as:

P (X1.....Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

Example 1. Figure 1 shows an example of a Bayesian network with four binary
nodes V = {A,B,C,D} that we will use in the rest of the article.

Inference is a crucial task in Bayesian networks that involves calculating
probabilities of interest based on observations or evidences. The two most com-
mon types of inference are computing marginal probabilities of a subset of vari-
ables and conditional probabilities of a subset of variables given evidence about
another subset of variables. Inference is an optimization problem that involves
manipulating the joint probability distribution of the Bayesian network, which
can be computationally expensive for large and complex networks. It has been
proven that this problem is NP-hard [2]. The problem of inference in Bayesian
networks has been an active research area for decades, leading to many proposed
algorithms and techniques for efficient computation of probabilities [4,9].
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Fig. 1. A 4-nodes Bayesian network

3.2 Compositional Quantum Bayesian Networks C-QBN

Recently, Borujeni et al. [1] introduced a systematic method for designing a quan-
tum circuit to represent a discrete Bayesian network. This method (outlined by
Algorithm 1) is mainly based on mapping each variable in a Bayesian network to
one or more qubits (depending on its cardinality). Then, it computes associated
gates (via the Gates function) by first calculating the probability amplitudes of
the qubit states from conditional probabilities, following by obtaining the prob-
ability amplitudes of the associated quantum states through the application of
rotational gates. In this representation four gates are used: Hadamard gates X
(green), Pauli gates RY (purple), CNOT gates and measurement gates (black).

Note the use of extra qubits (ancilla bits) that are not part of the input or
output of a quantum circuit but are instead used to perform intermediate compu-
tations that help to improve the efficiency and accuracy of quantum algorithms.
The use of ancilla bits is a common technique in quantum computing.

Example 2. To illustrate the transformation procedure (Algorithm1), we recon-
sider the Bayesian network of Fig. 1. This generates a five-qubit circuit repre-
sented in Fig. 2. Qubits q0, q1, and q2and q3 are associated to A, B, C, D,
respectively, while q4 is the ancilla qubit associated to the decomposition on the
rotation gate relative to the node D which has 2 parents.

The resulting quantum circuit can then be used to compute the joint proba-
bility of any configuration, or the marginal probability of a subset of variables,
by assigning the corresponding values as input of the quantum circuit.

In the proposed method, each node X in the Bayesian network is mapped
onto a qubit in a quantum circuit. As mentioned earlier, qubits are a scarce
resource in quantum computing, and reducing the number of qubits required to
represent the network can provide a significant advantage in representing more
complex networks and performing more sophisticated analyses. This is the main
idea that we propose in the following section.

4 Optimized Representation of Quantum Bayesian
Networks

In this section, we present an optimized Algorithm that reduces the size of a
given quantum Bayesian network circuit compared to Algorithm 1.
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Algorithm 1: Transformation of a BN into a QC
Input : BN =< G = (V,E), P >
Output: A quantum circuit QC
QC ← an empty quantum circuit
for each X in topological order of V do

Create a qubit qX
AX ← empty
for each Y in Pa(X) do

Create ancilla qubit ax

Add ax to AX

end
for i in |Dom(Pa(X))| − 2 do

Create ancilla qubit ax

Add ax to AX

end
GX ← Gates(X,PX , qX , Ax)
Add GX to QC

end
for each X in V do

Measure(qX , QC)
end

Fig. 2. Quantum circuit of Bayesian network of Fig. 1 (Algorithm 1)
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The idea is to take advantage of the structure of the DAG in the given
Bayesian network to measure and reuse the qubit that represents a node mid-
way through, by using the standard measurement gate before applying further
quantum gates. This allows us to reuse a qubit after computing the probability
amplitude of all its child nodes.

The optimized version, outlined by Algorithm 2, starts by initializing an
empty quantum circuit QC and creating a list Palist that contains all the par-
ents of each node. This list will serve as an indicator to know if there are still
nodes that have not been mapped to the circuit and that require the presence
of their parents to calculate their probability amplitude. Otherwise, the qubit
relative to this node will be measured and added to Availablelist to be reused for
another variable. Then, it iterates over the nodes in V in a topological order1.
For each node X, it computes the number of extra qubits n needed by the quan-
tum gates to represent its probability distribution. It also computes the number
of qubits k required to represent the probability distribution even with the reuse
of the reinitialized qubits in Availablelist. If the node has no parents, it cre-
ates a new qubit for it and computes the quantum gates that implement the
node’s probability distribution GX(X,PX , qX , AX). Then If Pa(X) is already in
Pa list, the algorithm checks if Available list is empty. Then it creates a new
qubit and build its gates. Or it uses a qubit from Available list.

After that, we update the Palist and the Available list, and perform mid-
circuit measurement if needed, based on the requirements of the not-yet-built
nodes, with regard to the presence of their parent nodes, to compute their prob-
ability amplitude. Finally, we measure all the qubits that have not yet been
measured in V and add these measurements to QC. The resulting quantum cir-
cuit can be used to compute the joint probability distribution of the Bayesian
network BN.

Example 3. Given the BN in Fig. 1, let us consider the following topologi-
cally order [A,B,C,D]. We have Pa list = [Pa(A), Pa(B), Pa(C), Pa(D)] =
[A,B,C]. We start by considering node A, which is binary and root node. Since
A has no parents, we allocate only one qubit, denoted q0, to build its gates and
add them to the quantum circuit. We do not make any modifications to the
available Parent list Pa list. Next, we move to the variable B. Similar to A, we
allocate one qubit q1 and build its gates.

Then, we handle variable C which is a parented node with Pa(C) = A. To
compute its gates, we need the values from A gates because the values expressed
by its conditional probability table P (C | A) are based on A. After computing
the probability amplitudes of the qubits q2 and adding the gates to the circuit,
we delete A from Pa list and add its relative qubit to Available list because no
further nodes in the topological list are dependent on it. This allows us to apply
a measurement gate to q0 then a reset gate, enabling its reuse to map another
variable and reducing the global width of the circuit.

1 A numbering of the vertices of a DAG such that every edge from a vertex numbered
i to a vertex numbered j satisfies i < j i.e. ancestors before descendants.
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Finally, we move to the last node D, which has two parents. This requires
the use of an extra ancilla qubit (q3), which is added to the node itself, and only
one qubit from Available list is added to the circuit of Fig. 3. This will act on
global width of the final circuit by reducing it from 5 qubits using Algorithm 1 to
4 qubits using our optimized algorithm.

Fig. 3. Optimized Quantum circuit of BN in Fig. 2 (Algorithm 2)

5 Experiments

To evaluate the effectiveness of our algorithm, we analyze the Bayesian network
shown in Fig. 4, which consists of 10 binary nodes. It is worth noting that this
network was previously used in [1], where Algorithm 1 required 12 qubits to
transform it into a quantum circuit, while our optimized version only needs 6
qubits. Our main objective is to assess the accuracy of our model in terms of
marginal probabilities. To achieve this, we compare the results obtained through
an exact inference algorithm applied to the original Bayesian network with those
obtained by measuring the quantum circuits generated by Borujeni’s algorithm
and our optimized approach. We use the mps method from Qiskit Aer, an open-
source quantum circuit simulator [11], to simulate the quantum circuits and also
execute them on a real quantum machine with 7 qubits (IBM Perth).

We ran the Bayesian network circuit five times on the simulatorwithout any
hardware noise and on a real quantum computer, each with 20,000 shots.

To investigate the effect of width reduction of QBN circuits using the two
approaches described in Algorithm 1 and 2, we computed the root mean square
error (RMSE) expressed by:

RMSE =

√√√√
∑N

i=1

(
P (Xi = 0) − P̂ (Xi = 0)

)2

N
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Algorithm 2: Optimized transformation of a BN into a QC
Input : BN =< G = (V,E), P >
Output: A quantum circuit QC
Pa list ← ⋃

X∈V Pa(X)
Available list ← {}
QC ← an empty quantum circuit
for each X in topological order of V do

n ← extra qubit(Pa(X))
k ← n − |Available list|
if k > 0 then

Create k qubit(s) AX

end
/* check if we need to add additional qubits */

if Pa(X) /∈ Pa list then
Create a qubit qX
GX ←Gates(X, PX , qX , Ax)

else
if Available list = {} then

Create a qubit qX
GX ← Gates(X, PX , qX , Ax)

else
GX ←Gates(X, PX , qX , Ax)
Delete(Available list,qX)

end

end
if Count(Pa list, Pa(X)) = 1 then

Measure(qPa(X), QC)
Reset(qPa(X),AX)
Add(Available list, qPa(X), AX)

else if Count(Pa list, Pa(X)) > 1 then
Delete(Pa list, Pa(X))
Reset(AX)
Add(Available list, AX)

else
Reset( AX)
Add(Available list, AX)

Add GX to QC
end
for each not measured X in V do

Measure(qX , QC)
end
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Fig. 4. A 10-node Bayesian network [13]

where N is the number of nodes in the Bayesian network, P (Xi = 0) is the
exact probability computed from the full joint distribution, and P̂ (Xi = 0) is
the probability from the quantum circuit. This measure will indicate the extent
to which a set of marginal probabilities computed with a simulator and a real
quantum computer deviates from the exact values. The results showed that the
RMSE of the optimized circuit is lower than the one generated by Algorithm 1
(3% versus 7%). This improvement is particularly noteworthy given the size of
the initial network, and is attributed to the efficient reuse of qubits enabled by
our approach.

Note that the circuit generated by Algorithm 1 exceeded the 7 qubits avail-
able on the real quantum machine we used, and thus could not be executed.
Therefore, we only tested the optimized circuit generated by Algorithm 2 on a
real quantum computer.

Clearly, the reduction in the width of the quantum circuit has the potential
to improve the error rate as it reduces the number of physical qubits required to
implement the circuit. This, in turn, minimizes the complexity of the hardware
and mitigates some sources of errors (Table 1).
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Table 1. Exact, then mean values of marginal probabilities of the 10 node Bayesian
network on the simulator with the two approaches and on IBM perth quantum com-
puter

Marginal Exact
probability

Simulator Quantum computer

IBM perth

Algorithm 2Algorithm 1 Algorithm 2

P(X1 = 0) 0.431 0.441 0.455 0.651

P(X2 = 0) 0.863 0.867 0.867 0.567

P(X3 = 0) 0.976 0.976 0.974 0.670

P(X4 = 0) 0.570 0.563 0.549 0.576

P(X5 = 0) 0.527 0.528 0.518 0.522

P(X6 = 0) 0.980 0.981 0.981 0.884

P(X7 = 0) 0.977 0.977 0.978 0.899

P(X8 = 0) 0.026 0.026 0.0285 0.701

P(X9 = 0) 0.956 0.956 0.955 0.507

P(X10 = 0) 0.240 0.462 0.331 0.464

RMSE 7% 3% 30%

6 Conclusion and Perspectives

We have proposed an optimized version to design a quantum circuit to represent
Bayesian networks based on C-QBN approach. Our approach takes advantage of
the structure of the DAG in Bayesian networks to measure and reuse the qubit
that represents a node midway through, by using the standard measurement
gate before applying further quantum gates. This allows us to reuse a qubit
after computing the probability amplitude of all its child nodes.

This technique has been shown to reduce the width of the quantum circuit
even on small networks, as demonstrated by the example with 10 nodes, where
it resulted in a reduction of half the number of qubits required to implement the
QBN circuit. As a result, the reduction in the number of required qubits leads to
a simplification of the hardware and helps to alleviate certain sources of errors.

While our first experiments with two examples showed promising results,
further investigation on more complex Bayesian networks is needed to fully eval-
uate the effectiveness of our technique in reducing the width of quantum circuits.
As access to quantum hardware with larger numbers of qubits becomes avail-
able under certain conditions, we plan to test our approach on more challenging
problems. In addition, we will investigate the potential benefits of reducing the
number of qubits required for implementing a quantum circuit, which could pro-
vide additional resources for improving the overall reliability of the computation.
One approach we will explore is integrating error correction techniques directly
into the circuit design, which could further reduce error rates.
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Abstract. Simple Propagation is a message passing algorithm for exact
inference in Bayesian networks. Simple Propagation is like Lazy Prop-
agation but uses the one in, one out-principle when computing inter-
clique messages passed between cliques of the junction tree. Here Lazy
propagation performs a more in-depth graphical analysis of the set of
potentials. Originally, Simple Propagation used Variable Elimination as
the marginalization operation algorithm. In this paper, we describe how
Symbolic Probabilistic Inference (SPI) can be used as the marginalization
operation algorithm in Simple Propagation. We report on the results of
an empirical evaluation where the time performance of Simple Propaga-
tion with SPI is compared to the time performance of Simple Propagation
with Variable Elimination and Simple Propagation with Arc-Reversal.
The experimental results are interesting and show that in some cases
Simple Propagation with SPI has the best time performance.

Keywords: Bayesian networks · Exact Inference · Simple
Propagation · Experimental analysis

1 Introduction

A Bayesian network (BN) is probabilistic graphical model for reasoning about
uncertainty representing a decomposition of a joint probability distribution over
a set of random variables. It consists of a graphical structure specifying a set of
conditional dependence and independence relations over the random variables
represented as nodes in the graph and a set of conditional probability distribu-
tions determined by the graph, see, e.g., [3,7,8,15] for more details.

The intuitive graphical representation of a joint probability distribution
makes Bayesian networks are strong candidates for representing uncertainty
where both expert knowledge and data can be utilized in the model develop-
ment process. Probabilistic inference (also known as belief propagation) is the
task of computing revised probabilities given evidence, i.e., revising the prior
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belief by conditioning on some new information (evidence). Our objective is
to compute the revised belief given evidence for all unobserved variables in the
Bayesian network. Unfortunately, both exact and approximate inference are NP-
hard tasks [2,4]. Therefore, it is important to continue the research on improving
existing inference algorithms for Bayesian networks.

Traditionally, the all-marginals inference problem is solved by message pass-
ing in a secondary computational structure such as the junction tree [5] where
messages are passed in two phases between nodes (cliques) of the tree. Important
methods for message passing include HUGIN Propagation [6], Shafer-Shenoy
Propagation [19], Lazy Propagation [13], and more recently Simple Propaga-
tion [1]. Simple Propagation is similar to Lazy Propagation but applies the much
simpler one-in, one-out-criteria than the graph theoretic approach of Lazy Prop-
agation leading to improved time efficiency in many cases.

In this paper, we introduce Symbolic Probabilistic Inference (SPI) as the
algorithm for eliminating variables when computing messages in Simple Propa-
gation. SPI is different from, for instance, both Variable Elimination (VE) and
Arc-Reversal (AR) as it considers inference as combinatorial optimization prob-
lem. In this paper, we introduce SPI as the method for eliminating variables
during message passing in Simple Propagation. We refer to this combination as
SP-SPI. We compare SP-SPI with Simple Propagation using VE (referred to as
SP-VE) and Simple Propagation using AR (referred to as SP-AR) on a set of
Bayesian networks from the literature using randomly generated evidence. This
work is inspired by the work of [10] on message computation algorithms for Lazy
Propagation.

The remaining parts of the paper are organised as follows. Section 2 con-
tains preliminaries. Section 3 presents Simple Propagation as used in this paper
and Sect. 4 describes the use of different marginalization operations. Section 5
describes the design of the empirical evaluation and the results. Section 6 dis-
cusses the empirical results while Sect. 7 concludes.

2 Preliminaries and Notation

A Bayesian network N = (G,P) has two components G = (V,E) and P where
G = (V,E) is a directed acyclic graph (DAG) and P = {P (X ||| pa(X)) : X ∈
X} is set of conditional probability distributions, where there is a one-to-one
relationship between V and X , and pa(X) denotes the parents of X in G. We
define (X1,X2) as the directed edge from X1 to X2 in G. We assume that all
variables in X are discrete and let ch(X) denote the children of X in G. The
Bayesian network represents a factorization of a joint probability distribution
P (X ) over X such that

P (X ) =
∏

X∈X
P (X ||| pa(X)).

Inference (all-marginals) is defined as the process of computing P (X ||| ε) for
X �∈ X (ε), where ε is a set of variable instantiations and X (ε) is the set of
variables instantiated by ε.
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A variable X is defined as a barren variable w.r.t. DAG G, target T ⊆ X ,
and evidence ε, if X �∈ T , X �∈ X (ε) and X only has barren descendants in G,
if any [16]. The notion of barren variables can be extended to graphs with both
directed and undirected edges [10].

We define a probability potential φ(X1, . . . , Xn) as a non-negative and not-all-
zero function over a set of variables and a probability distribution P (X1, . . . , Xn)
as a probability potential that sums to one [18,19]. For a probability potential
φ(X ||| Y), we let dom(φ) = X ∪ Y denote the domain of φ.

3 Probabilistic Inference with Simple Propagation

Simple Propagation performs inference by passing message in junction tree rep-
resentation of the Bayesian network N = (G,P) following a scheme similar to
Lazy Propagation. A junction tree T = (C,S) representation of N is created by
moralization and triangulation of G (see, e.g., [5]). Here, C denotes the cliques
and S denotes the separators of T . The state space size of clique or separator
W is defined as s(W ) =

∏
X∈W ||X|| and the total state space (TSS) of C is∑

C∈C s(C). Notice that TSS takes the variable state space sizes into considera-
tion and does not rely only on the number of variables in the cliques. This gives
a better indication of the number of arithmetic operations performed during
message passing than the tree width of the junction tree.

The junction tree is initialized by assigning each P (X ||| pa(X)) ∈ P to a
clique W , which can accommodate it, i.e., pa(X) ∪ {X} ⊆ W . This property
is ensured by the moralization of the G. Before message passing, we instantiate
each P (X ||| pa(X)) ∈ P to reflect ε. We let πC denote the clique potential
assigned to C during initialization. It consists of all the conditional probability
distributions assigned to C.

We assume message passing is performed relative to a selected root clique R
of the junction tree T = (C,S) representation of N . Messages are passed in two
phases relative to R starting with the collect phase where information is passed
from the leaf cliques to R followed by the distribute phase where information is
passed from R to the leaf cliques.

When computing the message πCi→Cj
between two adjacent cliques Ci and

Cj with separator S = Ci ∩ Cj , Lazy Propagation uses an in-depth graphical
analysis to identify the potentials associated with Ci and incoming messages
πCk→Ci

from any adjacent clique Ck for k �= j. Contrary to this, Simple Propa-
gation uses the one in, one out-principle when computing the message πCi→Cj

.
Simple Propagation computes a message πCi→Cj

with S = Ci ∩Cj using the
Simple Message Computation (SMC) algorithm shown as Algorithm 1. It takes
three arguments: 1) a set of potentials Φ = πCi

∪⋃
k �=j πCk→Ci

, 2) the separator
S, and 3) a set of evidence variables X (ε). The MarginalizeOut operation in
the While-loop in Line 2 is either VE, AR, or SPI.

The operation RemoveBarren removes the potentials of Φ that correspond
to barren variables with respect to the separator S.
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Procedure SMC(Φ, S, X (ε))
1 Φ = RemoveBarren(Φ, S)
2 while ∃φ(Y) ∈ Φ with X �∈ (S \ X (ε)) and X ′ ∈ (S \ X (ε)) do
3 Φ = MarginalizeOut(X, Φ)

end
4 return {φ(Y) ∈ Φ | Y ⊆ S}
Algorithm 1: Pseudo code for the Simple Message Computation algo-
rithm.

After a full round of message passing the junction tree is consistent in the
sense that the marginal of a variable X can be computed from any clique C ∈ C
where X ∈ C. We compute the posterior marginal using VE.

Example 1. Figure 1 shows a sub-tree of a junction tree where we assume clique
Ci is a leaf clique with no other adjacent except Cj , which is closer to the root
of the junction tree. Assume we need to compute the message πCi→Cj

.

X1, X2, X3, X4 X2, X3 X2, X3, X5, X6

πCi = {P (X1), P (X2 ||| X1), P (X3 ||| X2, X4), P (X4)}

Fig. 1. The one in, one out-principle illustrated on an example.

The clique Ci is initialized with the potential πCi
= {P (X1), P (X2 |||

X1), P (X3 ||| X2,X4), P (X4)}. In potential πCi
, the two potentials P (X3 |||

X2,X4) and P (X2 ||| X1) satisfy the one in, one out-principle. The potential
P (X3 ||| X2,X4) has two variables (X2,X3) in the separator and one variable
out of the separator (X1). Simple Propagation selects the P (X3 ||| X2,X4) as the
first potential to consider. The variable X4 must be eliminated, and all poten-
tials associated with Ci (and incoming messages, if any) including X4 must be
involved in this process. The computations producing P (X3 ||| X2) are:

P (X3 ||| X2) =
∑

X4

P (X4)P (X3 ||| X2,X4).

The updated set of potentials is then {P (X1), P (X2 ||| X1), P (X3 ||| X2)}. The
only potential with a variable satisfying the one in, one out-principle is P (X2 |||
X1) where variable X2 is in the separator and one variable out of the separator
(X1). Hence, Simple Propagation selects P (X2 ||| X1) and eliminates X1:

P (X2) =
∑

X1

P (X1)P (X2 ||| X1).

The resulting message is πCi→Cj
= {P (X2), P (X3 ||| X2)}.
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4 Marginalization Operations During Message Passing

Consider the construction of the message πCi→Cj
from clique Ci to Cj with

separator S = Ci ∩ Cj . Simple Propagation searches the set of potentials
consisting the conditional probability distributions assigned to Ci and poten-
tials of the incoming messages from adjacent of Ci except Cj . This message
is constructed using Algorithm 1 taking as arguments the set of potentials
Φ = πCi

∪ ⋃
k �=j πCk→Ci

and separator S = Ci ∩ Cj . The result is the mes-
sage πCi→Cj

.
Line 2 of Algorithm 1 applies the one in, one out-principle on Φ. Once Simple

Propagation has applied the one in, one out-principle to identify a probability
potential φ as relevant for a message πCi→Cj

with S = Ci ∩ Cj , it eliminates
a variable X where X ∈ Ci and X �∈ S, i.e., a variable in Ci and not in S.
This variable must be eliminated from the set of all potentials in Φ including
X denoted ΦX = {φ ∈ Φ ||| X ∈ dom(φ)}. This paper considers how different
marginalization operations can be used to eliminate X from this Φ.

4.1 Variable Elimination

VE [20] is a method for eliminating a variable X from a set of probability
potentials. It proceeds by combining all potentials with X in the domain by
multiplication and summing over the states of X. Let Φ be a set of probability
potentials, then elimination of X from this set using VE proceeds as specified
using pseudo code in Algorithm 2.

Procedure MarginalizeOut(X, Φ)
1 Set ΦX = {φ ∈ Φ ||| X ∈ dom(Φ)}
2 Set φX =

∑
X

∏
φ∈ΦX

φ

3 Set Φ∗ = Φ \ ΦX ∪ {φX}
4 return Φ∗ \ ΦX

Algorithm 2: Pseudo code for MarginalizeOut using VE.

Φ∗ is the updated set of probability potentials after the elimination of X. VE
has been used in Simple Propagation, e.g., [1] and Lazy Propagation, e.g., [10].

4.2 Arc-Reversal

AR [14,16,17] is a method for reversing arcs in the Bayesian network N = (G,P)
while maintaining the same underlying joint probability distribution under the
assumption that the DAG G of N remains a DAG after the arc-reversal. In
Simple Propagation AR can be applied to eliminate a variable X by reversing
all edges to a child of X in which case X becomes barren and can be eliminated
without further calculations. Let (X1,X2) be an arc from X1 to X2 (such that
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no directed path from X1 to X2 exists in G). The process of reversing the arc
(X1,X2) amounts to performing the following calculations:

P (X2 ||| pa(X1) ∪ pa(X2) \ {X1}) =
∑

X1

P (X2 ||| pa(X2))P (X1 ||| pa(X1))

P (X1 ||| pa(X1) ∪ pa(X2) \ {X1} ∪ {X2}) =
P (X2 ||| pa(X2))P (X1 ||| pa(X1))
P (X2 ||| pa(X1) ∪ pa(X2) \ {X1})

.

AR was introduced as the marginalization algorithm used by Lazy Propaga-
tion and Simple Propagation, respectively, by [10] and [11].

Algorithm 3 specifies pseudo code for how MarginalizeOut proceeds using
AR to eliminate X from a set of probability potentials Φ. The main idea of AR
as an algorithm to eliminate a variable X from a sets of potentials all including
X is to perform a sequence of arc-reversals that makes X a barren variable.

Procedure MarginalizeOut(X, Φ)
1 Set ΦX = {φ ∈ Φ ||| X ∈ dom(Φ)}
2 Set Φ∗ = Φ \ ΦX

3 foreach Y ∈ ch(X) do
4 Compute P ∗(Y ||| pa(Y ))
5 Compute P ∗(X ||| pa(X))
6 Set Φ∗

X = Φ \ {P (X ||| pa(X)), P (Y ||| pa(Y ))} ∪ {P ∗(X ||| pa(X)), P ∗(Y |||
pa(Y ))}

end
7 Set Φ∗

X = Φ∗
X \ {P ∗(X ||| pa(X))}

8 return Φ∗ ∪ Φ∗
X

Algorithm 3: Pseudo code for MarginalizeOut using AR.

AR changes the direction of an arc and, therefore, we need to make sure that
it does not introduce a cycle. This is unfortunately not a local property.

4.3 Symbolic Probabilistic Inference

SPI [9] considers probabilistic inference from a combinatorial optimization prob-
lem point of view where efficient inference in Bayesian networks is considered as
a problem of finding an optimal factoring given a set of probability distributions.
In the process a variable X is eliminated when possible, i.e., when all potentials
with X in the domain have been combined.

Algorithm 4 specifies pseudo code for how MarginalizeOut proceeds using
SPI to eliminate X from a set of probability potentials Φ. The main idea of SPI
as an algorithm to eliminate a variable X from a set of potentials all including
X is to find an (optimal) ordering ρ of pairwise combinations following by a
summation of X of the single potential.
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Procedure MarginalizeOut(X, Φ)
1 Set ΦX = {φ ∈ Φ ||| X ∈ dom(Φ)}
2 Set Φ∗ = ΦX

3 while |Φ∗| > 1 do
4 Select pair φ1, φ2 ∈ Φ∗

5 Set Φ∗ = Φ∗ ∪ {φ1 · φ2} \ {φ1, φ2}
end

6 Set φ∗ =
∑

X

∏
φ∈Φ∗ φ

7 return Φ \ ΦX ∪ {φ∗}
Algorithm 4: Pseudo code MarginalizeOut using SPI.

Notice that the summation of X is over a product with a single potential φ.
This presentation of SPI is similar to the presentation SPI in [10] where SPI is
introduced as the marginalization algorithm used by Lazy Propagation.

Example 2. We will use the four variables Bayesian network shown in Fig. 2 as
an example to illustrate the main differences between AR, VE, and SPI as the
marginalization operation.

X1 X2 X3

Y

Fig. 2. A Bayesian network where SPI has an advantage over AR and VE.

Assume we want to compute the marginal P (Y ). For AR and VE this involves
finding an order σ to eliminate X1,X2,X3 while for SPI this involves finding a
pairwise combination order ρ for the distributions P (X1), P (X2), P (X3), P (Y |||
X1,X2,X3) eliminating variables X1,X2,X3 whenever possible.

Assume the elimination order σ = [X1,X2,X3]. For VE this produces the
following calculations:

P (Y ) =
∑

X3

P (X3)
∑

X2

P (X2)

(
∑

X1

P (Y ||| X1,X2,X3)P (X1)

)
. (1)

Next, for AR we have the following calculations assuming the arc-reversal
order [(X1, Y ), (X2, Y ), (X3, Y )]:



A Comparison of Different Marginalization Operations 179

P (Y ||| X2,X3) =
∑

X1

P (Y ||| X1,X2,X3)P (X1),

P (X1 ||| Y,X2,X3) = P (Y ||| X1,X2,X3)P (X1)/P (Y ),

P (Y ||| X3) =
∑

X2

P (Y ||| X2,X3)P (X2),

P (X2 ||| Y,X3) = P (Y ||| X2,X3)P (X2)/P (Y ),

P (Y ) =
∑

X3

P (Y ||| X3)P (X3),

P (X3 ||| Y ) = P (Y ||| X3)P (X3)/P (Y ).

For AR we can avoid the division operations for each parent being eliminated
as we are only interested in the marginal P (Y ) for Y and each parent in turn
becomes a barren variable with respect to Y . In this case, VE and AR are
equivalent but they are not in the general case.

Finally, for SPI, we have these calculations assuming the combination order
ρ = [B1 = (P (X1), P (X2)), B2 = (B1, P (X3)), B3 = (B2, P (Y ||| X1,X2,X3))]:

∑

X3

P (X3)
∑

X2

∑

X1

P (Y |X1,X2,X3) (P (X1)P (X2)) . (2)

If we assume that each variable has ten states, then the number of mathe-
matical operations (multiplications, additions, and divisions) performed for each
approach is shown in Table 1.

Table 1. The number of arithmetic operations perform to compute P (Y ) for VE, AR,
and SPI, respectively.

Algorithm Multiplications Additions Divisions Total

VE 11100 9990 0 21090

AR 11100 9990 11100 32190

SPI 10200 9990 0 20190

It is clear from the table that for this example SPI performs fewer mathemati-
cal operations than both VE and AR. Notice how SPI computes the combination
P (X1)P (X2), which none of the other algorithms does. The divisions by AR can
be avoided due to barren variables.

5 Experimental Analysis

In this section, we describe the experimental analysis performed to compare
SP-VE, SP-AR, and SP-SPI. The experiment involves 25 Bayesian networks of
different complexity taken from the literature. The objective of the experimental
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analysis is to investigate and compare the performance impact of VE, AR, and
SPI as the algorithm used for eliminating variables during message passing in
Simple Propagation.

In each case, an optimal triangulation in terms of total clique state-space
size has been generated for each network using the total-weight algorithm of the
HUGIN Decision Engine [12]. Information on the 25 Bayesian networks and the
corresponding junction trees can be found in Table 2 (columns two and three).

The empirical evaluation is performed on a desktop computer running Red
Hat Enterprise Linux 7.9 with a six-core Intel (TM) i7-5820K 3.3 GHz processor
and 64 GB RAM. The computer has six physical cores and twelve logical cores.
Computation time is measured as the elapsed (wall-clock) time in seconds and
covers both message passing and computation of marginals.

Table 2. Average time cost in seconds propagating random evidence in 25 real-world
Bayesian networks. Lowest costs are specified in bold.

Network |X | TSS SP-VE SP-AR SP-SPI

3nt 58 4.1 0.01 0.02 0.01

ADAPT 1 133 3.3 0.03 0.05 0.03

Amirali network 681 7.3 0.37 0.57 0.39

andes 223 4.8 0.11 0.2 0.1

Barley 48 7.2 0.08 0.13 0.07

cc145 145 3.6 0.07 0.14 0.11

cc245 245 5.8 0.15 0.29 0.21

Diabetes 413 7.0 0.27 1.07 0.28

food 109 7.3 0.14 0.15 0.13

hailfinder 56 4.0 0.02 0.03 0.02

Heizung 44 8.0 0.23 0.27 0.19

Hepar II 70 3.4 0.02 0.05 0.02

KK 50 7.1 0.07 0.09 0.07

medianus 56 6.1 0.03 0.04 0.03

Mildew 35 6.5 0.03 0.05 0.03

Munin1 189 7.9 0.65 1.44 0.44

oow bas 33 6.3 0.03 0.03 0.03

oow solo 40 6.7 0.05 0.08 0.05

oow 33 6.8 0.06 0.07 0.05

pathfinder 109 5.3 0.09 0.17 0.17

powerplant 46 2.7 0.01 0.01 0.01

ship 50 7.4 0.15 0.16 0.13

system v57 85 6.1 0.05 0.07 0.04

Water 32 6.5 0.04 0.07 0.04

win95pts 76 3.4 0.02 0.05 0.02
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It is clear from the table that models of different sizes and computational
complexity have been considered in the experimental analysis.

Table 2 also shows the results of the experiment, where random evidence is
propagated in each Bayesian network. For each algorithm 100 sets of randomly
generated evidence are propagated. The same evidence is used of each method.
There is a separate column for each algorithm, i.e., VE, AR, and SPI.

The lowest average run-time for each Bayesian network is highlighted in bold.
The result in Table 2 shows that SPI had the lowest average time cost in 20 cases,
AR had lowest average cost in 2 cases, and VE had lowest average cost in 17
cases were tied. SPI had unique lowest costs in 8 cases and VE in 5 cases.

6 Discussion

We have introduced SPI as the marginalization algorithm of Simple Propaga-
tion. The performance of Simple Propagation with SPI is compared empirically
with the performance of Simple Propagation with VE as the marginalization
algorithm and Simple Propagation with AR as the marginalization algorithm.

The average time cost reported covers both message passing and computing
posterior marginals. This is motivated by the fact that the result of message
passing may have a large impact on the cost of computing marginals, e.g., mes-
sage passing in a junction tree with a single clique will be fast but computing
marginals will be expensive. Also, in the case of AR, it would perform division
operations in order to maintain as much knowledge on dependence and indepen-
dence relations as possible to support later variable marginalizations. However,
this is unnecessary in the case of computing marginals as all relevant potentials
have been identified.

The average run-time of Simple Propagation with SPI is almost equal to the
average run-time of Simple Propagation with VE in 18 cases (difference is less
than 0.01 s). Only in a few cases, the average run-time of Simple Propagation
with VE and Simple Propagation with SPI are significantly better than the
average run-time of Simple Propagation with AR.

7 Conclusion

We have compared three different marginalization operations for Simple Prop-
agation. The three marginalization operations are VE, AR, and SPI that are
quite different methods for eliminating a variable from a set of probability dis-
tributions. VE and AR have been considered as marginalization operations of
Simple Propagation in previous work, while this paper introduced SPI as a new
marginalization operation in Simple Propagation.

We have compared the average time performance of the three algorithms on
25 Bayesian networks for different sizes using 100 sets of random evidence for
each network. In 20 cases, SPI had the lowest average time costs, in 17 cases
VE had the lowest average time costs, and in 2 cases AR had the lowest average
time costs. SPI had 8 unique wins while VE had 5 unique wins.
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Abstract. Inductive inference operators have been introduced to formalize the
process of completing a conditional belief base to a full inference relation. In
this paper, we investigate the approximation of inductive inference operator sys-
tem W with combinations of system Z (or equivalently rational closure) and c-
inference, both of which are known to be extended by system W. We introduce
general functions for generating inductive inference operators, the combination
of two inductive inference operators by union, and the completion of an inductive
inference operator by an arbitrary set of axioms. We construct the least inductive
inference operator extending system Z and c-inference which, however, does not
satisfy system P. We also construct the least inductive inference operator extend-
ing system Z and c-inference that also satisfies system P and show that it is strictly
extended by systemW. Furthermore, we develop approximations that extend sys-
tem W and introduce an inductive inference operator that strictly extends system
W and that is strictly extended by lexicographic inference. This leads to a map of
inference relations between rational closure and c-inference on the one side and
lexicographic inference on the other side.

Keywords: Inductive inference operators · System Z · c-Inference · System
W · Combining inductive inference operators · Closure under a set of
postulates · lexicographic inference

1 Introduction

One of the tasks in the field of knowledge representation and reasoning is inductive
reasoning from given (conditional) belief bases. This process was formalized in [21] by
inductive inference operators that map belief bases to inference relations. Examples for
inductive inference operators are p-entailment [24], system Z [12,28], lexicographic
inference [26], c-inference [2,4] which takes all c-representations [19,20] of a belief
base into account, and system W [23].

In this paper, we introduce the combination of two inference operators by their
union. Additionally, we introduce the closure of an inductive inference operator under a
set of properties which extends the induced inference relations such that the desired
properties are satisfied. An example of this is the minimal closure under system P
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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[1,24]. We construct the least inference relation that satisfies system P and captures
both c-inference and system Z and show that system W captures and strictly extends
this approximation, which negates the previously open question whether system W
can be characterized by the union (with closure under p-entailment) of system Z and
c-inference.

In the other direction, system W is captured and strictly extended by lexicographic
inference (see [15]). We present another inductive inference operator and show that it
extends system W while also being extended by lexicographic inference.

To summarize, the main contributions of this paper are:

– introduction of the union of inductive inference operators,
– definition of the closure of an inductive inference relation under a set of properties,
– construction of the least inductive inference operator CP (cZ) that satisfies system P

and strictly extends both system Z (and thus rational closure) and c-inference,
– proof that CP (cZ) is strictly extended by system W,
– introduction of an inductive inference operator that strictly extends system W and is
strictly extended by lexicographic inference, leading to a map of inductive inference
operators that approximate system W and that lie between system Z and c-inference
on the one side and lexicographic inference on the other side.

After recalling the background on conditional logic in Sect. 2, we introduce the
union and closure of inductive inference operators in Sect. 3. In Sect. 4, we develop
the landscape of inductive inference operators as approximations of system W, before
concluding with Sect. 5.

2 Background: Conditional Logic

A (propositional) signature is a finite set Σ of identifiers. For a signature Σ, we denote
the propositional language overΣ byLΣ . Usually, we denote elements of the signatures
with lowercase letters a, b, c, . . . and formulas with uppercase letters A,B,C, . . .. We
may denote a conjunction A∧B by AB and a negation ¬A by A for brevity of notation.
As usual, � denotes a tautology and ⊥ an unsatisfiable formula. The set of interpreta-
tions over a signature Σ is denoted as ΩΣ . Interpretations are also called worlds and
ΩΣ is called the universe. An interpretation ω ∈ ΩΣ is a model of a formula A ∈ LΣ if
A holds in ω. This is denoted as ω |= A. The set of models of a formula (over a signa-
ture Σ) is denoted asMod Σ(A) = {ω ∈ ΩΣ | ω |= A}. A formula A entails a formula
B, denoted by A |= B, if Mod Σ(A) ⊆ Mod Σ(B). We will represent interpretations
(or worlds) by complete conjunctions, e.g., the interpretation over Σabc = {a, b, c} that
maps a and c to true and b to false is represented by a ∧ ¬b ∧ c, or just abc. Thus, every
world ω ∈ ΩΣ is also a formula in LΣ .

A conditional (B|A) connects two formulas A,B and represents the rule “If A then
usually B”. For a conditional (B|A), the formula A is called the antecedent and the for-
mula B the consequent of the conditional. The conditional language over a signature Σ
is denoted as (L|L)Σ = {(B|A) | A,B ∈ LΣ}. (L|L)Σ is a flat conditional language
as it does not allow nesting conditionals. A finite set of conditionals is called a con-
ditional belief base. We use a three-valued semantics of conditionals [8]. For a world
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ω, a conditional (B|A) is either verified by ω if ω |= AB, falsified by ω if ω |= AB,
or not applicable to ω if ω |= A. The set of conditional beliefs accepted by an agent
is modelled by an inference relation. An inference relation is a binary relation |∼ on
propositional formulas with A |∼ B representing that A (defeasibly) entails B.

Ranking functions are a common model for conditionals and conditional belief
bases. A ranking function, also called ordinal conditional function (OCF), is a func-
tion κ : ΩΣ → N0 such that κ−1(0) 	= ∅; ranking functions were first introduced (in a
more general form) by Spohn [29]. The intuition of a ranking function is that the rank
of a world is lower if the world is more plausible. Therefore, ranking functions can be
seen as some kind of “implausibility measure”. For a ranking function κ and a set X
of worlds,minω∈X κ(ω) denotes the minimal rank κ(ω) among the worlds ω ∈ X; for
empty sets we define minω∈∅ κ(ω) = ∞. Ranking functions are extended to formu-
las by κ(A) = minω∈Mod(A) κ(ω). A ranking function κ models a conditional (B|A),
denoted as κ |= (B|A), if κ(AB) < κ(AB), i.e., if the verification of the conditional is
strictly more plausible than its falsification. A ranking function κ models a conditional
belief base Δ, denoted as κ |= Δ, if κ |= (B|A) for every (B|A) ∈ Δ. A belief base Δ
is consistent, if there is at least one ranking function κ such that κ |= Δ. The inference
relation |∼κ induced by a ranking function κ is defined by

A |∼κ B iff κ(A) = ∞ or κ(AB) < κ(AB). (1)

Note that the condition κ(A) = ∞ in (1) ensures that system P’s axiom (REF): A |∼ A
is satisfied also for A ≡ ⊥, i.e., ensuring that ⊥ |∼κ ⊥.

3 Combining and Extending Inductive Inference Operators

Completing a given belief base to an inference relation is called inductive inference;
this is formalized by the notion of an inductive inference operator.

Definition 1 (inductive inference operator [21]). An inductive inference operator is
a mapping C : Δ → |∼Δ that maps each belief base to an inference relation such that
direct inference (DI) and trivial vacuity (TV) are fulfilled, i.e.,

(DI) if (B|A) ∈ Δ then A |∼Δ B, and
(TV) if Δ = ∅ and A |∼Δ B then A |= B.

A well known example of inductive inference is p-entailment, which is defined as
the skeptical inference over so-called preferential models of a belief base Δ [24]. We
will denote the inference relation induced from a belief base Δ by p-entailment as |∼p

Δ,
and the corresponding inductive inference operator is Cp : Δ → |∼p

Δ.
One way of combining inductive inference operators is to use the union of the infer-

ence relations induced by them.

Definition 2 (union of inference operators). Let C1 : Δ → |∼1
Δ and C2 : Δ → |∼2

Δ

be inductive inference operators. The union of C1 and C2, denoted by C = C1 ∪ii C2,
is the mapping C : Δ → |∼Δ with |∼Δ = |∼1

Δ ∪ |∼2
Δ.
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This means that for any A,B ∈ LΣ we have A |∼Δ B iff A |∼1
Δ B or A |∼2

Δ B
(with C1, C2, C as in Definition 2). Uniting two inductive inference operators yields
again an inductive inference operator.

Proposition 1. The union C1 ∪ii C2 of two inductive inference operators C1, C2 is an
inductive inference operator.

Proof. Let C1 : Δ → |∼1
Δ and C2 : Δ → |∼2

Δ be inductive inference operators, and let
C : Δ → |∼Δ be the union of them. To show that C is an inductive inference operator,
we need to show that it satisfies (DI) and (TV).

Let (B|A) ∈ Δ. Then we have A |∼1
Δ B because C1 satisfies (DI). This entails

A |∼Δ B. Hence C satisfies (DI).
Let Δ = ∅ and A,B ∈ LΣ such that A |∼Δ B. Then A |∼1

Δ B or A |∼2
Δ B. As C1

and C2 satisfy (TV), we have that A |= B in both cases. Therefore, C satisfies (TV). �
Usually certain properties are desired for inductive inference operators. The desired

properties can be stated in form of postulates and vary depending on the context or
application of the inductive inference operator. The set of postulates called system P is
often considered as minimal requirements for inference relations [1,24]. The system P
postulates are:

(REF) Reflexivity for all A ∈ L it holds that A |∼ A
(LLE) Left Logical Equivalence A ≡ B and B |∼ C imply A |∼ C
(RW) Right weakening B |= C and A |∼ B imply A |∼ C
(CM) Cautious Monotony A |∼ B and A |∼ C imply AB |∼ C
(CUT) A |∼ B and AB |∼ C imply A |∼ C
(OR) A |∼ C and B |∼ C imply (A ∨ B) |∼ C

It is well-known that the exhaustive application of the system P axioms to a belief base
coincides with p-entailment [24]. The postulate (AND) is an implication of system P:

(AND) A |∼ B and A |∼ C imply A |∼ B ∧ C

While the postulates of system P consider an inference relation on its own, more
complex postulates like (SynSplit) [21] can relate the inference relations induced by
different belief (sub-)bases.

If an inductive inference operator C fails to satisfy a (set of) postulate(s), compli-
ance with these postulates can possibly be achieved by adding additional pairs to the
inference relations induced by C.

Definition 3 (Closure under a set of postulates). Let C : Δ → |∼Δ be an inductive
inference operator. Let X be a set of postulates for inductive inference operators. An
inductive inference operator CX : Δ → |∼X

Δ is a closure of C under X if |∼Δ ⊆ |∼X
Δ

and |∼X
Δ satisfies X .

CX : Δ → |∼X
Δ is a minimal closure of C under X if it is a closure of C under X ,

and if there is no closure C ′ of C under X such that C ′(Δ) ⊆ CX(Δ) for every Δ.

Thus, the minimal closures are inclusion minimal with respect to the induced infer-
ence relations. Depending on the property X a closure of C under X might not always
exist.
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Example 1. Consider the postulate (Classic Preservation) [7]:
(CP) Classic Preservation A |∼Δ ⊥ iff A |∼p

Δ ⊥
For an inductive inference operator C : Δ → |∼Δ, a belief base Δ, and A ∈ LΣ with
A |∼Δ ⊥ and A 	|∼p

Δ ⊥, this violation of (CP) cannot be fixed by adding inferences to
|∼Δ.

Even if a closure exists, the minimal closure might not be unique.

Proposition 2. The minimal closure of an inductive inference operator under a set of
postulates is not necessarily unique.

Proof. Consider the postulate rational monotony [24].
(RM) Rational Monotony A |∼ C and A 	|∼ B imply (A ∧ B) |∼ C

Now we want to find a minimal closure of p-entailment under system P and (RM).
Note that the combination of system P and (RM) characterizes exactly the inference
relations that are induced by ranking functions [25]. For the belief base Δ = {(b|p),
(f |b), (f |p)} (cf. the “penguin triangle”) the ranking functions κ1, κ2 defined as

bpf bpf bpf bpf bpf bpf bpf bpf

κ1 : 2 1 0 1 2 2 0 0
κ2 : 2 1 0 2 2 2 0 0

each induce an inference relation extending |∼p
Δ and complying with system P and

(RM). The induced inference relations are not equal and neither of them extends the
other one, because bpf ∨ bpf |∼κ1

bpf and bf 	|∼κ1
p for κ1, but bpf ∨ bpf 	|∼κ2

bpf

and bf |∼κ2
p for κ2. Furthermore, |∼κ1

and |∼κ2
are both inclusion minimal among the

inference relations that extend |∼p
Δ and comply with system P and (RM), i.e., a minimal

closure of Cp under system P and (RM) could map Δ to either |∼κ1
or |∼κ2

. �

However, in some cases the closure of inductive inference operators behaves quite
well. Any inductive inference operator has a unique minimal closure under system P.

Proposition 3 (Closure under system P). For any inductive inference operator C
there is a unique minimal closure of C under system P.

Proof. The unique minimal closure C ′ : Δ → |∼′
Δ of C : Δ → |∼Δ under system P

can be obtained by

C ′ : Δ → {A |∼′
Δ B |A |∼ B is derivable from |∼Δ

by iteratively applying system P axioms}.

Every inference in C ′(Δ) needs to be in any closure of C under system P, as C ′ only
adds inferences that are required to be included by the system P axioms. Furthermore,
C ′(Δ) satisfies system P: Whenever the antecedent of one of the system P axioms is
satisfied, the inference required by the conclusion is included by definition. Hence, C ′

is the unique minimal completion of C under system P. �
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More generally, the argumentation in the proof of Proposition 3 can be applied to
every set of axioms of the form

A1 |∼ B1 and . . . and An |∼ Bn implies An+1 |∼Bn+1.

Note that the closure of an inductive inference operator under any set of postulates of
any form is again an inductive inference operator as long as it does not violate (TV).

Proposition 4. Let X be a set of postulates. If the closure C ′ of an inductive inference
operator C under X does not violate (TV), then C ′ is an inductive inference operator.

Proof. We only need to show that the closure C ′ of an inference operator C satisfies
(DI). This holds trivially, as C satisfies (DI) and C(Δ) ⊆ C ′(Δ) for any Δ. �

4 Approximations of System W

System W was the first inductive inference operator that was shown to capture both
system Z and c-inference [22,23]. Furthermore, system W exhibits many properties
desirable for nonmonotonic inference, like satisfying system P and fully complying
with syntax splitting [14,21] and also conditional syntax splitting [18]. An implemen-
tation of system W is presented in [5]. In this section, we will elaborate approximations
of system W, addressing questions like what is the “smallest” inductive inference oper-
ator extending both system Z and c-inference, and does it satisfy system P; or what are
inductive inference operators extending system W. Let us first briefly recall the defini-
tions of system Z, c-inference, and system W.

System Z. [28] is an inductive inference operator that is based on the Z-partition of a
belief base.

A conditional (B|A) is tolerated by Δ = {(Bi|Ai) | i = 1, . . . , n} if there exists
a world ω ∈ Ω such that ω verifies (B|A) and ω does not falsify any conditional in Δ,
i.e., ω |= AB and ω |= ∧n

i=1(Ai ∨ Bi).
The inclusion maximal tolerance partitionOP(Δ) = (Δ0, . . . ,Δk) of a belief base

Δ, also called Z-partition, is the ordered partition of Δ where each Δi is the inclusion
maximal subset of

⋃n
j=i Δj that is tolerated by

⋃n
j=i Δj .

It is well-known that the construction of OP(Δ) is successful iff Δ is consistent,
and because the Δi are chosen inclusion-maximal, the Z-partition is unique [28].

Definition 4 (system Z). Let Δ be a belief base with OP(Δ) = (Δ0, . . . ,Δk). The
Z-ranking function κz

Δ is defined as follows: For a world ω ∈ Ω, let Δj be the last
partition in OP(Δ) that contains a conditional falsified by ω. Then let κz

Δ(ω) = j +1.
If ω does not falsify any conditional in Δ, then let κz

Δ(ω) = 0. System Z is the inductive
inference operator Cz mapping every Δ to the inference relation |∼z

Δ induced by κz
Δ.

c-Inference. [2] is the skeptical inference over the set of c-representations of Δ. Here,
skeptical inference means that A |∼ B iff A |∼κ B for every c-representation κ of Δ.
Among the ranking functions modeling Δ, c-representations are special ranking func-
tions obtained by assigning individual integer impacts to the conditionals in Δ.
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Definition 5 (c-representation [19,20]). A c-representation of a knowledge base Δ =
{(B1|A1), . . . , (Bn|An)} is a ranking function κ constructed from integer impacts ηi ∈
N0 assigned to each conditional (Bi|Ai) such that κ models Δ and is given by:

κ(ω) =
∑

1�i�n, ω|=AiBi

ηi (2)

Note that the requirement in Definition 5 that κ models Δ, denoted by κ |= Δ, can
be expressed equivalently by requiring that the impacts ηi satisfy the inequations

ηi > min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj − min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj

for all i ∈ {1, . . . , n}. A proof of this key property of c-representations is given, for
a more general form of c-representations taking into account impacts not only for the
falsification of conditionals but also for for the verification of conditionals, in [20]; a
proof that covers the case of c-representations as in Definition 5 can also be found in [3].

Definition 6 (c-inference, |∼c
Δ [2]). Let Δ be a knowledge base and let A, B be for-

mulas. B is a (skeptical) c-inference from A in the context of Δ, denoted by A |∼c
Δ B,

iff A |∼κ B holds for all c-representations κ of Δ. c-Inference is the inductive inference
operator Cc mapping every belief base Δ to |∼c

Δ.

System W. [22,23] is an inductive inference operator that takes the Z-partition of a
belief base Δ and also the information which conditionals are falsified by each world
into account. The definition of system W is based on a binary relation called preferred
structure on worlds <w

Δ over Ω that is assigned to every consistent belief base Δ.

Definition 7 (ξj , preferred structure <w
Δ on worlds). Let Δ be a belief base with the

Z-partition OP(Δ) = (Δ0, . . . ,Δk). For j = 0, . . . , k, the function ξj is the function
mapping worlds to the set of falsified conditionals from Δj in the Z-partition, given
by ξj

Δ(ω) := {(Bi|Ai) ∈ Δj | ω |= AiBi}. The preferred structure on worlds is the
relation <w

Δ ⊆ Ω × Ω defined by

ω <w
Δ ω′ iff there exists an m ∈ {0 , . . . , k} such that

ξi
Δ(ω) = ξi

Δ(ω′) ∀i ∈ {m + 1 , . . . , k}, and
ξm
Δ (ω) � ξm

Δ (ω′) .

Thus, ω <w
Δ ω′ if and only if ω falsifies strictly fewer conditionals than ω′ in the

partition with the biggest index m where the conditionals falsified by ω and ω′ differ.

Definition 8 (system W, |∼w
Δ). Let Δ be a belief base and A,B be formulas. Then B

is a system W inference from A, denoted A |∼w
Δ B, if for every ω′ ∈ ΩAB there is an

ω ∈ ΩAB such that ω <w
Δ ω′.
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To approximate system W with system Z and c-inference, we first consider the
union

CcZ : Δ → |∼cZ
Δ , CcZ = Cc ∪ii Cz

of both inference operators. We say that an inductive inference operator C1 : Δ →
|∼1

Δ captures another inference operator C2 : Δ → |∼2
Δ if for every Δ it holds that

C1(Δ) ⊆ C2(Δ); and C1 strictly extends C2 if additionally there is a belief base Δ∗

such that C1(Δ∗) � C2(Δ∗). By definition, CcZ is the smallest inductive inference
operator to capture system Z and c-inference.

Proposition 5. Every inductive inference operator C ′ capturing system Z and c-
inference also captures CcZ .

CcZ is illustrated by the following example. Additionally, this example shows that
CcZ does not satisfy system P.

Example 2. Let Σ = {a, b, c, d, e, f} and

Δ = {(ab|a ∨ b), (ab|ab ∨ ab), (ab|ab ∨ ab),
(c|d), (e|c), (e|d), (f |c)}.

We have bd |∼z
Δ a and bd |∼c

Δ f and therefore bd |∼cZ
Δ a and bd |∼cZ

Δ f . Furthermore,
bd 	|∼z

Δ af and bd 	|∼c
Δ af and therefore bd 	|∼cZ

Δ af . Note that this violates (AND);
therefore CcZ does not satisfy system P.

As the result of naively combining system Z and c-inference does not satisfy sys-
tem P, we consider the minimal closure of CcZ under system P, denoted as

CP (cZ):Δ �→|∼P(cZ)
Δ .

Example 3. Let Δ be the belief base from Example 2. We have bd |∼P(cZ )
Δ a and

bd |∼P(cZ )
Δ f , as these inferences are already possible with CcZ . Furthermore, we have

bd |∼P(cZ )
Δ af as this inference is derivable with the system P entailed postulate (AND).

CP (cZ) is the smallest inductive inference operator capturing system Z and c-
inference that satisfies system P.

Proposition 6. Every inductive inference operator C ′ that captures system Z and c-
inference and satisfies system P captures CP (cZ).

So the question arises whether systemW is the smallest inductive inference operator
that extends rational closure and also c-inference and additionally satisfies system P, and
thus coincides with CP (cZ). This is not the case. While CP (cZ) is captured by system
W, it does not coincide with system W.

Proposition 7. CP (cZ) is captured by system W.

Proof. SystemW captures both c-inference and system Z and additionally satisfies sys-
tem P. Therefore systemW is a closure of CcZ under system P. As CP (cZ) is the unique
minimal closure of CcZ under system P, it is captured by system W. �
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Proposition 8. System W strictly extends CP (cZ).

Proof. Using Proposition 7 we have that System W extends CP (cZ). It is left to show
that these inductive inference operators do not coincide. Let Σ = {a, b} and

Δ = {(ab|a), (ab|a ∨ b)}.

The Z-ranking function κz
Δ = {ab → 0, ab → 1, ab → 1, ab → 0} induced by Δ is

also a c-representation of Δ (choose η = (0, 1) as impacts). Therefore, the |∼c
Δ must

be a subset of or equal to |∼z
Δ for this Δ. This entails that |∼z

Δ= |∼cZ
Δ = |∼P (cZ)

Δ . As

ab ∨ ab 	|∼z
Δ ab and ab ∨ ab |∼w

Δ ab we have that |∼P (cZ)
Δ 	= |∼w

Δ. �

Hence, the inductive inference operators CcZ and CP (cZ) strictly lie between c-
inference and system Z on one side and system W on the other side.

In the other direction, lexicographic inference [26] was shown to capture and strictly
extend system W [15]. The following definition of lexicographic inference is adapted
from [26]; in our definition, we employ the notation introduced in Definition 7 and use
min≺S to denote the minima in the set S with respect to the ordering ≺.

Definition 9 (lexicographic inference). The lexicographic ordering on vectors in N
n

is defined by (v1, . . . , vn) <lex (w1, . . . , wn) iff there is a k ∈ {1, . . . , n} such that
vk < wk and vj = wj for j = k + 1, . . . , n.

The binary relation �lex
Δ ⊆ Ω × Ω on worlds induced by a belief base Δ with

|OP(Δ)| = n is defined by, for any ω, ω′ ∈ Ω,

ω �lex
Δ ω′ if (|ξ1Δ(ω)|, . . . , |ξn

Δ(ω)|) �lex (|ξ1Δ(ω′)|, . . . , |ξn
Δ(ω′)|).

For formulas F,G,A,B, lexicographic inference |∼lex
Δ is induced by <lex

Δ :

F <lex
Δ G iff min<lex

Δ
{ω ∈ Ω | ω |= F} <lex

Δ min<lex
Δ

{ω ∈ Ω | ω |= G}
A |∼lex

Δ B iff AB <lex
Δ AB

Similar as for the inductive inference operators that extend both system Z and c-
inference and that are extended by systemW, we can also find inductive inference oper-
ators that extend system W and are extended by lexicographic inference. Following a
suggestion by Tönnies [30], we consider the following modification of the preferred
structure on worlds and its induced inductive inference operator.

Definition 10 (Cwl, |∼wl). For a belief base Δ we define the relation <wl
Δ ⊆ Ω ×Ω by

ω <wl
Δ ω′ iff there exists an m ∈ {0 , . . . , k} such that

ξi
Δ(ω) = ξi

Δ(ω′) ∀i ∈ {m + 1 , . . . , k} and

|ξm
Δ (ω)| < |ξm

Δ (ω′)| .

The inductive inference operator Cwl : Δ → |∼wl
Δ is defined by A |∼wl

Δ B iff for every
ω′ ∈ ΩAB there is an ω ∈ ΩAB such that ω <wl

Δ ω′.
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Like system W, the inductive inference operator Cwl is defined via a strict partial
order on worlds; therefore it satisfies system P.

Proposition 9. Cwl satisfies system P.

Proof. The relation <wl
Δ is a strict partial order on Ω. Since Ω is finite, M =

(Ω, |=, <wl
Δ ) is a stoppered classical preferential model [27]. Therefore, the definition of

Cwl ensures that Cwl(Δ) is a preferential inference relation and hence satisfies system
P [24,27]. �

Cwl captures and strictly extends system W (and thus also c-inference and system
Z) while it is captured and strictly extended by lexicographic inference.

Fig. 1. Overview over relationships among the inductive inference operators considered in this
paper. An arrow I1 ↪→ I2 indicates that inductive inference operator I1 is captured by I2 and that
I1 is strictly extended by I2 for some belief bases.

Proposition 10. System W is captured by Cwl and Cwl is captured by lexicographic
inference.

Proof. By comparing the definitions of <w
Δ, <wl

Δ , and <lex
Δ we can see that <w

Δ ⊆
<wl

Δ ⊆ <lex
Δ . Observe that A |∼lex

Δ B iff for every ω′ ∈ ΩAB there is an ω ∈ ΩAB such
that ω <lex

Δ ω′. Comparing this with the definitions of Cwl and system W yields that
A |∼w

Δ B implies A |∼wl
Δ B and that A |∼wl

Δ B entails A |∼lex
Δ B. �

The following proposition shows thatCwl coincides with neither systemW nor with
lexicographic inference.

Proposition 11. Cwl strictly extends system W; and lexicographic inference strictly
extends Cwl.

Proof. Let Σ = {a, b, c, d, e, f} and Δ = {(d|�), (e|�), (f |�), (c|a), (c|b), (a|b)}.
The ordered partition of Δ is OP(Δ) = (Δ0,Δ1) with Δ0 = {(d|�), (e|�),
(f |�), (c|a)} and Δ1 = {(c|b), (a|b)}. We have abcdef <lex

Δ abcdef and therefore
abcdef ∨ abcdef |∼lex

Δ abcdef but abcdef ∨ abcdef 	|∼wl
Δ abcdef . Hence, lexico-

graphic inference strictly extends Cwl. Furthermore, we have abcdef <wl
Δ abcdef and

therefore abcdef ∨ abcdef |∼wl
Δ abcdef but abcdef ∨ abcdef 	|∼w

Δ abcdef . Hence,
Cwl strictly extends system W. �
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In summary, we obtain a full landscape of inductive inference operators approx-
imating system W and lying between system Z and c-inference on the one side and
lexicographic inference on the other side (cf. Fig. 1). With its excellent inference prop-
erties, system W has a clear model based semantics, in contrast to CcZ and CP (cZ)

which are only defined by combination of other inference operators. On the other hand,
system W is not as liberal as Cwl and lexicographic inference.

Multipreference-closure (shortMP-closure) was introduced as an inference method
for the description logic with typicality ALC + TR in [9]. In [11] MP-closure was
adapted for reasoning with conditionals based on propositional logic. This MP-closure
was shown to capture rational closure, and is captured by lexicographic inference [11];
it also captures relevant closure [6,11]. For description logics, MP-closure was shown to
capture skeptical closure [10]. While system W and MP-closure were developed inde-
pendently in different contexts and defined using distinct approaches, it is interesting
to note that it has been shown that MP-closure for propositional conditionals coincides
with systemW [13]. This demonstrates that our results are connected to inference meth-
ods for description logics, and it will be worthwhile to extend the landscape of induc-
tive inference operators given in Fig. 1 to inference methods developed for description
logics.

5 Conclusions and Future Work

In this paper we introduced the union of inductive inference operators and the closure
under a set of postulates. The union CcZ of c-inference and system Z and the minimal
closure CP (cZ) of CcZ under system P are the least inductive inference operator cap-
turing c-inference and system Z, or capturing c-inference and system Z and additionally
satisfying system P, respectively. We show that CP (cZ) is still strictly extended by sys-
tem W. Additionally, we consider inductive inference operators that extend system W
but are captured by lexicographic inference. To this end we present the inductive infer-
ence operator Cwl and show that it lies strictly between system W and lexicographic
inference. In summary, we obtain a map of inductive inference operators between
rational closure and c-inference on the one side and lexicographic inference on the
other side.

Our current work includes further elaborating and investigating this arising land-
scape of inductive inference operators and their properties. For instance, in this paper,
we assumed all considered conditional belief bases to be consistent. Recently, an
extended version of system W that only requires a weaker notion of consistency (weak
consistency) was introduced in [17], and a corresponding extension of c-representations
and c-inference was introduced in [16]. p-Entailment, system Z (and thus rational clo-
sure), and lexicographic inference also do not require the strong notion of consistency
used here. Hence, we plan to investigate the relationships among inference operators
for only weakly consistent belief bases. Additionally, we want to further investigate the
connections between inductive inference operators on propositional conditionals and
inference methods for description logics.
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(LNAI), vol. 12325, pp. 102–115. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58285-2 8

23. Komo, C., Beierle, C.: Nonmonotonic reasoning from conditional knowledge bases with
system W. Ann. Math. Artif. Intell. 90(1), 107–144 (2022)

24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

25. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55,
1–60 (1992)

26. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–
82 (1995). https://doi.org/10.1007/BF01535841

27. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 3, pp. 35–110. Oxford University Press (1994)

28. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on Theoretical
Aspects of Reasoning About Knowledge (TARK 1990), pp. 121–135. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1990)

29. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper,
W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, II, pp. 105–134.
Kluwer Academic Publishers (1988)
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Abstract. Logical proportions are a type of propositional connector that involves
four variables, expressed as a formula that encodes the conjunction of two
equivalences. These equivalences refer to indicators of similarity or dissimilar-
ity between two ordered pairs of variables, say (a, b) and (c, d). An example of
a logical proportion is the analogical proportion, which is of the form: “a is to
b as c is to d”. The concept of logical proportion is used here to develop a logic
that deals with ordered pairs of (vectors of) variables. In particular, we outline a
logic of change which controls how the differences inside ordered pairs can be
logically combined and propagated via a consequence relation between pairs of
vectors.

1 Introduction

Comparing objects or situations is an essential cognitive process, but there is no estab-
lished logic or reasoning system for comparison, except for analogical proportions.
These proportions take the form of statements like “a is to b as c is to d”, and they
draw parallels between the ordered pairs (a, b) and (c, d), where the elements in each
pair are related to one another. In the following, “pair” is always short for “ordered pair”.

Why be interested in pairs? There are at least two examples of pairs that make sense
from the point of view of reasoning: i)<conditions, conclusion> pairs interpreted as “if
· · · then” rules; ii) comparative pairs between two items. In the following discussion,
we will primarily focus on the latter, although we may also come across the former.

Insofar as the aim is to define a consequence relation between pairs, this relation,
once symmetrized, must give rise to an equivalence relation between pairs, which must
therefore be reflexive, symmetric and transitive. In a Boolean framework, this relation
corresponds to a logical connector between four variables (two per pair).

The logical proportions [9] precisely offer a setting, in propositional logic, of qua-
ternary connectors expressing relations between pairs. It is from this framework, the
essence of which we now recall, that we start our investigations. We first identify the
logical proportions that define equivalence relations between pairs; this will lead us
to rediscover the logic of conditional objects (which is at the basis of nonmonotonic
reasoning), before proposing a logic of comparative pairs.1

2 Logical Proportions

In general, the idea of proportion is associated with the comparison of pairs in which
each element of a pair is related to the other element of the pair. In the numerical
1 A preliminary version of this work has been written in French [11].
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framework, this corresponds in particular to the arithmetic proportions a−b = c−d and
the geometric proportions a

b = c
d , which equalize differences and ratios respectively.

It is a double comparison (inside, and between, pairs) as suggested by the analogical
proportion statement “a is to b as c is to d”.

In the Boolean framework, we have four comparison indicators to relate a to b.

– Two indicators express similarity, either positively as a ∧ b (which is true if a and b
are true), or negatively as ¬a ∧ ¬b (which is true if a and b are false).

– The other two are indicators of dissimilarity ¬a ∧ b (which is true if a is false and b
is true) and a ∧ ¬b (which is true if a is true and b is false).

As such the logical proportions [9,10] connect four Boolean variables with the con-
junction of two equivalences between similarity or dissimilarity indicators referring to
two pairs (a, b) and (c, d) respectively. More formally,

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equivalences
between an indicator for (a, b) and an indicator for (c, d).

The expression ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d))

provides an example of a logical proportion, where the same dissimilarity operator and
the same similarity operator are applied to both pairs. As can be seen, it expresses that
“a differs from b as c differs from d” and that “a is similar to b as c is similar to d”. It
seems to refer to the comparison of the elements within each pair, but we shall see that
this is not in the sense of an analogical proportion.

It has been established [9] that there are 120 syntactically and semantically distinct
logical proportions. Because of the way they are built, all these proportions share a
remarkable property: They are true for exactly 6 patterns of abcd values among 24 = 16
candidate patterns. For instance, the above proportion is true for 0000, 1111, 1010,
0101, 0001, and 0100. The interested reader is invited to consult [9,10] for in-depth
studies of the different types of logical proportions.

In what follows we will only be interested in logical proportions that are symmetric
for the reason given in the introduction. This property tells us that we can exchange
the pair (a, b) with the pair (c, d) in the logical proportion T , i.e., T (a, b, c, d) →
T (c, d, a, b). Such logical proportions are quite rare:

Proposition 1. [9] There are only 12 proportions satisfying symmetry: 4 homogeneous
proportions, 4 conditional proportions, and 4 hybrid proportions.

Homogeneous proportions do not mix different types of indicators in their equiva-
lences (they use only similarity indicators or only dissimilarity indicators). The expres-
sion of conditional proportions consists of the conjunction of an equivalence between
similarity indicators and an equivalence between dissimilarity indicators (the reason
for their name will appear later). Hybrid proportions are characterized by equivalences
between similarity indicators and dissimilarity indicators in their definitions.

The expressions of the 12 symmetrical proportions are given in [9]. In the follow-
ing, we will only give the expressions of those which are of interest for us, which will
exclude the hybrid proportions, none of them being transitive. Let us start with the 4
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homogeneous proportions: they include the analogical proportion and 3 other propor-
tions. The analogical proportion “a is to b as c is to d” states more formally that a
differs from b as c differs from d and that b differs from a as d differs from c”. This is
logically expressed as by the connector A [7]:

A(a, b, c, d) � ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) (1)

The names and expressions of the other 3 homogeneous proportions are given below

– Paralogy: P(a, b, c, d) �

((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)).

It expresses that “what a and b have in common (positively or negatively), c and d
also have, and vice versa”. It can be shown that P(a, b, c, d) ⇔ A(c, b, a, d).

– Reverse Analogy: R(a, b, c, d) �

((¬a ∧ b) ≡ (c ∧ ¬d)) ∧ ((a ∧ ¬b) ≡ (¬c ∧ d)).

The Reverse Analogy expresses that “b is to a as c is to d”. Still we have
R(a, b, c, d) ⇔ A(b, a, c, d).

– Inverse Paralogy: I(a, b, c, d) �

((a ∧ b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (c ∧ d))

This expression is obtained by exchanging the positive and negative similarity indi-
cators for the pair (c, d) in the definition of paralogy. I(a, b, c, d) indicates that “what
a and b have in common, c and d do not, and vice versa”. This expresses a kind of
“orthogonality” between the pairs (a, b) and (c, d). Paralogy and Inverse Paralogy
are the 2 homegeneous proportions involving only similarity indicators.

Table 1 below gives the 6 Boolean valuations (quadruplets of values) that make A, P, R,
and I true. Let us note in Table 1 that the 6 patterns which make the four proportions

Table 1. Valuations making A, P, R, I true

A P R I

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1

1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1

1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0
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true belong to an extended set of 8 patterns: the 6 patterns of the table for A together
with 1001 and 0110. It appears that this extended set of 8 patterns is characterized by
the logical formula K(a, b, c, d) � (a ≡ b) ≡ (c ≡ d), which corresponds to an
analogical-like connector introduced by S. Klein [4], in relation with anthropological
materials.

In a rather remarkable way, we can verify that:

– A and I are the only homogeneous proportions that satisfy the central and outer
permutations, namely, T (a, b, c, d) → T (a, c, b, d) and T (a, b, c, d) → T (d, b, c, a);

– P and I are the only homogeneous proportions that satisfy the permutations
T (a, b, c, d) → T (b, a, c, d) and T (a, b, c, d) → T (a, d, c, b).

The central permutation has traditionally been viewed as a distinctive feature of
analogical proportion A, likely due to its similarity to numerical proportions. Inverse
Paralogy I is extremely remarkable because it is the only one of the 120 logical propor-
tions to be stable under all permutations of two variables [8].

If one has in mind that analogical proportion describes a kind of equality between
pairs that extends the idea of arithmetic or geometric proportions, it is natural to expect a
form of transitivity property for the analogy A and more generally for other proportions
T , which is expressed as follows:

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

We can verify that the analogical proportion A, and the paralogy P are transitive in the
above sense (but neither Reverse analogy R, nor Inverse Paralogy I are transitive). The
following result indicates which logical proportions (among 120) are transitive:

Proposition 2. [9] There are 54 logical proportions which are transitive: 2 homoge-
neous A and P, 4 conditional logical proportions (out of the 16 existing), namely

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d));
((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d));
((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d));
((¬a ∧ b) ≡ (¬c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)),
and 48 so − called degenerated proportions.

In a so-called degenerated proportion, two of the four indicators of similarity or dissim-
ilarity of the logical proportion are identical. We refer the reader to [9] for more details,
as these proportions are never symmetric.

The 4 conditional logical proportions of Proposition 2, are symmetrical, they are the
ones satisfying Proposition 1.

Let us notice that a logical proportion T can be reflexive, i.e., that T (a, b, a, b) is
true for all a, all b, and that therefore T is true for the valuations (0, 0, 0, 0), (0, 1, 0, 1),
(1, 0, 1, 0), and (1, 1, 1, 1).

Proposition 3. [9] Among all 120 proportions, only 6 logical proportions are reflexive:
A, P and the 4 conditional proportions mentioned in Proposition 2.
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When considering pairs (a, b) as atomic objects, A,P and the 4 conditional proportions
are equivalence relations, being reflexive, symmetric and transitive over the universe of
Boolean pairs. We have the following result:

Proposition 4. Among all 120 proportions, A, P and the 4 conditional logical propor-
tions mentioned in Proposition 2 are the only equivalence relations between pairs.

Let us come to the 4 conditional proportions which are related to our subject, as we
will see. Let us explain the term “conditional”. It comes from the fact that these propor-
tions express equivalences between conditional statements. Indeed, it was pointed out
in [3] that a rule “if a then b” can be considered as a three-valued entity referred as a
“conditional object” and denoted b|a. This tri-valued entity is defined as follows [2]:

– b|a is true if a ∧ b is true. The elements which make true a ∧ b are the examples of
the rule “if a then b”;

– b|a is false if a ∧ ¬b is true. The elements which make true a ∧ ¬b are the counter-
examples of the rule “if a then b”;

– b|a is undefined if a is false. The rule “if a then b” is then not applicable.

Consider the first conditional proportion appearing in Proposition 2 and which is also
our first example of a logical proportion:

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d))

The above logical proportion can then be denoted b|a :: d|c by combining the notation
of conditional objects with that of the analogical proportion. Indeed, the proportion
b|a :: d|c expresses a semantic equivalence between the two rules “if a then b” and “if
c then d” by stating that:

– they have the same examples, i.e., (a ∧ b) ≡ (c ∧ d);
– they have the same counter-examples, i.e., (a ∧ ¬b) ≡ (c ∧ ¬d).
– if b|a is not applicable, i.e., a is false, then necessarily c is false and d|c is not

applicable.

The logical consequence relation between conditional objects b|a � d|c is defined as:

a ∧ b � c ∧ d and c ∧ ¬d � a ∧ ¬b (2)

which expresses that examples of the first conditional object are examples of the second
one, and the counter-examples of the second conditional object are counter-examples
of the first one, is naturally associated with the conditional proportion b|a :: d|c, since

b|a :: d|c ⇔ b|a � d|c and d|c � b|a.

The transitivity of the 4 conditional proportions of the Proposition 2 reflects the fact
that they express equivalences between conditional objects (and thus between rules),
namely respectively b|a :: d|c, a|b :: c|d, a|¬b :: c|¬d, and b|¬a :: d|¬c.

The conditional object b|a must therefore be thought of as a rule “if a then b”. A
rule may have exceptions. That is, we may have at the same time “if a then b” and a
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rule “if (a ∧ c) then ¬b”. The two conditional objects b|a and ¬b|a ∧ c do not lead to a
contradiction in the presence of the facts a and c (unlike a modeling of rules by material
implication), in the setting of a tri-valued logic where the conjunction & is defined with:

b|a & d|c � (a → b) ∧ (c → d)|(a ∨ c)

with the following semantics: val(o1&o2) = min(val(o1), val(o2)) where the three
truth values are ordered as follows: undefined > true > false.2

It can be shown that this quasi-conjunction “&” (that is its name) is associative.
It expresses that the set constituted by the two rules “if a then b” and “if c then d” is
triggerable if a or c is true, and in this case the triggered rule behaves like the material
implication. This logic constitutes the simplest semantics [1] of the system P of non-
monotonic inference of Kraus, Lehmann, and Magidor [5]. The reader may consult [1]
for more details.

As we have just seen, in this calculus the rule “if a then b” is assimilated to a pair
(a, b) (<condition>, <conclusion>) and has a tri-valued semantics. In the following
we are similarly interested in a logic of ordered pairs, based on the idea of comparison,
in relation to the semantic equivalences expressed by A and by P 3.

3 Elements of a Logic of Ordered Pairs

In this section, we try to identify some elements of a comparative logic of pairs. The
items to be compared are described by vectors of attribute values (here Boolean).

3.1 Comparing Items in an Ordered Pair

Let �a = (a1, ..., an), �b = (b1, ..., bn), etc. be items described by means of
n Boolean attributes. Logical proportions extend to vectors of Boolean variables,
by applying them component by component, i.e., T (�a,�b,�c, �d) if and only if ∀i ∈
{1, ..., n}, T (ai, bi, ci, di). Given two vectors �a, �b, their comparison leads to consider
the subsets of attributes where they are equal (to 1 or to 0), and the subsets of attributes
where they differ (by going from 0 to 1, or from 1 to 0), when we go from �a to �b. This
leads to define

Equ0(�a,�b) = {i | ai = bi = 0},

Equ1(�a,�b) = {i | ai = bi = 1},

Equ(�a,�b) = {i | ai = bi} = Equ0(�a,�b) ∪ Equ1(�a,�b),

and

Dif10(�a,�b) = {i | ai = 1, bi = 0},

Dif01(�a,�b) = {i | ai = 0, bi = 1};
Dif(�a,�b) = {i | ai 
= bi} = Dif01(�a,�b) ∪ Dif10(�a,�b).

2 The negation is defined by ¬(b|a) = (¬b|a); ¬(b|a) is undefined if and only if b|a is.
3 All properties in Sect. 2 can be checked via https://www.irit.fr/∼Gilles.Richard/analogy/logic/.

https://www.irit.fr/~Gilles.Richard/analogy/logic/
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This allows us to state the following result:

A(�a,�b,�c, �d) if and only if

{
Dif10(�a,�b) = Dif10(�c, �d)
Dif01(�a,�b) = Dif01(�c, �d)

Note that this implies Equ(�a,�b) = Equ(�c, �d). We see that what matters in an anal-
ogy is the orientation of the differences, whereas it does not matter with which value
the equality is realized. Table 2 highlights the structure of an analogical proportion, in
three subsets of attribute(s), one where the 4 items are equal, one where they are equal
within the pairs, but not in the same way, and finally the subset of attribute(s) whose
value(s) change(s), in the same direction, from �a to�b and from �c to �d.

Table 2. The 3 parts of analogical proportion and the associated valuations

items All equal Equality by pairs Change

�a 1 0 1 0 1 0
�b 1 0 1 0 0 1

�c 1 0 0 1 1 0
�d 1 0 0 1 0 1

As we can see, central permutation of �b and �c exchanges the contents of columns
“Equality by pairs” and “Change” (but does not affect “All equal” column). Neither of
these two subsets must be empty if we want the analogical proportion to be non-trivial,
i.e., �a,�b, �c, are distinct vectors (for n = 2, �a = (1, 1),�b = (1, 0), �c = (0, 1), �d = (0, 0)
realize an analogical proportion with distinct vectors). On the other hand, the subset
of attribute(s) “All equal” can be empty. If the subset “Equality by pairs” or the subset
“Change” is empty, then �a = �c and�b = �d or �a = �b and �c = �d respectively.

Given 4 distinct vectors �a,�b,�c, �d, they constitute 2 pairs (�a,�b) and (�c, �d) in the same
equivalence class for A if and only if4

1. Dif(�a,�b) = Dif(�c, �d) ;
2. ∀j ∈ Dif(�a,�b), aj = cj and bj = dj .

Condition 1 ensures that the change concerns the same attributes in both pairs, condi-
tion 2 that it applies in the same direction in both pairs. It is clear that any two pairs
(a,�b) and (�c, �d) taken in the same equivalence class together form an analogical propor-
tion A(�a,�b,�c, �d). This notion of equivalence class joins the idea of “analogical cluster”
introduced in [6] in a context of computational linguistics.

While the analogical proportion insists on the identity of the differences existing
in each pair, the paralogy expresses rather a parallel between the pairs at the level of

4 A further condition should be added, namely Dif(�a,�b) �= ∅ and ∃i ai �= ci in case the vectors
might not be distinct.
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shared properties, positively or negatively. This is reflected in the following result, dual
to that for analogy:

P (�a,�b,�c, �d) iff

{
Equ1(�a,�b) = Equ1(�c, �d)
Equ0(�a,�b) = Equ0(�c, �d)

Again, note that this implies Dif(�a,�b) = Dif(�c, �d). As a matter of fact, A (and P )
initially considered as Boolean quaternary connectors, can also be viewed as pair com-
parison operators with a condensed notation A(p, q) or P (p, q) where p and q are just
pairs of Boolean vectors.

3.2 Combining Relations Between Pairs

A basic form of reasoning between pairs could be obtained by studying the “com-
binations” of the proportions between pairs expressed by means of homogeneous
proportions, in the following way: T (�a,�b,�c, �d) ∧ T ′(�c, �d,�e, �f) → T ′′(�a,�b,�e, �f) (or
T (p, q) ∧ T ′(q, r) → T ′′(p, r) where T, T ′, T ′′ ∈ {A,P,R, I}. This kind of “combi-
nation” generalises the idea of transitivity. We already know that A and P are transitive.
Let us summarize in Table 3 all the results of the combinations that can be obtained
from {A,P,R, I} (in this table, K indicates the Klein operator that has been recalled
in Sect. 2). These combinations are commutative hence the table is symmetric. The
other results are consistent with the ideas of “parallelism” for P and “orthogonality” for
I. Indeed, P∧ I → I and I∧ I → P. Note also that R∧R → A, which is consistent with
the idea that two successive reversals lead back to the right side.

Table 3. Combination of homogeneous proportions

A P R I

A A K R K

P K P K I

R R K A K

I K I K P

3.3 Consequence Relation Between Pairs

As usual, logical connectives extend to vectors componentwise:

1. ¬�a = (¬a1, ...,¬an);
2. �a ∧�b = (a1 ∧ b1, ..., an ∧ bn);
3. �a ∨�b = (a1 ∨ b1, ..., an ∨ bn).

Taking inspiration from the case of conditional proportions, we are led to define the fol-
lowing logical consequence relation between pairs from the definition of an analogical
proportion:

(�a,�b) � (�c, �d) � ¬�a ∧�b � ¬�c ∧ �d and �c ∧ ¬�d � �a ∧ ¬�b (3)
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When we deal with pairs, the valuation (ai, bi) = (0, 1) can be understood as when we
go from �a to�b we acquire feature i. Thus the meaning of entailment (3) is the following:
features that are acquired when going from �a to �b remain acquired when going from �c
to �d. Moreover if when going from �c to �d a feature is lost, it was already the case when
going from �a to�b.5

Proposition 5. We have the following equivalence:

(�a,�b) � (�c, �d) and (�c, �d) � (�a,�b) iff A(�a,�b,�c, �d)

Proof. Let us see the precise meaning of this definition for pairs. Because we are work-
ing componentwise, it is enough to consider the consequence of this definition on
one component. We only reason on (�a,�b) � (�c, �d) as a dual reasoning will work for
(�c, �d) � (�a,�b). Two cases have to be considered:

– Case a = b (representing 8 valuations among the 16 candidates for a, b, c, d).
Because ¬a ∧ b and a ∧ ¬b are 0, the only constraint is that c ∧ ¬d = 0 which
is valid only if (c, d) 
= (1, 0), eliminating (0010) and (1110) as valid valuations,
leaving 6 valuations still valid.

– Case a 
= b (representing the 8 remaining valuations): if (a, b) = (1, 0), there is
no constraint on (c, d). If (a, b) = (0, 1), only (c, d) = (0, 1) is valid eliminating 3
valuations among the 8: (0100), (0110), (0111)

Having the conjunction (�a,�b) � (�c, �d) and (�c, �d) � (�a,�b), leads to the truth table of
A(a, b, c, d) with exactly 6 valid valuations. �

Because when (�a,�b) � (�c, �d), the 5 valuations (0, 0, 1, 0), (1, 1, 1, 0), (0, 1, 0, 0),
(0, 1, 1, 0), (0, 1, 1, 1) are forbidden for each (ai, bi, ci, di), this means that

– (ai, bi) = (0, 1) ⇒ (ci, di) = (0, 1); (a property acquired from �a to �b has to be
acquired from �c to �d);

– ai = bi ⇒ (ci, di) 
= (1, 0) (when there is no acquisition or loss from �a to �b, there
cannot be a loss from �c to �d).

Similarly, we have (�c, �d) � (�a,�b) ⇔
{
(ai, bi) = (1, 0) ⇒ (ci, di) = (1, 0)
ai = bi ⇒ (ci, di) 
= (0, 1)

which forbids the 5 valuations (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 1), (0, 0, 0, 1), (1, 1, 0, 1).
Thus we have, as expected, (�a,�b) � (�c, �d) and (�c, �d) � (�a,�b) iff A(�a,�b,�c, �d).

3.4 Logical Combinations of Ordered Pairs

One may think of defining conjunctive or disjunctive combinations of ordered pairs, but
these combinations should agree with the consequence relation (3) and make sense with
respect to the interpretation of pairs. Natural componentwise definitions seem to be:

5 The choice of definition (3), rather than (�a,�b) � (�c, �d) ⇔ �a∧¬�b � �c∧¬�d and ¬�c∧ �d � ¬�a∧�b,
is governed by the need here to privilege the acquisition of features rather than their loss.
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(�a,�b) ∧ (�c, �d) = (�a ∧ �c,�b ∧ �d); (�a,�b) ∨ (�c, �d) = (�a ∨ �c,�b ∨ �d); ¬(�a,�b) = (¬�a,¬�b).
Note that ¬(�a,�b) 
= (�b,�a) in general. An operator � on pairs could be defined

as � (�a,�b) � (�b,�a). This latter “negation” is more in agreement with the intended
semantics of pairs: a property acquired from �a to�b is lost when going from�b to �a.

Obviously, we have (�a,�b) ∧ (�a,�b) = (�a,�b) = (�a,�b) ∨ (�a,�b) as expected. But we
have

(�a,�b) ∧ (�c, �d) 
� (�a,�b) 
� (�a,�b) ∨ (�c, �d)

(where � is defined by (3)). Simply because a feature acquired from �a ∧ �c to�b ∧ �d may
not be a feature acquired from �a to �b. Indeed starting with (ai, bi, ci, di) = (1, 1, 0, 1),
we get (ai ∧ ci, bi ∧ di) = (0, 1) and (0, 1) 
� (1, 1).6

However, this should not come as a surprise. Indeed, here � preserves pairs of
the form (0, 1), while the conjunction of pairs preserves (0, 1) if it appears in both
places of the conjunction, but also when one of the pairs is equal to (1, 1) for some
feature. This leads us to introduce a new operation ∧∨ mixing conjunction and disjunc-
tion:

(�a,�b) ∧∨ (�c, �d) = (�a ∧ �c,�b ∨ �d).

As much as the logical consequence relation between pairs makes sense, the intu-
ition seems more fragile for the conjunction/disjunction of pairs. However note that
(ai ∧ ci, bi ∨ di) = (1, 0) only if (ai, bi) = (ci, di) = (1, 0). By contrast, if (ai, bi) or
(ci, di) = (0, 1), (ai ∧ ci, bi ∨ di) = (0, 1). Thus, ∧∨ cumulates acquired properties.

Dually, we can define

(�a,�b) ∨∧ (�c, �d) = (�a ∨ �c,�b ∧ �d).

There is a De Morgan duality with respect to the operation � between ∨∧ and ∧∨,
namely

�(�(�a,�b) ∨∧ �(�c, �d)) = (�a,�b) ∧∨(�c, �d).

Note that (ai∨ci, bi∧di) = (0, 1) only if (ai, bi) = (ci, di) = (0, 1). But, if (ai, bi)
or (ci, di) = (1, 0), (ai ∨ ci, bi ∧ di) = (1, 0). It can be checked that ∨∧ behaves like a
conjunction, and ∧∨ like a disjunction, in the sense that

(�a,�b) ∨∧ (�c, �d) � (�a,�b) � (�a,�b) ∧∨ (�c, �d)

Remark. The conditional events involved in the conditional logical proportions have a
tri-valued semantics. From an analogical proportion point of view, a natural way to asso-
ciate a tri-valuation to an ordered pair of Boolean vectors, is to compute their difference
to get a vector belonging to {−1, 0, 1}n: valA(�a,�b) = �a−�b = (a1 − b1, ..., an − bn) ∈
{−1, 0, 1}n. Then one can check that if A(�a,�b,�c, �d) is true, we have

(�a ∧ �c) − (�b ∧ �d) = valA(�a,�b) = valA(�c, �d) = (�a ∨ �c) − (�b ∨ �d).

6 There are 2 other cases of violation when (ai, bi) = (1, 0), (ci, di) = (0, 0) or (ci, di) =

(0, 1), we get (ai ∧ ci, bi ∧ di) = (0, 0), and (0, 0) �� (1, 0). Besides, (�a,�b) �� (�a,�b) ∨ (�c, �d)
due to 3 possible situations: i) (ai, bi) = (0, 0), (ci, di) = (1, 0) and (0, 0) �� (1, 0); ii) & iii)
(ai, bi) = (0, 1), (ci, di) = (1, 1) or (ci, di) = (1, 0), and (0, 1) �� (1, 1).
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We could also define an entailment starting from paralogy, such that (�a,�b) �P (�c, �d)
iff �a ∧�b � �c ∧ �d and ¬�c ∧ ¬�d � ¬�a ∧ ¬�b, or alternatively (�a,�b) �′

P (�c, �d) iff ¬�a ∧ ¬�b �
¬�c ∧ ¬�d and �c ∧ �d � �a ∧�b. Moreover, the tri-valuation naturally associated with a pair,
from the point of view of paralogy, would be valP (�a,�b) = (a1 + b1, ..., an + bn) ∈
{0, 1, 2}n. We leave these entailments and the associated logics for a further study.

3.5 A Creative Inference Process

Let us suppose we have a base of pairs (�ak,�bk) with k = 1, . . . , K. Each vector is a
Boolean representation of an individual belonging to a real world universe, and then,
each pair of vectors (all of the same dimension n) represents legitimate feasible/allowed
changes from �ak to�bk. Then given a current situation represented by vector �c one may
wonder what new item(s) �d could be obtained by applying some change existing in the
base of pairs. The answer could be obtained as the set of solutions, when a solution
exists, �d ∈ { �xk | A(�ak,�bk,�c, �xk) holds, for k ∈ [1,K]}. When there is no solution or
when the values found for �d are not considered satisfactory enough, one may enlarge
the initial base of pairs by computing new pairs belonging to the closure of operation
∧∨ introduced in the previous subsection. This operation has the merit of “cumulating”
the acquisition of features7. This way of reasoning parallels non monotonic reasoning
with conditional objects, where from a base of default rules “if ak then bk represented
by a set of conditional objects bk|ak one deduces a new conditional object d|c, using
entailment (2) and conjunction &, where c corresponds to all we know in the current
context, for which we then conclude d [3].

Preliminary experiments have been done showing, for instance, that in dimension
n = 50, with a small sample of size 100, to the 4950 existing pairs ( 100×99

2 ), we can add

in average 9700 new pairs, thus leading to an increased number of solutions �d (however
the feasibility of the new pairs should be checked in practice).

4 Concluding Remarks

This note has begun to explore the idea that logical proportions as quaternary connec-
tives could also be seen as defining relations between pairs, and that just as a (tri-valued)
logic of conditional objects is associated with conditional proportions, it is conceivable
to explore the possibility of a logic of pairs in association with homogeneous logical
proportions.

This allowed to highlight the idea of equivalence class of pairs, for analogical pro-
portions (which could also be developed for paralogical proportions). Additionally new
results have been introduced regarding the composition of relations between pairs, as
well as a logical consequence relation between pairs and combination operations.

It is clear that we are in the initial phase of constructing a logic of ordered pairs. A
crucial issue that arises pertains to the real-world applicability of this logic.

7 However note that (0, 0)∧∨(1, 1) = (1, 1)∧∨(0, 0) = (0, 1), which may create some unfeasi-
ble change; in such a case the generated pair(s) should not be considered in the further process.
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Since homogeneous logical proportions are creative in the sense that from 3 dis-
tinct vectors one can produce a 4th vector different from the 3 first8, one can also ask
about its potential role in a logic of creativity. Examining a dataset and identifying pairs
of distinct elements (�a,�b) provides insight into what can be considered as valid alter-
ations/transformations, when transitioning from �a to �b. Reasoning on these pairs that
represent feasible changes may lead to a logic of creativity. We might also wonder if an
ordered pair (�a,�b) could not be seen as describing the result�b of an action applied to �a.
Could this logic be of interest as a basis for logics of action? This is an open question.
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Abstract. As a semantics for conditional knowledge bases, ranking func-
tions order possible worlds by mapping them to a degree of plausibility.
c-Representations are special ranking functions that are obtained by assigning
individual integer impacts to the conditionals in a knowledge base R and by
defining the rank of each possible world as the sum of these impacts of falsi-
fied conditionals. c-Inference is the nonmonotonic inference relation taking all
c-representations of a given knowledge base R into account. In this paper, we
show how c-inference can be realized as a satisfiability modulo theories prob-
lem (SMT), which allows an implementation by an appropriate SMT solver.
We develop a transformation of the constraint satisfaction problem characteriz-
ing c-inference into a solvable-equivalent SMT problem, prove its correctness,
and illustrate it by a running example. Furthermore, we provide a corresponding
implementation using the SMT solver Z3, demonstrating the feasibility of the
approach as well as the superiority in comparison to former implementations.

Keywords: Conditional · Conditional knowledge base · c-Representation ·
c-Inference · Satisfiability modulo theories · SMT with linear arithmetic

1 Introduction

For a knowledge baseR containing qualitative conditionals of the form If A then usually
B, different semantic approaches have been proposed (e.g. [1,9,14,26,28]). A special
form of ranking functions that assign to each possible world a natural number as a
degree of plausibility are c-representations which exhibit excellent inference properties
[18,19]. Taking all c-representations of a knowledge base R into account yields the c-
inference relation [5]. C-inference fully complies with, e.g., syntax splitting and other
desirable properties [6,20].

Based on a characterization of c-inference as the unsolvability of a constraint sat-
isfaction problem (CSP) [5], so far two implementations of c-inference have been
developed. The first implementation [3,25] employs the finite domain constraint solver
CLP(fd) of SICStus Prolog [12]. The second implementation [4] transforms the CSP
into a Boolean Satisfiability problem and employs a SAT solver. However, both imple-
mentations require the specification of a maximal value for the impacts determining the
c-representations that are taken into account.
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In this paper, we present a characterization of c-inference as a satisfiability modulo
theories (SMT) problem that does not require a given maximal impact value, and we
provide a corresponding implementation that significantly outperforms the two previous
implementations of c-inference. In summary, the main contributions of this paper are:

– characterization of c-inference by an SMT problem with linear arithmetic;
– the first implementation of c-inference not requiring a given maximal impact value;
– empirical evaluation showing the superiority of our SMT approach over all previous
implementations of c-inference.

The rest of this paper is organized as follows. After briefly recalling the required
basics of conditional logic, OCFs, c-representations, and c-inference in Sect. 2, we pro-
ceed with the characterization of c-inference as an SMT problem in Sect. 3 and show
a variant thereof in Sect. 4. In Sect. 5, we present our implementation and exemplary
evaluation results. We draw some conclusions in Sect. 6 and point out further work.

2 Background: Conditionals and c-Inference

Conditional Logic and OCFs. Let L be a propositional language over a finite signature
Σ. We writeAB forA∧B andA for¬A for formulasA,B ∈ L. We denote the set of all
interpretations over L, also called worlds, as Ω. For ω ∈ Ω, ω |= A means that A ∈ L
holds in ω. We define the set (L | L) = {(B|A) | A,B ∈ L} of conditionals over
L. The intuition of (B|A) is that if A holds, then usually B holds, too. As semantics
for conditionals, we use functions κ : Ω → N such that κ(ω) = 0 for at least one
ω ∈ Ω, called ordinal conditional functions (OCF), introduced (in a more general form)
in [28]. They express degrees of plausibility of possible worlds where a lower degree
denotes “less surprising”. Each κ uniquely extends to a function mapping sentences to
N ∪ {∞} given by κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ
accepts a conditional (B|A), written κ |= (B|A), if κ(AB) < κ(AB). This can also be
understood as a nonmonotonic inference relation whereA κ-entails B, writtenA |∼ κ

B,
if κ accepts (B|A); formally, this is given by A |∼ κ

B iff A ≡ ⊥ or κ(AB) < κ(AB).
A finite set R ⊆ (L|L) of conditionals is called a knowledge base. An OCF κ accepts
R, written κ |= R, if κ accepts all conditionals in R, see e.g. [14].

c-Representations and c-Inference. Among the models of R, c-representations are spe-
cial ranking models obtained by assigning individual integer impacts to the conditionals
in R. For an in-depth introduction to c-representations and their use of the principle of
conditional preservation we refer to [18,19].

Definition 1 (c-representation [18,19]). A c-representation of a knowledge base R =
{(B1|A1), . . . , (Bn|An)} is a ranking function κ constructed from integer impacts ηi ∈
N0 assigned to each conditional (Bi|Ai) such that κ accepts R and is given by:

κ(ω) =
∑

1�i�n, ω|=AiBi

ηi (1)

c-Inference, introduced first in [2], takes all c-representations of R into account.
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Definition 2 (c-inference, |∼ c
R [2]). Let R be a knowledge base and let A, B be

formulas. B is a (skeptical) c-inference fromA in the context ofR, denoted by A |∼ c
RB,

iff A |∼ κ
B holds for all c-representations κ for R.

The set of c-representations of R can be modelled as solutions of a constraint satis-
faction problem CR(R) (see [2,18].

Definition 3 (CR(R)). Let R = {(B1|A1), . . . , (Bn|An)}. The constraint satisfac-
tion problem CR(R) on the constraint variables {η1, . . . , ηn} ranging over N0 is given
by the constraints, for all i ∈ {1, . . . , n}:

ηi � 0 (2)

ηi > min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj

︸ ︷︷ ︸
Vmini

− min
ω|=AiBi

∑

j �=i

ω|=AjBj

ηj

︸ ︷︷ ︸
Fmini

(3)

A solution ofCR(R) is an n-tuple (η1, . . . , ηn) ∈ N
n
0 , its set of solutions is denoted

by Sol(CR(R)). For #»η ∈ Sol(CR(R)) and κ as in Eq. 1, κ is the OCF induced by #»η ,
denoted by κ#»η , and the set of all induced OCFs is denoted by SolOCF (CR(R)) =
{κ#»η | #»η ∈ Sol(CR(R))}.
Example 1 (Rbird [8]). LetΣ = {b, p, f, w} representing birds, penguins, flying things
and winged things, and let Rbird = {r1, r2, r3, r4} be the knowledge base with:

r1 = (f |b),
r2 = (f |p),
r3 = (b|p),
r4 = (w|b).

For instance, r1 expresses “birds usually fly”. Verification and falsification of these
conditionals are given in Table 1, along with the three vectors #»η 1,

#»η 2,
#»η 3 which are

some solutions of CR(Rbird) and their induced ranking functions κ#»η 1 , κ#»η 2 , κ#»η 3 .

Using Table 1, we can check that #»η i |= Rbird holds for i = 1, 2, 3. More generally,
CR(R) is a sound and complete characterization of the set of all c-representations ofR.
The key idea for proving this is to employ the definition of κ as given in Eq. (1) and its
extension to formulas and to transform the acceptance condition κ(AiBi) < κ(AiBi)
for the conditional (Bi|Ai) stepwise into the constraint (3) [2,18]. C-inference can be
characterized by a CSP, too.

Theorem 1 (CR(R, A,B) [2]). Let R = {(B1|A1), . . . , (Bn|An)} and A,B formu-
las. Then

A |∼c
RB iff CR(R, A,B) is not solvable
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Table 1. Verification (v) and falsification (f) of the conditionals in Rbird from Example 1 and
their corresponding impacts. The three vectors #»η 1, #»η 2 and #»η 3 are solutions of CR(Rbird), and
their induced ranking models of Rbird are κ#»η 1(ω), κ#»η 2(ω), κ#»η 3(ω).

ω
r1:

(f |b)
r2:

(f |p)
r3:

(b|p)
r4:

(w|b)
impact

on ω

κ#»η 1

(ω)

κ#»η 2

(ω)

κ#»η 3

(ω)

b p f w v f v v η2 2 4 5

b p f w v f v f η2 + η4 3 7 12

b p f w f v v v η1 1 3 4

b p f w f v v f η1 + η4 2 6 11

b p f w v − − v 0 0 0 0

b p f w v − − f η4 1 3 7

b p f w f − − v η1 1 3 4

b p f w f − − f η1 + η4 2 6 11

b p f w − f f − η2 + η3 4 8 11

b p f w − f f − η2 + η3 4 8 11

b p f w − v f − η3 2 4 6

b p f w − v f − η3 2 4 6

b p f w − − − − 0 0 0 0

b p f w − − − − 0 0 0 0

b p f w − − − − 0 0 0 0

b p f w − − − − 0 0 0 0

impacts: η1 η2 η3 η4

#»η 1 1 2 2 1
#»η 2 3 4 4 3
#»η 3 4 5 6 7

where

CR(R, A,B) = CR(R) ∪ {¬CRR(B|A)} (4)

with ¬CRR(B|A) being the constraint:

min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi

︸ ︷︷ ︸
Vminq

� min
ω|=AB

∑

1�i�n

ω|=AiBi

ηi

︸ ︷︷ ︸
Fminq

(5)

3 Characterization of C-Inference as an SMT Problem

We will now develop our characterization of c-inference as an SMT problem. After
recalling some basics of SMT with linear integer arithmetic, we present an encoding
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of min-expressions that will be crucial for the later steps (Sect. 3.1). In Sect. 3.2, the
CSP CR(R) is transformed stepwise into an SMT with linear integer arithmetic, and a
corresponding transformation of CR(R, A,B) is given in Sect. 3.3.

3.1 SMT with Linear Integer Arithmetic

Satisfiability modulo theories (SMT) problems generalize boolean satisfiability (SAT)
problems by allowing complex arithmetic terms and data structures as atomic expres-
sions in formulas of (typically) first-order logic with equality. In order to compute
c-inference, we will determine the satisifiability of linear arithmetic terms involving
integers within a propositional formula, which is covered by the following definition
derived from [13]:

Definition 4 (SMT problemwith linear integer arithmetic, SMTLIA). An SMTLIA

problem is a formula of quantifier-free first-order logic with any conjunctive and/or
disjunctive connection of atoms of the form

(a1x1 + · · · + anxn �� b) (6)

where a1, . . . , an and b are integers, x1, . . . , xn are integer variables and �� ∈ {<,�
,=,�, >, �=}. A solution to such a problem is an assignment for the integer variables
such that the formula is satisfied. �FLIA�α denotes the truth-functional evaluation of
an SMTLIA formula FLIA under the variable assignment α : {x1, . . . , xn} → N0.

Expressions denoting the minimum of a set of arithmetic terms occur frequently in
CR(R, A,B). These can be translated into SMTLIA formulas.

Example 2. For integers m,a, b, c, the equation m = min{a, b, c} is equivalent to

(m � a) ∧ (m � b) ∧ (m � c) ∧ ¬(
(m < a) ∧ (m < b) ∧ (m < c)

)
. (7)

On the one hand, the SMTLIA formula (7) ensures that m is not bigger than any of a, b
and c; on the other hand, m is not smaller than at least one of them. Therefore, m is
either equal to a or b or c, depending on which of the three is the smallest of them.

Generalizing Example 2 to a set of arithmetic expressions with integer variables
yields the following proposition which will be useful in the transformation of the CSP
CR(R, A,B) into an SMTLIA.

Proposition 1 (encoding of min-expressions). Let μ be an integer variable, T =
{τ1, . . . , τn} be a set of arithmetic terms over integer variables, φ be an assignment for
μ and the integer variables in T . Then,

φ(μ) = min(φ(T )) iff �
( n∧

i=1

(μ � τi)
) ∧ ¬( n∧

i=1

(μ < τi)
)
�φ = true. (8)
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Proof. Direction ⇐: If �
(∧n

i=1(μ � τi)
) ∧ ¬(∧n

i=1(μ < τi)
)
�φ = true, then both

�
∧n

i=1(μ � τi)�φ and �¬∧n
i=1(μ < τi)�φ evaluate to true. �

∧n
i=1(μ � τi)�φ = true

ensures that φ(μ) is smaller than or equal to all φ(τi), so that φ(μ) also has to be
smaller than or equal to min(φ(T )). �¬∧n

i=1(μ < τi)�φ = true ensures that φ(μ) is
not smaller than any of the τi, so φ(μ) is not smaller than min(φ(T )). Consequently,
φ(μ) has to be equal to min(φ(T )).

Direction ⇒: If φ(μ) = min(φ(T )), then both �
∧n

i=1(μ � τi)�φ and �¬∧n
i=1(μ <

τi)�φ evaluate to true, so their conjunction will also evaluate to true. ��

3.2 Transformation of CR(R)

Wewill now stepwisely transfer the CSPCR(R) into an SMTLIA. We start by defining
formulas representing CR(R). Let R = {(B1|A1), . . . , (Bn|An)}.
Step 1: From Eq. (2) and Definition 4 we immediately derive the formula

C0 =
n∧

i=1

(ηi � 0) (9)

Step 2: We define, for each impact factor ηi in CR(R) with i ∈ {1, . . . , n}, an auxil-
iary variable μi

v representing Vmini
and another variable μi

f , which represents Fmini
.

Eq. (3) is transformed into the following formula:

CR =
n∧

i=1

(ηi > μi
v − μi

f ) (10)

Step 3: The next step consists in transforming the minimum expressions Vmini
and

Fmini
into first-order formulas with inequalities and equalities as atoms, thereby setting

the constraints which determine μi
v and μi

f to be equal to these minima. For Vmini
and

Fmini
, the so-called powerset representation has been developed [8], which employs

the following sets:

Π(Vmini
) = { {j | j �= i, ω |= AjBj} | ω |= AiBi} = {V i

1 , . . . , V i
vi

} (11)

Π(Fmini
) = { {j | j �= i, ω |= AjBj} | ω |= AiBi} = {F i

1, . . . , F
i
fi

} (12)

Using Π(Vmini
) and Π(Fmini

), Eq. (3) can be written as:

ηi > min{
∑

j∈S

ηj |S ∈ Π(Vmini
)} − min{

∑

j∈S

ηj |S ∈ Π(Fmini
)} (13)

For k ∈ {1, . . . , vi} let Si
v,k =

∑
j∈V i

k
ηj , and for k ∈ {1, . . . , fi} let Si

f,k =∑
j∈F i

k
ηj . Then Eq. (13) and thus also Eq. (3) can be written as:

ηi > min{Si
v,1, . . . , S

i
v,vi

} − min{Si
f,1, . . . , S

i
f,fi

} (14)



216 M. von Berg et al.

Example 3. The PSR terms for the four constraints in Example 1 are as follows.

〈Π(Vmin1), Π(Fmin1)〉 = 〈{{2}, {2, 4}, ∅, {4}}, {∅, {4}}〉 (15)

〈Π(Vmin2), Π(Fmin2)〉 = 〈{{1}, {3}, {1, 4}}, {∅, {4}, {3}}〉 (16)

〈Π(Vmin3), Π(Fmin3)〉 = 〈{{2}, {2, 4}, {1}, {1, 4}}, {∅, {2}}〉 (17)

〈Π(Vmin4), Π(Fmin4)〉 = 〈{{2}, {1}, ∅}, {{2}, {1}, ∅}〉 (18)

Their corresponding inequalities as in Eq. (14) are:

η1 >min{η2, η2 + η4, 0, η4} − min{0, η4} (19)

η2 >min{η1, η3, η1 + η4} − min{0, η4, η3} (20)

η3 >min{η2, η2 + η4, η1, η1 + η4} − min{0, η2} (21)

η4 >min{η2, η1, 0} − min{η2, η1, 0} (22)

Making use of the equivalent notations in Eq. (3) and (14) and of Proposition 1, we
specify constraints for μi

v and μi
f according to Eq. (10) by the following formulas:

MRv
=

n∧

i=1

(( vi∧

j=1

(μi
v � Si

v,j)
) ∧ ¬( vi∧

j=1

(μi
v < Si

v,j)
))

(23)

MRf
=

n∧

i=1

(( fi∧

j=1

(μi
f � Si

f,j)
) ∧ ¬( fi∧

j=1

(μi
f < Si

f,j)
))

(24)

Example 4. Consider the minimum expressionmin{η1, η3, η1+η4} in the second con-
straint from Example 3, given by Eq. (19). The formula encoding this minimum is:

(
(μ2

v � η1) ∧ (μ2
v � η3) ∧ (μ2

v � η1 + η4)
)

∧¬(
(μ2

v < η1) ∧ (μ2
v < η3) ∧ (μ2

v < η1 + η4)
)

Step 4:We now construct the formulas Ct
R, M t

Rv
and M t

Rf
that are obtained from CR,

MRv
and MRf

by transposing every arithmetic term in these formulas in such a way
that all variables stand on the left hand side of the respective term.

Example 5. CR as given in (10) is transformed into

Ct
R =

n∧

i=1

(ηi − μi
v + μi

f > 0).

Definition 5 (SMT(R)). For R = {(B1|A1), . . . , (Bn|An)}, SMT(R) is obtained
from formulas (9), (10), (23), and (24) according to the transformation Steps 1 to 4:

C0 ∧ Ct
R ∧ M t

Rv
∧ M t

Rf
(25)
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Example 6. SMT(Rbird) is given by the conjunction of the following four formulas:

C0 = (η1 � 0) ∧ (η2 � 0) ∧ (η3 � 0) ∧ (η4 � 0)

Ct
Rbird

= (η1 − μ1
v + μ1

f > 0) ∧ (η2 − μ2
v + μ2

f > 0)

∧ (η3 − μ3
v + μ3

f > 0) ∧ (η4 − μ4
v + μ4

f > 0)

M t
Rbird,v

=
(
(μ1

v − η2 � 0) ∧ (μ1
v − η2 − η4 � 0) ∧ (μ1

v � 0) ∧ (μ1
v − η4 � 0)

)

∧ ¬(
(μ1

v − η2 < 0) ∧ (μ1
v − η2 − η4 < 0) ∧ (μ1

v < 0) ∧ (μ1
v − η4 < 0)

)

∧ (
(μ2

v − η1 � 0) ∧ (μ2
v − η3 � 0) ∧ (μ2

v − η1 − η4 � 0)
)

∧ ¬(
(μ2

v − η1 < 0) ∧ (μ2
v − η3 < 0) ∧ (μ2

v − η1 − η4 < 0)
)

∧ (
(μ3

v − η2 � 0) ∧ (μ3
v − η2 − η4 � 0) ∧ (μ3

v � η1) ∧ (μ3
v − η1 − η4 � 0)

)

∧ ¬(
(μ3

v − η2 < 0) ∧ (μ3
v − η2 − η4 < 0) ∧ (μ3

v < η1) ∧ (μ3
v − η1 − η4 < 0)

)

∧ (
(μ4

v − η2 � 0) ∧ (μ4
v − η1 � 0) ∧ (μ4

v � 0)
)

∧ ¬(
(μ4

v − η2 < 0) ∧ (μ4
v − η1 < 0) ∧ (μ4

v < 0)
)

M t
Rbird,f

=
(
(μ1

f � 0) ∧ (μ1
f − η4 � 0)

) ∧ ¬(
(μ1

f < 0) ∧ (μ1
f − η4 < 0)

)

∧ (
(μ2

f � 0) ∧ (μ2
f − η4 � 0) ∧ (μ2

f − η3 � 0)
)

∧ ¬(
(μ2

f < 0) ∧ (μ2
f − η4 < 0) ∧ (μ2

f − η3 < 0)
)

∧ (
(μ3

f � 0) ∧ (μ3
f − η2 � 0)

) ∧ ¬(
(μ3

f < 0) ∧ (μ3
f − η2 < 0)

)

∧ (
(μ4

f − η2 � 0) ∧ (μ4
f − η1 � 0) ∧ (μ4

f � 0)
)

∧ ¬(
(μ4

f − η2 < 0) ∧ (μ4
f − η1 < 0) ∧ (μ4

f < 0)
)

Proposition 2. If R is a knowledge base, then SMT(R) is an SMTLIA problem.

Proposition 2 holds because the constraints for every conditional of R have been
transformed by Steps 1 to 4 into propositional formulas with atoms of linear arithmetic
terms as defined in Definition 4. In Definition 6 these formulas are conjunctively com-
bined into a single formula meeting the requirements of Definition 4.

Theorem 2. SMT(R) is solvable iff CR(R) is solvable.

Proof. Recall that SMT(R) is solvable if there is an assignment ρ : {η1, . . . , ηn, μ1
v,

. . . , μn
v , μ1

f , . . . , μn
f } → N0 such that ρ is a solution of SMT(R), and that CR(R) is

solvable if there is an assignment σ : {η1, . . . , ηn} → N0 such that σ is a solution of
CR(R).

Direction ⇒: The restriction of a solution ρ of SMT(R) to {η1, . . . , ηn} yields an
assignment σ for CR(R). Proposition 1 holds for the μi

v and the μi
f in SMT(R) for all

i ∈ {1, . . . , n} as specified in Eq. (10), Eq. (23) and Eq. (24). As the conjunction of
these formulas and Eq. (9) implies the set of constraints in Eq. (2) and Eq. (3), σ is a
solution of CR(R).

Direction ⇐: Let σ be a solution of CR(R). We can construct an assignment ρ
for SMT(R) by setting ρ(ηi) = σ(ηi), ρ(μi

v) = σ(Vmini
), ρ(μi

f ) = σ(Fmini
) for

all i ∈ {1, . . . , n}. C0 trivially holds under ρ because Eq. (2) is directly equivalent
to Eq. (9). Proposition 1 is applicable to Eq. (3), Eq. (10), MRv

and MRf
: MRv

is valid because min(ρ(Si
v,1, . . . , S

i
v,vi

)) = σ(Vmini
), and MRf

is valid because
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min(ρ(Si
f,1, . . . , S

i
f,fi

)) = σ(Fmini
), for all i ∈ {1, . . . , n}. Therefore, CR also holds

because ρ(μi
v) = min(ρ(Si

v,1, . . . , S
i
v,vi

)) and ρ(μi
f ) = min(ρ(Si

f,1, . . . , S
i
f,fi

)) for
all i ∈ {1, . . . , n}. Thus, as the transformation in Step 4 does not change the validity of
the respective formulas, ρ is a solution of SMT(R). ��

3.3 Transformation of CR(R, A,B)

In order to arrive at an SMTLIA for CR(R, A,B), we now transform the query con-
straint ¬CRR(B|A) in Eq. (5). The three transformation steps needed correspond
exactly to the Steps 2 to 4 given for the transformation of CR(R).

Step 2q: We introduce the variables μq
v for Vminq

and μq
f for Fminq

in Eq. (5) and set

Cq = (μq
v � μq

f ). (26)

Step 3q: For representing the minimum expressions in Eq. (5), the supplementary for-
mulas for the auxiliary variables in Eq. (26) are introduced analogously to the formulas
forR in Eq. (14)–(24). If vq and fq are the size of the powerset representations of Vminq

and Fminq
, respectively (corresponding to vi and fi in Step 3), we thus get:

Mqv =
( vq∧

j=1

(μq
v � Sq

v,j)
) ∧ ¬( vq∧

j=1

(μq
v < Sq

v,j)
)

(27)

Mqf =
( fq∧

j=1

(μq
f � Sq

f,j)
) ∧ ¬( fq∧

j=1

(μq
f < Sq

f,j)
)

(28)

Step 4q: We derive the formulas Ct
q , M t

qv and M t
qv from Cq , Mqv and Mqf by trans-

position of every atom in these formulas so that all variables stand on the left hand side
of the respective term.

Definition 6 (SMT(R, A,B)). Let R = {(B1|A1), . . . , (Bn|An)} be a conditional
knowledge base and A,B propositional formulas. SMT(R, A,B) is the formula

SMT(R) ∧ Ct
q ∧ M t

qv ∧ M t
qf

(29)

with Ct
q,M

t
qv and M t

qf
obtained from (26)–(28) according to Steps 2q to 4q.

Example 7. Consider the query conditional c = (b|pw), stating that “a penguin with
wings is usually a bird”. Constructing ¬CRRbird

(b|pw) as in (5) yields the constraint:

min{η2, η1} � min{η2 + η3, η3}

The PSR term for this constraint is:

〈Π(Vminc
), Π(Fminc

)〉 = 〈{{2}, {1}}, {{2, 3}, {3}}〉
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SMT(Rbird, pw, b) is then given by the conjunction of SMT(Rbird) from Example 6
and the following three formulas:

Ct
c = (μc

v − μc
f � 0)

M t
cv =

(
(μc

v − η2 � 0) ∧ (μc
v − η1 � 0)

) ∧ ¬(
(μc

v − η2 < 0) ∧ (μc
v − η1 < 0)

)

M t
qf

=
(
(μc

f − η2 − η3 � 0) ∧ (μc
f − η3 � 0)

)

∧ ¬(
(μc

f − η2 − η3 < 0) ∧ (μc
f − η3 < 0)

)

Proposition 3. If R is a knowledge base and A,B ∈ L, then SMT(R, A,B) is a
SMTLIA problem.

Analogously to Proposition 2, this observation also applies to SMT(R, A,B).

Theorem 3. SMT(R, A,B) is solvable iff CR(R, A,B) is solvable.

Proving Theorem 3 is directly analogous to the proof of Theorem 2. From Theorems 1
and 3, we obtain that skeptical c-inference is fully realized by SMT(R, A,B).

Theorem 4. A |∼c
RB iff SMT(R, A,B) is not solvable.

In Example 7, SMT(Rbird, pw, b) is not solvable. Thus, from Rbird we can derive
that “a penguin with wings is usually a bird” by c-inference, i.e., pw |∼c

Rbird
b.

4 Maximal Impact Value

Based on CR(R, A,B), a constraint solving approach for realizing c-inference is used
in the reasoning platform InfOCF-Web [25]. It is implemented using the finite domain
constraint solver CLP(fd) of SICStus Prolog [11] and therefore relies on the restriction
of CR(R, A,B) to finite domains. The respective inference relation is as follows.

Definition 7 (c-inference under maximal impact value, |∼c,u
R [5]). Let R be a

knowledge base, u ∈ N, and A,B ∈ L. B is a (skeptical) c-inference from A in the
context of R under maximal impact value u, denoted A |∼c,u

R B, iff A |∼ κ
B holds for all

c-representations κ ∈ SolOCF (CR(R)) such that ηi � u for all impacts determining κ.

Proposition 4 (sufficient [5]). For every knowledge base R there exists u ∈ N (called
sufficient for R) such that, for all formulas A,B, we have:

A |∼c
RB iff A |∼c,u

R B (30)

Proving Proposition 4 uses the fact that there are only finitely many ranking models of
R that are pairwise not inferentially equivalent. The following SMTLIA models |∼c,u

R .

Definition 8 (SMTu(R, A,B)). Let R = {(B1|A1), . . . , (Bn|An)}, {η1, . . . , ηn} be
the corresponding constraint variables and u ∈ N. SMTu(R, A,B) is the formula

SMT(R, A,B) ∧
n∧

i=1

(ηi − u � 0) (31)
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Proposition 4 ensures that there is some u such that |∼c,u
R fully realizes c-inference,

while the following theorem states that c-inference under a maximal impact value is
fully realized by the respective SMTLIA problem; the proof of this theorem is directly
analogous to the proof of Theorem 4.

Theorem 5. A |∼c,u
R B iff SMTu(R, A,B) is not solvable.

While it is still an open problem to generally determine a sufficient u for a given R,
there are criteria which, if R fulfills them, imply that n = |R| is sufficient, but there
are also cases where the exponential value 2n−1 is required [22,23]. Besides evaluating
SMT(R, A,B), we will therefore also evaluate SMTu(R, A,B) for u = n and for
u = 2n−1 in the next section.

5 Implementation and First Evaluation

We implemented our SMT approach as a Python program interfacing with the C
libraries of the SMT solver Z3. For solving SMTLIA formulas, Z3 uses the CDCL(T)
algorithm which combines SAT solving capabilities with a dual simplex procedure for
solving linear arithmetic [10]. The variant of the simplex algorithm used by CDCL(T)
allows us to handle our constraint satisfaction problem without a restriction to a finite
domain problem.

Table 2. First evaluation comparing CLP(fd), SAT encoding and SMT representation with n =
|R| = u and e = 2n−1. All evaluations were performed on a machine with an Intel Core i9-
11950H Octa-Core CPU (up to 5GHz) and 128 GB DDR4-3200 working memory. The values
shown are the mean of the time required to answer a c-inference query. All time measurements
are given in seconds; timeout was set at 300 s.

n |Σ| CSPu SATu SMTu SMT e SMT

4 4 0.773 0.441 0.007 0.007 0.009

6 6 3.005 0.512 0.009 0.010 0.011

8 8 79.290 0.851 0.020 0.022 0.023

10 10 timeout 1.147 0.048 0.050 0.044

12 12 timeout 1.750 0.071 0.071 0.073

14 14 timeout 162.436 2.153 1.818 2.005

16 16 timeout timeout 6.227 5.447 7.696

18 18 timeout timeout 10.719 12.618 12.636

20 20 timeout timeout 106.975 145.477 94.183

22 22 timeout timeout 205.701 209.209 225.539

All implementations were evaluated with the same knowledge bases of increasing
sizes and corresponding queries. Knowledge bases R and queries were constructed by a
randomized scheme involving a signature Σ with signature size |Σ| of as many propo-
sitional variables as conditionals in R, yielding complex conditionals and queries. Note
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that the number of worlds which have to be considered is exponential with respect
to the signature size, leading to, for instance, 222 = 4.194.304 relevant worlds if
|Σ| = 22.

In Table 2, comparative evaluations of answering c-inference queries are summa-
rized. In the CSPu column, the results of the CLP(fd) implementation obtained with the
infOCF-Lib library [24] are presented. SATu denotes the results using the implementa-
tion of c-inference as an instance of a Boolean satisfiability problem [4]. The results of
the last three columns were obtained with the implementation of the SMT approach pre-
sented in this paper. For SMTu, we used the number of conditionals n in R as maximal
impact value u; the same value u was also used for the CLP(fd) and SAT evaluations.
In SMT e, the exponential maximal impact e = 2n−1 was used, while the evaluations
SMT in the last column did not use any upper bound for the impacts determining the
c-representations taken into account.

Throughout all test cases, we observe accelerated computations when employing
our SMTLIA representation of c-inference in comparison with the former implementa-
tions. Furthermore, the signature size and number of conditionals that can be handled in
reasonable time has increased considerably with all three SMTLIA variants. Note also
that the unbounded implementation SMT is as efficient as both SMTu and SMT e,
implying that from an efficiency point of view, there is no benefit in choosing a maxi-
mal impact value in our SMTLIA approach.

6 Conclusions and Further Work

We presented a characterization of c-inference as a satisfiability modulo theories prob-
lem and showed that it exactly models nonmonotonic inference with respect to all
c-representations of a conditional knowledge base. Using this SMT characterization,
we developed the first implementation of c-inference not requiring a given maximal
impact value. Empirical evaluation demonstrates that our SMT-based implementation
performs considerably better than the previous implementations of c-inference. Our
future work includes incorporating the compilation optimizations developed in [7,8],
evaluating alternative SMT encodings, and extending the approach to belief change
operations, e.g., to iterated revision with c-representations [21] or to descriptor revision
[17] for which a realization as a CSP is already available [15,16,27].

Acknowledgments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), grant BE 1700/10-1 awarded to Christoph Beierle as part of the
priority program “Intentional Forgetting in Organizations” (SPP 1921).
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Abstract. This paper considers whether the sequential application of a
combination of a merging operator and a ranking construction operator
predicts human propositional reasoning. Our formally sound approach is
benchmarked on data from a psychological experiment, demonstrating
that the approach is cognitively more adequate than classical logic.

1 Introduction

Classical propositional logic has been for long a normative framework to study
human reasoning. However, numerous experiments over the past century have
demonstrated that it is not sufficient to describe human reasoning, i.e., it is not
a descriptive theory for how humans reason. Humans do deviate systematically
from the logically correct solution as the Wason Selection Task [27] demon-
strated in more than 300 experiments. An average reasoner can have difficulty
finding counterexamples and drawing conclusions from conditional premises, and
abstraction vs. content can play a strong role. This gives rise to research on alter-
native formalisms and logics for capturing human behaviour [21]. Especially in
knowledge representation and reasoning a variety of works have been addressing
this problem [1,3,6,7].

In this paper, we investigate and understand human propositional reasoning
as a sequential task. The agent’s epistemic state is assumed to be represented by
a ranking function. We suppose the agent constructs a ranking function in each
task step according to the newly given information. The posterior representa-
tion of the epistemic state is obtained by merging the prior ranking function and
the ranking function constructed from the newly given information. We denote
this setup as the sequential merging approach. The approach abstracts from the
concrete merging operation and abstracts from the concrete way of constructing
a ranking function according to new information. We investigate which combi-
nation of operations has the best predictive power according to experimental
human data. Our results show that two types of combinations have the best
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predictive accuracy for over 88% of the exhibited individual reasoning patterns.
A biconditional interpretation of conditional statements yields the best results
and achieves higher prediction accuracy than classical logic.

Our main contributions are1:

– An approach on how humans conceive information, the sequential merging
approach.

– Approaches for constructing ranking functions from formulas.
– An empirical evaluation and discussion of the predictive power of ranking

functions and merge operators for human propositional reasoning.

In the following section, we start with considering the background.

2 Background on Logic and Ranking Functions

Let Σ = {a, b, c, . . .} be a propositional signature (non-empty finite set of propo-
sitional variables) and L a propositional language over Σ. The set of proposi-
tional interpretations is denoted by Ω. Sometimes we write ϕ instead of ¬ϕ. With
|= we denote the models relation, i.e., ω |= ϕ indicates that ω is a model of ϕ.
We let Mod(ϕ) be the set of models of ϕ. For a total preorder ≤ ⊆ Ω × Ω (total
and transitive relation), we say x < y if x ≤ y and y �≤ x. A linear order is a total
preorder that is antisymmetric, i.e., a ≤ b and b ≤ a implies a = b. Pre-ranking
functions are functions κ : Ω → N0. An ordinal conditional function (OCF), or
short ranking function, is a pre-ranking function κ : Ω → N0 such that κ(ω) = 0
for at least one ω ∈ Ω [26]. We let Bel(κ) = {ϕ ∈ L | κ−1(0) ⊆ Mod(ϕ)}. With
K we denote the set of all ranking functions (over Ω). Often, we let ≤ denote
the usual ordering on the integers and with < we denote the strict part of ≤. We
deal with (finite) lists of elements in this paper. For a set X and x1, . . . , xn ∈ X
we denote with [x1, . . . , xn] the list containing x1, . . . , xn. The following notions
are used to describe sets of lists: L[X] is the set of all lists over X, L[X,n] is
the set of all lists of length n. When ≤ is an order, L[X,≤] is the set of lists
over X ordered by ≤ and L[X,n,≤] the set of all lists of length n ordered by
≤. For a set X and a strict linear order � ⊆ X × X the function index(x,�)
yields for each element x ∈ X its position in the order � starting with 0 for
the �-minimal element and |X| for the �-maximal element; for a linear order
≤ ⊆ X × X on X the function sort(E,≤) yields for each list E ∈ L[X] the list
obtained from E, by sorting the elements in E according to ≤.

3 Merging Ranking Functions

In this section we provide the necessary background from the theory of merging.
We rely on the work of Meyer [15], which we present here in a terminology
appropriate to our application. Merging operators (for ranking functions) map
a list of ranking functions to a ranking function.
1 This paper is based on the bachelor’s thesis by Eda Ismail-Tsaous.
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Definition 3.1 (Merging Operator [15]). A function Δ : L[K] → K is called
a merging operator if Δ(E) is a ranking function for each E ∈ L[K].

We consider merging operators Δx that are defined by a schema with two
steps. Given a list of ranking functions E ∈ L[K] we first provide a function
for the construction of a pre-ranking function κx(E) by merging E. Second,
the resulting ranking function Δx(E) is obtained by normalizing κx(E). The
following definition summarizes the schema.

Definition 3.2. Let κx be a function that maps each list of ranking functions
to a pre-ranking function. We define Δx(E) : L[K] → K by

Δx(E)(ω) = κx(E)(ω) − min{κx(E)(ω′) | ω′ ∈ Ω}
Next, we consider specific operators κx. In accordance with Definition 3.2 we
automatically obtain a merging operator from these operators.
Basic Merging Approaches. Let E = [κ1, . . . , κn] ∈ L[K] be an arbitrary
list of ranking functions. We consider the following operators that map E to a
pre-ranking function:

κmin(E)(ω) = 2min{κi(ω) | 1 ≤ i ≤ n} +

{
0 if κi(ω) = κj(ω) for all 1≤ i, j ≤ n

1 otherwise

κmax(E)(ω) = max{κi(ω) | 1 ≤ i ≤ n}
κΣ(E)(ω) = Σn

i=1κi(ω)

The pre-ranking function κmin(E) assigns to each ω the double of the minimal
rank of ω according to the ranking functions in E; if not all ranking functions
in E agree on the rank of ω, a penalty of 1 is added. κmax(E)(ω) is the highest
rank of ω among any ranking function in E. For each ω the pre-ranking function
κΣ(E) yields the sum of all ranks assigned to ω, by the ranking functions in E.

Refined Merging Approaches. Meyer [15] proposed to refine the basic oper-
ators as follows in order to assure the commensurability of the results: compute
[κ1(ω), . . . , κn(ω)] and then let the rank of ω be the position of the sorted list
in a strict linear order � over a set of lists. Here, we will instantiate � by
lexicographic orders and by model fitting orders defined as follows:

Lexicographic Order �L
lex. Let � ⊆ X × X be a total preorder on X. The

lexicographic order �lex ⊆ L[X] × L[X] is defined by:

[x1, ..., xn] �lex [y1, ..., ym] if n < m or (n = m and x1 � y1) or
n=m and x1 = y1 and [x2, ..., xn] �lex [y2, ..., ym]

We let �L
lex be the restriction to L, i.e., �L

lex = �lex ∩ (L × L).

Model Fitting Order ≤Σ,d. Let E = [κ1, . . . , κn] ∈ L[K] be a list of ranking
functions. We denote with L[E] = L[{0, . . . ,max{κi(ω) | ω ∈ Ω, 1 ≤ i ≤ n}, n]
the set of lists of numbers between 0 and the maximum rank assigned to any
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Fig. 1. Comparison of the operators. The first three columns show all the possible
combinations (ignoring permutations) of the assignment of the ranks 0, 1, 2 to a world
ω by three ranking functions κ1, κ2, κ3. The remaining columns show the resulting
ranks computed by the approaches presented in Sect. 3.

interpretation in E that have length n. The model fitting order ≤Σ,d ⊆ L[E] ×
L[E] over L[E] which is based on E and d : L[E] → N0,

d([x1, . . . , xn]) =
n∑

i=1

n∑

j=i+1

|xi − xj |,

is given as follows for each E1 = [x1, . . . , xn] and E2 = [y1, . . . , yn]:

E1 ≤Σ,d E2 if
n∑

i=1

xi <

n∑

i=1

yi or

(
n∑

i=1

xi =
n∑

i=1

yi and d(E1) ≤ d(E2)

)

This is, E1 ≤Σ,d E2 if the sum of values in E1 is strictly smaller than the sum
of values in E2, or the sum of values is the same for E1 and E2, yet the sum of
distances between the ranks is smaller in E1 than in E2.

Next, we employ the linear order �L
lex (lexicographic order) and ≤Σ,d (model

fitting order) for defining merging approaches. For a list of ranking functions
E = [κ1, . . . , κn] ∈ L[K], we construct pre-ranking functions as follows

κRmin(E)(ω) = index(sort([κ1(ω), . . . , κn(ω)], ≤), �L[E,≤]
lex )

κGmax(E)(ω) = index(sort([κ1(ω), . . . , κn(ω)], ≥), �L[E,≥]
lex )

κRΣ(E)(ω) = index([κ1(ω), . . . , κn(ω)], �Σ,d) ,

where L[E,�] = L[{0, . . . ,max{κi(ω) | ω ∈ Ω, 1 ≤ i ≤ n}}, n,�] is the set of
lists of numbers between 0 and the highest rank assigned in E that have length
n and are ordered by �. The computation of κRΣ(E)(ω) makes use of the linear
order �Σ,d: the rank of ω is the rank of [κ1(ω), . . . , κn(ω)] in the list-ranking
induced by �Σ,d. For κRmin(E)(ω), we sort the elements of [κ1(ω), . . . , κn(ω)]
non-decreasingly and let the rank of ω be the rank of the sorted list in the
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list-ranking induced by �L[E,≤]
lex . For κGmax(E)(ω) we proceed analogously, but

[κ1(ω), . . . , κn(ω)] is sorted non-increasingly.
By using Definition 3.2 we obtain six merging operators Δmin, Δmax, ΔΣ ,

ΔRmin, ΔGmax and ΔRΣ . Figure 1 demonstrates the merging of three ranking
functions. Furthermore, Fig. 1 is a witness for the distinctness of these operators.

Fig. 2. Classical rules of logical inference, where a, b stand for propositions.

4 Cognitive Background

In propositional logic there are various rules of inference that allow to draw
a conclusion from given premises. In this paper, we focus on how conditionals
and disjunctions are interpreted by humans. Figure 2 shows some of the most
important inference rules with their argument forms consisting of a compound
major premise, a simple minor premise and a conclusion. The rules (AC), (DA),
(AD) and (DC) are often denied by logicians, and referred to as “logical fallacies”.
Experiments show that almost all humans apply (MP) without hesitation [17,19].
For all the other forms listed in Fig. 2 there is evidence indicating that indi-
viduals exhibit recurring patterns in the application of these rules that are not
arbitrary [14,20]. A robust finding is that some reasoners have difficulty to apply
(MT) [17,22,27] and often conclude that “nothing” follows from the premises [5].
Some subjects do not perform (MTP) inferences [18], others overlook possibili-
ties and use (AD) or (DC). In general, tasks are more prone to error when they
involve sentences with a negation [12]. Furthermore, experiments confirm the
effects of content and context on human reasoning, e.g., whether a disjunction is
interpreted as inclusive or exclusive, or that the content of an additional premise
can even suppress a valid (MP) inference (known as the suppression task [4]).

In this paper we consider the following three assumptions from cognitive
psychology that explain specific phenomena of human reasoning:

Biconditional Interpretation of Conditionals. The conditional rules (AC)
and (DA) are often endorsed or produced by subjects [2,16,19]. An explanation
for this phenomenon is that conditionals are sometimes interpreted as bicondi-
tionals [25].
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Principle of Truth. The basic assumption underlying the mental model the-
ory [8,10] is that humans build mental models as representations. A central
component of the theory is the principle of truth [9], stating that in order to
reduce the load on the limited working memory, mental models are incomplete
and only include what is possible and known (“true”) about the imagined object.
This approach can lead to systematic fallacies, especially when it is crucial for
a correct inference to represent what is false in a possibility [11,14]. By deliber-
ation the incomplete mental models can be fleshed out to fully explicit models,
which provide a complete representation of the object.

Fig. 3. Illustration of the mechanics of a sequential merging operator when starting
with a ranking function κ0 and processing information [ψ1, . . . , ψn].

Principle of Preferred Interpretations. Generally, a conditional “If a, then
b” refers to three possibilities: First, the possibility “a∧b”; second, the possibility
“a∧b”; and third, the possibility “a∧b”. There is evidence [2,13] that only the first
possibility is naturally apparent to all individuals, while the second and third
ones require increasing mental effort. We refer to this phenomenon as principle
of preferred interpretations (of conditionals).

5 Sequential Merging Approach

Our model of how agents integrate new information, which we refer to as sequen-
tial merging approach, is based on the following assumptions: first, a subject’s
epistemic state can be represented by a ranking function κ, second, informa-
tion and agents’ beliefs are adequately modelled by the underlying logic L and,
third, agents process new information sequentially. So, when an agent approaches
a (mental) task, e.g., wants to make conclusions according to several pieces of
information, she processes them one by one. In the sequential merging approach,
the premises in a task are therefore modelled as a list [ψ1, . . . , ψn]. We assume
that the integration of new information can be modelled by the merging of rank-
ing functions with an underlying fixed merging operator Δ. In our approach,
conceiving a piece of information, which is represented by a formula ψi, yields a
ranking function κ[ψi]. Formally, we use several functions C that map formulas
to ranking functions.

Definition 5.1. A ranking construction function is a function C : L → K.
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Consequently, the sequential merging approach is parametrized by a merging
operator Δ and a ranking construction function C. The step of grasping the
information ψi consists of constructing κ[ψi] = C(ψi) and obtaining a new rank-
ing function κi = Δ(κi−1, κ[ψi]). In summary, processing [ψ1, . . . , ψn] is the
sequential application of the procedure sketched above (see also Fig. 3).

Definition 5.2. Let Δ be a merging operator and let C be a ranking construction
operator. The sequential merging operator A[Δ,C] : K × L[L] → K is defined
by:

A[Δ,C](κ0, [ψ1] ) = Δ(κ0, C(ψ1))
A[Δ,C](κ0, [ψ1, . . . , ψn] ) = A[Δ,C](Δ(κ0, C(ψ1)), [ψ2, . . . , ψn] )

6 Constructing Ranking Functions

The ranking construction functions are based on the psychological principles
introduced in Sect. 4. Note that we assume that reasoners clearly distinguish
between things they consider possible and impossible. In our approach, an agent
considers a world impossible if it is assigned the rank impl or a higher rank by
the ranking function κ that represents her epistemic state, i.e., κ(ω) ≥ impl
holds.

Fully Explicit Models. The first principle describes the ideal that reasoning is
performed always logically correct by constructing fully explicit models (FEM).
We formalize this principle in the following way with a function CFEM : L → K:

CFEM(ψ)(ω) =

{
0 if ω |= ψ

impl otherwise.

For CFEM(ψ), the models of ψ are considered maximally plausible and the non-
models are considered impossible.

Principle of Truth. The second function tries to capture the principle of truth
and the use of mental models (MM) by applying a plausibility ranking to the
models of formulas. In our setting with two variables the ranks of CMM(ψ) and
of CFEM(ψ) differ only for biconditionals and for formulas with three models:
conditionals, disjunctions and negated conjunctions. A model is considered less
plausible if the corresponding possibility is not explicitly mentioned in a propo-
sition and thus is not readily accessible to an individual.

CMM(ψ)(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

impl if ω �|= ψ

2 if ω |= ψ and ω �|= α ∧ β and (ψ=α → β or ψ=α ↔ β)
1 if ω |= ψ and ω �|= α ∧ β and ψ = α ∨ β

1 if ω |= ψ and ω �|= ¬α ∧ ¬β and ψ = ¬(α ∧ β)
0 otherwise
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Biconditional Interpretation. The third approach is based on the finding
that people sometimes interpret conditionals as biconditionals [25]. We propose
two ranking construction functions CFEM

BiC and CMM
BiC that implement this idea

(BiC). The first version uses fully explicit models (FEM) for all other formulas
and the second function is based on mental models (MM):

CFEM
BiC (ψ) =

{
CFEM(φ ↔ χ) if ψ = φ → χ

CFEM(ψ) otherwise.

CMM
BiC (ψ) =

{
CFEM(φ ↔ χ) if ψ = φ → χ or ψ = φ ↔ χ

CMM(ψ) otherwise.

Principle of Preferred Interpretations. The fourth construction approach
is motivated by the principle of preferred interpretations (PoPI) for conditionals
[2]: for a conditional “If a, then b” the most preferred world is a ∧ b, then a ∧ b,
and then a ∧ b. The world a ∧ b is considered impossible. We propose a ranking
construction function CPoPI that is inspired by this principle:

CPoPI(ψ)(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

impl if ω �|= ψ

2 if ω |= ψ and ω |= ¬α ∧ β and ψ = α → β

1 if ω |= ψ and ω |= ¬α ∧ ¬β

0 otherwise

,

Since CPoPI applies only to conditionals and biconditionals, it is necessary to
resort to one of the other principles to construct ranking functions for the other
formulas. We propose two variants: The first one uses fully explicit models for
other formulas and the second one uses mental models instead:

CFEM
PoPI (ψ) =

{
fPoPI(ψ) if ψ = φ → χ or ψ = φ ↔ χ

fFEM(ψ) otherwise.

CMM
PoPI(ψ) =

{
fPoPI(ψ) if ψ = φ → χ or ψ = φ ↔ χ

fMM(ψ) otherwise.

In the next section, we consider the experimental data used for our study.

7 Experimental Dataset and Modelling

In the following, we outline the research design, the obtained data, the modelling
of the experimental task and our research question.

The Experiment. The experiment was designed as a survey with option tasks:
Subjects were presented two premises and four response options in natural lan-
guage and were asked afterwards to select the answer that follows from these
premises (together). Three of the offered responses were statements and the
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fourth one the option “none”, denoting that none of the three statements follows
from the premises. Figure 4 shows all task types. In summary, each recorded task
R has the following schematics2, where ψ1 and ψ2 denote the premises, ϕ1, ϕ2, ϕ3

the offered answers, and r the selection of the participant:

R = 〈[ψ1, ψ2], {ϕ1, ϕ2, ϕ3}, r〉 with r ∈ {ϕ1, ϕ2, ϕ3, none} .

The experiment was conducted online via Amazon Mechanical Turk with par-
ticipants who were not trained in logic. The cleaned data set D consists of 1097
records from 35 subjects and 16 unique tasks that each were presented twice3.

Fig. 4. Premises and response choice combinations in the data set. Each task is a
combination of a minor and a major premise and four response options. The response
choice is always the one that does not contain the minor premise. There are four tasks
for each minor premise, including either a statement with a conditional, a biconditional,
an inclusive disjunction or an exclusive disjunction, yielding 16 tasks in total.

Modelling by Sequential Merging. We model the processing of a task as
sequential merging process. To express our assumption that participants have no
bias or prior information, we choose the uniform ranking function, i.e., κuni(ω) =
0 for all ω ∈ Ω, as the participants’ initial epistemic state: κinit = κuni. Then,
the final ranking function κfin = κ2 = A[Δ,C](κinit, [ψ1, ψ2]) is computed. We
say that our pipeline predicts the participant’s choice, if r is believed in κfin:

Definition 7.1. Let Δ be a merging operator and let C be a ranking construction
operator. For a task record R = 〈[ψ1, ψ2], {ϕ1, ϕ2, ϕ3}, r〉, we say that [Δ,C]
predicts R correctly if

{
r ∈ Bel(κfin) if r ∈ {ϕ1, ϕ2, ϕ3}
ϕ1, ϕ2, ϕ3 /∈ Bel(κfin) if r = none

,

whereby κfin = A[Δ,C](κinit, [ψ1, ψ2]).

2 In tasks with an exclusive disjunction the major premise consists of two statements,
yielding a total of three formulas [ψ1, ψ2, ψ3] as premises. This particularity was
considered in the evaluation, but for reasons of space we will neglect it here.

3 The dataset is available here: https://e.feu.de/ecsqaru2023data.

https://e.feu.de/ecsqaru2023data
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8 Evaluation and Results

We implemented all possible sequential merging operators that combine
the merging operators from Sect. 3 and all ranking construction opera-
tors from Sect. 6 in a computer program written in Java (https://e.feu.de/
ecsqaru2023code). In the following, we present the main results of our evalu-
ation.

Operator Behavior and Predictions. The six merging operators Δmin,
ΔRmin, Δmax, ΔGmax, ΔΣ and ΔRΣ and the six ranking construction opera-
tors CFEM, CMM, CFEM

BiC , CMM
BiC , CFEM

PoPI and CMM
PoPI yield 36 different sequential

merging operators. We evaluated these operators by calculating their predictions
for each task. Our first observation is that there are some sequential merging
operators that make exactly the same 16 response predictions for the given tasks.
More formally, we say A[Δ,C] is equivalent to A[Δ′, C ′] with respect to D, writ-
ten A[Δ,C] �D A[Δ′, C ′], if for each record 〈[ψ1, ψ2], {ϕ1, ϕ2, ϕ3}, r〉 ∈ D and all
ϕ ∈ {ϕ1, ϕ2, ϕ3} the following holds:

ϕ ∈ Bel(A[Δ,C](κinit, [ψ1, ψ2])) if and only if ϕ ∈ Bel(A[Δ′, C ′](κinit, [ψ1, ψ2]))

Fig. 5. Response predictions of the operator groups. Each column stands for a task with
a minor premise (first row in the header) and the major premise, which is a compound
assertion using the symbol shown in the second row of the header: ∨ : (a ∨ b)∨ (a ∧ b);
∨̇ : (a∨ b), (a ∧ b); ↔ : a ↔ b; → : a → b. For instance, the fourth column in the sector
“b” stands for the task: “b; a → b”.

We obtained six �D-equivalent groups of sequential merging operators:

Group 1 (FEM). This group contains all six operators that are based on the
ranking construction operator CFEM. These are close to classical logic.

Group 2 (PoPI). Consists of all operators based on CFEM
PoPI , CMM

PoPI, CFEM
BiC or CMM

BiC ,
except for A[Δmin, CMM

PoPI] and the two operators in the groups 4 and 6.
Group 3 (MM). Consists of all operators based on the ranking construction

operator CMM with the exception of A[Δmin, CMM].
Group 4 (PF_Min). This group contains only the operator A[Δmin, C

FEM
PoPI ].

Group 5 (MM_Min). Consists of the operators A[Δmin, CMM] and
A[Δmin, CMM

PoPI].

https://e.feu.de/ecsqaru2023code
https://e.feu.de/ecsqaru2023code
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Group 6 (BM_Min). This group contains only the operator A[Δmin, C
MM
BiC ].

All groups and their predictions for all tasks are shown in Fig. 5. All operator
groups make the same predictions for tasks with inclusive disjunctions. The
Groups 1–3 differ only in their predictions for conditional assertions: Group 1
predicts the logically consistent answers. Group 2 makes predictions according to
a biconditional interpretation including (AC) and (DA) fallacies, whereas Group
3 predicts only (AC), but not (DA). The minimum operators of the Groups 4–
6 also predict the (AC) fallacy, but make different predictions for tasks with
negated minor premises and biconditionals or exclusive disjunctions.

Aggregated Predictive Performance. We consider the aggregated predictive
performance for our sequential merging operators, i.e., how often the answers
given by all the participants where predicted correctly by the operator groups.
Figure 6 summarizes the aggregated prediction performance of operator groups
for all recorded tasks and differentiated by four task types. The operator Group 2,
which is based on the principles PoPI or BiC, shows the best general predictive
performance overall (80.12%) and in all task groups. The second-best group is
the operator Group 3 with an overall accuracy of 78.30%. Group 1, which is
close to classical logic, shows the third-best aggregated predictive performance.

The Groups 1–3 only differ in their accuracy of predicting conditional tasks.
Group 2 performs best in this type of task predicting 195 out of 275 answers cor-
rectly, along with Group 6. Group 3 predicts 175 answers correctly and achieves
63.64% accuracy. The accuracy of the remaining groups is below 60%. While
almost all groups, except for the Group 4 and Group 5, perform well in the
biconditional tasks, they all achieve mediocre accuracy in the inclusive disjunc-
tion tasks, where all groups predict the same answers. The reason is that indi-
viduals show a great variety of answers in all types of tasks, but especially with
disjunctions since they are more difficult to solve [22]. In the given data set, the
subjects draw all kinds of conclusions: Out of 64 possible answers for all tasks,
only 14 were never given by any participant (see Fig. 7).

Fig. 6. General predictive performance. “n”: number of cases, “CP”: correct predictions.
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Fig. 7. Frequencies of the participants’ answer choices. Logically consistent answers are
in bold. Underlines indicate that the most frequently chosen answer does not coincide
with the classical logical response.

Individual Predictive Performance. On the individual level, there is at
least one operator group for each participant that most accurately predicts their
responses; Fig. 8 contains the details. Together, Group 1 (12 cases) and Group 2
(22 cases), are the best predictors for the responses of most of the participants
(88.6%). There are only four participants, for whom one of the other groups
makes the best predictions.

About two thirds of the participants make (AC) and (DA) inferences, i.e.,
show a biconditional interpretation of conditionals. (AC) inferences are predicted

Fig. 8. Predictive performances on the individual level. Operator groups listed in one
row yield the same accuracy results for all task types. Results with 50% accuracy or
less are marked in grey. Abbreviations: A: all tasks; C: conditional; BC: biconditional;
ID: inclusive disjunction; ED: exclusive disjunction.
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by all operator groups except Group 1. Group 2 and Group 6 are the only
groups that predict (DA) inferences. Since these two fallacies co-occur in almost
all cases, Group 2 matches the individual patterns better than Group 3, which
only predicts (AC). While most participants apply (MT) inferences, there are
17 individuals that answer that nothing follows; which is predicted by Group 4
and Group 5.

The highest individual prediction accuracy is 96.88% in both operator
Group 2 and operator Group 3, and 96.67% in operator Group 1. For five par-
ticipants there is no group that achieves an accuracy above 70%. For 26 of 35
participants an accuracy higher than 80% is achieved by at least one operator
group.

9 Conclusions and Future Work

Our results show that human reasoners show a broad variety of reasoning pat-
terns, and thus, considering operators on an individual level and not on an
“aggregated reasoner” exhibits their predictive power. On the individual level,
our approach allows for better predictions of human reasoning than pure classi-
cal logic. In particular, the sequential merging approach shows good prediction
performance for (bi)conditional tasks. We see the potential for improvements in
predicting human reasoning of inclusive disjunctions.

The sequential merging approach contributes a formally sound approach to
represent the different ways in which humans reason [23]. Our approach founds
mental model theory, which assumes that humans generate at first a model on
which they formulate a putative conclusion and then search for counter-examples
in a proceeding model variation process [24]. This demonstrates how cognitive
logics [21] allows us to investigate cognitive processes formally. For future work
on the sequential merging approach, we will investigate refinements to improve
the predictive power; and investigate the connection to belief revision.
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Abstract. Gathering the preferences of a user in order to make correct
recommendations becomes a difficult task in case of uncertain answers.
Using possibility theory as a means of modelling and detecting this uncer-
tainty, we propose methods based on information fusion to make infer-
ences despite observed inconsistencies due to user errors. While the prin-
ciples of our approach are general, we illustrate its potential benefits on
synthetic experiments using weighted averages as preference models.

Keywords: Preferences · Inconsistency · Information Fusion ·
Possibility

1 Introduction

This paper focuses on handling uncertainty and inconsistency in the observed
preferences of a single user. While multi-criteria decision analysis often focuses
on specific users, other fields such as statistics, machine learning, and economics
tend to look at populations. Traditionally, uncertainty and inconsistency in
single-user preferences are addressed through set-based approaches, relying on
techniques like min-max regret bounds [2,3,6]; or through average error calcula-
tions [5,13,14,23,24]. However, set-based approaches rely on the strong assump-
tions that both the user and the model choice are always correct, while proba-
bilistic and averaging methods lack strong guarantees, justifying new approaches.

This paper explores a third approach, using possibility theory [10] to pro-
cess uncertain preferential information. This approach remains consistent with
a set-based approach while providing a non-binary quantification of inconsis-
tency. It also provides various tools for dealing with inconsistency, extending set
and logic operations such as conjunction and disjunction [9], unlike expectation-
based operators from probabilities. While using possibilities for preferences is
not new [21], our contribution enriches such proposals by incorporating infor-
mation fusion methods to address inconsistency, and by validating the proposed
methodologies through synthetic experiments. Section 2 describes our general
possibilistic setting. Section 3 provides strategies to deal with user inconsistency.
Section 4 provides some experiments demonstrating the potential interest of our
approach.
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All along the paper, we will illustrate our approach through weighted aver-
ages, as they are widely used and simple to understand. However, other numerical
models could be applied, such as the ordered weighted averages (OWA) [25].

2 Possibilistic Modelling of Preference Models

2.1 Preferences and Preference Models

In this paper, we consider multi-criteria alternatives. The space of alternatives is
a Cartesian product X =

∏M
i=1 Xi where Xi is the domain of values that the ith

criterion can take. Such a domain can be discrete or continuous. We also assume
that user preferences can be described by some model ω ∈ Ω, the set of models
Ω being chosen by the analyst. Each model ω then induces a partial pre-order1

over the set of alternatives. We refer to [20] for a list of possible models.
In this work, we focus on numerical models, where ω : X → R is a real-

valued function2 that maps any alternative x ∈ X to a corresponding value
ω(x), denoted as the score of the alternative x given the preference model ω. We
note by ωi the ith parameter of the said function. For easiness, we also denote
by x �ω y the relation ω(x) ≥ ω(y). However, many of the ideas in this paper
also apply to the case where ω is not a numerical model.

Example 1. A user wants to buy cheese, and we suppose that she evaluates a
cheese through two criteria: flavour and price. If her preferences are described by
a weighted sum with parameters summing to one (0.6, 0.4), we obtain the scores
presented in Table 1 for a set of cheese. Mozzarella is her preferred alternative.

Table 1. Set of alternatives X and their scores, with ω having parameters (0.6, 0.4)

Name Flavour 1/Price Score

American cheddar 0 10 4

Emmental 4 6 4.8

Edam 5 5 5

Mozzarella 7 3 5.4

Truffle Brie 8 1 5.2

1 A transitive, antisymmetric relation on X × X.
2 For simplicity, we will use the same notation for the function and its parameters ω.
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2.2 Possibility Theory Reminder

A possibility distribution π over a space Ω is a mapping π : Ω → [0, 1]
where π(ω) measures how much ω is plausible. A distribution π is consistent
if maxω∈Ω π(ω) = 1, i.e., if at least one element is fully plausible. From π, one
can define two measures for any subset A ⊆ Ω, called possibility and necessity
measures:

Π(A) = sup
x∈A

π(x), N(A) = 1 − sup
x�∈A

π(x). (1)

Π and N are dual, as N(A) = 1 − Π(Ac). Therefore, working with one of them
for every event A is sufficient. Possibility theory formally extends sets, as the
information given by a subset E is modelled by the distribution π(x) = 1 if
x ∈ E, zero otherwise. When π is consistent, the bounds [N(A),Π(A)] induce
the probabilistic set P = {P |N(A) ≤ P (A) ≤ Π(A), ∀A ⊆ Ω}.

Another important notion in possibility theory is the alpha-cut. Given a
possibility distribution π, its alpha-cut πα is the subset:

πα = {ω ∈ Ω : π(ω) ≥ α}, (2)

which includes all the elements of Ω having a possibility degree higher than α.
The last two significant notions, given a real-valued function f : Ω → R, are

the lower and the upper expectations Eπ(f),Eπ(f) of f induced by a possibility
distribution π. They are respectively the lower and the upper expected values
of f over the set P. When π takes a finite number of distinct values 1 = α1 >
. . . > αn > αn+1 = 0 (being our case here), they can be computed as:

Eπ(f) =
∫ 1

0

min
ω∈πα

f(ω)dα =
n∑

i=1

(αi − αi+1) min
ω∈παi

f(ω), (3)

Eπ(f) =
∫ 1

0

max
ω∈πα

f(ω)dα =
n∑

i=1

(αi − αi+1) max
ω∈παi

f(ω). (4)

In this paper, we also consider unnormalized possibility distributions π such
that maxω∈Ω π(ω) < 1 to quantify the inconsistency:

Inc(π) = 1 − max
ω∈Ω

π(ω). (5)

2.3 Possibilistic Preferential Information

We consider elementary pieces of information of the form (E,α), where E ⊆ Ω
is a subset of possible models and α is understood as the certainty degree that
the assertion E is true. It is interpreted as N(E) ≥ α, to which we can associate
the least informative possibility distribution π(E,α) satisfying N(E) ≥ α:

π(E,α)(ω) =

{
1 if ω ∈ E,

1 − α otherwise.
(6)
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In particular, α = 1 corresponds to a set-valued information ω ∈ E, while α = 0
amounts to a void statement corresponding to ignorance. Equation (6) can be
interpreted as an item of information within possibilistic logic [11], and most
reasoning tools used in this paper could be interpreted through the lens of such
a logic3. E is typically a subset of possible models resulting from a user answer.

Example 2 (Piece of information). Given Example 1 and Table 1, assuming that
the user declares Truffle Brie �ω Emmental with a certainty degree α1 = 0.8,
we obtain the following decision frontier:

ω(Truffle Brie) ≥ ω(Emmental) ⇒ 8ω1 + ω2 ≥ 4ω1 + 6ω2 ⇒ 4ω1 ≥ 5ω2, (7)

corresponding to the possibilistic information π(E1,α1) pictured in Fig. 1, with
E1 = {ω|ω(Truffle Brie) ≥ ω(Emmental)} and α1 = 0.8.

Fig. 1. Preferential information π(E1,α1)(ω) of Example 2

In this paper, we will consider that a set Ei is the result of some pairwise
comparison between a pair of alternatives (x, y) ∈ X

2, where the user can either
state x � y or y � x. We denote by Ex�y and Ey�x the subsets of Ω resulting
from each possible answer.

In practice, we collect multiple pieces of information (Ei, αi), i = 1, . . . , n dur-
ing the elicitation process, each of them corresponding to a distribution π(Ei,αi).
Note that those Ei will define a finite partition {Ω1, . . . ΩP } of Ω where Ωi

is of the kind ∩φi∈{Ei,Ec
i }φi. The distributions π(Ei,αi) can then be combined

or fused together into a single distribution by extending classical set operators
such as conjunction (logical AND) and disjunction (logical OR). The use of
such operators also allows for an easier interpretation of the performed opera-
tions [8,9,19]. In particular, if we have no reasons to think that the pieces of
information π(Ei,αi) are unreliable4, the most sensible way to combine them is
through conjunction, which in possibility theory is typically done through the
use of a T-norm operator [17]. As our goal here is not to discuss the pros and
cons of the different T-norms, we will focus on the product T-norm, resulting in
the distribution π∩ such that π∩(ω) =

∏n
i=1 π(Ei,αi)(ω).

3 This should not be confused with possibilistic logic used to represent preferences [4],
where α represents intensities of preferences.

4 We will deal with this situation in Sect. 3.
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Example 3 (Fusion of information and expectation bounds). Now we con-
sider two pieces of information: π(E1,α1) from Example 2, and a new one
denoted π(E2,α2) obtained from the affirmation of the user that Mozzarella �ω

Truffle Brie with a certainty degree α2 = 0.6. We obtain a new decision frontier:
ω1 ≤ 2ω2. π(E2,α2) is shown on Fig. 2, and the resulting fused distribution is
shown on Fig. 3.

As an illustration of Equation (3), we can consider the function f(ω) =
ω(Mozzarella) = 7ω1 + 3ω2. The lower expectation is:

E(f(ω)) = (1 − 0.4) × (5/9 × 7 + 4/9 × 3) + (0.4 − 0.2) × (5/9 × 7 + 4/9 × 3) + 0.2 × 3 ≈ 4.77.

Fig. 2. Preferential information
π(E2,α2)(ω) of Example 3

Fig. 3. Fusion π∩ of two preferential
information of Example 3

2.4 Errors in Set-Wise and Possibilistic Approaches

As recalled in the introduction, set-wise approaches are especially useful when
needing strong guarantees, as long as the information provided by the user is
correct. Yet, such hypotheses are often unrealistic, in which case using sets can
lead to unwarranted situations, hence the need to account for possible mistakes
through refined uncertainty modelling. As we have shown [1], using possibility
theory is an interesting solution to this issue, as shows the next example.

Example 4 (A single error to ruin everything). We take Example 2 with two
small but important modifications: we do not consider a possibilistic information,
and thus only E1 is considered (equivalent to α1 = 1); and the user is unfocused
or unsure and makes the erroneous claim that Truffle Brie � Emmental. We
determine that E1 = ETruffle Brie�Emmental is now {ω ∈ Ω : 4ω1 ≤ 5ω2}.

As shown on Fig. 4, the true preference model of the user, denoted by ω∗, is
definitely left out of E1. Whatever the next answers are, we cannot get to ω∗.
Now, if the user provides a certainty degree α1 = 0.7, we obtain the distribution
shown on Fig. 5, and ω∗ is still reachable with further questions. With additional
correct answers, the possibility of E1 will decrease to a point that E1 has a lower
possibility than Ec

1, suggesting that ω∗ is more likely to belong to Ec
1. In such a

case, we detect some inconsistency, as maxω∈Ω π(ω) < 1.
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Fig. 4. Wrong answer leading to a
wrong model

Fig. 5. Possibilistic preferential infor-
mation

Using a possibilistic approach allows us to enrich set-based approaches while
remaining consistent with it, as it is retrieved when giving α = 1 as certainty
degrees. This is in contrast with probabilistic approaches, where increasing the
plausibility of some models necessarily means decreasing the plausibility of oth-
ers.

3 Handling Inconsistencies

Another interest of the possibilistic approach is that when some answers are
inconsistent between them, possibility distributions quantify inconsistency grad-
ually, rather than having an all-or-nothing information as set-based approaches
do. We assume in this section (and in the rest of the paper) that errors origi-
nate only from the user, and consider possible strategies to deal with such errors
when considering possibility theory and associated information fusion tools. Con-
cretely, we look at the case where π∩ is subnormalized, i.e., Inc(π∩) > 0.

3.1 Inferring Despite Inconsistencies

Having a positive inconsistency Inc(π∩) > 0 implies that E1
π∩ = ∅. This means

that if one wants to make inferences over f(ω) in Equations (3)-(4) without
correcting inconsistencies, we need to define minima and maxima over the empty
set. While an infinity of strategies could be considered, the two following ones
are classical solutions:

– First way: consider that minω∈∅ f(ω) = maxω∈∅ f(ω) = 0. This simply
amounts to ignoring the inconsistent information. This is somewhat similar
to inference procedures in possibilistic logic in presence of inconsistency [11].

– Second way: consider that minω∈∅ f(ω) = minω∈Ω f(ω) and maxω∈∅ f(ω) =
maxω∈Ω f(ω). This amounts to transforming conflict into ignorance, and to
have either a very conservative or optimistic view about it. It can also be
viewed as normalizing the possibility distributions by taking π′ = π+Inc(π∩).

This way of resolving inconsistencies does not change previously given answers
and information (they are not modified), nor the way we combine them (conjunc-
tively). This approach somehow avoids searching for the sources of inconsistency,
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and either ignores it or turn it into ignorance (a different concept). Therefore,
such strategies appear legitimate only when inconsistency is likely to be limited,
and when there is no need to analyse the details of the conflicting situation.

Another way to infer despite inconsistencies would consist in normalizing
the distribution π∩, to come back to a consistent situation. There are a lot of
ways to perform such a normalization [18], yet they may be harder to interpret
than the two solutions we consider here. For this reason, we will not explore
them here, although the second way of handling inconsistency can be seen as a
specific normalization, as already mentioned.

3.2 Resolving Inconsistencies Through Information Fusion

A second strategy to resolve inconsistencies is to combine differently the pieces
of information, so that the inconsistency disappears. Such an approach does not
modify the preferential information we receive, but is a convenient tool to test
different hypotheses about them. For instance, a conjunctive rule resulting in
π∩ makes the assumption that all pieces of information are reliable. Clearly, if
Inc(π∩) > 0, this assumption is not true, and others should be considered.

Compared to the previous approaches of Subsect. 3.1, modifying the way
we combine information pieces is usually computationally more intensive, but
has the advantage of potentially providing interesting insights to the user or
the analyst, for instance by giving us a lower bound of the number of errors
committed, or giving a subset of answers to examine with the user.
�-out-of-n In preference modelling, it is reasonable to assume that most of the
user answers are correct, but not all (otherwise they would be consistent). Nat-
urally, we want a fusion operator whose result can resolve inconsistencies while
remaining consistent with most (but not necessarily all) of the initial informa-
tion. Since it is also difficult to know which answer coming from the user is
wrong, it is natural to consider operators that treat sources anonymously (i.e.,
whose result is invariant under indices permutation). If S = {π1, . . . , πk} are
the considered items of information, then the distribution resulting from a �/k
assumption is:

π�/k(ω) =
⋃

L⊆S,|L|=�

(
⋂

πi∈L
πi(Ω)

)

, (8)

where ∪ and ∩ are replaced by a corresponding T-norm and dual T-conorm. This
fusion operator is an example of a k-quota operator [9], applied to possibility
theory. Ideally, a minimal repair should consist in finding a value � as close
as possible to k. We propose here an efficient method to determine such a �,
assuming that for each element Ωi of the partition Ω1, . . . , ΩP mentioned in
Sect. 2.3, we do have an associated vector πi = (π1(Ωi), . . . , πk(Ωi)).

Algorithm 1 provides an easy way to find �∗, and is based on the simple
idea that π�/k will be normalized if there is an element Ωi for which at least
� possibility degrees have value one. Algorithm 1 then consists in finding the
highest value satisfying this constraint. It is of linear complexity in the number
P of elements, hence is quite fast once P is fixed.
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Algorithm 1: Algorithm to find �∗

Data: Sources S = {π1, . . . , πk}
Result: Maximal �∗ to reach consistency
�∗ = k;
for j ∈ {1, . . . , P} do

if |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}| < �∗ then
�∗ = |{πi(Ωj) : πi(Ωj) = 1, i = 1, . . . , k}|

end

end

Example 5 (�-out-of-k).
We now suppose that the user gives 4 answers along with the certainty

degrees α = {0.9, 0.5, 0.7, 0.3}, as shown on Fig. 6. Moreover, answer 4 is wrong
because the user was uncertain or unfocused, leading to some inconsistency
being detected, as shown on Fig. 7, with Inc(π∩) = 0.3. Our objective is to han-
dle inconsistency, and more specifically to resolve current inconsistency through
information fusion.

Fig. 6. Answers given by the user in Example 5, answer 4 being wrong

Fig. 7. Preferential information with inconsistency in Example 5

Here we will use �-out-of-k algorithm. In this case, we can easily determine
the maximal � to reach consistency, which is � = 3: consistency is reached by
removing a single answer, either answer 2 or 4. We then compute π3/4 according
to Eq. (8). Given S = {π1, ..., π4}, the first step is to determine all the subsets
L ⊆ S such that |L| = 3, obtaining L1 = {π1, π2, π3},L2 = {π1, π2, π4},L3 =
{π1, π3, π4} and L4 = {π2, π3, π4}. We then compute the 4 associated possibility
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distributions πLi
through a product T-norm. For example, πL1(ω) =

∏3
i=1 πi(ω).

After that, we compute π3/4 through a probabilistic sum T-conorm. As such a T-
conorm is commutative and associative, this can be done by iteratively applying
it to pairs of distributions, recall that combining two distributions π1 and π2

through it results in:

π∪(ω) = π1(ω) + π2(ω) − π1(ω) · π2(ω).

The final result is shown on Fig. 8. As expected, consistency is restored and the
resulting possibility distribution reaches 1 on two distinct subsets of Ω, in which
at least 3 answers are consistent, which is the case for answers 1, 2 and 3 when
ω1 ∈ [0.5, 0.65] and 1, 3 and 4 when ω1 ∈ [0.7, 0.75]. As indicates this remark,
this approach does not guarantee that the set of most plausible models will be
convex, even when each individual answer points out to a convex set of most
plausible models. However, non-convex sets of most plausible answers will only
happen in case of disagreement, and could be shown to the users for further
investigations.

Maximal Coherent Subsets. Another strategy for dealing with conflict is to
use the notion of maximal coherent subsets (MCS) [8]. In our context, and given
a set S = {π1, . . . , πk} of considered items of information, we define a subset
L ⊆ S as a MCS if the result πL =

⋂
πi∈L πi of their combination is such that

Inc(πL) = 0 and Inc(πK) > 0 for any K ⊃ L.
A classical way to restore consistency through information fusion, inherited

from ideas in logic [22], is simply to consider all MCSs and take the disjunctions
of all the MCSs’ conjunctions. An operator fusion based on MCSs will typi-
cally deliver quite imprecise results in the presence of outliers or errors, as the
resulting distribution will have a non-empty intersection with any of the initial
(preferential) information. In our setting, it seems more natural to consider only
one MCS, hopefully containing all the correct answers from the user.

Listing all the MCSs can be very costly: unlike Algorithm 1, we have to
consider all possible subsets of information: at worst 2K subsets. Supposing the
number of information stay reasonable, listing all the MCSs is doable. A strategy
would be to consider only the MCSs of size �∗ given by Algorithm 1, supposing
most pieces of information are correct. However, as we will see in Subsect. 4.4,
while this heuristic can be interesting when paired with the associated average
confidence degree, it usually does not give the most interesting MCS.

Example 6 (MCS repair). Keeping the same setting as Example 5, this time
we want to resolve current inconsistency through a MCS, specifically a MCS of
maximal size.

As on the previous example, we have 4 answers, one of them being incorrect,
and we know that � = 3. Therefore, we first need to determine all the MCSs
L such that |L| = 3. Since it is not possible to have a MCS L with |L| > 3
(otherwise � would not be 3), it is sufficient to check only for coherent subsets,
i.e. subsets L such that Inc(πL) = 0. L1 = {π1, π2, π3} and L3 = {π1, π3, π4}
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Fig. 8. Preferential information corrected with �-out-of-k repair algorithm in Example 5

are the only coherent subsets of the specified size. In this case, we can pick the
MCS that maximizes the average of the associated certainty degrees. We have
αL1 = α1+α2+α3

3 = 0.7, and αL3 = α1+α3+α4
3 ≈ 0.63, indicating L̂ = L1.

πL̂ is shown on Fig. 9. As we can see, consistency is restored and unlike �-out-
of-k repair algorithm, we are guaranteed that the set of most plausible models
form a convex set if it is the case for each individual answers, thanks to the sole
use of conjunctive operators.

Fig. 9. Preferential information corrected through a MCS in Example 6

4 Experiments

In this section, we perform some synthetic experiments5 to see how our various
approaches perform when inconsistency appears.

4.1 Decision Rules

Many decision rules exist when using possibility theory [15], and we will only
recall the ones we use here. Given a subset A ⊆ X of available alternatives, the
goal of the decision rules we consider is to make a recommendation x∗ ∈ A.
Given an alternative x and a model ω, the function ω(x) provides an evaluation
of the quality of x. We consider three decision rules:
5 https://github.com/LoicAdam/Possibilist Elicitation Fusion Random.

https://github.com/LoicAdam/Possibilist_Elicitation_Fusion_Random
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– Maximin, adopting a pessimistic view and providing safe recommendations:
x∗

Mm = arg maxx∈A Eπ(ω(x)),
– Maximax, adopting an optimistic view: x∗

MM = arg maxx∈A Eπ(ω(x)),
– Minimax regret, less conservative than Maximin, still providing rather safe

recommendations and widely used in recommendation problems (e.g. [3]):
x∗

mMR = arg minx∈A

∑n
i=1(αi − αi+1)maxy∈A[maxω∈παi

(ω(y) − ω(x))].

4.2 Experimental Protocol

We simulate 50 multi-criteria alternatives. Each alternative has 4 criteria with
Xi = [0, 1]. For each alternative x, xi ∼ U(0, 1) and

∑4
i=1 xi ≈ 2 (so they are not

Pareto-dominated). The true preference model ω∗ of the user (a set of weights
summing up to one) is randomly generated according to a Dirichlet distribution
with hyperparameter (1, 1, 1, 1), ensuring a uniform sampling of models.

To simulate a user elicitation process, we pick 15 pairs of alternatives. In
the experiments below, the certainty degrees αi provided with each answer are
generated randomly according to a beta distribution B(7, 2), corresponding to
an optimist scenario where the user is confident of her choices. To model the
uncertainty of the user, given a certainty degree αi, we consider that the user
answers correctly with a probability αi, and randomly (so sometimes correctly)
with probability 1 − αi. Overall, the user has a final probability αi + (1−αi)

2
to answer correctly. Simulations are repeated 300 times, to have a reasonable
sample size, and we consider only experiments with errors.

4.3 Number of Errors Detected

We first want to see if Algorithm 1 is able to detect the number of incorrect
answers. It should be reminded that we have no information on whether an
answer given by the user is wrong or not.

Table 2. Number of errors detected given the real number of errors

Number errors

Nb detected 1 2 3 4 5 6

4 2

3 8 8 3

2 23 24 9 1 1

1 84 38 24 5 1

0 54 12 2 1

Table 2 shows the difference between the real number of incorrect answers
and the number � returned by Algorithm 1. The difference is explained easily: a
wrong answer does not necessarily contradict all the correct answers, and does
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not automatically create inconsistencies (think for example of the case where the
first answer is wrong). We can see that the higher the number of errors is, the
more difficult it gets to assess correctly the number of errors. This is natural, as
more errors are likely to be consistent between themselves.

4.4 Uncertainty Management Methods and Decision Rules

Using a numerical model allows us to easily measure the performance of the
different approaches. To do so, we compute over the repeated experiments6 the
average of the real regret Rωi

(x∗, xopt
i ) = ω(xopt

i )−ω(x∗) between the alternative
recommended by a method x∗ and xopt

i the best alternative given the true model
ωi of an experiment. We denote this average by x = 1

n

∑n
i=1 Rωi

(x∗, xopt
i ). We

also determined a confidence interval IC= [x ± tn−1,1− α
2

S∗√
n
] on x, S∗ being the

corrected standard deviation of the real regrets, with α = 0.05 and n = 231.

Fig. 10. Confidence intervals on real regret

Our question is to know whether there is a difference, in terms of recommen-
dation quality, between merely handling inconsistency through the redefinition
of minω∈∅ f(ω) and maxω∈∅ f(ω), and using more elaborated fusion strategies.
Figure 10 summarizes the results when comparing the redefinitions of Sect. 3.1
to the fusion approaches of Sect. 3.2. We also added a naive consistency restora-
tion method, consisting in relaxing the linear constraints obtained from each
answer until consistency is reached. Let us note we used different heuristics to
pick a MCS (one without the confidence degrees, two based on them) and we
also selected the MCS that truly minimizes the real regret.

We can see on this graph that not accounting for uncertainty degrees (the first
rows) tend to provide worse results, as well as transforming inconsistency into

6 We only kept the repetitions for which inconsistency was detected, here 231.
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ignorance (before the last row), despite the fact that this is a common strategy.
Simply ignoring the inconsistency (minω∈∅ f(ω) = maxω∈∅ f(ω) = 0) gives much
better results, but that are not robust to all decision rules. In contrast, using
fusion rules to handle inconsistency provides good and stable results across all
decision rules. In addition to this stability, such fusion rules also provide some
additional insights to the user, such as an estimation of the number of errors, or
some interesting sets of answers (i.e., the MCS) to examine in more details.

These encouraging results should be further validated through additional
synthetic or real-world experiments. The current results are based on random
pairs of alternatives presented to the user.

5 Conclusion

In this paper, we have discussed integrating uncertainties in preferential informa-
tion through possibility theory. Our experiments confirm the potential benefits
of our approaches and some of their limitations.

Many aspects of the proposed framework can be easily extended to other sit-
uations beyond the scope of this paper. This includes multi-objective combina-
torial problems [2] or more complex numerical models such as Choquet integrals
[3,16]. The framework can also be applied to tasks like ranking alternatives or
sorting them into ordered categories (see for instance [7, Ch. 7]).

Finally, our framework shares similarities with possibilistic logic. It would
therefore be quite interesting to see how the handling of inconsistency in such
logics [12] can help in our current framework.

Acknowledgements. This work was done within the PreServe Project, funded by
grant ANR-18-CE23-0008 of the national research agency (ANR).
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Tunis, Tunisia

grina.fares2@gmail.com, zied.elouedi@gmx.fr
2 Univ. Artois, UR 3926, Laboratoire de Génie Informatique et d’Automatique de

l’Artois (LGI2A), 62400 Béthune, France
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Abstract. The predictive performance of machine learning models
tends to deteriorate in the presence of class imbalance. Multiple strate-
gies have been proposed to address this issue. A popular strategy consists
of oversampling the minority class. Classic approaches such as SMOTE
utilize techniques like nearest neighbor search and linear interpolation,
which can pose difficulties when dealing with datasets that have a large
number of dimensions and intricate data distributions. As a way to cre-
ate synthetic examples in the minority class, Generative Adversarial
Networks (GANs) have been suggested as an alternative technique due
to their ability to simulate complex data distributions. However, most
GAN-based oversampling methods tend to ignore data uncertainty. In
this paper, we propose a novel GAN-based oversampling method using
evidence theory. An auxiliary evidential classifier is incorporated in the
GAN architecture in order to guide the training process of the genera-
tive model. The objective is to push GAN to generate minority objects
at the borderline of the minority class, near difficult-to-classify objects.
Through extensive analysis, we demonstrate that the proposed approach
provides better performance, compared to other popular methods.

Keywords: Imbalanced classification · Generative models ·
Oversampling · Dempster-Shafer theory

1 Introduction

Unequal amount of data in different classes can cause many issues with classifica-
tion performance. Due to this imbalance, conventional classifiers tend to focus on
the majority class and overlook the minority class. However, this latter can often
contain important information that needs to be carefully analyzed in real-world
scenarios, such as intrusion detection [9], medical diagnosis [22], fraud detection
[2], and satellite data analysis [7]. This machine learning problem attracted signif-
icant interest [12], investigating the question of how to make learning algorithms

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 257–269, 2024.
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acquire unbiased knowledge from imbalanced data. Most models face difficulty
distinguishing minority classes and often treat them as “noise” in comparison to
majority classes when the training data is heavily biased towards one or a few
classes. The problem gets more difficult by the fact that standard measures like
accuracy can be deceptive in assessing the model. For instance, if a model simply
assigns the majority class to all samples, it may still have a high accuracy score
when the class distribution is heavily imbalanced.

Different methodologies have been proposed to address this issue. Mainly, the
leading approaches are resampling, cost-sensitive algorithms, and ensemble meth-
ods. Resampling generally consists of oversampling the minority class by adding
synthetic data, or undersampling the majority class by removing data. Over-
sampling is one of the most proven methods for handling class imbalance [12].
Other than random oversampling (randomly selecting and replicating minority
data), the Synthetic Minority Oversampling Technique (SMOTE) [6] is a classic
oversampling choice. The SMOTE technique firstly selects at random a minority
object and a nearest neighbor example from the minority class at random. An
important limitation of this method is the fact that it only considers the minor-
ity class, which means that the relationship between the minority class and the
majority class is overlooked. This makes this method inefficient in many scenar-
ios, especially when there are other data difficulties in the dataset, such as high
uncertainty (such as class overlapping and noise).

To address this drawback, many SMOTE-based variants have been suggested
over the years. BorderlineSMOTE [15] and ADASYN [16] are very similar to
SMOTE, but with control over the locations of generated minority examples.
More recently, other methods based on SMOTE paired with undersampling
tackled class overlapping problem in imbalanced data [14,19]. However, most
SMOTE-based techniques are based on non-parametric models such as the k-
nearest neighbors (k-NN) [8], which makes them not very efficient when dealing
with high dimensional and complex datasets.

More recently, Generative Adversarial Networks (GANs) [13] have emerged
as a type of deep generative model, which goal is to reconstruct the real data
distribution and generate a synthetic one. GANs have been used as an oversam-
pling method to generate minority class instances, in order to rebalance the data.
Although the majority of GAN studies concentrate on unstructured, continuous
data like images and text, most classification datasets in real-world business
situations consist of tabular data (numerical and categorical data). Very few
proposals have addressed this type of data in GAN-based oversampling litera-
ture [11]. Some works use unorthodox strategies to deal with tabular data, such
us converting it into two-dimensional in order to be processed by 2d-convolutions
[28], which is not always the best solution [11]. Other than types of data, most
GAN-based oversampling methods are developed to generate data without tak-
ing into account the uncertainty present in the data. The class imbalance issue
has been proven to get worse in the presence of ambiguity [14,35]. Thus, it is
important for GAN-based oversampling to generate data near the borderline of
the minority and majority classes. This aspect holds significant importance as
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it helps address the challenge of imbalanced datasets by focusing on the regions
where the minority class is particularly vulnerable (high uncertainty).

In this paper, we propose an evidential GAN-based oversampling method,
that can enhance the robustness of the minority class borders, by generating
boundary samples. The theory of Evidence [32] was used to guide the training of
our GAN, in order to simulate the distribution of boundary minority objects. The
intuition is to introduce highly uncertain data in the minority, for the purpose of
empowering the difficult-to-classify objects. This is done by modifying the GAN
architecture by adding an auxiliary evidential component to feed uncertainty
information to the generator. To incorporate auxiliary knowledge and guide the
training of the GAN, two regularization terms are introduced into the loss func-
tion. These regularization terms serve the purpose of leveraging additional infor-
mation to enhance the learning process. A mechanism is also implemented in
order to effectively model tabular data with numerical and categorical features.

The remainder of this paper will be divided as follows. Firstly, we pro-
vide some background information for GANs and theory of evidence in Sect. 2.
Section 3 presents our proposal, detailing each step. Experimental evaluation and
discussion are conducted in Sect. 4. Our paper ends with a conclusion and an
outlook on future work in Sect. 5.

2 Preliminaries

Before introducing our approach, we firstly present some necessary background
information.

2.1 Generative Adversarial Networks (GANs)

GANs [13] are composed of two neural networks that work against each other.
One of these networks is the generator G, which maps a low-dimensional latent
space to a high-dimensional sample space of x. The second network is the dis-
criminator D, which acts as a binary classifier to distinguish real inputs from
fake inputs generated by the generator G. The generator and discriminator are
trained in an alternating manner to minimize the following min-max loss:

min
G

max
D

L(D,G) = Ex∼preal
[log(D(x))] + Ez∼pz

[log(1 − D(G(z)))] (1)

where z is the noise input to G, usually following a normal distribution pz, and x
is an example from the real dataset preal. The objective functions of discriminator
D and generator G are as follows:

LD = Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (2)

LG = Ez[log(D(G(z)))] (3)

Conditional GAN (cGAN) [24] extended the vanilla version by allowing the
conditioning of G and D. For example, one can add a class condition to the input
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of the generator, to ensure that the generated objects belong to the chosen class.
At the same time, the condition helps the discriminator to make more informed
predictions.

Although successful, GANs are known to be difficult to train, which is a
phenomenon called mode collapse. Indeed, GANs aim to generate a variety of
outputs, but if a generator produces a highly plausible output, it may learn to
produce only that output. If the discriminator consistently rejects that output,
the generator may get stuck producing a small set of similar outputs. Among
many approaches addressing this issue, Fisher GAN [26] is a type of GAN that
uses the Fisher distance as the metric to measure the distance between the dis-
tributions of the generated and real data. It modifies the objective function of
the GAN by replacing the discriminator with the score function of the gener-
ator, and minimizing the Fisher distance between the generated and real data
distributions. This leads to more stable training and reduces the risk of mode
collapse, compared to traditional GANs. In this paper, a conditional version of
Fisher GAN will be used, with the condition being on the minority class.

2.2 Evidential Uncertainty Quantification

The theory of evidence [10,32,33], also known as Dempster-Shafer theory (DST)
or belief function theory, provides a robust and adaptable framework to repre-
sent and merge uncertain information. Let Ω = {w1, w2, ..., wK} be a frame of
discernment composed of a finite set of K distinct possible events, such as the
various labels that can be assigned to an object during classification. A mass
function refers to the level of belief expressed by a source of evidence. This can
apply to any subset of the frame of discernment, including the whole frame itself
(ignorance state). A particular formalism of the evidence theory by Subjective
Logic [17] was used recently as a framework to quantify uncertainty of a neural
network [31]. Formally, let K be the number of mutually exclusive singletons
with a non-negative belief mass bK , and overall uncertainty u (belief assigned to
the whole frame). More formally:

u +
K∑

k=1

bk = 1 (4)

In other words, bk is interpreted as the belief mass for the k-th class, whereas u
is the total uncertainty mass. Moreover, let ek ≥ 0 be the evidence derived for
the k-th singleton. The belief bK and the uncertainty u are computed as:

bk =
ek

S
and u =

K

S
(5)

where S =
∑K

k=1(ek + 1). In [31], the term evidence is a measure from the
amount of support collected from data in favor of a sample to be classified
into a particular class. Following subjective logic, a belief mass function can be
described by a Dirichlet distribution with parameters αk = ek + 1. In other
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words, one can derive a belief mass function easily from the parameters of a
Dirichlet distribution using bk = (αk−1)

S , where S =
∑K

k=1(ek + 1). Hence, the
total uncertainty over whole frame u can also be derived.

A typical neural network classifier produces a probability distribution for each
sample over the possible classes, using a softmax output layer in most cases. On
the other hand, in [31], the authors model the output of a neural network as
evidence for a Dirichlet distribution. Let yi be a one-hot vector encoding the
class of observation xi with yij = 1 and yik = 0 for all k �= j, and pij is the
probability that xi belongs to the class j, calculated as pij = αij

K . Finally, the
evidential neural network can be trained by minimizing the total MSE loss:

L(Θ) =
N∑

i=1

K∑

j=1

(y2
ij−2yij E[pij ]+E[p2ij ])+KL[D(pi |α̂i)||D(pi | 〈1, 1, . . . , 1〉)] (6)

where N is the number of training examples. KL is the Kullback-Leibler diver-
gence loss between the Dirichlet distribution of the sample in question with pre-
dicted parameters α̂i, and the equivalent of a uniform probability distribution,
which is a Dirichlet distribution whose all parameters αij with j = 1, 2, . . . ,K
are equal to 1, and u = 1 (total ignorance).

In this work, we adopt the evidential model as a means to acquire valuable
information regarding the generated objects of GANs. By incorporating this
evidential model, we guide and enhance the training process, enabling us to gain
deeper insights into the quality of the generated data.

3 EvGAN: Evidential Generative Adversarial Networks

The architecture of EvGAN, depicted in Fig. 1, resembles the original GAN, but
with the addition of an auxiliary component. The use of auxiliary information to
guide GAN training is a common practice [20,27]. For our method, we employ
the evidential neural network (EvNet) [31] described in Sect. 2.2 as the uncer-
tainty estimator within the GAN architecture. The EvNet is designed to avoid
over-confidence in classifying difficult-to-classify objects. Through the KL diver-
gence term in Eq. 6, the evidential model converges to the uniform Dirichlet
distribution for misclassified samples. In our case, our goal is to generate objects
with high uncertainty that are close to the majority class, that is, a uniform
distribution. Therefore, to encourage a conditional GAN to generate samples at
the borders of the minority class, we suggest pre-training EvNet on the origi-
nal data to learn about its distribution. The guided training of GAN is then
incorporated by introducing two additional regularization terms, in GAN’s loss
function. The goal is to ensure the predictive distribution of generated samples
has high uncertainty, by acquiring auxiliary knowledge.

3.1 Modified Loss Function

As discussed previously in Sect. 2.1, Fisher GAN’s objective function was used
as base in this paper. The reason behind this choice, is to prevent the issue of
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Fig. 1. Overall architecture of EvGAN

mode collapse, as explained previously. The generator’s loss function LG is our
only interest in the objective function.

Although the standard GAN model is successful in generating samples from
a distribution, it lacks a mechanism to control the specific location of a generated
output sample based on a given input sample. Consequently, it is not explicitly
designed to generate samples with the aim of enhancing imbalanced classification
performance.

The introduction of the regularizing loss functions described below allows us
to achieve this goal.

KL Divergence Evidential Loss. Similarly to the regularization term in
EvNet (see Eq. 6), we add a regularization loss function to the generator’s loss
LG, called the evidential loss, defined as:

λv · KL[D(pi |α̂i)||D(pi | 〈1, 1, . . . , 1〉)] (7)

In this equation, D(pi |α̂i) represents the Dirichlet distribution predicted by
the auxiliary evidential neural network (EvNet) for a generated sample xi from
the generator G. On the other hand, D(pi | 〈1, 1, . . . , 1〉) denotes the uniform
Dirichlet distribution, where all parameters are equal to 1. The hyperparameter
λv > 0 determines the importance of this regularization term.

The purpose of this regularization term is to encourage the GAN to generate
samples that are closer to the uniform distribution. By doing so, it promotes the
creation of high-uncertainty minority samples. However, it is important to note
that this term has the potential to generate noise or outliers that are far from
both classes.

To address this concern, we introduce an additional regularization term that
mitigates the generation of such undesired samples.
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Noise Regularization Term. In many GAN-based approaches, the genera-
tor’s input is commonly generated from random noise sampled from a latent
noise space, often a Gaussian distribution. However, we propose an alternative
approach where we feed random real instances from the majority class directly
into the generator’s input. This enables us to incorporate real majority data as
additional knowledge within the generator’s loss.

(a) Original distribution (b) After EvGAN oversampling

Fig. 2. A toy imbalanced dataset; yellow points represent the majority class, blue
points are the minority one, and the red points are EvGAN-generated. (Color figure
online)

To achieve this, we introduce the squared L2 norm to quantify the distance
between the input (randomly selected majority data denoted as z) and the gen-
erated output (denoted as G(z)). This additional term is incorporated into the
generator’s loss function. Mathematically, the following term is included in the
generator’s loss:

λz · ‖z − G(z, y)‖2 (8)

where λz > 0 represents a weighting coefficient that determines the significance
of the L2 norm term, and y represents the condition label (minority class). By
employing this modification, we aim to leverage the information contained in real
majority data as an auxiliary component for the generator’s training process. The
generator will try to minimize this loss, by generating points that are closer to
the majority class. Thus, this will complement the evidential term, by ensuring
that the highly uncertain objects belong in the space between the majority and
minority classes, and not far from both classes, as illustrated in Fig. 2.

3.2 Networks’ Settings

Most research literature on GANs focuses on utilizing image or sequence data,
leading to the prevalent use of Convolutional Neural Networks (CNN) [34] or
Recurrent Neural Networks (RNN) [23] in the architectures of the generator and
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discriminator. In contrast, since we focus on tabular datasets in this paper, feed-
forward neural networks (FNN) align better with our problem. Therefore, we
propose utilizing feed-forward neural networks as the core architecture for our
generator, discriminator and evidential models.

Multilayer FNNs are able to learn complex feature interactions. Nevertheless,
they might fail to efficiently learn cross feature interactions and discrete features.

Inspired by the work in [25], we propose to set up our networks similarly.
Cross layers [36] are added to G, D, and EvNet. This type of layers provides
an effective way to model feature interactions by multiplying different input
dimensions and learning their relationships. This allows the GAN to capture
complex dependencies and correlations among features, improving its ability to
generate more diverse and realistic outputs. Through the stacking of N cross
layers, we can efficiently calculate feature interactions of up to N degrees in an
automated manner. All neural networks are composed of fully connected layers
and cross layers.

The generator G employs Leaky ReLU activations for all layers except the
last one. The final layer uses a Sigmoid activation for numerical features and
Softmax activations for categorical features, with one Softmax activation per
feature. Consequently, G is capable of generating distributions for the categorical
values of each discrete feature.

Consequently the discriminator D will receive either one-hot encoding vectors
from real data, or Softmax distributions for the generated data. Continuous
features remain the same for both real and generated data. There is not special
processing done for continuous data. However, the distributions of categorical
features are transformed into compact, lower-dimensional representations using
embeddings. D also uses Leaky Relu activations in all but the last layer, which
consists of a dense layer with a sigmoid function.

The network structure of the EvNet model is the same as that of D, except
for the final layer. Instead of the original configuration, the EvNet’s last layer
includes a softmax layer with two outputs, corresponding to the parameters of
the evidence which will be used to create Dirichlet distribution’s parameters.

4 Experimental Study

Having presented our proposed methodology in the preceding section, we now
proceed to empirically assess its effectiveness on real-world datasets in this
section. Additionally, we compare its performance with that of other baseline
methods.

4.1 Experimental Setup

Datasets. In order to demonstrate the effectiveness by our approach, we con-
duct experiments on 5 binary real-world datasets from UCI1 [1] and Kaggle2:
1 http://archive.ics.uci.edu/ml/datasets.
2 https://www.kaggle.com/competitions/pakdd2010-dataset.

http://archive.ics.uci.edu/ml/datasets
https://www.kaggle.com/competitions/pakdd2010-dataset
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Online Shoppers Purchasing Intention (shopping), Adult, Bank Marketing (bank),
Coil2000, and the data mining competition pakdd2010. The details of each
dataset are summarized in Table 1, where we describe the number of samples,
the number of features for each type, and the class distributions. All five tabular
datasets have a binary target variable, for which we use the rest of the variables
to perform classification. All of the datasets consist of columns that include
both numerical and categorical data, underscoring the significance of explicitly
considering categorical variables in our approach. To handle missing values, we
substitute them with the most commonly occurring value in categorical columns,
while numerical columns are assigned the average value of the respective feature.

Table 1. Characteristics of Datasets

Dataset #Instances Categorical features Numerical features Class Distribution

coil2000 9000 25 60 15.76

shopping 12330 8 10 5.5

adult 32561 9 5 3.15

bank 45211 9 6 7.55

pakdd10 46223 27 9 3

Evaluation Procedure and Metrics. To address the inherent imbalance in
the benchmarking datasets, we employ a stratified 10-fold cross-validation app-
roach in our evaluation process. We specifically choose a 10-fold setup because
GAN-based oversampling techniques often exhibit steep learning curves and
require large training sets. In each fold of the cross-validation, we apply oversam-
pling to achieve a balanced parity with a 50:50 ratio. Consistent partitioning of
the data is maintained across all oversampling methods to ensure equal difficulty
comparisons. To ensure consistency across all methods, we apply min-max scal-
ing to normalize the numerical features within the range of [0, 1]. On the other
hand, for handling categorical features, we employ a straightforward approach
of one-hot encoding.

Subsequently, we employ a Random Forest classifier [5] to train the model
using the resampled dataset. Predictions are then generated using the remain-
ing 10% of the data. To evaluate the performance of each method, we rely on
two widely used metrics for imbalanced classification: the Area Under the ROC
curve (AUC) [4] score and the Geometric Mean (G-Mean) [3]. These measures
provide valuable insights into the effectiveness of the methods in addressing the
challenges posed by imbalanced datasets.

Compared Methods and Parameters. In addition to baseline (no resam-
pling), three benchmark approaches were used for the experiments: SMOTE [6],
Borderline SMOTE (B-SMOTE) [15], and the Conditional vanilla GAN (cGAN)
[24]. The network configurations for EvGAN are provided in Sect. 3.2. When
using the conditional GAN (cGAN), we adopt similar network settings to our
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approach, with the exception of excluding cross layers and embeddings in the
discriminator. During the training process, we employ the vanilla GAN loss for
cGAN.

To find the best regularization coefficients (λv and λz) for our approach, we
perform hyper-parameter tuning using the grid search methodology. This is done
on a small validation set for each dataset, allowing us to determine the optimal
values. The training process for EvGAN and cGAN adheres to the conventional
procedure, with employing the Adam optimization method [18], a commonly
used algorithm, with a fixed learning rate of 10−4. As for the other methods
we compare against, such as SMOTE and B-SMOTE, we utilize their default
parameters.

Implementation. The code of our proposal, written in Python 3.9, can be
openly found on Github3. The implementation uses PyTorch [29] version 2.0.1.
The Imbalanced-learn package [21] version 0.11 was used for implementations
of benchmark oversampling algorithms and the Scikit-learn package [30] version
1.2.2 was used for supervised learning algorithms and metrics.

4.2 Results Discussion

In this section, we present a comprehensive analysis of our method’s performance
in comparison to other algorithms. The results are displayed in Table 2, show-
casing the average G-Mean and AUC scores obtained using a 10-fold stratified
cross-validation approach. The best average score is highlighted in bold for easy
identification. Notably, when using the Random Forest classifier, our EvGAN
method outperformed other algorithms in 4 out of 5 datasets, demonstrating
superior performance in both the G-Mean metric and the AUC.

Furthermore, the results highlight the effectiveness of our method in datasets
with a large number of categorical features. For datasets like shopping, adult, and
pakdd10, regardless of the metric used, EvGAN consistently delivered the best
performance. These datasets have more than 10k instances, with pakdd10 being
the largest dataset with 27 categorical features. This demonstrates our method’s
ability to handle complex datasets and effectively capture relationships between
features through our architecture.

Table 2. AUC and G-Mean results for chosen datasets using the random forest classifier

Datasets AUC G-Mean

None SMOTE B-SMOTE cGAN EvGAN None SMOTE B-SMOTE cGAN EvGAN

shopping 0.756 0.809 0.814 0.759 0.836 0.726 0.800 0.806 0.729 0.814

bank 0.691 0.709 0.705 0.716 0.724 0.631 0.692 0.656 0.635 0.679

adult 0.769 0.769 0.772 0.769 0.772 0.757 0.769 0.752 0.752 0.780

coil2000 0.525 0.536 0.543 0.525 0.532 0.258 0.314 0.335 0.258 0.453

pakdd10 0.514 0.520 0.518 0.513 0.537 0.216 0.262 0.255 0.214 0.314

3 https://github.com/faresGr/code-evidential-gan.

https://github.com/faresGr/code-evidential-gan
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The selected metrics, G-Mean and AUC, consider the accuracy of both classes.
G-Mean takes into account the true negative rate (specificity) and the true pos-
itive rate (sensitivity), while AUC provides a comprehensive measure of overall
performance. Thus, we can confidently state that our EvGAN method improves
learning on the minority class while maintaining accuracy for the majority class.

5 Conclusion

In this paper, we introduce an innovative oversampling method called eviden-
tial GAN, which focuses on strengthening the boundaries of the minority class
by generating boundary samples. We leverage the theory of Evidence to guide
the training of our GAN, simulating the distribution of minority objects near
the boundaries by adding two regularization terms to the generator’s loss func-
tion. Our approach involves modifying the GAN architecture by incorporating
an auxiliary evidential component to incorporate uncertainty information into
the generator. Additionally, we implement a mechanism to effectively handle tab-
ular data with both numerical and categorical features. The proposed method
aims to improve the robustness and performance of GAN-based oversampling
for imbalanced datasets.

Finally, the research conducted on benchmark datasets confirmed the effec-
tiveness of the proposed solution. Our experimental study demonstrates that
integrating uncertainty quantification by evidence theory into, could result in
better robustness of the minority class, which improves the learning performance.
Further investigations can include applying our framework to generate minority
class data in more complex distributions such unstructured data, i.e., images
and time series.
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Abstract. A possible approach to obtain set-valued predictions is to
learn for each query instance a probability set (a.k.a. credal set) repre-
senting its associated uncertainty. Theoretically founded decision rules
extending classical expectation and inducing a partial order between
predictions can the be used to derive set-valued predictions. However,
obtaining such a credal set by imprecisiating a given learning algorithm
is usually computationally challenging, except for simple models such as
decision trees or naive Bayes classifiers. In this paper, we propose a sim-
ple, easy to use quantile-based framework for estimating credal sets using
output of ensemble methods, that can also cope with complex types of
data, such as images and mixed/multimodal data, etc. Experiments are
conducted to highlight the usefulness of the proposed framework.

Keywords: Ensemble learning · Credal sets approximation ·
Set-valued prediction · Quantile-based approach

1 Introduction

Classification algorithms are usually designed to produce, for each instance, a
prediction in the form of a unique element of the set of possible outputs. Under
the presence of uncertainty, which is often a consequence of model inadequacy
and/or data imperfections (in terms of quality and/or quantity), the model can
however be uncertain about its predictions and make unreliable precise predic-
tions. In such a case, it might be more desirable to provide imprecise (or inde-
terminate) set-valued predictions which aims to balance correctness (the true
output is an element of the set-valued prediction) and precision (the cardinality
of the set-valued prediction) in some appropriate manner [11,24,34,40].

Learning with a reject option is the simplest case of learning set-valued pre-
dictions, in which the classifier is allowed to either produce a singleton prediction
or refuse to make a prediction for a given query instance. Threshold-based clas-
sifiers have been proposed for that purpose, in which a (global/local) threshold
will be employed to decide whether a query instance should be rejected or pre-
dicted and then a conventional classifier is called only if the instance should be
classified [2,5,7,14,16,17]. Threshold-based classifiers have been developed for
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https://doi.org/10.1007/978-3-031-45608-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_21&domain=pdf
http://orcid.org/0000-0003-1642-4468
http://orcid.org/0000-0003-4488-1631
http://orcid.org/0000-0003-2026-468X
https://doi.org/10.1007/978-3-031-45608-4_21


Learning Sets of Probabilities Through Ensemble Methods 271

multi-class classification (MCC) [11,24], when the classifier is allowed to return
top (locally/globally) ranked classes. While such classifiers are intuitive and easy
to implement, they often require reliable estimates of the class probabilities to
be performant, which is hard to ensure when information is lacking.

By considering more expressive uncertainty representations, imprecise prob-
abilistic classifiers [6,8,22,39] can provide, at least in theory, more reliable out-
puts. They are developed based on the assumption that uncertainty is described
by a (not necessarily convex) set of probabilities, i.e., a credal set [21], a descrip-
tion to which can then be applied theoretically justified decision rules [19,34]
to produce set-valued predictions. Moving from a single distribution to a credal
set is a natural way to model the lack of information, an aspect that unique
probabilities can hardly capture. Unfortunately, imprecise probabilistic classi-
fiers often suffer from the limited use to certain types of (tabular) data, as well
as from the high computational cost that represent a credal extension of a given
learning method. A solution might be to consider the credal set as a neighbour-
hood of the initial estimated distribution [23,31], yet ensuring the quality of the
initial estimated distribution is a challenge itself.

In this paper, we propose a quantile-based framework for estimating credal
sets from the output of ensembles [12]. We specifically seek a correctness-
precision trade-off when constructing estimates of credal sets, i.e., the estimates
are expected to be informative and at the same time not very large. This shall be
done by defining “median” of set of distributions and use the “median” to filter
out a proportion of “extreme” distributions before forming credal sets. More-
over, we only require the availability of an ensemble of probabilistic classifiers.
Thus, the base learner (ensemble) can be freely chosen according to our needs.
This flexibility of the proposed approach is remarkably different from existing
imprecise probabilistic classifiers. Therefore, we hope to broaden the use of gen-
eralized decision rules [19,34] to applications with complex types of data, such
as mixed data [10], image/video [37,38] and multimodal data [27,35].

We provide in Sect. 2 a minimal description of MCC with sets of probabil-
ities. Our main contribution which is a quantile-based approach for estimating
credal sets is presented in Sect. 3. The inference problem with sets of probabil-
ities is summarized in Sect. 4. Section 5 presents some preliminary experiments
on tabular data sets to motivate the use of the proposed framework. Section 6
concludes this work and sketches out future work.

2 Preliminary

We shall recall basics of classification with sets of probabilities and notations.

2.1 Probabilistic Classification

Let X denote an instance space, and let Y = {y1, . . . , yK} be a finite set of
classes. We assume that an instance x ∈ X is (probabilistically) associated with
members of Y. We denote by p(Y |x) the conditional distribution of Y given
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X = x. Given training data D = {(xn, yn)|n = 1, . . . , N} drawn independently
from p(X, Y ), the goal in MCC is to learn a classifier h, which is a mapping
X −→ Y that assigns to each instance x ∈ X a class ŷ ..= h(x) ∈ Y.

To evaluate the performance of a classifier h, a loss function � : Y×Y −→ R+

is needed, which compares a prediction ŷ with a ground-truth y. Each classifier
h is evaluated using its expected loss

R(h) ..= E
[
�(Y,h(X))

]
=

∫
�(y,h(x)) dP(x, y) ,

where P is the joint probability measure on X ×Y characterizing the underlying
data-generating process. Therefore, the Bayes-optimal classifier is given by

h∗ ∈ argmin
h∈H

R(h) , (1)

where H ⊆ YX is the hypothesis space. When H is probabilistic, we can follow
maximum likelihood estimation and define the Bayes-optimal classifier as the
classifier which optimizes the conditional log likelihood (CLL) function:

ĥ ..= p̂ ∈ argmax
p∈H

CLL(p | D) ..= argmax
p∈H

1
N

N∑

n=1

log p(yn |xn) . (2)

To avoid overfitting, the CLL is often augmented by a regularization term [25,29].
Once the classifier (2) is learned from D, we can in principle find an optimal

prediction of any loss function � at the prediction time [13,24]. More precisely,
assume the classifier (2) is made available, and predicts for each query instance
x a probability distribution p(· |x) on the set of labelings Y. The Bayes-optimal
prediction (BOP) of any � is then given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin
ȳ∈Y

E
(
�(y, ȳ)

)
= argmin

ȳ∈Y

∑

y∈Y
�(y, ȳ)p(y |x) . (3)

2.2 Classification with Set of Probabilities

Under this setting, we assume that our uncertainty is described by a (not nec-
essarily convex) set of probabilities P(Y |x), i.e., a credal set [21]. Clearly, the
decision rule (3) is no longer directly applicable. Therefore, it is necessary to use
some generalized decision rule such as the ones benefiting from strong theoretical
justifications [19,34].

Credal sets can arise in different ways, either as a native result of the learn-
ing method [1], as the result of an agnostic (with respect to the missingness
process) estimation in presence of imprecise data, or as a neighbourhood taken
over an initial estimated distribution p(Y |x) [23,31]. These approaches seems
to introduce some inconvenience. Native credal classifiers can be hard to learn,
and are unavailable for complex inputs such as such as mixed data and images.
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Approximating P(Y |x) as a neighbourhood taken over an initial estimated dis-
tribution p(Y |x) does not face this inconvenience, but requires that the initial
estimated distribution is well-estimated, a hard to ensure quality.

In the next section, we propose a simple, flexible and easy to use quantile-
based framework for estimating credal sets using output of ensemble methods
[12]. This is especially designed to make use of the current and future devel-
opment of both probabilistic classification and generalized decision rules in a
unified framework to broaden the application of imprecise probability (IP) to
real-world applications with complex data types.

3 Credal Sets Approximation

We assume an ensemble H ..= {hm |m ∈ [M ] ..= {1, . . . , M}} of M probabilistic
classifiers hm, m ∈ [M ] is made available and provides, for each instance x, a
set of M probabilistic predictions

H(x) ..= {hm(x) |m ∈ [M ]} = {pm ..= (pm
1 , pm

2 , . . . , pm
K) |m ∈ [M ]} . (4)

Our goal is to aggregate this set of probabilistic predictions into a credal set
P(Y |x) in some meaningful way.

3.1 A Quantile-Based Approach

The intention of this approach is to seek a correctness-precision trade-off, i.e.,
the estimations of P(Y |x) are expected to be informative and at the same time
not very large. We define the reference point of H(x) as follows:

p∗ = argmin
p:

∑K
k=1 pk=1

M∑

m=1

d(p,pm) . (5)

where d is some distance defined for pairs of probability distributions.
Once the reference point p∗ is made available, it allows us to define a pref-

erence order, reflecting how common/weird each distribution in H(x) is:

p � p′ if d(p∗,p) < d(p∗,p′) . (6)

Such a preference order in turn allows us to “discard” a given percentage of
outliers among elements of H(x).

Let α ∈ [0, 1] be some threshold. We define Hα(x) as the set of (1 − α) ∗
100% of closest distributions in H(x) with respect to the preference order (6).
We approximate the credal set p(Y |x) of x by the convex hull of Hα(x). Let
Hα(x) ..= {pm |m ∈ [Mα]}. The convex hull is defined as

CHα(x) ..=

{

p ..=
Mα∑

m=1

γm pm | γm ≥ 0,m ∈ [Mα],
Mα∑

m=1

γm = 1

}

. (7)

The computational complexity of the problem of determining the reference
point (5) can greatly depend on the nature of the distance d. In the next section,
we recall commonly used distances. Due to page length limit, we only mention
few convex distances and refer to [4,15,20,33] for more distances.
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3.2 The Cases of Convex Distances

For completeness, we shall start with few definitions and remarks, which are quite
basic and would have appeared in textbooks and papers (see, e.g., [3,9,30]).

Definition 1. A function f : RK �−→ R is convex if for every p,p′ ∈ R
K and

every λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have the inequality

f(λ1p + λ2p
′) ≤ λ1f(p) + λ2f(p′) . (8)

Remark 1. Let z ∈ R
K . Let ‖·‖ be a norm on R

K . f(p) ..= ‖p − z‖ is convex.

Proof. The convexity of f(p) follows consequently from the triangle inequality
of norms:

f(λ1p + λ2p
′) = ‖λ1p + λ2p

′ − z‖ = ‖λ1(p − z) + λ2(p′ − z)‖
≤ ‖λ1(p − z)‖ + ‖λ2(p′ − z)‖ = λ1‖p − z‖ + λ2‖p′ − z‖
= λ1f(p) + λ2f(p′) .

��
Remark 2. Conical combinations of convex functions are also convex.

Proof. The proof is trivial. It is enough to multiply the inequalities, one per
convex function, by non-negative scalars and sum them up. ��

In the following, we show that if fm(p) ..= d(p,pm) is convex, m ∈ [M ], then
the problem of finding a reference point (5) of H(x) can be straightforwardly
formulated as a convex optimization problem. This is indeed computationally
advantageous because with recent advances, convex programming is nearly as
straightforward as linear programming [3,32].

Definition 2. A standard convex optimization problem is of the form

minimize
p

f(p) subject to gi(p) ≤ 0 , i ∈ [I] , hj(p) = 0 , j ∈ [J ] (9)

where: p ∈ R
K is the optimization variable; The objective function f : RK �−→ R

is convex; The inequality constraint functions gi : RK �−→ R, i ∈ [I] are convex;
The equality constraint functions hj : R

K �−→ R, j ∈ [J ], are of the form:
hi(p) = ajp − bj, where aj is a vector and bj is a scalar.

We can encode the condition that the reference point must be a valid proba-
bility distribution by using K inequality constraint functions gi and 1 equality
constraint function h1:

gk(p) ..= −pk ≤ 0 , k ∈ [K] , h1(p) ..= 1Kp − 1 = 0 , (10)

where 1K = (1, . . . , 1). The constraints pk ≤ 1, k ∈ [K], are implicitly enforced
by the K constraints gk (i.e., pk ≥ 0, k ∈ [K]) and h1 (i.e.,

∑K
k=1 pk = 1,

k ∈ [K]). Therefore, we can use any existing package to find p∗ (5).
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Using Remark 1–2, we can verify that different distances (See [4,15,20,33]
and elsewhere) are convex. Examples are members of the Lp Minkowski family

fp(p) ..= Lp(p,z) ..= p

√√
√
√

K∑

k=1

|pk − zk|p , p ≥ 1 , (11)

and Chebyshev distance

fcheb(p) ..= L∞(p,z) ..= max
k∈[K]

|pk − zk| . (12)

Moreover, a closer look at Definition 1 is enough to verify the convexity of
some other distances (discussed in [4,15,20,33] and elsewhere). Examples are the
Squared Euclidean distance (whose square function allows triangle inequality)

fsqe(p) ..= dsqe(p,z) ..=
K∑

k=1

(pk − zk)2 , (13)

and KL divergence (inequality (8) can be verified using the log sum inequality):

fKL(p) ..= dKL(p,z) ..=
K∑

k=1

pk log (pk/zk) , . (14)

To solve the problem (9) efficiently, one should carefully look at the nature
of the given convex distance. For example, for any given K, closed-form solution
for the fSqe (13) can be derived (See Proposition 1). This is also a special case
where the additional constraints (i.e.,

∑K
k=1 pk = 1 and pk ≥ 0, k ∈ [K]) do not

change the minimizer. However, it is not always the case. For example, these
additional constraints can change the minimizer of f1 (11) (See Proposition 2).
Also, different distances may seek for the same minimizer. Examples of such
distances are Topsør and Jensen-Shannon [4]. Moreover, for some distance, such
as Inner Product [4], the problem (9) is reduced to a linear program.

Proposition 1. The reference point p∗ (5) under Squared Euclidean distance
fsqe (13) is uniquely defined as

p∗
k =

1
M

M∑

m=1

pm
k , k ∈ [K] . (15)

Proof. The proof is trivial and is given for completeness. For any k ∈ [K], the
partial derivative of

f(p) =
M∑

m=1

fm
Sqe(p) =

K∑

k=1

(
M∑

m=1

(pk − pm
k )

)2

(16)
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with respect to the variable pk is

∂f

∂pk
(p) = 2

M∑

m=1

(pk − pm
k ) = 2

(

Mpk −
M∑

m=1

pm
k

)

. (17)

Since fsqe(p) (13) is strictly convex, its unique minimizer is attained when the
partial derivatives are zeros, i.e., p∗ is defined in (15). p∗ is a valid distribution
because the set of possible distributions is a convex set. ��
Proposition 2. Except for K = 2, the reference point p∗ (5) under f1 (11) may
not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑

m=1

L1(p,pm) = argmin
p

K∑

k=1

(
M∑

m=1

|pk − pm
k |

)

. (18)

Proof. Without enforcing the probability axioms (i.e.,
∑K

k=1 pk = 1 and pk ≥ 0,
k ∈ [K]), a minimizer p̄ of the relaxed optimization problem (18) is defined as

p̄k
..= median(p1k, . . . , pM

k ) , k ∈ [K] . (19)

This can be verified by showing that, for any p = p̄, we have

f1(pk) ..=
M∑

m=1

|pk − pm
k | ≥

M∑

m=1

|p̄k − pm
k | := f1(p′

k) , k ∈ [K] , (20)

which implies the relation f1(p) ≥ f1(p̄).
Let Lk be the number of pm

k which is larger than p̄k. Let Sk be the number
of pm

k which is smaller than p̄k. By definition of “median”, we have Lk = Sk.

– pk > p̄k: We have the following relations

|pk − pm
k | = |p̄k − pm

k | + |pk − p̄k| if pm
k ≤ p̄k ,

|pk − pm
k | ≥ |p̄k − pm

k | − |p̄k − pk| if pm
k ≥ p̄k .

Therefore, we have

f1(pk) =
M∑

m=1

|pk − pm
k |

≥
M∑

m=1

|p̄k − pm
k | + |pk − p̄k|Sk − |pk − p̄k|Lk

=
M∑

m=1

|p̄k − pm
k | + |pk − p̄k|(Sk − Lk)

=
M∑

m=1

|p̄k − pm
k | = f1(p′

k) .
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– pk < p̄k: We have the following relations

|pk − pm
k | = |p̄k − pm

k | + |pk − p̄k| if pm
k ≥ p̄k ,

|pk − pm
k | ≥ |p̄k − pm

k | − |p̄k − pk| if pm
k ≤ p̄k .

Therefore, we have

f1(pk) =
M∑

m=1

|pk − pm
k |

≥
M∑

m=1

|p̄k − pm
k | + |pk − p̄k|LK − |pk − p̄k|Sk

=
M∑

m=1

|p̄k − pm
k | + |pk − p̄k|(Lk − Sk)

=
M∑

m=1

|p̄k − pm
k | = f1(p′

k) .

For K > 2, p̄ may not satisfy the probability axioms (see next Table).

Table 1. Examples with K > 2

K = 3 K > 3

p1 0.8 0.1 0.1 p1 0.4 0.2 0.4/(K-3) . . . 0.4/(K-3)

p2 0.2 0.5 0.3 p2 0.2 0.7 0.1/(K-3) . . . 0.1/(K-3)

p3 0.1 0.4 0.5 p3 0.1 0.6 0.3/(K-3) . . . 0.3/(K-3)

p̄ 0.2 0.4 0.3 p̄ 0.2 0.6 0.3/(K-3) . . . 0.3/(K-3)

When K = 2, the probability axioms of p̄ are ensured by the fact that the
total rank of each distribution pm, m ∈ [M ], on the first and the second classes
is always M +1 (as the masses should sum up to 1). Thus, p̄ is either one element
of H(x) or the average of two elements of H(x). Let us illustrate this property
using an example where M = 9:

Table 2. An example of the total rank

p1 p2 p3 p4 p5 p6 p7 p8 p9

p1
Value 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Rank 1 2 3 4 5 6 7 8 9

p2
Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rank 9 8 7 6 5 4 3 2 1

In this example, the total rank is 10 and p̄ is p5. ��
In the next section, we recall the inference problem with credal sets [19,34].
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4 Inference Problem

As said, when our uncertainty is described by a credal set P(Y |x), instead
of a single probability p(Y |x), it is necessary to make predictions using some
theoretically founded decision rule extending classical expectation [19,34]. For
any p ∈ P(Y |x) and any loss function �, we shall denote by

ŷp
� ∈ argmin

ȳ∈Y

∑

y∈Y
�(y, ȳ)p(y |x) . (21)

Definition 3. An optimal set-valued prediction under the E-admissibility rule is

ŶE
�,P = {y ∈ Y | ∃p ∈ P s.t. y = ŷp

� } . (22)

Definition 4. An optimal set-valued prediction ŶM
�,P under the Maximality rule

is the set of the maximal, non-dominated elements of the partial order πP
� such

that ȳ ��,P ȳ′ if
inf
p∈P

Ep (�(y, ȳ′) − �(y, ȳ)) > 0 . (23)

In other words, we have

ŶM
�,P = {ȳ ∈ Y |  ∃ ȳ′ s.t. ȳ′ ��,P ȳ} . (24)

It is known that the set-valued prediction given by the E-admissibility rule is a
subset of the one given by the Maximality rule [34].

In the following, we discuss the computational complexity of the inference
problem when � is the 0/1 loss, i.e., �(y, ȳ) = �y = ȳ�, where �A� = 1 if the
predicate A is true and equals 0 otherwise

Let us start with the case of Maximality rule. For any p ∈ CHα(x), we have

Ep (�(y, ȳ′) − �(y, ȳ)) = p(ȳ |x) − p(ȳ′ |x) . (25)

Thus, the relation ȳ ��,P ȳ′ holds if the maximum of the linear program

maximize
p

f(p) ..= p(ȳ′ |x) − p(ȳ |x) (26)

subject to p −
Mα∑

m=1

γm pm = 0, γm ≥ 0,

Mα∑

m=1

γm = 1 , (27)

is negative. Note that if f(p) has a maximum value on the feasible region, then
it has this value on (at least) one of the extreme points, i.e., elements of Hα(x)
[26][Theorem 3.3]. Thus, a naive algorithmic solution is to compute f(p) for the
extreme p and compare it with 0. This requires time O(K2Mα) because in the
worst case, one needs to check all the K(K − 1) relation ȳ ��,P ȳ′, ȳ = ȳ′ ∈ Y.

We now tackle the case of the E-admissibility rule. Reminding that, ∀ y ∈
ŶE

�,P , there must exist at least one p ∈ CHα(x) such that y = ŷp
� . This is

equivalent to having at least one p ∈ CHα(x) such that p(y |x) ≥ p(y′ |x), y′ =
y. Thus, given any outer approximation YO

�,P of ŶE
�,P we can follow the suggestion

of [19] and formulate the problem of checking whether a given y ∈ YO
�,P satisfies

the relation y ∈ ŶE
�,P as finding the maximum value of a linear program
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maximize
p

f(p) ..= p(y |x) − p(y′ |x) (28)

subject to p −
Mα∑

m=1

γm pm = 0, γm ≥ 0,

Mα∑

m=1

γm = 1 , (29)

p(y |x) − p(y′′ |x) ≥ 0 , y′′ ∈ Y \ {y, y′} , (30)

where y′ = y, and comparing it with 0. Hence, finding ŶE
�,P requires solving

|YO
�,P | linear programs, one per y ∈ |YO

�,P |. The naive algorithmic solution, i.e.,
iterating over all the extreme points, can not be applied here because a class y
may be optimal only for probabilities in the interior of CHα(x).

5 Experiment

To motivate the potential use of the proposed framework, we perform some
experiments on 9 tabular datasets from the UCI repository (cf. the left part of
Table 3), following a 10-fold cross-validation procedure.

We employ random forests (RFs) [18] (with default setting of scikit-learn) as
the base learner. RFs are compared to an instantiation of our framework, where
Hα(x) is constructed under the fsqe (13) and used to produce ŶM

�,P . For each
train test split, we follow a 10-fold nested cross-validation procedure to choose α
optimizing u65. The RF is then retrained using the entire training dataset and
the chosen α is used to construct Hα(x) during the inference phase. The source
code has been made public at https://github.com/Haifei-ZHANG/Probability-
Sets-Model.

Table 3. Statistics of data sets (P is the number of features) and experimental results.

Statistics of data sets Overall results Cases of abstention

RF Ours RF Ours

# Name N P K Acc. (%) u65 (%) u80 (%) |ŶM
�,P | Acc. (%) Corr. (%)

1 ecoli 336 7 8 78.35 77.77 79.38 2.05 69.84 93.59

2 balance scale 625 4 3 80.50 82.17 83.15 2.02 26.75 67.75

3 vehicle 846 18 4 74.46 78.16 82.63 2.04 47.31 90.24

4 vowel 990 10 11 65.35 65.89 68.71 2.05 41.05 71.80

5 wine quality 1599 11 6 57.91 61.67 68.54 2.02 49.69 86.73

6 optdigits 1797 64 10 96.95 97.03 97.19 2.03 50.74 80.19

7 segment 2300 19 7 98.05 98.02 98.22 2.09 50.12 78.93

8 waveform 5000 21 3 85.52 85.81 88.33 2 62.06 99.91

9 letter 20000 16 26 96.57 96.58 96.64 2.03 34.33 81.71

https://github.com/Haifei-ZHANG/Probability-Sets-Model
https://github.com/Haifei-ZHANG/Probability-Sets-Model
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Overall results (accuracy, u65 and u80 scores [40] and cardinality |ŶM
�,P |)

show that our proposal may provide a promising correctness-precision trade-off,
compared to RFs itself. Ideally, a reliable classifier should be more cautious on
difficult cases, on which the conventional classifier is likely to fail [28,36]. To
verify this ability of our proposal, for each dataset, we report the correctness
(i.e., the percentage of times the true class is in ŶM

�,P), given the prediction was
imprecise, versus the accuracy of RF on those instances. The results (in the right
part of Table 3) strongly support our proposal.

This also suggests that the use of the E-admissibility rule (listed as future
work) may improve the overall results because, under the fsqe, predictions of RFs
should belong to ŶE

�,P ⊂ ŶM
�,P [34]. More precisely, under the fsqe, our proposal

should always gain in the term of correctness1 and the use of the E-admissibility
rule may help to produce smaller (reliable) imprecise predictions.

Fig. 1. u65 and u80 scores on the test set as functions of the value of α

1 Its predictions are identical to the ones provided by RFs in the cases of single-
ton/precise predictions. In the cases of imprecise predictions, its predictions cover
the predictions provided by RFs.
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To gain more insights about the influence of α, we consider u65 and u80 scores
on the test set as functions of the value of α. The results in Fig. 1 are indeed in
agreement with our expectations. The P(Y |x) induced by Hα(x) with small α

may contain extreme/noisy distributions and produce large ŶM
�,P (resulting in

low u65 and u80 scores). Moderate α may provide a nice correctness-precision
trade-off (reflected via promising u65 and u80 scores). For large α, P(Y |x) is
shrunken as (small) neighborhood of the p∗ (5) and our proposal (under fsqe)
becomes similar to RFs, which use the p∗ to make predictions. The results also
suggest that, in practice, nested cross-validation procedure can help us to find
some good value of α (even if the ideal gain provided by the optimal α is small).

6 Conclusion

We propose a simple, easy to use quantile-based framework for estimating credal
sets using output of ensemble methods, that can also cope with complex types of
data. Preliminary experiments suggest that our proposal may provide a promis-
ing correctness-precision trade-off, compared to ensemble methods. To seek for
a complete picture on the usefulness of our proposal, we envision the following
works: (1) implement our proposal with other distances and the E-admissibility
rule and analyze (dis)advantages provided by different combinations of distance
and decision rule, (2) include threshold-based classifiers as competitors, and (3)
include complex types of data (such as images) into our empirical studies.

Our theoretical results also inform that voting ensembles, such as RFs, use the
p∗ under fsqe to make predictions. It would be interesting to investigate whether
using the p∗ under other distances to make predictions may bring significant
difference, thought our primary goal is not to study the problem of how to
aggregate the probabilistic predictions provided by ensemble members into the
final singleton predictions.
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Abstract. Probabilistic Graphical Models are often used to understand
dynamics of a system. They can model relationships between features
(nodes) and the underlying distribution. Theoretically these models can
represent very complex dependency functions, but in practice often sim-
plifying assumptions are made due to computational limitations associ-
ated with graph operations. In this work we introduce Neural Graphical
Models (NGMs) which attempt to represent complex feature dependencies
with reasonable computational costs. Given a graph of feature relation-
ships and corresponding samples, we capture the dependency structure
between the features along with their complex function representations
by using a neural network as a multi-task learning framework. We pro-
vide efficient learning, inference and sampling algorithms. NGMs can fit
generic graph structures including directed, undirected and mixed-edge
graphs as well as support mixed input data types. We present empirical
studies that show NGMs’ capability to represent Gaussian graphical mod-
els, perform inference analysis of a lung cancer data and extract insights
from a real world infant mortality data provided by CDC.

Software:NGM code link.

Keywords: Probabilistic Graphical Models · Deep learning · Learning
representations

1 Introduction

Graphical models are a powerful tool to analyze data. They can represent the
relationships between features and provide underlying distributions that model
functional dependencies between them [15,20]. Learning, inference and sampling
are operations that make such graphical models useful for domain exploration.
Learning, in a broad sense, consists of fitting the distribution function param-
eters from data. Inference is the procedure of answering queries in the form of
conditional distributions with one or more observed variables. Sampling is the
ability to draw samples from the underlying distribution defined by the graph-
ical model. One of the common bottlenecks of graphical model representations
is having high computational complexities for one or more of these procedures.

In particular, various graphical models have placed restrictions on the set of
distributions or types of variables in the domain. Some graphical models work
with continuous variables only (or categorical variables only) or place restrictions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 284–307, 2024.
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on the graph structure (e.g., that continuous variables cannot be parents of
categorical variables in a DAG). Other restrictions affect the set of distributions
the models are capable of representing, e.g., to multivariate Gaussian.

For wide adoption of graphical models, the following properties are desired:

– Rich representations of complex underlying distributions.
– Ability to simultaneously handle various input types such as categorical, con-

tinuous, images and embedding representations.
– Efficient algorithms for learning, inference and sampling.
– Support for various representations: directed, undirected, mixed-edge graphs.
– Access to the learned underlying distributions for analysis.

In this work, we propose Neural Graphical Models (NGMs) that satisfy the afore-
mentioned desiderata in a computationally efficient way. NGMs accept a feature
dependency structure that can be given by an expert or learned from data. The
dependency structure may have the form of a graph with clearly defined seman-
tics (e.g., a Bayesian network graph or a Markov network graph) or an adjacency
matrix. Note that the graph may be either directed or undirected. Based on this
dependency structure, NGMs learn to represent the probability function over the
domain using a deep neural network. The parameterization of such a network can
be learned from data efficiently, with a loss function that jointly optimizes adher-
ence to the given dependency structure and fit to the data. Probability functions
represented by NGMs are unrestricted by any of the common restrictions inherent
in other PGMs. They also support efficient inference and sampling.

2 Related Works

Probabilistic Graphical Models (PGMs) aim to learn the underlying joint dis-
tribution from which input data is sampled. Often, to make learning of the dis-
tribution computationally feasible, inducing an independence graph structure
between the features helps. In cases where this independence graph structure is
provided by a domain expert, the problem of fitting PGMs reduces to learning
distributions over this graph. Alternatively, there are many methods tradition-
ally used to jointly learn the structure as well as the parameters [12,15,23,34]
and have been widely used to analyse data in many domains [1,2,6,7,25,26].

Recently, many interesting deep learning based approaches for DAG recovery
have been proposed [16,41–43]. These works primarily focus on structure learn-
ing but technically they are learning a Probabilistic Graphical Model. These
works depend on the existing algorithms developed for the Bayesian networks
for the inference and sampling tasks. A parallel line of work combining graphical
models with deep learning are Bayesian deep learning approaches: Variational
AutoEncoders, Boltzmann Machines etc. [13,17,39]. The deep learning models
have significantly more parameters than traditional Bayesian networks, which
makes them less suitable for datasets with a small number of samples. Using
these deep graphical models for downstream tasks is computationally expensive
and often impedes their adoption.
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We would be remiss not to mention the technical similarities NGMs have
with some recent research works. We found “Learning sparse nonparametric
DAGs” [43] to be the closest in terms of representation ability. In one of their
versions, they model each independence structure with a different neural network
(MLP). However, their choice of modeling feature independence criterion differs
from NGM. They zero out the weights of the row in the first layer of the neural
network to induce independence between the input and output features. This for-
mulation restricts them from sharing the NNs across different factors. Second,
we found in [16] path norm formulations of using the product of NN weights
for input to output connectivity similar to NGMs. They used the path norm to
parametrize the DAG constraint for continuous optimization, while [32,33] used
them within unrolled algorithm framework to learn sparse gene regulatory net-
works.

Methods that model the conditional independence graphs [3,10,27–29] are
a type of graphical models that are based on underlying multivariate Gaussian
distribution. Probabilistic Circuits [21], Conditional Random Fields or Markov
Networks [35] and some other PGM formulations like [19,37,38,40] are popular.
These PGMs often make simplifying assumptions about the underlying distribu-
tions and place restrictions on the accepted input data types. Real-world input
data often consist of mixed datatypes (real, categorical, text, images etc.) and
it is challenging for the existing graphical model formulations to handle.

3 Neural Graphical Models

We propose a new Probabilistic Graphical Model type, called Neural Graphical
Models (NGMs) and describe the associated learning, inference and sampling algo-
rithms. Our model accepts all input types and avoids placing any restrictions on
the form of underlying distributions.

Problem Setting: We consider input data X that have M samples with each
sample consisting of D features. An example can be gene expression data, where
we have a matrix of the microarray expression values (samples) and genes (fea-
tures). In the medical domain, we can have a mix of continuous and categorical
data describing a patient’s health. We are also provided a graph G which can be
directed, undirected or have mixed-edge types that represents our belief about
the feature dependency relationships (in a probabilistic sense). Such graphs are
often provided by experts and include inductive biases and domain knowledge
about the underlying system functions. In cases where the graph is not provided,
we make use of the state-of-the-art algorithms to recover DAGs or CI graphs,
refer to Sect. 2. The NGM input is the tuple (X, G).

3.1 Representation

Figure 1 shows a sample graph recovered and how we view the value of each
feature as a function of the values of its neighbors. For directed graphs, each
feature’s value is represented as a function of its Markov blanket in the graph.
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Fig. 1. Graphical view of NGMs: The input graph G (undirected) for given input data
X ∈ R

M×D. Each feature xi = fi(Nbrs(xi)) is a function of the neighboring features.
For a DAG, the functions between features will be defined by the Markov Blanket
relationship xi = fi(MB(xi)). The adjacency matrix (right) represents the associated
dependency structures.

We use the graph G to understand the domain’s dependency structure, but
ignore any potential parametrization associated with it.

We introduce a neural view which is another way of representing G, as shown
in Fig. 2. The neural networks used are multi-layer perceptrons with appropri-
ate input and output dimensions that represent graph connections in NGMs. We
denote a NN with L number of layers with the weights W = {W1,W2, · · · ,WL}
and biases B = {b1, b2, · · · , bL} as fW,B(·) with non-linearity not mentioned
explicitly. We experimented with multiple non-linearities and found that ReLU
fits well with our framework. Applying the NN to the input X evaluates the fol-
lowing mathematical expression, fW,B(X) = ReLU(WL ·(· · · (W2 ·ReLU(W1 ·X+
b1)+b2) · · · )+bL). The dimensions of the weights and biases are chosen such that
the neural network input and output units are equal to |D| with the hidden layers
dimension H remaining a design choice. In experiments, we start with H = 2|D|
and subsequently adjust the dimensions based on the validation loss. The product
of the weights of the neural networks Snn =

∏L
l=1|Wl| = |W1|×|W2|×· · ·×|WL|,

where |W | computes the absolute value of each element in W , gives us path
dependencies between the input and the output units. For short hand, we denote
Snn = Πi|Wi|. If Snn[xi, xo] = 0, then the output unit xo is independent of the
input unit xi. Increasing the layers and hidden dimensions of the NNs provide
us with richer dependence function complexities.

Initially, the NN is fully connected. Some of the connections will be dropped
during training, as the associated weights are zeroed out. We can view the result-
ing NN as a glass-box model (indicating transparency), since we can discover
functional dependencies by analyzing paths from input to output.

3.2 Learning

Using the rich and compact functional representation achieved by using the
neural view, the learning task is to fit the neural networks to achieve the desired
dependency structure S (encoded by the input graph G), along with fitting the
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Fig. 2. Neural view of NGMs: NN as a multitask learning architecture capturing non-
linear dependencies for the features of the undirected graph in Fig. 1. If there is a
path from the input feature to an output feature, that indicates a dependency between
them. The dependency matrix between the input and output of the NN reduces to
matrix product operation Snn = Πi|Wi| = |W1| × |W2|. Note that not all the zeroed
out weights of the MLP (in black-dashed lines) are shown for the sake of clarity.

regression to the input data X. Given the input data X we want to learn the
functions as described by the NGMs graphical view, Fig. 1. These can be obtained
by solving the multiple regression problems shown in neural view, Fig. 2. We
achieve this by using the neural view as a multi-task learning framework. The
goal is to find the set of parameters W that minimize the loss expressed as the
distance from Xk to fW(Xk) (averaged over all samples k) while maintaining
the dependency structure provided in the input graph G. We can define the
regression operation as follows:

argmin
W,B

M∑

k=1

∥
∥Xk − fW,B(Xk)

∥
∥2

2
s.t.

(
ΠL

i=1|Wi|
) ∗ Sc = 0 (1)

where we introduced a soft-graph constraint. Here, Sc represents the comple-
ment of the matrix S, which essentially replaces 0 by 1 and vice-versa. The A∗B
represents the Hadamard operator which does an element-wise matrix multipli-
cation between the same dimension matrices A,B. Including the constraint as a
Lagrangian term with �1 penalty and a constant λ that acts a tradeoff between
fitting the regression and matching the graph dependency structure, we get the
following optimization formulation

argmin
W,B

M∑

k=1

∥
∥Xk − fW,B(Xk)

∥
∥2

2
+ λ log

(∥
∥
(
ΠL

i=1|Wi|
) ∗ Sc

∥
∥
1

)
(2)

In our implementation, the individual weights are normalized using �2-norm
before taking the product. We normalize the regression loss and the structure
loss terms and apply appropriate scaling to the input data features.
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Proximal Initialization Strategy: To get a good initialization for the NN
parameters W and λ we implement the following procedure. We solve the
regression problem described in Eq. 1 without the structure constraint. This
gives us a good initial guess of the NN weights W0. We choose the value
λ =

∥
∥
(
Πi|W 0

i |) ∗ Sc
∥
∥2

2
and update after each epoch. Experimentally, we found

that this strategy may not work optimally in a few cases and in such cases we
recommend fixing the value of λ at the beginning of the optimization. The value
of λ can be chosen such that it brings the regression loss and the structure loss
values to same scale.

Algorithm 1: NGMs: Learning algorithm
Function proximal-init(X,S):

fW ← Init MLP using dimensions from S
fW0 ← argminW

∑M
k=1

∥
∥Xk − fW(Xk)

∥
∥2

2

(Using Adam optimizer for E1 epochs)
return fW0

Function fit-ngm(X,S, fW0 , λ0):
For e = 1, · · · , E2 do

LLr =
∑M

k=1

∥
∥Xk − fWe−1(Xk)

∥
∥2

2

+ λe−1 log
∥
∥
(
Πi|W e−1

i |) ∗ Sc
∥
∥
1

We ← backprop LLr to update params
· · · (optional λ update) · · ·
λe ← ‖(Πi|W e

i |) ∗ Sc‖22
return fW

Function ngm-learning(X,S):
fW0 ← proximal-init(X,S)

λ0 ← ∥
∥
(
Πi|W 0

i |) ∗ Sc
∥
∥2

2

fW ←fit-ngm(X,S, fW0 , λ0)
return fW

The learned NGM des-
cribes the underlying
graphical model distri-
butions, as presented in
Algorithm 1. There are
multiple benefits of jointly
optimizing in a multi-task
learning framework mod-
eled by the neural view
of NGMs, Eq. 2. First, shar-
ing of parameters across
tasks helps in signifi-
cantly reducing the num-
ber of learning parame-
ters. It also makes the
regression task more robust
with respect to noisy and
anomalous data points. A
separate regression model
for each feature may lead
to inconsistencies in the
learned distribution [11].
Second, we fully leverage
the expressive power of
the neural networks to model complex non-linear dependencies. Additionally,
learning all the functional dependencies jointly allows us to leverage batch learn-
ing powered with GPU based scaling to get quicker runtimes.

3.3 Extension to Generic Data Types

In real world applications, we often find inputs consisting of generic datatypes.
For instance, in the gene expression data, there can be meta information (cate-
gorical) or images associated with the genes. Optionally, including node embed-
dings from pretrained deep learning models can be useful. These variables are
dependent on each other and can be represented in the form of a graph that acts
as an input to NGM. We present two approaches for NGMs to handle such mixed
input data types simultaneously which are otherwise difficult to accommodate
in the existing PGM frameworks.
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Fig. 3. NGMs with projection modules: The input X can be one-hot (categorical),
image or generic embedding (text, audio, speech, etc.). Projection modules (encoder
+ decoder) are used as a wrapper around the neural view of NGMs. The architecture
choice of the projection modules depends on the input data type and users’ design
choices. The remaining details are similar to Fig. 2.

(I) Projection Modules. We add a Projection module consisting of an encoder
and decoder that act as a wrapper around the neural view of the NGM, refer to
Fig. 3. Without loss of generality we consider that each of the D inputs is an
embedding in xi ∈ R

I . We convert all the input xi nodes in the NGM architecture
to hypernodes, where each hypernode contains the embedding vector. Consider
a hypernode that contains an embedding vector of size E and if an edge is con-
nected to the hypernode, then that edge is connected to all the E units of the
embedding vector. For each of the input hypernodes, we define a corresponding
encoder embedding ei ← enci(xi),∀ei ∈ R

E , which can be designed specifi-
cally for that particular input embedding. We apply the encoder modules to all
the xi hypernodes and obtain the ei hypernodes. Same procedure is followed
at the decoder end, where xi ← deci(di),∀di ∈ R

O. Now, the NGM optimiza-
tion reduces to learning the connectivity pattern using the path norms between
hypernodes ei’s and di’s. A slight adjustment to the graph-adjacency matrix
Sc ∈ {0, 1}DE×DO will account for the hypernodes. The optimization becomes

argmin
W,B,proj

M∑

k=1

∥
∥Xk − fW,B(proj(Xk))

∥
∥2

2
+ λ log

(∥
∥
(
ΠL

i=1|Wi|
) ∗ Sc

∥
∥
1

)
(3)

The projection modules can be jointly learned in the optimization, as shown in
Eq. 3, or alternatively, one can add fine-tuning layers to their pretrained versions
as desired.

(II) Extending Soft-graph Constraint. We can view the connections between the
D hypernodes of the input embedding xi ∈ R

I to the corresponding input of the
encoder layer ei ∈ R

E as a graph. We represent the set of input layer to the encoder
layer connections by Senc ∈ {0, 1}DI×DE , where there is a Senc[xi, ej ] = 1 if the
(xi, ej) hypernodes are connected. If we initialize a fully connected neural network
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(or MLP) between the input layer and the encoder layer, we can utilize the soft-
graph penalty to map the paths of the input units to the encoder units in order
to satisfy the graph structure defined by Senc. Similarly for the decoder we obtain
Sdec. We get the following Lagrangian based optimization by extending soft-graph
constraints to the connection patterns of the encoder and decoder networks.

argmin
W,B,We,Wd

M∑

k=1

∥
∥Xk − fW,B,We,Wd(Xk)

∥
∥2

2
+ λ log

(∥
∥
(
ΠL

i=1|Wi|
) ∗ Sc

∥
∥
1

)

+ λe log
(∥
∥
∥
(
ΠLe

i=1|W e
i |

)
∗ Sc

enc

∥
∥
∥
1

)
+ λd log

(∥
∥
∥
(
ΠLd

i=1|W d
i |

)
∗ Sc

dec

∥
∥
∥
1

)
(4)

where fW,B,We,Wd(·) represents the entire end-to-end MLP including the encoder
and decoder mappings. The Lagrangian constants λ, λe, λd are initialized in the
same manner as explained in Sect. 3.2. We recommend this approach as training
is efficient, highly scalable and can handle large embedding sizes by leveraging
batch processing.

3.4 Inference

Inference is the process of using the graphical model to answer queries. Calcu-
lation of conditional distributions and maximum a-posteriori (MAP) values are
key operations for inference. NGM marginals can be obatined using the frequentist
approach from the input data.

We consider two iterative procedures to answer conditional distribution
queries over NGMs described in Algorithm 2. We split the input variables
{K,U} ← I into two parts, K denotes the variables with known (observed)
values and U denotes the unknown (target) variables. The inference task is to
predict the maximum a posteriori (MAP) values of the unknown nodes based
on the trained NGM model distributions. In the fist approach, we use the pop-
ular message passing algorithms that keeps the observed values of the features
fixed and iteratively updates the values of the unknowns until convergence. We
developed an alternative algorithm which is efficient and is our recommended
approach to perform inference in NGMs.

Gradient Based Approach to Computing MAP Values: The weights of
the trained NGM model are frozen once trained. We define the regression loss over
the known attribute values as we want to make sure that the prediction matches
values for the observed features. Using this loss we update the learnable input
tensors alternating between forward and backward passes until convergence to
obtain the values of the target features. Note that the backward pass shares
its reliance on gradient with backpropagation, but in our procedure, only node
values are updated, the weights remain frozen. Since the NGM model is trained
to match the output O to the input I, we can view this procedure of iteratively
updating the unknown features so that the input and output matches. Based
on the convergence loss value reached after the optimization, one can assess
the confidence in the inference. Furthermore, plotting the individual feature
dependency functions also helps in gaining insights about predicted values.
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Algorithm 2: NGMs: Inference algorithm
Function gradient-based(fW ,XI):

{K,U} ← I, split the variables
K ← fixed indices (known)
U ← learnable indices (unknown)
fW ← freeze weights
do

XO = fW(XI)
LIn = ‖XO[K] − XI [K]‖22
XI [U ] ← update learnable tensors by
gradient descent on LIn

while LIn > ε
return XI [U ]

Function message-passing(fW ,X0
I ):

{K,U} ← I, split the variables
t = 0

while
∥
∥Xt

I − Xt−1
I

∥
∥2

2
> ε do

{Xt
I [U ];XI [K]} =

fW({Xt−1
I [U ];XI [K]})

t = t + 1

return Xt
I [U ]

Function ngm-inference(fW ,X0
I ):

Input: fW trained NGM model
X0

I ∈ R
D×1 (mean values for unknown)

XI ←message-passing (fW ,X0
I )

· · · or · · ·
XI ←gradient-based (fW ,X0

I )
return XI

Obtaining Conditional
Probability Distribu-
tions. It is often desir-
able to get the full con-
ditional probability den-
sity function rather than
just a point value for any
inference query. In case
of categorical variables,
this is readily obtained
as we output a distribu-
tion over all the categories
(using one-hot encoding).
In practice, given a dis-
tribution over different
categories obtained dur-
ing inference, we clip the
individual values between
[ε, 1]1 and then divide
by the total sum to get
the final distribution. For
numerical features, we
consider a binned input
and corresponding real
valued output. The input
node corresponding to the
numerical feature is split
into m nodes, each corre-
sponding to one bin. This
is similar to converting
the feature to a multi-
valued categorical vari-
able. The output node for the feature remains unsplit. We link each bin-
node to retain the paths learned in training for the original feature. With
this slight modification, the regression term of the loss function Eq. 3 becomes
∑M

k=1

∥
∥Xk

O-real − fW(proj(Xk
I-binned))

∥
∥2

2
.

Sampling: An NGM model can also provide efficient sampling utilizing the infer-
ence mechanism above. Details are provided in Appendix A.

4 Experiments

We evaluate NGMs on synthetic and real data. In this section, we cover experi-
ments on infant mortality data. Additional details and graphs for this domain

1 ε is an arbitrarily small value used to avoid setting any probability value to 0.
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are included in Appendix E. In Appendix C we show experiments on Gaussian
Graphical models and in Appendix D on lung cancer data. We discuss design
strategies and optimization details for NGMs in Appendix B.

Infant Mortality Analysis: The dataset is based on CDC Birth Cohort Linked
Birth - Infant Death Data Files [36]. It describes pregnancy and birth variables
for all live births in the U.S. together with an indication of an infant’s death
before the first birthday. We used the data for 2015 (latest available), which
includes information about 3,988,733 live births in the US during 2015 calendar
year.

Recovered Graphs: We recovered the graph strucure of the dataset using
uGLAD [28] and using Bayesian network package bnlearn [24] with Tabu search
and AIC score. The graphs are shown in Fig. 7 and 6 in the Appendix. Since
bnlearn does not support networks containing both continuous and discrete vari-
ables, all variables were converted to categorical for bnlearn structure learning
and inference. In contrast, uGLAD and NGMs are both equipped to work with
mixed types of variables and were trained on the dataset prior to conversion.

Table 1. Comparison of predictive accuracy for gestational age and birthweight.

Methods Gestational age (ordinal, weeks) Birthweight (continuous, grams)
MAE RMSE MAE RMSE

Logistic Regression 1.512± 0.005 3.295± 0.043 N/A N/A

Bayesian network 1.040 ± 0.003 2.656± 0.027 N/A N/A

EBM 1.313± 0.002 2.376± 0.021 345.21 ± 1.47 451.59 ± 2.38
NGM w/full graph 1.560± 0.067 2.681± 0.047 394.90± 11.25 517.24± 11.51

NGM w/BN graph 1.364± 0.025 2.452± 0.026 370.20± 1.44 484.82± 1.88

NGM w/uGLAD graph 1.295± 0.010 2.370 ± 0.025 371.27± 1.78 485.39± 1.86

Table 2. Comparison of predictive accuracy for 1-year survival and cause of death.
Note: recall set to zero when there are no labels of a given class, and precision set to
zero when there are no predictions of a given class.

Methods Survival (binary) Cause of death (multivalued, majority class frequency 0.9948)
micro-averaged macro-averaged

AUC AUPR Precision Recall Precision Recall

Logistic Regression 0.633 ± 0.004 0.182 ± 0.008 0.995 ± 7.102e-05 0.995 ± 7.102e-05 0.136 ± 0.011 0.130 ± 0.002

Bayesian network 0.655 ± 0.004 0.252 ± 0.007 0.995 ± 7.370e-05 0.995 ± 7.370e-05 0.191 ± 0.008 0.158 ± 0.002

EBM 0.680 ± 0.003 0.299 ± 0.007 0.995 ± 5.371e-05 0.995 ± 5.371e-05 0.228 ± 0.014 0.166 ± 0.002

NGM w/full graph 0.721 ± 0.024 0.197 ± 0.014 0.994 ± 1.400e-05 0.994 ± 1.400e-05 0.497 ± 7.011e-06 0.500 ± 1.000e-06
NGM w/BN graph 0.752 ± 0.012 0.295 ± 0.010 0.995 ± 4.416e-05 0.995 ± 4.416e-05 0.497 ± 2.208e-05 0.500 ± 1.000e-06
NGM w/uGLAD graph 0.726 ± 0.020 0.269 ± 0.018 0.995 ± 9.735e-05 0.995 ± 9.735e-05 0.497 ± 4.868e-05 0.500 ± 1.000e-06

NGMs Trained on Infant Mortality Dataset: Since we have mixed input data
types, real and categorical data, we utilize the NGM-generic architecture, refer to
Fig. 3. We used a 2-layer neural view with H = 1000. The categorical input was
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converted to its one-hot vector representation and added to the real features
which gave us roughly ∼500 features as input, see Appendix E. NGM was trained
on the 4 million data points with ∼500 features using 128 CPUs within 2 h.

Inference Accuracy Comparison: Infant mortality dataset is particularly
challenging, since cases of infant death during the first year of life are (thank-
fully) rare. Thus, any queries concerning such low probability events are hard
to estimate with accuracy. To evaluate inference accuracy of NGMs, we compared
prediction for four variables of various types: gestational age (ordinal, expressed
in weeks), birthweight (continuous, specified in grams), survival till 1st birthday
(binary) and cause of death (“alive”, 10 most common causes of death with less
common grouped in category “other” with “alive” indicated for 99.48% of infants).
For each case, the dataset was split randomly into training and test sets (80/20)
20 times, each time a model was trained on the training set and accuracy metrics
evaluated on the test set. We compared the performance of logistic regression,
Bayesian networks, Explainable Boosting Machines (EBM) [8,18] and NGMs. In
case of NGMs, we trained two models: one using the Bayesian network graph and
one using the uGLAD graph.

Tables 1 and 2 demonstrate that NGM models are significantly more accurate
than logistic regression, more accurate than Bayesian Networks and on par with
EBM models for categorical and ordinal variables. They particularly shine in pre-
dicting very low probability categories for multi-valued variable cause of death,
where most models (both PGMs and classification models) typically struggle.
Note that we need to train a separate EBM model for each outcome variable
evaluated, while all variables can be predicted within one trained NGM model.
Interestingly, the two NGM models show similar accuracy results despite the dif-
ferences in the two dependency structures used in training.

Our experiments on infant mortality dataset demonstrate usefulness of
NGMs to model complex mixed-input real-world domains. We are currently run-
ning more experiments designed to capture more information on NGMs’ sensitivity
to input graph recovery algorithm and its impact on inference accuracy.

5 Conclusions

This work attempts to improve the usefulness of Probabilistic Graphical Models
by extending the range of input data types and distribution forms such models
can handle. Neural Graphical Models provide a compact representation for a
wide range of complex distributions and support efficient learning, inference and
sampling. The experiments are carefully designed to systematically explore the
various capabilities of NGMs. Though NGMs can leverage GPUs and distributed
computing hardware, we do forsee some challenges in terms of scaling in num-
ber of features and performance on very high-dimensional data. Using NGMs for
images and text based applications will be interesting to explore. We believe that
NGMs is an interesting amalgam of the deep learning architectures’ expressivity
and Probabilistic Graphical Models’ representation capabilities.
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A Sampling

Algorithm 3: NGMs : Sampling algorithm
Function get-sample(fW ,Ds):

D = len(Ds)
X ∈ R

D×1 (init learnable tensor)
Sample 1st feature value from empirical
marginal distribution x1 ∼ U(P (x1))
For i = 2, · · · ,D do

K ← 1 : i − 1 (fixed tensor indices)
U ← i : D (learnable tensor indices)
P (xi|X[K]) ←
NGM-inference(fW , {X[K],X[U ]})

X[i] ∼ U (P (xi|X[K]))
return X

Function ngm-sampling(fW , G):
Input: fW trained NGM model
Randomly choose xi’th starting feature
Ds=BFS(G,xi) [undirected]

· · · queue the features · · ·
Ds=topological-sort(G) [DAGs]
X ←get-sample (fW ,Ds)
return X

To sample from the NGM we
propose a procedure akin
to forward sampling in
Bayesian networks described
in Algorithm 3. We based our
sampling procedure to fol-
low Xi ∼ U(fnn(nbrs(Xi))).
Note that nbrs(Xi) will be
MB(Xi) for DAGs. To get
each sample, we start by
choosing a feature at ran-
dom. To get the order in
which the features will be
sampled, we do a breadth-
first-search (topological sort
in DAGs) and arrange the
nodes in Ds. In this way, the
immediate neighbors are cho-
sen first and then the sam-
pling spreads over the graph
away from the starting fea-
ture. We start by sampling
the value of the first feature
from the empirical marginal
distribution. We keep it fixed for the subsequent iterations (feature is now
observed). We then call the inference algorithm conditioned on this fixed fea-
ture value to get the distributions over the unknown features. We sample the
value of each subsequent feature in the ordering from the conditional distri-
bution based on previously assigned values. This process is repeated till we
get a sample value of all the features. The conditional updates are defined as
p

(
Xk

i ,Xk
i+1, · · · ,Xk

D|Xk
1 , · · · ,Xk

i−1

)
. We keep on fixing the values of features

and run inference on the remaining features until we have obtained the values
for all the features and thus get a new sample.

The inference algorithm of the NGM facilitates conditional inference on mul-
tiple unknown features over multiple observed features. Furthermore, all the
NGM algorithms above can be executed in batch mode. We leverage these capa-
bilities of the inference algorithm for faster sampling from NGMs. We can sample
from a conditional distribution by pre-setting the values of known variables and
update conditional distributions with both pre-set and already instantiated val-
ues as given.
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B Design Strategies and Best Practices for NGMs

We share some of the design strategies and best practices that we developed
while working with NGMs in this section. This is to provide insights to the read-
ers on our approach and help them narrow down the architecture choices of
NGMs for applying to their data. We hope that sharing our thought process and
findings here will foster more transparency, adoption, and help identify potential
improvements to facilitate the advancement of research in this direction.

– Choices for the structure loss function. We narrowed down the loss function
choice to Hadamard loss ‖(Πi|Wi|) ∗ Sc‖ vs square loss ‖(Πi|Wi|) − S‖2. We
also experimented with various choices of Lagrangian penalties for the struc-
ture loss. We found that �2 worked better in most cases. Our conclusion was
to use Hadamard loss with either �1 vs �2 penalty.

– Strategies for λ initialization. (I) Keep it fixed to balance between the initial
regression loss and structure loss. We utilize the loss balance technique men-
tioned in [22]. (II) Use the proximal initialization technique combined with
increasing λ value as described in Algorithm 1. Both techniques seem to work
well, although (I) is simpler to implement and gives equivalent results.

– Selecting width and depth of the neural view. We start with hidden layer size
H = 2× |I|, that is, twice the input dimension. Then based on the regression
and structure loss values, we decide whether to go deeper or have a larger
number of units. In our experience, increasing the number of layers helps
in reducing the regression loss while increasing the hidden layer dimensions
works well to optimize for the structure loss.

– Choice of non-linearity. For the MLP in the neural view, we played around
with multiple options for non-linearities. We ended up using ReLU, although
tanh gave similar results.

– Handling imbalanced data. NGMs can also be adapted to utilize the existing
imbalanced data handling techniques [4,5,9,30,31] which improved results in
our experience. Note excellent results for a multi-valued categorical variable
where the majority class probability exceeds 99% (Sect. 4).

– Calculate upper bound on regression loss. Try fitting NGM by assuming fully
connected graph to give the most flexibility to regression. This way we get an
upper bound on the best optimization results on just the regression loss. This
helps to select the depth and dimensions of MLPs required when the sparser
structure is imposed.

– Convergence of loss function. In our quest to figure out a way to always get
good convergence on both the losses (regression & structure), we tried out
various approaches. (I) Jointly optimize both the loss functions with a weight
balancing term λ, Eq. 2. (II) We tested out Alternating Method of Multipliers
(ADMM) based optimization that alternately optimizes for the structure loss
and regression loss. (III) We also ran a proximal gradient descent approach
which is sometimes suitable for loss with �1 regularization terms. Choice (I)
turned out to be effective with reasonable λ values. The recommended range
of λ is [1e-2, 1e2].
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In the current state, it can be tedious to optimize NGMs and it requires a fair
amount of experimentation. It is a learning experience for us as well and we are
always on a lookout to learn new techniques from the research community.

C Modeling Gaussian Graphical Models

We designed a synthetic experiment to study the capability of NGMs to represent
Gaussian graphical models. The aim of this experiment is to see (via plots and
sampling) how close are the distributions learned by the NGMs to the GGMs.

Fig. 4. The graph on the left shows the chain graph G (partial correlations in green are
positive, red are negative, thickness shows the correlations strength) obtained from the
initialized partial correlation matrix. Samples X ∈ R

2000×10 were drawn from the GGM.
NGM was learned on the input (X, G). The two plots on the right show the dependency
functions of NGM and GGM for a particular node by varying its neighbor’s values. The
positive and negative correlations are reflected in the slope of the curve, as expected
analytically. We then sampled from the learned NGM to obtain data Xs ∈ R

Ms×10. The
middle of the figure shows the graph recovered by running uGLAD [28] on Xs. We can
observe that it recovered all the original edges with correct correlation signs. There are
three spurious edges not present in the original graph.

Table 3. The CI graph recovered from NGM samples is compared with the CI graph
defined by the GGMs precision matrix. Area under the ROC curve (AUC) and Area
under the precision-recall curve (AUPR) values for 10 runs are reported, refer to Fig. 4.

Samples AUPR AUC

1000 0.84 ± 0.03 0.91 ± 0.002

2000 0.86 ± 0.02 0.93 ± 0.001

4000 0.96 ± 0.00 0.99 ± 0.003
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C.1 Setup

Define the Underlying Graph. We defined a chain (or path-graph) containing D
nodes as the underlying graph. We chose this graph as it allows for an easier
study of dependency functions.

Fit GGM and Get Samples. Based on the underlying graph structure, we defined
a precision matrix Θ and obtained its entries by randomly sampling from Θi,j ∼
U{(−1,−0.5)∪ (0.5, 1)}. We then used this precision matrix as the multivariate
Gaussian distribution parameters to obtain the input sample data X. We get
the corresponding partial correlation graph G by using the formula,

PXi,Xj
.XD\i,j = − Θi,j√

Θi,iΘj,j

.

Fit NGM and Get Samples. We fit a NGM on the input (X, G). We chose H = 30
with 2 layers and non-linearity tanh for the neural view’s MLP. Training was
done by optimizing Eq. 2 for the input, refer to Fig. 4. Then, we obtained data
samples Xs from the learned NGM.

C.2 Analysis

How Close are the GGM and NGM Samples? We recover the graph using the
graph recovery algorithm uGLAD on the sampled data points from NGMs and
compare it with the true CI graph. Table 3 shows the graph recovery results
of varying the number of samples from NGMs. We observe that increasing the
number of samples improves graph recovery, which is expected.

Were the NGMs able to Model the Underlying Distributions? The functions plot
(on the right) in Fig. 4 plots the resultant regression function for a particular
node as learned by NGM. This straight line with the slope corresponding to the
partial correlation value is what we expect theoretically for the GGM chain
graph. This is also an indication that the learned NGMs were trained properly
and reflect the desired underlying relations. Thus, NGMs are able to represent
GGM models.

D Lung Cancer Data Analysis

We analysed lung cancer data from [14] using NGMs. The effectiveness of cancer
prediction system helps people to learn their cancer risk with low cost and take
appropriate decisions based on their cancer risk status. This data contains 284
patients and for each patient 16 features (Gender, Smoking, Anxiety, Lung cancer
present, etc.) are collected. Each entry is a binary entry (YES/NO) or in some
cases (AGE), entries are binarized. We used NGMs to study how different features
are related and discover their underlying functional dependencies.
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The input data along with the CI graph recovered using uGLAD were used to
learn an NGM in Fig. 5.

In order to gauge the regression quality of NGMs, we compare with logistic
regression to predict the probability of feature values given the values of the

Fig. 5. (top) The CI graph recovered by uGLAD for the lung cancer data. Plots below
show the conditional distribution for the features P(Lung cancer=’Yes’| nbrs(Lung
cancer)) and P(Smoking| nbrs(Smoking)) based on their neighbors. We used a 2-layer
NGM with hidden size H = 30 and tanh non-linearity. NGMs are able to capture non-
linear dependencies between the features. Interestingly the NGMs match the relationship
trends discovered (positive and negative correlations) by the corresponding CI graph.

Table 4. 5-fold CV results.

Methods Lung cancer Smoking

LR 0.95 ± 0.02 0.71 ± 0.01

NGM 0.96 ± 0.01 0.79 ± 0.02
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remaining features. Table 4 shows regression results of logistic regression (LR)
and NGMs on 2 different features, lung cancer and smoking. The prediction prob-
ability for NGMs were calculated by running inference on each test datapoint, eg.
P(lung-cancer=yes| fi = vi ∀i in test data). This experiment primarily demon-
strates that a single NGM model can robustly handle fitting multiple regressions
and one can avoid training a separate regression model for each feature while
maintaining on par performance. Furthermore, we can obtain the dependency
functions that bring in more interpretability for the predicted results, Fig. 5.
Samples generated from this NGM model can be used for multiple downstream
analyses.

E NGM on Infant Mortality Data (Details)

E.1 Representing Categorical Variables

Assume that in the input X, we have a column Xc having |C| different categori-
cal entries. One way to handle categorical input is to do one-hot encoding on the
column Xc and end up with |C| different columns, Xc = [Xc1 ,Xc2 , · · · ,XcC ].
We replace the single categorical column with the corresponding one-hot rep-
resentation in the original data. The path dependencies matrix S of the MLP
will be updated accordingly. Whatever connections were previously connected
to the categorical column Xc should be maintained for all the one-hot columns
as well. Thus, we connect all the one-hot columns to represent the same path
connections as the original categorical column.

E.2 Additional Infant Mortality results

Fig. 6. The Bayesian network graph learned using score-based method for the Infant
Mortality 2015 data.
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Fig. 7. The CI graph recovered by uGLAD for the Infant Mortality 2015 data.

The Dataset and Recovered Graphs: We recovered the graph strucure of
the dataset using uGLAD [28] and using Bayesian network package bnlearn [24]
with Tabu search and AIC score. The graphs are shown in Fig. 7 and 6 respec-
tively. Since bnlearn does not support networks containing both continuous and
discrete variables, all variables were converted to categorical for bnlearn struc-
ture learning and inference. In contrast, uGLAD and NGMs are both equipped to
work with mixed types of variables and were trained on the dataset prior to
conversion.

Both graphs show similar sets of clusters with high connectivity within each
cluster:

– parents’ race and ethnicity (mrace & frace),
– related to mother’s bmi, height (mhtr) and weight, both pre-pregnancy

(pwgt_r) and at delivery (dwgt_r),
– consisting of maternal morbidity variables marked with mm prefix (e.g.,

unplanned hysterectomy),
– pregnancy related complications such as hypertension and diabetes (variables

prefixed with rf and urf),
– related to delivery complications and interventions (variables prefixed with
ld),

– showing interventions after delivery (ab prefix) such as ventilation or neonatal
ICU,

– describing congenital anomalies diagnosed in the infant at the time of birth
(variables prefixed with ca),

– related to infant’s death: age, place, autopsy, manner, etc.

Apart from these clusters, there are a few highly connected variables in both
graphs: gestational age (combgest and oegest), delivery route (rdmeth_rec),
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Apgar score, type of insurance (pay), parents’ ages (fage and mage variables),
birth order (tbo and lbo), and prenatal care.

With all these similarities, however, the total number of edges varies greatly
between the two graphs and the number of edges unique to each graph outnum-
bers the number of edges the two graphs have in common (see Fig. 8. In particu-
lar, most of the negative correlations discovered by uGLAD are not present in the
BN graph. One reason for the differences lies in the continuous-to-categorical
conversion performed prior to Bayesian network structure discovery and train-
ing. More importantly, the two graph recovery algorithms are very different in
both algorithmic approach and objective function.

Sensitivity to the Input Graph: To study the effect of different graph struc-
tures on NGMs, we trained separate models on the Bayesian Network graph (mor-
alized) and the CI graph from uGLAD given in Fig. 6 & 7 respectively. We plot
the dependency functions between pairs of nodes based on the common and
unique edges. For each pair of features, say (f1, f2), the dependency function is
obtained by running inference P (f1|f2) by varying the value of f2 over its range
as shown in Fig. 9. The two models largely agree on dependency patterns despite
the differences between the two input graphs. They also have similar prediction
accuracy results as described in Sect. 4.

Dependency Functions: We plot the dependency functions between pairs of
nodes based on the common and unique edges. For each pair of features, say
(f1, f2), the dependency function is obtained by running inference P (f1|f2) by
varying the value of f2 over its range as shown in Fig. 9.

Comparing NGM inference in models trained with different input graphs (CI
graph from uGLAD and Bayesian network graph) shows some interesting patterns
(see Fig. 9):
– Strong positive correlation of mother’s delivery weight (dwgt_r) with pre-

pregnancy weight (pwgt_r) is shown in both models.
– Similarly, both models show that married mothers (dmar= 1) are likely to

gain more weight than unmarried (dmar= 2).
– Both models agree that women with high BMI tend to gain less weight during

their pregnancies than women with low BMI.
– A discrepancy appears in cases of the dependence of both BMI and

weight gain during pregnancy on mother’s height (mhtr). According to the
NGM trained with a BN graph, higher weight gain and higher BMI are more
likely for tall women, while the CI-trained NGM shows the opposite.

– Possibly the most interesting are the graphs showing the dependence of the
timing a women starts prenatal care (precare specifies the month of preg-
nancy when prenatal care starts) on the type of insurance she carries. For
both models, Medicaid (1) and private insurance (2) mean early start of care
and there is a sharp increase (delay in prenatal care start) for self-pay (3) and
Indian Health Service (4). Models disagree to some extent on less common
types of insurance (military, government, other, unknown).

In general, the two models dependency functions agree to a larger extent
than the dissimilarities between the two graphs would suggest.
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Fig. 8. Comparing the graphs recovered by uGLAD and Bayesian Network recovery
package [24] after moralization (moralized edges are denoted by the skyblue color).
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Fig. 9. Evaluating effects of varying input graphs for learning NGMs. Comparing
the NGM dependency plots recovered by using Bayesian Network graph vs the CI graph
obtained by running uGLAD. Similar architecture of NGMs were chosen and the data
preprocessing was also kept as alike as possible. For the feature pairs in the top box,
the trends match for both the graphs, while in the bottom box the dependency plots
differ. We observed that the dependency trends discovered by the NGM trained on the
CI graph matches the correlation of the CI graph. Common edges present in both
the graphs are: (pwgt-r, dwgt-r), (wtgain, mhtr), (bmi, mhtr), (precare, pay), edges
only present in CI graph: (wtgain, dmar), (wtgain, bmi). It is interesting to observe
that even for some common edges, eg. (wtgain, mhtr), that represents strong direct
dependence between the features, the trends can still differ significantly. This highlights
the importance of the input graph structure chosen to train NGMs.
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Abstract. The development of models that can cope with noisy input
preferences is a critical topic in artificial intelligence methods for interac-
tive preference elicitation. A Bayesian representation of the uncertainty
in the user preference model can be used to successfully handle this, but
there are large costs in terms of the processing time required to update
the probabilistic model upon receiving the user’s answers, to compute the
optimal recommendation and to select the next queries to ask; these costs
limit the adoption of these techniques in real-time contexts. A Bayesian
approach also requires one to assume a prior distribution over the set of
user preference models. In this work, dealing with multi-criteria decision
problems, we consider instead a more qualitative approach to preference
uncertainty, focusing on the most plausible user preference models, and
aim to generate a query strategy that enables us to find an alternative
that is optimal in all of the most plausible preference models. We develop
a non-Bayesian algorithmic method for recommendation and interactive
elicitation that considers a large number of possible user models that
are evaluated with respect to their degree of consistency of the input
preferences. This suggests methods for generating queries that are rea-
sonably fast to compute. Our test results demonstrate the viability of
our approach, including in real-time contexts, with high accuracy in rec-
ommending the most preferred alternative for the user.

Keywords: Preference Elicitation · Preference Learning · Decision
making · User preference models

1 Incremental Elicitation
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c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 308–321, 2024.
https://doi.org/10.1007/978-3-031-45608-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_23&domain=pdf
http://orcid.org/0000-0002-9582-8278
http://orcid.org/0000-0002-7922-3877
http://orcid.org/0000-0003-1874-8255
https://doi.org/10.1007/978-3-031-45608-4_23


An Efficient Non-Bayesian Approach for Interactive Preference Elicitation 309

need adequate mechanisms to assess users’ preferences. Preference elicitation
naturally emerges as having an important role, and approaches that elicit pref-
erences incrementally are particularly suited to AI applications (in contrast with
standardised protocols from classic decision theory).

Incremental elicitation methods ask queries to the user in order to acquire
new preference information. The uncertainty over the user’s preference model
(often represented by a parameterised utility function) is gradually reduced as
the user answers more queries. Queries are generated adaptively, i.e., they do not
follow a fixed protocol, but, at each stage of the interaction the system may select
the “best” query given what it already knows about the user (the nature of the
best query depends on the specific approach). The interaction ends either when
an optimal solution is found (the information provided by the user allows the
system to infer optimality), or until a termination condition is met, for instance
when some notion of loss is lower than a threshold, or when exceeding some
notion of cognitive or time cost, or because of the user’s fatigue. In the case of
early termination, the system should be able to provide a recommendation based
on the preference information that has been elicited.

Methods for interactive elicitation typically represent the uncertainty about
the user’s preference model in some principled way. In several works, the param-
eter space is reduced at each step by converting the new information into a
constraint on some utility parameters. This is the approach taken by methods
based on minimax regret [8]. These methods are efficient since updating the
model is quick: whenever a query is answered, the space of feasible parameters is
reduced. But in the case of an erroneous answer, strict constraints on the pref-
erence state space may exclude the true user preference model; thus, the quality
of the resulting recommendation may be abysmal.

A way to overcome this issue is to use probabilistic approaches that allow
one to deal with the uncertainty about the decision-maker’s answers. In such
Bayesian approaches, the uncertainty about the real parameter value is repre-
sented by a probability distribution that is updated when new preference state-
ments are collected and a noisy response model accounts for the possibility that
a decision-maker may make a choice that does not maximise their utility. In
[22] and [5] the authors introduce an incremental preference elicitation pro-
cedure able to deal with noisy responses of a user. They propose a Bayesian
approach for choosing a preferred solution among a set of alternatives in a
multi-criteria decision problem. However, the Bayesian approach can be com-
putationally expensive, making it difficult to use in real-time contexts, and it
also makes assumptions about a prior probability distribution over preference
models.

This paper presents a new, non-Bayesian, incremental preference elicitation
technique that can handle noisy responses. We want to deal with a situation
in which occasionally the user responses are inaccurate. We use a more quali-
tative representation of uncertainty, focusing on the set of the most plausible
user models, which are those that are the most consistent with the answers to
the queries. Our purpose is to develop a method that is robust to incorrect
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input preferences from the decision-maker, but still relatively efficient in terms
of number of queries required, and computational time to generate the queries.

The rest of the paper is organised as follows. We next, in Sect. 2, discuss
the related work; then, in Sect. 3 we define the formal settings including the
terminology. Section 4 describes our approach in detail, including the stopping
criterion for the algorithm. The query generation approach is described in Sect. 5,
and Sect. 6 presents computational results showing how the methods perform,
and include also a comparison with a Bayesian approach. Section 7 concludes.

A longer version of the paper is available online [13]; this includes more
discussion and experimental results.

2 Related Work

It is becoming important to develop methods that identify and assess user prefer-
ences. Research on preference elicitation has been widely conducted in decision
analysis and artificial intelligence. As part of decision analysis [11,15,23] and
artificial intelligence [2,7,9,10], automated decision support software is being
developed. In this context, an active elicitation of a decision-maker’s prefer-
ences can be crucial for user satisfaction. An automated agent can actively elicit
decision-maker’s preferences by asking queries about their preferences [7,12,15].

Many methods for active preference elicitation have been developed, where
the decision support system explicitly queries the decision-maker about her pref-
erences. Previous works can be classified according to two main classes of models
of preference uncertainty and optimisation.

In the robust approach, recommendations are generated according to the
minimax-regret criterion [3,8]; the system ask queries that are likely to decrease
regret.

In the Bayesian approach to elicitation, the system maintains a distribution
over the utility function’s parameters and that is updated using the Bayes rule
whenever new information is received from the decision-maker (as answers to
queries). Choosing queries is primarily based on expected value of information
and the alternative with the highest expected utility is recommended [4,21,22].

The Minimax regret method is applied both as a recommendation criterion
as well as a technique for driving elicitation in a variety of settings, but it fails
to tolerate user inconsistency. In an ideal setting, a decision-maker would always
select the item with the highest utility with respect to her true utility function
and never commits mistakes [3,14]. However, this is not realistic in general, and
in learning a user utility function one needs to deal with uncertain and possibly
inconsistent feedback from the decision-maker. The Bayesian framework can
include user noise in the elicitation process. This is done by building a probability
distribution, exploiting prior information, reasoning about the likelihood of user
responses, and recommending options that are optimal in expectation [6,16,21,
22]. The problem with this approach is that it is computationally expensive,
does not scale and may even not be feasible in many scenarios. Our goal is to
use a non-Bayesian approach to handle uncertainty in the elicitation and to be
able to deal with noisy responses of a decision-maker.
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Another non-Bayesian approach is based on a possibilistic extension of regret
[1], though it is also computationally expensive. Finally we mention an interac-
tive elicitation method based on maximum margin [18]; this method is interesting
as it is resistant to noise, but it is, however, focused on configuration domains,
while we focus on settings where alternatives are explicitly given in a dataset,
as in multiple-criteria decision-making.

3 Problem Setting

Let us suppose that a system is assigned the task of recommending an option to
a user among a finite set A of alternatives. Alternative α ∈ A is characterized by
a vector (α(1), . . . , α(p)) where each α(i) represents the value of the alternative
α with respect to criterion (or objective) i. For convenience (and without loss
of generality) we assume that the scales are arranged so that higher values of a
criterion are better.

Utility Function. We assume the decision-maker has a utility function u :
(W, A) → R which is parameterised by some parameter vector w ∈ W, where
W is the space of user preferences defined as the set of all the normalised
non-negative weights vectors w, {w ∈ R

p :
∑p

i=1 w(i) = 1;w(i) ≥ 0;∀i =
1, . . . , p}. In particular, we assume that the decision-maker’s utility function
evaluating alternatives is the weighted sum of the vector of criteria, with the
weights vectors w ∈ W representing the possible decision-maker preferences.
Given a vector of weights w ∈ W, an alternative α has then a utility value
u(α,w) =

∑p
i=1 w(i)α(i). Let w∗ be the true preferences of a decision-maker;

this is unknown to the decision support system (and also typically unknown to
the decision maker). The preference statement α � β represents a decision-maker
preference of alternative α over alternative β. Thus, for a particular decision-
maker with preferences w∗, α � β ⇐⇒ u(α,w∗) ≥ u(β,w∗).

Our goal is to find the most preferred alternative of a decision-maker, i.e.,
arg maxα∈A u(α,w∗), without showing all the possible alternatives, and without
knowing the true user preference w∗.

Example: Consider a scenario in which a decision-maker wants to select a house
from a list of houses that are available to rent as follows:

A = {α = (12.7, 5, 3), β = (13, 3, 2), γ = (10.5, 3, 2)}.

The utility of each house is represented with a vector (α(1), α(2), α(3)) rep-
resenting monthly rent, distance from the city centre and the number of bed-
rooms, where the values of each criterion have been scaled so that the higher
the value of each criterion, the better. Assume that the decision-maker uses a
weighted sum model with vector of weights w∗ = (0.7, 0.1, 0.2). The utility func-
tion u(αi, w

∗) ∈ R returns a real number representing the decision-maker score
for the corresponding house. The most preferred house will then be the one with
the highest score. In this example, we know that the most preferred alternative
of the decision maker is α since u(α,w∗) = 12.7 × 0.7 + 5 × 0.1 + 3 × 0.2 = 9.99,
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u(β,w∗) = 13 × 0.7 + 3 × 0.1 + 2 × 0.2 = 9.8 and u(γ,w∗) = 10.5 × 0.7 +
3 × 0.1 + 2 × 0.2 = 8.05. In this example we are assuming that we know the
decision-maker preference model. However, in the real world we don’t know the
weights vector representing the decision-maker preferences, but our interactive
preference elicitation method can be used to estimate it, and to discover their
optimal alternative.

Possibly Optimal Alternatives. We say that an alternative α is optimal in
a set of alternatives A with respect to weights vector w if and only if u(α,w) ≥
u(β,w) for any β ∈ A. An alternative α ∈ A is possibly optimal in A, with
respect to a set W of weights vectors, if and only if there exists w ∈ W such that
u(α,w) ≥ u(β,w) for all β ∈ A, i.e., such that α is optimal in A with respect to
w. We define PO(A,W) as the set of all possibly optimal alternatives in A with
respect to W.

We can compute PO(A,W) with a linear programming solver (see, e.g., [20]).
Briefly, we can test if α ∈ PO(A,W) evaluating the feasibility of the set of linear
constraints u(α,w) ≥ u(β,w) for all β ∈ A \ {α} with w ∈ W. We focus only
on the alternatives in PO(A,W) because the decision-maker’s most preferred
alternative must be optimal for the true preference w∗. Thus, we do not need to
consider alternatives β �∈ PO(A,W) and these alternatives can be filtered out as
pre-processing.

Queries. Our approach focuses on binary queries, i.e., on asking the decision-
maker to express their preferences with respect to pairwise comparisons of alter-
natives. We define a query as a pair (α, β) with α, β ∈ A (with α �= β), and the
corresponding question for the decision-maker is ‘Do you prefer α or β?’. With
a query (α, β) the decision-maker prefers α if and only if w∗ · (α − β) ≥ 0, and
so otherwise, if w∗ · (α − β) < 0 then the decision-maker prefers β. Many incre-
mental preference elicitation procedures (see, e.g., [17,19,22,24])) iteratively ask
this type of query with the purpose of reducing the space of feasible weights
vectors by adding such hard constraints. However, a drawback of adding hard
constraints to the set of feasible weights vectors is that we may exclude the
optimal preference vector w∗ if we receive an incorrect decision-maker answer.

User Model. We assume a simple form of user model with two parameters:
the preference vector w∗ ∈ W and the noise parameter ρ with 0 ≤ ρ < 1,
e.g., ρ = 0.1. Given a query (α, β), with probability 1 − ρ the user will answer
correctly, i.e., answer α if and only w∗ ·(α−β) ≥ 0, and answer β otherwise; with
probability ρ, the user will answer incorrectly, answering β iff w∗ · (α − β) ≥ 0.
Note that neither w∗ nor ρ are known by the learning system (only the answers
to the queries).

Simplifying Assumption. We assume that, for each preference vector w, there
is a unique element αw in A that maximises u(α,w). With A consisting of ran-
dom real-valued vectors this will almost certainly hold, and the assumption con-
siderably simplifies the notation and the description of the algorithms. All the
methods can be easily extended for situations in which this does not hold.
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4 The Idea Behind Our Approach

If it were the case that there exists a unique possibly optimal alternative α in A,
i.e., if PO(A,W) = {α}, then clearly we should recommend α, since it is optimal
in A with respect to every preference vector w in W (and thus, in particular,
with respect to the unknown user preference vector w∗). Similarly, if we were
certain that the user was always answering our queries correctly, and U is the set
of preference vectors compatible with the user’s answers, and PO(A,U) = {α},
then we should recommend α. In our context, where we are never certain about
the correctness of the user’s answers, we can adapt this idea by considering
PO(A,U ′), where U ′ is the set of most plausible preference vectors. We are
making no assumptions about a prior distribution over W, so the plausibility
of a preference vector w relates to how closely the user’s answers are to those
that would have been given if w were the true user preference vector w∗ (and
the user gave accurate answers). Thus, for a given query (α, β) with answer α,
we test if w · (α − β) ≥ 0 to check if α is preferred to β according to the weights
vector w. We suppose that the more inequalities are satisfied for a given w ∈ W,
the more plausible it is that w has a similar preference order to that of the true
decision-maker preference. This is the formalised with the function mistakes(·).
The Function Mistakes(w). To find the preference vectors in W that cor-
responds most closely to the decision-maker input preferences, we count the
number mistakes(w) of mistakes that the decision-maker would have made if
w ∈ W were the true user preference vector w∗, i.e., the number of times the
inequality w · (α − β) ≥ 0 is not satisfied, for each query (α, β) (or (β, α)) with
answer α. For example, with a query (α, β), if the decision-maker answers α,
and w · (α − β) < 0, we increment mistakes(w) by one unit.

Because the user’s answers can be incorrect, mistakes(w∗) will often be
greater than zero. In particular, because we are considering a simple noisy user
model, with a chance ρ of giving an incorrect answer independently for each
query, the random variable mistakes(w∗) is binomially distributed with expected
value ρK, where K is the number of queries asked.

Of course, we do not know mistakes(w∗) since the true user preference w∗ is
unknown; however, we can consider the set Wk

min of the most plausible preference
vectors, including w such that mistakes(w) is within the threshold k of the
minimal number of mistakes (defined below).

Finite Approximation W ′ of W. It is computationally convenient to approx-
imate W by a finite set of points W ′. There are various ways this can be done; in
our experiments we randomly sample elements of W using a uniform distribution
over the probability simplex W; currently we use the same set W ′ throughout
the whole iterative interaction process.

The Set Wk
min of k-Plausible Preference Vectors. Let μ be the minimum

number of mistakes(w) over all w ∈ W ′. For parameter k ≥ 0 define Wk
min to

be all the preference points w ∈ W ′ such that mistakes(w) ≤ μ + k. We use
Wk

min to generate queries for the decision-maker. (Note that Wk
min depends on

the randomly chosen set W ′, although our notation does not makes this explicit).
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We say that w and w∗ differ on a query (α, β) if either (a) w · α ≥ w · β and
w∗ · α < w∗ · β; or (b) w∗ · α ≥ w∗ · β and w · α < w · β. The result below throws
some light on how the set Wk

min will look after a sequence of queries.

Proposition 1. Let w ∈ W. Consider a sequence of queries, and let Kw be the
number of queries in the sequence in which w and w∗ differ. Let the random vari-
able Xw∗

w be equal to mistakes(w)−mistakes(w∗). Then Xw∗
w ∼ Kw −2B(Kw, ρ),

where B(Kw, ρ) is a binomial distribution with Kw experiments and probability
of success ρ. The expected value E[Xw∗

w ] of Xw∗
w is equal to Kw(1 − 2ρ), and the

standard deviation of Xw∗
w equals 2

√
Kwρ(1 − ρ).

Proof: Let us label the queries in the sequence on which w and w∗ differ as (αi, βi)
for i = 1, . . . , Kw, and let the Boolean random variable Zi be such that Zi = 1
if and only if the user answers query (αi, βi) incorrectly. The variables Zi for
i = 1, . . . , Kw are independent with Pr(Zi = 1) = ρ. If Zi = 1 then mistakes(w∗)
is incremented and mistakes(w) is unchanged, so mistakes(w) − mistakes(w∗) is
decremented; and if Zi = 0 then mistakes(w) is incremented and so mistakes(w)−
mistakes(w∗) is incremented. So, in both cases, Xw∗

w changes by 1−2Zi. (For the
other queries, on which w and w∗ do not differ, mistakes(w) − mistakes(w∗) is
unchanged.) Thus, Xw∗

w = mistakes(w)−mistakes(w∗) is equal to
∑Kw

i=1(1−2Zi),
i.e., Kw − 2

∑Kw

i=1 Zi. Therefore, Xw∗
w ∼ Kw − 2B(Kw, ρ), because

∑Kw

i=1 Zi has
the binomial distribution B(Kw, ρ).

The expected value of
∑Kw

i=1 Zi is Kwρ, and so E[Xw∗
w ] = Kw(1 − 2ρ). The

variance of Zi is equal to E[(Zi)2] − (E[Zi])2 = ρ − ρ2, and so the variance of
Xw∗

w , which equals the variance of 2
∑Kw

i=1 Zi, is 4Kwρ(1−ρ); hence the standard
deviation of Xw∗

w is equal to 2
√

Kwρ(1 − ρ).
Proposition 1 implies that after a number of queries, the w (in W ′) with

minimal Kw will tend to be in Wk
min. In particular, if w∗ were in W ′ and Kw is

reasonably large, then it is very unlikely that w will be in Wk
min for small k such

as k ∈ {0, 1, 2}, especially so for larger Kw. This is because if w were in Wk
min

then we would have Xw∗
w ≤ k, which would make the approximately normally

distributed random variable Xw∗
w at least Kw(1−2ρ)−k

2
√

Kwρ(1−ρ)
standard deviations from

its mean. For instance, with k = 2 and ρ = 0.1 and Kw = 10 (respectively,
Kw = 15), Xw∗

w will be more than 3 (respectively, 4.3) standard deviations from
its mean.

More generally, the weights vectors w that order the alternatives in A most
similarly to how w∗ orders them, will tend to be in Wk

min, increasingly so as
we ask more queries. Therefore, the most plausible user models w, i.e., those
most likely to be the true user preference model w∗ (or close to it), are those
with smaller values of mistakes(w), which is why Wk

min may be considered as
consisting of the most plausible user preference models.

Stopping Criterion. Our algorithm makes use of Wk
min, for k = 0, . . . , κ where

we focus on κ = 2 in our experimental testing. The stopping criterion for our
algorithm is that all the most plausible user preference models agree on which
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alternative α is best, i.e., PO(A,Wκ
min) = {α}. With sufficient appropriately

chosen queries this can be made to hold eventually (with probability tending to
one). Generally our query strategies aim to ensure that the stopping criterion is
satisfied as soon as possible. In particular, we can limit ourselves to queries of
the form (αv, αw), where v, w ∈ Wκ

min, since there always exists such a query if
the stopping criterion is not yet satisfied, and such a query will with probability
1 − ρ increment the mistakes function for w, if w differs with w∗ on this query
(and thus, v agrees with w∗). If we were to keep repeating this query then, with
high probability, w will be eliminated from Wκ

min.
Our active learning method is summarized by Algorithm 1.
We select the query using the method described in Sect. 5. The decision-

maker response will be used to update mistakes(w) for each w ∈ W and to
recompute Wk

min for k ∈ {0, 1, 2}. We iterate this procedure until PO(A,W2
min)

becomes a singleton set, say {α} (so also, PO(A,W1
min) = PO(A,W0

min) = {α});
then α is our estimation of the most preferred alternative of the decision-maker,
and we recommend it. Intuitively, this loop will tend to exclude weights vectors
from Wk

min for k ∈ {0, 1, 2} whose preference orders are very different from the
preferences of the decision-maker. Thus, weights vector in Wk

min for k ∈ {0, 1, 2}
are more likely to have similar preference orders of that of w∗.

Algorithm 1 .
1: procedure Recommend Alternative(A, W ′)
2: repeat
3: q ← Select query(A, Wk

min for k ∈ {0, 1, 2})
4: Ask query q to the decision-maker
5: Update Wk

min for k ∈ {0, 1, 2}
6: until |PO(A, W2

min)| = 1
7: return The unique alternative in PO(A, W2

min)

5 Query Selection

We select as a query a pair of alternatives (α, β) that are optimal in A with
respect to a maximum number of w ∈ Wk

min, focusing first on lower values of k.
More precisely, let Optk(α) be the number of preference points w ∈ Wk

min with α
as the most preferred alternative αw with respect to w, i.e., maximising u(α,w).
We select the query (α, β) as follows:

– If |PO(A,W0
min)| > 1, select a query (α, β) with α, β ∈ PO(A,W0

min),
Opt0(α) ≥ Opt0(γ) and Opt0(β) ≥ Opt0(γ) for each γ ∈ PO(A,W0

min) \
{α, β}.

– If PO(A,W0
min) = {α0} and |PO(A,W1

min)| > 1, select a query (α0, β)
with β ∈ PO(A,W1

min), β �= α0 and Opt1(β) ≥ Opt1(γ) for each γ ∈
PO(A,W1

min) \ {α0, β}.
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– If PO(A,W0
min) = PO(A,W1

min) = {α0} and |PO(A,W2
min)| > 1, select a

query (α0, β) with β ∈ PO(A,W2
min), β �= α0 and Opt2(β) ≥ Opt2(γ) for

each γ ∈ PO(A,W2
min) \ {α0, β}.

6 Experimental Results

In this section we discuss the results of the experimental testing of our approach
applied to randomly generated decision problems.

A random problem is represented by a random set A of possibly optimal
utility vectors1 and a simulated decision-maker with utility function u(α,w∗).
The goal is to find the most preferred alternative of the decision-maker, i.e., the
alternative αw∗ ∈ A maximising u(α,w∗) for any α ∈ A. We simulate a decision-
maker for each experiment generating a random weights vector w∗. With a noise-
free user model, the simulated decision-maker response to a comparison query
of two alternatives (α, β) will be α if w∗ · α ≥ w∗ · β, and β otherwise. However,
we want to simulate noisy user responses, therefore we take into account a fixed
probability ρ (e.g., ρ = 0.1) of receiving the incorrect answer.

In Table 1 we show the average number of queries, the average iteration time
and the accuracy. The accuracy is the fraction of experiments in which the correct
alternative was recommended, i.e., the optimal alternative αw∗ in A according to
the unknown true user model w∗. The results are an average of 100 experiments
with random sets W ′ of 4000 weights vectors, and input sets A of 1000 random
possibly optimal alternatives. We always used the same set A of alternatives,
and 100 random user models w∗. The accuracy was high and we always had at
least one w ∈ W ′ with αw = αw∗ .

Table 1. Experimental results w.r.t. the number of criteria p, with |A| = 1000, ρ = 0.1
and |W ′| = 4000.

p Queries Time [s] Accuracy

3 10.66 0.038 1.00

4 22.16 0.038 1.00

5 30.44 0.038 0.97

6 35.88 0.038 1.00

In general, as the number of criteria increases, so does the number of queries.
Regarding the iteration time, the method seems to be roughly independent

of the number of criteria. This is because the most time-consuming operation in
this case is the update of mistakes(w) for each w ∈ W, which is not affected much

1 Only the possibly optimal alternatives in a set A of alternatives are relevant, so if we
didn’t enforce that all alternatives are possibly optimal, then we would effectively
be dealing with a (perhaps very much) smaller problem.



An Efficient Non-Bayesian Approach for Interactive Preference Elicitation 317

by the number of criteria since the most expensive operation is the computation
of |W ′| dot products. For example, with p = 5, we required on average 0.34ms
to compute the query, 36.2 ms to update mistakes(w) for all w ∈ W and 1.05
ms to compute the three sets Wk

min, k = 0, 1, 2.

Table 2. Experimental results for regret-based elicitation with the current solution
query strategy; |A| = 1000 and ρ = 0.1.

p Queries Time [s] Accuracy

3 4.58 4.12 0.60

4 7.82 3.41 0.34

5 11.93 3.66 0.34

6 16.69 3.69 0.28

We provide, for comparison, the simulation results obtained by using state-of-
the-art elicitation methods on the same datasets. In Table 2 we show the perfor-
mance of interactive elicitation based on minimax regret with queries generated
using the current solution strategies. Unsurprisingly, regret-based elicitation pro-
vides low accuracy as it cannot appropriately deal with user noise.

Table 3. Experimental results for Bayesian elicitation with the queries generated with
greedy maximisation of value of information; |A| = 1000 and ρ = 0.1.

p Queries Time [s] Accuracy

3 12.05 2.62 0.97

4 17.93 3.68 0.99

5 26.46 5.07 0.97

6 35.86 5.50 1.00

In Table 3 we consider the Bayesian elicitation method from [22]; queries are
chosen to maximise Expected Value of Selection (EUS), a proxy of myopic value
of information, using greedy maximisation; Bayesian updates are performed
using Monte Carlo methods with 50000 particles. The elicitation stops when the
expected loss is less than 0.001; when this happens the alternative with high-
est expected utility is recommended. As the table shows, the Bayesian method
achieves high accuracy but at the cost of large computation times (higher accu-
racy may be obtained using more particles, but compaction time will increase
even further).

In Table 4 we show the performances of our method with respect to the size
of W ′. The accuracy increases with increasing |W ′|, as does the computation
time, and, to a lesser extent, the average number of queries.
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Table 4. Experimental results w.r.t. the number |W ′| of user preference models, with
|A| = 1000, ρ = 0.1 and p = 5.

|W ′| Queries Time [s] Accuracy

2000 27.28 0.019 0.97

4000 30.44 0.038 0.97

6000 32.71 0.057 1.00

8000 33.12 0.075 0.99

10000 34.50 0.096 1.00

We also tested the performances with respect to the number of alternatives
|A| ∈ {200, 400, 600, 800, 1000} with |W ′| = 4000, p = 4 and ρ = 0.1. However,
we didn’t notice any significant difference in terms of accuracy and execution
time. The average number of queries was affected slightly more, i.e., between
20.67 and 22.16, with lower values for lower |A|.

In Fig. 1 we show the accuracy varying with respect to the user noise ρ, with
|A| = 1000, |W ′| = 10000 and p = 4. Unsurprisingly, the accuracy decreases with
increasing user noise ρ. However, this picture shows that our model can achieve
good performance also with more noisy responses. In this case, the average query
time was 0.093 s. This dropping off of the accuracy for larger ρ tallies with our
analysis around Proposition 1, and, to maintain very high accuracy, we will need
to increase the parameter κ in our algorithm (from its current value of 2), in
order to make the stopping condition harder to satisfy.

Fig. 1. Accuracy varying with user noise ρ over 100 experiments with |A| = 1000,
|W ′| = 10000 and p = 4.
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7 Conclusions and Discussion

We have described a novel, non-Bayesian, approach for interactive elicitation for
a setting in which the user’s answers are not completely reliable. Our approach is
based on maintaining a set of plausible preference models and to reason about the
alternatives that are optimal according to these preference models. We provide
fast and effective methods for generating comparison queries. In our model the
stopping criterion is defined so that the system finishes the interaction, and
recommends an alternative α, when α is the optimal alternative in all the most
plausible preference models. The notion of plausibility of a preference model
is based on how close the answers from that model would be to the received
answers. For computational reasons we focus attention on a finite approximation
W ′ of the set of all preference models.

Our results show that the approach is very fast and suitable for real-time
applications, and maintains good accuracy with reasonable lengths of interac-
tions. We have also compared our approach with the Bayesian approach from
[22], and our approach is very much faster, and with similar or perhaps slightly
higher accuracy, and with similar number of queries required.

A variation of our approach that may further increase the accuracy, but at
some computational cost, would be to update the finite set W ′ of preference
models as the interaction progresses, so that the models become more densely
populated in areas where they are most plausible.

Our stopping criterion, that a single alternative α in the set of alternatives
A is optimal in all the most plausible user models Wκ

min, is equivalent to the
max regret of α (over w ∈ Wκ

min) being zero. We can weaken this condition by
instead enforcing that this minimum max regret is less than a small threshold
ε, which will allow our method to be applied to some more complex situations
and with different user models, and perhaps reducing the number of interactions
with the decision-maker.

We have shown that our approach can deal with significant numbers of alter-
natives, and the number of alternatives does not appear to very strongly affect
the computation time or performance of the algorithm. A natural further step
would be to develop the approach for combinatorial problems, where there are
an exponential number of alternatives. In this case, for each preference model w
in the finite set W ′, we determine an optimal alternative αw of the combinatorial
problem with respect to the linear objective function given by w, and again the
queries can be based on the possibly optimal elements with respect to the most
plausible user models Wκ

min.
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Abstract. Time in Bayesian Networks is concrete: In medical applica-
tions, a timestep can correspond to one second. To proceed in time, tem-
poral inference algorithms answer conditional queries. But the interface
algorithm simulates iteratively into the future making predictions costly
and intractable for applications. We present an exact, GPU-optimizable
approach exploiting symmetries over time during answering prediction
queries by constructing a matrix for the underlying temporal process.
Additionally, we construct a vector capturing the probability distribu-
tion at the current timestep. Then, we can time-warp into the future
by matrix exponentiation. We show an order of magnitude speedup over
the interface algorithm. The work-heavy preprocessing step can be done
offline, and the runtime of prediction queries is significantly reduced.
Now, we can handle application problems that could not be handled
before.

Keywords: Dynamic Bayesian Network · Prediction · Probabilistic
graphical models

1 Introduction

Probabilistic Graphical Models (PGMs) encode probability distributions, which
can be used to perform inference [9]. They can be extended to dynamic PGMs to
take temporal behavior into account. In temporal settings, one task is predicting
the probability of a random variable. In general, queries are costly and so are pre-
diction queries. In, e.g., medical applications, a timestep can correspond to one
second and for the selection of the correct treatment we need to predict into the
future. To exploit factorizations, temporal inference algorithms compute a set
of random variables, called interface, that render two timesteps independent of
each other. Hence, to proceed to the next timestep, these algorithms calculate a
conditional query, which is costly. Thus, to answer prediction queries, a temporal
inference algorithm has to possibly eliminate many random variables in addition
to answering the conditional query for each timestep during predictions. How-
ever, given a stationary process, the temporal behavior is actually independent
of the current timestep and, for prediction queries, models are not manipulated
with new events. Therefore, we propose to compute the temporal behavior of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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model in an offline step and store it in a matrix. We can then query the distribu-
tion of our interface variables for our current timestep and jump to the timestep
we are interested in to answer the query. In medical applications, the requested
timestep can change, so we cannot modify our model, but rather need to fast
forward to the timestep. In doing so, we replace expensive inference computa-
tions with cheap matrix-vector multiplications, while still getting exact results
for answering the query. Our approach is applicable to all temporal inference
algorithms using temporal conditional independences. In this paper, for illustra-
tive purposes, we restrict ourselves to Dynamic Bayesian Networks (DBNs) and
the interface algorithm (IA) [11].

Judea Pearl introduces Bayesian Networks (BNs) [12]. BNs store a proba-
bility distribution in a factored way using conditional independences. BNs are
extended by Paul Dagum to DBNs [3]. DBNs generalize Hidden Markov Mod-
els and Kalman Filters [14]. Our approach works with discrete random variables
rather than with normal distributions a Kalman Filter requires [7]. Variable elim-
ination (VE) can be used to infer probabilities in BNs or in unrolled DBNs [16].
Kevin Murphy develops the IA for more efficient inference in DBNs [11] using
the junction tree by Lauritzen and Spiegelhalter [10], which is ideal for answering
multiple queries [10]. We refer to this algorithm when writing IA. The concept of
lifting involves identifying similar random variables and operating with a single
representation [8,15], where computation is done once and then reused. Our app-
roach utilizes time-induced symmetries in the behavior of DBNs. We calculate
the stationary process once and reuse the result. Besides exact inference, we can
do approximate inference, e.g., by representing the belief state as a product of
marginals [2]. Kevin Murphy gives an overview over approximate inference [11].
These approaches all require to perform costly inference for predictions. We pro-
pose an algorithm to skip almost all inference computations during prediction.

The huge cost for prediction queries in inference algorithms is because the
probability distributions are simulated iteratively. We present a new exact algo-
rithm PETS for logarithmic time-warping to a requested timestep and illustrate
it using DBNs as focus. When advancing in time during prediction, we always
perform the same calculations. PETS exploits these symmetries and constructs a
matrix-vector representation for them. The matrix representation enables GPU-
optimization of our algorithm and fast exponential squaring leads to logarithmic
time-warping. The construction of the matrix can be done offline, so the cost per
timestep is reduced significantly from costly inference to a cheap matrix-vector
multiplication. The horizon t of a query is the number of timesteps between the
current timestep and the queried timestep. The runtime for large horizons t of
PETS is exponential only in the number of interface nodes, while the IA is in
the worst-case exponential in the number of nodes in the current timestep. As
PETS saves VE calls, we are also faster when predicting multiple times not that
far into the future. We investigate this in the theoretical evaluation at the end
of Sect. 4. PETS can be used as a submodule in existing inference algorithms to
speedup prediction queries: If we are at timestep t and want to predict the prob-
ability distribution in timestep t + h, the inference algorithm could utilize our
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matrix-vector formulation. We can use PETS in all inference algorithms based
on a stationary process with first-order Markov assumption, therefore we can
also use it for lifted inference [5]. Notably, we can run our algorithm on edge
devices, when the offline step is done beforehand, or on GPUs for more complex
models or queries.

We start in Sect. 2 with the required preliminaries. After that, we present
PETS in Sect. 3. In Sect. 4, we evaluate PETS. We end with a conclusion.

2 Preliminaries

In this section, we define BNs and DBNs. BNs model probability distributions
exploiting conditional independences. Additionally, DBNs take temporal behav-
ior into account. We build on the definitions of Pearl and Murphy [11,13].

A BN is a directed acyclic graph. For a probability distribution
P (X1, . . . , Xn) over random variables X1, . . . , Xn, the graph consists of n nodes,
one for each random variable. The edges in the network model influences. Each
node Xi has a conditional probability distribution (CPD) P (Xi | Pa(Xi))
assigned, where Pa(Xi) stands for the parents of Xi in the network. The seman-
tics of a BN is

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi)). (1)

While a BN can represent any probability distribution, it lacks the ability
to take temporal effects on the random variables into account. Figure 1 shows a
DBN. The umbrella network consists of two random variables R, indicating that
it is raining, and U , indicating that we take the umbrella. Both are repeated for
every day. A BN would need to include all random variables for all timesteps. A
DBN consists of two BNs (B0, B→) splitting the definition of a temporal process
into two parts: B0 defines a prior over the variables X1 = {Xi

1 | i = 0, . . . , n}
and B→ defines the temporal behavior. That is, the probability distribution of
all random variables in timestep t given their parents. The parents of a node Xi

t ,
t > 0, can be in the same timestep t or in the previous timestep t − 1. Figure 1
gives an example for defining B0 and B→ for the umbrella network by Russell
and Norvig [14]: The initial distribution defines P (R0) and P (U0 | R0) and the
transition distribution defines P (Rt | Rt−1) and P (Ut | Rt). The semantics can
be defined by unrolling the network, i.e., instantiating the model for T timesteps:

P (X0:T ) =
T∏

t=0

n∏

i=1

P (Xi
t | Pa(Xi

t)). (2)

The prediction task is to compute P (Yt+π | Et) for t, π ∈ N0 with π > 0 for
some Y,E ⊆ X with Y ∩ E = ∅. In particular, no observation is added during
prediction. Figure 1 gives an example for a DBN modeling the probability of rainy
days and whether we take an umbrella [14]. When it is raining (Ri = true), we
take the umbrella (Ui = true) with a probability of 0.9. Otherwise, we take the
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umbrella with a probability of 0.1. If it is raining today, it rains tomorrow with a
probability of 0.7. Otherwise, it rains with a probability of 0.3. On the first day,
it rains with a probability of 0.7. Now, we could be interested in the probability
of P (U7 | R0), the probability that we take the umbrella next week. In general,
the probability distribution over variables Xt can be computed given Xt−1. The
key observation is, that there is a set It−1 ⊆ Xt−1 sufficient for computing
P (Xt | It−1) = P (Xt | Xt−1). This set is called interface and consists of all
variables in Bt−1 with successors in Bt [11]. The interface in Fig. 1 is {Rt−1}. In
the next section, we show how we can exploit temporal symmetries to perform
efficient predictions by matrix-vector multiplication.

Fig. 1. Graphical representation of B0 and Bt for the umbrella DBN [14]. We use the
lowercase variant of a random variable to indicate that the random variable is assigned
the value true.

3 PETS Algorithm: Predicting Efficiently Using
Temporal Symmetries

In this section, we develop PETS for fast exact prediction in temporal models
assuming a stationary process and first order Markov assumption. As stated ear-
lier, we focus on DBNs. When advancing in time, we multiply always the same
temporal behavior, encoded by P (It | It−1), on the model. The transition matrix
A captures these symmetries and models the change P (It | It−1). The state vec-
tor st contains the current distribution P (It) over the interface. Together, we
have a matrix-vector representation of the interface and its change over time.
Now, we can proceed in time during prediction using cheap matrix-vector mul-
tiplication: Intuitively, we get P (It) =

∏t
i=1 P (Ii | Ii−1) · P (I0) = At · s0. The

outline of PETS is as follows: First, PETS builds the transition matrix and
the current state vector. Then, PETS can calculate the distribution over the
interface variables for each timestep by matrix-vector multiplication. In the end,
PETS materializes st−1 and answers queries on Bt using VE. Materializing is
the process of updating the CPDs such that the interface variables occur with
the probability given by st−1. Thus, PETS performs the following five steps,
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Algorithm 1 PETS. index maps an assignment to an index, relevant(x) maps
to the relevant basis probabilities to compute P (x)
Require: DBN (B0, B→), query P (Yt+π | E0:t) with π > 0
Ensure: p = P (Yt+π | E0:t)

(i, ii) identify interface and basis probabilities
for all assignments b for all basis probabilities B do

R ← relevant(B)
for all assignments r of R do

A[index(b), index(e)] ← P (B = b | R = r) � (iii) fill transition matrix
end for

end for
for all assignments b for all basis probabilities B do

st[index(b)] ← P (Bt = b | E0:t) � (iv) fill state vector
end for
st+π−1 ← Aπ−1 · st � (v) advance in time
unroll B0, B1

materialize st+π−1 into B0 � (v) ensure CPDs to match st

p ← P (Y1) on B0, B1 � (v) answer query

which we describe in the same order: (i) identify interface, (ii) identify basis
probabilities, (iii) build transition matrix, (iv) build current state vector, and
(v) query answering. Algorithm 1 shows pseudocode for PETS.

(i) Identify Interface. In Sect. 2, we define the interface. Thus, we can loop
over all nodes in B0 and check if they have a successor in B1.

(ii) Identify Basis Probabilities. The interface renders two adjacent
timesteps independent of each other. Moreover, given an assignment for the
interface variables, the probability distribution for all other variables is deter-
ministic. In fact, we can rewrite P (Xi

t) in terms of interface variables. Because we
may need joint probabilities, we cannot formulate this as a linear combination.
We call the set of distributions over (possibly joint) random variables required
to compute P (It+1) through P (It+1 | It) from P (It) basis probabilities. Then, we
can write P (it−1), it−1 ∈ It−1, as a linear combination of basis probabilities. The
coefficients of the linear combination constitute the transition matrix modeling
the temporal behavior. We could also use the joint probability distribution over
the interface as basis probabilities. Exploiting conditional independences, this is
not always needed and in this subsection, we describe a method for finding only
the necessary joint probabilities.

Assume we want to compute P (Ut) in Fig. 1. Unrolling only the current
timestep, we get P (Ut) = P (Ut | Rt) · P (Rt | Rt−1) · P (Rt−1) by Eq. 2. The
conditional probabilities P (U1 | R1) and P (R1 | R0) are part of the model and
thus known. We call P (Rt−1) a basis probability, because we can write P (Ut) as
a linear combination of P (Rt−1). For some variables, we may have to calculate a
joint probability. We cannot write this as a linear combination of single variables,
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so we include the joint variables as an additional basis probability. This enables
us to further use the matrix formulation.

For finding the required joint probabilities to include as basis probabilities, as
we want to keep the set as small as possible, PETS runs a depth-first search for
each node v ∈ I following edges in reversed direction and terminating a branch
once it reaches a node in the interface. This cannot be substituted by a simple
lookup of the predecessors, because an interface variable may depend on a non-
interface variable, which itself depends on an interface variable. The set of needed
basis probabilities relevant(Xi) for a variable Xi are all nodes in the interface
visited during the depth-first search for that node and added to the set of basis
probabilities. Because some variable v ∈ relevant(Xi) may need the probability
of other variables in the interface, we augment the basis probabilities iteratively:
For each set relevant(Xi), PETS adds the set

⋃
v∈relevant(Xi) relevant(v) to

the set of basis probabilities and sets relevant(relevant(Xi)) to the newly added
basis probability. Then, PETS unions all basis probabilities sharing some variable
and sets relevant accordingly to account for joint treatment of same variables.
By the end of this step, we have identified all basis probabilities M . For storing
them in a matrix and vector, we fix any order on them. In the umbrella network,
the basis probabilities consist of only Rt−1 and thus match the interface.

(iii) Build Transition Matrix. We can calculate all probability distributions
in Bt with the help of the basis probabilities. We can encode the calculation of
the basis probabilities in a matrix, because we argue earlier that we can write the
probabilities as linear combinations of basis probabilities. Thus, the transition
matrix A models P (Mt | Mt−1). The nodes mt−1 ∈ Mt−1 and mt ∈ Mt do not
have to be neighbors. Therefore, we need to calculate P (mt = i | Mt−1) for
all m ∈ M and store that in the corresponding row in A for mt = i. In fact,
PETS calculates this probability by running VE with all evidences Mt−1 = j
over all domains to obtain the linear combination of mt = i on basis Mt−1. In

the umbrella network, the transition matrix is A =
(

0.7 0.3
0.3 0.7

)
. Note that, in

general, the transition matrix is not simply composed of transition probabilities.

(iv) Build Current State Vector. The current state vector st captures
P (Mt). Therefore, PETS runs VE to calculate P (mt) for all mt ∈ Mt. If obser-
vations are present, we need to incorporate them during VE for them to be
integrated into the current state vector. With the transition matrix A, PETS
can then calculate the state at the requested timestep t + π by st+π = Aπ · st.

In the umbrella network, the initial state vector is s0 =
(

0.3
0.7

)
.

(v) Query Answering. Assume we want to know P (Yt+π | Et) for some Yt+π ⊆
Xt+π, Et ⊆ Xt. In short, PETS answers queries in three steps: First, PETS
calculates the state vector st+π−1. Then, PETS materializes st+π−1 forcing the
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distribution over the interface variables to match the state vector. Finally, PETS
runs VE to answer the query. When an observation is added at some timestep,
we can update the probability distributions over the interface accordingly and
update the state vector. Afterward, our algorithm can be used further.

For calculating st+π−1, PETS computes the current state vector st regarding
Et and fast forwards to st+π−1 = Aπ−1 · st. Materializing st+π−1 means forcing
the CPDs of the interface variables to match the state vector. For basis prob-
abilities containing only one random variable, we can just update the CPD of
that variable and remove all ingoing edges. For joint basis probabilities, we must
ensure that these random variables are treated jointly and not independently:
We add a new node for new variable Jj for all joint basis probabilities j ∈ M .
We connect Jj to all random variables included in the joint basis probability j.
We update the CPD of variable v included in basis probability j to pass through
its value assigned by Jj with probability one. Analogously, speaking in terms of
IA, we construct the ingoing message for the junction tree for timestep t.

Integrating Query Variables. Often we are interested in the probability
distribution of the same query variable yt+π for many t. In this case, PETS calls
VE for every t. However, we can integrate yt into the transition matrix and state
vector to compute the probability distribution of yt on the fly skipping all VE
calls except for initialization. The basic idea is to treat yt as a basis probability
and integrate yt into the transition matrix and the state vector. Consequently,
we have to redo all mentioned steps regarding basis probabilities for the newly
added one. In the end, we do not need VE to calculate P (yt+π) as opposed to
general queries of the form P (Yt+π | Et) and the inference step collapses into
matrix-vector multiplication. Suppose we want to know P (Ut) for all t ∈ [1, T ]
in the umbrella network. We then have

A =

⎛

⎜⎜⎝

0.7 0.3 0 0
0.3 0.7 0 0
0.59 0.31 0 0
0.41 0.69 0 0

⎞

⎟⎟⎠ , s0 =

⎛

⎜⎜⎝

0.3
0.7
0.31
0.69

⎞

⎟⎟⎠ , (3)

with the first two components in referring to R and the last two to U . The last
two rows in A represent P (Ut | Rt1) = P (Ut | Rt) · P (Rt | Rt−1). The last
two entries in s0 are the probability distribution P (U0) = P (U0 | R0) · P (R0).
Please note that the umbrella network is a very small DBN, leading to a simple
transition matrix and current state vector.

Correctness and Runtime. Unrolling a DBN yields a BN, and Eqs. 1 and 2
coincide. For calculating P (Xi

t), we need to calculate the probability distribution
of the parents of Xi, going back to B0. By the first-order Markov assumption,
it is sufficient to extend Eq. 1 only up to the interface to the previous timestep.
Then, we have a linear combination in the basis probabilities, which include
the interface variables and their required joints. By construction, our transition
matrix stores the coefficients of the linear combination and the state vector the
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probability distribution over the basis probabilities. Therefore, one matrix-vector
multiplication advances the probability distribution over the basis probabilities
exactly one timestep.

The runtime of PETS is at most O(t · q3 · i6 · d3k + q2 · i4 · d2k · n · 2n) for
horizon t, number of query variables q integrated into state vector, interface size i,
maximum domain size d, maximum number of reachable nodes in interface k and
n nodes in B0. We can speed the first summand up by replacing t by log t when
using fast exponential squaring instead of iterative matrix-vector multiplication.
We can split the runtime in an offline preprocessing and online prediction part.
The offline runtime is O(q2 · i4 · d2k · n · 2n), mainly because of the matrix
construction. The online runtime is O(t·q3 ·i6 ·d3k), when the current state vector
is given. The construction of the current state vector is in O(q ·i2 ·n·2n+q ·i2 ·dk)
and the IA has to compute it anyhow.

Summing Up. In this section, we develop PETS, a new exact prediction algo-
rithm capable of answering P (Yt+π | Et) for some Yt+π ∈ Xt+π, Et ⊆ Xt. First,
PETS identifies the basis probabilities required for computing the probability
distribution over the interface variables. Then, PETS constructs a transition
matrix, which models the temporal behavior of the basis probabilities, and a
state vector, containing the probability distribution for the basis probabilities in
the current timestep. Finally, PETS uses matrix-vector multiplication to advance
in time. The horizon-dependent runtime is O(t · q3 · i6 · d3k). In particular, the
cost per timestep is only exponential in the number of interface variables. The
runtime of the IA for prediction is O(t · t0 · n · dtw) with current timestep t0 and
treewidth tw. In the following section, we evaluate the runtimes empirically and
theoretically.

4 Evaluation

The main motivation behind PETS is to reduce costly VE calls to advance in
time and replace them with cheap matrix-vector multiplications. In this section,
we evaluate the runtime of PETS compared to IA. We use pgmpy to implement
PETS without any GPU-optimization and use its implementation of the IA [1].
For bigger models, the usage of GPUs would be beneficial because of the matrix-
vector multiplication. We evaluate two variants of PETS: The first is PETS
without integrating the query variables into the transition matrix and state
vector, and the second is with integrating the query variables. We call the second
variant integrated PETS. When measuring the runtime of (integrated) PETS, we
include the construction of the transition matrix and state vector. In particular,
this means that PETS is never slower when only the online runtime is measured.
We run all tests with Python 3.11 on an AMD Ryzen 7 PRO 6850U with Radeon
Graphics with 2.70 GHz and 32 GB RAM. The evaluation is divided into three
parts: First, we investigate the effect of saving VE calls. Second, the effects of a
growing interface, and third, a theoretical view of when PETS outperforms IA.
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Faster Runtime. We use two DBNs to evaluate PETS: the umbrella network
as given in Fig. 1 and a dynamic sprinkler network [4], in which we connect
winter and rain with itself through time, leading to six nodes per timestep and
two interface variables. The task for all algorithms is to answer {P (Yπ)}15π=1 for
all random variables Yπ in Bπ. We plot the runtime in seconds against growing
horizon π ∈ [1, 15]. The runtime of the offline step is plotted for π = 0. Figure 2
shows the results. The runtime of the IAs grows quadratic for both DBNs, while
the runtimes of the PETS variants are linear. For the umbrella network and a
horizon of 15, PETS outperforms the IA by a factor larger than 15. Integrated
PETS outperforms the IA by a factor of more than 39. The offline step accounts
for 15% of the runtime in timestep 15 for PETS, and almost 70% for integrated
PETS. For the dynamic sprinkler network and a horizon of 15, PETS outper-
forms the IA by a factor larger than 14. Integrated PETS outperforms the IA
by a factor of more than 20.

(a) Test results for the umbrella net-
work as given in Figure 1 [14].

(b) Test results for a dynamic variation
of the sprinkler network [4].

Fig. 2. Prediction times for two DBNs.

Growing Interface Size. To test the effect of increasing interface size on the
runtime of PETS, we construct a sink network consisting of n interface variables
connected to a sink, e.g., the umbrella network with n interface variables all
pointing to the sink umbrella.

Figure 3a shows the runtime for the three algorithms on the sink network
with interface sizes starting at two and going up to nine. PETS is faster than
IA because PETS does not store the full joint probability distribution over the
interface variables by default. PETS performs a depth-first search to find only
the necessary basis probabilities and stores a small transition matrix exploiting
conditional independence. However, integrated PETS does, for this network,
store the full joint to answer queries about non interface variables, and therefore
the runtime is exponential in the interface size. Figure 3b shows the runtime
of the three algorithms for the sink network with an interface size of eight,
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querying {P (Yπ)}25π=1. In this figure, we can see the labor-intensive preprocessing
when integrating query variables: Integrated PETS is about 30 times slower than
PETS. In spite of this, the IA is slower than both variants of PETS from horizon
11 on. This shows that even some heavy preprocessing pays off. The difference in
runtime between PETS and integrated PETS is because integrated PETS makes
many VE calls to integrate query variables into the matrix-vector representation.
As Fig. 3b shows, this does not pay off when querying only one horizon at a time,
but it can be beneficial when querying in many timesteps. Figure 3b shows that
integrating query variables does not pay off when querying only once. However,
it can be beneficial when querying in many timesteps. PETS requires one VE
call per prediction query of non-interface variables, so integrated PETS is faster
when the number of prediction queries is greater than the number of VE calls
required to integrate the query variables.

Fig. 3. Prediction times for increasing interface sizes.

Theoretical Evaluation. PETS includes preprocessing to construct the
matrix-vector representation. In this subsection, we investigate at what point
this preprocessing pays off compared to the IA. In terms of online complexity,
PETS is faster than the IA if i6 · d3k < n · dtw. We now have a look at the
number of VE calls both algorithms do. In the worst case, the matrix is con-
structed over a joint basis probability for the entire interface. Then we have dk

possible evidences leading to O(i4 · d2k) VE calls. For this estimation, we run
VE once for each entry in the matrix. After that, we only have one more VE
call for each prediction query. The IA calls VE once per timestep. Let n be the
number of prediction queries and hi the horizon for each prediction query. Then
PETS outperforms IA in terms of VE calls once

∑
hi > i4 · d2k + n. In the

umbrella network, we have a variable with Boolean cardinality in the interface.
Thus, PETS performs 4 VE calls to construct its matrix. With only one pre-
diction query, PETS is faster once h > 5 or overall two prediction queries with
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h = 3. In general, one is often interested in prediction from every time step into
the future with a given horizon, so the initial offline costs pay off fast.

5 Conclusion

Temporal inference algorithms proceed iteratively in time for prediction queries.
However, we multiply the same temporal behavior for each timestep to the
model. We propose PETS, a new exact algorithm that exploits these tempo-
ral symmetries to time-warp to the requested timestep for efficient prediction.
PETS stores the transition probabilities P (It | It−1) of the interface in a tran-
sition matrix. Next, a vector is constructed to capture the probabilities for the
current state. After that, we can proceed in time by simple matrix-vector multi-
plication, as opposed to expensive inference. Moreover, the matrix-vector multi-
plication can be optimized on GPUs. The offline runtime of PETS is exponential
in the number of random variables in the network, while the online runtime per
timestep is only exponential in the size of the interface. Whereas, the runtime
per timestep of the IA is exponential in the number of nodes in the network. As
filtering and hindsight queries may introduce new evidence, PETS is not directly
applicable. However, we could explore an adaption of PETS to Continuous Time
Bayesian Networks in future work. Moreover, we can investigate including lifting
in the matrix construction leading to possible further speedups. Additionally, we
can try to integrate the ideas presented in this paper to speed up planning in
PGMs [6].

Acknowledgements. The research for this paper was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy - EXC 2176 ‘Understanding Written Artefacts: Material, Interaction and
Transmission in Manuscript Cultures’, project no. 390893796. The research was con-
ducted within the scope of the Centre for the Study of Manuscript Cultures (CSMC)
at Universität Hamburg.

References

1. Ankan, A., Panda, A.: Pgmpy: probabilistic graphical models using python. In:
Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer
(2015)

2. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pp. 33–42 (1998)

3. Dagum, P., Galper, A., Horvitz, E.: Dynamic network models for forecasting. In:
Uncertainty in Artificial Intelligence, pp. 41–48. Elsevier (1992)

4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)
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Abstract. Lifting exploits symmetries in probabilistic graphical mod-
els by using a representative for indistinguishable objects, allow-
ing to carry out query answering more efficiently while main-
taining exact answers. In this paper, we investigate how lifting
enables us to perform probabilistic inference for factor graphs con-
taining factors whose potentials are unknown. We introduce the
Lifting Factor Graphs with Some Unknown Factors (LIFAGU) algorithm
to identify symmetric subgraphs in a factor graph containing unknown
factors, thereby enabling the transfer of known potentials to unknown
potentials to ensure a well-defined semantics and allow for (lifted) prob-
abilistic inference.

1 Introduction

To perform inference in a probabilistic graphical model, all potentials of every
factor are required to be known to ensure a well-defined semantics of the model.
However, in practice, scenarios arise in which not all factors are known. For
example, consider a database of a hospital containing patient data and assume
a new patient arrives and we want to include them into an existing probabilistic
graphical model such as a factor graph (FG). Clearly, not all attributes of the
database are measured for every new patient, i.e., there are some values missing,
resulting in an FG with unknown factors and ill-defined semantics when includ-
ing a new patient in an existing FG. Therefore, we aim to add new patients to
an existing group of indistinguishable patients to treat them equally in the FG,
thereby allowing for the imputation of missing values under the assumption that
there exists such a group for which all values are known. In particular, we study
the problem of constructing a lifted representation having well-defined semantics
for an FG containing unknown factors—that is, factors whose mappings from
input to output are unknown. In probabilistic inference, lifting exploits symme-
tries in a probabilistic graphical model, allowing to carry out query answering
more efficiently while maintaining exact answers [12]. The main idea is to use a
representative of indistinguishable individuals for computations. By lifting the
probabilistic graphical model, we ensure a well-defined semantics of the model
and allow for tractable probabilistic inference with respect to domain sizes.
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Previous work on constructing a lifted representation builds on the Weisfeiler-
Leman algorithm [15] which incorporates a colour passing procedure to detect
symmetries in a graph, e.g. to test for graph isomorphism. To construct
a lifted representation for a given FG where all factors are known, the
colour passing (CP) algorithm (originally named “CompressFactorGraph”) [1,7]
is commonly used. Having obtained a lifted representation, algorithms perform-
ing lifted inference can be applied. A widely used algorithm for lifted inference
is the lifted variable elimination algorithm, first introduced by Poole [13] and
afterwards refined by many researchers to reach its current form [3,4,8,11,14].
Another prominent algorithm for lifted inference is the lifted junction tree algo-
rithm [2], which is designed to handle sets of queries instead of single queries.

To encounter the problem of constructing a lifted representation for an FG
containing unknown factors, we introduce the LIFAGU algorithm, which is a
generalisation of the CP algorithm. LIFAGU is able to handle arbitrary FGs,
regardless of whether all factors are known or not. By detecting symmetries in
an FG containing unknown factors, LIFAGU generates the possibility to transfer
the potentials of known factors to unknown factors to eliminate unknown factors
from an FG. We show that, under the assumption that for every unknown factor
there is at least one known factor having a symmetric surrounding graph struc-
ture to it, all unknown potentials in an FG can be replaced by known potentials.
Thereby, LIFAGU ensures a well-defined semantics of the model and allows for
lifted probabilistic inference.

The remaining part of this paper is structured as follows. Section 2 intro-
duces necessary background information and notations. We first briefly reca-
pitulate FGs, afterwards define parameterised factor graphs (PFGs), and then
describe the CP algorithm as a foundation for LIFAGU. Afterwards, in Sect.
3, we introduce LIFAGU as an algorithm to obtain a lifted representation for
an FG that possibly contains unknown factors. We present the results of our
empirical evaluation in Sect. 4 before we conclude in Sect. 5.

2 Preliminaries

In this section, we begin by defining FGs as a propositional representation for
a joint probability distribution between random variables (randvars) and then
introduce PFGs, which combine probabilistic models and first-order logic. There-
after, we describe the well-known CP algorithm to lift a propositional model, i.e.,
to transform an FG into a PFG with equivalent semantics.

2.1 Factor Graphs and Parameterised Factor Graphs

An FG is an undirected graphical model to represent a full joint probability
distribution between randvars [9]. In particular, an FG is a bipartite graph that
consists of two disjoint sets of nodes (variable nodes and factor nodes) with
edges between a variable node R and a factor node f if the factor f depends
on R. A factor is a function that maps its arguments to a positive real number
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(called potential). The semantics of an FG is given by P (R1, . . . , Rn) = 1
Z

∏
f f

with Z being the normalisation constant. Figure 1 shows an FG representing
an epidemic example with two individuals (alice and bob) as well as two possi-
ble medications (m1 and m2) for treatment. For each individual, there are two
Boolean randvars Sick and Travel, indicating whether the individual is sick and
travels, respectively. Moreover, there is another Boolean randvar Treat for each
combination of individual and medication, specifying whether the individual is
treated with the medication. The Boolean randvar Epid states whether an epi-
demic is present. Although the labelling of the nodes may suggest so, there is no
explicit representation of individuals in the graph structure of the propositional
FG. The names of the nodes only serve for the reader’s understanding.

Epid

f0

f1 f1

Sick.alice Sick.bob
f2

f2

f2

f2

Travel.alice Travel.bob

Treat.alice.m1

Treat.alice.m2

Treat.bob.m1

Treat.bob.m2

Fig. 1. An FG for an epidemic example [6] with two individuals alice and bob. The
input-output pairs of the factors are omitted for simplification.

Clearly, the size of the FG increases with an increasing number of individ-
uals even though it is not necessary to distinguish between individuals because
there are symmetries in the model (the factor f1 occurs two times and the factor
f2 occurs four times). In other words, the probability of an epidemic does not
depend on knowing which specific individuals are being sick, but only on how
many individuals are being sick. To exploit such symmetries in a model, PFGs
can be used. We define PFGs, first introduced by Poole [13], based on the defini-
tions given by Gehrke et al. [5]. PFGs combine first-order logic with probabilistic
models, using logical variables (logvars) as parameters in randvars to represent
sets of indistinguishable randvars, forming parameterised randvars (PRVs).

Definition 1 (Logvar, PRV, Event). Let R be a set of randvar names, L
a set of logvar names, Φ a set of factor names, and D a set of constants. All
sets are finite. Each logvar L has a domain D(L) ⊆ D. A constraint is a tuple
(X , CX ) of a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi).
The symbol � for C marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi).
A PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct of a randvar R ∈ R
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possibly combined with logvars L1, . . . , Ln ∈ L to represent a set of randvars. If
n = 0, the PRV is parameterless and forms a propositional randvar. A PRV A
(or logvar L) under constraint C is given by A|C (L|C). We may omit |� in
A|� or L|�. The term R(A) denotes the possible values (range) of a PRV A. An
event A = a denotes the occurrence of PRV A with range value a ∈ R(A) and
we call a set of events E = {A1 = a1, . . . , Ak = ak} evidence.

As an example, consider R = {Epid, Travel, Sick, Treat} and L = {X,M} with
D(X) = {alice, bob} (people), D(M) = {m1,m2} (medications), combined into
Boolean PRVs Epid, Travel(X), Sick(X), and Treat(X,M).

A parametric factor (parfactor) describes a function, mapping argument val-
ues to positive real numbers (potentials), of which at least one is non-zero.

Definition 2 (Parfactor, Model, Semantics). We denote a parfactor g by
φ(A)|C with A = (A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a

function with name φ ∈ Φ, and C a constraint on the logvars of A. We may
omit |� in φ(A)|�. The term lv(Y ) refers to the logvars in some element Y ,
a PRV, a parfactor, or sets thereof. The term gr(Y|C) denotes the set of all
instances of Y w.r.t. constraint C. A set of parfactors {gi}n

i=1 forms a PFG G.
The semantics of G is given by grounding and building a full joint distribution.
With Z as the normalisation constant, G represents PG = 1

Z

∏
f∈gr(G) f .

For example, Fig. 2 shows a PFG G = {gi}2i=0 with g0 = φ0(Epid)|�, g1 =
φ1(Travel(X), Sick(X), Epid)|�, and g2 = φ2(Treat(X,M), Sick(X), Epid)|�.
The PFG illustrated in Fig. 2 is a lifted representation of the FG shown in
Fig. 1. Note that the definition of PFGs also includes FGs, as every FG is a
PFG containing only parameterless randvars.

Epid

Sick(X)Travel(X) Treat(X, M)

g0

g1 g2

Fig. 2. A PFG corresponding to the lifted representation of the FG depicted in Fig. 1.
The input-output pairs of the parfactors are again omitted for brevity.

2.2 The Colour Passing Algorithm

The CP algorithm [1,7] constructs a lifted representation for an FG where all
factors are known. As LIFAGU generalises CP, we briefly recap how the CP
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algorithm works. The idea is to find symmetries in an FG based on potentials
of factors, ranges and evidence of randvars, as well as on the graph structure.
Each randvar is assigned a colour depending on its range and evidence, mean-
ing that randvars with identical ranges and identical evidence are assigned the
same colour, and each factor is assigned a colour depending on its potentials,
i.e., factors with the same potentials get the same colour. The colours are then
passed from every randvar to its neighbouring factors and vice versa. Passing
colours around is repeated until the groupings of identical colours do not change
anymore. In the end, randvars and factors, respectively, are grouped together
based on their colour signatures.

A

B

C

φ1

φ2

A

B

C

φ1

φ2

A

B

C

φ1

φ2

A

B

C

φ1

φ2

A

B

C

φ1

φ2

φ1

R(X)

B

Fig. 3. The colour passing procedure of the CP algorithm on an exemplary input FG
containing three Boolean randvars without evidence and two factors with identical
potentials. The example has been introduced by Ahmadi et al. [1].

Figure 3 depicts the procedure of the CP algorithm on a simple FG. The two
factors φ1 and φ2 share identical potentials in this example. As all three randvars
are Boolean and there is no evidence available, A, B, and C are assigned the
same colour (e.g., green). Furthermore, the potentials of φ1 and φ2 are identical,
so they are assigned the same colour (e.g., purple). The colours are then passed
from randvars to factors: φ1 receives two times the colour green from A and B and
φ2 receives two times the colour green from B and C. Afterwards, φ1 and φ2 are
recoloured according to the colours they received from their neighbours. Since
both φ1 and φ2 received the same colours, they are assigned the same colour
during recolouring (e.g., purple). The colours are then passed from factors to
randvars. During this step, not only the colours are shared but also the position
of the randvars in the argument list of the corresponding factor. Thus, A receives
a tuple (purple, 1) from φ1, B receives (purple, 2) from φ1 and (purple, 2) from
φ2, and C receives (purple, 1) from φ2. Building on these new colour signatures,
the randvars are recoloured such that A and C receive the same colour while
B is assigned a different colour. Iterating the colour passing procedure does not
change these groupings and thus we obtain the PFG shown on the right in Fig. 3.

When facing a situation with unknown factors being present in an FG, the
CP algorithm cannot be applied to construct a lifted representation for the FG.
In the upcoming section, we introduce the LIFAGU algorithm which generalises
the CP algorithm and is able to handle the presence unknown factors.
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3 The LIFAGU Algorithm

As our goal is to perform lifted inference, we have to obtain a PFG where all
potentials are known. To transform an FG containing unknown factors into a
PFG without unknown factors, we transfer potentials from known factors to
unknown factors. For example, consider again the FG depicted in Fig. 1 and
assume that another individual, say eve, is added to the model. Like alice and
bob, eve can travel, be sick, and be treated and hence, four new randvars with
three new corresponding factors are attached to the model. However, as we might
have limited data, we might not always know the exact potentials for the newly
introduced factors when a new individual is added to the model and thus, we end
up with a model containing unknown factors. In this example, we can transfer
the potentials of the known factors f1 and f2 to the newly introduced unknown
factors, as it is reasonable to assume that eve behaves the same as alice and bob
as long as no evidence suggesting the contrary is available.

In an FG containing unknown factors, the only information available to mea-
sure the similarity of factors is the neighbouring graph structure of the factors.
For the upcoming definitions, let NeG(v) denote the set of neighbours of a node v
(variable node or factor node) in G, i.e., NeG(f) contains all randvars connected
to a factor f in G and NeG(R) contains all factors connected to a randvar R in
G. If the context is clear, we omit the subscript from NeG(v) and write Ne(v)
for simplification. We start by defining the 2-step neighbourhood of a factor f as
the set containing all randvars that are connected to f as well as all factors con-
nected to a randvar that is connected to f . The concept of taking into account
all nodes with a maximal distance of two is based on the idea of a single iteration
of the colour passing procedure.

Definition 3 (2-Step Neighbourhood). The 2-step neighbourhood of a fac-
tor f in an FG G is defined as

2-stepG(f) = {R | R ∈ NeG(f)} ∪ {f ′ | ∃R : R ∈ NeG(f) ∧ f ′ ∈ NeG(R)}.

If the context is clear, we write 2-step(f) instead of 2-stepG(f). For example, the
2-step neighbourhood of φ1 in the FG depicted in Fig. 3 is given by 2-step(φ1) =
{A,B} ∪ {φ1, φ2}. By G[V ′] we denote the subgraph of a graph G induced by
a subset of nodes V ′, that is, G[V ′] contains only the nodes in V ′ as well as all
edges from G that connect two nodes in V ′. In our example, G[2-step(φ1)] then
consists of the nodes A, B, φ1, and φ2, and contains the edges A − φ1, B − φ1,
and B − φ2. As it is currently unknown whether a general graph isomorphism
test is solvable in polynomial time, we make use of the notion of symmetric 2-
step neighbourhoods instead of relying on isomorphic 2-step neighbourhoods to
ensure that LIFAGU is implementable in polynomial time.

Definition 4 (Symmetric 2-Step Neighbourhoods). Given an FG G and
factors fi, fj in G, G[2-stepG(fi)] is symmetric to G[2-stepG(fj)] if

1. |NeG(fi)| = |NeG(fj)| and
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2. there exists a bijection φ : NeG(fi) → NeG(fj) that maps every randvar
Rk ∈ NeG(fi) to a randvar R� ∈ NeG(fj) such that the evidence for Rk and
R� is identical, R(Rk) = R(R�), and |NeG(Rk)| = |NeG(R�)|.

Algorithm 1: LIFAGU
Input : An FG G with randvars R = {R1, . . . , Rn}, known factors

F = {f1, . . . , fm}, unknown factors F′ = {f ′
1, . . . , f

′
z}, and

evidence E = {R1 = r1, . . . , Rk = rk}, and a real-valued
threshold θ ∈ [0, 1].

Output: A lifted representation G′ of G.

1 Assign each fi ∈ F a colour based on its potentials;
2 Assign each f ′

i ∈ F′ a unique colour;
3 foreach unknown factor fi ∈ F′ do
4 Cfi

← {};
5 foreach factor fj ∈ F ∪ F′ with fi �= fj do
6 if fi ≈ fj then
7 if fj is unknown then
8 Assign fj the same colour as fi;
9 else

10 Cfi
← Cfi

∪ {fj};
11 foreach set of candidates Cfi

do
12 C�

fi
← Maximal subset of Cfi

such that fj ≈ fk holds for all
fj , fk ∈ C�

fi
;

13 if |C�
fi

| / |Cfi
| ≥ θ then

14 Assign all fj ∈ C�
fi

the same colour as fi;
15 G ← Result from calling the CP algorithm on the modified graph G and

E;

For example, take a look again at the FG shown in Fig. 3 and assume that
there is no evidence. We can check whether φ1 and φ2 have symmetric 2-step
neighbourhoods: Both φ1 and φ2 are connected to two randvars as Ne(φ1) =
{A,B} and Ne(φ2) = {B,C}, thereby satisfying the first condition. Further, A
can be mapped to C with R(A) = R(C) (Boolean) and |Ne(A)| = |Ne(C)| = 1
and B can be mapped to itself. Thus, condition two is satisfied and it holds
that G[2-step(φ1)] is symmetric to G[2-step(φ2)]. Having defined the notion of
symmetric 2-step neighbourhoods, we are able to specify a condition for two
factors to be possibly identical. Two factors are considered possibly identical if
the subgraphs induced by their 2-step neighbourhoods are symmetric.

Definition 5 (Possibly Identical Factors). Given two factors fi and fj in
an FG G, we call fi and fj possibly identical, denoted as fi ≈ fj, if

1. G[2-stepG(fi)] is symmetric to G[2-stepG(fj)] and
2. at least one of fi and fj is unknown, or fi and fj have the same potentials.

The second condition serves to ensure consistency as two factors with different
potentials can obviously not be identical. Applying the definition of possibly



344 M. Luttermann et al.

identical factors to φ1 and φ2 from Fig. 3, we can verify that φ1 and φ2 are
indeed possibly identical because they have symmetric 2-step neighbourhoods
and identical potentials. Next, we describe the entire LIFAGU algorithm, which
is illustrated in Algorithm 1.

LIFAGU assigns colours to unknown factors based on symmetric subgraphs
induced by their 2-step neighbourhoods, proceeding as follows for an input G. As
an initialisation step, LIFAGU assigns each known factor a colour based on its
potentials and each unknown factor a unique colour. Then, LIFAGU searches for
possibly identical factors in two phases. In the first phase, all unknown factors
that are possibly identical are assigned the same colour, as there is no way to
distinguish them. Furthermore, LIFAGU collects for every unknown factor fi a
set Cfi

of known factors possibly identical to fi. The second phase then continues
to group the unknown factors with known factors, including the transfer of the
potentials from the known factors to the unknown factors. For every unknown
factor fi, LIFAGU computes a maximal subset C�

fi
⊆ Cfi

for which all elements
are pairwise possibly identical. Afterwards, fi and all fj ∈ C�

fi
are assigned the

same colour if a user-defined threshold is reached. Finally, CP is called on G,
which now includes the previously set colours for the unknown factors in G, to
group both known and unknown factors in G.

The purpose of the threshold θ is to control the required agreement of known
factors before grouping unknown factors with known factors as it is possible for
an unknown factor to be possibly identical to multiple known factors having
different potentials. A larger θ requires a higher agreement, e.g., θ = 1 requires
all candidates to have identical potentials. Note that all known factors in C�

fi
are

guaranteed to have identical potentials (otherwise they would not be pairwise
possibly identical) and thus, their potentials can be transferred to fi. Conse-
quently, the output of LIFAGU is guaranteed to contain only known factors and
hence ensures a well-defined semantics if C�

fi
is non-empty for each unknown fac-

tor fi and the threshold is sufficiently small (e.g., zero) to group each unknown
factor with at least one known factor.

Corollary 1. Given that for every unknown factor fi there is at least one known
factor that is possibly identical to fi in an FG G, LIFAGU is able to replace all
unknown potentials in G by known potentials.

It is easy to see that LIFAGU is a generalisation of CP, meaning that both
algorithms compute the same result for input FGs containing only known factors
(if an input FG G contains no unknown factors, only the first line and the last
line of Algorithm 1 are executed—which is equivalent to calling CP on G).

Corollary 2. Given an FG that contains only known factors, CP and LIFAGU
output identical groupings of randvars and factors, respectively.

Next, we investigate the practical performance of LIFAGU in our evaluation.

4 Empirical Evaluation

In this section, we present the results of the empirical evaluation for LIFAGU. To
evaluate the performance of LIFAGU, we start with a non-parameterised FG G
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where all factors are known, serving as our ground truth. Afterwards, we remove
the potential mappings for five to ten percent of the factors in G, yielding an
incomplete FG G′ on which LIFAGU is run to obtain a PFG GLIFAGU. Each
factor f ′ whose potentials are removed is chosen randomly under the constraint
that there exists at least one other factor with known potentials that is possibly
identical to f ′. This constraint corresponds to the assumption that there exists
at least one group to which a new individual can be added and it ensures that
after running LIFAGU, probabilistic inference can be performed for evaluation
purposes. Clearly, in our evaluation setting, there is not only a single new indi-
vidual but instead a set of new individuals, given by the set of factors whose
potentials are missing. We use a parameter d = 2, 4, 8, 16, 32, 64, 128, 256 to con-
trol the size of the FG G (and thus, the size of G′). More precisely, for each
choice of d, we evaluate multiple input FGs which contain between 2d and 3d
randvars (and factors, respectively). The potentials of the factors are randomly
generated such that the ground truth G contains between three and five (ran-
domly chosen) cohorts of randvars which should be grouped together, with one
cohort containing roughly 50 percent of all randvars in G while the other cohorts
share the remaining 50 percent of the randvars from G uniformly at random.

We set θ = 0 to ensure that each unknown factor is grouped with at least one
known factor to be able to perform lifted probabilistic inference on GLIFAGU for
evaluation. To assess the error made by LIFAGU for each choice of d, we pose d
different queries to the ground truth G and to GLIFAGU, respectively. For each
query, we compute the Kullback-Leibler (KL) divergence [10] between the result-
ing probability distributions for the ground truth G and GLIFAGU to measure
the similarity of the query results. The KL divergence measures the difference
of two distributions and its value is zero if the distributions are identical.

Fig. 4. Left: The mean KL divergence on the queried probability distributions (thick
line) as well as the standard deviation of all measured KL divergences for each choice
of d (ribbon around the mean). Right: The mean run time of variable elimination and
lifted variable elimination for each choice of d.

In the left plot of Fig. 4, we report the mean KL divergence over all queries
for each choice of d. The ribbon around the line illustrates the standard deviation
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of the measured KL divergences. We find that the mean KL divergence is close
to zero for all choices of d in practice. Both the mean KL divergence and the
standard deviation of the KL divergences do not show any significant differences
between the various values for d. Note that the depicted standard deviation is
also very small for all choices of d due to the granularity of the y-axis. The
maximum KL divergence measured for any choice of d is about 0.01.

Given our assumptions, a new individual actually belongs to a cohort and
most cohorts behave not completely different. So normally, we trade off accuracy
of query results for the ability to perform inference, which otherwise would not
be possible at all. If the semantics cannot be fixed, missing potentials need to
be guessed to be able to perform inference at all, probably resulting in worse
errors. As we basically perform unsupervised clustering, errors might happen
when grouping unknown factors with known factors. The error might be fur-
ther reduced by increasing the effort when searching for known factors that are
possible candidates for grouping with an unknown factor. For example, it is con-
ceivable to increase the size of the neighbourhood during the search for possible
identical factors at the expense of a higher run time expenditure.

In addition to the error measured by the KL divergence, we also report the
run times of variable elimination on G and lifted variable elimination on the PFG
computed by LIFAGU, i.e., GLIFAGU. The run times are shown in the right plot of
Fig. 4. As expected, lifted variable elimination is faster than variable elimination
for larger graphs and the run time of lifted variable elimination increases more
slowly with increasing graph sizes than the run time of variable elimination.
Hence, LIFAGU not only allows to perform probabilistic inference at all, but
also speeds up inference by allowing for lifting probabilistic inference. Note that
there are on average 24 different groups over all settings with the largest domain
size being 87 (for the setting of d = 256), i.e., there are a lot of small groups (of
size one) which diminish the advantage of lifted variable elimination over variable
elimination. We could also obtain more compact PFGs by merging groups that
are not fully identical but similar to a given extent such that the resulting PFG
contains less different groups at the cost of a lower accuracy of query results.
Obtaining a more compact PFG would most likely result in a higher speedup of
lifted variable elimination compared to variable elimination.

5 Conclusion

In this paper, we introduce the LIFAGU algorithm to construct a lifted rep-
resentation for an FG that possibly contains unknown factors. LIFAGU is a
generalisation of the widespread CP algorithm and allows to transfer potentials
from known factors to unknown factors by identifying symmetric subgraphs.
Under the assumption that for every unknown factor there exists at least one
known factor having a symmetric surrounding graph structure to it, LIFAGU is
able to replace all unknown potentials in an FG by known potentials.
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5. Gehrke, M., Möller, R., Braun, T.: Taming reasoning in temporal probabilistic
relational models. In: Proceedings of the Twenty-Fourth European Conference on
Artificial Intelligence (ECAI-20), pp. 2592–2599. IOS Press (2020)
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Tom Davot(B), Sébastien Destercke, and David Savourey

Université de Technologie de Compiègne, CNRS, Heudiasyc (Heuristics and Diagnosis
of Complex Systems), 60319 - 60203 Compiègne, France
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Abstract. Many works within robust combinatorial optimisation con-
sider interval-valued costs or constraints. While most of these works
focus on finding unique solutions such as minimax ones, a few consider
the problem of characterising a set of non-dominated optimal solutions.
This paper is situated within this line of work, and consider the problem
of exactly enumerating the set of non-dominated spanning trees under
interval-valued costs. We show in particular that each tree in this set
can be obtained through a polynomial procedure, and provide an effi-
cient algorithm to achieve the enumeration.

1 Introduction

Combinatorial optimisation problems under interval-valued costs have attracted
some attention in the past (one can check, for instance, the book [6] for a good
reference on the topic). While the greatest majority of works in this setting look
for robust unique solutions to this problem, some of them look at the problem
of enumerating, or at least characterising sets of possible solutions.

In this paper, we are interested in the specific yet practically important case
of minimum spanning trees, the problem or its generalisations being routinely
used in many applications [10].

Given its importance as a basic combinatorial optimisation problem, it is
not a surprise that many authors have considered interval-valued edges in the
minimum spanning tree problem. A number of works have focused on finding a
robust solution to the problem, such as Yaman et al. [13] that provides a mixed
integer programming (MIP) to compute a minimax solution, or [1,2,5,9] that
consider other notions of robust yet unique solution of the problem.

In this paper, our interest is not in providing one unique robust solution,
but rather to consider the set of all non-dominated solutions, and to enumerate
efficiently such solutions. Such a problem may be important if, e.g., one wants to
browse the Pareto front of optimal solutions. Note that we are not the first one
to explore such a problem, as for example [13] investigate the concept of weak
(possible) and strong (necessary) edges, that is, edges that belong to at least
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one non-dominated solution and to every non-dominated solution, respectively.
In [7], the authors defined a relation order on the set of feasible solutions and
generated a Pareto set using bi-objective optimisation, yet this relation order
is different from the one we consider here, and will in general not include all
non-dominated solutions.

Our paper is structured as follows1: next section presents some notation
and introduces the problem. In Sect. 3, we develop some structural preliminary
results. Our main result is described in Sect. 4: we develop an algorithm that
enumerates every non-dominated spanning tree. Finally, Sect. 5 is devoted to
the presentation of some numerical experiments.

2 Notations and Problem Description

We present here the main notations used in the paper for graphs and set up our
problem. The most important notions are illustrated in Figs. 1 and 2.

2.1 Graph

Spanning Tree. Let G be an undirected graph. We denote V (G) the set of vertices
of G and E(G) the set of edges. A subgraph H of G is a graph such that V (H) ⊆
V (G) and E(H) ⊆ E(G). In the following, we let n and m denote the number of
vertices and edges in a graph, respectively. We denote G−H the subgraph of G
for which we delete every vertex of H in G, that is, V (G−H) = V (G)\V (H) and
E(G−H) = {uv | uv ∈ E(G)∧uv∩V (H) = ∅}. Let X be a set of edges of G, we
denote G−X the subgraph of G obtained by deleting every edge of X in G, that
is V (G−X) = V (G) and E(G−X) = E(G) \X. A path between two vertices u
and v is a sequence of distinct vertices (x = v1, . . . , vk = v) such that there is an
edge between vi and vi+1 for each 1 ≤ i < k. A cycle is a path (v1, . . . , vk) for
which there is also an edge between v1 and vk. A graph is connected if there is a
path between each pair of vertices. A connected component H of G is a maximal
connected subgraph of G, that is there is no vertex v ∈ V (G) \ V (H) such that
there is a path between v and a vertex u ∈ V (H). Notice that G is connected if
and only if G contains exactly one connected component. A tree is a connected
graph without cycle. A spanning tree T of G is tree such that V (T ) = V (G) and
E(T ) ⊆ E(G). We denote ST (G) the set of spanning trees of G.

Cut. A cut P = (V1, V2) of a graph G is a partition of its vertices into two
disjoint subsets V1 and V2, i.e. V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅. To each cut
P = (V1, V2), we associate a set of edges X = {uv ∈ E(G) | u ∈ V1, v ∈ V2} called
cut-set of P (or simply cut-set if P is not known). Notice that the deletion of X
in G disconnects the graph, that is, G−X contains at least one more connected
component than G. The cut-set X is minimal if there is no X ′ ⊂ X such that
X ′ is also a cut-set. If G is connected, X is minimal if and only if G − V1 and
1 We have provided proofs in the appendix for review purposes, as including them

would exceed page limits. Appendices will not be part of the final version.
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G−V2 are connected. Let T be a spanning tree of G, notice that E(T )∩X 	= ∅

since otherwise, T would not be connected. Let X be a cut-set and let uv be an
edge of X that does not belong to E(T ). Let p be the path between u and v
in T and let e be an edge in X ∩ E(p). Notice that e exists since otherwise X
would not be a cut-set. We say that e is X-blocking for uv in T . Note that it is
possible to construct another spanning tree T ′ by adding uv and removing e in
T , that is E(T ′) = E(T ) ∪ {uv} \ {e}. In the following, we call such operation
swapping uv and e in T . It is possible to define a cut-set with a spanning tree
and an edge as follows.

Definition 1 (Figure 1). Let G be a graph, let T be a spanning tree of G and
let e be an edge of T . Let H1 and H2 be the two connected components of T − e.
We say that the cut-set of the cut (V (H1), V (H2)) is the cut-set induced by T
and e.

Note that a cut-set can be induced by different spanning trees and different
edges, as depicted by Fig. 1. Also, a cut-set X is induced by T and e if and only
if E(T ) ∩ X = e. Moreover, a cut-set induced by a spanning tree and an edge is
always minimal.

v1

v2

v3

v4

v5

v6

G

v1

v2

v3

v4

v5

v6

T1

v1

v2

v3

v4

v5

v6

T2

Fig. 1. Left. Example of a cut P = (V1 = {v1, . . . , v4}, V2 = {v5, v6}) for a graph G.
The vertices of V1 and V2 are depicted in yellow and red, respectively. The edges that
belong to the cut-set X of P are depicted in blue. Center and Right. The cut-set X
is induced by the spanning tree T1 (resp. T2) and the edge v3v5 (resp. v4v5), depicted in
green. The edge v3v5 is X-blocking for v2v6 and v4v5 in T1. The edge v4v5 is X-blocking
for v2v6 and v3v5 in T2.

2.2 Imprecise Weights and Problem Description

An imprecise weight [ω, ω] is an interval of numbers. An imprecise weighted graph
(G,Ω) is a graph with a function Ω that associates with each edge e an imprecise
weight [ωe, ωe]. A realization R : E(G) 
→ R of Ω is a function that associates
with each edge e a weight w ∈ [ωe, ωe]. We denote RΩ the set of realizations of
Ω.
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Let H be a subgraph of G. Given a weight realization R, the weight of
H, denoted R(H) is the sum of the weights of its edges, that is, R(H) =
Σe∈E(H)R(e). Given two subgraphs H1 and H2, we say that H1 dominates H2,
denoted by H1 � H2 if,

∀R ∈ RΩ , R(H1) < R(H2).

Given two edges e1 and e2, we say that e1 dominates e2 if ωe1 < ωe2
. In the

following, we are interested in the set of non-dominated spanning trees

T (G,Ω) := {T ∈ ST (G) |	 ∃T ′ ∈ ST (G), T ′ � T}. (1)

In this article, we address the problem of enumerating every spanning tree of
T (G,Ω). We recall that computing a minimum spanning tree T for some realiza-
tion R (i.e. such that R(T ) is minimum) can be done in polynomial time using a
greedy algorithm. For example, Kruskal’s algorithm computes a minimum span-
ning tree in O(m log n) [8].

An edge e is possible if there is a tree T ∈ T (G,Ω) such that e ∈ E(T ). An
edge e is necessary if for every tree T ∈ T (G,Ω), we have e ∈ E(T ). Yaman et
al. shown that it is possible to determine if an edge is possible or necessary in
polynomial time [13].

Theorem 1 ([13]). Let (G,Ω) be an imprecise weighted graph and let e ∈ E(G)
be an edge. Let ε > 0 be an infinitely small positive value.

(a) Let Rp ∈ RΩ such that Rp(e) = ωe −ε and ∀e′ ∈ E(G−e), Rp(e′) = ωe′ . Let
T be a minimum spanning tree under Rp, computed with a greedy algorithm.
The edge e is possible if and only if e ∈ E(T ).

(b) Let Rn ∈ RΩ such that Rn(e) = ωe+ε and ∀e′ ∈ E(G−e), Rp(e′) = ωe′ . Let
T be a minimum spanning tree under Rn, computed with a greedy algorithm.
The edge e is necessary if and only if e ∈ E(T ).

In other words, an edge e is possible (resp. necessary) if e belongs to a mini-
mum spanning tree under the best (resp. worst) realization for e. The addition
(resp. subtraction) of ε is needed so that in case of a tie between e and another
edge in the greedy algorithm, e is considered first (resp. last). Notice that Rp

and Rn are not feasible realizations for (G,Ω). However, any minimum spanning
tree under Rp or Rn belongs to T (G,Ω).

2.3 Partial Solution

Let G be a graph for which we want to enumerate every non-dominated spanning
trees. A partial solution S is a pair of sets of edges in(S) and out(S) such that
there is a tree T in T (G,Ω) with in(S) ⊆ E(T ) and out(S) ∩ E(T ) = ∅ and
in that case, we say that T is associated to S. We denote TS(G,Ω) the set of
trees of T (G,Ω) associated to S. We denote S∅ the empty partial solution for
which in(S∅) = out(S∅) = ∅. Notice that T (G,Ω) = TS∅

(G,Ω). An example
of partial solution is depicted in Fig. 2.
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Let S be a partial solution. We extend the notion of possible and necessary
edges for partial solutions as follows. An edge e 	∈ in(S)∪out(S) is possible with
respect to S if there is a tree T ∈ TS(G,Ω) such that e ∈ E(T ). Similary, e is
necessary with respect to S if for all T ∈ TS(G,Ω), we have e ∈ E(T ). Notice
that an edge e is possible (resp. necessary) if and only if e is possible (resp.
necessary) with respect to S∅.

An important remark is that we cannot reuse Theorem 1 to determine if an
edge is necessary with respect to some partial solution S. For example, consider
the partial solution S2 given by Fig. 2: the edge v2v5 is necessary with respect
to S2. However, if we consider the realization Rn for which R(v2v5) = 6 + ε
and R(e) = ωe for any other edge, then the greedy algorithm returns T =
G − {v1v4, v2v5} as a minimum spanning tree of G − out(S2) which does not
belong to TS2(G,Ω). However, it is possible to reuse the same idea than in
THoerem 1 to determine if an edge is possible with respect to a partial solution,
as we do in this article.

v1

v2

v3

v4

v5

v6

G

v1

v2

v3

v4

v5

v6

S1

v1

v2

v3

v4

v5

v6

S2

[1, 1]

[2, 6] [3, 5]

[1, 1]

[1, 4]

[3, 6]

[5, 7]

Fig. 2. Left: An imprecise weighted graph (G, Ω). Center: The pair of edges sets
in(S1) and out(S1), depicted in blue and red respectively, is not a partial solution. The
tree spanning tree T = G − out(S1) is the only spanning tree such that in(S1) ⊆ E(T )
and E(T ) ∩ out(S1) = ∅. We can observe that T is dominated by G − {v2v5, v3v6}.
Right: Example of a partial solution S2 with edges of in(S2) depicted in blue and
edges of out(S2) depicted in red. There are two associated trees T1 = G − {v1v4, v2v3}
and T2 = G − {v1v4, v3v6} in TS2(G, Ω). The edges v2v5 and v4v5 are necessary with
respect to S2 and the edges v2v3 and v3v6 are possible with respect to S2.

3 Preliminary Results

In this section, we present some structural results on partial solutions and cut-
set. We first introduce the key concept of core of a cut-set.

Definition 2. Let (G,Ω) be an imprecise weighted graph and let X be a cut-set
in G. An edge e ∈ X belongs to the core of X if there is no edge e′ ∈ X such
that e′ dominates e. We denote CX the core of X. Formally,

CX = {e ∈ X |	 ∃e′ ∈ X,ωe′ < we}.
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Let X be a cut-set, we denote eX an edge such that eX = arg min{we | e ∈ X}.
Notice that eX dominates every edge e in X \ CX .

We now introduce several structural properties regarding the cores of cut-sets
and the non-dominated spanning trees. First, we show that every non-dominated
spanning tree intersects the core of each cut-set.

Lemma 1. Let X be a minimal cut-set. For all tree T ∈ T (G,Ω), we have
CX ∩ E(T ) 	= ∅.

Corollary 1. Let X be the cut-set induced by a non-dominated spanning tree T
and an edge e ∈ E(T ). We have e ∈ CX .

We now show that it is possible to construct a non-dominated spanning tree
from another by swapping two edges that belong to the same core. This allows
one, among other things, to simply build a new solution in T (G,Ω) from an
existing, fully specified one.

Lemma 2. Let T1 be a tree of T (G,Ω) and let e2 	∈ E(T1) be an edge that
belongs to some core CX of a cut-set. Let e1 be a X-blocking edge for e2 in T1.
The spanning tree T2 obtained by swapping e2 and e1 in T1 belongs to T (G,Ω).

Previous lemmas can be used to show some properties on possible/necessary
edges with respect to a partial solution. Those properties will be essential in
building our enumerating algorithms, as they allow to iteratively complete a
current partial solution by adding possible edges to it.

Lemma 3. Let S be a partial solution and let e 	∈ in(S) ∪ out(S) be an edge.

(a) e is necessary with respect to S if and only if there is a minimal cut-set X
such that CX \ out(S) = {e}.

(b) e is possible with respect to S if and only if there is a minimal cut-set X
such that e ∈ CX and X ∩ in(S) = ∅.

4 Enumerating Algorithm

Having stated our formal results, we are now ready to provide our enumerating
algorithms relying on them.

4.1 Possible and Necessary Edges of Partial Solutions

In this section, we use Lemma 3 to develop two algorithms that determine if an
edge e is possible/necessary with respect to a given partial solution. Informally,
the principle of the algorithms is to observe if e closes a cycle in some specific
subgraphs (see Fig. 3).

Lemma 4. Algorithm 1 is correct. Hence, we can determine if an edge is possible
with respect to a partial solution in O(m + n).
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Fig. 3. Subgraphs considered by Algorithms 1 and 2 when the graph (G, Ω) and
partial solution S2 of Fig. 2 is given. The edges of the subgraphs are depicted in black
and the edge on which the algorithm is called is depicted in blue. (a) v3v6 is possible
with respect to S2, since v3 and v6 are in two different connected components in G′.
(b) v2v5 is necessary with respect to S2 since v2v5 and v1v4 lie between the two same
connected components {v1, v2} and {v4, v5, v6}. (c) and (d) v3v6 is not necessary with
respect to S2 since v3 and v6 belong to the same connected component in Gv1v4 and
in Gv3v6 .

Algorithm 1: is possible
Data: An imprecise weighted graph (G, Ω), a partial solution S and an edge uv.
Result: true if uv is possible with respect to S, false otherwise.

1 Let G′ such that E(G′) = {e ∈ E(G) | e dominates uv} ∪ in(S);
2 Let H1 be the connected component of G′ containing u;
3 Let H2 be the connected component of G′ containing v;
4 return H1 �= H2;

Algorithm 2: is necessary
Data: An imprecise weighted graph (G, Ω), a partial solution S and an edge uv.
Result: true if uv is necessary with respect to S, false otherwise.

1 forall xy ∈ out(S) ∪ {uv} such that xy does not dominate uv do
2 Let Gxy such that

E(Gxy) = {e ∈ E(G) | xy does not dominate e} \ out(S);
3 Let Hxy

1 be the connected component of Gxy − uv containing u ;
4 Let Hxy

2 be the connected component of Gxy − uv containing v ;
5 if Hxy

1 �= Hxy
2 then

6 if x ∈ V (Hxy
1 ) and y ∈ V (Hxy

2 ) then
7 return true;
8 if x ∈ V (Hxy

2 ) and y ∈ V (Hxy
1 ) then

9 return true;

10 return false;
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Notice that, since there is no need to sort the edges by increasing order of
weight, Algorithm 1 has a better time complexity than the one developed by
Yaman et al. [13] to determine if an edge is possible (i.e. if we run Algorithm 1
with S := S∅).

Lemma 5. Algorithm 2 is correct. Hence, we can determine if an edge is nec-
essary with respect to a partial solution S in O((|out(S)| + 1) · (n + m)).

Notice that, once again, since there is no need to sort the edges by increasing
order of weight, Algorithm 2 has a better time complexity than the one developed
by Yaman et al. [13] to determine if an edge is necessary. Indeed, if we run
Algorithm 2 with S := S∅, then the time complexity is O(m + n).

4.2 The Enumerating Algorithm

Now that we developed two polynomial-time algorithms to determine if an edge is
possible/necessary with respect to some partial solution, we can enumerate every
spanning trees of T (G,Ω) with an exhaustive search as depicted by Algorithm
3. Note that, for some partial solution S, an addition of an edge in out(S) or in
in(S) does not change the set of possible or necessary edges with respect to S
since it does not change TS(G,Ω).

Corollary 2 (Lemma 4 and Lemma 5). Algorithm 3 is correct. Hence,
T (G,Ω) can be enumerated in O(t(m3n + m2n2)), where t = |T (G,Ω)|.

Algorithm 3: enumeration
Data: An imprecise weighted graph (G, Ω) and a partial solution S (S = S∅ by

default).
Result: Enumeration of T (G, Ω)

1 forall e ∈ E(G) do
2 if is necessary((G, Ω), e, S) then
3 in(S) ← in(S) ∪ {e};

4 forall e ∈ E(G) do
5 if not is possible((G, Ω), e, S) then
6 out(S) ← out(S) ∪ {e};
7 if in(S) is a tree then
8 Display in(S);
9 else

10 Let e ∈ E(G) \ (in(S) ∪ out(S));
11 S′ ← S;
12 in(S′) ← in(S′) ∪ {e};
13 enumeration((G, Ω),S′);
14 S′ ← S;
15 out(S′) ← out(S′) ∪ {e};
16 enumeration((G, Ω),S′);
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5 Numerical Experiments

In this section, we present some tests on random generated instances. The source
code and the instances are available at https://gitlab.utc.fr/davottom/enum-
imst. We compare Algorithm 3 with the two following methods.

– Outer approximation. This method first compute a subgraph G′ consti-
tuted by the possible and necessary edges in the initial graph. Then, it enu-
merates every spanning trees of G′ that contains all necessary edges. Let t′

be the number of (not necessarily non-dominated) spanning trees of G′. The
complexity of the outer approximation is O(|ST (G)|). Note that the size of
ST (G) is not bounded by some polynomial function in the size of T (G,Ω).

– Reduce. This method uses same algorithm than the outer approximation
plus check for each spanning tree T of G′ if T is non-dominated. To check
if a tree T is non-dominated, we use the same idea as the one described in
Theorem 1: we compute a minimum spanning tree in the realization R where
R(e) = ωe − ε if e ∈ E(T ) and, R(e) = ωe, otherwise. The complexity of the
reduce algorithm is O(|ST (G)| · m log n).

In the following, we refer to Algorithm 3 as the exact method.

5.1 Instances

We generated imprecise weighted graphs with 10 vertices by varying the den-
sity of the graph and the weight function. We chose to generate the instances
according three graph densities and three scenarios for the weight function. The
three possible densities sparse, middle, dense for which the graph contains 15, 25
and 35 edges, respectively. The graph is generated using the random generator
of the library boost in C++. If the graph is not connected, we add a random
edge between two connected components until the graph is connected. For the
generation of weight functions, given a scenario i for each edge e, we pick two
random numbers � ∈ [1, 10] s ∈ [ai, bi], where ai and bi depend on the selected
scenario. Then, we set Ω(e) = [�, � + s]. For scenario 1, we have ai = 1 and
bi = 10, for scenario 2, we have ai = 7 and bi = 9 and, for scenario 3, we have
ai = 2 and bi = 3. Note that scenario 1 generates intervals with quite varying
sizes, while scenario 2 generates intervals that will very often overlap. For each
scenario and each density, we generate 10 instances.

5.2 Results

The tests were run on a personal laptop with 16Go of RAM and with an Intel
Core 7 processor 2.5Ghz. The results are depicted in Tables 1 and 2. Not surpris-
ingly, the outer approximation is the fastest method. Although the theoretical
time complexity of the exact method is better than the reduce method, the latter
is faster on the generated dataset (except in Scenario 3). In particular, the worst
case for the exact method occurs in the set of dense graphs with the scenario 2

https://gitlab.utc.fr/davottom/enum-imst
https://gitlab.utc.fr/davottom/enum-imst
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where the maximum computation time for the exact method takes more than
1 minute whereas the reduce method uses only 18 s. Regarding the statistics on
the number of trees enumerated, the denser the graph, the bigger the cardinal-
ity of the enumerated sets for both methods. Samewise, the larger the intervals
(i.e. in scenario 1), the bigger the cardinality of the enumerated sets. We can
also observe than when the graph is not dense, the outer approximation seems
reasonably close to the exact method.

Table 1. Time statistics. A set contains every graphs generated with the same density
and scenario. For each set and each method, average, minimum and maximum times
are depicted.

Set Exact Approx Reduce

density scenario Avg Min Max Avg Min Max Avg Min Max

dense 1 173ms 93ms 22 s 120ms 82ms 8 s 160ms 109ms 11 s

middle 1 40ms 7ms 401ms 23ms 4ms 411ms 31ms 5ms 530ms

sparse 1 <1ms <1ms 2ms <1ms <1ms <1ms <1ms <1ms 2ms

dense 2 6 s 13 s 1m1s 1 s 10 s 14 s 2 s 13 s 18 s

middle 2 89ms 211ms 1 s 35ms 181ms 400ms 45ms 229ms 510ms

sparse 2 <1ms <1ms 2ms <1ms <1ms 1ms <1ms <1ms 1ms

dense 3 3ms 1ms 69ms 39ms <1ms 386ms 48ms <1ms 483ms

middle 3 <1ms <1ms 9ms <1ms <1ms 29ms <1ms <1ms 36ms

sparse 3 <1ms <1ms <1ms <1ms <1ms <1ms <1ms <1ms <1ms

Table 2. Result statistics on the number of enumerated trees. A set contains every
graph generated with the same density and scenario. Exact and Approx: number of
enumerated trees for the corresponding method. The Diff column is the difference of
cardinality between the exact method and the outer approximation.

Set Exact Approx Diff

dens scen Avg Min Max Avg Min Max Avg Min Max

dense 1 708,107 12,984 3.3M 1.3M 53,956 5M 656,372 18,576 1.9M

middle 1 23,548 1,476 84,936 56,837 3,012 29,6340 33,289 872 216,852

sparse 1 201 29 445 287 29 763 86 0 18

dense 2 5M 1.6M 8.2M 7.7M 6.3M 8.6M 2.7M 241,424 5,5M

middle 2 151,517 36,426 227,902 231,516 135,185 296,340 80,000 0 157,855

sparse 2 581 264 944 682 354 944 100 0 224

dense 3 4,533 222 9,857 41,279 304 261,134 36,746 82 257,214

middle 3 464 24 2,445 3,024 48 23,135 2,560 22 20,690

sparse 3 46 8 175 82 11 286 36 2 111
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6 Conclusions

In this paper, we have considered the problem of enumerating non-dominated
spanning trees in the case of interval-valued weights, and have provided an effi-
cient algorithm to do so.

There are at least two directions in which we would like to extend the results
presented in this paper: a first one is to consider more general combinatorial
optimisation problems such as matroids, as those mostly remain tractable when
considering intervals [6]. A second one would be to consider more general uncer-
tainty models, such as possibility distributions [4], belief functions [12] or credal
sets [3,11].
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Abstract. Causal inference concerns finding the treatment effect on
subjects along with causal links between the variables and the outcome.
However, the underlying heterogeneity between subjects makes the prob-
lem practically unsolvable. Additionally, we often need to find a subset
of explanatory variables to understand the treatment effect. Currently,
variable selection methods tend to maximise the predictive performance
of the underlying model, and unfortunately, under limited data, the pre-
dictive performance is hard to assess, leading to harmful consequences.
To address these issues, in this paper, we consider a robust Bayesian
analysis which accounts for abstention in selecting explanatory variables
in the high dimensional regression model. To achieve that, we consider
a set of spike and slab priors through prior elicitation to obtain a set of
posteriors for both the treatment and outcome model. We are specifically
interested in the sensitivity of the treatment effect in high dimensional
causal inference as well as identifying confounder variables. However,
confounder selection can be deceptive in this setting, especially when
a predictor is strongly associated with either the treatment or the out-
come. To avoid that we apply a post-hoc selection scheme, attaining a
smaller set of confounders as well as separate sets of variables which are
only related to treatment or outcome model. Finally, we illustrate our
method to show its applicability.

Keywords: high dimensional data · variable selection · Bayesian
analysis · imprecise probability

1 Introduction

In causal inference, we are interested in estimating the causal effect of indepen-
dent variables on a dependent variable. Ideally, randomised trials are the most
efficient way to perform this task. However, this is not always practical for several
reasons; ethical concerns, design cost, population size, to name a few. This leaves
us with observational studies which are usually obtained by means of collecting
data though surveys or record keeping. But this can be problematic in the pres-
ence of confounders, which are variables associated with both the treatment and
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the outcome. In such cases, we need to be extra cautious as otherwise it will lead
to unwanted bias in the treatment effect estimator [1]. Several works have been
done in order to tackle the presence of confounder variables. One such work in
the topic was by Robins [2] where the author used a graphical approach for the
identification of the causal parameters. Rosenbaum and Robin [3] suggested the
use of a link model to estimate the propensity scores for all individuals. Later on
several other methods have been proposed based on propensity score matching.
A brief review on such methods can be found in [4,5].

The Bayesian approach in causal effect estimation is a popular strategy in
the field and one of the earlier works on this can be found in [6]. Lately, with
the rise of high dimensional data, Bayesian methodologies have become more
appealing. Crainiceanu et al. [7] proposed a bi-level Bayesian model averaging
based method for estimating the causal effect. Wang et al. [8] suggested BAC
(or, Bayesian adjustment for confounding) where they use an informative prior
obtained from the treatment model and apply them on the outcome model for
estimating causal effect. Several other methods were also proposed to tackle
confounders from the point of view of Bayesian variable selection, see for instance
[9,10] among others.

In this paper we take inspiration from the approach of Koch et al. [11], who
proposed a bi-level spike and slab prior for causal effect estimation. They con-
sidered a data-driven adaptive approach to propose their prior which reduces
the variance of the causal estimate. In our approach, we perform a sensitivity
analysis based approach where instead of using a single prior, we consider a set
of priors [12]. This is particularly interesting as in many cases, causal effect esti-
mation can be performed through a meta analysis and hence robust Bayesian
analysis [13] can be beneficial under severe uncertainty. Moreover, for some prob-
lems we have to rely on very limited data to perform our Bayesian analysis and
inference may not be reliable in presence of heteroscedasticity within the data.
Instead, we use expert opinion and elicit a set of priors based on empirical evi-
dence. This also allows us to construct the problem of confounder identification
in a framework where abstention has a relatively positive gain i.e. when the
cost of further tests/data collection is cheaper than mistreating a subject. To
propose our framework, we consider a set of continuous spike and slab priors
[14] for confounder identification and construct a Bayesian group LASSO [15]
type problem. To perform the prior sensitivity analysis, we consider a set of
beta priors on the covariate selection probability of the spike and slab priors.
We use the posteriors of this covariate selection probability for identifying the
confounders. Finally, we consider a post-hoc coefficient adjustment method [16]
to recover sparse estimates associated with either the outcome or the treatment
model.

The rest of the paper is organised as follows. In Sect. 2 we give a formal
description of the causal estimation problem in the context of linear regression.
Section 3 is focused on the Bayesian analysis of causal inference problems, fol-
lowed by the motivation of a robust Bayesian analysis along with our proposed
decision theoretic framework for confounder (variable) selection. In Sect. 4, we
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provide results of simulation studies under different scenarios and show the pos-
sible applications in real life problems. Finally, we discuss our findings and con-
clude this paper in Sect. 5.

2 Causal Estimation

Let an observational study give us the outcomes Y = (Y1, . . . , Yn) along with cor-
responding treatment indicators T = (T1, . . . , Tn). Then the treatment effect in
the population is given by the expectation of the difference in outcomes between
the treatment and controls:

δ = E(Y | T = 1) − E(Y | T = 0). (1)

Similarly, the individual causal effect of treatment Ti on outcome Yi is given by:

δi := E(Yi | Ti = 1) − E(Yi | Ti = 0). (2)

That is, we are interested in the difference between the outcomes when the i-th
subject receives the treatment and when it remains as a control.

In theory, both of these quantities exist. However, we cannot observe E(Yi |
Ti = 1) and E(Yi | Ti = 0) the average causal effect of the treatment T by
calculating the averaged outcome of all the subjects that received the treatment
and all the subjects that remained as control:

δ̂ :=
∑n

i=1 Yi · I(Ti = 1) − ∑n
i=1 Yi · I(Ti = 0)

n
. (3)

However, this relies on an important assumption that the treatment effect on
the i-th subject given that they received the treatment is the same as the (coun-
terfactual) treatment effect when they remain as control [4].

2.1 Regression Model

Regression methods are widely used in causal effect estimation. The main idea
behind these regression methods is to remove the correlation between the treat-
ment indicator and the error term [4,17]. To do so, we rely on p different observed
quantities or predictors denoted by X := [XT

1 , . . . , XT
n ]T where each Xi ∈ R

p.
Each Xi is treated as a p-dimensional row vector, so X is a n × p matrix. Now,
let β := (β1, . . . , βp)T denote the vector of regression coefficients related to the
predictors, and βT denote a regression coefficient related to the treatment. Then
we can define a linear model for the outcome so that

Yi = TiβT + Xiβ + εi (4)

where εi ∼ N (0, σ2). Clearly, when the underlying true outcome model is linear
with respect to the treatment,

δi = E(Yi | Ti = 1) − E(Yi | Ti = 0) = βT . (5)
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In the presence of confounders we also need to consider the association
between the treatment indicators and the predictors. In literature, authors often
suggest a probit link function to construct the regression model. This way, we
can specify the conditional probability that subject i receives the treatment
through a linear model. That is, for another vector of regression coefficients
γ := (γ1, · · · , γp)T we define

P (Ti = 1 | Xi) = Φ(Xiγ) (6)

where Φ(·) denotes the cumulative distribution function of a standard normal
distribution. To incorporate this probit link function, we assume that we can
model the Ti through the following [18]:

T ∗
i = Xiγ + ui (7)

Ti = I(T ∗
i > 0) =

{
1 if T ∗

i > 0
0 otherwise

(8)

where ui ∼ N (0, 1).
Now, to construct the joint likelihood function, we define an extended output

2n × 1 column vector W :=
(

Y
T ∗

)
and corresponding 2n × (2p + 1) dimensional

design matrix

Z :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T1 X1 0
...

... 0
Tn Xn 0
0 0 X1

...
...

...
0 0 Xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
XO 0
0 XT

]

(9)

where, XO = [T,X] and XT = X. Then, considering the assumption of Gaussian
error terms, we have the following likelihood distribution

W | Z, βT , β, γ, σ2 ∼ N (Zν,Σ) , (10)

where ν = (βT , βT , γT )T and

Σ =
[
σ2In 0

0 In

]

. (11)

3 Bayesian Causal Estimation

The likelihood given by Eq. (10) gives us a foundation for a Bayesian group
LASSO [15] type model. This way, we can look into the posterior selection prob-
ability associated with the j-th predictor. There are several ways to construct
spike and slab priors which achieve variable selection. In our case, we consider
a continuous type [14] prior for faster posterior computation.
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3.1 Hierarchical Model

Let πj denote the prior probability that the j-th predictor is associated to the
outcome or the treatment. That is,

πj = P ((βj , γj) �= (0, 0)) . (12)

Then we can define the following hierarchical model for spike and slab group
LASSO so that, for 1 ≤ j ≤ p,

(βj , γj)T | πj , σ
2 ∼ πjN

([
0
0

]

, τ2
1

[
σ2 0
0 1

])

+ (1 − πj)N
([

0
0

]

, τ2
0

[
σ2 0
0 1

])

(13)

βT | σ2 ∼ N (
0, σ2

)
(14)

1
σ2

∼ Gamma(a, b) (15)

πj ∼ Beta (sq, s(1 − q)) . (16)

In the hierarchical model, we fix sufficiently small τ0 (1 � τ0 > 0) so that (βj , γj)
has its probability mass concentrated around zero. Therefore, this represents the
spike component of our prior specification. For the slab component, we consider
τ1 to be large so that τ1 ≥ 1. This allows the prior for (βj , γj) to be flat, besides
the spike component at the origin.. We illustrate the components of a bivariate
spike and slab prior in Fig. 1 (with fixed σ = 1). We generate the spike component
with τ0 = 0.001 and the slab component with τ1 = 5.

For the precision term 1/σ2, a natural choice of prior is the gamma distribu-
tion as it allows the control of both the location and the scale of the precision.
To ensure that the prior is able to represent the data, we consider b = 1 and fix
a so that it represents the prior mean of the precision. In cases where we have no
prior information, we can simply consider a large value for a so that the interval

x1
−4

−2
0

2
4

x2

−4

−2

0
2
4
0

50

100

150

x1
−4

−2
0

2
4

x2

−4

−2

0
2
4

0.01

0.02

0.03

Fig. 1. Spike (left) and slab (right) components of a bi-variate distribution for τ0 =
0.001, τ1 = 5 and σ = 1.
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[0, 2a] contains the true value of the precision. As defined earlier, πj is used as
the selection probability of the j-th predictor in either of the models and we
use a beta prior to specify these selection probabilities where qj represents our
prior expectation of the selection probability (πj) and s acts as a concentration
parameter. For the causal effect, we want to use a Gaussian distribution that
matches the scale of the noise term. Therefore, we consider βT ∼ N (0, σ2).

In Fig. 2, we show a probabilistic graphical representation of our hierarchical
model. In the figure, grey circular nodes represent the prior hyper-parameters
which will be used for sensitivity analysis of the model. The transparent circular
nodes are used to denote the modelling parameters which are our quantities
of interest. The observed quantities are denoted with transparent rectangular
nodes. We also use a grey rectangular node to denote the intermediate latent
variable T ∗. We use directed edges to denote the relationship between different
nodes. However, we use a dashed edge between X and T as they are related
through the latent variable T ∗.

3.2 Robust Bayesian Analysis

The hierarchical model presented above is a standard spike and slab model for
variable selection and performs well when we have sufficient data to begin with.
However, especially in the case of causal inference having sufficient data may
not be feasible. Moreover, we also need to be cautious about the side effects of
a treatment. Therefore, we are particularly interested in constructing a robust
Bayesian framework for variable selection. This way, when we are preparing a
guideline for treatment, we can have the option to ask for more data before
reaching any conclusion. To achieve this, we consider a utility based framework
with three possible ways of determining a variable.

In general, an unsuccessful treatment of a subject can have severe conse-
quences which cannot be associated with a suitable loss function. Instead, we
assume that we can always revert any initial mistreatment by further treatments,
and we can associate a loss function with the cost of further treatments. This
way, in the simplest case, we can associate two constant loss values �1, �2 with
false positives and false negatives respectively. Clearly, false positives will lead to
unwanted side effects and false negatives will lead to mistreatment of the patient.
Finally, we associate a loss value �3 for abstention which can be interpreted as
the cost of further tests. Ideally, in most cases, �3 � �1, �2. However, in certain
scenarios, this might not be the case, especially when the condition of a subject
deteriorates rapidly over time.

Now, based on this notion of abstaining from selecting a variable, we can
perform a sensitivity analysis over a set of priors on the prior selection proba-
bility. That is, we can consider a set of possible values for q such that q ∈ P,
where P ⊆ (0, 1)p. Here, the equality occurs for the near vacuous case. How-
ever, in real-life situations, performing a robust Bayesian analysis for the near
vacuous case is not practical. Instead, we incorporate expert elicitation to define
our model. For instance, we can consider q ∈ [

q, q
]

where pq and pq represent
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π X T

γ T ∗

β Y

σ2

βT

s

q

a

b

Fig. 2. Probabilistic graphical representation for causal inference with Bayesian hier-
archical model.

the bounds of the prior expectation on the total number of variables present in
either of the models.

3.3 Variable Selection and Coefficient Adjustment

For the co-variate selection, we look into the posterior expectation of πj . We
consider the j-th predictor to be removed from both the treatment and outcome
model, if

E(πj | W ) := sup
q∈P

E(πj | W ) < 1/2. (17)

Similarly, we consider the j-th predictor to be present in at least one of the
models, if

E(πj | W ) := inf
q∈P

E(πj | W ) ≥ 1/2. (18)

Otherwise, we consider the variable to be indeterminate, in which case we abstain
from putting it in any of the models but instead just report a lack of information.

In general, this framework is self sufficient for variable selection. However,
for model fitting and prediction, we need to evaluate the values of the regression
coefficients. For that we first need to find the set of active predictors with respect
to our prior expectation of the selection probability q. For any fixed q, we define
the set S(q) as the set of all variables which are active in the treatment model
or in the outcome model:

S(q) := {j : E(πj | W ) ≥ 1/2} . (19)
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For sensitivity analysis, the intersection of S(q) over all q gives us the set of
active variables obtained through Eq. (18). Similarly, the union gives us the set
of variables that are not removed through Eq. (17). That is:

S∗ := {j : E(πj | W ) ≥ 1/2} =
⋂

q∈P
S(q), S∗ :=

{
j : E(πj | W ) ≥ 1/2

}
=

⋃

q∈P
S(q).

(20)

Clearly, S∗ ⊆ S∗. S∗ represents the set of variables that are sure to be selected,
{1, . . . , p} \ S∗ represents the set of variables that are sure to be removed, and
S∗ \S∗ represents the set of variables about which we are undecided. In this way,
through sensitivity analysis, our approach incorporates robustness.

Now, for each fixed value of q, let β̂S(q) be the posterior means of the regres-
sion coefficients of the outcome model with respect to the predictors that belong
to S(q). Similarly, γ̂S(q) be the posterior means of the regression coefficients for the
treatment effects. Since we use continuous spike and slab priors, these regression
coefficients are not sparse. Moreover, with our variable selection we only determine
whether the variable is included in at least one of the models. But, we cannot deter-
mine a specific association. Therefore, to adjust the sparsity of the estimates and
understand the specific association with the treatment/outcome/both, we apply
the “decoupled shrinkage and selection” method proposed by [16]. For that, we
solve the following adaptive LASSO-type [19] problems

β̂D
S(q) = arg min

βS(q)

1
n

‖XS(q)β̂S(q) − XS(q)βS(q)‖22 + λ
∑

j∈S(q)

|βj,S(q)|
|β̂j,S(q)|

(21)

and

γ̂D
S(q) = arg min

γS(q)

1
n

‖XS(q)γ̂S(q) − XS(q)γS(q)‖22 + λ
∑

j∈S(q)

|γj,S(q)|
|γ̂j,S(q)| (22)

where q ∈ P.

4 Simulation Studies

For the simulation studies, we consider 2 different settings. In each case, we
generate the design matrix X such that Xi ∼ N (0, Σ) for 1 ≤ i ≤ n where
[Σ]ij = 0.3|i−j|. This way, we generate 50 predictors for our model with mild
correlations among them. We then use the following generation schemes to gen-
erate the outcome and treatment indicator:

Ti ∼ Bernoulli (1/(1 + exp(−Xiγ))) and Yi = 4Ti + Xiβ. (23)

Scenario 1 — |γj |, |βj | > 0 for j ≤ 10
Scenario 2 — |γj | > 0 for j ≤ 10 and |βj | > 0 for j ≤ 15
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For both the cases, we consider different numbers of observations n where n =
25 + 5k for k = 0, 1, 2, · · · , 10.

We present our analyses in Table 1 and Table 2. For the sake of clarity we
use the following accronyms: RBCE for robust Bayesian causal estimation (our
method); SSCE for spike and slab causal estimation [11]; BSSCE for bi-level spike
and slab causal estimation [11]; and BSSL for Bayesian spike and slab lasso [15].
As it can be seen from both the tables, SSCE and BSSCE are formulated for
problems where p ≤ n and therefore we do not have any results for n < 50.

Elicitation. For the elicitation of P, we use marginal correlation between Y and
X to determine the bounds on number of active variables. We set the thresholds
to be 0.15 and 0.35 for the correlations. We compute the number of variables
with marginal correlation greater than 0.15 (say p1) and number of variables
with marginal correlation greater than 0.35 (say p2). We use these numbers to
obtain the bounds on the number of active variables so that P = [p2/p, p1/p].

Initialisation. To implement our method, we use rjags and for the other three
methods we use the code provided in the appendix of [11]. For our method, we
set τ0 = 10−6 and τ1 = 1 to construct the spike and slab prior. For the noise
term, we set a = 10 and b = 1. To perform our Bayesian analysis with rjags,
we first consider an adaptive stage with 2000 iterations followed by discarding of
2000 burn in samples to refine the posteriors. We consider 5000 MCMC samples
to compute the posterior estimates. For the other methods we use the in-built
settings to initiate the analyses.

Results. We provide our result for causal estimate in Table 1. As we perform a sen-
sitivity analysis, our method gives an interval estimate for the causal effect and
we show that in two different rows where the first row gives the lower bound and
the second row gives the upper bound. We notice that our method is somewhat
in agreement with the other methods but much more consistent in terms of esti-
mating the treatment effect. However, this is not the case for other methods and
sometimes those methods produce extreme values. This can be observed in Fig. 3
as well. Here, the true value is represented by the straight line for βT = 4.

From the figure, we can notice that our method tends to underestimate the
causal effect. This suggests that we may want to have a different value of a for
these sets of observations instead of a fixed value of a = 10 for all of our analyses.
We can also see that the lower bound tends to improve with increasing number of
observations which validates the assumption that as we accumulate more infor-
mation, the interval becomes smaller and converges towards the true value.

For the variable identification, we use the notion of different losses as
described earlier. We consider �1 = �2 = 1 and �3 = 0.2. This is a simpli-
fied way of choosing the loss function, we can choose more sophisticated loss
functions based on [20]. We use this associated loss to obtain the total loss,
which we present in Table 2. In the table we denote the misspecification by
counting the number of false positives (FP) and false negatives (FN). For RBCE,
we have an additional column ‘ID’ which denotes the number of variables which
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Table 1. Causal estimates obtained from different methods for 6 different numbers of
observations.

First scenario: |γj |, |βj | > 0 for j ≤ 10

25 30 35 40 45 50 55 60 65 70 75

RBCE (low) 3.22 3.54 3.30 3.66 3.77 3.80 3.85 3.89 3.90 3.91 3.89

RBCE (up) 4.03 3.96 3.50 3.77 3.82 3.83 3.90 3.93 3.92 3.92 3.91

SSCE – – – – – 4.24 4.11 3.99 4.00 4.00 3.99

BSSCE – – – – – 4.02 4.01 4.01 4.01 4.01 4.01

BSSL -0.23 4.07 6.80 4.05 4.00 4.00 4.01 3.98 3.99 3.99 3.99

Second scenario: |γj | > 0 for j ≤ 10 and |βj | > 0 for j ≤ 15

25 30 35 40 45 50 55 60 65 70 75

RBCE (low) 2.79 3.70 3.77 3.56 3.69 3.70 3.81 3.78 3.81 3.82 3.85

RBCE (up) 3.65 4.01 3.96 3.82 3.90 3.86 3.92 3.89 3.91 3.88 3.91

SSCE – – – – – 4.80 4.05 4.06 6.02 4.04 4.04

BSSCE – – – – – 10.34 8.12 4.17 4.04 4.06 4.05

BSSL -6.68 3.62 4.06 4.07 4.06 4.02 4.05 4.07 4.03 4.05 4.04
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Fig. 3. Comparison of different methods in estimating the treatment effect.

remain as indeterminate. From the table it can be seen that for the first scenario,
our method abstains from identifying some variables for n < 50. Especially for
n = 25, our method identifies 26 and 23 variables as indeterminate for the first
setting and second setting respectively. However, later on our method gives more
precise results in terms of variable selection. We also notice that BSSL tends to
perform poorly in terms of variable selection for n = 25, this can be seen from
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Table 2. Loss based on misspecification of active variables in different models.

First scenario: |γj |, |βj | > 0 for j ≤ 10

RBCE SSCE BSSCE BSSL

Samples FP FN ID Tot FP FN Tot FP FN Tot FP FN Tot

25 0 0 26 5.2 – – – – – – 12 2 14

30 0 1 1 1.2 – – – – – – 0 0 0

35 0 0 1 0.2 – – – – – – 0 0 0

40 0 1 0 1.0 – – – – – – 0 0 0

45 0 0 1 0.2 – – – – – – 0 0 0

50 0 0 0 0.0 0 0 0 0 0 0 0 0 0

55 0 0 0 0.0 0 0 0 0 0 0 0 0 0

60 0 0 0 0.0 0 0 0 0 0 0 0 0 0

65 0 0 0 0.0 0 0 0 0 0 0 0 0 0

70 0 0 0 0.0 0 0 0 0 0 0 0 0 0

75 0 0 0 0.0 0 0 0 0 0 0 0 0 0

Second scenario: |γj | > 0 for j ≤ 10 and |βj | > 0 for j ≤ 15

RBCE SSCE BSSCE BSSL

Samples FP FN ID Tot FP FN Tot FP FN Tot FP FN Tot

25 0 2 23 6.6 – – – – – – 9 4 13

30 0 2 9 3.8 – – – – – – 0 0 0

35 0 0 18 3.6 – – – – – – 0 0 0

40 0 0 5 1.0 – – – – – – 0 0 0

45 0 0 3 0.6 – – – – – – 0 0 0

50 0 0 1 0.2 0 7 7 0 14 14 0 0 0

55 0 0 1 0.2 0 0 0 0 12 12 0 0 0

60 0 0 1 0.2 1 0 1 0 0 0 0 0 0

65 0 0 0 0.0 0 12 12 0 0 0 0 0 0

70 0 0 0 0.0 0 0 0 0 0 0 0 0 0

75 0 0 0 0.0 0 0 0 0 0 0 0 0 0

the treatment effect estimation as well. Moreover, we observe that for the second
setting both SSCE and BSSCE underperform in identifying the active variables,
which can be explained from Table 1 as well.

5 Conclusion

Causal effect estimation is an important tool in statistical learning and needs to
be performed with utmost care as in many cases we may have severe consequence
of poor estimation. In this paper, we tackle this issue by proposing a robust
Bayesian analysis of causal effect estimation problem for high dimensional data.
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Our framework is focused on the effect of prior elicitation on confounder selection
as well as causal effect estimation. We consider a spike and slab type prior
for confounder selection and discuss the possible sources of uncertainty that
need to be tackled carefully. We were particularly focused on the uncertainty
associated with prior selection probabilities for which we consider a set of beta
priors to perform sensitivity analysis. We showed that the sensitivity analysis
on the prior selection probability gives us a robust confounder selection scheme.
In this way, we can abstain from selecting a confounder when the available data
is not sufficient. We also propose a generalised utility based framework, where
we associate a loss for abstaining which can be interpreted as the cost of further
data collection. Finally, we illustrate our method with synthetic dataset and
compare with other state of the art Bayesian methods.

Currently, the paper proposes a robust Bayesian approach for causal effect
estimation where we rely on sampling strategies to obtain the posterior bounds
as well as performing variable selection. In future, it will be interesting to derive
inner approximation bounds for the posterior estimates to reduce the computa-
tional cost. Moreover, for the sake of illustration, we rely on simple loss func-
tions and elicitation strategy. In future, we would like to investigate different
elicitation strategies for the method and explore alternative loss functions for
formulating a decision theoretic framework. Last but not the least, we noticed
that our method is in good agreement with other methods with an added level
of robustness. This confirms that our method has good potential for real-life
problems, and we intend to apply it on a real dataset in future work.
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Abstract. The interpretation of basic conditionals as three-valued
objects initiated by de Finetti has been mainly developed and extended
by Gilio and Sanfilippo and colleagues, who look at (compound) condi-
tionals as probabilistic random quantities. Recently, it has been shown
that this approach ends up providing a Boolean algebraic structure for
the set of conditional objects. In this paper, we show how that this
probabilistic-based approach can also be developed within the possibilis-
tic framework, where conditionals are attached with possibilistic vari-
ables instead: variables attached with a (conditional) possibility distri-
bution on its domain of plain events. The possibilistic expectation of
these variables now provides a means of extending the original possibil-
ity distribution on events to (compound) conditional objects. Our main
result shows that this possibilistic approach leads to exactly the same
underlying Boolean algebraic structure for the set of conditionals.

1 Introduction

Conditional objects are logical constructs very relevant in knowledge represen-
tation and reasoning. Conditional reasoning plays a prominent role in areas
like non-monotonic reasoning [1–3,14,25,28,29], causal inference [27,33], and
more generally reasoning under uncertainty [8,26,32] or conditional preferences
[7,21,34].

Starting from an initial idea by de Finetti [11,12] (see also [31]), an app-
roach to interpret both basic and compound conditionals as probabilistic ran-
dom quantities have been developed mainly by Gilio and Sanfilippo, see e.g.
[22–24]. In this approach, given a finite algebra of plain events A, with Ω being
its set of atoms, and a conditional probability space (Ω,P ), a conditional (a|b)
is viewed as a three-valued quantity X(a|b) on the set of interpretations Ω such
that X(a|b)(w) “ P (a|b) if w falsifies b, besides taking value 1 when w |“ a^b
and value 0 when w |“ �a^b. It is shown that the expectation or prevision of the
variable P(X(a|b)) coincides with the conditional probability P (a|b). This idea
has been recently formalised and extended in [16] to define a random quantity
Xt for each compound conditional t in such a way that its prevision P(Xt) can be
properly regarded as a probability on a Boolean algebra of conditionals T (A),
built over the algebra of plain events A, obtained by identifying conditionals t
sharing the same random quantity Xt.
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On the other hand, a pure algebraic setting for measure-free conditionals has
been recently put forward in [18] and further developed in [17,20]. More pre-
cisely, in [18], given a finite Boolean algebra A “ (A, ^, _, �, K, J) of events,
another (much bigger but still finite) Boolean algebra C(A) is built, where basic
conditionals, i.e. objects of the form (a|b) with a P A and b P A′ “ A \ {K},
can be freely combined with the usual Boolean operations, yielding compound
conditional objects, while they are required to satisfy a set of natural properties.
Moreover, the atoms of C(A) are fully identified and it is shown they are in a
one-to-one correspondence with sequences of pairwise different atoms of A of
maximal length. Finally, it is also shown that any positive probability P on the
set of events from A can be canonically extended to a probability μP on the alge-
bra of conditionals C(A) in such a way that the probability μP (‘(a|b)’) of a basic
conditional coincides with the conditional probability P (a|b) “ P (a^b)/P (b).
This is done by suitably defining the probability of each atom of C(A) as a cer-
tain product of conditional probabilities. A nice feature of the two approaches
is that they lead to the same algebraic structure for conditionals, that is, the
algebras T (A) and C(A) turn out to be isomorphic [16].

In this paper we show that the approach of [16] can also be developed within
the possibilistic framework: each conditional t can be attached with a possibilistic
variables Xt on Ω, where now the uncertainty on the values is governed by a
(conditional) possibility on A, and the possibilistic expectation of these variables
now provides a means of extending the original possibility distribution on events
to (compound) conditional objects. Our main result shows that this possibilistic
approach leads to exactly the same underlying Boolean algebraic structure for
the set of conditionals as in the probabilistic setting.

2 Preliminaries

From now on we will consider a fixed finite Boolean algebra of ordinary events
A “ (A, ^, _, �, K, J). For an easier reading, for any a, b P A, we will also write
ab for a ^ b and ā for �a, while we will keep denoting the disjunction by a_b.

The set of the atoms at(A) of A is identifiable with the set Ω of interpre-
tations for A, i.e. the set of homomorphisms w : A → {0, 1}. Thanks to this
identification, we will say that an event a P A is true (resp. false) under an
interpretation (or possible world) w P Ω when w(a) “ 1 (resp. w(a) “ 0), also
denoted as w |“ a (resp. w � a).

We will be interested in conditional events like “if b then a”, or “a given
b”, where a and b are events from A with b different from K. These objects
are denoted by (a|b). Let A|A′ “ {(a|b) : a P A, b P A′}, where A′ “ A \
{K}, be the set of all conditionals that can be built from A, that will also be
called basic conditionals. By compound conditionals we will understand Boolean-
style combinations of basic conditionals. More formally, they will be elements of
T(A), the term algebra of type (^, _, �, K, J) over A|A′, so that T(A) contains
arbitrary terms generated from elements of A|A′ (taken as variables) that are
freely combined with the operations from the signature, without any specific
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properties. For instance, if a, c, e P A and b, d, f P A′, then (a|b) ^ (c|d) or
(a|b) _ ((c̄|d) ^ �(e|f)) are compound conditionals from T(A).

In the rest of this section we recall from [16] a reduction procedure for com-
pound conditionals from T(A) given an interpretation. The idea of the reduction
is to partially evaluate conditionals by classical evaluations in accordance with
de Finetti’s three-valued semantics. Under this semantics, a conditional (a|b) is
deemed to be true in w when w |“ a and w |“ b, false when w |“ b and w � a, and
undefined if w � b. In other words, an interpretation w : A → {0, 1} partially
extends to A|A′ as follows:

w(a|b) “
⎧
⎨

⎩

1, if w(a) “ w(b) “ 1
0, if w(a) “ 0, w(b) “ 1
undefined, if w(b) “ 0

Although some of the basic components of a compound conditional may remain
undefined for a given interpretation w, we can sometimes provide a definite
evaluation or at least a simplified form of the conditional, assuming a Boolean
behaviour of the operations. For instance if w is such that w |“ ābcd̄, then
w((a|b) ^ (c|d)) “ 0 ^ w(c|d) “ 0, while w((c|b) ^ (a|d)) “ 1 ^ w(a|d) “ w(a|d).
So, from the point of view of w, we can reduce (a|b)^ (c|d) to K (the conditional
that always evaluate to false), while (c|b) ^ (a|d) can be reduced to (a|d).

More formally, for every t P T(A), let us write Cond(t) “
{(a1|b1), . . . , (an|bn)} for the set of basic conditionals appearing in t, and let
us denote by b(t) “ b1 _ . . . _ bn the disjunction of the antecedents in Cond(t).

Definition 1. Let w P Ω be a classical interpretation and let t P T(A) be a
term. The w-reduct of t, denoted tw, is the term in T(A), obtained as follows:

(1) replace each (ai|bi) P Cond(t) by J if w |“ aibi, and by K if w |“ āibi,
(2) apply the following reduction rules to subterms of t until no further reduction

is possible: for every subterm r of t

�J :“ K, �K :“ J, r^J “ J^r :“ r, r^K “ K^r :“ K, r_J “ J_r :“ J,
r_K “ K_r :“ r.

This symbolic reduction procedure has some interesting properties.

Fact 1. (1) If w |“ b̄(t), that is w does not satisfy any antecedent of the condi-
tionals in t, then no reduction is possible and hence tw “ t.

(2) The reduction commutes with the operation symbols, in the following
sense: for every terms t, s P T(A) and for every w P Ω: (i) (�t)w “ �tw; (ii)
(t^s)w “ tw^sw; and (iii) (t_s)w “ tw_sw.

In the following, we will denote by Red(t) “ {tw|w P Ω} the set of w-reducts of
t, and by Red0(t) “ Red(t) \ {t}, the set of its proper w-reducts.

Example 1. Let t “ (a|b)^((c|d)_�(e|f)) and let w such that w(a) “ 1, w(b) “
0, w(c) “ 0, w(d) “ 0, w(e) “ 1, w(f) “ 1, i.e. w |“ ab̄c̄d̄ef . Then

tw “ (a|b)^((c|d)_�J) “ (a|b)^((c|d)_K) “ (a|b)^(c|d).
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Let w′ such that w′ |“ abcd̄ef . Then tw
′ “ J^((c|d)_�J) “ (c|d)_K “ (c|d).

In fact, one can check that

Red0(t) “ {J, K, (a|b), (c|d), �(e|f), (a|b)^(c|d), (a|b)^�(e|f), (c|d)_�(e|f)}.�

3 Possibilistic Variables and Their Expectations

We first recall the notion of conditional possibility measures. Coletti and col-
leagues proposed an axiomatic approach to the notion of conditional possibility,
similar to the case of conditional probability, that is a primitive notion, not
derived from a (unconditional) possibility, see e.g. [4,9,10]. The following defi-
nition is basically from [4].

Definition 2. Given a (continuous) t-norm �, a �-conditional possibility1 mea-
sure on A is a binary mapping Π(·|·) : A ˆ A′ → [0, 1], where A′ “ A \ {K},
satisfying the following conditions:

(CΠ1) Π(a|b) “ Π(a ^ b|b), for all a P A, b P A′

(CΠ2) Π(·|b) is a possibility measure on A for
(CΠ3) Π(a^b|c) “ Π(b|a^c)�Π(a|c), for all a, b, c P A such that a^c P A′.

We will call the pair (A,Π) a �-conditional possibility space.

In what follows, given a �-conditional possibility Π : AˆA′ → [0, 1], for any
event a P A, we will write Π(a) to denote Π(a|J), without danger of confusion.
Note that Π(·) “ Π(·|J) is indeed a possibility measure.

Also, whenever it is clear by the context, we will simply say that Π is a
conditional possibility without explicitly referring to the t-norm �.

Let (A,Π) be a given finite conditional possibility space, and let Ω be the
set of atoms of A. By a possibilistic variable (or quantity) we mean a function
X : Ω → [0, 1], that propagates the possibilistic uncertainty on Ω to the values
of X. Indeed the possibility that X takes value in a subset S ⊆ [0, 1], conditional
to an event b P A, is naturally defined as

Π(X P S | b) “ max{Π(w|b) |X(w) P S}.

This can be interpreted as a sort of possibilistic counterpart of the notion of ran-
dom variable particularised to our framework of conditional possibility spaces.

Notation 1. In the following, for any event a P A, we will denote by Xa the
indicator function of a in Ω, that is, for all w P Ω, Xa(w) “ 1 if w |“ a, and
Xa(w) “ 0 otherwise. Accordingly, XJ is the constant function of value 1 (also
denoted 1) and XK is the constant function of value 0 (also denoted 0). Also, if
λ P [0, 1], by λ�X we will denote the variable such that (λ�X)(w) “ λ�X(w)

1 Called T -conditional possibility in [9,10].
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for all w P Ω. Finally, if X and Y are variables, sometimes we will denote
by X ^ Y and X _ Y the variables such that, for all w P Ω, (X ^ Y )(w) “
min(X(w), Y (w)) and (X _ Y )(w) “ max(X(w), Y (w)) respectively.

Likewise, the possibilistic counterpart of the notion of expected value for a
random value will be played here by a generalized Sugeno integral [13,19].

Definition 3. Let (A,Π) be a finite �-conditional possibility space and let
X : Ω → [0, 1] be a possibilistic random variable. Then, the possibilistic expec-
tation of X is defined as the following generalised Sugeno integral of X w.r.t.
the possibility distribution π : Ω → [0, 1] defined as π(w) “ Π(w|J), that is:

E(X) “ max
wPΩ

X(w) � π(w).

Analogously, the conditional possibilistic expectation of X given an event
b P A′ is defined as the generalised Sugeno integral of X w.r.t. the possibility
distribution π(·|b) : Ω → [0, 1] defined as π(w|b) “ Π(w|b), namely:

E(X|b) “ max
wPΩ

X(w) � π(w|b) “ max
wPΩ:w|“b

X(w) � π(w|b).

Unsurprisingly, we recover the unconditional expectation when we take
b “ J, namely E(X|J) “ E(X). Also as expected, we recover the conditional
possibility Π from E when applied over indicator functions, in fact, for any a P A,
E(Xa|b) “ Π(a|b).

It is worth pointing out that the case of non-conditional expectations have
been studied in [15] under the name of extended generalised possibility measures
(see also [6]), whereas �-conditional possibilistic expectations have been formally
introduced in [5], under the name of T -conditional possibilistic previsions, where
the authors show they satisfy the following properties for every b P A′:

– E(1|b) “ E(Xb|b) “ 1
– E(0|b) “ 0
– E(X|b) “ E(X � Xb|b)
– E(X1_X2|b) “ max(E(X1|b), E(X2|b))
– E(λ�X|b) “ λ � E(X|b), for every λ P [0, 1]
– E(Xa � X|b) “ E(Xa|b) � E(X|a ^ b), for every a P A′

Actually, these properties characterise them, as implicitly understood in [5]. We
provide here a proof for the sake of completeness

Proposition 1. Let A be a finite Boolean algebra, Ω be the set of its atoms,
and let E(·|·) : [0, 1]Ω ˆ A′ → [0, 1] be a mapping. Then E satisfies the following
properties for any b P A′:

(i) E(1|b) “ 1
(ii) E(X1_X2|b) “ max(E(X1|b), E(X2|b))
(iii) E(λ�X|b) “ λ � E(X|b), for every λ P [0, 1]
(iv) E(Xa � X|b) “ E(Xa|b) � E(X|a ^ b), for every a P A′
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if, and only if, there exists a (normalised) �-conditional possibility distribution
π : Ω ˆ A′ → [0, 1] such that E(X|b) “ maxwPΩ X(w) � π(w|b).

Proof. Suppose E satisfies (i), (ii) and (iii). Since everything is finite, we can
write X “ maxwPΩ X(w) � Xw, where X(w) is the constant function of value
X(w) and Xw is the characteristic function of w, i.e. for everything w′ P Ω,
Xw(w′) “ 1 if w′ “ w and Xw(w′) “ 0 otherwise. Therefore, for any b P A′, by
(ii) and (iii), we have E(X|b) “ maxwPΩ E(X(w) � Xw|b) “ maxwPΩ X(w) �
E(Xw|b). Finally, by defining π(·|b) : Ω → [0, 1] as π(w|b) “ E(Xw|b) we get that
E(X|b) “ maxwPΩ X(w)�π(w|b). Now, let us define the Π(·|·) : A ˆ A′ → [0, 1]
by letting Π(a|b) “ maxw|“a π(w|b) “ maxw|“a E(Xw|b) “ E(Xa|b). Finally, we
are led to check that Π is a �-conditional possibility:

(CΠ1): it holds by definition of π(w|b).
(CΠ2): by (i) and (i), it follows that Π(·|b) is a normalised possibility measure

for each b P A′.
(CΠ3): let w P Ω such that w ď a^b, then (iv) gives E(Xw|b) “ E(Xa�Xw|b) “

E(Xa|b) � E(Xw|a ^ b), that is, π(w|b) “ Π(a|b) � π(w|a ^ b). Therefore,
we have Π(a ^ b|c) “ maxw|“a^b π(w|c) “ maxw|“a^b π(w|a ^ c) � Π(a|c) “
Π(a|c)�maxw|“a^b π(w|a^c) “ Π(a|c)�Π(a^b|a^c) “ Π(a|c)�Π(b|a^c).

�

4 Conditionals and Their Associated Possibilistic
Variables

In this section, following the approach in [16], we associate a possibilistic variable
to every compound conditional t P T(A) and study basic properties of these
variables and of their possibilistic expectations.

Definition 4. Let (A,Π) be a finite conditional possibility space. For every term
t in T(A), we define the variable Xt : Ω → [0, 1] as follows: for every w P Ω,

Xt(w) :“ E(Xtw |b(tw)).

If tw “ J or tw “ K, we define b(tw) “ J, and hence we take XJ and XK as
the constant functions of value 1 and 0 respectively.

Let us show that the above definition captures the intuition by analysing
the most basic cases. We start by considering the case t “ (a|J). Here we have
tw “ J if w |“ a, tw “ K otherwise, and b(tw) “ J in either case. Therefore,
Xt(w) “ E(XJ|b(tw)) “ 1 when w |“ a and Xt(w) “ 0 when w |“ ā; in other
words, X(a|J) is nothing but the characteristic or indicator function of the event
a. From now on, we will simply write Xa for X(a|J). Moreover, the expectation
of Xa is E(Xa) “ maxwPΩ Xa(w) � Π(w) “ 1 � maxw|“a Π(w) “ Π(a).

Let us consider now the case t “ (a|b). By the above definition, we get

tw “
⎧
⎨

⎩

J, if w |“ ab
K, if w |“ āb
(a|b), if w |“ b̄

, b(tw) “
⎧
⎨

⎩

J, if w |“ ab
J, if w |“ āb
b, if w |“ b̄
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and thus we have:

X(a|b)(w) “ E(Xtw |b(tw)) “
⎧
⎨

⎩

E(XJ|J) “ 1, if w |“ ab
E(XK|J) “ 0, if w |“ āb
E(X(a|b)|b), if w |“ b̄

.

Now, since Π(w|b) “ 0 whenever w |“ b̄, we have

E(X(a|b)|b) “ [1 � Π(ab|b)] _ [0 � Π(āb|b)] _ [E(X(a|b)|b) � 0] “ Π(ab|b) “ Π(a|b).

Therefore we get the following three-valued possibilistic representation of (a|b):

X(a|b)(w) “
⎧
⎨

⎩

1, if w |“ ab,
0, if w |“ āb,
Π(a|b), if w |“ b̄.

If t “ �(a|b), one gets an analogous expression for X�(a|b), just replacing above
a by ā, and hence Π(a|b) by Π(ā|b) as well. Thus, one has X�(a|b) “ X(ā|b).

Fact 2. From the above cases it follows that, for any a P A and b ≥ a, the
following equalities hold:

- X(a|b) “ X(a^b|b), X�(a|b) “ X(ā|b), and X��(a|b) “ X�(ā|b) “ X(a|b)
- Xa “ X(a|J), and X�(a|J) “ X(ā|J) “ Xā “ 1 ´ Xa

- X(a|a) “ X(b|a) “ X(J|J) “ XJ “ 1, and X�(a|a) “ X(ā|a) “ X(K|J) “ 0
where 0 and 1 denote the variables of constant value 0 and 1 respectively.

In general, a possibilistic random quantity Xt can be specified in a more
compact way: let Red0(t) “ {tw|w P Ω} “ {t1, t2, ..., tk} and let E1, E2, ..., Ek

be the corresponding interpretations leading to a same element of Red0(t), then

Xt(w) “ E(Xtw |b(tw)) “

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E
c(Xt1), if w |“ E1

. . . , . . .
E

c(Xtk), if w |“ Ek

E
c(Xt), if w |“ �(E1 _ . . . _ Ek)

where E
c(Xt) stands for E(Xt|b(t)), and the dashed line separates the cases

where w satisfies b(t) from those which do not. It follows that Xt can be
expressed as a max-� combination of the indicator functions XEi

’s :

Xt “ max(Ec(Xt1) � XE1 , . . . , E
c(Xtk) � XEk

, Ec(Xt) � XEk`1),

where Ek`1 “ Ē1 ^ . . . ^ Ēk “ b(t), and hence, the possibilistic expectation of
Xt is given by:

E
c(Xt) “ max(Ec(Xt1) � Π(E1|b(t)), . . . , Ec(Xtk) � Π(Ek|b(t))).

Next result shows two interesting properties of the possibilistic prevision of Xt,
that are similar to the probabilistic case. In particular it shows that the prevision
E(Xt) coincides with its conditional previsions given both b(t) and b(t).



Conditional Objects as Possibilistic Variables 379

Proposition 2. The following properties hold for any conditional term t P T(A)
and event a P A:

(i) E(Xt ^ Xa) “ E(Xt � Xa) “ E(Xt|a) � Π(a)
(ii) E(Xt|b̄(t)) “ E(Xt|b(t)) “ E(Xt)

Proof. (i) Since a P A, Xa(w) P {0, 1}, whence for every term t, Xt ^ Xa “
Xt � Xa. Now, E(Xt ^ Xa) “ E(Xt � Xa) “ maxw{Xt(w) � Xa(w) � Π(w)}.
Now, observe that Xa(w)�Π(w)) “ Π(w^a) and, by (CΠ3), Π(w^a) “ Π(w^
a|J) “ Π(w|a)�Π(a) and hence the previous expression equals maxw{Xt(w)�
Π(w|a) � Π(a)} “ Π(a) � maxw{Xt(w) � Π(w|a)} “ Π(a) � E(Xt|a).

(ii-a) By definition, E(Xt|b̄(t)) “ maxw|“b̄(t) Xt(w) � Π(w|b̄(t)) and this latter
equals maxw|“b̄(t) E(Xtw |b(tw)) � Π(w|b̄(t)). By Fact 1 (1) if w |“ b̄(t), tw “
t and hence E(Xt|b̄(t)) “ maxw|“b̄(t) E(Xt|b(t)) � Π(w|b̄(t)) “ E(Xt|b(t)) �
maxw|“b̄(t) Π(w|b̄(t)) “ E(Xt|b(t)) � Π(b̄(t)|b̄(t)) “ E(Xt|b(t)).

(ii-b) Since b is an event, Xb only takes value 0 or 1, and thus Xt “ (Xt �
Xb) _ (Xt � Xb̄). Now, from (i) and (ii-a) above, the following equalities hold:
E(Xt) “ E(Xt�Xb(t))_E(Xt�Xb̄(t)) “ max(E(Xt|b(t))�Π(b(t)), E(Xt|b̄(t))�
Π(b̄(t))) “ max(E(Xt|b(t)) � Π(b(t)), E(Xt|b(t)) � Π(b̄(t))) “ E(Xt|b(t)) �
max(Π(b(t)),Π(b̄(t))) “ E(Xt|b(t)). �

We end this section with two further instantiations of the definition of Xt,
namely for the cases of a conjunction and a disjunction of basic conditionals.

Example 2. Let t “ (a|b)^(c|d). Here we have b(t) “ b _ d, and

Xt(w) “

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if w |“ abcd
0, if w |“ (āb) _ (c̄d)
E

c(Xa|b) “ Π(a|b), if w |“ b̄cd
E

c(Xc|d) “ Π(c|d), if w |“ abd̄

E
c(X(a|b)^(c|d)), if w |“ b̄d̄

Then, by definition we get:

E
c(X(a|b)^(c|d)) “

max(Π(abcd|b_d),Π(a|b) � Π(b̄cd|b_d),Π(c|d) � Π(abd̄|b_d))2

In the particular case when a ď b “ c ď d everything simplifies, indeed it is not
difficult to check that E

c(X(a|b)^(c|d)) “ Π(a|d) and X(a|b)^(c|d) “ Xa|d.

2 This is a possibilistic counterpart of the formula given in [30] for the probability of
the conjunction of two conditionals.
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Now, consider t “ (a|b)_(c|d). Again here b(t) “ b _ d, and Xt is defined as:

Xt(w) “

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if w |“ ab _ cd
0, if w |“ ābc̄d
E

c(Xa|b) “ Π(a|b), if w |“ b̄c̄d
E

c(Xc|d) “ Π(c|d), if w |“ ābd̄

E
c(X(a|b)_(c|d)), if w |“ b̄d̄

where, by definition we have: E
c(X(a|b)_(c|d)) “ E(X(a|b)_(c|d)|b_d) “

max(Π(ab_cd|b_d),Π(a|b)�Π(b̄c̄d|b_d),Π(c|d)�Π(ābd̄|b_d)). One can show
that the last expression is equal to max(Π(a|b),Π(c|d)) (we omit the proof due
to lack of space). Therefore we have

E
c(X(a|b)_(c|d)) “ max(Π(a|b),Π(c|d)). �

From the above example, the following equalities among variables readily
follow by simple inspection:

X(a|b)^(c|d) “ X(c|d)^(a|b) and X(a|b)_(c|d) “ X(c|d)_(a|b),
X(a|b)^(c|b) “ X(a^c|b) and X(a|b)_(c|b) “ X(a_c|b),
X(a|b)^(a|b) “ X(a|b)_(a|b) “ X(a|b),
X(a|b)^(ā|b) “ X(a|b)^�(a|b) “ XK “ 0,
X(a|b)_(ā|b) “ X(a|b)_�(a|b) “ XJ “ 1.

Moreover, by iterating or combining the above expressions for the conjunction
and disjunction of basic conditionals, the following further equalities also hold:

X(a|b)^((c|d)^(e|f)) “ X((a|b)^(c|d))^(e|f)X(a|b)_((c|d)_(e|f)) “ X((a|b)_(c|d))_(e|f),
X(a|b)^((c|d)_(e|f)) “ X((a|b)^(c|d))_((a|b)^(e|f)),
X(a|b)_((c|d)^(e|f)) “ X((a|b)_(c|d))^((a|b)_(e|f)),
X�((a|b)^(c|d)) “ X�(a|b)_�(c|d), X�((a|b)_(c|d)) “ X�(a|b)^�(c|d).

5 A Boolean Algebraic Structure on the Set of Compound
Conditionals

The aim of this section is to show that T(A) can be endowed with a Boolean
algebraic structure. To prove this, we start showing some elementary properties
whose proof can be shown by induction on the structure of the terms and whose
base cases only involve basic conditionals and are listed at the end of Sect. 4.

Proposition 3. For every t, s, r P T(A) the following conditions hold:
1. Xt “ Xt^t 2. Xt^s “ Xs^t 3. Xt^(s^r) “ X(t^s)^r

4. Xt^�t “ 0 5. X�(t^s) “ X�t_�s 6. Xt^(s_r) “ X(t^s)_(t^r)

7. X��t “ Xt 8. Xt_s “ max(Xt,Xs) 9. If a ď b,X(a|b)^(a|b_c) “ X(a|b_c).

The next step consists in partitioning T(A) in equivalence classes, each of
which contains compound conditionals giving the same possibilistic quantity in
any conditional possibility space over A.
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Definition 5. For all t, s P T(A), t is equivalent to s, written t ” s, whenever
Xt “ Xs under any conditional possibility Π on A ˆ A′.

It is clear that ” is an equivalence relation, and hence we can consider the
quotient T(A)/”. Letting [t] being the equivalence class of a generic term
t P T(A) under ”, define ^∗, _∗, �∗ on T(A) as follows: for all [t], [s] P T(A),
[t]^∗[s] “ [s^t], [t]_∗[s] “ [s_t], �∗[t] “ [�t], 0 “ [(K|J)], 1 “ [(J|J)]. By the
properties of Xt, the operations are well defined (we skip details due to lack of
space) and, by Proposition 3, they endow T(A)/” with a Boolean structure.

Theorem 3. T (A) “ (T(A)/”, ^∗, _∗, �∗, 0, 1) is a Boolean algebra.

Next proposition shows natural properties of conditionals that hold in the current
setting.

Proposition 4. The following properties hold in T (A):
(i) [(a|a)] “ 1, (ii) [(a|b) ^ (c|b)] “ [(a ^ c|b)],
(iii) [�(a|b)] “ [(ā|b)], (iv) [(a ^ b|b)] “ [(a|b)],
(v) [(a|b) ^ (b|c)] “ [(a|c)], if a ď b ď c.

Proof. For each one of the equalities above, of the form [t] “ [s], we proved in
previous examples that Xt “ Xs. �

Properties (i)-(v) turn out to be the conditions (C1)-(C5) in [18] required in
the construction of a finite Boolean algebra C(A) of conditional objects start-
ing from a finite algebra of events A. In particular (C5) stands for a qualita-
tive counterpart of the Bayes rule for conditional probabilities (P (a ^ b|c) “
P (a|c) · P (b|a ^ c)) and for condition (CΠ3) of Definition 2 for �-conditional
possibilities, equivalently expressed in (v) when a ď b ď c. These properties are
enough to prove that the sets of atoms of both T (A) and C(A) are in bijective
correspondence and hence the following holds.

Theorem 4. The algebras T (A) and C(A) are isomorphic.

By the above and [18] we hence know that each atom of T (A) can be regarded
as terms (αi1 |J)^(αi2 |ᾱi1)^ ...^(αin´1 |ᾱi1 ...ᾱin´2) where at(A) “ {α1, . . . , αn}
and {i1, ..., in´1} are n ´ 1 pairwise different indices from {1, ..., n}.

6 Possibility Measures on T (A) and Canonical
Extensions

Since T (A) is a Boolean algebra, we can define possibility measures on it. Actu-
ally, we can show that the possibilistic expectations E(Xt)’s of the variables Xt’s
determine in fact an (unconditional) possibility on T (A).

Definition 6. Given a �-conditional possibility Π : A ˆ A′ → [0, 1], we define
the mapping Π∗ : T (A) → [0, 1] as follows: for every [t] P T (A),

Π∗([t]) “def E(Xt) “ maxw E
c(Xtw) � Π(w|b(t)).
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Again, this is well defined, as if t and t′ are terms such t ” t′, it is immediate to
check that Π∗([t]) “ Π∗([t′]). Moreover, Π∗ is a possibility measure in T (A):

– Π∗(K) “ E(XK) “ 0, Π∗(J) “ E(XJ) “ 1, and
– Π∗(t _ s) “ E(Xt_s) “ E(Xt _ Xs) “ max(E(Xt), E(Xs)) “

max(Π∗(t),Π∗(s))

Notice that, given a conditional possibility Π on A ˆ A′, Π∗ is a (uncondi-
tional) possibility measure in T (A) such that, for every basic conditional (a|b),

Π∗([(a|b)]) “ E(X(a|b)) “ Π(a|b),

as we checked after Definition 4. In other words, Π∗ satisfies the possibilistic
counterpart of Stalnaker’s hypothesis for the probabilistic case. Moreover, Defini-
tion 6 provides a recursive procedure to compute the possibility measure Π∗([t])
of any compound conditional t, in terms of conditional possibilities of basic con-
ditionals. For instance, based on Example 2, we get the following expression for
the possibility measure of the conjunction of two conditionals:

Π∗([(a|b) ^ (c|d)]) “ Π(abcd|b _ d) _ [Π(a|b) � Π(b̄cd|b _ d)] _ [Π(c|d) � Π(abd̄|b _ d)].

It turns out that Π∗ is not an arbitrary possibility measure on the algebra
T (A) of (equivalence classes of) possibilistic variables, but a very special one.
As a matter of fact, next theorem shows that Π∗ can be seen as the canonical
extension of the conditional possibility Π on A ˆ A′ to T (A).

Theorem 5. Let A be a Boolean algebra with at(A) “ {α1, . . . , αn} and let Π
be a conditional possibility on A ˆ A′. Then, for each sequence 〈β1, . . . , βm〉 of
m pairwise incompatible events from A, with m ď n, it holds that:

(1) Π∗((β1|J) ^ (β2|β1) ^ ... ^ (βm|β1 ^ . . . ^ βm´1)) “
“ Π(β1) � Π(β2|β̄1) � . . . � Π(βm|β1 ^ . . . ^ βm´1), and in particular

(2) Π∗((α1|J) ^ (α2|α1) ^ ... ^ (αn´1|α1 ^ . . . ^ αn´2)) “
“ Π(α1) � Π(α2|ᾱ1) � . . . � Π(αn´1|α1 ^ . . . ^ αn´2).

Proof. We prove (1) and first show by induction that X(β1|J)^...^(βm|β1^...^βm´1)

“ Π(βm|β̄1...β̄m´1)�Π(βm´1|β̄1...β̄m´2)�...�Π(β2|β̄1)�Xβ1 . For k P {1, ...,m´
1}, let tk “ (βk|β̄1...β̄k´1) ^ ... ^ (βm|β̄1...β̄m´1), where b(tk) “ β̄1...β̄k´1. Then:
(•) Let k “ 1. Hence t1 “ β1 ^ (β2|β̄1) ^ ... ^ (βm|β̄1...β̄m´1), and b(t1) “ J.
Then:

Xt1(w) “
⎧
⎨

⎩

1, if w |“ K
0, if w |“ β̄1

E
c(X(β2|β̄1)^...^(βm|β̄1...β̄m´1)), if w |“ β1

Thus, Xt1 “ E
c(Xt2)�Xβ1 , and E(Xt1) “ E

c(Xt2)�E(Xβ1) “ E
c(Xt2)�Π(β1).

(•) Let k ď m ´ 2 and assume, by inductive hypothesis, that the following hold:
- E

c(Xtk) “ E
c(Xtk`1) � Π(βk|β̄1...β̄k´1),

- Xt1 “ E
c(Xtk`1) � Π(βk|β̄1...β̄k´1) � ... � Π(β2|β̄1) � Xβ1 .
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Now consider the variable Xtk`1 , where b(tk`1) “ β̄1...β̄k. Then:

Xtk`1(w) “
⎧
⎨

⎩

1, if w |“ K
0, if w |“ β̄1...β̄kβ̄k`1

E
c(X(βk`2|β̄1...β̄k)^...^(βm|β̄1...β̄m´1)), if w |“ β̄1...β̄kβk`1

Hence Xtk`1 “ E
c(Xtk`2) � Xβ̄1...β̄kβk`1

, and thus we have:
- E

c(Xtk`1) “ E
c(Xtk`2) � Π(β̄1...β̄kβk`1|β̄1...β̄k) “ E

c(Xtk`2) �
Π(βk`1|β̄1...β̄k),

- Xt1 “ E
c(Xtk`1) � Π(βk|β̄1...β̄k´1) � ... � Π(β2|β̄1) � Xβ1

“ E
c(Xtk`2)�Π(βk`1|β̄1...β̄k)�Π(βk|β̄1...β̄k´1)� ...�Π(β2|β̄1)�Xβ1 .

(•) In particular, taking k “ m ´ 2, we have

E
c(Xtk`2) “ E

c(Xtn) “ E
c(X(βn|β̄1...β̄m´1)) “ Π(βn|β̄1...β̄m´1)

and thus,

Xt1 “ Π(βn|β̄1...β̄m´1) � Π(βn´1|β̄1...β̄m´2) � ... � Π(β2|β̄1) � Xβ1 .

Finally, taking expectations we have:

Π∗(Xt1) “ E(Xt1) “ Π(βn|β̄1...β̄m´1) � Π(βn´1|β̄1...β̄m´2) � ... � Π(β2|β̄1) � Π(β1),

that proves (1). Claim (2) follows from (1) when taking the set of atoms as the
set of pair-wise incompatible events and noticing that α1 ^ . . . ^ αn´1 “ αn. �

Expression (2) in the above theorem tells us that Π∗ is nothing but the canon-
ical extension of the original conditional possibility Π to the algebra T (A) (or
C(A) if you prefer) in the sense of [20], where the original conditional probabilis-
tic setting from [16] has been adapted to the possibilistic case.

7 Conclusions

In this paper we have proposed a possibilistic counterpart of the random
quantity-based approach to (compound) conditionals, and have shown that it
preserves all their main properties as well as the underlying Boolean algebraic
structure of compound conditionals that arises from them, and thus appearing as
an essential feature independent from the particular probabilistic or possibilistic
uncertainty quantification model used.

As for future work, since possibility measures are a particular class of upper
probabilities, we plan to explore the feasibility of using in the definition of the
variables Xt the corresponding lower previsions. This might lead to an alternative
model of conditionals.
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Abstract. This paper introduces three classes of similarity measures for
fuzzy description profiles, defined through the d-Choquet integral. Such
classes of similarity measures are parameterized by the choice of a capac-
ity and a restricted dissimilarity function, and generalize the classical
Jaccard index for binary profiles. Semantics is added to such similarity
measures on three different levels: (i) how common and different parts of
profiles are aggregated (via the choice of the similarity functional form);
(ii) how interactions among attributes are weighted (via the choice of the
capacity); (iii) how pointwise dissimilarities are evaluated (via the choice
of the restricted dissimilarity function).

Keywords: Fuzzy similarity measure · capacity · restricted
dissimilarity function · d-Choquet integral

1 Introduction

The recent trend of eXplainable AI (XAI) is based on decision models whose
results can be interpreted by human agents, especially when high stake decisions
are involved [27]. At the same time, similarity measures play a more and more
prominent role in machine learning and decision support systems, since they
capture the intuitive idea of “proximity”.

As is well-known, the most naive way to model similarity is to map object
description profiles to elements of a metric space, and then rely on the underling
distance function. This approach is deeply tied to the nature of the available data
and is often inconsistent with human reasoning, as acknowledged by Tversky, in
his seminal work [29]. Therefore, during the last years, many similarity measures
have been proposed (see, e.g., [23]), mainly focusing on the particular nature of
data and on the properties required to a similarity measure [3,11].

With XAI in view, the concept of similarity demands for a deeper seman-
tics and understanding. In turn, this requires an investigation of the ordering
structure induced by a particular similarity measure together with more complex
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functional forms, able to embody semantic concepts like attribute interactions.
Concerning the first issue, a series of papers (see, e.g., [2,7–9]) coped with the
understanding of the comparative nature of similarity (and dissimilarity) mea-
sures on fuzzy description profiles. On the other hand, the issue of modeling
interactions has been considered in [1] for binary data, and then generalized in
[10] for fuzzy data (see also [28]).

In this paper we extend the three classes of similarity measures introduced
in [1,10] by relying on the notion of d-Choquet integral [5]. The goal of our
extension is to obtain a three-level semantics ruling: (i) aggregation of common
and different parts of profiles; (ii) interactions among attributes; (iii) evaluation
of pointwise dissimilarities. Hence, we get three classes of similarity measures
parameterized by a capacity ν and by a restricted dissimilarity function δ.

Since the most difficult part for obtaining an operative similarity measure
belonging to such classes is the elicitation of ν, we face the learning of ν, by
relying on the Particle Swarm Optimization (PSO) technique [21]. We also inves-
tigate the tuning of a parametric version of δ. This part of the paper provides
some preliminary results inserting in the literature of similarity learning (see,
e.g., [14,26]).

Choosing ν, δ and one of the proposed functional forms of similarity measure
that maximize accuracy in a classification problem, we can obtain an interpre-
tation in terms of the three levels of semantics recalled above. In particular, the
Möbius inverse of the learned ν can be seen as a witness of attribute interactions
that can be, in principle, either positive or negative, since ν is a capacity.

The paper is structured as follows. Section 2 recalls the necessary material on
the d-Choquet integral. Section 3 introduces the three families of similarity mea-
sures based on the d-Choquet integral, and investigates their properties. Section 4
addresses the problem of similarity learning through the PSO technique. Finally,
Sect. 5 collects our conclusions and future perspectives.

2 Preliminaries

Following [5], a function δ : [0, 1]2 → [0, 1] is called a restricted dissimilarity
function if it satisfies, for all x, y, z ∈ [0, 1], the following conditions:

1. δ(x, y) = δ(y, x);
2. δ(x, y) = 1 if and only if {x, y} = {0, 1};
3. δ(x, y) = 0 if and only if x = y;
4. if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

The prototypical example of a restricted dissimilarity function is

δ1,1(x, y) = |x − y|, (1)

and other functions of this type can be generated via [0, 1]-automorphisms. We
recall that a function ϕ : [0, 1] → [0, 1] is a [0, 1]-automorphism if it is continuous,
strictly increasing and such that ϕ(0) = 0 and ϕ(1) = 1.
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Given two (possibly distinct) [0, 1]-automorphisms ϕ1, ϕ2, then the function

δϕ1,ϕ2(x, y) = ϕ−1
1 (|ϕ2(x) − ϕ2(y)|), (2)

is a restricted dissimilarity function [5]. In particular, in what follows we will
restrict to the case ϕ1(x) = xq and ϕ2(x) = xp, for p, q ∈ (0,+∞), in which case
(2) reduces to

δp,q(x, y) = |xp − yp| 1
q , (3)

that has (1) as particular case for p = q = 1. In this work, due to space limita-
tions, we will analyze only the cases δp,p, δ1,p, δp,1, parameterized by p ∈ (0,+∞).

Let N = {1, . . . , n} be endowed with the power set 2N . As is well-known (see,
e.g., [16]), a (normalized) capacity is a set function ν : 2N → [0, 1] satisfying:

(i) ν(∅) = 0 and ν(N) = 1;
(ii) ν(A) ≤ ν(B) when A ⊆ B, for all A,B ∈ 2N .

Moreover, every capacity ν is associated with a set function μ : 2N → R

called Möbius inverse such that, for all A ∈ 2N , it holds that

μ(A) =
∑

B⊆A

(−1)|A\B|ν(B) and ν(A) =
∑

B⊆A

μ(B).

As shown in [6], a function μ : 2N → R is the Möbius inverse of a capacity ν, if
and only if it satisfies:

(i) μ(∅) = 0;
(ii)

∑
B∈2N μ(B) = 1;

(iii)
∑

{i}⊆B⊆A μ(B) ≥ 0, for all A ∈ 2N and all i ∈ A.

The above properties imply that μ({i}) ≥ 0, for all i ∈ N . Moreover, if μ(B) ≥ 0,
for all B ∈ 2N , then the corresponding ν is a completely monotone capacity [16].

A capacity ν is then called k-additive (with 1 ≤ k ≤ n) if μ(A) = 0, for all
A ∈ 2N with |A| > k, and there exists A ∈ 2N with |A| = k such that μ(A) 	= 0
[15]. In particular, a 1-additive capacity reduces to a probability measure. In what
follows, we denote by νu the uniform probability measure such that νu({i}) = 1

n ,
for all i ∈ N , whose Möbius inverse is μu({i}) = 1

n , for all i ∈ N , and 0 otherwise.
In the context of similarity measures, ν can be seen as a non-additive weight-

ing function related to a set of fuzzy attributes indexed by N . Under this inter-
pretation, the Möbius inverse μ is the actual weight attached to every set of
attributes, allowing for modeling (positive or negative) interactions among fuzzy
attributes. With this meaning in view, in [1,10] μ has been called a significance
assessment.

We recall the notion of d-Choquet integral introduced in [5].

Definition 1. Let ν : 2N → [0, 1] be a capacity and δ : [0, 1]2 → [0, 1] be a
restricted dissimilarity function. The d-Choquet integral with respect to ν
and δ is the functional Cν,δ : [0, 1]N → [0, n] defined, for all X ∈ [0, 1]N , as

Cν,δ(X) =
n∑

i=1

δ (X(σ(i)),X(σ(i − 1))) ν({σ(i), . . . , σ(n)}),
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where σ is a permutation of N such that X(σ(1)) ≤ · · · ≤ X(σ(n)) and
X(σ(0)) := 0. In particular, if X ∈ {0, 1}N , then X reduces to the indicator
1A of a subset A of N , and so Cν,δ(1A) = ν(A).

Though Cν,δ(1∅) = 0 and Cν,δ(1N ) = 1, for any choice of ν and δ, we have
that for some choices of δ, Cν,δ can take values greater than 1. Nevertheless,
taking δp,p with 0 < p ≤ 1, Cν,δp,p ranges in [0, 1] for any choice of ν [5]. In
particular, for p = 1, Cν,δ1,1 reduces to the classical Choquet integral.

The following proposition investigates when Cν,δ is null, assuming a strictly
positive ν on 2N \ {∅}, i.e., satisfying the property:

(P) ν(A) > 0, for all A ∈ 2N \ {∅}.

Proposition 1. If ν satisfies (P), then Cν,δ(X) = 0 if and only if X = 1∅.

Proof. By Definition 1 we have that Cν,δ(X) is a weighted sum where all weights
ν({σ(i), . . . , σ(n)})’s are strictly positive and all terms δ (X(σ(i)),X(σ(i − 1)))’s
are non-negative. Thus, Cν,δ(X) = 0 if and only if δ (X(σ(i)),X(σ(i − 1))) = 0,
for i = 1, . . . , n. Finally, by property 3 of restricted dissimilarity functions, we
get that δ (X(σ(i)),X(σ(i − 1))) = 0 if and only if X(σ(i)) = X(σ(i − 1)), for
i = 1, . . . , n, and since X(σ(0)) := 0, this is equivalent to X = 1∅. �

Let us notice that Cν,δ is generally not monotone on [0, 1]N endowed with the
partial order ≤ such that X ≤ Y if and only if X(i) ≤ Y (i), for all i ∈ N , with
X,Y ∈ [0, 1]N . Theorem 4.8 in [5] states that monotonicity of Cν,δ is equivalent
to the following condition for δ:

(M) δ(0, x1)+δ(x1, x2)+ . . . δ(xm−1, xm) ≤ δ(0, y1)+δ(y1, y2)+ . . . δ(ym−1, ym)
for all 1 ≤ m ≤ n and x1, . . . , xm, y1, . . . , ym ∈ [0, 1] where xi ≤ xj , yi ≤ yj ,
xi ≤ yi, with 1 ≤ i ≤ j ≤ m.

The following example, that will be developed in the following section, shows
that taking δ = δp,p or δ = δ1,p, Cν,δ may fail monotonicity, even in the case
ν is a probability measure. We point out that the lack of monotonicity of the
d-Choquet integral is already discussed in Example 4.13 in [5].

Example 1. Let N = {1, 2, 3}. Take the uniform probability measure νu, and
X,Y,X ′, Y ′ ∈ [0, 1]N such that

N 1 2 3
X 0 0.6 0.8
Y 0.2 0.8 1

and
N 1 2 3
X ′ 0 0.1 0.9
Y ′ 0.1 0.6 1

For δ = δ 1
2 , 12

we have that X ≤ Y but

Cνu,δ 1
2 , 12

(X) =
0.6 + (

√
0.8 −

√
0.6)2

3

>
0.2 + (

√
0.8 −

√
0.2)2 + (1 −

√
0.8)2

3
= Cνu,δ 1

2 , 12
(Y ),
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while for δ = δ1, 12
we have that X ′ ≤ Y ′ but

Cνu,δ1, 12
(X ′) =

0.12 + 0.82

3
>

0.12 + 0.52 + 0.42

3
= Cνu,δ1, 12

(Y ′).

�

On the other hand, taking δ = δp,1, Cν,δ is always monotone (see [5]), as δp,1

satisfies (M).

3 Fuzzy d-Choquet Similarity Measures

We assume that every object is described by a set of attributes indexed by the
finite set N = {1, . . . , n}, and that each one can be present with a different
degree of membership: any object description is thus regarded as a fuzzy subset
of N [30]. In order to avoid cumbersome notation, every fuzzy subset X of N
is identified with its membership function, so, we simply denote it as a function
X : N → [0, 1]. Denote by F = [0, 1]N the set of all possible fuzzy object
descriptions and by C = {0, 1}N the subset of crisp object descriptions.

We consider a t-norm T together with its dual t-conorm S and the comple-
ment (·)c = 1− (·) to perform fuzzy set-theoretic operations. As usual (see [22]),
we denote the main t-norms and t-conorms, for every x, y ∈ [0, 1], as

TM (x, y) = min{x, y},
TP (x, y) = x · y,
TL(x, y) = max{x + y − 1, 0},

SM (x, y) = max{x, y},
SP (x, y) = x + y − x · y,
SL(x, y) = min{x + y, 1}.

For every X,Y ∈ F , we define X ∩ Y = T (X,Y ), X \ Y = T (X,Y c),
Y \ X = T (Y,Xc), XΔY = S(X \ Y, Y \ X) and X ∪ Y = S(X,Y ), where
all operations are intended pointwise on the elements of N . All t-norms and
t-conorms extend uniquely to k-ary operations, for k ≥ 2, due to associativity
[22], and so do the corresponding fuzzy set-theoretic operations.

Different definitions of similarities have been given for fuzzy subsets [2,12,13]
essentially based on the “common” and the “different” parts of the compared
fuzzy subsets.

We introduce three classes of similarity measures Sν,δ
i : F2 → [0,+∞), for

i = 1, 2, 3, each parameterized by a capacity ν and by a restricted dissimilarity
function δ, defined, for every X,Y ∈ F , as:

Sν,δ
1 (X,Y ) =

Cν,δ(X ∩ Y )
Cν,δ(X \ Y ) + Cν,δ(Y \ X) + Cν,δ(X ∩ Y )

, (4)

Sν,δ
2 (X,Y ) =

Cν,δ(X ∩ Y )
Cν,δ(XΔY ) + Cν,δ(X ∩ Y )

, (5)

Sν,δ
3 (X,Y ) =

Cν,δ(X ∩ Y )
Cν,δ(X ∪ Y )

. (6)
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Taking ν = νu and δ = δ1,1, the restrictions of Sν,δ
i (X,Y ) on C, for i = 1, 2, 3,

reduce to the classical Jaccard’s index [18]. More generally, for a probability
measure ν and δ = δ1,1 we get a weighted version of the Jaccard’s index [1].

The similarity measures Sν,δ
i (X,Y ), for i = 1, 2, 3, embody three levels of

semantics:

(i) The choice of the functional form Sν,δ
i implies how common and different

parts of fuzzy profiles are aggregated: in the particular case Sν,δ
1 , we get a

symmetric fuzzy version of Tversky’s contrast model [29].
(ii) The choice of the capacity ν expresses how interactions among attributes
are weighted: the corresponding Möbius inverse μ acts as a significance assess-
ment that allows for positive or negative interactions.
(iii) The choice of the restricted dissimilarity function δ encodes how point-
wise dissimilarities are evaluated: choosing one of the parametric forms
δp,p, δ1,p, δp,1, a tuning on sample similarity comparisons can be performed.

The following proposition shows that, assuming a capacity ν which satisfies
(P) and T = TM , the ratios in (4)–(6) are always well-defined, except for the
case X = Y = 1∅. In this limit case, we set Sν,δ

i (1∅,1∅) := 1, for i = 1, 2, 3.

Proposition 2. Let ν satisfying (P), δ an arbitrary restricted dissimilarity
function, and T = TM . Then, the denominator of Sν,δ

i , for i = 1, 2, 3, is 0
if and only if X = Y = 1∅.

Proof. If X = Y = 1∅, then we immediately get that all denominators are 0. We
prove the converse implication for each similarity measure.

(Measure Sν,δ
1 ). By Proposition 1, Cν,δ(X\Y )+Cν,δ(Y \X)+Cν,δ(X∩Y ) = 0

if and only if X \ Y = Y \ X = X ∩ Y = 1∅. This is equivalent, for all i ∈ N ,
to TM (X(i), 1− Y (i)) = TM (Y (i), 1− X(i)) = TM (X(i), Y (i)) = 0, that implies
X(i) = Y (i) = 0.

(Measure Sν,δ
2 ). By Proposition 1, Cν,δ(XΔY )+Cν,δ(X ∩Y ) = 0 if and only

if XΔY = X ∩ Y = 1∅. This is equivalent, for all i ∈ N , to SM (TM (X(i), 1 −
Y (i)), TM (Y (i), 1− X(i))) = TM (X(i), Y (i)) = 0, that implies X(i) = Y (i) = 0.

(Measure Sν,δ
3 ). By Proposition 1, Cν,δ(X ∪Y ) = 0 if and only if X ∪Y = 1∅.

This is equivalent, for all i ∈ N , to SM (X(i), Y (i)) = 0, that implies X(i) =
Y (i) = 0. �

In light of Proposition 2, we will assume that ν satisfies (P) throughout the
paper. In turn, this implies that the Möbius inverse of ν is such that μ({i}) > 0,
for all i ∈ N , which has a semantic interpretation. Indeed, this last requirement
can be justified by interpreting μ as a significance assessment: all attributes
included in a description profile should be “significant”, i.e., μ should attach to
them a positive weight.

Proposition 3. Let ν satisfying (P), δ ∈ {δp,p, δ1,p, δp,1}, and T = TM . Then,
the following properties hold for all X,Y ∈ F :

(i) Sν,δ
i (X,Y ) ≤ 1, for i = 1, 2;
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(ii) Sν,δ
3 (X,Y ) ≤ 1, if δ = δp,1;

(iii) Sν,δ
3 (X,X) = 1;

(iv) Sν,δ
i (X,Y ) = 0 if and only if X ∩ Y = 1∅ 	= X ∪ Y , for i = 1, 2, 3;

(v) Sν,δ
i (X,Y ) = Sν,δ

i (Y,X), for i = 1, 2, 3.

Proof. The proof immediately follows by (4)–(6), and Propositions 1 and 2. �

The following example shows that Sν,δ
3 (X,Y ) can take values greater than 1

for δ = δp,p or δ = δ1,p.

Example 2. Let N , X, Y , X ′, Y ′, νu, and δ 1
2 , 12

, δ1, 12
be as in Example 1. Since

X ≤ Y and X ′ ≤ Y ′, taking T = TM , we get that X ∩ Y = X, X ∪ Y = Y ,
X ′ ∩ Y ′ = X ′, and X ′ ∪ Y ′ = Y ′ thus

S
ν,δ 1

2 , 12
3 (X,Y ) =

0.6 + (
√
0.8 −

√
0.6)2

0.2 + (
√
0.8 −

√
0.2)2 + (1 −

√
0.8)2

> 1,

S
ν,δ1, 12
3 (X ′, Y ′) =

0.12 + 0.82

0.12 + 0.52 + 0.42
> 1.

�

We notice that, the restrictions of Sν,δ
i to C, for i = 1, 2, 3, coincide with

the similarity measures defined in [1], for any choice of δ and a completely
monotone ν. On the other hand, if we take δ = δ1,1, then Sν,δ1,1

i , for i = 1, 2, 3,
coincide with the similarity measures defined in [10]. This implies that, in general,
Sν,δ

i (X,X) < 1, for i = 1, 2. In the particular case δ = δ1,1 and ν is a probability
measure, Sν,δ

3 is a special case of the similarity measure introduced in [28].
As a by-product, taking δ = δ1,1, by [10] we derive that Sν,δ

i , for i = 1, 2, 3,
do not generally satisfy T ′-transitivity, where T ′ is a t-norm possibly different
from the t-norm T used in the fuzzy set-theoretic operations, i.e., the property:

(T) Sν,δ
i (X,Z) ≥ T ′(Sν,δ

i (X,Y ),Sν,δ
i (Y,Z)), for all X,Y,Z ∈ F .

We notice that for δ = δp,p or δ = δ1,p property (T) does not make sense for
Sν,δ
3 , since it may take values greater than 1.

In the case δ = δ1,1 and ν is a probability measure, in [10,28] it is shown
that Sν,δ

3 is TL-transitive. The following proposition shows that TL-transitivity
holds also when δ = δp,1

Proposition 4. If ν satisfies (P) and is additive, T = TM and δ = δp,1, then
the similarity measure Sν,δ

3 satisfies (T) with T ′ = TL.

Proof. The proof is an immediate modification of the proof of Proposition 1 in
[10] (see also [28]). We first notice that Cν,δp,1 is monotone and, for all X ∈
F , denoting by Xp the element of F such that Xp(i) = (X(i))p, for all i ∈
N , it holds that Cν,δp,1(X) =

n∑
i=1

(X(i))pν({i}) = Cν,δ1,1(X
p). Moreover, since
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ϕ2(x) = xp is strictly increasing, and ∩ and ∪ refer to TM and SM , respectively,
it holds that Xp ∩ Y p = (X ∩ Y )p ans Xp ∪ Y p = (X ∪ Y )p.

For all X,Y,Z ∈ F , it is sufficient to show that

Sν,δp,1
3 (X,Z) + 1 ≥ Sν,δp,1

3 (X,Y ) + Sν,δp,1
3 (Y,Z).

Setting c = Cν,δp,1(X ∪ Y ∪ Z) − Cν,δp,1(X ∪ Y ) and c′ = Cν,δp,1(X ∪ Y ∪ Z) −
Cν,δp,1(Y ∪ Z) we get that

Sν,δp,1
3 (X,Y ) ≤

Cν,δp,1(X ∩ Y ) + c

Cν,δp,1(X ∪ Y ) + c
and Sν,δp,1

3 (Y,Z) ≤
Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(Y ∪ Z) + c′ .

Therefore, we obtain

Sν,δp,1
3 (X,Y ) + Sν,δp,1

3 (Y,Z) ≤
Cν,δp,1(X ∩ Y ) + c

Cν,δp,1(X ∪ Y ) + c
+

Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(Y ∪ Z) + c′

=
Cν,δp,1(X ∩ Y ) + c + Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(X ∪ Y ∪ Z)

≤
Cν,δp,1(X ∩ Y ) + c + Cν,δp,1(Y ∩ Z) + c′

Cν,δp,1(X ∪ Z)

≤
Cν,δp,1(X ∪ Z) + Cν,δp,1(X ∩ Z)

Cν,δp,1(X ∪ Z)

= 1 + Sν,δp,1
3 (X,Z),

where the last inequality follows since, for all i ∈ N , we have

TM (Xp(i), Y p(i)) − SM (Xp(i), Y p(i))

+ TM (Y p(i), Zp(i)) − SM (Y p(i), Zp(i))

+ 2SM (Xp(i), Y p(i), Zp(i)) ≤ SM (Xp(i), Zp(i)) + TM (Xp(i), Zp(i)),

that holds for all the possible orderings of Xp(i), Y p(i), Zp(i). Indeed, if Xp(i) ≥
Zp(i) ≥ Y p(i), then we get Xp(i)+Y p(i)− (Zp(i)−Y p(i)) ≤ Xp(i)+Zp(i) and
if Zp(i) ≥ Xp(i) ≥ Y p(i), then we get Y p(i)− (Xp(i)−Y p(i))+Zp(i) ≤ Xp(i)+
Zp(i). While, in all the remaining cases we get Xp(i) + Zp(i) ≤ Xp(i) + Zp(i).
�

The study of similarity measures appears to be of particular importance
since it helps to improve predictions by providing a transparent understanding
of the reasoning behind a forecast and helps to make interpretable decisions and
implement XAI.

4 Similarity Learning

The three similarity measures Sν,δ
i , for i = 1, 2, 3, essentially rely on the choice of

ν and δ ∈ {δp,p, δp,1, δ1,p}, for a suitable p ∈ (0,+∞). Surely, the most difficult
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part in getting an operative Sν,δ
i is the elicitation of ν, due to its exponential

size.
From a XAI point of view, learning ν is important since its Möbius inverse μ

singles out the interactions between attributes which is, according to each choice
of δ and functional form Sν,δ

i , tied to the choice of p. In the more general case
of a capacity ν, negative interactions between groups of attributes are possible
but the learning task is complicated by the set of constraints (i)–(iii) in Sect. 2,
that restrict the feasible μ’s.

By learning the combination of δ, ν and Sδ,ν
i that maximizes accuracy in

a classification problem, we get a model that gives us three levels of explana-
tions: the chosen Sδ,ν

i tells us how common and different parts of profiles are
aggregated; the Möbius inverse μ of ν singles out interactions on the groups of
attributes where it is different from zero; δ tells us how pointwise dissimilari-
ties are evaluated and to which degree p. For a fixed functional form Sδ,ν

i , the
large number of parameters naturally raises the problem of identifiability, that
has been recently addressed in learning Choquet functionals [4,20]. The issue
of identifiability is particularly relevant if the Möbius inverse μ of ν is taken as
an indicator of interactions, therefore, a thorough investigation is planned for
future research.

In this section we address the problem of learning the capacity ν and tuning
the parameter p ∈ (0,+∞) for each Sν,δ

i , by relying on a set of labeled fuzzy
description profiles. Due to the identifiability issue, we focus on the learning of
the significance assessment μ corresponding to ν, by restricting to the case of a
k-additive and completely monotone ν that satisfies (P), and taking T = TM .
All the learning and calibration procedure is carried out in Python 3.10.

Due to space limitations, and since our aim is only to highlight the whole
process, we refer to the Iris dataset, which is available in the Kaggle platform
[19]. The dataset has been pre-processed, by normalizing attribute ranges in
[0, 1]. The processed dataset has 4 attributes and a class label taking 3 possible
values, with 150 rows.

Proceeding in analogy to [1], we perform a learning task executing a strat-
ified 4-fold cross validation that splits the dataset in 4 balanced parts, namely
T1, T2, T3, T4. For h = 1, 2, 3, 4, Th is taken as test set, while the union of the
remaining three parts Dh =

⋃
k �=h Tk is taken as training set. For h = 1, 2, 3, 4,

we have that Dh = {(X1, y1), . . . , (XNh
, yNh

)}, where Xj ∈ F = [0, 1]4 is a fuzzy
description profile, while yj is the corresponding class.

For a fixed similarity Sν,δ
i , for i = 1, 2, 3, where δ ∈ {δp,p, δp,1, δ1,p}, we define

a Nearest-Neighborhood (NN) classifier: each fuzzy description profile Xj ∈ Dh

is assigned to the class y∗
j solving the problem

(X∗
j , y∗

j ) = argmax
(Xm,ym)∈Dh\{(Xj ,yj)}

Sν,δ
i (Xj ,Xm).

Our aim is to find the significance assessment μ that maximises the Leave-One-
Out (LOO) objective function

NLOO(μ) = |{yj : yj = y∗
j , (Xj , yj) ∈ Dh}|,
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which counts the number of correctly classified instances.
The maximization of NLOO(μ) in the space of non-negative Möbius inverses

gives rise to a continuous optimization problem with a non-continuous objective
function, thus classical optimization techniques cannot be used. Here, in analogy
to [1], we adopt the Particle Swarm Optimization (PSO) technique, which is a
stochastic incomplete method operating on a fixed number of candidate μ’s [21].
For the PSO implementation we refer to the PySwarms library [24] version 1.3.0.
Since the search space is very large, we restrict to at most k-additive Möbius
inverses, for k = 1, 2, and the optimization is carried on for 20 epochs. We further
consider an initial set of 20 particles built as a 1-additive neighborhood of μu,
obtained perturbing μu({i}) = 1

n with (−1)i−1 · εi, where εi ∼ Unif
(
0, 1

n

)
, for

all i ∈ N .
Once the optimal μ∗

h for the training set Dh has been selected, accuracy is
measured by computing NLOO(μ∗

h) on Th and passing to percentages. We finally
compute the average accuracy in the 4-folds, by referring to the four learned
μ∗
1, μ

∗
2, μ

∗
3, μ

∗
4.

To justify the choice of νu as a reference, Figs. 1a, 1c, and 1e show the average
accuracy of a NN classifier, performed on the four folds T1, T2, T3, T4, using Sνu,δ

i ,
for i = 1, 2, 3 and δ ∈ {δp,p, δp,1, δ1,p}. To favor a comparison, we also report
results for the Euclidean and the cosine similarity measures:

SE(X,Y ) = 1 − 1
n

n∑

i=1

(X(i) − Y (i))2,

SC(X,Y ) =
∑n

i=1 X(i)Y (i)√∑n
i=1 X(i)2

√∑n
i=1 Y (i)2

.

We have that Sνu,δ1,1
i , for i = 2, 3, behaves better than SC , and better than

SE , for i = 3, while Sνu,δ
1 is always below SC , for all δ’s. The best performance

is achieved by Sνu,δp,1
3 , for p ≥ 1, which always dominates all other similarity

measures (see Fig. 1c), resulting in an average accuracy of more than 95%. In
view of XAI, this suggests that the Iris dataset does not show strong interac-
tions among the attributes that further seem to be equally significant, when the
similarity is of the form Sνu,δp,1

3 , i.e., when the d-Choquet integral of the fuzzy
union of the two compared profiles is taken in the denominator. In a sense, this
also partially justifies the good behavior of SE in this dataset due to its metric
properties, in which uniform weighting and no interactions are considered.

Results obtained with Sνu,δ
i , for i = 1, 2, 3 and δ ∈ {δp,p, δp,1, δ1,p}, serve

as a benchmark, since the PSO learning procedure starts with νu in the initial
set of particles. Figures 1b, 1d and 1f show the mean accuracy of the capacities
obtained through PSO: solid lines refer to 1-additive capacities and dashed lines
to at most 2-additive capacities. For a sake of robustness, due to the stochastic
nature of PSO, Figs. 1b, 1d and 1f report average values on 4 runs. The most
evident effect of the learning procedure is for δp,p and δ1,p, while for δp,1 we have
a light improvement for Sν,δp,1

1 and for Sν,δp,1
2 , while Sν,δp,1

3 shows some slight
worsening for some values of p.
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Fig. 1. Mean accuracy (%) seen as a function of p, for δ ∈ {δp,p, δp,1, δ1,p}: Sν,δ
1 in

green; Sν,δ
2 in red; Sν,δ

3 in blue; SE in magenta; SC in orange. Capacity ν = νu in (a),
(c), (e); average values on 4 runs for the capacity found through PSO in (b), (d), (f):
1-additive in solid line; at most 2-additive in dashed line.

It is important to notice that PSO is an incomplete stochastic method thus,
though νu is in the initial set of particles, the procedure could converge to sub-
optimal solutions in the training test Dh, that behave worse than νu on the
test set Th. We also notice that, since we start from an initial population of
1-additive capacities, the optimal capacity in the at most 2-additive case could
still be 1-additive, due to the slow rate of convergence of PSO and the large
search space.
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The analysis carried out in Fig. 1 can be considered as a preliminary task used
to choose the most suitable δ, p and Sν,δ

i . In view of this, for the Iris dataset,
an optimal choice is δ = δp,1, p = 3.5 and Sν,δ

3 . With this particular choice we
can perform the PSO technique for a larger number of epochs or particles, so as
to achieve better optimization results. Next, for the sake of interpretability, once
μ∗
1, μ

∗
2, μ

∗
3, μ

∗
4 have been found for Sν,δ3,1

3 , we can look for the (not necessarily
unique) μ∗

h that maximizes the average accuracy over all the test sets Tk’s.
Table 1 reports the optimal μ∗

1 found in fold 1, still working with 20 particles in
the at most 2-additive case, but considering 100 epochs. Such μ∗

1 turns out to
maximize the average accuracy over all the test sets Th’s, reaching 95.95%, so it
has a good behavior on the whole dataset.

Table 1. Optimal Möbius inverse μ∗
1 maximizing the average accuracy over all the test

sets (3 decimals rounding).

Attributes {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
μ∗
1 0.021 0.106 0.165 0.106 0.034 0.065 0.034 0.256 0.198 0.015

5 Conclusion

We introduced three classes of similarity measures for fuzzy description profiles,
based on the d-Choquet integral, the latter extending the Choquet integral by
means of a dissimilarity function. The proposed similarities are parameterized
by a capacity ν and a restricted dissimilarity function δ, conveying semantics on
three different levels. In order to get an operative similarity measure belonging
to one of such classes, the choice of ν and δ can be faced as a similarity learning
problem. Due to the exponential size of ν, restrictions on its representation need
to be considered, while a parametric version of δ translates in an ensuing tuning
problem.

Here, we formulated the learning and tuning tasks relying on the PSO tech-
nique, and showed some preliminary results on a reference dataset. Our experi-
mental analysis revealed the slow convergence rate of PSO joined by a very large
search space. Future research will be devoted to a systematic experimental study
involving several real and artificial datasets. Still in the experimental setting, the
comparison with other incomplete stochastic methods, such as Differential Evo-
lution (DE) [25], should be carried out so as evaluate rate of convergence and
quality of the found solutions.

Concerning the learning of the classical Choquet integral, recent works devel-
oped deep learning techniques [4] and dedicated optimization techniques to face
sparsity [17]. Though the quoted results are not directly applicable to the present
learning task, their adaptation seems an interesting line of future research.
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Abstract. This paper deals with belief change in the framework of Dempster-
Shafer theory in the context where an agent has a prejudice, i.e., a priori knowl-
edge about a situation. This situation is modeled as a sequence (p, m) where p
reflects the prejudices of an agent and m is a mass function that represents the
agent’s uncertain beliefs. In contrast with the Latent Belief Structure introduced
by Smets where a mass is decomposed into a pair of separable mass functions
called respectively the confidence and diffidence, m can be any mass function
(i.e., not necessarily separable) and p is not a mass. The aim of our study is to pro-
pose a framework in which the evolution of prejudices and beliefs are described
through the arrival of new beliefs. Several cases of prejudice are described: the
strong persistent prejudice (which never evolves and forbids beliefs to change),
the prejudice that is slightly decreasing each time a belief contradicts it, etc.

1 Introduction

When dealing with information pervaded with uncertainty, several frameworks can be
used: probabilities, possibilities, ... with their variants. The most general framework in
which uncertainty can be expressed is belief-function theory. It is well suited to epis-
temic analysis in situations where there is little information to assess a probability, or
where information is non-specific, ambiguous or contradictory. This theory makes it
possible to express that there is evidence in favor of a set of events A without speci-
fying the precise degree of certainty of each element of A, whereas in a probabilistic
setting, the probability of each event of A should be known.

Belief function theory also known as Dempster-Shafer theory was first introduced
by Arthur P. Dempster in the context of statistical inference, then developed by Glenn
Shafer into a formal framework for representing and reasoning with uncertain informa-
tion [15]. G. Shafer viewed belief functions as the result of the conjunctive combina-
tion of pieces of evidence such as (more or less unreliable) testimonies from different
sources, in order to form a representation of beliefs about certain aspects of the world.

This theory has been well studied and developped in order to reason with several
sources of information. However one can be interested in combining positive evidence
and personal a priori convictions (coming from moral values, tastes, and past experi-
ences), that are called “prejudice”. A prejudice can be defined as an a priori favorable
or unfavorable1 “opinion adopted without examination, imposed by an environment, an
1 “(good or bad) opinion that one forms in advance” (Lanoue, Discours pol. et milit., 436 in
Littré,1587).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Bouraoui and S. Vesic (Eds.): ECSQARU 2023, LNAI 14294, pp. 400–414, 2024.
https://doi.org/10.1007/978-3-031-45608-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_30&domain=pdf
https://doi.org/10.1007/978-3-031-45608-4_30


Integrating Evolutionary Prejudices in Belief Function Theory 401

education” (Montaigne, Essais, II, 12, ed. P. Villey and V.-L. Saulnier, p.506). Unlike a
belief, a prejudice can be disproved on the basis of facts. Prejudices can be more or less
strong, the strongest they are the more difficult it is to disprove them and the more they
will influence the reasoning. In his famous book The Nature of prejudice the Ameri-
can psychologist Gordon Allport [2] asserted that “prejudice is essentially a by product
of the necessary mental shortcuts the human brain uses to process the vast amount of
information it takes in”.

In the framework of Dempster-Shafer theory, there were attempts to encode the
retraction of information (which turns out to be wrong): the operation of removal (or
retraction) was proposed by many authors [7,10,16,17] in order to decrease the degree
of belief by retracting some piece of evidence. In particular, the model called “Latent
Belief Structure” introduced by [17] then studied in [14] considers a pair of belief func-
tions, one representing the confidence part, and the other the diffidence part playing the
role of a moderator that can annihilate, via retraction, some information supplied by the
former.

Recently, this model was reinterpreted by [5] in terms of prejudice of the receiver,
and retraction was considered as a special kind of belief change. Its role is to weaken
the support of some focal sets of a belief function, possibly stemming from the fusion
of the incoming information. The authors suggest that prejudices are due to some prior
knowledge that is more entrenched than incoming new pieces of uncertain evidence.
They detail how such prior information can affect a belief function. They encode a
prejudice by a negative mass function which should be combined with a positive mass
function (representing a testimony). However the result of this combination must be a
positive mass (because a negative mass is not interpretable in this framework). More-
over this approach is only able to combine some particular forms of prejudices and
beliefs where the prejudices are against some part of a focal set of a simple mass func-
tion. In that case a revision is performed on the beliefs. The revision operation is a
classical topic broadly studied in knowledge representation literature [1,8], and also in
the particular context of belief functions by [4].

Example 1. Let us consider the beliefs of a doctor about 3 diseases that can be encoun-
tered: pyelonephritis noted 1, urinary infection noted 2 and lumbago noted 3. Assume
that the doctor has observed a stomach ache. In that case there is a prejudice against
urinary infection (2) and lumbago (3) encoded by the orange rectangle. Suppose now
that the doctor learns from health test results that the patient may have a disease among
pyelonephritis (1) and lumbago (3) (blue oval). Then we may wonder how the prejudice
can be taken into account for representing the final belief state of the doctor. The aim of
this paper is to study how the beliefs and the prejudice may evolve, according to their
strength and to their incompatibility.
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Prejudice of -2/3 against{2, 3} and evidence of
1/3 for{1, 3}

Prejudice of -2/3 against{1, 3} and evidence of
1/3 for{1, 3}

In this example, we consider that the prejudice has a strength of −2/3 (on a scale
from 0 to −∞) with a confidence in the new piece of information of 1/3. It means that
the prejudice is stronger than the beliefs hence the doctor should transfer its beliefs
towards pyelonephritis (1), the prejudice against urinary infection (2) and lumbago (3)
can then either decrease or remain depending on its nature (stubborn prejudice will
not be questioned by any new piece of information while open minded prejudice may
decrease).

Another more classic instance of this example would assume that the prejudice is
against (1) and (3), and the piece of evidence is about the same set (1) and (3). When
the prejudice is –2/3 and evidence is 1/3 then the prejudice being stronger it remains
against (1) and (3) (maybe attenuated) but the evidence is canceled, while when the
prejudice is weaker (–2/3) than the evidence (say 0.5), the prejudice is canceled but the
evidence is only integrated with a strength of 1/6.

In classical belief function theory, two mass functions m and m′ that are consid-
ered as two sources of evidence, are combined by using Dempster rule m′′ = m ∩©m′.
Dempster’s rule aims at gathering the two sources, in a conjunctive way, but this raises
several issues when prejudices are taken into account:

– what if we combine two sources that have both a prejudice and a mass: (p,m) and
(p′,m′): this kind of combination is considered as out of the scope of the paper
because we reason only from the point of view of one agent who receives an incom-
ing information. In this paper, the incoming information is delivered under the form
of a mass function, with no prejudice explicitly present (however it could be done
with Latent belief structure). Note that, in this context, if we have no prejudice at
start, i.e., p = 0, then the combination (p,m) with m′ (i.e., the combination with
(0,m′)) should yield (0,m ∩©m′).

– what are the links between reasoning with prejudices and belief revision ?

In this paper we propose to extend the previous work of [5] with a general formalism
that considers any prejudice and beliefs using a pair (p,m) containing an encoding of
the prejudice p and an encoding of the beliefs by a mass m. We are interested in the
evolution of this pair when new information arrives, this is why the study is related
to Dempster’s revision (recalled in Sect. 2.3). Some necessary background on belief
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functions is introduced in Sect. 2. After defining specific rules and constraints governing
the evolution of beliefs (Sect. 3), we conclude with a comparison with the literature and
some perspectives.

2 Background

2.1 Basics About Belief Functions

Let us consider a finite set Ω = {ω1, . . . , ωN}, called the frame of discernment, whose
elements represent descriptions of possible situations, states of the world, one of which
corresponding to the truth. In Dempster-Shafer theory [15], the uncertainty concerning
an agent’s state of belief on the real situation is represented by a mass function defined
as a mapping m : 2Ω −→ [0, 1] such that m(∅) = 0 and verifying

∑
A⊆Ω m(A) = 1.

m(A) expresses the proportion of evidence that the current state is in A. Each subset
A ⊆ Ω such as m(A) > 0 is called a focal set of m.

An elementary testimony T with weight (1−α) in favor of a non-contradictory and
non-universal proposal A ∈ 2Ω \ {Ω, ∅} is represented by the simple mass function
m : 2Ω −→ [0, 1] denoted by m = Aα in [3,17] such that

m = Aα denotes

{
m(A) = 1 − α
m(Ω) = α

Here, α evaluates the lack of confidence in the testimony T also called mistrust.
In presence of multiple sources of information or multiple uncertain testimonies, the

result of the conjunctive combination of two mass functions m1 and m2, noted m1 ∩©2,
is defined as follows:

m1 ∩©2(A) =
∑

A1∩A2=A

(m1(A1).m2(A2))

In particular, m1 ∩©2(∅) represents the conflict between the mass functions. We will
denote ⊕ the normalized conjunctive combination rule called Dempster’s rule (which
assigns a zero mass to the empty set and divides all the masses of the focal elements by
1 − m1 ∩©2(∅)).

A belief function Bel(A) is a non-additive set function which represents the total
quantity of pieces of evidence supporting the proposition A ⊆ Ω and is defined by

Bel(A) =
∑

∅�=E⊆A

m(E)

The plausibility Pl(A) is the dual set-function of Bel(A) where Pl(A) = 1−Bel(A),
i.e., : Pl(A) =

∑
E∩A �=∅ m(E). A mass function m can be equivalently represented by

its associated commonality function defined for all A ⊆ Ω by Q(A) =
∑

B⊇A m(B).
The commonality function Q(A) represents the total quantity of incomplete evidence
that makes all elements of A possible. [15] calls a separable support function, a belief
function m = ⊕k

i=1A
di
i resulting from Dempster rule combination of simple mass

functions Adi
i , with Ai 	= Ω, 0 < di < 1, i = 1, . . . , k. Each single mass represents an

independent testimony.
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2.2 Defiance, Retraction and Latent Structures

In 1995, [17] extended the range of defiance functions δ initially defined on [0, 1] to
the interval ]0,+∞) and has defined the notion of retraction for δ > 1. The retraction
of a simple mass function By, y < 1 supporting B from a simple support function
Ax, x < 1, denoted by �∩© is defined such that:

Ax �∩©By = Ax ∩©B1/y

and yields the diffidence function δ = δA/δB with δA(E) = x if E = A, 1/x for
E = Ω and 1 otherwise and δB(E) = y if E = B, 1/y for E = Ω and 1 otherwise.
However Ax �∩©By is a belief function if only if A = B and x/y < 1. Indeed the result
Ax 	∩©By is NOT a belief function in general as the mass function induced by δ may
fail to be positive. Retraction also fails if the set to retract is not focal. It is not possible
neither when the focal set A to be retracted intersects some other focal set B without
being included in it (i.e., A ∩ B 	= A). In other words retraction is only possible on a
set (A ∩ B) that is an intersection of two focal sets (A and B).

Hence, a necessary and sufficient condition required for retraction is that the set of
focal sets of m should be closed under intersection. Note that it is a necessary but not
sufficient condition of separability. Indeed retracting a focal set EJ from a separable
mass function m affects and may delete all focal sets EI ⊂ EJ as well, namely all
combinations between the merging of information EJ from sources indexed in J , with
information from other sources.

Based on the canonical decomposition of belief functions and the retraction oper-
ation, the concept of latent belief structure (LBS) [14,17] was defined as a pair of
separable non dogmatic2 masses mc and md called respectively the confidence and
diffidence components such that m = mc �∩©md with mc = ∩©A∈CAw(A) and

md = ∩©A∈DA
1

w(A) . The disjoint subsets C and D come from a partition of 2Ω such
that C = {A : A ⊂ Ω,w(A) ∈ (0, 1]} and D = {A : A ⊂ Ω,w(A) ∈ (1,∞)}. The
diffidence component may be interpreted as a prejudice against the subset D. However,
only a few particular cases of prejudice can be modeled by LBS because the constraints
linked to the retraction operation detailed above are very restrictive.

2.3 Conditioning in Dempster and Revision

Revising by a Sure Observation C. When dealing with statistical data, [4] differen-
tiates revision and prediction with respect to the new piece of information. The initial
information corresponds to a belief function encoded by a mass function (the assign-
ment of non-negative weights m(E) to subsets E of Ω). This mass m is modified by
taking the new observation saying that the states in C are observed. When this new
piece of information is totally certain then it is a revision and the Dempster condition-
ing is used for handling it. [4] defines this operation as the revision m(.||C) of a mass
function m by a totally certain new piece of information C, as follows:

m(B||C) =
∑

E:B=C∩E �=∅
m(E)

2 A mass is dogmatic when m(Ω) = 0.
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In other words m(B||C) = Pl(E ∩C). Moreover [4] defines Pl(B||C) = Pl(B ∩
C)/P l(C) and Bel(B||C) = 1 − Pl(B||C).

Example 2 (Ellsberg’s paradox). We consider an urn with three kinds of balls: white,
black and red. We know that 1/3 are reds, the universe is all the possible outputs
obtained after the event to draw a ball from the urn: Ω = {ω1, ω2, ω3} where ω1 (resp.
ω2, ω3) represents the fact that the ball is white (resp. black and red). The mass repre-
senting the initial information is named m in Table 1. We don’t know the proportions of
balls of each kind let us call α the proportion of white among the white and black balls.
We learn that the ball that is extracted is not black, C = {ω1, ω3}. It yields the results
presented in Table 1 column 2. Note that in this example, in both revision and prediction
cases Pl = Bl, which translate the fact that focal elements after revision/prediction are
singletons.

In the case called “revision” by [4], Dempster conditioning transfers the full mass
of each focal set E to E ∩ C 	= ∅ (followed by a renormalisation). This means that the
new information C modifies the initial mass function in such a way that Pl(C) = 0:
situations where C is false are considered as impossible. In the “prediction” case, only
a proportion of the mass of E is transferred to E ∩ C, but after normalization the rest is
distributed over the new focal elements (the ones in E ∩ C).

Revising by a New Mass Function mI: [12] introduced a “revision operator” ◦ s.t.
given two mass functions m and mI over Ω defined by:

for any E 	= ∅,m ◦ mI(E) =
∑

A∩B=E

σ(A,B)mI(B) (1)

where σ(A,B), called specialization matrix, is s.t. σ(A,B) = 0 when A ∩ B = ∅ and
otherwise:

σ(A,B) =

⎧
⎨

⎩

m(A)
Pl(B) for Pl(B) > 0
0 for Pl(B) = 0 and A 	= B
1 for Pl(B) = 0 and A = B

In other words, it flows down a portion of mI(B) to A ∩ B, making the revision result
a “specialization”3. An example of specialization matrix is depicted on the right of
Table 1, it is the one of the mass m representing the Ellsberg’s paradox (Example 2).

3 Specialization was introduced in [6], m specializes m′ iff there exists a square matrix Σ
with general term σ(A, B) being a proportion (i.e., verifying

∑
A σ(A, B) = 1, for any B.

σ(A, B) > 0 implies A ⊆ B for any A, B) such that m(A) =
∑

B σ(A, B)m′(B) for all A.
In [12], the definition of specialization matrix is taken in a broader sense: only imposing that
σ(A, B) > 0 implies A ∩ B �= ∅ for any A, B.
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Table 1. Computing the revision m||C by C = {ω1, ω3} of the mass functions m in the Ellsberg
paradox example, where ω1 means white, ω2 is black and the revision m◦mI (resp. m◦mI′ ) of
a given mass m by the simple mass mI (resp. with the more complex mass mI′ ). The table on the
right gives the specialization matrix for m. In this table ωi is abbreviated i for any i ∈ {1, 2, 3}.

E m Pl m||C mI m ◦ mI mI′ m ◦ mI′

∅ 0 0 0 0 0 0 0
{1} 0 2

3
2
3

0 2
3

0.5 0.5+0.8
3

{2} 0 2
3

0 0 0 0.1 0.1
{3} 1

3
1
3

1
3

0 1
3

0 0.4
3

{1, 2} 2
3

2
3

0 0 0 0 0
{1, 3} 0 1 0 1 0 0.4 0
{2, 3} 0 1 0 0 0 0 0

Ω 0 1 0 0 0 0 0

σ(A, B) {1} {2} {3} {1, 2} {1, 3} {2, 3} Ω

{1} 0 0 0 0 0 0 0
{2} 0 0 0 0 0 0 0
{3} 0 0 1 0 1

3
1
3

1
3

{1, 2} 1 1 0 1 2
3

2
3

2
3

{1, 3} 0 0 0 0 0 0 0
{2, 3} 0 0 0 0 0 0 0

Ω 0 0 0 0 0 0 0

As we can see in Table 1, the two revision operators are equivalent when the new
piece of information can be represented by a simple mass function. However if the new
piece of information is more complex, only ◦ can be applied, hence ◦ is a refinement of
the revision operator based on Dempster conditioning.

3 Formalizing Prejudices

In this section we propose to model prejudices against a piece of evidence. We propose
to define what happens in the situation where the receiver already has some prejudices
and some knowledge, the prejudice being characterized by a strength and a tenacity.
We study how new incoming information can modify both the levels of prejudice and
beliefs. We do not address the case of the integration of a new prejudice or the reinforce-
ment of an existing one. More precisely the incoming information is only a testimony
that can decrease some prejudice (or not affecting it at all) but cannot increase any
prejudice or create a new one. The creation of prejudice is left for further studies.

In order to both encode prejudice and knowledge, we propose to consider the couple
(p,m) where m is a mass function and p is a prejudice against some set A such that
p(A) ≤ 0. This is done to be consistent with Smets retraction operation (recalled in
Sect. 2.2).

Definition 1 (belief state). A belief state is a pair (p,m) where p, representing a
prejudice against some piece(s) of evidence, is a prejudice function p : 2Ω \ {Ω, ∅} →
(−∞, 0] and m is a mass function. Intuitively ∀ ∅ ⊂ A ⊂ Ω, p(A) represents the
threshold of evidence required to change one’s mind about A 	= ∅:
– p(A) = 0 indicates the absence of prejudice against A
– p(A) = −∞ means an unshakable prejudice against A.

p is extended to 2Ω by setting p(Ω) = 1−∑
X⊂Ω p(X) and p(∅) = 0 (normalization).

In the following sections we are going to study the cases where there is only one
focal set for the beliefs (called A), and only one prejudice that focuses on a set (called
B). We describes all the situations where A and B intersects, namely A = B (case 1),
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A ⊂ B (case 2), B ⊂ A (case 3), and A\B 	= ∅ and B \A 	= ∅ (case 4). The prejudice
is characterized by a threshold of evidence (under which the evidence is not affected)
and a tenacity function that describes how this threshold evolves when new information
contradicts it (this tenacity function is decreasing, because in this paper we restrict our
study to the case where no piece of evidence can increase a prejudice).

3.1 Case 1: Information and Prejudice Focused on the Same Subset A �= ∅
and A �= Ω

The simplest situation occurs when the prejudice and the information (testimony) are
concerning the same set of pieces of evidence.

Definition 2. A simple belief state about A 	= ∅ has the form (p = Aβ ,m = Aα) with
α ∈ [0, 1], β ∈ [1,+∞) where p is a prejudice against A, called simple prejudice, and
m is a simple mass function on A. It can be simplified according to the following rules:

– αβ ≤ 1: the prejudice is canceled and the confidence in A decreases so the pair
becomes (A1, Aαβ),

– αβ > 1 the prejudice decreases but the informative mass m(A) is deleted: the pair
becomes (Aαβ , A1).

Note that, p = Aβ is a shortcut for p(A) = 1 − β and p(Ω) = β, hence due to
β ≥ 1, p(A) is negative in accordance to Definition 1. In other words, a simple mass
function m about A, m = Aα in presence of a prejudice p against A, p = Aβ , can give
three situations according to the incoming information Aα:

1. The prejudice is deleted if the incoming information is sufficiently convincing. In
other words, the threshold of persuasiveness required to change one’s mind is over-
taken, the prejudice was low compared to the strength of the evidence Aα.

2. The prejudice remains but is possibly attenuated and the piece of evidence is
rejected. So the attenuation of the prejudice is a function (called f now on) depen-
dent of the strength β of the prejudice against A.

3. The prejudice is preserved whatever the incoming information (which is canceled).

Definition 3 (Evolving prejudice). Given A ⊂ Ω with A 	= ∅, we denote by Aβ

the prejudice of strength β which evolves according to f , where β ∈ [1,+∞] and
f : [0, 1] × [1,+∞] → [1,+∞] is a function s.t. f(α, β) represents a new threshold of
prejudice: f(α, β) replaces β when the prejudice is attenuated

– αβ ≤ 1 the prejudice is canceled and the level of evidence decreases so the pair
becomes (A1, Aαβ),

– αβ > 1 the prejudice changes but m(A) is canceled: the pair becomes
(Af(α,β), A1).
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In this paper, due to the fact that we assume that prejudices can only decrease or
stay still, f is a decreasing or constant function. Here are some examples of special
cases for f :

– f(α, β) = max(1, β − ε) decreases by ε ∈ [0,+∞[ after receiving each new evi-
dence.

– f(α, β) = max(1, αβ) decreases in function of the strength of the certainty on the
incoming information, at most the prejudice is removed.

– f(α, β) = β leads to the conservation of the prejudice in the case of a narrow-
minded person yielding (Aβ , A1),

If there is no prejudice against A, whatever the new piece of evidence that may
arrive about A, it cannot create a new prejudice on A. So this amounts to having a
simple mass function as shown in the following proposition:

Proposition 1. The pair (A1, Aα) is equivalent to the simple mass function m = Aα

Proof. Here β = 1, hence αβ ≤ 1, according to Definition 3, the pair becomes
(A1, Aα).

Proposition 2. When αβ ≤ 1, the pair (Aβ , Aα) is equivalent to a revision of the
simple mass function m = Aβ by the simple mass function Aα yielding a simple mass
m′ such that m′ = Aβ ◦ Aα = Aαβ

Proof. Due to Eq. 1, Aβ ◦ Aα(Ω) = σ(Ω,Ω)α and σ(Ω,Ω) = β.

Example 3. Let us consider a universe Ω = {ω1, ω2, ω3} where three diseases can be
encountered: pyelonephritis noted ω1, urinary infection noted ω2 and lumbago noted
ω3. Three symptoms can be observed Kidney ache (a), stomach ache (b) and back ache
(c). When stomach ache is observed there is a prejudice against pyelonephritis and
lumbago encoded by pb.

The two first columns of Table 2 shows a belief state (pb,ma) where the initial belief
is ma = {ω1, ω3}0.5 (Kidney ache which is translated by an evidence for ω1 or ω3,
meaning the presence of pyelo-nephritis or urinary infection) and there is a prejudice
against those two diseases because of a stomach ache pb = {ω1, ω3}5/3.

The third column shows the results of conjunctive combination of ma and pb as
described in Sect. 2.1, i.e., the prejudice disappear (hence the belief state is a sim-
ple mass) and the mass on A decreases: p′

b({ω1, ω3}) = 0 and m′
a({ω1, ω3}) =

1 − αβ = 1/6. In the case where the belief is described by mc then the prejudice
decreases (depending of f(α, β)) and the evidences are canceled. Column 6 and 7
respectively show the behavior of the prejudice for f = max(1, β − ε) (with ε = 0.2)
and f = max(1, αβ). The last column presents the case of a narrow minded agent with
f(α, β) = β.
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Table 2. Kidney ache (a), stomach ache (b) and back ache (c) (pb is a prejudice against
pyelonephritis and lumbago)

E pb ma (p′
b, m′

a) mc (p′
b, m′

c) (p′′
b, m′′

c) (p′′′
b, m′′′

c)

any f f = max(1, β − 0.2) f = max(1, αβ) f(α, β) = β

αβ = 5/6 ≤ 1 αβ = 10/9 > 1

E ∈ 2Ω \ {{1, 3}, Ω} 0 0 (0, 0) 0 (0, 0) (0,0) (0,0)

{1, 3} –2/3 0.5 (0,1/6) 1/3 (–7/15,0) (–1/9,0) (–2/3,0)

Ω 5/3 0.5 (1,5/6) 2/3 (22/15,1) (10/9,1) (5/3,1)

3.2 Case 2: Evidence on A and Prejudice Against B with ∅ ⊂ A ⊂ B ⊂ Ω

In this case, we have A\B = ∅ and B \A 	= ∅. Note that there is a discontinuity: when
A = B, there was an inconsistency between the information and the prejudice while in
the current case A ⊂ B, the set B \ A is non-empty, hence the transfer is possible.

– αβ ≤ 1 the prejudice on A is deleted, the prejudice on B \ A is maintained but the
evidence on A decreases.

– αβ > 1 the mass on A is canceled and the prejudice against A is possibly decreased
by f(α, β) while the prejudice on B \ A is maintained

Definition 4. Given a belief state (p,m) such that p = Bβ and m = Aα, (with ∅ ⊂
A ⊂ B ⊂ Ω) this state is simplified into (p′,m′) such that:

– αβ ≤ 1 (the prejudice is weaker than the information): (p′,m′) = ((B \A)β , Aαβ)
– αβ > 1 (the prejudice is stronger than the information): information is canceled
and the prejudice can be affected on the set A: (p′, A1) with p′ such that:

• p′(A) = 1 − f(α, β) (as in the Case 1 Sect. 3.1)
• p′(B \ A) = 1 − β
• p′(Ω) = 1 + f(α, β) + β

3.3 Case 3: Evidence on A and Prejudice Against B with ∅ ⊂ B ⊂ A ⊂ Ω

In this case A \ B 	= ∅ and B \ A = ∅. In the current case there is no contradiction
between the target of the prejudice and the information, information can be transferred
to A \ B, concerning the prejudice it can either decrease or remain the same depending
on its strength.

– αβ ≤ 1: the prejudice on B is deleted, but the belief is transferred to A \ B. In this
case, there is no evidence for B hence the mass on B remains 0 it cannot increase.

– αβ > 1: the mass on B is canceled and the prejudice about B is possibly decreased
by f(α, β) while the prejudice on A \ B is maintained

Definition 5. Given a belief state (p,m) such that p = Bβ and m = Aα with ∅ ⊂ B ⊂
A ⊂ Ω, this state is simplified into (p′,m′) such that:

– αβ ≤ 1 (weak prejudice): (p′,m′) = (B1, (A \ B)α)
– αβ > 1 (strong prejudice): (p′,m′) = (Bf(α,β), (A \ B)α)
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Note that in the Definition 5, we could have considered that after removing the prej-
udice against B, the mass would remain on the entire set A, i.e., (p′,m′) = (A1, Aα).
However we think that this is a less cautious attitude, it would amount to forget com-
pletely the old prejudice. In this case, there is no precise information about B hence
whatever the strength of the prejudice, the information is transferred from A to (A\B).

3.4 Case 4: Evidence on A �= Ω and Prejudice Against B �= Ω
with (A \ B) �= ∅ and (B \ A) �= ∅

In all cases where A 	= B (cases 2, 3 and 4) there is no frontal contradiction between
the beliefs and the prejudice, here A \B 	= ∅ means that information can be transferred
to A \ B, and B \ A 	= ∅ means that a prejudice can remain on B \ A.

– αβ ≤ 1 the prejudice on A \ B is deleted, but remains on B \ A, the belief is
transferred to A \ B.

– αβ > 1 the mass on B is canceled and the prejudice about B ∩ A is possibly
decreased by f(α, β) while the prejudice on B \ A is maintained

Definition 6. Given a belief state (p,m) such that p = Bβ and m = Aα with A,B ∈
2Ω \ {Ω} and (A \ B) 	= ∅ and (B \ A) 	= ∅, this state is simplified into (p′,m′) such
that:

– A ∩ B = ∅ : (p′,m′) = (p,m) : no change,
– αβ ≤ 1 (weak prejudice): (p′,m′) = ((B \ A)β , (A \ B)α),
– αβ > 1 (strong prejudice): (p′, (A \ B)α) with p′ such that:

• if f(α, β) = β then p′ = p (strong and persistent prejudice)
• else

* p′(A ∩ B) = 1 − f(α, β) : the prejudice decreases as in the Case 1 and 2
* p′(B \ A) = 1 − β
* p′(Ω) = 1 + f(α, β) + β

Example 3 (continued): Let us now consider a prejudice against urinary infection and
lumbago encoded by pb = {ω2, ω3}5/3. The fourth column of Table 3 shows the result
of the conjunctive combination of ma and pb as described in Sect. 3.4, i.e., the prejudice
disappears on ω3 but remains on ω2 (p′

b({ω2}) = −2/3). The mass ma({ω1, ω3} =
0.5 is transferred to m′

a({ω1}). In the case where the belief is described by mc, the
prejudice against {ω3} decreases (depending on f(α, β)) and is transferred to {ω2} as
shown in columns 6 and 7 of Table 3. The evidence for {ω3} is canceled but transferred
to {ω1}(m′

c({ω1}) = 0.5). The last column presents the case of a narrow minded agent
with f(α, β) = β.
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Table 3. Kidney ache (a), stomach ache (b) and back ache (c) (pb is a prejudice against
pyelonephritis and urinary infection)

E pb ma (p′
b, m ′

a) mc (p′
b, m ′

c) (p′′
b, m ′′

c) (p′′′
b, m ′′′

c)

any f f = max(1, β − 0.2) f = max(1, αβ) f(α, β) = β

αβ = 5/6 ≤ 1 αβ = 10/9 > 1

{∅, {1, 2}} 0 0 (0, 0) 0 (0, 0) (0,0) (0,0)

{1} 0 0 (0,0.5) 0 (0,1/3) (0,1/3) (0,1/3)

{2} 0 0 (–2/3,0) 0 (–2/3,0) (–2/3,0) (0,0)

{3} 0 0 (0,0) 0 (–7/15,0) (–1/9,0) (0,0)

{1, 3} 0 0.5 (0,0) 1/3 (0,0) (0,0) (0,0)

{2, 3} –2/3 0 (0,0) 0 (0,0) (0,0) (–2/3,0)

Ω 5/3 0.5 (5/3,0.5) 2/3 (32/15,2/3) (16/9,2/3) (5/3,2/3)

4 Properties

In this section, we establish two propositions that are concerning the belief part of the
cognitive state of the agent: it appears that when beliefs are contradicted by prejudice
but not radically, i.e. there are sets of beliefs that can remain uncontradicted, then a
transfer can be made towards the more specialized set of uncontradicted beliefs. How-
ever, when there is a radical opposition between beliefs and prejudices, i.e. when prej-
udices are against a set of worlds that contains the set of worlds we believe in, then a
revision should be performed (Proposition 4).

We start by showing that our definition of belief state evolution under prejudices is
conserving the belief masses.

Proposition 3. Given a belief state (p,m) such that p = Bβ and m = Aα, in the cases
(3 and 4) where A \ B 	= ∅ there is conservation of masses without addition of further
contradiction:

m′(A) + m′(A \ B) = m(A)

Proof. For the cases 3 and 4: in both cases αβ ≤ 1 and αβ > 1, m′ is (A \ B)α (due
to Definitions 5 and 6). Hence m′(A) = 0 and m′(A \ B) = 1 − α.

When the prejudice is weak, i.e., αβ ≤ 1, we recover Dubois-Denoeux revision:

Proposition 4. Given ∅ ⊂ A ⊂ Ω and ∅ ⊂ B ⊂ Ω and a belief state (p,m) such that
p = Bβ and m = Aα, according to the respective position of the two sets A and B,
when αβ ≤ 1 then

– A \ B = ∅ (cases 1 and 2): m′ = Bβ ◦ Aα (revision)
– A \ B 	= ∅ (cases 3 and 4): m′ = (A \ B)α (transfer)

Proof. Due to Equation (1), p ◦ m(Ω) = σp(Ω,Ω)m(Ω) where σp(Ω,Ω) = p(Ω)
Plp(Ω)

hence σp(Ω,Ω) = β
1 = β. Moreover, m(Ω) = α this p ◦ m(Ω) = αβ. Now, except

from Ω, m(E) 	= ∅ only for E = A, hence p ◦ m(A) = 1 − αβ thus p ◦ m = Aαβ ,
it corresponds exactly to Definitions 2 and 4. The second item corresponds directly to
Definitions 5 and 6.
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5 Discussion and Related Work

In this section, we first recall the approaches that deal with information deletion, namely
retraction and updating. Indeed, belief function theory is made to add new pieces of
evidence through Dempster combination rule, but the issue of deleting or modifying
the agent’s belief states when some evidence is invalidated or modified has deserved
some attention.

In probability and possibility theory, the retraction operation consists of a divi-
sion followed by a normalization. Since 1984, Ginsberg [7] proposed a special case
of retraction applied to belief functions in the simple case of a frame of discernment
with only two elements. In the valuation-based system framework, Shenoy [16] defined
removal as point-wise division followed by normalization (if normalization is possi-
ble). Kramosil [9] generalized the notion of belief functions with basic signed measure
assignment (BSMA) and proposed an operation inverse to Dempster’s rule. He intro-
duced the notion of q-invertibility that may be seen as generalizing non-dogmaticism.
Pichon [13] pursued Kramosil’s seminal work by defining the so-called conjunctive
signed weight function. But the absence of a semantic, the lack of intuitive interpreta-
tion of such generalized belief functions and the fact that only the conjunctive rule is
used to combine BSMAs (normalization cannot be applied) are obstacles to the poten-
tial use of this approach. Smets [17] generalized the concept of simple support function,
allowing the diffidence values to range on the positive reals and introduced the retrac-
tion operation defined by the division of commonality functions. Smets defined then
the concept of latent belief structure for non dogmatic mass functions. This concept
is studied in more details by Pichon and Denoeux [14]. Lukaszewski [11] proposes
an algorithm for what he calls updating which consists in removing or changing some
pieces of evidence without carrying out all the combinations again except for the ones
that have been deleted or modified. Dubois, Faux et Prade [5] consider retraction as a
special symmetric belief change operation that avoids the explicit use of negative mass
functions.

Table 4 presents an abstract example which deal with the three different approaches
(negation viewed as a conjunctive combination with the complementary, revision by the
complementary and retraction) that can be used to remove a piece of evidence on a set
B and the same example dealt with a strong persistent prejudice on B. It is important to
note that retraction of a focal set B differs (fifth column) from conjunctive combination
with the complementary of this focal set B (third column). Indeed retraction allows us
to focus and reduce or delete the mass on B (it is possible to find values for x, y, z and
u such that m �∩©Bu(B) = 0 with y, u 	= 0) while negation never allows us to cancel
beliefs on B (since yu 	= 0 as soon as y, u 	= 0). In other words, integrating a piece of
evidence on the complementary of B (B

u
) is different from canceling an evidence for

B (by integrating B1/u). Revision gives priority to the new piece of information, hence
revising by B amounts to transfer pieces of evidence from A, B and A ∩ B to A \ B
(since A \ B ⊂ B). Our approach takes a complementary point of view relatively to
revision and retraction since it allows us to make evolve the beliefs either by transfer
or by attenuation. The important difference is the introduction of a new dimension for
prejudices allowing us to distinguish them from negative evidence and to handle their
evolution independently.
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Table 4. Four different views of “negative information”: negation (i.e., combination with B),
revision, retraction and strong persistent prejudice

Negation Revision Retraction Strong and persistent

β = 1
u

Prejudice β = 1
u

> y

m B
u

m ∩©B
u

m ◦ B
u

m �∩©Bu = m ∩©Bβ (B1/u, m)

∅ 0 0 (y + z)(1 − u) 0 0 (0,0)

A x 0 xu xu x/u (0, 0)

B y 0 yu yu 1 − x − z− (1 − β, 0)

(1 − x − y − z)/u

A ∩ B z 0 zu zu x + z − x/u (0, 0)

A \ B 0 0 x(1 − u) 1 − u 0 (0, x)

B 0 1 − u (1 − x − y − z)(1 − u) 0 0 (0, 0)

Ω 1 − x − y − z u (1 − x − y − z)u (1 − x − y − z)u (1 − x − y − z)/u (β, (1 − x))

To sum up this paper presents a preliminary study about the integration of evidence
in a belief state where the agent has some prejudices. We propose a bipolar model
considering prejudices and uncertain beliefs. Prejudices have a strength and a tenacity.
We study how new incoming information can modify both the levels of prejudice and
belief. This model is compatible with revision and retraction operations.

Note that in a more general case, it may be impossible to represent masses and
prejudices with a simple belief state (i.e., a simple prejudice and a simple mass). In
that case, i.e., with complex masses and prejudices, in order to know if the prejudice
is stronger than the beliefs, we could either consider a veto approach that takes into
account only the focal sets with highest evidence that are concerned by the prejudice or
a cumulative approach that would consider the sum of the beliefs on focal sets that are
concerned by it. It could be interesting to study whether it is possible to recover a purely
Dempster-Shafer framework from a general belief state made of complex masses and
prejudices.
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Abstract. Mobile application (App) reviews which are provided by
users through different App stores are considered as a rich information
source for developers to inform about bugs, new feature requests, perfor-
mance issues, etc. These feedbacks help developers improve the quality of
their apps which in turn will significantly impact the user experience and
the App’s overall ratings. Popular Apps receive a high number of user
reviews daily which makes their manual analysis a very tedious and time-
consuming task. Automating the classification of user reviews will save
developers time and help them better prioritize the issues that need to
be handled. Since an App review is text data in which a user may report
more than one issue, we propose a multi-label text classification model
which uses neural language models. These models have shown high per-
formance in various natural language processing problems. Experimen-
tal results confirm that neural language models outperform frequency-
based methods in the context of App reviews classification. In fact, with
RoBERTa, we could achieve a 0.87 average F1-score and a 0.16 hamming
loss performances.

Keywords: Mobile apps · Text classification · Neural language
models · Natural language processing

1 Introduction

Mobile app development involves creating software that can be used on a variety
of mobile devices such as phones, tablets, and smartwatches. As the use of these
devices continues to grow, mobile applications are becoming increasingly pop-
ular. Mobile app stores, such as Google Play and App Store, have also opened
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up new possibilities for users to discover and download different types of mobile
apps. Users can also interact with these app stores by providing ratings and
feedback, resulting in a significant increase in the number of reviews submitted
daily (e.g. 1 billion reviews are received per month in Apple App Store [9]).

Although user feedback can provide valuable insights for developers to main-
tain their mobile apps, the challenge lies in manually analyzing and categorizing
a large number of reviews which can affect the prioritization of issues that need to
be addressed first and hence compromise the maintenance planing task. More-
over, these user reviews are written in natural language, which can challenge
their classification by standard text classification techniques as these latter do
not have a good enough context analysis capability.

Various studies have suggested automated techniques to analyze mobile app
user reviews. Martens et al. [7] proposed an approach for the detection of fake
reviews. Guzman et al. [4] proposed an automated approach which helps develop-
ers scan, summarize and evaluate user reviews to extract users sentiments about
different app features. Park et al. [10] used app reviews to propose a mobile app
retrieval (search) method. Hadi et al. [5] studied the performance of pre-trained
models on both binary and multi-class classification of app reviews. Moreover
they highlighted the importance of incorporating app specific data within the
pre-trained models to reduce the prediction time. McIlroy et al. [8] conducted an
empirical study on the multi-labeled nature of user reviews in mobile apps and
suggested a multi-label approach for reviews classification that uses standard
classifiers trained on TF-IDF (Term Frequency-Inverse Document Frequency)
based features. Frequency-based text classification techniques cannot properly
determine the right context of identical words if used in different contexts. In
this paper, we are proposing a multi-label approach for user reviews classifica-
tion which uses Pre-Trained neural language Models, (PTM) which have shown
good performance (compared to bag-of-words and TF-IDF based techniques) in
text classification tasks thanks to their attention mechanisms which help better
understand the context of every single word in a sentence.

This paper is organized as follows. Section 2 provides a brief background
on multi-label classification and neural language models. Section 3 presents the
different phases of the proposed approach. Section 4 presents the experimental
setup and results and Sect. 5 concludes the paper.

2 Background

In this section, we provide a brief background about multi-label classification
Pre-Trained neural language Models (PTMs).

2.1 Multi-Label Classification

Multi-Label Classification (MLC) is a special case of multi-target classification
[12], where each instance can be assigned a subset of labels instead of a unique
label. The main goal is then to assign a set of relevant labels for unseen (i.e.,
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unlabeled) instances. In other words, MLC can be viewed as a generalization of
the multi-class classification problem, where an instance is assigned to one and
only one class.

Formally speaking, we will consider an instance space X and assume L =
{λ1, λ2, ..., λm} be a set of candidate class labels.

A non-deterministic association is then made between each instance x ∈ X
and a subset of its corresponding (relevant) labels L ∈ 2L. This will allow us to
get the complement L\L (i.e., irrelevant labels for x).

We may assign a binary vector values y = (y1, y2,..., ym ) to the set of relevant
labels so that yi = 1 means λi ∈ L.

Generally, a multi-label classifier learns a one-to-many mapping X −→
{0, 1}m.

A multi-label classifier h is an X −→ Y mapping that assigns a (predicted)
label subset to each instance x ∈ X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), h2(x), ..., hm(x)) (1)

Often, MLC is treated as a ranking problem, in which the labels are sorted
according to the degree of relevance. Then, the prediction takes the form of a
ranking or scoring function:

f(x) = (f1(x), f2(x), ..., fm(x)) (2)

such that the labels λi are simply sorted in decreasing order according to
their scores fi(x).

2.2 Neural Language Models

Recently, available open source machine learning frameworks for training neural
language models, e.g., BERT [3], RoBERTa [6] and DistilBERT [11] have led
to impressive improvements in various NLP tasks. These techniques are known
to exploit the dependencies between words and their compounds to encode the
meanings of sentences and assemble a context representation information. Inter-
estingly, the aforementioned models can be easily applied to a wide range of
NLP tasks by just fine-tuning the networks that was pretrained.

BERT. Bidirectional Encoder Representations from Transformers is a pop-
ular language representation model initially pretrained on BookCorpus and
Wikipedia. Google’s BERT [3] was pre-trained for the following two unsuper-
vised tasks:

– Masked-language Modeling (MLM) to predict randomly masked words in a
sequence of words.

– Next Sentence Prediction (NSP) to predict whether a sentence A logically
follows a sentence B.

In the following, we illustrate a typical input to BERT: [CLS] Easily worth
what I spent for this [MASK] game [SEP].
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In general, a special classification token [CLS] is inserted at the beginning
of a sentence in a BERT’s input sequence. It will represent the sentence level
classification. [SEP] is used as a separator between sentences or to mark an end
of a sentence. The [MASK] token is used as a prompt to predict the next word
given previous words in the sequence.

DistilBERT. A BERT variant based on the use of distillation which repre-
sents a compression technique in which a small model is trained to reproduce
the behavior of a larger model [11]. The distillation technique can be referred
also as “A teacher-student training” in which the student network is trained to
mimic the full output distribution of the teacher knowledge network. However,
DistilBERT is built on compressing BERT model by expelling the token-type
embeddings and the pooler (used for the next sentence classification task) and
kept the rest of the architecture identical while reducing the numbers of layers by
a factor of two. Overall, DistilBERT has about half the total number of param-
eters of BERT base and holds 95% of BERT’s performances on the language
understanding benchmarks.

RoBERTa. A Robustly Optimized version of BERT [6] that uses the same archi-
tecture as BERT, while it is pre-trained only on the masked language modeling
task. RoBERTa is trained with larger batches of data while it keeps chang-
ing the masking pattern during training. Moreover, in the tokenization process,
RoBERTa uses the same tokenization than GPT: byte-level byte-pair-encoding
[2]. Which means that each string is splitted into multiple substrings, which are
themselves divided into multiple substrings until every substring can be repre-
sented by the vocabulary.

3 Methodology

In this section, we provide an explanation of all the building blocks of our app-
roach which is illustrated by Fig. 1 and 2.

3.1 Data Construction

Crawl Reviews. Our initial whole dataset was crawled from Google play
store. Using Selenium1 we designed our own web crawler module to automati-
cally locate, gather and collect reviews and their corresponding metadata (i.e.
ReviewID, ReviewerName, ReviewText, ReviewerRating: number of stars the
reviewer gave to the app, ReviewDate, ReviewLikes: number of likes the review
has got) from popular apps.

Data Pre-processing. All collected reviews have been pre-processed to detect
and eliminate inaccurate reviews. Pre-processing steps include:

– Removing reviews which are not written in English.
1 https://selenium-python.readthedocs.io/.

https://selenium-python.readthedocs.io/
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Fig. 1. Data Construction and Model Training

– Removing very short reviews (which contain less than 5 words).
– Transforming all text to lowercase.
– Removing English Stop words and digits.
– Removing special characters (e.g., @ , ; ! # ′̂ ? = [|] £ ∗ + - $).
– Removing emojis, emoticons and hashtags.

After this cleaning procedure, we ended up with a collection of 2565 reviews.

Labeling Reviews. The manual labeling of the obtained reviews was per-
formed by two of the authors of this paper to have more than one opinion on each
review category. Each review was assigned a subset from a set of labels: {Bug
report, Feature request, User experience, Information seeking, Complaints} as
each review can contain text that is related to more than one of those categories.
Disagreements between the two annotators about the labels have been observed
for 148 reviews (5.8%) and have been handled by discussing those reviews with
the remaining authors to agree on the label(s).

3.2 Reviews Classification Model

For our classification model, we used Hugging Face Transformers library2 which
includes a bunch of pre-trained models. We chose to test and compare BERT,
DistilBERT and RoBERTa language models.

2 https://huggingface.co/transformers/.

https://huggingface.co/transformers/
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Fig. 2. New reviews classification steps

Tokenization: Each review text is split by the tokenizers of the aforementioned
models into tokens which will be then processed by the subsequent layers of
each model. For each token, a word representation, which is a vector of 768
embeddings, will be generated. These embeddings will then constitute the inputs
of the transformers block of the model.

The Transformers and Multi-label Classifier Layers: The Transformer
block is composed of a Language Model Head (LMH) on top of the language
model. LMH is composed of a linear transformation normalized with Gaussian
Error Linear Unit activation (Gelu) along with a LayerNorm function followed by
a linear transformation which serves as a mapping between the review categories
and their probabilities.

Since our dataset is multi-labeled, we opted for the OneVsRest (a.k.a. binary
relevance) transformation strategy. With the OneVsRest strategy, the problem
is transformed into 5 binary classification problems since we have 5 candidate
labels (i.e. review categories) and binary cross-entropy is used as a loss func-
tion. At the end, to measure the output scores for each class label, we used a
Sigmoid activation function on top of our models so that we could compute the
corresponding scores for each class independently.
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3.3 New Review Classification

when a new user review is collected from the app store, it will be pre-processed
like we pre-processed the reviews during training then it will be fed to the trained
multi-label classifier to get the predicted reviews.

4 Experimental Study

In this section, we describe our experimental setup and results.

4.1 Dataset and Experimental Environment

We conducted our experiments on 2565 reviews. Out of the 2565 reviews, 1348
reviews have only one class label. 971 reviews are bi-labeled, 221 reviews have
exactly 3 labels and 25 reviews have exactly 4 labels. Table 1 shows the number
of reviews for each category. It shows a total of 4016 reviews which is larger than
the total number of reviews of our dataset (2565). This is explained by the fact
that multi-labeled reviews are counted multiple times (according to the number
of labels they are labeled with).

To train and test our model, we used Google Colab which is a free Jupyter
notebook environment which offers a Tesla K80 GPU and 12 GB RAM.

Table 1. Number of reviews per category

Review category # of reviews

Bug report 862

Feature request 604

User experience 1479

Information seeking 312

Complaints 759

4.2 Hyper-parameters Configuration

When training a neural network, there is a set of hyper-parameters that need
to be set in order to increase model performance and avoid problems like over-
fitting, as different layers of a neural network can capture different levels of
syntactic and semantic information. In our experiments, we opted for a train-
test split strategy: 90% for training and 10% for testing and we have used 5
epochs to train and test our models.

During each epoch, a pre-trained model was trained on the training set and
evaluated on the testing set. For all our models, we used a learning rate of 1e-5
and a dropout probability of 0.1. Attention heads were set to 16 for all layers. We
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also used Adam optimizer to minimize the loss function and the batch size was set
as equal to 4 due to GPU limitation. RELU activation function is used with all
models. As reviews are relatively short in length, we set the maximum sequence
length for all models to 320. Shorter reviews will be padded with zero values
and longer reviews will be truncated. Additional models’ specific parameters are
presented in Table 2.

Table 2. Models’ specific parameters

Model # Layers # Hidden Units # Heads

BERT 6 768 16

DistilBERT 16 1024 16

RoBERTa 24 1024 16

4.3 Results

We have trained our neural language models, namely BERT, DistilBERT and
RoBERTa and assessed their performances using a 90%–10% train-test split.

Table 3 shows per-class performances for all models which were trained using
the hyper-parameters settings mentioned in Sect. 4.2. For each review category
(i.e. Bug Report (BR), Feature Request (FR), User Experience (UX), Informa-
tion Seeking (IS) and Complaint (C)), we report the Precision (P), Recall (F)
and F1-score (F1) obtained by each neural language model.

Table 3. Precision (P), Recall (R) and F1-score (F1) for each review category

BR FR UX IS C

P R F1 P R F1 P R F1 P R F1 P R F1

BERT 0.7 0.75 0.72 0.86 0.59 0.7 0.9 0.91 0.9 0.95 0.95 0.95 0.57 0.55 0.56

DistillBERT 0.81 0.78 0.79 0.77 0.76 0.76 0.92 0.86 0.89 0.95 1 0.97 0.47 0.8 0.59

RoBERTa 0.78 0.96 0.86 0.87 0.91 0.89 0.91 0.98 0.95 0.95 1 0.97 0.77 0.59 0.67

Results show that all models perform well on all review categories (F1-score
values are greater than or equal to 0.76) with a slightly lower performance on the
“Complaint” category where RoBERTa shows a 0.67 F1-score. By observing the
misclassified reviews, we found that most of these reviews are initially bi-labeled
as “Complaint” and “Feature Request”: users complain about one or multiple
features and request new features at the same time. This makes the models
confused between the two categories when tested separately. All models scored
very well for the “Information Seeking” and “User Experience” reviews. Very
few of these reviews were multi-labeled which explains the good performance
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of all models for these reviews. Reviews reporting bugs have been also well
classified by all models, especially by DistilBERT (0.79) and RoBERTa (0.86).
It was expected that RoBERTa will outperform BERT and DistilBERT as it
is an optimized version of the original BERT model and its distilled version
DistilBERT.

Table 4, shows the hamming loss scores of the best performing neural lan-
guage model (i.e. RoBERTa) and the scores of standard classifiers (i.e. Deci-
sion trees (DT), Naive Bayes (NB), Logistic Regression (LR) and Support Vec-
tor Machines (SVM)) which were trained on tf-idf features extracted from the
reviews’ texts. Binary relevance was also used with these standard classifiers as
a transformation method to handle the multi-labeled reviews.

Table 4. Hamming Loss Scores of RoBERTa and Standard classifiers

RoBERTa DT NB LR SVM

Hamming Loss Score 0.16 0.32 0.33 0.3 0.29

From Table 4, we can see that RoBERTa outperforms the standard classifiers
in terms of Hamming loss which indicates the fraction of wrong labels to the
total number of labels for all testing instances. Results in Table 4 show the con-
tribution of the attention mechanism used by RoBERTa in better understanding
the context of each word in a review which leads to a better classification of this
latter.

5 Conclusion

In this paper, we proposed a neural language model-based classifier that auto-
matically classifies mobile application user reviews. In a previous work [1], we
have used active learning and tf-idf extracted features to classify reviews into
three categories (bug report, feature request, user experience). In this work, we
added two more relevant categories, namely information seeking and complaints
to cover a larger spectrum of reviews. Moreover, we evaluated our approach using
several pre-trained neural language models. It has been shown that RoBERTa
outperformed all tested models. In the future, we plan to improve the perfor-
mance of our model by using a larger set of reviews and aim at handling the
uncertainty about the reviews categories we have faced during the labeling pro-
cess.
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2 IRIT-CNRS, Université Paul Sabatier, 118, route de Narbonne,
31062 Toulouse Cedex 9, France

{didier.dubois,henri.prade}@irit.fr

Abstract. Provenance calculus has been introduced, about fifteen years ago, for
complementing relational algebra calculations in databases, with semiring opera-
tions in order to handle data lineage, incomplete or probabilistic information. Pos-
sibilistic logic has started to be developed twenty years before, initially for deal-
ing with epistemic uncertainty, using the max-min semiring. Since then, several
variants and generalizations of possibilistic logic have been proposed, involving
various semirings. All these forms of possibilistic logic are surveyed and paral-
leled with provenance calculus, through logical counterparts of relational algebra
operations. The paper ends with a discussion of the parallel between the two
research trends.

1 Introduction

Semirings are a mathematical structure that involves two associative operations with
distinct identity elements, the former, viewed as an “addition”, being commutative, and
the latter, viewed as a “product”, being distributive with respect to the former; moreover
the identity element of the former (denoted ‘0’) is an annihilating element for the latter.
When the product-like operation is commutative, one speaks of commutative semiring.
Such structures, clearly weaker than the computational structure with real numbers, are
currently encountered in many fields related to the treatment of information, such as
“tropical” semirings in automata theory [47], dioids in discrete event processes [21],
or various semirings in flexible constraint satisfaction problems in artificial intelligence
[12,54], but also in fuzzy relational equations [23].

It has been proposed, about fifteen years ago, to associate tuples in relational
databases with different types of annotations [40,42]. Annotations may be integers, sub-
sets, polynomials, but also Boolean expressions, probabilities, or levels in a finite scale.
In each case, semiring operations can be applied to these annotations, giving birth to
various forms of so-called provenance calculi. Thus, we can in particular describe what
tuples have been involved in the computation of an output tuple belonging to the result
of a query (“why-provenance”), or how the output tuple is derived (“how-provenance”),
where pieces of data are copied from (“where-provenance”) [19]. The idea of prove-
nance is often related to the lineage [22] of output tuples. Yet, the term “provenance”
applies to any calculus propagating tuple annotations by means of semiring operations.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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https://doi.org/10.1007/978-3-031-45608-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45608-4_32&domain=pdf
https://doi.org/10.1007/978-3-031-45608-4_32


428 S. Benferhat et al.

Quite similar to the annotation of tuples is the association of logical formulas with
weights or labels in weighted logics [25]. A prototypical example of this idea is the
possibilistic logic, introduced in the mid 1980’s [32]. Basic possibilistic logic formulas
are pairs made of a formula and its certainty level, understood as a lower bound of a
necessity measure. Since the necessity of the conjunction of two formulas is the min-
imum of the necessities of each formula, and we look for the derivation of formulas
with their greatest certainty level, possibilistic uncertainty is propagated by means of a
max-min semiring. But there exists a number of variants of possibilistic logic involving
different semirings. Interestingly enough, queries to a relational database where tuples
are associated with certainty levels can be handled in the possibilistic logic setting [50].

This paper aims at emphasizing the parallel between data provenance calculi with
possibilistic logic and related logics, and at identifying how provenance can be han-
dled in possibilistic logic for explanation purposes for instance. The paper is orga-
nized as follows. Section 2 provides a brief presentation of the main provenance cal-
culi. Section 3 surveys the various semirings at work in possibilistic and related logics.
Section 4 provides a final discussion of the parallel between these two research trends.

2 Provenance Calculus

The idea of provenance was already present in many database works at the beginnings
of years 2000’s, e.g. [14,15,22]. Provenance is then often linked to the annotation of
data. However, the proposal of endowing annotations with operations having a semiring
structure appeared in the work of Green and Tannen (and their co-workers) from 2006
[40,42]. Detailed studies or introductions to provenance calculus in databases can be
found respectively in [19] and in [20,52]. Provenance calculus aims at propagating
tuple annotations when computing query answers using relational algebra operations.
We use an example, due to Green and Tannen, for explaining the main ideas [42].

Let us consider two relations R and S respectively defined on attributes (A,B,C)
and (D,B,E). Let a b c and d b e be two tuples of R and S respectively, with respective
annotations p and r. The product-like operation (denoted ·) of the semiring associates
p ·r to the tuple a b c d e of the relation R � S obtained as the join of R and S on B and
defined on attributes (A,B,C,D,E). Given two relations R and S that both contain
the tuple a b c with respective annotations p and r, an addition-like relation denoted by
+ associates p+r to the tuple a b c in the union R∪S of R and S. This operation is also
used in case of projection operation (denoted by π) for keeping track of the different
tuples whose projection yields the same tuple. Let us take an example.

Example 1. Consider the query Q = σC=eπAC(πACR � πBCR ∪ πABR � πACR)
addressed to a relation R defined on attributes (A,B,C) (π stands for projection, σ for
selection, � for join). Suppose R contains the 3 tuples a b c, d b e and f g e, respectively
annotated by p, r and s. Then it can be checked that the output relation is given in the
Table 1 thereafter.

In this table, for final selection operation, we multiply with two special annotations,
1 and 0, depending if C = e or not; p2 is short for p · p. One may replace p + p by
2p, and p2 + p2 by 2p2. In fact, the agreement of the calculus on formal annotations
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Table 1. Example of provenance calculus with polynomials

A C

a c (p2 + p2) · 0
a e p · r · 1
d c r · p · 0
d e (r2 + r · s + r2) · 1
f e (s2 + s · r + s2) · 1

with the properties of union, join, projections and selections in relational algebra lead
to require that this calculus follows the properties of a commutative semiring [40].

As can be seen in the example, formal polynomials are used for encoding the way
the tuples are obtained. For instance, the output tuple d e in Table 1 is annotated with
the polynomial 2r2 + r · s. It acknowledges the fact that there are three different ways
to derive d e from relation R, two of them use r only (but twice), while the third way
uses r and s only once.

Now if we replace the formal annotations, p, r and s by integers (e.g., 2, 5 and 1
respectively) understood as the number of copies that there exists inR for each tuple, we
can count the number of ways of obtaining the output tuple d e for instance, by applying
the polynomial 2r2 + r · s (namely, 2 × 52 + 5 × 1 = 55). This is the bag semantics,
where annotations are multiplicities. Then the semiring is just (N,+,×, 0, 1).

Another reading of the polynomials is to regard annotations, p, r and s in the above
example, as Boolean variables, where + and · are taken as the Boolean disjunction ∨
and conjunction ∧ respectively. Then Table 2 is the rewrite of Table 1 using a Boolean
semiring (where ⊥ and � stand for “false” and “true” respectively):

Table 2. Example of provenance calculus with a Boolean semiring

A C

a c ((p ∧ p) ∨ (p ∧ p) · ⊥ = ⊥
a e (p ∧ r) ∧ � = p ∧ r

d c (r ∧ p) ∧ ⊥ = ⊥
d e ((r ∧ r) ∨ (r ∧ s) ∨ (r ∧ r)) ∧ � = r

f e ((s ∧ s) ∨ (s ∧ r) ∨ (s ∧ s)) ∧ � = s

If for example, we allocate the value “false” to r, meaning that the tuple d b e is
not in R, then the output relation reduces to f e, with the annotation s. Thus, one can
determine under which truth condition on the tuples in R, an output tuple belongs to the
answer. This corresponds to the Boolean semiring (B,∨,∧,⊥,�). However, note that
there is no negation in the logical expressions.

This is very similar to conditional tables (c-tables) introduced as early as 1984 for
handling incomplete information [44] where tuples can be associated with truth condi-
tions. In a c-table (see [1] for details), tuples can be annotated with logical expressions
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involving ¬, ∨, or ∧, and atomic conditions that can be combined, such as (x = a)
or (x = y) (where a is an attribute domain value); moreover logical constraints on
variables can be introduced. C-tables have been recognized as a powerful setting for
representing incomplete information in databases. This is now exemplified [1,39].

Example 2. Suppose we know that Sally is taking math (z = 0) or computer science
(CS) (z �= 0) (but not both) and another course (x); Alice takes biology if Sally takes
math (i.e., z = 0), and math (t = 0) or physics (t �= 0) but not both) if Sally takes
physics (= x). This is represented thereafter by the c-table on Table 3.

Table 3. Example of a c-table

Student Course Condition

(x �= math) ∧ (x �= CS)

Sally math (z = 0)

Sally CS (z �= 0)

Sally x

Alice biology (z = 0)

Alice math (x = physics) ∧ (t = 0)

Alice physics (x = physics) ∧ (t �= 0)

Instead of annotating tuples with Boolean variables, on may use sets as well. Such a
set may represent an event to which a probability degree is attached that represents the
probability that the tuple is present in the database [41]. Then the probabilities of tuples
in the output of a query can be computed from the resulting annotated table, assuming
the independence of the events annotating the tuples in the relational database [37].

Some applications of provenance calculus may involve semirings other than the
ones involving integers, logical expressions, or sets we have already mentioned. A good
example is provided by access control levels [36]: Assume now that an XML database is
annotated with security information, where not only the tuples as a whole, but possibly
attribute values may be labelled with access levels belonging to the following totally
ordered scale A = P < C < S < T < 0, where P means “public”, C “confiden-
tial”, S “secret”, and T “top-secret” (0 stands for something as “completely unaccessi-
ble”). Then a database tuple may already involve “product” of access levels in case of
attributes that are annotated. Generally speaking, the output tuples are associated with
polynomials that have to be interpreted using the semiring (A,min,max, 0, P ), e.g., an
output tuple annotated with C · S · T + C2 · S = S corresponds to a “secret” piece of
information, applying the semiring operations. Another case where not only tuples but
also attribute values within tuples can be annotated with provenance information is the
handling of queries involving aggregate operations (such as min, max, sum, or average)
on attribute values [2].

Thus the merit of provenance semiring is to provide a means to answer queries
such as “Is this piece of data derivable from trusted tuples?” or ‘What score should
this answer receive, given initial scores of the base tuples?” [45]. As emphasized in
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[20] “Most work on provenance in databases focused on finding minimal subsets of a
dataset that witness the existence of a tuple in the result, as well as which parts of the
dataset are the tuple copied from”.

Among other applications of provenance, let us mention causality: for example,
in [18], they investigate structural causal models as a semantics for Open Provenance
Model graphs (which have a provenance interpretation in the sense of the Semantic
Web). Provenance semirings have been also considered for description logics, such as
attributes-based DL-lite [13,16].

3 Possibilistic Logic

We first present the basic possibilistic logic (and some variants) where the weights
associated to the formulas belong to a completely ordered scale. Then we review vari-
ous extensions where weights belong to partially ordered structures, especially lattices.
After which, we briefly survey applications (fusion, revision, inconsistency handling)
where “products” other than min, or polynomials are useful. Lastly, we recall how
(basic) possibilistic logic can help to handling uncertainty in databases.

3.1 Basic Possibilistic Logic and Variants

Possibilistic logic (PL) is a special form of weighted logic [25]. It starts with the idea
of associating a classical logic formula with a certainty level. A basic PL formula [32]
is a pair (p, α) made of a logical formula p associated with a certainty level α ∈ (0, 1]
(or in any bounded totally ordered scale S), viewed as a lower bound of a necessity
measure N , i.e., (p, α) is semantically understood as N(p) ≥ α.1 Formulas of the
form (p, 0), contain no information (N(p) ≥ 0 always holds), and are not considered.
Thanks to the minitivity property for conjunction that characterizes necessity measures,
i.e., N(p ∧ q) = min(N(p), N(q)), a PL base, i.e., a set of PL formulas, can be always
put in an equivalent clausal form. The necessity measureN is associated by duality with
a possibility measure Π(p) = 1 − N(¬p) = maxω�p π(ω), where π is a possibility
distribution on interpretations.

In PL, the following inference rule is valid: (¬p ∨ q, α), (p ∨ r, β) 
 (q ∨
r,min(α, β)). It can be shown that this weakest link resolution rule yields the great-
est lower bound that can be attached to q ∨ r. This resolution rule is used repeatedly in
a refutation-based proof procedure that is sound and complete w. r. t. the semantics of
propositional possibilistic logic [28].

The semantics of a PL base B = {(pk, αk) | k = 1, ·, n} is in terms of a possibility
distribution πB(ω) = mink=1,...,n max([pk](ω), 1 − αk) where [pk] denotes the set of
models of pk, andmax([pk](ω), 1− αk) is the possibility distribution (fuzzy set) inter-
preting (pk, αk). The possibility distribution πB is the fuzzy intersection of the n such
fuzzy sets. It expresses that an interpretation ω is all the more possible as it does not
violate a formula having a higher certainty. The necessity measure associated with the

1 Possibilistic logic can also be used for modeling preferences, then (p, α) is understood as a
goal p with priority level α.
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distribution πB is defined by N(p) = minω ��p 1 − πB(ω). Moreover a level of incon-
sistency inc(B) is associated to B; it is the largest weight with which the contradiction
can be inferred from B. The set of all formulas with certainty levels strictly larger than
inc(B) is consistent.

The inference exploits a refutation method in order to reach the empty clause
with the greatest possible certainty level. The computations use the semiring (S,max,
min, 0, 1). This semiring is similar to the already encountered semiring (A,min,max,
0, P ), except that the order in the scale is reversed. The complexity remains similar to
the one of classical logic (it is multiplied by the logarithm of the number of distinct cer-
tainty levels present in the PL base we start with). Introductions, details, applications to
various artificial intelligence problems can be found in [28,32–34].

We may wonder if a similar calculus would be possible with probabilities. Indeed
there exists a probabilistic counterpart of the resolution rule, namely, P (¬p ∨ q) ≥
α, P (p ∨ r) ≥ β 
 P (q ∨ r) ≥ max(0, α + β − 1) where the Frechet bound obtained
is the greatest lower bound that can be proved valid. Unfortunately, the repeated use of
this rule does not lead to an inference process that is complete [28].

Possibilistic logic can be viewed as a special case of a labelled deductive system
[38] where logical formulas are associated with various kinds of formulas or weights
belonging to some lattice structure. Basically, a PL formula is a pair made of a clas-
sical logic formula and a label that qualifies in which conditions or to what extent the
classical logic formula is regarded as certainly true.

One may think of associating “labels” other than certainty levels. It may be lower
bounds of other measures in possibility theory, such as in particular “strong possibility”
measures Δ, which are characterized by the decomposability property Δ(p ∨ q) =
min(Δ(p),Δ(q)). They obey the “resolution-like” ruleΔ(¬p∧q) ≥ α,Δ(p∧r) ≥ β �
Δ(q ∧ r) ≥ min(α, β). Δ(p) can be interptreted as a degree of evidential support for p,
since we have Δ(p) = minω�p πD(ω), where πD(ω) = maxj=1,...,m min([qj ](ω), βj)
is the possibility distribution associated with a base of Δ constraints {Δ(qj) ≥ βj | j =
1, · · · ,m} expressing that each qj is guaranteed possible at least at level βj . Another
interpretation of Δ(p) is in terms of desire [29]. Again computations in this logic uses
the semiring (S′,max,min, 0, 1) (where S′ is the scale for possibility levels).

Let us mention a construction similar to possibistic logic, but made in an additive
setting where each formula is associated with a cost (in N ∪ {+∞}). This logic asso-
ciates, to each formula of the logic base, the price to pay if this formula is violated. The
weight (cost) attached to an interpretation is the sum of the costs of the formulas in the
base violated by the interpretation; this is the starting point of penalty logic [35,48]. It
contrasts with possibilistic logic, where weights are combined by an idempotent oper-
ation. The so-called “cost of consistency” of a formula is then defined as the minimum
of the weights of its models (which is a ranking function in the sense of Spohn [53], or
the counterpart of a possibility measure defined on N ∪ {+∞} where now 0 expresses
full possibility, and +∞ complete impossibility since it is a cost that cannot be paid).
The best model has a cost equal to 0 if the set of formulas is consistent. This logic
relies on the semiring (N ∪ {+∞},min,+,+∞, 0); by a logarithmic transformation,
one can move to the semiring ([0, 1],max, product, 0, 1) instrumental in product-based
possibilistic logic.
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3.2 Weights in Partially Ordered Structures

Logical formulas may be also associated with labels taking values in partially ordered
structures, such as lattices. This can be motivated by different needs, as briefly reviewed
in the following.

A rather recent example, interval-based possibilistic logic, has been proposed in
[10] where classical logic formulas are associated with intervals, supposed to gather
certainty levels provided by different sources. More precisely, an interval-based possi-
bilistic knowledge base is a set of weighted formulas of the form IK = {(φi,Ii) : i =
1, .., n} where Ii = [αi, βi] is a closed sub-interval of ]0, 1]. The pair (φi,Ii), called an
interval-based weighted formula, means that the weight associated with φi belongs to
Ii. This interpretation of (φi,Ii) is different from the one used in [26], where (φi,Ii) is
understood as ∀αi ∈ Ii, (φi, αi) is true. Unlike standard possibilistic logic, an interval-
based possibilitic logic only induces a partial pre-order over the set of interval-based
weighted formulas. Let (φ1,I1) and (φ2,I2) be two interval-based formulas of the
interval-based possibilistic knowledge base, with I1 = [α1, β1] and I2 = [α2, β2]. For
reasoning from interval knowledge bases, the semiring (I[0,1], M, m, [0, 0], [1, 1]) is
used, where I[0,1] represents the set of all closed subintervals of ]0, 1],M is defined by

M([α1, β1], [α2, β2]) = [max(α1, α2),max(β1, β2)].

Similarly, the minimum of two intervals is defined by

m([α1, β1], [α2, β2]) = [min(α1, α2),min(β1, β2)].

The corresponding partial ordering associated with the above lattice is I1 ≥ I2 if and
only if α1 ≥ α2 and β1 ≥ β2. An interesting point is that with the use of this semiring,
standard possibilistic logic reasoning has been extended to deal with interval-based
weighted formulas without inducing extra computational cost.

Timed possibilistic logic [26] has been the first proposed extension of this kind.
Logical formulas are then associated with sets of time instants where the formula is
known as being certainly true. More generally certainty may be graded as in basic pos-
sibilistic logic, and then formulas are associated with fuzzy sets of time instants where
the grade attached to a time instant is the certainty level with which the formula is true
at that time. In such a reified temporal logic it is important to make sure that the knowl-
edge base remains consistent over time. At the semantic level, it leads to an extension of
necessity (and possibility) measures now valued in a distributive lattice structure where
necessity functions are (fuzzy) set-valued. We are thus working with the commutative
semiring (ST,∪max,∩min, ∅,T) where T is the set of time instants, ST the set of S-
graded fuzzy sets over T, ∪max and ∩min denote the max- and min-based fuzzy set
union and intersection respectively.

Taking inspiration of possibilistic logic, Lafage, Lang and Sabbadin [46] have pro-
posed a logic of supporters, where each formula p is associated with a “supporter”,
that is a subset of subsets of “assumptions” that encodes a disjunction of conjunctions
whose truth “supports” the truth of p. This logic is another lattice-based generalisation
of possibilistic logic, where support measures (which play the role of necessity mea-
sures) are valued on the power set of the power set of the set of assumptions. Thus,



434 S. Benferhat et al.

this corresponds to the use of the semiring (22H,�,�, {}, {{}}) where H is the set of
assumptions, �,� are the lattice operations associated with the partial order between
supporters (S2 � S1 iff ∀E2 ∈ S2,∃E1 ∈ Sl s.t. E1 ⊆ E2, which intuitively means
that S1 is easier to satisfy than S2).

Still another, simple, example of a lattice-based extension of possibilistic logic is
multi-source possibilistic logic [27], where each formula is associated with a set of dis-
tinct explicit sources that support its truth. Again, a certainty/confidence level (belong-
ing to S may be attached to each source, and then formulas are associated with fuzzy
sets of sources. This corresponds to working with the semiring (SS,∪max,∩min, ∅,S)
where S is the set of all sources.

In possibilistic logic, as well as in its extensions and variants, we deal with pairs
where formulas and weights are handled simultaneously but on their own. Still, literals
can be moved to the “weight lot”. Indeed, a formula such as (¬p∨q, α) can be rewritten
under the semantically equivalent form (q,min([p], α)), where [p] = 1 if p is true and
[p] = 0 if p is false ([p] can be viewed as the characteristic function of the set of models
of p). This latter formula now reads “q is α-certain, provided that p is true”, and can be
used in hypothetical reasoning in case no formula (p, γ) is deducible from the available
information [8,31]. In the special case where all the certainty weights are equal to 1
and where we would start with a base made of a set of pairs associating a formula with
the set of models of an hypothetical formula, we would deal with a semiring of the
form (2I,∪,∩, ∅,I) where I is the set of interpretations induced by the language of
the hypothetical formulas.

It is also possible to move the weight inside the formula. Namely, a possibilistic
formula (p, α) is rewritten as a classical two-sorted clause p ∨ abα, where abα means
the situation is α-abnormal, and thus the clause expresses that p is true or the situation
is abnormal, while more generally (p,min(α, β)) is rewritten as the clause p ∨ abα ∨
abβ . This leads to a possibilistic-like many-sorted propositional logic, first presented
in [11], which was proposed for handling partial orderings between weights. Then a
known constraint between unknown weights such as α ≥ β is translated into a clause
¬abα ∨abβ . Another slightly different approach [17] handles the unknown weights in a
purely symbolic manner, i.e., computes the level from a derived formula as a symbolic
expression. For instance, B = {(p, α), (¬p ∨ q, β), (q, γ)} 
 (q,max(min(α, β), γ)).
There still exists a partial order between formulas based on the partial order between
symbolic levels; this leads to a logic (for which completeness has been proven) that
comes close to the logic of supporters.

Multiple agent possibilistic logic was outlined in [4], but its underlying semantics
and completeness results have been laid bare only in [5]. A multiple agent propositional
formula is a pair (p,A), where p is a classical propositional formula of a language L
and A is a non-empty subset of agents, where A ⊆ All (All denotes the finite set
of all considered agents; note that All may not be known in extension). The intuitive
meaning of formula (p,A) is that at least all the agents in A believe that p is true.
More general formulas of the form (p, α/A) are also considered; they mean that at
least all the agents in A are certain that p is true at least at level α. In spite of the
obvious parallel with possibilistic logic (where propositions are associated with levels
expressing the strength with which the propositions are believed to be true), (p,A)
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should not be just used as another way of expressing the strength of the support in favor
of p (the largerA, the stronger the support), but rather as a piece of information linking a
proposition with a group of agents. The resolution rule is now if A∩B �= ∅, then (¬p∨
q, α/A), (p ∨ r, β/B) 
 (q ∨ r,min(α, β)/(A ∩ B)). This multiple agent logic should
not be confused with multiple source logic. In the former, each agent may be viewed
as a source, but what is manipulated is thus a subset of sources taken as a whole; what
matters in multiple agent logic is the collective consistency of subsets of agents (while
the collection of the beliefs held by the whole set of agents may be inconsistent). We are
dealing here with the semiring ((S×B(LA), (max,∪), (min,∩), (0, ∅), (1, All)) where
B(LA) is the Boolean algebra induced by the subsets appearing in the formulas of the
base.

3.3 Other Products and Polynomials

The semantics of a possibilistic logic base is a possibility distribution over the set of
interpretations. In information fusion, the combination of possibility distributions can
be equivalently performed in terms of PL bases: The syntactic counterpart of the point-
wise combination of two possibility distributions π1 and π2 into a distribution π1 � π2

by any monotonic combination operator � such that 1� 1 = 1, can be computed in the
following way: Namely, if the PL base B1 is associated with π1 and the base B2 with
π2, a PL base B1�2 semantically equivalent to π1 � π2 is given by [9]:

{(pi, 1− (1− αi)� 1) s.t. (pi, αi) ∈ B1} ∪ {(qj , 1− 1� (1− βj)) s.t. (qj , βj) ∈ B2}
∪ {(pi ∨ qj , 1 − (1 − αi) � (1 − βj)) s.t. (pi, αi) ∈ B1, (qj , βj) ∈ B2}.

where 1 − (·) is the order reversing map of the scale S. For � =min,we get B1⊕2 =
B1 ∪ B2 with πB1∪B2 =min(π1, π2) as expected (conjunctive combination). For � =
max (disjunctive combination), we get B1⊕2 = {(pi ∨ qj , min(αi, βj)) s.t. (pi, αi) ∈
B1, and (qj , βj) ∈ B2}. With non idempotent ⊕ operators, some reinforcement effects
may be obtained. We thus deal with the semiring (S,max,�, 0, 1) (if � is associative).

In [7] a plausibility relation representation, based on polynomials, has been pro-
posed. This work was done in the context of belief revision where the primary goal
is to study reversible revision mechanisms. In this representation, the interpretations,
as well as the formulas of propositional logic, are associated with plausibility values
defined as polynomials. The polynomials used are with only one variable and where
coefficients can only take two possible values 0 and 1. Let B = {0, 1} be the set of
values 0 and 1 and let B[x] be the set of polynomials (with a single variable) whose
coefficients belong to B. The terms of the polynomials p ∈ B[x] can have positive or
negative degrees and are of the form: p =

∑n
k=1 pkx−k +

∑m
i=0 pix

i (here we abuse
notations since we accept polynomials with negative exponents). Different operators
have been used on the polynomials B[x] for the revision process. First shift operations,
materialized by multiplication by x (right shift) and multiplication by x−1 (left shift)
are used to take into account new information. Then, the maximum operator (defined
with respect to the degree of the polynomials) is used to define the polynomials associ-
ated with the interpretations from the polynomial-based knowledge bases. Finally, the
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lexicographical order (on the set of degrees of the polynomials terms) is used for the
comparison of the polynomials of B[x].

3.4 Databases and Possibilistic Logic

It has been shown [50] that the complexity of handling uncertainty in databases is
considerably reduced if the uncertainty takes the form of certainty levels associated
to attribute values or to tuples for relational algebra queries. The case of aggregate
queries is addressed in [49]. This kind of information indeed corresponds to pos-
sibilistic logic formulas. For instance, if we go back to the Example 2 of Sect. 2:
the information take(Sally, math) ∨ take(Sally, CS), corresponds to the possi-
bility distribution πtake(Sally,·)(math) = 1 = πtake(Sally,·)(CS), or if we prefer
π(z = 0) = π(z �= 0) = 1. Indeed “Sally is taking math or computer science” is
expressed by (take(Sally, math)∨ take(Sally, CS), 1) and the additional constraint
“but not both” by (¬take(Sally, math) ∨ ¬take(Sally, CS), 1).

Let us now examine the rest of Example 2. We can take for the domain of attribute
Course the set DCourse = {math, CS, biology, physics, others} that involves all
the topics mentioned in the example and leave room for others. Then the information
“Sally takes another course” (apart from “math” or “CS”) writes in possibilistic logic
(take(Sally, physics)∨take(Sally, biology)∨take(Sally, others), 1)while “Alice
takes biology if Sally takes math, and math or physics (but not both) if Sally takes
physics” writes (take(Alice, biology), [take(Sally, math)]),

(take(Alice,math) ∨ take(Alice, physics), [take(Sally, physics)]),
(¬take(Alice, math) ∨ ¬take(Alice, physics), 1),

where symbolic weights are between [ ]. We could equivalently write (take(Alice,
biology) ∨ ¬take(Sally, math), 1) in place of (take(Alice, biology), [take
(Sally, math)]), and this applies as well to the possibilistic formula after. Thus, the
conditional table represented in Table 3 translates easily in a possibilistic logic base,
and obviously can be extended to certainty levels less than 1, if needed [51].

Possibilistic Description Logics [30,43] are extensions of standard Description
Logic frameworks based on possibility theory that allow query answering from uncer-
tain ontologies. The so-called lightweight ontologies are interesting fragments of DLs
since they provide a good trade-off between expressive power and computational com-
plexity. They are particularly appropriate for applications where query answering is
the most important reasoning task. An example of a lightweight ontology language is
DL-lite which has been extended to the framework of possibility theory [6]. In the same
spirit as the standard possibilistic logic, in the logics of description possibilities, degrees
of priority or importance are assigned to the axioms of TBox (terminological knowledge
base) and to the assertions of ABox (assertional knowledge base). The same algebraic
structures of semirings, defined in the framework of possibilistic logic, have been used
in possibilistic description logics. An important point to note is that the extensions of
the description logics to the framework of possibility theory have been made without
additional computational cost. This is particularly true in the presence of inconsistent
ontologies where the computation of the assertion repair is done in polynomial time for
for both totally and partially ordered possibilistic DL-lite [3,6].
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4 Provenance and Possibilistic Logic - A Final Discussion

Provenance calculus and possibilistic logic have been motivated by different concerns:
keeping track of the origin of the tuples obtained in a query on the one hand and the
handling of epistemic uncertainty on the other hand. Still, the evaluation of a query
in face of a database, which, using Datalog, may be turned into a particular kind of
inference problem, is not so different from the deduction from a knowledge base in
the setting of some logical representations. Indeed in both cases, evaluating a query or
trying to prove a formula can be associated to a graph describing the different paths
leading to the ouput. Moreover we have seen with the variety of the different semantics
associated with weights that similar concerns may be encountered in the two fields
of research, as for instance, in the case of access control levels, leading to the use of
isomorphic semirings.

In the provenance calculus, the product (for join) and sum (for union and projection)
operators are used. In possibilistic (propositional or DL-lite) logic, the two semirings,
based on (min, max) and (product, max), are both used. However, from a computational
point of view, the use of semiring (min, max) offers better results and in particular it
preserves the tractability of DL-lite’s query-answering (which is not the case with a
computation based on the product and maximum operators).

In both settings, the need for explanations seems to be a common, implicit concern.
Explanations may be of different kinds in possibilistic-like logics: proof leading to the
highest certainty level, best arguments supporting a conclusion, or sources involved in
it. One may also need a symbolic expression keeping track of all the paths leading to
the conclusion in order to determine what could influence its certainty.

To a large extent, database and AI are fields that have been developed separately.
However, remarkably enough, it seems there has been absolutely no mutual exchanges
between the ideas underlying provenance and epistemic uncertainty in spite of their
proximity. Perhaps that’s a pity. Besides, let us also note that some concerns such as
consistency are proper to possibilistic-like logics where it can specialize in different
forms. Besides, in case of semirings based onmin andmax operations, it may be useful
to refine these operations lexicographically for breaking ties, as done, e.g., in [24].

In the presence of incoherent ontologies, the propagation mechanisms of the numer-
ical or symbolic degrees of certainty attached to the assertions, based on the algebraic
structures of semirings, make it possible to determine whether an assertion is accepted
or not and whether a response to a query is considered as valid or not. In standard pos-
sibilistic logic, it is easy to provide a degree of plausibility of an answer to a query and
to evaluate the degree of inconsistency of an ontology. The task becomes difficult if
we have to give the best support for an answer. In the case of partially ordered bases,
the challenge is above all put on finding effective methods to replace the inconsistent
ontology by one of its repairs. Once a preferred repair is computed, standard mecha-
nisms are then used on the repair and thus ignore the initial annotations necessary to
justify the validity of a given conclusion. It would then be interesting to define a notion
of annotated repair which would keep enough information from the initial incoherent
ontology to be able to retrieve the origins of the derived conclusions.
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10. Benferhat, S., Hué, J., Lagrue, S., Rossit, J.: Interval-based possibilistic logic. In: Walsh, T.
(ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011), 16–22 July 2011, Barcelona, pp. 750–755 (2011)

11. Benferhat, S., Prade, H.: Encoding formulas with partially constrained weights in a
possibilistic-like many-sorted propositional logic. In: Pack Kaelbling, L., Saffiotti, A. (eds.)
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI
2005), 30 July–5 Aug 2005, Edinburgh, pp. 1281–1286. Professional Book Center (2005),

12. Bistarelli, S., Faxgier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based
CSPs and valued CSPs: basic properties and comparison. In: Jampel, M., Freuder, E., Maher,
M. (eds.) OCS 1995. LNCS, vol. 1106, pp. 111–150. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61479-6 19

13. Bourgaux, C., Ozaki, A.: Querying attributed DL-Lite ontologies using provenance semir-
ings. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI 2019), Hon-
olulu, pp. 2719–2726 (2019)

https://doi.org/10.1007/978-3-319-45856-4_5
https://doi.org/10.1007/3-540-61479-6_19
https://doi.org/10.1007/3-540-61479-6_19


Provenance Calculus and Possibilistic Logic: A Parallel and a Discussion 439

14. Buneman, P., Chapman, A., Cheney, J., Vansummeren, S.: A provenance model for manually
curated data. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 162–170.
Springer, Heidelberg (2006). https://doi.org/10.1007/11890850 17

15. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization of data prove-
nance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X 20
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Abstract. Heterogeneous data is a significant topic in today’s context,
necessitating the development of AI tools. Logic programming is a pow-
erful approach for extracting information from datasets, enabling the
interpretation of natural language as logical rules.

This paper introduces a novel representation of logic normal programs,
which include negated variables, using labeled hypergraphs. This rep-
resentation provides a comprehensive characterization of the program,
capturing all available information and relationships among variables
in a specific hypergraph. Such characterization is highly advantageous,
particularly for computing program consequences and models through
hypergraph theory.

Keywords: Logic Programming · hypergraphs · negation operator

1 Introduction

When resolving real problems, it is common to have access to large amounts
of heterogeneous data that need to be handled in order to correctly solve these
problems. To achieve this goal, Artificial Intelligence (AI) provides essential tools
and advancements [11,20,21,23,24]. One of these tools is logic programming,
which has widely been developed from a theoretical point of view and an applied
point of view [2,4,5,12,13,17].

Natural language can be interpreted in logic rules, from which the diverse
logic programming approaches can obtain information of the dataset being con-
sidered [14,18,19]. In natural language, the negation of linguistic variables is
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common, making it important to be able to handle logic programs with nega-
tion operators [15,22,25]. However, the computation of consequences (models)
from these programs is more complex.

The utilization of graph theory has proven to be remarkably advantageous [6]
as it facilitates a better understanding of the relationships among variables
within the program. However, the traditional representation of these programs
using “dependency graphs” fails to capture the complete information of the logic
program. To overcome this limitation, recent research has successfully employed
hypergraphs [1] as an alternative representation for logic programs, addressing
this drawback [7,8].

In this paper, we introduce a novel representation for logic normal programs
using labeled hypergraphs. This representation enables us to incorporate the
details of the rules (operators, negation, propositional symbols) into labeled
hyperarcs, graphically capturing the comprehensive information of a general logic
normal program, including those within the multi-adjoint framework [3,4].

Consequently, the termination results obtained for “positive” logic programs
can be extended to encompass general logic normal programs, even within
the multi-adjoint framework. Additionally, a notable feature is that strongly
path-connected components can identify subprograms where efficient procedu-
ral semantics, developed for computing the least model of “positive” logic pro-
grams, can be applied. This allows translating the consequences to its neighbor-
ing strongly path-connected components, resulting in a more efficient mechanism
for obtaining stable models in logic normal programs.

2 Preliminaries

Some basic notions, necessary for the development of this paper, are recalled.

2.1 Multi-adjoint Normal Logic Programming

First, the notion of adjoint pair, the basic operator on this framework, which
generalizes left-continuous t-norm and their residuated implication.

Definition 1. Given a partially ordered set (P,≤), the pair (& ,←) is an adjoint
pair with respect to (P,≤) if the mappings & ,← : P × P → P satisfy that:

1. & is order-preserving in both arguments.
2. ← is order-preserving in the first argument (the consequent) and order-

reversing in the second argument (the antecedent).
3. The equivalence x ≤z ← y if and only if x& y≤ z holds, for all x, y, z ∈ P .

The considered algebraic structures are recalled next.
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Definition 2. A multi-adjoint normal lattice is a tuple (L,�,←1,&1, . . . ,←n,

&n,¬) verifying the following properties:

1. (L,�) is bounded lattice (i.e., it has bottom (⊥) and top (�) elements);
2. (&i,←i) is an adjoint pair in (L,�), for all i ∈ {1, . . . ,n};
3. �&i ϑ = ϑ &i � = ϑ, for all ϑ ∈ L and i ∈ {1, . . . ,n};
4. ¬ : L → L is a decreasing mapping whith ¬(�) = ⊥, ¬(⊥) = �.

Definition 3. A local multi-adjoint normal Σ-algebra L is a multi-adjoint nor-
mal lattice (L,�,←1,&1, . . . ,←n,&n,¬) on which other operators are defined,
such as conjunctors ∧1, . . . ,∧k, disjunctors ∨1, . . . ,∨l and general aggregators
@1, . . . ,@h. The set of those monotonic operators (aggregator operators, in par-
ticular) in the Σ-algebra will be denoted as A; that is,

A = {&1, . . . ,&n,∧1, . . . ,∧k,∨1, . . . ,∨l,@1, . . . ,@h,¬}

and each operator @: Lm → L in A satisfies the boundary condition with the top
element:

@(�, . . . ,�
︸ ︷︷ ︸

s

, x,�, . . . ,�
︸ ︷︷ ︸

m−s−1

) � x (1)

for all x ∈ L.

Considering a local multi-adjoint normal Σ-algebra L, a set of propositional
symbols Π and a language denoted as F, we introduce the definition of multi-
adjoint normal logic program (a set of rules).

Definition 4. A multi-adjoint normal logic program is a set of rules of the form
〈A ←i B, ϑ〉 such that:

1. The rule A ←i B is a formula of F.
2. The confidence factor ϑ is an element (a truth-value) of L.
3. The head of the rule A is a propositional symbol of Π.
4. The body formula B is a formula of F of the form @[B1, . . . , Bs,¬Bs+1, . . . ,

¬Br] built from propositional symbols B1, . . . , Br (r ≥ 0, Bi �= Bj, for i �= j )
by the use of conjunctors &1, . . . ,&n and ∧1, . . . ,∧k, disjunctors ∨1, . . . ,∨l,
aggregators @1, . . . ,@m and elements of L (which composition is represented
by @).

5. Facts are rules with the body �.

Example 1. In this example, the adjoint pairs corresponding to the product
Gödel and Lukasiewicz t-norms, (&P,←P), (&G,←G), (&�L,←�L) are considered,
together with the weighted sums @(3,1) and @(1,2) defined as @(3,1)(x, y) =
3x + y

4
and @(1,2)(x, y) =

x + 2y

3
, for every (x, y) ∈ [0, 1]2. Moreover, the nega-

tion ¬, defined as ¬(x) = 1 − x for x ∈ [0, 1], will also be taken into account in
the program. Specifically, the following normal program P will be analyzed in
the rest of the paper:
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〈c ←P n &P ¬u, 0.8〉
〈n ←P c, 0.8〉
〈n ←P @(1,2)(¬h,¬f), 0.6〉
〈h ←P f, 0.7〉
〈u ←G h &�L f, 0.7〉

〈f ←P u, 0.9〉
〈a ←P @(3,1)(¬u,¬f), 1.0〉
〈f ←P 1.0, 0.1〉
〈n ←P 1.0, 0.5〉
〈u ←P 1.0, 0.2〉

Now, we recall the notions of interpretation and induced ordering on the inter-
pretations set.

Definition 5. An interpretation is a mapping I : Π → L. The set of all inter-
pretations is denoted as IL.

Each of these interpretations, I, is uniquely extended to the set of formulae
F, getting the function Î, by the unique homomorphic extension theorem. The
ordering � on the truth-values lattice L induces an ordering � on the set of
interpretations IL, which is a bounded lattice.

Following, the notions of satisfiability and model, in which is based the
semantic of multi-adjoint logic normal programming, are recalled.

Definition 6. Given an interpretation I ∈ IL, a weighted rule 〈A ←i B, ϑ〉 is
satisfied by I, if ϑ � Î(A ←i B). An interpretation I ∈ IL is a model of a
multi-adjoint normal logic program P if all weighted rules in P are satisfied by I.

The immediate consequences operator, given by van Emden and Kowalski [9], is
defined in this framework as follows.

Definition 7. Given a multi-adjoint normal logic program P, the immediate
consequences operator TP maps interpretations to interpretations, and for an
interpretation I and an arbitrary propositional symbol A is defined as

TP(I)(A) = sup{ϑ&iÎ(B) | 〈A ←i B, ϑ〉 ∈ P}
One of the most important properties of TP, when P is a “positive” program (no
negation appear in the program) is that its least fixed-point lfp(TP) coincides
with the least model of the program P [16] and is obtained iterating the TP

operator from the least interpretation �. However, this is not true on logic normal
programs and other semantics need to be considered, such as the computation
of answer sets and stable models [15,22,25]. Other necessary notions for our
purpose, in the topic of termination results, are the following.

Definition 8. Let P be a multi-adjoint normal logic program, and A ∈ Π. The
set RI

P
(A) of relevant values for A with respect to an interpretation I is the set

of maximal values of the set {ϑ&iÎ(B) | 〈A ←i B, ϑ〉 ∈ P}.
Definition 9. Let P be a multi-adjoint normal logic program with respect to a
multi-adjoint Σ-algebra L and a set of propositional symbols Π. We say that TP

terminates for every query if for every propositional symbol A, there is a finite
n such that Tn

P
(�)(A) is identical to lfp(TP)(A).

For the program introduced in Example 1, a stable model is obtained from the
iteration of the immediate consequence operator TP from the least interpretation
�. In Table 1 we show the results of the iterations of this program. However, this
iteration could not converge to a stable model in general [3,15].
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Table 1. Iteration of the TP operator from the least interpretation �.

f h u c n a

� 0 0 0 0 0 0

TP(�) 0.1 0 0.2 0 0.6 1

T 2
P (�) 0.18 0.07 0.2 0.3840 0.56 0.825

T 3
P (�) 0.18 0.126 0.2 0.3584 0.514 0.805

T 4
P (�) 0.18 0.126 0.2 0.32896 0.5028 0.805

T 5
P (�) 0.18 0.126 0.2 0.321792 0.5028 0.805

T 6
P (�) 0.18 0.126 0.2 0.321792 0.5028 0.805

2.2 Basic Definitions of Hypergraphs

Basic notions of (hyper)graph theory can be seen in [1]. A directed hypergraph
is a pair of sets (V,E), where the elements of E are called directed hyperedges
or hyperarcs and each of them is an ordered pair, e = (T (e),H(e)), of disjoint
subsets of vertices [10]. We denote T (e) as the tail of e and H(e) as its head.
In the following, when no confusion arises, directed hypergraphs will simply be
called hypergraphs. See [8] for definitions of sub(directed)hypergraph and directed
hypergraph induced by the subset of vertices V ′ ⊆ V .

An edge labeling is a function from E to a set of labels and we say that a
hypergraph with an edge labeling is an edge-labeled hypergraph.

A B-graph is a hypergraph in which all the heads of its hyperarcs have
only one element [10]. This paper will only consider these kinds of directed
hypergraph, namely labeled B-graphs, as a natural representation of rules in a
multi-adjoint normal logic program.

Every directed hypergraph is associated with a digraph [1]. Note that the
correspondence is not injective because multiple directed hypergraphs can be
associated with the same digraph.

3 Logic Normal Programs Through Hypergraphs

This section will illustrate how a flexible multi-adjoint normal logic program can
be represented by a specific edge-labeled directed B-graph.

Given a multi-adjoint normal logic program P, we will compute a B-graph
HP as follows:

1. Vertices: every propositional symbol in the program (Π) will determine a
vertex of the hypergraph. For instance, in Example 1, we obtain that V (HP) =
{a, c, f,h,n,u}.

2. Hyperarcs: A hyperarc e will be computed from every rule in the program P.
Specifically, given a rule

〈A ←i @[B1, . . . , Bs,¬Bs+1, . . . ,¬Br], ϑ〉
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the tail T (e) will be composed by the propositional symbols of the body
of the rule, that is, T (e) = {B1, . . . , Bs, Bs+1, . . . , Br}. The head H(e) of
the hyperarc is the propositional symbol of the head of the rule, that is,
H(e) = {A}.

3. Labels: The hyperarc is labeled with a 4-vector (i,@, {Bs+1, . . . , Br}, ϑ). If
only one propositional symbol appears in the body (no operator appears in
the body), no symbol is included.

Figure 1 shows the B-graph HP associated with the program P given in Exam-
ple 1. Notice that the resulting hypergraph obtained from this procedure is an
edge-labeled directed B-graph. Moreover, the original logic normal program can
be reconstructed from this hypergraph, thereby obtaining a hypergraph-based
characterization of the given program. It is worth mentioning that the trans-
formation complexity of a program into a B-graph is linear, dependent on the
number of variables and clauses involved.

Fig. 1. Edge-labeled B-graph associated with the program given in Example 1. Rules
where the body contains only a constant as the rules 8, 9 and 10 of Example 1 are not
shown by simplicity

Consequently, this characterization enables us to leverage existing results
and algorithmic developments related to directed hypergraphs for the analysis of
fuzzy logic normal programs. Notably, the computation of connected components
is one of the essential research topics in graph theory. In our study, we will
utilize the concept of strongly path-connected components in hypergraphs, which
provides a vertex set partition.

Definition 10. Given a hypergraph H.

– A vertex u is weakly reachable from v if there is a directed path of hyperarcs
from v to u. A directed path of hyperarcs from v to u will be denoted as Pvu.

– A pair of vertices u and v of a directed hypergraph are said to be strongly
path-connected if u is weakly reachable from v and v is weakly reachable from
u.
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– A strongly path-connected component, spc-component in short, is one of the
equivalence classes associated with the equivalence relation R defined as

R = {(u, v) ∈ V × V | u and v are strongly path − connected in H}

As a consequence of the definition, we have that the vertices in each cycle in a
hypergraph belong to the same strongly path-connected component. Moreover,
it is possible that a strongly path connected component be composed of only
one vertex. In Example 1, the hypergraph associated with the given program
has three spc-components, which are depicted in Fig. 2. One of them is the
singleton {a}, and the other two are {f,h,u} and {c,n}.

The spc-components of a hypergraph provide an interesting partition of the
hyperarcs into two subsets.

Definition 11. Given a hypergraph H, a d-hyperarcs is a hyperarc satisfying
that every vertex of its tail belongs to a different spc-component from the one
containing the vertex of its head; that is, no vertex of its tail belongs to the spc-
component of its head. A s-hyperarc is a hyperarc verifying that at least a vertex
of its tail belongs to the same spc-component as the vertex of its head.

Figure 2 shows the edge-labeled B-graph associated with the multi-adjoint nor-
mal logic program P in Example 1, in which the spc-components are highlighted:
the d-hyperarcs ({f,h}, {n}) and ({f,u}, {a}) are shown with dashed lines, and
the s-hyperarcs ({f}, {h}) ({f,h}, {u}), ({n,u}, {c}), ({c}, {n}) and ({u}, {f})
are represented in continuous lines. Moreover, the labels of each hyperarc are
included. Notice that, the labels of the d-hyperarcs include the aggregator sym-
bols @3,1 and @1,2, which do not verifying the boundary condition of Eq. (1).
Moreover, the negation operators only appear (the labels have the third compo-
nent non empty) in the d-hyperarcs.

Fig. 2. spc-components of the edge-labeled B-graph associated with the program given
in Example 1. The d-hyperarcs are shown with dashed lines.
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4 Applications of Hypergraph Representation

The previous representation of a normal logic program is a very useful tool for
handling a program and obtain information from it. For example, one important
problem in logic programming is to know whether the iteration of the immediate
consequences operator terminates in a finite number of iterations [6–8]. Taking
into account the framework considered in [8], we obtain the following theorem.

Theorem 1. Given a multi-adjoint normal Σ-algebra L and a multi-adjoint
normal logic program P with finite dependences, where the s-hyperarcs of the
associated B-graph correspond to rules with an aggregator in the body satisfying
Eq. (1) and no negation operator. If for every iteration n and propositional
symbol A the set of relevant values for A with respect to Tn

P
(�) is a singleton,

then TP terminates for every query.

Clearly, the hypotheses of Theorem 1 hold, and so we can ensure that TP termi-
nates, as it happens and it is shown in Table 1.

As Example 2 shows, hypothesis in Theorem 1 may not be satisfied, but the
iteration in the computation of the least fixed point of the immediate conse-
quence operator can terminate.

Example 2. In the framework of Example 1, the following program is considered.

〈c ←P n &P ¬u, 0.8〉
〈a ←P @(3,1)(¬u,¬f), 1.0〉
〈n ←P @(1,2)(¬h,¬f), 0.6〉
〈u ←G h&�L f, 0.7〉

〈h ←P ¬f, 0.7〉
〈n ←P c, 0.8〉
〈f ←P ¬u, 0.9〉

〈f ←P 1.0, 0.1〉
〈n ←P 1.0, 0.5〉
〈u ←P 1.0, 0.2〉

Table 2 presents the results of the iterations of this program and Fig. 3 shows
the associated edge-labeled hypergraph. Another application is that the results
in different papers on fuzzy normal programs can be applied locally.

Table 2. Iteration of TP operator from the least interpretation �.

f h u c n a

� 0 0 0 0 0 0

TP(�) 0.9 0.7 0.2 0 0.6 1

T 2
P (�) 0.72 0.07 0.6 0.384 0.5 0.625

T 3
P (�) 0.36 0.196 0.2 0.16 0.5 0.37

T 4
P (�) 0.72 0.448 0.2 0.32 0.5 0.76

T 5
P (�) 0.72 0.196 0.2 0.32 0.5 0.67

T 6
P (�) 0.72 0.196 0.2 0.32 0.5 0.67
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Fig. 3. Edge-labeled B-graph associated with the programa given in Example 2 and
its spc-components. d-hyperarcs are shown with dashed lines.

Theorem 2. Given a multi-adjoint normal Σ-algebra L, a multi-adjoint normal
logic program P with finite dependences. If the s-hyperarcs of the associated B-
graph correspond to rules with no negation operator in the body, then P has a
stable model if and only if the subprograms associated with each spc-component
has a stable model.

Hence, this theorem split the complexity of the computation of the stable models
and, for example, the results in [3,15] can be applied to each obtained subpro-
gram.

5 Conclusions and Future Work

This paper has introduced a hypergraph based representation of a logic normal
program considering an edge-labeled directed B-graph, which characterizes the
whole logic program. For example, this representation allows to detect quickly
the relationships among the variables, apply graph theory on hypegraphs on
the given program and determined consequences/properties. In the future, these
applications will be analyzed in-depth and considered in real cases.

References

1. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd., Amsterdam (1985)
2. Cornejo, M.E., Lobo, D., Medina, J.: Characterizing fuzzy y-models in multi-

adjoint normal logic programming. In: Medina, J., Ojeda-Aciego, M., Verdegay,
J.L., Perfilieva, I., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS,
vol. 855, pp. 541–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91479-4 45

3. Cornejo, M.E., Lobo, D., Medina, J.: Syntax and semantics of multi-adjoint normal
logic programming. Fuzzy Sets Syst. 345, 41–62 (2018)

4. Cornejo, M.E., Lobo, D., Medina, J.: Extended multi-adjoint logic programming.
Fuzzy Sets Syst. 388, 124–145 (2020)

https://doi.org/10.1007/978-3-319-91479-4_45
https://doi.org/10.1007/978-3-319-91479-4_45


Hypergraphs in Logic Programming 451

5. Cornejo, M.E., Lobo, D., Medina, J.: Relating multi-adjoint normal logic programs
to core fuzzy answer set programs from a semantical approach. Mathematics 8(6),
1–18 (2020). Paper 881

6. Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with
imperfect information: applications and query procedure. J. Appl. Log. 5, 435–458
(2007)

7. Dı́az-Moreno, J.C., Medina, J., Portillo, J.R.: Towards the use of hypergraphs in
multi-adjoint logic programming. Stud. Comput. Intell. 796, 53–59 (2019)

8. Dı́az-Moreno, J.C., Medina, J., Portillo, J.R.: Fuzzy logic programs as hypergraphs.
Termination results. Fuzzy Sets Syst. 445, 22–42 (2022). Logic and Databases

9. Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming
language. J. ACM 23(4), 733–742 (1976)

10. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. 42(2–3), 177–201 (1993)

11. Halpin, H., McNeill, F.: Discovering meaning on the go in large heterogenous data.
Artif. Intell. Rev. 40, 107–126 (2013)

12. Julián-Iranzo, P., Moreno, G., Riaza, J.A.: Some properties of substitutions in the
framework of similarity relations. Fuzzy Sets Syst. 465, 108510 (2023)
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16. Medina, J., Ojeda-Aciego, M., Vojtaš, P.: Multi-adjoint logic programming with
continous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR
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Abstract. In recent work, a new kind of aggregation method has been
proposed under the name of MacSum aggregation function that can be
viewed as an interval valued aggregation function that is controlled by a
precise vector of weights. This aggregation can be seen as a real valued
extension of the possibility based aggregation. In this article, we show
that a MacSum aggregation can be learned by using an input-output
database where some input vectors have missing values.

Keywords: Interval valued aggregation · Choquet integral · Non
monotonic set functions · Missing values · Image processing

1 Introduction

In many applications (chemistry, medicine, robotics, economy, control, etc.) it
is crucial to model the relationship between inputs and outputs of a physical
process. We’re interested here in multi-input, single-output processes (MISO),
i.e. having a real-valued input vector and a real single valued output. In this
context, linear models are widely used due to their ease of implementation and
excellent predictive power. A linear model can be seen as an aggregation function
of inputs producing an output that is nothing more than a weighted sum of
the inputs. Aggregation is then entirely defined by the weights used. If all the
weights are positive and sum to one, then a linear aggregation can be seen as
a mathematical expectation based on a discrete probability distribution formed
by the aggregation weights. From now on, we’ll call the vector of weights used
in a linear aggregation a kernel. A linear aggregation is entirely defined by its
kernel

The linear model – i.e. its kernel – is very simple to learn from a set of inputs-
outputs of the physical process to be modeled. To achieve this, more or less
sophisticated regression methods are used, with the aim of bringing the model
closer to the real process - at least on the training data, the most commonly
used method being linear regression based on Euclidean distance.

Naturally, linear models are used to model non-linear processes, with good
performance. It’s no coincidence that these models are one of the key features
of convolutional neural networks, which are currently revolutionizing modeling
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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approaches. However, one of the weaknesses of linear models is the difficulty of
accessing a measure of accuracy with which the physical process is modeled, or
to account for missing values in the train database.

In the 2000s, Loquin et al. proposed to build on the close relationship between
probability and possibility to extend the notion of linear aggregation [5]. They
propose a kind of imprecise linear aggregation governed, like ordinary linear
aggregation, by a vector of weights, called maxitive kernel, of dimension equal
to the dimension of the inputs. In this extension, an imprecise linear model can
be considered as a convex set of precise linear models. The set of kernels that
are represented by the maxitive kernel are said to be dominated by the maxitive
kernel. As shown in a number of articles (see e.g. [4]), this modeling approach
makes it very easy to take into account the imperfection of modeling a process by
a linear model, while retaining the same algorithmic simplicity. Its computation
is based on asymmetric Choquet integral [1]. However, a shortcoming of this
extension is that it can only model sets of linear aggregation functions whose
weights are positive and sum to one.

In a recent paper [7], the work of Loquin et al. has been extended to any
set of weights. Under the name of MacSum, we proposed an imprecise linear
aggregation operator ruled by a single kernel whose dimension equal the dimen-
sion of the input vector. MacSum aggregation takes as input two real vectors:
an input vector and a kernel. Its output is a real interval corresponding to the
convex set of real outputs that would have been obtained by a convex set of
linear aggregations with the same gain (the gain of a linear operator is the sum
of its weights).

The kernel of a MacSum aggregation can be learned from a set of inputs-
outputs as in the case of a classical linear aggregation [7]. Moreover, it can take
as input an interval-valued vector in order to take into account the imprecise
nature of the input data (e.g. sensor data whose precision has been calibrated).
This extension to imprecise inputs is achieved without any significant increase
in algorithmic complexity [3].

In this article, we investigate the possibility of using the intervallist nature
of the inputs to learn a MacSum model with input vectors of which some values
are missing. The problem of missing values in learning is a fairly central one, to
which we give an interesting answer here.

Indeed, most of the time, when some input values are missing, the range of
their possible values is generally known – the range [0, 255] for 8-bit quantized
values, the range [0, 5] V for a measurement voltage, the range [0.5, 1.5] g/l for
fasting blood glucose, etc. In this article, we propose to replace missing values by
their possible range of variation. We illustrate this proposal with an experiment
in image processing.

This article is organized as follows. Section 2 presents some useful notations
and definitions. Section 3 presents the MacSum aggregation model and how it
can be learnt with a dataset having some missing values. Section 4 is dedicated
to an illustrative experiment. We then conclude.
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2 Preliminaries

In this section, we try to summarize the main points of three previous articles,
namely [2,7] and [3].

2.1 Notations

– Ω = {1, . . . , N} ⊂ N is a finite set.
– A real vector of R

N will be denoted x = (x1, · · · , xN ) ∈ R
N .

– Let x ∈ R
N, we define x+,x− ∈ R

N such that ∀i ∈ Ω, x+
i = max(0, xi) and

x−
i = min(0, xi).

– x = [x, x] is a real interval whose lower bound is x and upper bound is x.
– IR is the set of real intervals.
– A vector of real intervals is an element of IR

N denoted x = (x1, x2, .., xN ).

2.2 Definitions

Let us recall briefly some definitions.

– A set function is a function μ : 2Ω → R that maps any subset of Ω onto
a real values complying with μ(∅) = 0. To a set function μ is associated a
complementary set function μc defined by: ∀A ⊆ Ω, μc(A) = μ(Ω) − μ(Ac).

– A set function μ is said to be concave or supermodular iff:

∀A,B ⊆ Ω,μ(A ∪ B) + μ(A ∩ B) ≥ μ(A) + μ(B).

– A set function μ is said to be additive iff:

∀A,B ⊆ Ω,μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B).

3 Operator Based Aggregation

3.1 Operators

An operator is a set function μϕ of Ω entirely defined by a vector ϕ ∈ R
N–

hereafter called the kernel of the operator – having the same dimension as Ω.
We define two operators here: the linear operator and the MacSum operator.

Let ϕ ∈ R
N be a vector.

• The linear operator λϕ is defined by:

∀A ⊆ Ω,λϕ(A) =
∑

i∈A

ϕi.

Obviously, the linear operator is additive, so its complementary operator is itself.
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• The MacSum operator νϕ and its complementary operator νc
ϕ , intro-

duced in [7], and defined as ∀A ⊆ Ω:

νϕ(A) = max
i∈A

ϕ+
i + min

i∈Ω
ϕ−

i − min
i∈Ac

ϕ−
i , (1)

νc
ϕ(A) = min

i∈A
ϕ−

i + max
i∈Ω

ϕ+
i − max

i∈Ac
ϕ+

i . (2)

As shown in [7], the MacSum operator is a concave set function.
There is a very interesting link between linear and MacSum operators. Let

ϕ,ψ ∈ R
N be two vectors of Ω, then we say that the kernel ϕ dominates the

kernel ψ iff ∀A ⊆ Ω, νc
ϕ(A) ≤ λψ (A) ≤ νϕ(A) (i.e. the set function νϕ dominates

the set function λψ ).
We define the MacSum-core (or simply the core) of a kernel ϕ as the subset

M(ϕ) ∈ R
N of the kernels of Ω that are dominated by ϕ:

M(ϕ) = {ψ ∈ R
N / ∀A ⊆ Ω, νc

ϕ(A) ≤ λψ (A) ≤ νϕ(A)}.

3.2 Aggregation

Let ϕ ∈ R
N be a vector of Ω used as a kernel.

Let μϕ a concave operator and x ∈ R
N a real vector. Then we define Aμ :

R
N × R

N → IR as being a μ-interval-valued aggregation function. It associates,
to any vector x ∈ R

N , a real interval [y] ∈ IR via the weighting sequence defined
by the kernel ϕ by: [y] = [y, y] = Aμ(x,ϕ) with y = Aμ(x,ϕ) = Čμc

ϕ
(x) and

y = Aμ(x,ϕ) = Čμϕ
(x), Č being the discrete asymmetric Choquet integral [1].

We thus define:
• The linear aggregation.
Since λϕ = λc

ϕ , Čλc
ϕ

= Čλϕ
thus Aλ(x,ϕ) = Aλ(x,ϕ) = y and therefore

Aλ(x,ϕ) = [y, y] is a degenerate interval, i.e. a real value.
• The MacSum aggregation.
Aν(x,ϕ) = [y] = [y, y] = [Čνc

ϕ
(x), Čνϕ

(x)].
Given the link between the linear and MacSum operators, we have:

∀ϕ ∈ R
N ,∀x ∈ R

N ,∀ψ ∈ M(ϕ),Aλ(x,ψ) ∈ Aν(x,ϕ). (3)

The values of y and y can be obtained by [2]:

y =
N∑

k=1

ϕ+
�k�.

(
k

max
i=1

x�i� − k−1
max
i=1

x�i�
)

+
N∑

k=1

ϕ−
�k�.

(
k

min
i=1

x�i� − k−1
min
i=1

x�i�

)
, (4)

y =
N∑

k=1

ϕ+
�k�.

(
k

min
i=1

x�i� −
k−1
min
i=1

x�i�

)
+

N∑

k=1

ϕ−
�k�.

(
k

max
i=1

x�i� − k−1
max
i=1

x�i�
)

, (5)

where �.� is a permutation that sorts ϕ in decreasing order (ϕ�1� ≥ · · · ≥
ϕ�N�) and .� is a permutation that sorts ϕ in increasing order (ϕ�1� ≤ · · · ≤
ϕ�N�) with ϕ�N+1� = ϕ�N+1� = 0 and max0

i=1 x�i� = 0 = min0
i=1 x�i�.
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Equations (5) and (4) are easy to derive w.r.t. the kernel (see [2]):
∀k ∈ {1, ..., N}, let be l, u the indices such that �l� = k and u� = k, then:

δAν(x,ϕ)
δϕk

=
(

l
max
i=1

x�i� − l−1
max
i=1

x�i�
)

+
(

u
min
i=1

x�i� −
u−1
min
i=1

x�i�

)
, (6)

δAν(x,ϕ)
δϕk

=
(

l
min
i=1

x�i� − l−1
min
i=1

x�i�

)
+

(
u

max
i=1

x�i� − u−1
max
i=1

x�i�
)

. (7)

3.3 Extending Operator-Based Aggregation to Interval Data

Extending linear aggregation to intervals is fairly straightforward. Let x ∈ IR
N

be an interval-valued vector of Ω and ϕ ∈ R
N be a vector of Ω used as a kernel,

we can define:

Aλ(x,ϕ) = {Aλ(x,ϕ) / x ∈ x} =
[

inf
x∈x

Aλψ
(x), sup

x∈x
Aλψ

(x)
]
, (8)

=
[Aλ(x∗,ϕ),Aλ(x∗,ϕ)

]
.

where x∗ and x∗ are the vectors of R
N such that ∀i ∈ Ω, x∗

i = xi, x∗i = xi if
ϕi ≥ 0 and x∗

i = xi, x∗i = xi if ϕi < 0.
As presented in [3], extending MacSum aggregation to intervals is rather

straightforward too. In fact, there are two possible ways of building this exten-
sion: the disjunctive aggregation and the conjunctive aggregation.

The disjunctive aggregation is conservative and tries not to reject any infor-
mation. It can be set as:

Dν(x,ϕ) =
⋃

x∈x
Aν(x,ϕ) = {Aλ(x,ψ) / x ∈ x, ψ ∈ M(ϕ)} , (9)

= {Aλ(x,ψ) / x ∈ x, ψ ∈ M(ϕ)},=
[Aν(x∗,ϕ),Aν(x∗,ϕ)

]
.

The conjunctive aggregation tries to reduce the set of values to those for
which each set being aggregated agrees. It can be set either as:

C�
ν (x,ϕ) =

⋂

x∈x

Aν(x,ϕ) =
⋂

x∈x

{Aλ(x,ψ) / ψ ∈ M(ϕ)}, or as: (10)

C�
ν (x,ϕ) =

⋂

ψ∈M(ϕ)

Aλ(x,ψ) =
⋂

ψ∈M(ϕ)

{Aλ(x,ψ) / x ∈ x}. (11)

Equation (10) means that the conjunction consists of intersecting all the intervals
produced by the MacSum aggregation for each possible entry contained in the
interval x while Eq. (11) means that the conjunction consists of intersecting all
the intervals produced by linear aggregation for each ψ ∈ M(ϕ).

Both interpretations lead to:

Cνϕ
(x) =

[
min

(Aν(x∗,ϕ),Aν(x∗,ϕ)
)
,max

(Aν(x∗,ϕ),Aν(x∗,ϕ)
) ]

. (12)

It is straightforward that computing the derivative w.r.t. the kernel of both
conjunctive and disjunctive approaches can easily be achieved by considering
Eqs. (6) and (7).



458 O. Strauss and A. Rico

3.4 Learning an Operator Based Aggregation

Learning an operator based aggregation means that, based on a dataset of M
input-output pairs

{
(xj , yj)

}
j=1...M

, it may be possible to find a kernel ϕ̂ ∈ R
N

that ensures that the value Aμ(xj , ϕ̂) is as close as possible to yj ∀j ∈ {1, . . . , M}
(where μ can be either λ or ν). The most common method consists of minimizing,
for the entire database, the quadratic difference between the prediction given by
the aggregation function and the measurement. For the linear modelling, this
can easily be achieved iteratively using the gradient descent method.

Regarding the MacSum modelling, in [2] it has been proposed to minimize
the quadratic distance between yj and the center of the interval Aν(xj , ϕ̂). We
propose to use the same method, with the difference that the derivatives, used
in the gradient descent, are calculated considering the extreme values x∗ and x∗,
according to the intervallist extension chosen.

In this work, since at least one value of the interval-valued input is expected to
reduce the discrepancy between predicted and measured values, the conjunctive
extension seems the most appropriate.

4 Experiments

We propose to evaluate the ability of the MacSum operator to take into account
input data with missing values in order to learn its kernel. As the vast majority
of operations in image processing are based on convolution operations (which
can be assimilated to linear aggregations), we propose to learn the kernel of a
linear convolution on the basis of a set of examples. To avoid favoring the linear
approach too much, we propose to model an infinite-response convolution with
a finite-response model. To achieve this, we compute the horizontal gradient of
a set of images with the Shen-Castan operator [6], which is an infinite impulse
response filter, and model it by a convolution over a 5× 5 neighborhood. In this
experiment, we show that learning can still be performed even in the event of
partial contamination of the database by missing data.

4.1 Data-Set

As with article [3], we used a thousand 600 × 600 natural images sourced from
the CLEF1 project (see e.g. Fig. 1). The Shen-Castan horizontal component
of the gradient has been computed using a0 = 0.3 as a spread parameter. For
each experiment, we randomly selected 60 images from the 1000 images in the
database and randomly selected again 100 pixels, producing 6000 samples for
each experiment.

For each sample, we considered the 5 × 5 neighborhood of the original image
(for the input vector) and the corresponding value of the horizontal component of
its gradient (for the output value). Each database element is therefore made up of
an input vector of 25 integer values ranging in [0, 255] and a signed real output
1 https://www.imageclef.org/.

https://www.imageclef.org/
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Fig. 1. Four out of the 1000 images used for this experiment.

Fig. 2. The Shen-Castan derivative of the four images depicted in Fig. 1.

value. Centered random Gaussian noise has been added to the output value,
with a standard deviation of 30% of the standard deviation of the corresponding
gradient image.

In this experiment, we proposed to learn the kernel associated with derivating
the image within both linear and MacSum aggregation modeling (Fig. 2).

We have divided the database into three parts of 2000 samples. The samples
of the first third are assumed to be with no missing values. We call this set
the uncontaminated training data-set. In the second third, certain values of the
input data vector are assumed to be missing. The number of missing data items
in each input vector is fixed for each experiment. On the other hand, the choice of
which element of the input vector (among the 25) is missing has been randomly
selected beforehand. We call this set the contaminated training data-set. We also
call the complete training data-set the data-set obtained by supplementing the
uncontaminated training data-set by the contaminated training data-set. The
last third of the database has been used to test the quality of the learning. We
call this set the test data-set.

4.2 How Can Missing Values be Accounted For?

In image processing, when a piece of data is missing or corrupted (e.g. in the
case of impulse noise), it’s common to use information from its neighborhood
to assess the missing value. It is also possible to infer the missing value(s) by
considering the complete data whose values are close to the known values of the
contaminated vector (this is what is used in in-painting). In this case, however,
the fact that the missing value is completely unknown is not expressed at all. As
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far as linear aggregation is concerned, the only way to represent the fact that
the missing value is unknown is to give it an arbitrary value. We tested two
methods, one consisting in giving a random value in the range [0, 255], the other
in systematically giving the same value, which in this case would be the center
of this range, i.e. 127.5. As we found no significant difference in the behavior
of the estimate when choosing one or other of these methods, we opted for the
simplest, i.e. to systematically give the value 127.5 to missing values.

When it came to MacSum aggregation, we had two options. The first was to
give a missing value an arbitrary value, as with linear aggregation. The second
was to replace a missing value by the interval [0, 255]. We present these two
solutions for comparison.

4.3 Running the Experiment

The aim was to determine whether the information provided by the contaminated
data-set can be used to improve learning in the same way as a data complement
without missing values.

Each experiment consisted in generating a database of 6000 samples and
dividing it into three subsets as explained in Sect. 4.1. For each experiment, we
arbitrarily performed 200 iterations of the learning algorithm for both models
(additive and MacSum), having found that each algorithm converged well for
this number of iterations. For each model, we carried out the training with,
firstly, the uncontaminated training data-set, then the complete training data-
set. We observed the improvement, or deterioration, of learning by calculating
the Pearson coefficient of determination R2 using the test data-set. This experi-
ment was carried out 100 times for four different levels of contamination (namely
1/25, 4/25, 8/25 and 12/25). This experiment has been run 100 times.

4.4 Results

To make reading the results easier, we propose two types of visualization.
In Fig. 3 we present four illustrations where each point has as its abscissa the

R2 value obtained using only the uncontaminated training data-set and as its
ordinate the R2 value obtained with the complete training data set. Each Figure
corresponds to a different level of contamination. Results obtained by learning
the MacSum modeling are plotted in red, and those obtained by learning the
linear modeling are plotted in blue. Results obtained by representing a missing
value by an interval are plotted with a circle ◦ and those obtained by representing
missing values by arbitrary values are plotted with a star ∗. We have also drawn
the unit slope line in green.

The reading is the following. Any point above the line (in green) is symp-
tomatic of increased learning by supplementing the uncontaminated base with
the contaminated base. Any point below the unit line is symptomatic of a dete-
rioration in learning by supplementing the uncontaminated base with a contam-
inated base.

There are several facts to be noted when looking at these Figures.
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– First, using only uncontaminated data, the linear model is better able than
the MacSum model to represent a linear system.

– Second, supplementing uncontaminated data with contaminated data to learn
a linear model always results in degraded learning. This is also true for a
MacSum model if the missing value are replaced by an arbitrary value. On
the other hand, if missing values are replaced by their interval of variation,
learning performance improves, even with a contamination rate approaching
50%.

– Third, as contamination increases, the rate of increase in learning performance
due to the use of contaminated data decreases.

Fig. 3. Comparison of learning with and without missing values, with missing values
rate of 4% (a), 16% (b), 32% (c), 48% (d)

Table 1. Mean value of Pearson coefficient R2 for different rates of contamination.

Contamination rate 4% 16% 32% 48%

Linear without contaminated data 0.68 0.68 0.68 0.68

Linear with contaminated data <0.01 0.02 0.04 0.05

MacSum without contaminated data 0.51 0.51 0.49 0.50

MacSum without contaminated data 0.59 0.59 0.57 0.57
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Table 2. Percentage of experience where the R2 coefficient has been improved.

Contamination rate 4% 8% 32% 48%

MacSum 100% 100% 96% 93%

Linear 0% 0% 0% 0%

Table 1 gives the mean R2 values for each experiment, while Table 2 shows the
number of times the use of contaminated data improved learning. For MacSum
modeling, we report in these tables only the approach of modeling the missing
value by an interval. As can be clearly seen, the approach of replacing missing
values with arbitrary values does not improve learning capabilities (either for
the linear approach or for the MacSum approach). On the other hand, replacing
missing values with their range of possible values enables the MacSum approach
to take advantage of the information available in the auxiliary data. Naturally,
this ability diminishes somewhat as the level of contamination increases.

Table 1 gives the mean R2 values for each experiment while Table 2 gives
the number of times the use of contaminated data improved learning. For the
MacSum modeling, we report in these tables only the approach of modeling the
missing value by an interval. As can be clearly observed, the approach of replac-
ing missing values with arbitrary values does not improve learning capabilities
(either for the linear- or for the MacSum approach) as all � points are well below
the green diagonal. On the other hand, replacing missing values with their range
of possible values allows the MacSum approach to take advantage of the informa-
tion available in the auxiliary data. Obviously, this ability diminishes somewhat
as the level of contamination increases.

5 Conclusion

Learning a parametric model from an input-output database generally involves
estimating a parameter to minimize a measure of compatibility between the
output predicted by the model and the corresponding output of the database.
In this context, when certain input vector values are missing, it is generally
preferable to remove the contaminated data from the database. In this article,
we propose to take advantage of the intervallist nature of the MacSum operator
to include data with miss ing values in the training database. We have shown
on an example that this choice was appropriate, as the addition of such data to
the learning base improves its performance (in the sense of the linear coefficient
of determination). However, this article raises more questions than it answers.
For example, the choice of the minimized criterion for learning is perhaps a little
simplistic, and it would be interesting to develop a learning method more in line
with the intervallist nature of both the operator and the data.

Acknowledgment. The authors would like to thank Dorian Kauffmann for his useful
remarks and comments.
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Abstract. In this paper we place ourselves in the context of sub-
symbolic Artificial Intelligence. We aim at comparing two well known
methods of learning (Neural Networks and Genetic Algorithms) for video
game playing. The setting of video game playing (here we chose Super
Mario Bros) is of particular interest because of the challenges it brings in
terms of data collection. The data is challenging in nature due to its size
(in our case the small number of levels in the game - thus fundamentally
different from big data approaches) and its heterogeneity (in our case
the different levels used to simulate non deterministic games). The non
determinism aspect is key because we demonstrate it to be the main root
cause of performance decline.

1 Background and Contribution

The complexity of modern video games poses a challenge for Artificial Intelli-
gence (AI) [9]. The level of detail and the diversity of possible interactions in a
game can make training an AI agent particularly difficult. The ability to learn
and adapt to constantly changing environments is crucial for the success of an
AI agent in the gaming domain [13]. Furthermore, video games often involve
complex and dynamic environments with large amounts of data generated in
real-time [4].

The exponential growth of digital data in recent years, coupled with advance-
ments in computational power, has paved the way for the widespread adoption
of Machine Learning (ML) algorithms [8]. These algorithms have the capability
to learn from data, identify patterns, and make predictions or decisions without
being explicitly programmed. Their recent limelight had even made an unin-
formed, dazzled, public use the terms “Machine Learning (ML)” and “Artificial
Intelligence” (AI) interchangeably [3]. However, it is clear that the algorithms
for Machine Learning are only as good as the data underlying it. When taking
on randomly generated data a whole new picture emerges. Certain algorithms
struggle more than others and a combination of several techniques might work
best. While ML algorithms can be trained with random data, their effectiveness
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in learning from and generating meaningful insights depends on the specific con-
text and the very nature of the random data [7]. If the random data is entirely
unstructured or lacks any discernible patterns, ML techniques may fail to learn
useful representations and may produce unreliable or nonsensical outputs.

In this context, in this paper, we restrict our focus to two main classes of
machine learning algorithms: genetic algorithms [12] and neural networks [2] and
we aim to understand how they compare to game resolution and progression
with randomly generated data. Specifically, we seek to understand how these
two approaches compare in terms of behavior and which algorithm would be
most suitable in random or deterministic game environments.

Our results demonstrate that the pure genetic algorithm struggle to make
progress in a random game environment, while the combination of neural net-
works and genetic algorithm show superior performance, with notable progress
early in training. Our study suggests that the combination of neural networks
and genetic algorithm in video games, particularly in random environments, is
the most effective and paves the way for future exploration.

2 Results

In this section we present the main findings of the paper. We start by a quick
introduction in genetic and neural networks, followed up by a description of our
experimental setting, the implementation details, and, last, our empirical results.

2.1 Genetic Algorithms and Neural Networks

Genetic algorithms are heuristic search techniques inspired by principles of genet-
ics and natural evolution. They are based on the idea of survival of the fittest,
where the fittest individuals have a higher chance of passing on their genes to
the next generation. Genetic algorithms are particularly useful for solving opti-
mization and search problems for which there is no precise algorithm. A genetic
algorithm works by creating a population of individuals, each representing a pos-
sible solution to the problem at hand. Each individual is typically represented
by a set of features, called genes, which are combined to form a genome.

A neural network, also known as an artificial neural network, is a compu-
tational model inspired by the functioning of the human brain. The network is
composed of multiple processing units called artificial neurons or nodes. They
are organized into layers, typically in three types: the input layer, one or more
hidden layers, and the output layer. Each neuron is connected to other neurons
through connections called weights. There are several types of neural network
architectures, such as Dense Networks [5], Convolutional Neural Networks [6],
and many others. We have chosen a feedforward architecture [10]. Information
flows only in one direction, from the input layer to the output layer, without
recurrent loops. Each layer is fully connected to the next layer, allowing for
modeling complex relationships between inputs and outputs. In the context of
our work, the feedforward architecture was chosen for several reasons. Firstly,
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this architecture is simple to implement and train, making it more efficient in
terms of computation and resource requirements. Additionally, since the prob-
lem at hand involves sequential actions, using a feedforward architecture allows
for making sequential decisions by processing information in an ordered man-
ner from the input layer to the output layer. Moreover, the AI uses learning
with input from a grid of pixel clusters provided frame by frame. The feedfor-
ward architecture is well-suited for this type of learning. Lastly, the nonlinear
activation functions used in the hidden layers of the feedforward network allow
for modeling complex and nonlinear relationships between inputs and outputs.
This enables to learn complex game patterns and make decisions based on the
input information provided by the screen. It is possible to represent the game
inputs (button presses) as characters using a wrapper function, which allows us
to execute a sequence of inputs provided by the genetic algorithm as a list of
characters.

2.2 Testing Environment: PyBoy and Gym Retro

The original testing environment for the genetic algorithm is based on the game
“Super Mario Land” emulated using the PyBoy library [1]. The interaction
between the agent and the environment is primarily handled by the environ-
ment class. We can provide inputs to the game using the library and retrieve
values from the game’s RAM memory using wrapper functions. This was made
possible by creating a RAM map, which is a mapping of memory addresses in a
game whose code is not accessible, allowing us to read and modify the state of
certain variables.

For implementing the hybrid approach (i.e. genetic algorithms fueled by neu-
ral networks) we made the decision to switch from the PyBoy environment to
the Gym Retro environment [11], a library specifically designed for retro games
offering better performance compared to PyBoy. It is optimized to provide stable
and fast retro game environments, speeding up training and testing on Super
Mario.

2.3 Implementing Genetic Algorithms

We proceeded with the implementation of two algorithms: a classical genetic
algorithm and a neural network optimized by a genetic algorithm. The imple-
mentation was done in Python; we used specific Python libraries for each algo-
rithm type. The test environment consists of two types of game levels: random
and non-random. We designed these environments to pose specific challenges
that allow us to test the effectiveness of the algorithms. The execution process
of the pure genetic algorithm can be described as follows:

1. Preparing the initial population:
– Generating an initial population of individuals, where each individual

is represented by an instance of the EnvironementMario class in the
environementMario.py file.
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– Initializing the individuals with random parameters or loading from exist-
ing save files if available.

2. Running the main loop of the genetic algorithm:
– The genetic algorithm runs in a continuous loop that repeats until a

termination condition is met, such as reaching the maximum number of
generations or the desired fitness.

– In each iteration of the loop, the following phases are executed:
3. Evaluating the performance of individuals:

– Each individual in the population is evaluated by running its neural net-
work in the Mario environment.

– The individual interacts with the game using the network’s outputs to
choose actions (buttons) to press.

– The fitness (performance) of each individual is determined based on multi-
ple criteria, such as the number of frames (time performance), the distance
traveled, and the score.

4. Selecting individuals for reproduction:
– Individuals in the population are chosen for reproduction to form the next

generation.
– Various selection methods can be employed, such as rank selection, tour-

nament selection, or fitness-proportional selection.
– Individuals with better performances have a higher probability of being

selected for reproduction.
5. Applying crossover and mutation:

– The individuals chosen for reproduction are used to generate new indi-
viduals for the next generation.

– Crossover is applied to mix the genes of the parents and create offspring.
– Mutation is applied to the offspring to introduce new genetic variations.

6. Generating the new generation:
– The new generation is formed by combining the selected parents, the

offspring from crossover, and the unmodified individuals (elitism).
– The population size remains constant, typically the same as the initial

population size.

These steps are repeated for a certain number of generations, specified by
the generations variable, which is set to 100. The goal is to optimize the agent’s
performance in the game.

2.4 Implementing the Hybrid Approach

Many steps of the optimized algorithm are similar to the pure genetic algorithm
with the exception of the selection process. Here it is below.

1. Population Initialization:
– An initial population of individuals is generated, where each individ-

ual is represented by an instance of the EnvironmentMario class in the
environmentMario.py file.
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– The individuals are initialized with random weights and biases.
2. Main Genetic Algorithm Loop:

– The genetic algorithm operates in a main loop that repeats until a stop-
ping criterion is met (here, the maximum number of generations).

– At each iteration of the loop, the following steps are performed:
3. Evaluation of Individuals’ Performance:

– Each individual in the population is evaluated by executing its neural
network in the Mario environment.

– The individual interacts with the game by using the neural network’s
outputs to determine the actions (buttons) to perform.

– The fitness (performance) of each individual is calculated based on criteria
such as the number of frames (time performance), distance covered, and
score. The fitness function we chose is a modified version of the default
function provided by Gym.

The progress needed for defining the fitness was chosen to represent Mario’s
x-position in the level, indicating his proximity to the end of the level. Time
is measured in frames (60 frames per second) when display is enabled.

4. Parent Selection:
– Individuals are selected as parents for the next generation.
– The selection is based on the individuals’ fitness, where the most perfor-

mant individuals have a higher probability of being selected as parents.
5. Crossover and Mutation:

– The selected parents are used to create new individuals for the next gen-
eration.

– Crossover is used to mix the genes of the parents and create offspring.
– Mutation is applied to the offspring to introduce new genetic variations.

6. Creation of the New Generation:
– The new generation is created by combining the selected parents, the

offspring from crossover, and the unmodified individuals (elitism).
– The population size remains constant, typically equal to the size of the

initial population.

The implementation of the neural network algorithm optimized by the genetic
algorithm is divided into several files that handle different parts of our algo-
rithms. Whether we choose to display the game or not, a PyQt widget (a popular
GUI library) is created. In this main window, the initial population is created.
The individuals are represented in the EnvironmentMario class, and each indi-
vidual’s actions are determined by the neural network.

The neural network takes as input a portion of the screen during a frame
in the form of a grid of cells (the screen is divided into a 16× 16 grid). Gym
Retro allows us to obtain a value for each of these cells, which is then provided
as input to the nodes of our neural network.

The output of this neural network consists of 6 values corresponding to each
button of an NES controller. To optimize this neural network, and since the
individuals are represented as collections of weights and biases before being
provided to the genetic algorithm, these weights and biases of each node will
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affect the feedback based on the inputs provided. The fitness of the individuals
is used to determine whether a combination of biases and weights is effective or
not. Through the genetic algorithm, these collections will become increasingly
optimized to favor progress in the level.

In the neural network information is transmitted from layer to layer, from the
input to the output. The output value is calculated by the weighted sum of the
weights of the nodes connected to the current node and their biases. Activation
functions, which optimize the network by introducing non-linearity and affecting
the flow of information, are applied to the result. Information propagates until
it reaches the output nodes, which return a character associated with a button.

2.5 Empirical Results and Discussion

We conducted a series of tests to evaluate the effectiveness and performance
of two genetic algorithm approaches: a “Pure Genetic” approach initially, fol-
lowed by a “Neural Network + Genetic” approach, which is an evolution of the
first approach. For each category, we conducted experiments under two different
conditions: one with a fixed level (deterministic) and one with a random level
selected for each individual.

This series of tests allows to study the influence of the number of generations
and the population size on the effectiveness of the genetic algorithm. Specifically,
each test aims to evaluate the effect of a progressive increase in the number of
generations and the population size on the evolution of algorithm performance.

The idea behind this approach is to understand how these parameters influ-
ence the effectiveness of the search for optimal solutions. We anticipate that
increasing the number of generations and the population size could lead to results
that get closer to the end of the level. However, the nature of genetic algorithms
may quickly reach a plateau of progress in the random level case.

To assess the performance of each test, we use two main measures: the maxi-
mum fitness for each generation and the maximum fitness since the beginning of
the test. The first measure allows us to evaluate the progress of the algorithm’s
performance within a single generation, while the second measure provides an
overall view of the algorithm’s performance throughout the test. Together, these
measures allow us to assess the algorithm’s ability to continuously improve its
performance as it explores the search space (Fig. 1).

By comparing the results of the four different configurations in our experi-
ment, several observations can be made (Figs. 2 and 3).

Firstly, within the time limit imposed by our tests and with the number
of generations used, we observed the emergence of a progress plateau. As seen
in non-random tests 4 and 5, after a certain number of generations, progress
stagnates for a long time. We even ran the optimized algorithm for up to 500
generations and still observed stagnation. We will discuss the reasons behind
this stagnation in the next section.

In the case of the Pure Genetic Algorithm with and without the “Random”
option, we observed that the progress plateau was reached quite late. In the early
generations, the progress observed in the game is similar for both algorithms,
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Fig. 1. 10 generations tests using solely a genetic algorithm and using a neural network
optimised by a genetic algorithm in random and deterministic setting.

Fig. 2. 25 generations tests.

whether random or non-random. Mario often gets stuck at the first obstacle until
the algorithm favors individuals moving towards the right (the end of the level)
(Figs. 4 and 5).

After a certain number of generations, usually between 10 and 20, unless
by chance, the first difficult obstacle is overcome when the level is non-random.
However, when the level is random, this obstacle can be located in different
places, and both algorithms will stagnate.
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Fig. 3. 50 generations tests.

Fig. 4. 75 generations tests.

Now, as seen in the last tests with a large number of generations and ran-
domly selected levels, we observed that the results of the genetic algorithm pro-
gressively increase until reaching a relatively low plateau. We can observe this
in the interface as it optimizes its movements to advance by jumping, allowing
it to overcome the most obstacles without detection.

The optimized algorithm with a neural network is surprising. We expected it
to make slightly more progress than the pure genetic algorithm, but in reality,
after a long period of stagnation, rapid progress is observed.
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Fig. 5. 100 generations tests with a population of 30 individuals.

3 Concluding Remarks

The research question addressed in this paper was “what is the relative effec-
tiveness of pure genetic algorithms compared to those consisting of neural net-
works optimized by genetic algorithms in random and non-random game envi-
ronments?” We answered this question by demonstrating the effectiveness of a
hybrid approach in the context of video game playing data. Such question and
our answer are highly relevant in the context of today’s AI boom, and add a
new layer of understanding of why hybrid approaches could be beneficial for
heterogeneous data.

We have specifically decided to focus our work on the Mario game since,
in its early versions, it doesn’t have very complex game play: there are only
a few controls which is practical for a genetic algorithm, and progress can be
easily determined. We could easily define the fitness function based on the score
(which indicates how many enemies have been defeated by jumping on them), the
remaining time before game over and Mario’s horizontal position, indicating his
position in the level and his proximity to the end of the level. Last but not least,
please note that while there are numerous, very simple games like Snake, Pac-
Man, or Space Invaders on which we could develop a genetic AI, an important
problem arises relevant to this paper. We want to test the effectiveness of an
algorithm in both random and deterministic contexts, and it is impossible to
obtain a deterministic level in these games.



GAINS: Comparison of Genetic Algorithms 473

References

1. Alves, P., Eike, A.H.: Reinforcement learning with PyBoy
2. Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Cambridge

(1995)
3. Das, S., Dey, A., Pal, A., Roy, N.: Applications of artificial intelligence in machine

learning: review and prospect. Int. J. Comput. Appl. 115(9) (2015)
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