
The Expressive Power of Revised Datalog
on Problems with Closure Properties

Shiguang Feng(B)

School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou 510006, China

fengshg3@mail.sysu.edu.cn

Abstract. In this paper, we study the expressive power of revised Dat-
alog on the problems that are closed under substructures. We show that
revised Datalog cannot define all the problems that are in PTIME and
closed under substructures. As a corollary, LFP cannot define all the
extension-closed problems that are in PTIME.

Keywords: Datalog · preservation theorem · closure property ·
expressive power

1 Introduction

Datalog and its variants are widely used in artificial intelligence and other fields,
such as deductive database, knowledge representation, data integration, cloud
computing, etc [8,11,13,18,19,23]. As a declarative programming language, it
is often used to perform data analysis and create complex queries. The com-
plexity and expressive power is an important issue of the study [1,5,19,21,22].
With the recursive computing ability, Datalog is more powerful than first-order
logic. It defines exactly the polynomial time computable queries on ordered finite
structures [9]. Hence, Datalog captures the complexity class PTIME on ordered
finite structures. While on all finite structures, the expressive power of Datalog
is very limited. It even cannot define the parity of a set [9]. A Datalog program is
constituted of a set of Horn clauses. The characteristics of syntax determine the
monotonicity properties of its semantics. That is, every Datalog (resp., positive
Datalog, the fragment of Datalog where no negated atomic formula occurs in
the body of any clauses) definable query is preserved under extensions [3] (resp.,
homomorphisms [4]). It is natural to ask from the point of view of descriptive
complexity that whether Datalog (resp., positive Datalog) captures the polyno-
mial time computable problems that are closed under extensions (resp., homo-
morphisms). The answer is negative by the work of Afrati et al. who showed that
positive Datalog cannot express all monotone queries computable in polynomial
time, and the perfect squares problem that is in polynomial time and closed
under extensions is not expressible in Datalog [3].

In model theory, many preservation theorems are proved to show the rela-
tionship between the closure properties and the syntactic properties of formulas.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 109–125, 2023.
https://doi.org/10.1007/978-3-031-45558-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45558-2_9&domain=pdf
http://orcid.org/0000-0002-5110-3881
https://doi.org/10.1007/978-3-031-45558-2_9

110 S. Feng

Most of these preservation theorems fail when restricted to finite structures. A
lot of research about the preservation theorems on Datalog, first-order logic (FO)
and least fixpoint logic (LFP) have been conducted on finite structures. Ajtai
and Gurevich showed that a positive Datalog formula is bounded iff it is defin-
able in positive existential first-order logic, and every first-order logic expressible
positive Datalog formula is bounded [4], where a Datalog formula is bounded if
there exists a number n such that the fixpoint of the formula can be reached for
any finite structure within n steps. Dawar and Kreutzer showed that the homo-
morphism preservation theorem fails for LFP, both in general and in restriction
to finite structures [6]. That is, there is an LFP formula that is preserved under
homomorphisms (in the finite) but is not equivalent (in the finite) to a Datalog
formula. The paper [16] studied Datalog with negation and monotonicity, and
the expressive power with respect to monotone and homomorphism properties.

bounded pos-Datalog

pos-Datalog[FO]

bounded Datalog

Datalog[FO]

bounded Datalogr

Datalogr[FO]

FO[E]

FO[H]pos-∃FO

∃FO

FO

LFP

pos-Datalog

Datalog[H]

Datalog

Datalogr

∃LFP

pos-∃LFP

LFP[E]

LFP[H]

PTIME

PTIME[E]

PTIME[H]

Fig. 1. The relationship of FO, LFP, PTIME, Datalog and its variants. Datalogr

denotes revised Datalog. pos-L denotes the positive fragment of L. ∃L denotes the
existential fragment of L. L[FO] denotes the set of L formulas that are first-order
definable. L[H] (resp., L[E]) denotes the set of L formulas (or problems computable in
L) that are preserved under homomorphisms (resp., extensions). The blue arrow shows
the containment relationship on Datalog and its variants. The red arrow shows the
relationship about the expressive power. The solid arrow implies that the relationship
is strict, and the dashed bidirectional arrow implies the equality relationship. The black
dotted arrow means whether the relationship is strict is still open.

The Expressive Power of Revised Datalog 111

The papers [7,20] studied the preservation results under extensions for FO and
Datalog. All the results are summarized in Fig. 1.

Revised Datalog (Datalogr) is an extension of Datalog, where universal quan-
tification over intensional relations is allowed in the body of rules. Abiteboul and
Vianu first introduced the idea that the body of a rule in Datalog can be uni-
versally quantified [2]. The author of the paper showed that Datalogr equals
LFP on all finite structures [10]. In the paper, we study the expressive power of
Datalogr on problems with closure properties, i.e., closed under substructures
(or extensions). We conclude that a Datalogr formula is equivalent to a first-
order formula iff it is equivalent to a bounded Datalogr formula. As the main
result of the paper, we show that Datalogr cannot define all the problems that
are in PTIME and closed under substructures. Since Datalogr equals LFP, and
the complement of a substructure-closed problem is extension-closed, as a corol-
lary, LFP cannot define all the extension-closed problems that are in PTIME.
This result contributes the strict containment LFP[E] � PTIME[E] in Fig. 1. A
technique of tree encodings for arbitrary structures is used in the proof. For an
arbitrary set of structures K ∈ EXPTIME, we can encode them into a set of
substructure-closed structures K′, where the tree used to encode the structure
in K is exponentially larger. Therefore, K′ is in PTIME. For every structure
in K′, there is a characteristic structure ST of it such that they are equivalent
with respect to Datalogr-transformations. Since ST can be computed from the
structure in K in logspace, this implies that K is also in PTIME, contrary to the
time hierarchy theorem. Figure 2 shows the sketch of the proof.

Fig. 2. The idea of the proof for the nondefinability of Datalogr.

The paper is organized as follows: In Sect. 2, we give the basic definitions
and notations. In Sect. 3, we recall invariant relations on perfect binary trees,
and introduce the technique of tree encodings for arbitrary structures. And we
prove the nondefinability results for Datalogr on substructure-closed problems.
Finally, we conclude the paper in Sect. 4.

2 Preliminaries

Let τ = {c1, . . . , cm, P1, . . . , Pn} be a vocabulary, where c1, . . . , cm are constant
symbols and P1, . . . , Pn are relation symbols. A τ -structure is a tuple A =
〈A, cA

1 , . . . , cA
m, PA

1 , . . . , PA
n 〉 where A is the domain, and cA

1 , . . . , cA
m, PA

1 , . . . , PA
n

are interpretations of the constant and relation symbols over A, respectively. We
assume the equality relation “=” is contained in every vocabulary, and omit the

112 S. Feng

superscript “A” when it is clear from context. We call A finite if its domain A is
a finite set. Unless otherwise stated, all structures considered in this paper are
finite. We use arity(R) to denote the arity of a relation R, and use “ | |” to indicate
the cardinality of a set or the arity of a tuple, e.g., |A| denotes the cardinality of
A and |(x1, x2, x3)| = 3. A finite structure is ordered if it is equipped with a linear
order relation “≤”, and the successor relation “SUCC”, the constants “min” and
“max” for the minimal and maximal elements, respectively, with respect to “≤”.
Let A = 〈A, cA

1 , . . . , cA
m, PA

1 , . . . , PA
n 〉 and B = 〈B, cB

1 , . . . , cB
m, PB

1 , . . . , PB
n 〉 be

two structures. If B ⊆ A, cA
i = cB

i (1 ≤ i ≤ m), and PB
j = PA

j ∩ Barity(Pj)

(1 ≤ j ≤ n), then we say that B is a substructure of A, and A is an extension
of B.

An r-ary global relation R of a vocabulary τ is a mapping that assigns to
every τ -structure A an r-ary relation RA over A such that for every isomorphism
π : A � B and every a1, . . . , ar ∈ A, A |= RAa1 . . . ar iff B |= RBπ(a1) . . . π(ar).
A query is a global relation. We say that a query Q is expressible in a logic L if
there is an L-formula that defines Q. Two formulas are equivalent if they define
the same query. Given two logics L1 and L2, we use L1 ≤ L2 to denote that
every L1-formula is equivalent to an L2-formula. If L1 ≤ L2 and L2 ≤ L1, then
we denote it by L1 ≡ L2.

Suppose that a relation symbol X occurs positively in ϕ(x̄) and |x̄| =
arity(X). Given a structure A, we can define a monotonic sequence
X0,X1,X2, . . . , where X0 = ∅ and Xi+1 = {ā | (A,Xi) � ϕ[ā]} for i ≥ 0,
such that Xi ⊆ Xi+1. Since A is finite, the sequence will eventually reach a
fixpoint.

Definition 1. The least fixpoint logic LFP is an extension of first-order logic
by adding the following rule [9]:

– If ϕ is an LFP formula, X occurs positively in ϕ, and |x̄| = |ū| = arity(X),
then [LFPx̄,Xϕ]ū is an LFP formula.

Given an LFP formula [LFPx̄,Xϕ]ū, for any structure A and ā ∈ Aarity(ā),
we have A � [LFPx̄,Xϕ]ā iff ā is in the fixpoint of the sequence induced by X
and ϕ on A.

Proposition 1. [15,24] LFP captures PTIME on ordered finite structures.

Definition 2. Let τ be a vocabulary. A Datalog program Π over τ is a finite
set of rules of the form

β ← α1, . . . , αl

where l ≥ 0 and

(1) each αi is either an atomic formula or a negated atomic formula,
(2) β is an atomic formula Rx̄, where R doesn’t occur negatively in any rule of

Π.

The Expressive Power of Revised Datalog 113

β is the head of the rule and the sequence α1, . . . , αl constitute the body.
Every relation symbol occurring in the head of some rule of Π is intensional, and
the other symbols in τ are extensional. We use (τ,Π)int and (τ,Π)ext to denote
the set of intensional and extensional symbols, respectively. We also allow 0-ary
relation symbols. If Q is a 0-ary relation, its value is from {∅, {∅}}. Q = ∅ means
that Q is FALSE and Q = {∅} means that Q is TRUE. We use the least fixpoint
semantics for Datalog programs. A Datalog formula has the form (Π, P)x̄, where
P is an r-ary intensional relation symbol and x̄ = (x1, . . . , xr) are variables that
do not occur in Π. For a (τ,Π)ext-structure A and ā = (a1, . . . , ar) ∈ Ar,

A |= (Π, P)x̄[ā] iff (a1, . . . , ar) ∈ P(∞),

where P(∞) is the least fixpoint for relation P when Π is evaluated on A. If P
is 0-ary, then A |= (Π, P) iff P(∞) = {∅}.

3 Datalogr on Problems with Closure Properties

3.1 Revised Datalog Programs

Definition 3. In Definition 2, if we replace Condition (1) by

(1′) each αi is either an atomic formula, or a negated atomic formula, or a
formula ∀ȳRȳz̄, where R occurs in the head of some rule,

then we call this logic program revised Datalog program, denoted by Datalogr.

Example 1. Let G = 〈V,E〉 be a directed acyclic graph, and the set of nodes
V partitioned into two disjointed sets Vuni and Vexi. The nodes in Vuni (resp.,
Vexi) are universal (resp., existential). The notion of alternating path is defined
recursively. There is an alternating path from s to t in G if

– s = t; or
– s ∈ Vexi, ∃x ∈ V such that (s, x) ∈ E and there is an alternating path from x

to t; or
– s ∈ Vuni, ∃x ∈ V such that (s, x) ∈ E, and ∀y ∈ V , if (s, y) ∈ E then there is

an alternating path from y to t.

The alternating graph accessibility problem is defined as follows:

Input: A directed acyclic graph G = 〈Vuni ∪ Vexi, E〉 and two nodes s, t.
Output: Yes if there is an alternating path from s to t in G, otherwise no.

This problem is P-complete [14]. The following Datalogr program Π defines the
alternating graph accessibility problem

Paltxy ← x = y;
Paltxy ← ¬Vunix,Exz, Paltzy;
Punix ← Vunix,Exy;
Qxzy ← Punix,¬Exz;

Qxzy ← Punix,Exz, Paltzy;
Paltxy ← Punix,∀zQxzy;

P ← Paltst.

114 S. Feng

We have (τ,Π)int = {Palt, Q, Puni, P} and (τ,Π)ext = {E, Vuni, s, t}. The relation
Puni saves the nodes in Vuni that have a successor. The relation Palt saves the
pairs (x, y) such that there is an alternating path from x to y. We use Qxzy to
denote that for any x ∈ Puni, either there is no edge from x to z, or there is an
alternating path from z to y. For any directed acyclic (τ,Π)ext-structure A, we
have A |= (Π, P) iff there is an alternating path from s to t.

The Datalog formulas are preserved under extensions [7], i.e., if a structure
B satisfies a Datalog formula ϕ and A is an extension of B, then A also satisfies
ϕ. A directed acyclic graph with an alternating path from s to t can be extended
to a directed acyclic graph without any alternating path from s to t by adding
new nodes. So Datalog cannot define the alternating graph accessibility problem,
which implies that Datalogr is strictly more expressive than Datalog. Allowing
universal quantification over intensional relations is essential for Datalogr to
increase its expressive power. With the help of it, every FO(LFP) formula can
be transformed into an equivalent Datalogr formula.

Proposition 2. [10] Datalogr ≡ LFP on all finite structures.

A Datalog program is positive if no negated atomic formula occurs in the
body of any rule. A Datalog formula (Π, P)t̄ is bounded if there is an n ≥ 0
such that P(n) = P(∞) for all structures. A bounded (positive) Datalog formula
is equivalent to an existential (positive) first-order formula, and vice versa [9].
Furthermore, a positive Datalog formula is bounded iff it is equivalent to a
first-order formula. The statement is false for all Datalog formulas. There is an
unbounded Datalog formula that is equivalent to an FO formula, but no bounded
Datalog formula is equivalent to it [4]. Unlike Datalog, if an unbounded Datalogr

formula is equivalent to an FO formula, then it must be equivalent to a bounded
Datalogr formula.

Proposition 3. A Datalogr formula is equivalent to a first-order formula iff it
is equivalent to a bounded Datalogr formula.

Proof. Suppose that a Datalogr formula is equivalent to a first-order formula
ϕ. Using the method in [10] we can construct a bounded Datalogr formula that
is equivalent to ϕ. For the other direction, the proof in [9] which shows that
every bounded Datalog formula is equivalent to an FO formula remains valid for
bounded Datalogr formulas.

3.2 Invariant Relations on Perfect Binary Trees

In [17], Lindell introduced invariant relations that are defined on perfect binary
trees, and showed that there are queries computable in PTIME but not definable
in LFP. A perfect binary tree is a binary tree in which all internal nodes have two
children and all leaf nodes are in the same level. Let T = 〈V,E, root〉 be a perfect
binary tree, where V is the set of nodes, E is the set of edges and root is the
root node. Suppose that R is an r-ary relation on V and f is an automorphism

The Expressive Power of Revised Datalog 115

of T . Given a tuple ā = (a1, . . . , ar) ∈ R, we write f(ā) = (f(a1), . . . , f(ar)) and
f [R] = {(f(a1), . . . , f(ar)) | (a1, . . . , ar) ∈ R}. We say that R is an invariant
relation if for every automorphism f , R = f [R]. It is easily seen that the equality
= and E are invariant relations.

First we give several technical lemmas. The proofs of Lemmas 1, 2, 3, and 5
can be found in the full arXiv version of the paper.

Lemma 1. If R1 and R2 are r-ary invariant relations, then ¬R1, R1 ∩ R2 and
R1 ∪ R2 are also invariant relations.

Lemma 2. Suppose that R is an r-ary invariant relation, R′ is a k-ary invariant
relation and g is a permutation of {1, . . . , r}. Define

R1 = {(ag(1), . . . , ag(r)) | (a1, . . . , ar) ∈ R},

R2 = {(a1, . . . , ar, b1, . . . , bk) | (a1, . . . , ar) ∈ R and (b1, . . . , bk) ∈ R′}.

Then R1 and R2 are also invariant relations.

Lemma 3. Suppose that R is a (k + r)-ary invariant relation. Define

R1 = {(a1, . . . , ar) | (b1, . . . , bk, a1, . . . , ar) ∈ R for all nodes b1, . . . , bk}
R2 = {(a1, . . . , ar) | ∃b1, . . . , bk such that (b1, . . . , bk, a1, . . . , ar) ∈ R}.

Then R1 and R2 are also invariant relations.

Let a, b be two nodes of a perfect binary tree T , we use a � b and d(a) to
denote the least common ancestor of a, b and the depth of a, respectively. For
example, in Fig. 3 there is a perfect binary tree in which d(root) = 0, d(a) = 1,
d(c) = d(e) = 2, and c � e = root.

Let (a1, . . . , ar) be an r-ary tuple of nodes, its characteristic tuple is defined
as

(a1, . . . , ar)∗ = (d(a1), d(a1 � a2), . . . , d(a1 � ar),
d(a2), d(a2 � a3), . . . , d(a2 � ar),

. . . , d(ar))

which is a r(r+1)
2 -ary tuple of numbers. Let R be an invariant relation, the

characteristic relation of R is defined to be

R∗ = {(a1, . . . , ar)∗ | (a1, . . . , ar) ∈ R}.

root

a

c d

b

e f

0

1

2

Fig. 3. A perfect binary tree of depth 3.

116 S. Feng

Proposition 4. [17] Let ā = (a1, . . . , ar) and b̄ = (b1, . . . , br) be two tuples, and
R an r-ary invariant relation of a perfect binary tree T .

– (a1, . . . , ar)∗ = (b1, . . . , br)∗ iff there is an automorphism f of T such that
f(ā) = b̄.

– If (a1, . . . , ar)∗ = (b1, . . . , br)∗, then ā ∈ R iff b̄ ∈ R.

For any two invariant relations R1 and R2, R1 = R2 iff R∗
1 = R∗

2.

3.3 Tree Encodings and Characteristic Structures

This section is devoted to the definitions of tree encodings and characteristic
structures, and the propositions about the equivalent relationship between them
on Datalogr programs, which will be used in the next section.

Definition 4. Let T be a perfect binary tree, R an r-ary relation on T . R is
a saturated relation if for any nodes a1, . . . , ar, b1, . . . , br, whenever d(ai) =
d(bi) (1 ≤ i ≤ r), then (a1, . . . , ar) ∈ R iff (b1, . . . , br) ∈ R.

The following proposition can be proved easily from the definitions of invari-
ant relations and saturated relations.

Proposition 5. A saturated relation is also an invariant relation.

From now on we make the assumption: τ is the vocabulary {R1, . . . , Rk}, and
τ ′ = τ ∪ {root, E}, where root is a constant symbol and E is a binary relation
symbol that is not in τ . We define a class of τ ′-structures

T = {〈V, root, E,R1, . . . , Rk〉 | 〈V,E, root〉 is a perfect binary tree,
R1, . . . , Rk are saturated relations on it}.

Definition 5. Let A = 〈{0, 1, . . . , h − 1}, RA
1 , . . . , RA

k 〉 be a τ -structure. The
tree encoding of A is a τ ′-structure C(A) = 〈V, root, E,RT

1 , . . . , RT
k 〉 ∈ T , such

that 〈V,E, root〉 is a perfect binary tree of depth h, and for any relation symbol
Ri (1 ≤ i ≤ k) and any nodes a1, . . . , ari

∈ V ,

C(A) |= RT
i a1 · · · ari

iff A |= RA
i d(a1) · · · d(ari

)

where ri is the arity of Ri, and d(aj) (1 ≤ j ≤ ri) is the depth of aj.

Roughly speaking, C(A) encodes A in a tree, but its size is exponentially
larger. Conversely, given a τ ′-structure T = 〈V, root, E,RT

1 , . . . , RT
k 〉 ∈ T , we

can compute the τ -structure A encoded by T as follows:

(1) The domain is {0, . . . , h − 1}, where h is the depth of T;
(2) For each i = 1, . . . , k,

RA
i = {(d(a1), . . . , d(ari

)) | ∃a1, . . . , ari
∈ V such that T |= RT

i a1 · · · ari
}.

The Expressive Power of Revised Datalog 117

We use C−1(T) to denote the corresponding τ -structure A encoded by T.
Let FULm = V m be a relation of arity m, where m ≥ 1 and V is the domain of
T. Define the vocabulary

σ = {0,SUCC, R �=, R¬e,FUL∗
m} ∪ {R∗

1, . . . , R
∗
k, (¬R1)∗, . . . , (¬Rk)∗}

where FUL∗
m has arity m(m+1)

2 , R �= and R¬e have arity 3, R∗
i or (¬R1)∗ has

arity ri(ri+1)
2 (1 ≤ i ≤ k and ri is the arity of Ri).

Definition 6. Given a τ ′-structure T = 〈V, root, E,R1, . . . , Rk〉 ∈ T , the char-
acteristic structure ST of T is a σ-structure

〈{0, 1, . . . , h − 1},0,SUCC, R �=, R¬e,FUL∗
m, R∗

1, . . . , R
∗
k, (¬R1)∗, . . . , (¬Rk)∗〉

where h is the depth of T, 0 is a constant interpreted by 0, SUCC is the successor
relation on the domain, and R �=, R¬e,FUL∗

m, R∗
1, . . . , R

∗
k, (¬R1)∗, . . . , (¬Rk)∗

are the characteristic relations of �=, (¬E), FULm, R1, . . . , Rk, ¬R1, . . . ,¬Rk,
respectively.

In the following we show that for every Datalogr program Π on the tree
encodings, there is a Datalogr program Π∗ on the corresponding characteristic
structures such that Π∗ simulates Π. More precisely, Π∗ handles the character-
istic relations of the relations in Π. Let Π = {γ1, . . . , γs} be a Datalogr program
on T . Suppose X1, . . . , Xw are all intensional relation symbols in Π and for each
rule γi, let nγi

be the number of free variables occurring in γi. Set

m = max{nγ1 , . . . , nγs
, arity(R1), . . . , arity(Rk), arity(X1), . . . , arity(Xw)}.

We shall construct, based on Π, a Datalogr program Π∗ such that for any
Datalogr formula (Π, P), there exists a Datalogr formula (Π∗, P ∗), and T |=
(Π, P) iff ST |= (Π∗, P ∗) for any T ∈ T , where P and P ∗ are 0-ary.

Every element of T is a node of a perfect binary tree, while every element of
ST is a number which can be treated as the depth of some node. Hence, for each
variable x in Π, we introduce a new variable ix, and for any two variables x1, x2

in Π, we introduce a new variable ix1�x2 . For a tuple of variables x̄ = x1 · · · xr,
we use the following abbreviations:

(x̄)∗ = ix1ix1�x2 · · · ix1�xr
ix2ix2�x3 · · · ixr−1�xr

ixr
,

∀(x̄)∗ = ∀ix1∀ix1�x2 · · · ∀ix1�xr
∀ix2∀ix2�x3 · · · ∀ixr−1�xr

∀ixr
.

Without loss of generality, we treat iu�v and iv�u as the same variable. Addi-
tionally, we assume that the 0-ary relation is also an invariant relation, and the
characteristic relation of a 0-ary relation is itself.

First we construct a quasi-Datalogr program Π′ as follows. For each rule
β ← α1, . . . , αl in Π, suppose that v1, . . . , vn are the free variables in it, we add
the formula

FULmv1v2 · · · vn−1vnvn · · · vn

118 S. Feng

to the body and obtain a new rule

β ← α1, . . . , αl,FULmv1v2 · · · vn−1vn · · · vn.

For each new rule, we

– replace x = y by ix = ix�y, ix�y = iy (reason: d(x) = d(x � y) = d(y)), for
constant root, we replace iroot by constant 0, and replace iroot�x also by 0,
since root � a = root for any node a;

– replace Exy by ix = ix�y,SUCCix�yiy (reason: d(y) = d(x�y)+1 = d(x)+1);
– replace x �= y by R �=ixix�yiy (reason: R �= is the characteristic relation of �=);
– replace ¬Exy by R¬eixix�yiy (reason: R¬e is the characteristic relation of

¬E);
– replace P x̄ by P ∗(x̄)∗, where P is in {R1, . . . , Rk,FULm}, or an intensional

relation symbol;
– replace ¬Rx̄ by (¬R)∗(x̄)∗, where R is a symbol in {R1, . . . , Rk};
– replace ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs by

ΨP =

⎛
⎝

FUL∗
m(z1z2 · · · zs−1zs · · · zs)∗∧

∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs
∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs(

FUL∗
m(y1 · · · ytz1 · · · zs · · · zs)∗ → P ∗(y1 · · · ytz1 · · · zs)∗)

⎞
⎠

where P is an intensional relation symbol.

By adding FULm to each rule of Π and replacing it with FUL∗
m in Π′, we

can restrict to characteristic tuples. Π′ is not a Datalogr program because of ΨP .
Note that ΨP is equivalent to the Datalogr formula (Π1, Q2)t̄, where

Π1 : Q(y1 · · · ytz1 · · · zs)∗ ← ¬FUL∗
m(y1 · · · ytz1 · · · zszs · · · zs)∗;

Q(y1 · · · ytz1 · · · zs)∗ ← P ∗(y1 · · · ytz1 · · · zs)∗;
Q1(z1 · · · zs)∗ ← ∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs

∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs
Q(y1 · · · ytz1 · · · zs)∗;

Q2(z1 · · · zs)∗ ← Q1(z1 · · · zs)∗,FUL∗
m(z1z2 · · · zs−1zs · · · zs)∗.

The Datalogr program Π∗ can be obtained by adding Π1 to Π′ and changing ΨP

to Q2(z1 · · · zs)∗.

Remark 1. We cannot replace ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs directly by

∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs
∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs

P ∗(y1 · · · ytz1 · · · zs)∗

since there may be T ∈ T , ā ∈ T, and an invariant relation P such that

T � ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs[ā], and
ST � ∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs

∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs

P ∗(y1 · · · ytz1 · · · zs)∗[(ā)∗].

The Expressive Power of Revised Datalog 119

For example, let T be the structure with the perfect binary tree of Fig. 3 and
relation

P = {(root, root), (root, a), (root, b), (root, c), (root, d), (root, e), (root, f)}.

Obviously, we have T � ∀yP (root, y). But ST � P ∗(0, 1, 1) since (0, 1, 1) is
not the characteristic tuple of any tuple in T. This problem can be solved by
changing ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs to the equivalent formula

FULmz1 · · · zs−1zs · · · zs ∧∀y1 · · · ∀yt(FULmy1 · · · ytz1 · · · zs · · · zs → Py1 · · · ytz1 · · · zs).
We replace FULm and P by their characteristic relations FUL∗

m and P ∗, respec-
tively, to obtain ΨP . This guarantees that only characteristic tuples are consid-
ered.

Example 2. The following Datalogr program Π computes the transitive closure
R of edges E

Π : Rx1x2 ← Ex1x2;
Rx1x3 ← Rx1x2, Ex2x3.

The corresponding Datalogr program Π∗ below computes the characteristic rela-
tion R∗ of R.

Π∗ : R∗ix1ix1�x2ix2 ← ix1 = ix1�x2 ,SUCCix1�x2ix2 ,

FUL∗
3ix1ix1�x2ix1�x2ix2ix2ix2 ;

R∗ix1ix1�x3ix3 ← R∗ix1ix1�x2ix2 , ix2 = ix2�x3 ,SUCCix2�x3ix3 ,

FUL∗
3ix1ix1�x2ix1�x3ix2ix2�x3ix3 .

Lemma 4. Given ψP = ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs, a structure T ∈ T , let ΨP

be defined as above, and Q1 = {ā | T |= ψP [ā]}, Q2 = {ē | ST |= ΨP [ē]}. If P is
an invariant relation on T, then (Q1)∗ = Q2.

Proof. Because P is an invariant relation, by Lemma 3 and the definition of Q1,
we know that Q1 is also an invariant relation. We first show that (Q1)∗ ⊆ Q2.
Suppose that ē ∈ (Q1)∗ for some ē ∈ ST, there must exist a tuple ā from T such
that ā ∈ Q1, (ā)∗ = ē, and b̄ā ∈ P for all tuples b̄ of T, i.e.,

T |=
(
FULmz1 · · · zs−1zszs · · · zs∧

∀y1 · · · ∀yt(FULmy1 · · · ytz1 · · · zszs · · · zs → Py1 · · · ytz1 · · · zs)
)
[ā].

By the definition of ΨP we see that ST |= ΨP [(ā)∗], which implies ē ∈ Q2.
To prove Q2 ⊆ (Q1)∗, consider an arbitrary tuple ē ∈ ST such that ē ∈ Q2.

By the definition of Q2 and ΨP , we have ST |= FULm(z1 · · · zszs · · · zs)∗[ē], so
there exists a tuple ā of T such that ē = (ā)∗. On the contrary, assume ā /∈ Q1,
then there is a tuple b̄ such that b̄ā /∈ P . Because P is an invariant relation, for
any tuples b̄′ and ā′, if (b̄ā)∗ = (b̄′ā′)∗ then b̄′ā′ /∈ P . Combing that P ∗ is the
characteristic relation of P we conclude that

ST � P ∗(y1 · · · ytz1 · · · zs)∗[(b̄ā)∗], and (1)
ST � FUL∗

m(y1 · · · ytz1 · · · zszs · · · zs)∗[(b̄ā)∗]. (2)

120 S. Feng

(1) and (2) give ST � ΨP [(ā)∗]. Hence, ē /∈ Q2, contrary to the assumption that
ē ∈ Q2. Therefore, ā must be in Q1, which implies ē ∈ (Q1)∗. ��

Let P be an intensional relation symbol in Π, and T a structure in T . We
use P(n) (n > 0) to denote the relation obtained in the n-th evaluation of Π on
T for P , and PT[Π] to denote the relation obtained by applying Π on T for P ,
i.e., the fixpoint of the sequence P(0), P(1), P(2), . . .

Proposition 6. For any intensional relation symbol P in Π and any T ∈ T ,
PT[Π] is an invariant relation on T and (PT[Π])∗ = (P ∗)ST[Π∗]. Moreover, if P
is a 0-ary intensional relation symbol, then T |= (Π, P) iff ST |= (Π∗, P ∗).

Proof. We first show that if P is an intensional relation symbol in Π and T is
a structure in T , then PT[Π] is an invariant relation on T. Let P 1, . . . , Pm′

be
all intensional relation symbols in Π. Consider the following formula constructed
for each P i

φP i(x̄P i) =
∨

{∃v̄(α1 ∧ · · · ∧ αl) | P ix̄P i ← α1, . . . , αl ∈ Π and v̄ are the
free variables in α1 ∧ · · · ∧ αl that are different from x̄P i}.

If the relation defined by each αs is an invariant relation, then by Lemmas 1,
2 and 3, we know that the relation defined by φP i is also an invariant relation.
Each αs is either an atomic (or negated atomic) formula with the relation symbol
from {=, E,R1, . . . , Rk} where the relations defined by them are all invariant
relations, or an atomic formula P j x̄, or a formula ∀ȳP j ȳz̄ (1 ≤ j ≤ m′).

When computing the fixpoint of P 1, . . . , Pm′
, we set P i

(0) = ∅ (1 ≤ i ≤ m′),
where ∅ is an invariant relation. By Lemma 3 we know that if P j is an invariant
relation then the relation defined by ∀ȳP j ȳz̄ is also an invariant relation. We
proceed by induction on n. Suppose that P 1

(n), . . . , P
m′
(n) are invariant relations,

then each

P i
(n+1) = {ā | (T, P 1

(n), . . . , P
m′
(n)) |= φP i(x̄P i)[ā]}, or

P i
(n+1) = {∅ | (T, P 1

(n), . . . , P
m′
(n)) |= φP i}

is also an invariant relation. Therefore, the fixpoints P 1
(∞), . . . , P

m′
(∞) are invariant

relations, i.e., PT[Π] is an invariant relation on T.
Next we shall show that (PT[Π])∗ = (P ∗)ST[Π∗]. It suffices to prove that

(P i
(n))

∗ = (P i)∗
(n) (1 ≤ i ≤ m′) for each n ≥ 0. The proof is by induction on n.

Basis: If n = 0, then P i
(0) = ∅, (P i)∗

(0) = ∅ (1 ≤ i ≤ m′). We have (P i
(0))

∗ =
(P i)∗

(0) (1 ≤ i ≤ m′).

Inductive Step: Assuming (P i
(k))

∗ = (P i)∗
(k) (1 ≤ i ≤ m′), we show that

(P i
(k+1))

∗ = (P i)∗
(k+1) (1 ≤ i ≤ m′). The case where P i is 0-ary is trivial, in the

following we only consider the relation P i of no 0-ary.

The Expressive Power of Revised Datalog 121

To prove (P i
(k+1))

∗ ⊆ (P i)∗
(k+1), suppose ē ∈ (P i

(k+1))
∗ for some ē ∈ ST.

There must be a tuple ā of T such that ā ∈ P i
(k+1) and ē = (ā)∗. By the

semantics of Datalogr we know that

P i
(k+1) = {ā | (T, P 1

(k), . . . , P
m′
(k)) |= φP i(x̄P i)[ā]}.

By the definition of φP i , there is a rule P ix̄P i ← α1, . . . , αl in Π such that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= ∃v̄(α1 ∧ · · · ∧ αl)[ā].

Thus, there exists some b̄ such that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= (α1 ∧ · · · ∧ αl)[āb̄].

Because P ix̄P i ← α1, . . . , αl is a rule of Π, we can infer that

(P i)∗(x̄P i)∗ ← α′
1, . . . , α

′
l,FUL∗

m(x̄P i v̄ṽ′)∗

is a rule of Π∗, where α′
1, . . . , α

′
l and FUL∗

m(x̄P i v̄ṽ′)∗ are obtained by replacing
α1, . . . , αl,FULm with the corresponding formulas respectively in the construc-
tion of Π∗. Note that we replace ∀ȳP ȳz̄ by ΨP , and by Lemma 4 the relation
defined by ΨP is the characteristic relation of that defined by ∀ȳP ȳz̄. By the
definition of ST and the induction hypothesis (P i

(k))
∗ = (P i)∗

(k) (1 ≤ i ≤ m′) we
deduce that

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= (α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[(āb̄)∗], i.e.,

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= ∃ū(α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[(ā)∗]

where ū are the free variables in α′
1 ∧· · ·∧α′

l ∧FUL∗
m(x̄P i v̄ṽ′)∗ that are different

from (x̄P i)∗. Combining ē = (ā)∗ we obtain ē ∈ (P i)∗
(k+1).

To prove (P i)∗
(k+1) ⊆ (P i

(k+1))
∗, suppose ē ∈ (P i)∗

(k+1) for some ē ∈ ST.
There must exist a rule

(P i)∗(x̄P i)∗ ← α′
1, . . . , α

′
l,FUL∗

m(x̄P i v̄ṽ′)∗ (3)

in Π∗ such that

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= ∃ū(α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[ē].

Hence there exists a tuple f̄ ∈ ST such that

(ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)) |= (α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[ēf̄].

The formula FUL∗
m(x̄P i v̄ṽ′)∗ guarantees that (āb̄)∗ = ēf̄ and (ā)∗ = ē for some

tuple āb̄ of T. Because P 1
(k), . . . , P

m′
(k) are invariant relations, by the induction

hypothesis (P i
(k))

∗ = (P i)∗
(k) (1 ≤ i ≤ m′) we know that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= (α1 ∧ · · · ∧ αl)[āb̄]

where α1, . . . , αl occur in the rule P ix̄P i ← α1, . . . , αl that is the original of (3)
in Π. Hence ā ∈ P i

(k+1), which implies ē ∈ (P i
(k+1))

∗. This completes the proof. ��

122 S. Feng

3.4 Nondefinability Results for Datalogr

The complexity class EXPTIME contains the decision problems decidable by a
deterministic Turing machine in O(2nc

) time. By the time hierarchy theorem,
we know that PTIME is a proper subset of EXPTIME. In this section, for every
class of structures K ∈ EXPTIME, we construct a class K′ of structures that is
in PTIME and closed under substructures, and show that if K′ is definable by a
Datalogr formula, then K is in P, which is impossible.

Let c be a constant, and A = 〈{0, . . . , h − 1}, RA
1 , . . . , RA

k 〉 a τ -structure.
The trivial extension A+ = 〈{0, . . . , h − 1, h, . . . , h + hc − 1}, RA

1 , . . . , RA
k 〉 of A

is a τ -structure obtained by adding hc dummy elements to the domain of A and
keeping all other relations unchanged.

For technical reasons we introduce a new unary relation symbol U and let
τU = τ ∪ {U}, τ ′

U = τ ∪ {root, E, U}. From now on when we speak of a τ ′
U -

structure
G = 〈V, root, E, U,R1, · · · , Rk〉

we assume that

(1) 〈V,E, root〉 is a directed acyclic graph and the nodes reachable from root
form a binary tree, and

(2) all relations U,R1, · · · , Rk are saturated relations restricted on T (G), which
is the largest perfect binary subtree of G with root as the root.

It is easy to check that if a τ ′
U -structure G satisfies the aforementioned two

conditions, then all its substructures also satisfy the two conditions.

Definition 7. Let K be a class of τ -structures. Define a class K′ of τ ′
U -structures

such that, for any G = 〈V, root, E, U,R1, . . . , Rk〉, let h be the largest number
where all nodes in the first h levels of T (G) are marked by U , G ∈ K′ iff the
following Condition (1) or Condition (2) holds.

Condition (1)
(a) The depth of T (G) is h + hc.
(b) The relations R1, . . . , Rk do not hold on any tuple that contains a node

in the last hc consecutive levels of T (G).
(c) C−1(T (G)) is the trivial extension of C−1(Th(G)), where Th(G) is the

subtree of T (G) by restricting to the first h levels.
(d) C−1(Th(G)) ∈ K when ignoring the relation U .

Condition (2)
(a) The depth of T (G) is strictly less than h + hc.

Proposition 7. Let K be an arbitrary class of τ -structures decidable in 2nc

time, where n is the cardinality of the structure’s domain, and K′ defined as
above. Then

(i) K′ is closed under substructures;
(ii) K′ is decidable in PTIME.

The Expressive Power of Revised Datalog 123

Proof. To prove (i), suppose that G is a τ ′
U -structure in K′, then it satisfies

either Condition (1) or Condition (2) in Definition 7. Let H be an arbitrary sub-
structure of G. If G satisfies Condition (2), then H also satisfies Condition (2),
and is in K′. Suppose that G satisfies Condition (1), then the perfect binary
tree T (H) either equals T (G), which implies H satisfies Condition (1), or the
depth of T (H) is less than that of T (G), which implies H satisfies Condition (2).
Altogether, H ∈ K′.

To prove (ii), let G be an arbitrary τ ′
U -structure, we just need to do the

following steps to check whether G ∈ K′:

(1) Check that 〈V,E〉 is a directed acyclic graph.
(2) Check that all nodes reachable from root form a binary tree.
(3) Compute T (G), the largest perfect binary subtree with root as root.
(4) Check that U,R1, . . . , Rk are saturated relations on T (G).
(5) Compute the largest number h such that all nodes in the first h levels of

T (G) have property U .
(6) Check whether the depth of T (G) is less than h + hc.
(7) If the depth of T (G) is h + hc, then check whether (b), (c) and (d) in

Condition (1) of Definition 7 hold.

Note that C−1(Th(G)) has h elements and K is decidable in 2nc

time, the state-
ment (d) in Condition (1) of Definition 7 can be verified in polynomial time since
if the depth of T (G) is h + hc then the input size is at least 2h+hc

. ��

Let K and K′ be defined as in Proposition 7. For an arbitrary τ -structure
A, let AU be the τU -structure obtained by marking every element in A by U ,
A+

U the trivial extension of AU by adding |A|c elements, and T the τ ′
U -structure

such that C−1(T) = A+
U . If K′ is axiomatizable by a Datalogr formula (Π, Q),

then
A ∈ K iff T ∈ K′ iff T |= (Π, Q). (4)

Define the vocabulary

σU = {0,SUCC, R �=, R¬e,FUL∗
m, U∗, R∗

1, . . . , R
∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗}.

By Definition 6, we can compute T’s characteristic structure that is a σU -
structure

ST =
〈
{0, 1, . . . , |A| + |A|c − 1},0,SUCC, R �=, R¬e,FUL∗

m, U∗,
R∗

1, . . . , R
∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗〉

where 0 is interpreted by 0, SUCC is the successor relation on the domain
and R �=, R¬e, FUL∗

m, U∗, R∗
1, . . . , R

∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗ are the charac-

teristic relations of �=, (¬E), FULm, U , R1, . . . , Rk, ¬U,¬R1, . . . ,¬Rk, respec-
tively. By Proposition 6, we know there is a Datalogr formula (Π∗, Q∗) such that
T |= (Π, Q) iff ST |= (Π∗, Q∗). Combining (4), we have A ∈ K iff ST |= (Π∗, Q∗).

124 S. Feng

Lemma 5. ST is logspace computable from A.

By Lemma 5, we know that ST is computable from A in polynomial time. Hence,
K is in PTIME. Since K is an arbitrary class in EXPTIME, this would imply
EXPTIME=PTIME, which contradicts the time hierarchy theorem. So we must
have:

Proposition 8. There is a problem in PTIME and closed under substructures
but not definable in Datalogr.

If a problem is closed under substructures, then its complement is closed
under extensions. By Proposition 2, we can obtain the following corollary.

Corollary 1. DATALOGr[E] = LFP[E] � PTIME[E].

4 Conclusion

Revised Datalog is an extension of Datalog by allowing universal quantification
over intensional relations in the body of rules. On all finite structures, Datalogr

is strictly more expressive than Datalog, and has the same expressive power as
that of LFP. In classical model theory, the closure properties of a formula are usu-
ally related to some syntactic properties. Many preservation theorems have been
proven to reflect this relationship. When restricted to finite structures, most of
these preservation theorems fail. Due to the syntax and semantics of Datalog, we
can treat it as the dual of SO-HORN logic, which is closed under substructures [12].
It follows that Datalog is closed under extensions. A lot of work has been conducted
between Datalog and FO (or LFP) to study the closure property. In this paper,
we study the expressive power of revised Datalog on the problems that are closed
under substructures. We show that Datalogr cannot define all the problems that
are in PTIME and closed under substructures. As a corollary, LFP cannot define all
the extension-closed problems that are in PTIME. A method of tree encodings for
arbitrary structures is used in the proof. If we replace the extension closure prop-
erty by the homomorphism closure property, it is still open whether the statement
also holds. This is desirable for future work.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. J.
Comput. Syst. Sci. 43(1), 62–124 (1991)

3. Afrati, F.N., Cosmadakis, S.S., Yannakakis, M.: On datalog vs polynomial time.
J. Comput. Syst. Sci. 51(2), 177–196 (1995)

4. Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. Comput. Syst. Sci. 49(3),
562–588 (1994)

5. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

The Expressive Power of Revised Datalog 125

6. Dawar, A., Kreutzer, S.: On datalog vs. LFP. In: Aceto, L., Damgård, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008.
LNCS, vol. 5126, pp. 160–171. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70583-3_14

7. Dawar, A., Sankaran, A.: Extension preservation in the finite and prefix classes
of first order logic. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual
Conference on Computer Science Logic, CSL 2021, 25–28 January 2021, Ljubljana,
Slovenia. LIPIcs, vol. 183, pp. 18:1–18:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021)

8. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Elsevier, Amsterdam
(2012)

9. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer-Verlag, Berlin (1995)
10. Feng, S., Zhao, X.: The complexity and expressive power of second-order extended

logic. Stud. Logic 5(1), 11–34 (2012)
11. Fernandes, A.A., Paton, N.W.: Databases. In: Meyers, R.A. (ed.) Encyclopedia of

Physical Science and Technology (Third Edition), pp. 213–228. Academic Press,
New York (2003)

12. Grädel, E.: The expressive power of second order horn logic. In: Choffrut, C.,
Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0020821

13. Gurevich, Y.: Datalog: a perspective and the potential. In: Barceló, P., Pichler, R.
(eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 9–20. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32925-8_2

14. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Com-
put. Syst. Sci. 22(3), 384–406 (1981)

15. Immerman, N.: Relational queries computable in polynomial time. In: Fourteenth
Annual ACM Symposium on Theory of Computing. pp. 147–152. ACM (1982)

16. Ketsman, B., Koch, C.: Datalog with negation and monotonicity. In: Lutz, C.,
Jung, J. (eds.) 23rd International Conference on Database Theory, ICDT 2020.
Leibniz International Proceedings in Informatics, LIPIcs, Schloss Dagstuhl-Leibniz-
Zentrum fur Informatik GmbH, Dagstuhl Publishing (2020)

17. Lindell, S.: An analysis of fixed-point queries on binary trees. Theoret. Comput.
Sci. 85(1), 75–95 (1991)

18. Marinescu, D.C.: Chapter 6 - cloud data storage. In: Marinescu, D.C. (ed.) Cloud
Computing (Second Edition), pp. 195–233. Morgan Kaufmann (2018)

19. Revesz, P.Z.: Constraint databases: a survey. In: Thalheim, B., Libkin, L. (eds.)
SiD 1995. LNCS, vol. 1358, pp. 209–246. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0035010

20. Rosen, E.: Finite Model Theory and Finite Variable Logics. Ph.D. thesis, University
of Pennsylvania (1995)

21. Schlipf, J.S.: Complexity and undecidability results for logic programming. Ann.
Math. Artif. Intell. 15, 257–288 (1995)

22. Shmueli, O.: Decidability and expressiveness aspects of logic queries. In: Proceed-
ings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS 1987, pp. 237–249. Association for Computing Machin-
ery, New York (1987)

23. Siekmann, J.H.: Computational Logic, Handbook of the History of Logic, vol. 9.
North Holland (2014)

24. Vardi, M.Y.: The complexity of relational query languages. In: Fourteenth Annual
ACM Symposium on Theory of Computing, pp. 137–146. ACM (1982)

https://doi.org/10.1007/978-3-540-70583-3_14
https://doi.org/10.1007/978-3-540-70583-3_14
https://doi.org/10.1007/BFb0020821
https://doi.org/10.1007/978-3-642-32925-8_2
https://doi.org/10.1007/BFb0035010
https://doi.org/10.1007/BFb0035010

	The Expressive Power of Revised Datalog on Problems with Closure Properties
	1 Introduction
	2 Preliminaries
	3 Datalogr on Problems with Closure Properties
	3.1 Revised Datalog Programs
	3.2 Invariant Relations on Perfect Binary Trees
	3.3 Tree Encodings and Characteristic Structures
	3.4 Nondefinability Results for Datalogr

	4 Conclusion
	References

