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Abstract. The philosophical literature that tackles foundational ques-
tions about normativity often appeals to normative reasons—or consid-
erations that count in favor of or against actions—and their interaction.
The interaction between normative reasons is usually made sense of by
appealing to the metaphor of (normative) weight scales. This paper sub-
stitutes an argumentation-theoretic model for this metaphor. The upshot
is a general and precise model that is faithful to the philosophical ideas.
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1 Introduction

Philosophers who explore normative matters often appeal to normative (prac-
tical) reasons, understanding them as considerations that count in favor of or
against actions. When discussing the interaction between reasons, they often use
such phrases as “the action supported on the balance of reasons” and “reasons
in favor outweigh the reasons against”, inviting an image of weight scales for
reasons. The simplest model of these (normative) weight scales works, roughly,
as follows. Reasons speaking in favor of ϕ-ing go in one pan of the scales, and
reasons against go in the other. If the weight of the reasons in the first pan is
greater, ϕ ought to be carried out. If the weight of the reasons in the second pan
is greater, ϕ ought not to be carried out.

While philosophers have explored various ideas about the exact workings of
the weight scales and also looked at some alternatives, their investigations have
mostly been carried out in informal terms. The goal of this paper is to develop
a formal model of (normative) weight scales, drawing on formal argumentation.
Instead of starting from scratch, we repurpose Gordon and Walton’s model of
“balancing arguments” [4].

This paper is structured as follows. Section 2 sketches the philosophical ideas
on weighing reasons. Sections 3 and 4 set up the model. Section 5 discusses our
main results and some of the work that is most closely related to ours.
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2 (Normative) Weight Scales

This section provides a bird’s-eye view summary of the main ideas from the philo-
sophical literature on weighing reasons. Note that it is an opinionated sketch: we
simplify where possible and bracket a whole plethora of important and complex
questions. (For more thorough overviews, see, e.g., [6] and [9, pp. 1–7].)

Normative reasons are typically taken to be facts that are not subject to
debate. Thus, the fact that the person next door is in need of help is a reason
for you to help them, regardless of your values and preferences, as well as your
views on ethics and metaethics. Reasons are always reasons for someone: they
favor or speak against someone’s action. They are also intimately tied to their
weights, which are comprised of a magnitude and a polarity. Magnitude has to do
with the relative importance of the reason; polarity with whether it is a reason
for or against. Reasons against an action count (either directly, or indirectly) as
favoring alternative actions.

Reasons play a core role in determining the deontic statuses of actions. Thus,
whether some action is permitted/required/ought to be taken depends on the
reasons that count for/against it and their interaction. In staying with the weight
scales metaphor, we say that one is permitted to ϕ just in case the net weight
of the reasons for ϕ-ing is at least as high as the net weight of the reasons
for the alternatives. (For a discussion of subtle changes one could make to this
definition, see, e.g., [9].)

An important and hotly debated question concerns the effects of context on
the weights of reasons. Positions range from extreme atomist views on which a
reason’s weight is context-independent to extreme holist views on which a fact
that is a reason for ϕ-ing in one context can be a reason against ϕ-ing in a differ-
ent one, or cease to be a reason at all. Most philosophers find positions at both
ends of the spectrum implausible, preferring views on which there is both (some)
stability in reasons’ weights and that allow for (some) context-sensitivity. A com-
mon move here is to appeal to what we might call normatively-relevant consider-
ations that aren’t reasons. Such considerations don’t qualify as reasons because
they don’t count for/against actions. However, they can affect the weights of rea-
sons, and so have an (indirect) effect on an action’s deontic status. It’s common
to distinguish between two types of such considerations: undercutters and modi-
fiers. An undercutter nullifies the weight of a reason, effectively making it cease
to be a reason. Modifiers are of two types: attenuators and amplifiers. An atten-
uator reduces the magnitude of a reason, making it less weighty. An amplifier
amplifies the magnitude of a reason, making it more weighty. Undercutters and
modifiers suggest the view that every reason has a context-independent default
weight and a context-specific final weight, and that any difference between the
two can be accounted for by appeal to undercutters and modifiers. This view is
common, and it seems up to debate whether it is closer to atomism or holism.

3 Normative Graphs

In this section, we explain how to represent the structural relations that can
obtain between normative reasons, other normatively-relevant considerations,
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and alternative actions (or options). (In the next one, we focus on modeling the
normative effects that these can exert on each other.)

As background, we assume a propositional language (L) with the standard
connectives. We use the term ‘normatively-relevant consideration’ (or simply
‘consideration’) to refer to reasons, undercutters, and modifiers. Following the
philosophical literature, we assume that every consideration (a) has a default
weight; (b) can be undercut; and (c) can have its weight changed by modifiers.
Jointly, the relevant considerations are meant to determine the deontic status of
actions available to an agent. Adapting the notion of issue from [4], we think
of options as a finite subset of L representing a set of mutually exclusive and
exhaustive actions available to the agent. Adapting the notion of argument from
[4], we define considerations as follows:

Definition 1 (Normatively-relevant consideration). A consideration is a
tuple C = (p, c, u, a−, a+, w), where the first five elements are formulas of L
called, respectively, premise, conclusion, undercutter, attenuator, and amplifier,
while the sixth element is a positive real number called default weight.

We will use the following scenario to illustrate this and future definitions—
note that the expressions in brackets are atomic sentences of L:

Example 1. You are to choose between two options: to go to the movies with me
(Movies), or to have dinner with your mom at her favorite restaurant (Dinner).
You have made a promise to me (Promise). What’s more, you were very insis-
tent when making the promise: you said that you would keep it no matter what
(Insist). Dining with mom would make her happy (MomHappy). The restau-
rant also happens to serve your favorite cake (Cake). Also, it is Mother’s Day
(MothersDay) and you haven’t seen your mom in a while (LongT ime).

Notice that the options here are {Movies, Dinner}. The intuitive idea that
your promise is a reason to go to the movies is captured by the considera-
tion C1 = (Promise,Movies, u1, a

−
1 , a+

1 , w1). Similarly, the idea that going to
the restaurant will make your mom happy and that the restaurant serves your
favorite cake are reasons to have dinner with mom is represented by C2 =
(MomHappy,Dinner, u2, a

−
2 , a+

2 , w2) and C3 = (Cake,Dinner, u3, a
−
3 , a+

3 , w3)
respectively. The idea that your being very insistent when making the promise
amplifies C1 is captured by consideration C4 = (Insist, a+

1 , u4, a
−
4 , a+

4 , w4).
Notice that the conclusion of C4 (a+

1 ) corresponds to the amplifier of C1, which
means that C4 amplifies C1 or that C4 is an amplifier of C1. The rest of the
example is captured by considerations C5 = (MothersDay, a+

2 , u5, a
−
5 , a+

5 , w5),
C6 = (LongT ime, a+

2 , u6, a
−
6 , a+

6 , w6), and C7 = (Release, u1, a
−
7 , a+

7 , w7).
The considerations that are in force in a given context form a graph structure.

This is captured by our next definition—given a consideration C = (p, c, u, a−,
a+, w), we let pC = p; cC = c; uC = u; a−

C = a−; a+
C = a+, and wC = w:1

1 We follow [4] in calling the structures specified in Definition 2 graphs as they can
be mapped straightforwardly to directed graphs.
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Definition 2 (Normative graph). A normative graph is a triple of the form
N = (S,O,R), where S is a finite subset of L; O ⊆ S called the set of options;
and R is a finite set of considerations, where for every C ∈ R, pC , cC , uC , a−

C ,
a+
C are all members of S and wC ∈ R>0.

Fig. 1. Movies or Mom’s favorite restaurant

Figure 1 depicts the full graph comprising our example visually. The two
options are represented as circles in the middle. Each consideration is depicted
as comprised of five nodes, some of which are shared between considerations.
For example, the node Insist is the premise of C4 = (Insist, a+

1 , u4, a
−
4 , a+

4 , w4),
and the node a+

1 is the conclusion of C4 and the amplifier of C4. The nodes u4,
a−
4 , and a+

4 stand for the remaining elements of C4. They are grayed out, since
no other considerations affect C4. The default weight of C4 is presented on the
edge between premise and conclusion.

Notice that the graph structure in Fig. 1 is finite, directed, and acyclic. This is
no coincidence. Following the philosophical literature, we allow that graphs rep-
resenting the structural relations between normatively-relevant considerations
and options are complex. However, we also require that they are finite and never
contain any cycles. In particular, this rules out intra-consideration circularity,
where e. g. the premise and conclusion are identical.

Before moving on, we introduce some terminology. Given a graph N =
(S,O,R), we call a consideration C ∈ R a reason (for o ∈ O) if cC = o. We
say that C attenuates C ′ if cC is the attenuator of some consideration C ′, we
say that it amplifies C ′ if cC is an amplifier of C ′ and that it undercuts C ′ if
cC is the uncercutter of C ′. Overloading the terms, we sometimes call a con-
sideration that undercuts or modifies another reason an undercutter or modifier
respectively. Sometimes we may want to add, remove, or replace considerations
in a graph. While the addition and removal are straightforward to define, one
needs to be careful with replacement. Given a graph N = (S,O,R) and a con-
sideration C, we let N + C denote the graph that results from adding C to
N and N − C the graph that results from removing C from N . A graph that
results from replacing C by another consideration C ′ in N is denoted by N+C′

−C .
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It is defined as (N − C) + C ′ only in case either both C and C ′ are reasons, or
both C and C ′ modify or undercut the same consideration. This ensures that
the replaced consideration occupies the same place in the graph.2

4 Weighing Functions

This section explains how we model the effects of normatively-relevant consid-
erations on each other, along with their effects on options.

Suppose that we had a function fN which, given any normative graph N ,
would output the final weights of all considerations in it. Such a function would
put us in a position to determine which options are permitted and which are
forbidden in a rather straightforward way, where Cs = {C ∈ R | cC = s, s ∈ S}:

Definition 3 (Resolution function). Given a normative graph N =
(S,O,R), an option o ∈ O, and a function fN , let rN (o) = permitted if, for
every o∗ ∈ O,

∑
C∈Co

fN (C) ≥ ∑
C∈Co∗ fN (C); rN (o) = forbidden otherwise.

And if there is a unique permitted option, we say that it ought to be carried out.
Of course, we still need to specify fN . The way we calculate the final weight

of a consideration C is via a two-step process using an additional function gN .
In the first step, we aggregate the (final) weights of C’s amplifiers, attenuators,
and undercutters. In the second step, we obtain the final weight of C on the
basis of these aggregated weights and the default weight of C. This will be the
job of fN . (For readability, we will often omit the superscript where the context
makes clear which graph we are talking about.) Note that even if we have a
concrete aggregation function g at our disposal, there are many choices we could
make for how f calculates the final weight from the output of g and C’s default
weight. So, before we define any concrete functions, it will be useful to think
about some plausible constraints or principles that they should satisfy. (Many
of the principles of weighted argumentation analyzed in [2] can be translated to
our setting and make sense here as well.)

Definition 4 (Principles). Let N = (S,O,R) be an arbitrary normative
graph, C some consideration, and C ′ and C∗ a modifier and an undercutter
of C, then:
2 It’s worth noting two features of our model that might turn out to be either advan-

tages or drawbacks. First, we represent reasons with negative polarity—reasons that
speak against actions—only indirectly. In our model, any reason is always a reason
for an option. So, it is a reason against an option only in so far as it adds to the final
weight of an alternative option. Second, it is sometimes claimed that reasons can
switch their polarity when combined [8]. Thus, in an (in)famous example, Prakken
and Sartor [8] describe the effects of heat and rain on your going jogging: taken by
themselves, the facts that it is raining and that it is hot constitute reasons for you
not to go jogging, but, taken in combination, they speak in favor of going jogging.
If these cases exist, our model cannot account for them. However, given that their
existence is disputed (see e.g., [3,7,9]), our model may well gives the correct verdict
here.
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1. No Effects from Spurious Reasons: If C is a reason in N + C, then if
fN+C(C) = 0, then for all options o, rN (o) = rN+C(o).

2. No Effects from Spurious Modifiers: For any modifier C /∈ R of a
consideration C ′ ∈ R with fN+C(C) = 0, we have fN (C ′) = fN+C(C ′).

3. No Valence Flips for Modifiers: Given an amplifier C of some consid-
eration C ′ ∈ R, fN (C ′) ≥ fN−C(C ′). Analogously, for an attenuator C of
some consideration C ′, fN (C ′) ≤ fN−C(C ′).

4. Modifier Reciprocity: For any C ∈ R, if g(a+
C) = g(a−

C) and g(uC) = 0,
then we have f(C) = wC .

5. Modeler’s Delight: For any consideration C ∈ R, we have f(C) ≥ 0. If
g(uC) > 0, then f(C) = 0.

6. Normative Parsimony The function governing the weight of different con-
siderations is uniform (and not gerrymandered) for reasons, undercutters,
and modifiers.

7. Relativity Given a consideration C = (p, c, u, a−, a+, w) and x > 0, let x×C
be (p, c, u, a−, a+, x×w). Given a set of considerations R, let x×R = {x×C :
C ∈ R} and x × N = (S,O, x × R). Then rN (o) = forbidden iff rx×N (o) =
forbidden.

8. Distinct Roles If C ′ ∈ R, C∗ /∈ R, fN+C∗
(C∗) �= 0 and fN (C) �= 0, then

f
N+C∗

−C′ (C) �= fN (C). And if C∗ ∈ R, C ′ /∈ R, fN (C∗) �= 0 and fN−C∗
(C) �=

0, then fN+C′
−C∗ (C) �= fN (C).

Principles 1 and 2 state that the addition of both reasons and modifiers with
the (final) weight of 0 should have no effects on which options are permissible
and the final values of other specific considerations. Principle 3 states that no
attenuator (no matter the rest of the graph) should ever help strengthen the
weight of the consideration it modifies and that no amplifier should help weaken
the weight of the consideration it modifies. Similarly, Principle 4 states that if the
(aggregated) weight of attenuators and amplifiers is the same, their contributions
cancel out and the final weight of the consideration they modify (if it is not
undercut) is simply its default weight. Principles 5 and 6 are meant to ensure that
weights get calculated in accordance with the scales metaphor. Principle 5 says
that the minimal weight a consideration can have is 0 and that 0 is the weight it
has if it is undercut. Principle 6 requires that the final weights of different kinds
of normatively-relevant considerations are computed in the same way. Principle
7 states that weights have no meaning outside of the ratio scale they constitute.
Principle 8, which one may or may not accept depending on one’s metaethical
inclinations, states that the roles of modifiers and undercutters in the economy
of reasons should be distinct. (In particular, it states that an attenuator is never
strong enough to entirely remove the weight of a consideration.)

With these principles in mind, we turn to concrete examples. Recall that we
are looking for two functions g and f . The simplest thing to do for g is to add
the (final) values of the nodes that “feed into” a consideration:

g+(x) =
∑

C′∈Cx

f(C ′)
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Notice that g+ treats undercutters in an intuitive way, returning 0 just in case
there either are no undercutters or all of them are themselves undercut. The
leaves of the graph get assigned the weight 0. So, given a function f , we can
compute the final weight of a consideration, working from the leaves up the tree.

Turning to the function f , we define two concrete functions here. The first of
these, f+, assigns a final weight of zero if either the consideration is undercut or
if the combined weight of its attenuators is greater than that of its amplifiers and
its default weight. Otherwise, it returns the default weight plus the difference
between the combined weight of its amplifiers and attenuators. (Note that 1 is
the indicator function.)

f+(C) = 1{0}(g(uC)) ∗ max(0, g(a+
C) − g(a−

C) + wC)

The second function f× uses modifiers as multipliers: amplifiers increase the
weight of a consideration by a factor, and attenuators lower it by a factor.

f×(C) = 1{0}(g(uC)) ∗ 1 + g(a+
C)

1 + g(a−
C)

∗ wC

5 Results and Related Work

We take it that Principles 1–7 state conditions that should be satisfied by all
functions, while Principle 8 (Distinct Roles) is up for debate. Our first result
runs thus—its proof is straightforward and omitted for reasons of space.

Theorem 1. Functions g+ and f× satisfy all principles stated in Definition 4.
Functions g+ and f+ satisfy all principles but Distinct Roles.

While (f× and g+) allow for attenuators to be as strong as undercutters and
(f+ and g+) doesn’t, a plausible result about the relationship between atten-
uators and undercutters can be established for both. Intuitively, it states that
undercutters can be seen as a limit case of attenuators:

Theorem 2. Given the functions (f× and g+) or (f+ and g+) and any consider-
ation C0, there is a series of attenuators Ci such that each Ci attenuates C0 that
can be added to the normative graph N , such that limi→∞ fN+∪j=i

j=1Cj (C0) = 0.

Notice that Definition 4 is only the first step towards mapping out the space
of normative principles that weighing functions can (should) satisfy. We leave
fully-fledged principle-based analysis for future work. In the remainder of this
section, we briefly compare our model to the work that comes the closest to it:
Gordon and Walton’s model of “balancing arguments” [4], the work on weighted
argumentation by Amgoud et al. [1,2], and Horty’s model of reasons [5].

We repurposed the model from [4] to a particular domain. As a result, we
obtained a model that is simpler in a number of respects. For instance, the
graphs that we work with are acyclic, and we have no need for labeling. The
way we interpret weights is also different: where [4] assign values from [0, 1] to
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arguments, interpreting them as the “level of acceptance”, we allow all positive
reals. As a result, we have also dropped the notion of “proof standard”, which
gets at the idea of a threshold of evidence for accepting a conclusion. No such
threshold seems to exist in the context of practical normative reasons.

Amgoud et al. [1,2] work with the interval [0, 1], representing argument accep-
tance in their principle-based analysis of weighted argumentation. Their model
assigns both default and final weights to arguments: attacks on arguments lower
the final weight, while support increases it. The bulk of their principles can
be restated in our framework, and many of them apply to reasons for action.
In fact, our Principles 1–6 can be seen as translations from [2]. There are two
main differences between the approach of Amgoud et al. and ours. First, the
target of Amgoud et al. is the acceptability of arguments and not the interac-
tion between normative reasons. Second, due to the interval scale used in their
mode, an argument can be fully accepted simply due to the arguments “feeding
into it”. In our model, an issue is essentially contrastive: an option’s normative
status always depends on all reasons for all options. It also means that some of
our principles (e.g., Principle 8) make little sense in the framework of Amgoud
et al., while other principles aren’t applicable in our model. Nevertheless, our
principles both serve to show the (dis)similarities between normative reasons
and arguments, we believe that there is a whole host of principles in the style of
[2] unique to normative reasons that are still to be explored in future work.

Lastly, there is the model of Horty [5], which is meant to play a similar role
to ours. The main advantage of our model over Horty’s is its closer alignment
to the idea of weight scales: our model associates magnitudes with reasons and
lets us model combination or aggregation of weights in a straightforward way.

Acknowledgement. Vincent de Wit and Aleks Knoks acknowledge financial support
from the Luxembourg National Research Fund (FNR). Knoks was supported through
the project OPEN O20/14776480, de Wit through the project PRIDE19/14268506. We
also thank our three anonymous referees for their generous comments.

References

1. Amgoud, L., Ben-Naim, J.: Evaluation of arguments in weighted bipolar graphs.
Int. J. Approximate Reasoning 99, 39–55 (2018)

2. Amgoud, L., Doder, D., Vesic, S.: Evaluation of argument strength in attack graphs:
foundations and semantics. Artif. Intell. 302, 1–61 (2022)

3. Bader, R.: Conditions, modifiers and holism. In: Lord, E., Maguire, B. (eds.) Weigh-
ing Reasons, pp. 27–55. Oxford University Press (2016)

4. Gordon, T., Walton, D.: Formalizing balancing arguments. In: Baroni, P., Gordon,
T., Scheffler, T., Stede, M. (eds.) Proceedings of the 2016 Conference on Computa-
tional Models of Argument (COMMA 2016), pp. 327–38. IOS Press (2016)

5. Horty, J.: Reasons as Defaults. Oxford University Press, Oxford (2012)
6. Lord, E., Maguire, B.: An opinionated guide to the weight of reasons. In: Lord, E.,

Maguire, B. (eds.) Weighing Reasons, pp. 3–24. Oxford University Press (2016)



Reasons in Weighted Argumentation Graphs 259

7. Maguire, B., Snedegar, J.: Normative metaphysics for accountants. Philos. Stud.
178, 363–84 (2018)

8. Prakken, H., Sartor, G.: Modelling reasoning with precedents in a formal dialogue
game. Artif. Intell. Law 6, 231–87 (1998)

9. Tucker, C.: A holist balance scale. J. Am. Philos. Assoc. First View 9, 1–21 (2022)


	Reasons in Weighted Argumentation Graphs
	1 Introduction
	2 (Normative) Weight Scales
	3 Normative Graphs
	4 Weighing Functions
	5 Results and Related Work
	References


