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Preface

This volume contains the papers presented at the 9th International Conference on
Logic, Rationality, and Interaction (LORI-IX 2023), held during October 26–29, 2023,
in Jinan, China, and hosted by the School of Philosophy and Social Development,
Institute of Concept and Reasoning, Shandong University.

The topics of the conference included: agency; argumentation and agreement; belief
representation; probability and uncertainty; belief revision and belief merging;
knowledge and action; dynamics of informational attitudes; intentions, plans, and
goals; decision making and planning; preference and utility; cooperation; strategic
reasoning and game theory; epistemology; social choice; social interaction; speech acts;
knowledge representation; norms and normative systems; natural language; rationality;
and philosophical logic.

We received 32 submissions. The papers were selected on the basis of at least two
single-blind reviews; all but 5 papers had at least three reviews. Among them, 17 full
papers and 7 short papers were accepted and included in the proceedings.

In addition, there were presentations by six keynote speakers:

Philippe Balbiani (CNRS, IRIT, University of Toulouse)
Patrick Blackburn (University of Roskilde)
Thomas Bolander (Technical University of Denmark)
Sujata Ghosh (Indian Statistical Institute)
Minghui Ma (Sun Yat-sen University)
Chinghui Su (Shandong University)

The first LORI event, LORI-I, took place in August 2007. Following the notable
success of this initial meeting, the series continued with eight more outstanding events
over the past 15 years. Beyond gathering researchers from East Asia, the LORI series
succeeded in attracting scholars from outside the region working on topics related to
logic, rationality, and interaction. A full history of the series can be found at http://
www.golori.org/.

We would like to thank all the members of the Program Committee for their hard
work and thorough reviews, Fenrong Liu and Johan van Benthem for their guidance,
and Liwu Rong, Chinghui Su, Zhiqiang Sun, Wenfang Wang, and Lun Zhang for the
local organisation. We also thank the School of Philosophy and Social Development,
Institute of Concept and Reasoning, Shandong University for sponsoring the
conference.

October 2023 Natasha Alechina
Andreas Herzig

Fei Liang

http://www.golori.org/
http://www.golori.org/
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Parametrized Modal Logic III: Applications
to Social Epistemic Logics

Philippe Balbiani

Toulouse Institute of Computer Science Research, CNRS-INPT-UT3,
Toulouse University, France

philippe.balbiani@irit.fr

Abstract. By means of a two-typed modal language where the modal connec-
tives of one type are indexed by formulas of the other type, we axiomatically
introduce different two-typed parametrized modal logics. Then, we prove their
completeness by means of the use of a tableaux-based approach and an adap-
tation of the canonical model construction and we prove their decidability by
means of the use of guarded fragments and an adaptation of the filtration
method. Finally, we will review their possible applications to the so-called social
epistemic logics.

Keywords: Parametrized modal logic � Completeness � Tableaux-based
approach � Canonical model construction � Decidability � Guarded fragments �
Filtration method � Social epistemic logics

For reasoning about knowledge, states and agents have been identified as the primitive
entities of interest. In this respect, one usually considers relational structures of the
form ðS;�Þ where S is a nonempty set of states and � is a function associating an
equivalence relation �a on S to every element a of a fixed set A of agents [4, 5, 7]. For
all a 2 A, in that setting, two states s and t are equivalent modulo �a exactly when a
cannot distinguish between s and t. As for distributed knowledge, it is of interest to
assume that � is also a function associating an equivalence relation �B on S to every
B 2 }ðAÞ in such a way that for all B 2 }ðAÞ, �B ¼ Tf�a: a 2 Bg.

The modal language interpreted over such relational structures traditionally consists
of one type of formulas, state-formulas, to be interpreted by sets of states.
State-formulas are constructed over the Boolean connectives and the modal connec-
tives ½B� — B ranging over }ðAÞ. The state-formula ½B�u is true in a state s of some
model if the state-formula u is true in every state of that model that is equivalent to s
modulo �B.

In many situations, one would like to use relational structures of the form ðS;A;�
; .Þ where on top of the above-considered elements S and �, one can find a nonempty
set A of agents and a function . associating a binary relation .s on A to every element s
of S. Which situations? Situations where relationships between agents such as the
following ones have to be taken into account: “agent a trusts agent b in state s”, “agent
a is a friend of agent b in state s”, etc [3, 6, 8] . In these situations, for all s 2 S, two
agents a and b are related by .s exactly when a trusts b in state s, a is a friend of b in
state s, etc. Moreover, on top of the assumption that � is also a function associating an

https://orcid.org/0000-0002-3569-9160


equivalence relation �B on S to every B 2 }ðAÞ in such a way that for all B 2 }ðAÞ,
�B ¼ Tf�a: a 2 Bg, one naturally assumes that . is also a function associating a
binary relation .T on A to every T 2 }ðSÞ in such a way that for all T 2 }ðSÞ,
.T ¼ Tf.s : s 2 Tg.

The modal language interpreted over relational structures of the form ðS;A;�; .Þ
naturally consists of two types of formulas: state-formulas, to be interpreted by sets of
states, and agent-formulas, to be interpreted by sets of agents [1, 2] . State-formulas are
constructed over the Boolean connectives and the modal connectives ½a� — a ranging
over the set of all agent-formulas — whereas agent-formulas are constructed over the
Boolean connectives and the modal connectives ½u� — u ranging over the set of all
state-formulas. The state-formula ½a�u is true in a state s of some model if the
state-formula u is true in every state of that model that can be distinguished from state s
by no a-agents, whereas the agent-formula ½u�a is true in an agent a of some model if
the agent-formula a is true in every agent of that model that is trusted by agent a at all
u-states.

By means of a two-typed modal language where the modal connectives of one type
are indexed by formulas of the other type, we axiomatically introduce different
two-typed parametrized modal logics. Then, we prove their completeness by means of
an adaptation of the canonical model construction and we prove their decidability by
means of an adaptation of the filtration method. Finally, we will review their possible
applications to the so-called social epistemic logics [9] .

References
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Knowledge, Propositional Quantification
and Hybrid Logic

Patrick Blackburn

Section for Philosophy and Science Studies, IKH, Roskilde University, Denmark
patrick.rowan.blackburn@gmail.com

Modal logics enriched with propositional quantification have been explored for at least
a century now, but the literature about them remains relatively small. In some ways this
is understandable: as Kit Fine showed fifty years ago, the seemingly simple act of
allowing propositional symbols to be bound by existential and universal quantifiers
typically leads to extremely complex logics. But if we are interested in exploring the
logics of knowledge, it seems that this complexity must be embraced. Knowledge lives
near both truth and paradox, and the expressivity offered by explicit propositional
quantification, although computationally awkward, makes such logics a natural tool for
mapping the many forms of reasoning it gives rise to.

In this talk I will discuss modal logics with propositional quantification, starting
with early work by Arthur Prior on paradoxes involving knowledge, and moving
towards knowledge representation for AI. Along the way I will present some recent
joint work (with Torben Brauner and Julie Lundbak Kofod) on how to hybridize modal
logics with propositional quantification with the help of general models.

https://orcid.org/0000-0001-9345-552X


From Dynamic Epistemic Logic to Socially
Intelligent Robots

Thomas Bolander

Technical University of Denmark, Denmark
tobo@dtu.dk

Dynamic Epistemic Logic (DEL) can be used as a formalism for agents to represent the
mental states of other agents: their beliefs and knowledge, and potentially even their
plans and goals. Hence, the logic can be used as a formalism to give agents a Theory of
Mind allowing them to take the perspective of other agents. In my research, I have
combined DEL with techniques from automated planning in order to describe a theory
of what I call Epistemic Planning: planning where agents explicitly reason about the
mental states of others. One of the recurring themes is implicit coordination: how to
successfully achieve joint goals in decentralised multi-agent systems without prior
negotiation or coordination. The talk will first motivate the importance of Theory of
Mind reasoning to achieve efficient agent interaction and coordination, will then give a
brief introduction to epistemic planning based on DEL, address its (computational)
complexity, address issues of implicit coordination and, finally, demonstrate applica-
tions of epistemic planning in human-robot collaboration.
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On Epistemic Reasoning in Games on Graphs

Sujata Ghosh

Indian Statistical Institute, Chennai
sujata@isichennai.res.in

Let us start our discussion with two-player games on graphs, where we consider two
players playing a turn-based game by moving a token through a directed graph, tracing
out a finite or infinite path. Such simple games provide us with compelling tools for
reasoning about diverse phenomena arising in areas like computer science, logic, lin-
guistics, economics, mathematics, philosophy, and biology. One usually considers
different variants of such graph games where such variations arise from different
winning conditions (e.g., reachability, parity [6]), independent moves of players (e.g.,
cop and robber game [10]), one player obstructing moves of the others (e.g., sabotage
game [2], poison game [5]) and similar others. In the subtle interactions of the distinct
domains like game theory, logic, linguistics and computer science, these graph games
provide natural representations for intelligent machine models that need to interact with
the uncertain environment.

Both two-player and many-player versions of these games on graphs have been
studied in some detail from the algorithmic and combinatorial perspectives, e.g., see [4,
7]. From the logical perspectives, such studies got a renewed focus with the corre-
sponding study on sabotage games [1], and subsequently, a more general overview [3]
on logics for graph games. However, in all these studies, it was assumed that players
have perfect information at each and every step of the game and the discussion pivoted
around the moves of the players. Following the lines of study in [3], this work starts off
with the simplest of the graph games, namely, travel games, and then moves on to
study the variants like cops and robber game and sabotage game, where we mainly deal
with the information available to the players with respect to their positions and moves.
Our primary focus of study is the cops and robber game, alongside which we briefly
touch upon the other ones as well.

The cops and robber game is an ideal setting for modelling search missions and
pursuit-evasion environments in the study of multi-agent systems. As mentioned ear-
lier, extensive research has been done on these games, mostly from the algorithmic and
combinatorial perspectives (see e.g., [4]), assuming a notion of perfect information for
the players. What we intend to do in our logical study is to bring to the fore the
interplay of the moves made by the players and the information available to them.
A natural question that arises in this context is about the extent to which such infor-
mation can be made a primary notion in the graph game model. To this end, we
propose to add an epistemic dimension [8] to the existing logical frameworks of cops

Supported by Department of Science and Technology, Government of India for financial support vide
Reference No DST/CSRI/2018/202 under Cognitive Science Research Initiative (CSRI) to carry
out this work.



and robber games on graphs [9]. We consider 1� i 2 N cops and a robber moving
along a finite connected graph, and describe their knowledge in terms of limited
resources.

While epistemic reasoning of the players playing the hide and seek game or the
cops and robber game blends in quite naturally with the game scenarios in terms of
winning conditions, for the general travel games or the sabotage games, such reasoning
involves moves and positions of the players in a more structural manner, akin to the
notion of imperfect information in game theory. Even in such cases, the framework
developed for the cops and robber game may provide strategic insights into the
action-information interplay amongst the concerned players. Consequently, the natural
next steps for the study of epistemic reasoning in games on graphs may well be along
these directions.
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Cut Elimination in Gentzen Sequent Calculi
for Classical Tense Logics

Minghui Ma

Institute of Logic and Cognition, Department of Philosophy, Sun Yat-sen
University, Guangzhou, China
mamh6@mail.sysu.edu.cn

The philosophical development of modern tense logic goes back to Prior’s analysis of
temporal modalities. Basic tense operators include h (future necessity), � (future
possibility), � (past necessity) and � (past possibility). From a mathematical per-
spective, the minimal (classical) tense logic Kt is the extension of classical proposi-
tional logic with a Galois connection. In general, a pair of unary maps hf ; gi on a poset
P is called a Galois connection if for all x; y 2 P, f ðxÞ� y if and only if x� gðyÞ. Thus
in a tense logic L the pairs h�;�i and h�;hi form Galois connections, namely,
(i) �u ‘L w if and only if u ‘L �w; and (ii) �u ‘L w if and only if u ‘L hw.
Thomason [9] formulated tense logics as extensions of classical propositional logic
with modal axioms and rules.

Many efforts have been made by logicians to find cut-free sequent calculi for modal
and tense logics. Difficulties are encountered already for many normal modal logics,
and thus partial solutions including labelled sequent calculus, display calculus,
hyper-sequent calculus and deep inference are tried so that they generalize Gentzen’s
sequent calculus (cf. e.g. [8]). In this talk, we start from display calculi for tense logics
(cf. [1, 5]), and show a new type of cut-free sequent calculus for classical tense logic
which has been developed in [6, 7] .

Belnap’s display calculus for tense logic generalizes Gentzen’s sequent calculus by
introducing structural connectives for tense operators. A typical feature of such a
calculus is the displaying property, namely, for every sequent C ) D and every part R
of the antecedent (resp. succedent), there exists a structurally equivalent sequent R )
H (resp. H ) R) such that R alone is its antecedent (resp. succedent). Here R is
displayed in R ) H (resp. H ) R). Cerrato [2] uses structural operators ½:� and h:i for
h and � respectively to give a cut-free sequent calculus for the minimal modal logic K,
but it fails to show cut-elimination for very simple normal extensions of K. Kashima [3]
introduced the structural operators Pf:g and Ff:g for � and � respectively, and showed
cut-elimination in one-side sequent calculi for eight tense logics.

In the author’s recent joint work [7], structural operators � and � for � and � are
used to construct single-formula sequents, and a Gentzen sequent calculus GKt for the
minimal tense logic Kt is developed. This sequent calculus has the left side displaying
property, namely, for every sequent C ) a and a part D of C, there exists an equivalent
sequent D ) b such that D is displayed on the left side. The cut-elimination of GKt is
shown through some intermediate sequent systems. Furthermore, we consider strictly
positive axioms of the form u ! w where u and w are strictly positive formulas which

https://orcid.org/0000-0003-3733-7291


are built from propositional variables and ? using only ^, � and �. Strictly positive
modal logics are explored in [4]. All tense logics axiomatized over Kt by strictly
positive axioms have cut-free sequent calculi which are obtained by enriching GKt with
structural rules calculated from strictly positive axioms. In this talk, we shall show
further how some tense formulas can be calculated into an equivalent strictly positive
axiom via an algebraic correspondence theory.
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The Hindsight via the Consequent

Ching Hui Su

School of Philosophy and Social Development, Institute of Concept and Rea-
soning, Shandong University, Jinan, China

pcs0929@gmail.com

Abstract. The purpose of the present paper is to develop an account of coun-
terfactuals that respect the following three ideas: the important role of the
consequent when evaluating, the inferential connection between the antecedents
and the consequents, and the gappy intuition about conditionals. The first step is
to adopt Dov M. Gabbay’s accessibility relation among possible worlds in his
1972 paper, where worlds relevant to both the antecedent and the consequent are
accessible to the base world. The second step is to impose the probabilistic
dependency between the antecedent and the consequent. The final step is to
replace the truth condition of conditionals by the justification condition of
conditionals, and the resulting account is a justification theory of counterfac-
tuals.

In [4] , Dov M. Gabbay proposes to formalize counterfactuals as ‘huwðu ! wÞ’,
where ‘!’ stands for material implication, indicating two ideas: one is that the con-
sequent, w, is important when evaluating counterfactuals, and the other is that there is
some inferential connection between the antecedents and the consequents. Though
many authors have addressed the latter since Nelson Goodman [5] , few addressed the
former. Let’s call the former idea ‘Consequent’ and the latter idea ‘Inferentialism’.
The motivation for Consequent pertains to IC pairs, i.e., two conditionals have the
same antecedent and inconsistent consequents, but intuitively they both can be true.
Here is his proposal: wðu[wÞ ¼ 1, if and only if, for all w0 2 W , if
ðw;u;w;w0Þ 2 R[ , then w0ðu ! wÞ ¼ 1, where ‘[ ’ stands for counterfactuals.
However, his proposal is not good enough, for we still have no idea which possible
world should be accessible.

Based on Goodman [5] , when considering ‘u[w’, we propose that w should be
derived from u with the context set D/ww (w. r. t. the antecedent u, consequent w and
the base world w). Now, we’re confined to context set D�w. Given that we can order
the context sets in terms of their degrees of deviance from the actual world, here is our
proposal: Duwwðu[wÞ ¼ 1, if and only if, for Duww0 ;Duww00 2 !uww, Duww0 � wDuww00 ,
where Duww0 is defined as the context sets that instantiate Duww [fu;wg and Duww00 is
defined as the context sets that instantiate Duww [fu;:wg.

Another motivation for Inferentialism is spurred by many psychologists, for their
findings, based on well-designed experiments, suggest that there is some kind of
inferential connection between the antecedents and the consequents [3] . So we propose
that Duww :¼ fvju ( v or w ( vg where w ( v stands for v and w are probabilisti-
cally dependent in w (i. e. prðwjvÞ 6¼ prðwÞ). Hence, the above proposal will become:
D/wwðu[wÞ ¼ 1, if and only if, (a) prðwjuÞ 6¼ prðwÞ, and (b) for
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Duww0 ;Duww00 2 !uww, Duww0 � wDuww00 , where Duww0 is defined as the context sets that
instantiate Duww [fu;wg and Duww00 is defined as the context sets that instantiate
Duww [fu;:wg.

In [1], Ernest Adams believes that we don’t have clear intuition about how to apply
the notion of truth to conditionals, and proposes that we should talk of the justification
condition or assertability condition of conditionals, rather than truth condition of
conditionals. To set apart these three ideas, let’s consider the following conditional
satisfying Inferentialism [2]:

1. (a) If Jones proposed, William turned her down.
(b) If anyone constructs a proof of this theorem, I will buy him or her a big cake.

Most people will agree that conditionals will be true, if both the antecedent and the
consequent are true, and be false, if the antecedent is true but the consequent is false.
However, it seems unclear whether (1a) is true when Jones didn’t propose, and whether
(1b) is true when everyone fails to construct a proof. Let’s call the underdetermination
here ‘Gappy’. Now consider (1b), which looks like making a promise, i.e., a speech act.
As many will agree, speech acts are actions to which the notion of truth is not appli-
cable, so that we can explain why people lack clear intuition about the truth value of
conditionals. That is, when asserting a conditional, the speaker is making a speech act:
supposing that the antecedent holds, then the consequent will follow. This line of
thought can be applied to (1a) and many others.

The motivation for Gappy is due to the obscurity of truth-makers for conditionals.
Many authors take possible worlds as truth-makers for conditionals, but one may
wonder what they are. It seems that modal realism takes possible worlds as primitive,
resisting any further explanation, but this primitiveness brings us nothing but obscurity.
Therefore, it is proposed that we should replace the truth condition by the justification
condition when considering conditionals. Starting with Gabbay’s proposal, we end up
with a justification theory of counterfactuals which respects Consequent, Inferential-
ism, and Gappy.
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An Inferential Theory of Causal Reasoning
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Abstract. We present a general formalism of causal reasoning that
encompasses both Pearl’s approach to causality and a number of key
systems of nonmonotonic reasoning in artificial intelligence.

Keywords: Causation · Rationality · Semantics · Inference · Defaults

The aim of the paper consists in providing a principle-based description for
a particular theory of causal reasoning. This theory, called the causal calculus
(see [14,16]) has been born as part of a general field of nonmonotonic reasoning
in artificial intelligence, where it has been shown to cover important areas and
applications of AI. A new stage in the development of this theory has emerged
with the realization that it can also provide a formal representation for Pearl’s
approach to causality in the framework of structural equation models (see [9]).
A detailed description of the causal calculus, as well as the range of its current
applications in AI and beyond can be found in [7].

In this paper, we are going to show that this formalism is based on a profound
rationality principle that provides foundations for a general theory of causal
reasoning, a kind of reasoning that goes well beyond standard deduction and
correspondence semantics.

The formalism of causal reasoning described below will have a language that
consists of a set of (causal) inference rules on propositions. It will also have a
semantics defined in terms of valuations on propositions that are in accord with
the causal rules. This semantics, however, will be based on a radically different,
causal principle of acceptance for propositions that will set the corresponding
reasoning system apart from traditional representational approaches to language
and meaning. In particular, causal rules cannot be defined in this formalism as
rules that preserve acceptance. Moreover, though a causal theory will determine
its associated rational semantics of acceptance, the latter does not and even can-
not determine the source causal theory. This fact will have multiple consequences
for the corresponding theory of causal reasoning. It will lead to an entirely new
agenda and desiderata for such a reasoning.

1 Causal Theories and Their Semantics

As it is common for reasoning formalisms, our system of causal reasoning will
have a language and an associated semantics. Its language will be a set of causal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 A. Bochman

rules that are defined on an underlying language of propositions, while its seman-
tics will be a set of valuations on propositions that conform to the causal rules.
At the first stage, our underlying language L will be defined simply as a set of
(atomic) propositions.

A causal rule is an inference rule of the form a ⇒ A, where a is a finite set of
propositions and A a proposition. The rule asserts that a set a of propositions
causes proposition A. A set of causal rules will be called a causal theory. A causal
theory will provide an ultimate basis of causal reasoning, mainly in the form of
constraints it imposes on acceptance of propositions.

The basic principle of causal reasoning can be formulated as the following
rationality postulate of acceptance for propositions:

Causal Acceptance Principle. A proposition A is accepted with respect to
a causal theory Δ if and only if Δ contains a causal rule a ⇒ A such that all
propositions in a are accepted.

The principle states that (acceptance of) propositions can both serve as and
stand in need of reasons. In this sense, it can be viewed as a constitutive principle
of rationality in our causal context (see [11]). Sets of accepted propositions that
conform to the above principle will form the models of the corresponding causal
theory.

The two parts of the above principle could be expressed as two independent
rationality postulates:

Preservation Principle. If all propositions in a are accepted, and a causes A,
then A should be accepted.

Principle of Sufficient Reason. Any proposition should have a cause for its
acceptance.

The Preservation Principle states that the very concept of an inference rule
(however understood) presupposes that such a rule should preserve (or ‘trans-
mit’) acceptance of propositions. On a normative reading, it states that existence
of (sufficient) reason is sufficient for acceptance.

Leibniz’ Principle of Sufficient Reason is again a normative principle of rea-
soning stating that propositions require reasons for their acceptance, and such
reasons are provided by establishing their causes. The origins of this principle go
back to the ancient law of causality, but it surfaces, for instance, as the principle
of definitional reflection in proof-theoretic approaches (see, e.g., [22]).

Example 1. The following causal theory provides a causal description of some
well-known example originated in [17].1

Rained ⇒ Grasswet

Sprinkler ⇒ Grasswet

Rained ⇒ Streetwet.

1 We assume that the labels of associated propositions are self-explanatory.
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Just as for ordinary deductive inference systems, if, for instance, Rained is
accepted with respect to such a causal theory, then both Grasswet and Streetwet
should also be accepted. However, in a causal reasoning with this causal the-
ory, any acceptable set of propositions that contains Grasswet should contain
either Rained or Sprinkler as its causes. Similarly, Streetwet implies in this
sense acceptance of both its only possible cause Rained and a collateral effect
Grasswet. Both derivations from causes to their effects and from effects to their
possible causes constitute essential parts of causal reasoning.

Rational Semantics. The semantics of a causal theory will be defined in terms
of valuations on propositions. A valuation is a function v ∈ {0, 1}L that assigns
either 1 (‘truth’) or 0 (‘falsity’) to every proposition of the language L. If v(A) =
1, we will say that proposition A is accepted (‘taken-true’) in the valuation v. A
valuation can be safely identified with its associated set of accepted propositions,
and we will often view v itself as a set of (accepted) propositions.

For any set u of propositions and a causal theory Δ, we will denote by Δ(u)
the set of all propositions that are directly caused by u in Δ, that is,

Δ(u) = {A | a ⇒ A ∈ Δ, a ⊆ u}.

This notation will help in formulating the semantics for our causal language.

Definition 1. – A causal model of a causal theory Δ is a valuation that sat-
isfies the condition

v = Δ(v).

– A rational semantics of a causal theory is the set of all its causal models.

The notion of a causal model provides precise formal expression of the Causal
Acceptance principle since it determines that a proposition is accepted in a model
if and only if it has a cause in this model.

Δ(u) is a monotonic operator on the set of propositions, while causal mod-
els correspond to its fixed points. Consequently, any causal theory has at least
one causal model, so it always has a rational semantics. As an important spe-
cial case, a causal theory always has the least model. This model provides a
representation of (deductive) provability in our causal framework. However, it
expresses only a small part of the informational content embodied in the source
causal theory. Moreover, this observation can actually be extended to the ratio-
nal semantics itself. A causal model, viewed just as a set of (accepted) propo-
sitions, contains only purely categorical, factual information. In this respect, it
provides only a possible factual instantiation (a “factual shadow,” if you like) of
the rich causal information embodied in the source causal theory, what causes
what. For instance, the Preservation principle cannot be used as a sole principle
of validity for the causal rules themselves. Namely, we cannot follow Tarski in
defining causal rules as inference rules that preserve acceptance. This could be
seen already from the fact that such a stipulation would sanction the Reflexivity
postulate of deductive consequence (namely, all rules of the form A ⇒ A) and
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this would trivialize in turn the second part of our rationality postulate, the
principle of sufficient reason: on a causal reading, rules A ⇒ A will make all
propositions self-justified (self-evident).2 Incidentally, this observation indicates
also that (absence of) Reflexivity constitutes one of the key differences between
causal inference and deductive consequence.

2 Causal Inference

It turns out that there are formal derivations among causal rules that always
preserve the rational semantics. Such derivations will be taken to constitute the
underlying logic of causal inference.

Definition 2. A causal inference relation is a set of causal rules that is closed
with respect to the following derivation rules:3

Monotonicity If a ⇒ A and a ⊆ b, then b ⇒ A;
Cut If a ⇒ A and a,A ⇒ B, then a ⇒ B.

The notion of causal inference incorporates two of the three basic postulates
for ordinary Tarski consequence relations. It disavows, however, the first postu-
late of Tarski consequence, the Reflexivity postulate. It is precisely this ‘omis-
sion’ that creates the possibility of causal reasoning in this framework. Still, the
remaining two postulates capture the notion of derivability among propositions
that is determined by a given set of (causal) inference rules.

It should be noted that we do not require that our causal inference should
be anti-reflexive. Reflexive rules A ⇒ A can belong to a causal theory, but in
the framework of causal reasoning they already acquire a nontrivial content.
More precisely, such a rule says that A is a self-evident proposition that does
not require further justification for its acceptance. Propositions that satisfy such
rules will be called assumptions in what follows.

We will extend causal rules to rules having arbitrary sets of propositions as
premises using a compactness recipe: for any set u of propositions, we define
u ⇒ A as follows:

u ⇒ A ≡def a ⇒ A, for some finite a ⊆ u.

For a set u of propositions, C(u) will denote the set of propositions caused
by u with respect to a causal inference relation, that is, C(u) = {A | u ⇒ A}.
This causal operator plays much the same role as the usual derivability operator
for consequence relations. In particular, the above postulates of causal inference
can be recast as the following properties of the causal operator:

Monotonicity If u ⊆ v, then C(u) ⊆ C(v).

2 See [20] for a similar point.
3 In what follows, causal rules a ⇒ A are used both as formal objects of our theory
and as statements in the meta-language (saying that a causes A).
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Cut C(u ∪ C(u)) ⊆ C(u).

Thus, C is monotonic. However, the inclusion u ⊆ C(u) does not always hold.
Also, C is not idempotent, that is, C(C(u)) can be distinct from C(u).4

For a causal theory Δ, we will denote by ⇒Δ the least causal inference
relation that includes Δ, while CΔ will denote the associated causal operator.

2.1 Causal Vs. Semantic Equivalence

Now we will show that causal inference constitutes a logical framework for rea-
soning with causal models.

Definition 3. Two causal theories will be called semantically equivalent if they
determine the same rational semantics.

If ⇒Δ is the least causal inference relation that contains a causal theory Δ,
then we have:

Lemma 1. Any causal theory Δ is semantically equivalent to ⇒Δ.

Definition 4. Two causal theories Δ and Γ will be called logically equivalent,
if each can be obtained from the other using derivation rules of causal inference.
Or, equivalently, when ⇒Δ coincides with ⇒Γ .

Now, as an immediate consequence of the previous lemma, we obtain:

Corollary 2. Logically equivalent causal theories are semantically equivalent.

The reverse implication in the above corollary does not hold, and a deep rea-
son for this is that the rational semantics does not fully determine the content
of the source causal theory. This means, in particular, that it may well happen
that two essentially (i.e., informationally) different causal theories could deter-
mine the same rational semantics. This under-determination is closely related
to the fact that semantic equivalence of causal theories is nonmonotonic; it is
not preserved under extensions of causal theories with further causal rules. The
following simple example illustrates this.

Example 2. Let us consider two causal theories: {A ⇒ B} and {C ⇒ D}.
These causal theories are obviously different, though they are semantically equiv-
alent since they determine the same rational semantics which contains a single
model ∅ in which no proposition is accepted. Now let us add to these causal the-
ories the same causal rule A ⇒ A. Then the first causal theory will already have
an additional model {A,B}, while the semantics of second theory will include
two models, ∅ and {A}.

A stronger, logical counterpart of semantic equivalence that would be pre-
served under addition of new causal rules can be defined as follows.
4 For instance, A can directly cause B, though there are no intermediate causes
between A and B.
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Definition 5. Causal theories Δ and Γ are strongly semantically equivalent if,
for any set Φ of causal rules, Δ ∪ Φ is semantically equivalent to Γ ∪ Φ.

Strongly equivalent causal theories are “equivalent forever”-that is, they are
interchangeable in any larger causal theory without changing the associated
rational semantics. Accordingly, strong equivalence could be viewed as a kind of
logical equivalence with respect to some background logic of causal rules. And
the theorem below shows that this logic is precisely the logic of causal inference.

Theorem 3. Two causal theories are strongly semantically equivalent iff they
are logically equivalent.

The main idea behind the proof of the above theorem is that if two causal
theories are not logically equivalent, we can always find some further causal
rules such that their addition to these two theories will produce new causal
theories that will already have different rational semantics. This result implies,
in particular, that causal inference relations are maximal inference relations that
are adequate for causal reasoning with respect to the rational semantics.

2.2 Causal Inference Vs. Deductive Consequence

A further insight into the properties of causal inference can be obtained by
comparing it with deductive consequence. Thus, for a causal inference relation
⇒ we can define the associated consequence relation �⇒ as follows:

u �⇒ A ≡def A ∈ u or u ⇒ A.

Then the following fact can be easily verified.

Lemma 4. If ⇒ is a causal inference relation, then �⇒ is the least consequence
relation containing ⇒.

Let Cn⇒ denote the consequence operator corresponding to �⇒. Then we
have the following equality, for any set u of propositions:

Cn⇒(u) = u ∪ C(u).

Now, the Cut postulate immediately implies the following equality:

C(u) = C(Cn⇒(u)).

Actually, the same Cut postulate implies also C(u) = Cn⇒(C(u)), so the
causal operator absorbs Cn⇒ on both sides:

Cn⇒ ◦ C = C ◦ Cn⇒ = C.

This shows that deductive consequences of a given causal theory can be used
as intermediate premises and conclusions in causal inference. In a hindsight,
this could explain why it has been so difficult to distinguish causal reasoning
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proper from general deductive reasoning. In fact, causal rules could even be
seen as a special kind of deductive rules. This view naturally fits Aristotle’s
theory of reasoning in his Analytics where (causal) demonstrations were viewed
as a species of syllogisms (deductions) (see [7]). It should be kept in mind,
however, that deductive inference alone is insufficient for determining the causal
consequences of a set of propositions. In other words, deductive consequence
cannot be used for determining the corresponding causal inference associated
with a given set of inference rules.

Axioms Versus Assumptions. The rational semantics requires that any accepted
proposition should have a cause. Accordingly, justification of accepted proposi-
tions constitutes an essential part of this semantic framework. In fact, this is a
common feature of many other formalisms of nonmonotonic reasoning in AI (see,
e.g., [12] for an abstract theory of justifications in nonmonotonic reasoning).

The law of causality inevitably leads to a fundamental problem known already
in antiquity as the Agrippan trilemma: if you do not want to accept infinite
regress of causation (or justification), you should accept either uncaused or self-
caused propositions. Now, in the framework of causal theories, there are two
kinds of propositions that can play, respectively, these two roles:

Definition 6. – A proposition A is an axiom of a causal theory Δ if the rule
∅ ⇒ A belongs to Δ;

– A proposition A will be called an assumption of a causal theory if the rule
A ⇒ A belongs to it.

Example 3. Let us return to Pearl’s example (Example 1):

Rained ⇒ Grasswet Sprinkler ⇒ Grasswet Rained ⇒ Streetwet

Note first that, taken by itself, this causal theory does not have causal models
(more precisely, it has a single empty causal model), mainly because the causal
status of Rained and Sprinkler are not determined. But now let’s make Rained
and Sprinkler causal assumptions of our theory:

Rained ⇒ Rained Sprinkler ⇒ Sprinkler.

As a result, the rational semantics of this causal theory will acquire three
additional causal models:

{Rained,Grasswet, Streetwet} {Sprinkler,Grasswet}
{Rained, Sprinkler,Grasswet, Streetwet}

These models display already some correlations between the relevant propo-
sitions. For instance, that Rained is always accompanied by Grasswet and
Streetwet in these models (deduction), but also that Streetwet is always accom-
panied by Rained (abduction).
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In contrast to deductive reasoning, both axioms and assumptions provide
reasonable end-points of justification in causal reasoning: axioms do not require
justification, while assumptions correspond in this sense to self-evident propo-
sitions. For causal inference relations, any axiom will also be an assumption,
though not vice versa. The difference between the two can be described as fol-
lows. Every axiom must be accepted in any reasonable model, and hence it should
belong to any causal model. In contrast, any assumption can be accepted when
it is consistent with the rest of accepted propositions, but it does not have to
be accepted. As a result, causal theories admit in general multiple causal mod-
els depending on the assumptions we actually accept. This functionality makes
assumptions much similar to abducibles in a system of abductive reasoning. In
fact, it has been shown in [5] that causal inference allows us to provide a uniform
and syntax-independent description of abductive reasoning.

3 Supraclassical Causal Reasoning

Now we will raise our abstract theory to a full-fledged reasoning system that will
subsume, in particular, both Pearl’s causal formalism and a number of prominent
systems of nonmonotonic reasoning in artificial intelligence.

A basic disederatum, or prerequisite, of such a full-fledged system of reasoning
is the ability to use ordinary classical entailment as an integral part of causal
reasoning. Technically, a solution to this task is quite straightforward. Recall that
any causal theory has an associated consequence relation, and this consequence
relation can be safely used inside causal derivations. Accordingly, we only need to
require that this consequence relation should be supraclassical, that is, it should
subsume classical entailment.

From now on, our language L of propositions will be a classical propositional
language with the usual classical connectives and constants {∧,∨,¬,→, t, f}.
The symbol � will stand for the classical entailment while Th will denote
the associated classical provability operator. Also, p, g, r, . . . will denote propo-
sitional atoms, A,B,C, . . . will denote arbitrary classical propositions, and
a, b, c, . . . finite sets of propositions.

Definition 7. A causal inference relation in a classical language will be called
supraclassical if it satisfies the following additional rules:

(Strengthening) If b ⇒ C and a � B, for every B ∈ b, then a ⇒ C;
(Weakening) If a ⇒ B and B � C, then a ⇒ C;
(And) If a ⇒ B and a ⇒ C, then a ⇒ B ∧ C;
(Truth) t ⇒ t;
(Falsity) f ⇒ f .

As a matter of fact, the origins of the above postulates can be found in
Input/Output logics of [15], the only difference being the last postulate, Falsity.
The latter could be viewed as a causal version of Ex Falso Quodlibet (“from
falsehood, anything”), and its role consists, in effect, in excluding classically
inconsistent models.
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Causal reasoning in this setting requires also an appropriate ‘upgrade’ of the
rational semantics. Namely, it requires that causal models should also be closed
with respect to classical entailment.

Definition 8. – A classical causal model of a causal theory Δ is a consistent
valuation that satisfies

v = Th(Δ(v)).

– A supraclassical rational semantics of a causal theory is the set of all its
classical causal models.

A classical causal model is closed both with respect to the causal rules and
classical entailment. The principle of sufficient reason in such models is general-
ized, however, to the principle that any accepted proposition should be a classical
logical consequence of accepted propositions that are caused in the model.

It turns out that supraclassical causal inference provides an adequate logical
framework for reasoning with respect to the supraclassical rational semantics.

Definition 9. Causal theories Δ and Γ will be called s-equivalent if they deter-
mine the same supraclassical rational semantics, and strongly s-equivalent if,
for any set Φ of causal rules, Δ ∪ Φ is semantically s-equivalent to Γ ∪ Φ.

If ⇒s
Δ is the least supraclassical causal inference relation that contains a

causal theory Δ, then Δ will be strongly s-equivalent to ⇒s
Δ. Moreover, the fol-

lowing theorem shows that supraclassical causal inference constitutes a maximal
logic for the supraclassical semantics.

Theorem 5. Two causal theories are strongly s-equivalent if and only if they
determine the same supraclassical causal inference relation.

4 Defaults in Causal Reasoning

The causal calculus has been shown to cover significant parts of nonmonotonic
reasoning such as abduction and diagnosis, logic programming, and reasoning
about action and change. As a further illustration, we will describe now a ‘causal
counterpart’ of one of the key, original formalisms of nonmonotonic reasoning,
default logic of [21]. This causal representation will also allow us to clarify the
meaning of the main notions associated with default logic and first of all of the
concept of default itself.

Defaults can be viewed as a special kind of assumptions. Namely, they are
assumptions that we must accept unless there are reasons to the contrary.

Let us say that a proposition A is refuted if there is a cause for the contrary
proposition ¬A. Then we can formulate the following informal principle:

Default Acceptance. A default is an assumption that is accepted whenever it
is not refuted.
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Note, however, that ¬A is accepted in a causal model only if it has a cause
in this model (that is, when A is refuted). Accordingly, the principle of Default
Acceptance in causal models boils down to the principle of Default Bivalence:

Default Bivalence. For any causal model v and any default assumption A,
either A ∈ v or ¬A ∈ v.

Default Bivalence can be viewed as a characteristic property of defaults.
Again, this is in contrast with classical logical reasoning where all propositions
are required to satisfy bivalence. Note also that any axiom of a causal theory
will also be a default (namely a default that cannot be consistently refuted), so
defaults can be viewed as an intermediate notion between axioms and assump-
tions in general.

Reasoning in default logic amounts to deriving justified conclusions from a
default theory by using its inference rules and defaults. However, if the set of
all defaults is jointly incompatible with the background theory, we must make a
reasoned choice among the default assumptions. At this point, default reasoning
requires that a reasonable set of defaults should refute all defaults that are left
out. The appropriate choices of defaults (called stable sets) determine then the
extensions of a default theory which are taken to constitute the nonmonotonic
semantics of the latter. This notion of extension presupposes, in turn, that any
proposition which is not a default is accepted only if it is grounded, ultimately,
in the set of accepted defaults. In other words, once we choose an acceptable
(“stable”) set of defaults, the rest of acceptable propositions should be derived
from this set. This stringent, ‘puritan’ understanding of acceptance creates, in
effect, a bipolar system of reasoning that divides all propositions into two classes,
factual propositions and defaults, with opposite principles of acceptance. It is
this understanding that also makes default logic an instantiation of (assumption-
based) argumentation [10] where defaults play the role of arguments.

The following definition provides a causal representation of default reasoning.

Definition 10. – A default causal theory is a pair (Δ,D), where Δ is a causal
theory, and D a distinguished subset of its assumptions, called defaults.

– A default model of a default causal theory is a classical causal model m of Δ
that satisfies the following two conditions:
(Default Grounding) m is caused by its defaults: m = CΔ(m ∩ D).5
(Default Bivalence) For any default D ∈ D, either D ∈ m or ¬D ∈ m.

– A default semantics of a default causal theory is the set of its default models.

Default semantics can be viewed as a special case of the rational semantics
of causal theories. Still, there are two reasons why the reverse inclusion does
not hold. First, a causal model may be generated not only by defaults, but also
by other assumptions (on our causal understanding of the latter). Second, even
when a causal model is caused by some set of defaults, it may still not satisfy
5 Here CΔ is a causal operator corresponding to the least supraclassical causal infer-
ence relation containing Δ.
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the principle of default bivalence. This might happen, in particular, when the
background causal theory lacks appropriate cancellation rules that would allow
us to refute incompatible defaults. As an extreme case, a default causal theory
may even lack default models at all (though it always has causal models).

The above formalism provides an adequate description of default logic in
the sense that there exist back and forth translations between them (see [8]).
Moreover, the formalism of logic programming in AI naturally corresponds to
the special case of default causal theories in which classical negative literals are
defaults (see [3]).

Among many other things, default logic provides a feasible and working
account of defeasible reasoning while preserving monotonicity of inference rules
themselves, in contrast to approaches that are based on a total rejection of mono-
tonicity as a way of solving the problem of defeasible inference. However, the
discussion of the relative merits and shortcomings of these two basic approaches
to defeasibility in AI is beyond the scope of this study.

5 Pearl’s Causal Models and Basic Inference

Pearl’s approach to causal reasoning in the framework of structural equation
models can be viewed as an important instantiation of our general theory.
According to [18], a causal model is a triple M = 〈U, V, F 〉, where U is a set
of exogenous variables, V is a finite set of endogenous variables, and F is a set
of functions that can be represented as structural equations Vi = fi(PAi, Ui),
where PAi is the minimal set of variables in V \{Vi} (parents of Vi) sufficient
for representing fi, and similarly for the exogenous variables Ui ⊆ U . Each such
equation stands for a set of “structural” equalities

vi = fi(pai, ui) i = 1, . . . , n,

where vi, pai and ui are, respectively, particular realizations of Vi, PAi and Ui.
Such an equality assigns a specific value vi to a variable Vi depending on the
values of its parents and relevant exogenous variables.

In Pearl’s account, every instantiation of the exogenous variables determines
a particular “causal world” of the causal model. Such worlds stand in one-to-
one correspondence with the solutions to the above equations in the ordinary
mathematical sense. However, structural equations also encode causal informa-
tion in their very syntax by treating the variable on the left-hand side of the =
as the effect and treating those on the right as causes. This causal reading plays
a crucial role in determining the effect of external interventions and evaluation
of counterfactual assertions with respect to such a model.

The representation of Pearl’s causal models in the causal calculus, suggested
in [9], amounted in effect to viewing each structural equality vi = fi(pai, ui) as a
causal rule saying that the instantiation pai of the parent endogenous variables
PAi and the instantiation ui of exogenous variables Ui causes the instantiation
fi(pai, ui) of Vi:

PAi = pai, Ui = ui ⇒ Vi = fi(pai, ui).
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In the special case when all the relevant variables are Boolean, a Boolean
structural equation p = F (where F is classical logical formula) produces in this
sense two causal rules

F ⇒ p and ¬F ⇒ ¬p.

Given this translation, it was shown in [9] that Pearl’s causal worlds corre-
spond precisely to classical causal models of the associated causal theory that
are (classical) worlds.

Example 4. The following set of (Boolean) structural equations provides a rep-
resentation of Pearl’s example (see Example 1) in structural models:

Grasswet = Rained ∨ Sprinkler Streetwet = Rained.

If Rained and Sprinkler are taken to be exogenous variables, while Grasswet
and Streetwet are endogenous ones, then the corresponding Pearl’s structural
model will have the same causal worlds as the following causal theory:

Rained ⇒ Grasswet Sprinkler ⇒ Grasswet Rained ⇒ Streetwet

¬Rained,¬Sprinkler ⇒ ¬Grasswet ¬Rained ⇒ ¬Streetwet

with an additional stipulation that Rained, ¬Rained, Sprinkler and ¬Sprinkler
are assumptions:

Rained ⇒ Rained ¬Rained ⇒ ¬Rained

Sprincler ⇒ Sprinkler ¬Sprinkler ⇒ ¬Sprinkler

Compared with our previous causal description of this example (see Example
3), the above causal theory contains additional causal rules, namely causal rules
for the corresponding negative literals. These negative causal rules can be repro-
duced, however, using a systematic procedure called negative causal completion -
see [7] for further details.

5.1 Counterfactual Equivalence

In Pearl’s framework, the relation between causal theories and their (rational)
semantics reduces to the relation between causal and purely mathematical under-
standing of structural equations. Thus, as in the general case of causal theories
discussed earlier, two conceptually different sets of structural equations may
“accidentally” determine the same causal worlds. According to Pearl, however,
the relevant differences between them can be revealed by performing the same
interventions (“surgeries”) on them.

In the Boolean case, the corresponding transformation of causal theories can
be described as follows:

Definition 11. For a causal theory Δ and a set L of literals, a revision Δ∗L
of Δ is a causal theory obtained from Δ by removing all ‘contrary’ rules A ⇒ ¬l
for l ∈ L and adding the rules t ⇒ l for each l ∈ L.



An Inferential Theory of Causal Reasoning 13

Revisions of causal theories correspond to submodels of causal models in the
sense of Pearl. Now, according to Pearl, every causal model stands for a whole
set of its submodels that embody interventional contingencies. These submodels
determine, in a sense, the “causal content” of a given causal model. In accordance
with that, we can introduce the following definition:

Definition 12. Causal theories Γ and Δ are intervention-equivalent if, for
every set L of literals, the revision Γ∗L has the same causal worlds as Δ∗L.

It can be shown that intervention-equivalence of two causal theories amounts
to coincidence of their associated causal counterfactuals (see [7]). Accordingly,
the content of causal theories is fully determined by their ‘counterfactual profile’
in Pearl’s approach. In this sense, it can even be viewed as a further development
of the counterfactual approach to causal reasoning initiated by David Lewis in
[13]. Taken in this perspective, the difference between our approach and that
of Pearl amounts to taking intervention-equivalence instead of strong semantic
equivalence as a basic information concept for causal theories. This counterfac-
tual approach sanctions, however, a somewhat different logic for causal reasoning.

5.2 Basic Causal Inference

It turns out that the Cut rule of causal inference does not preserve intervention-
equivalence. In order to cope with this situation, we will revise our definition of
causal inference as follows.

Definition 13. – A set of causal rules in a classical language will be called
a causal production relation if it satisfies all the postulates of supraclassical
causal inference except Cut.

– A causal production relation will be called basic if it satisfies the following
rule:
(Or) If A ⇒ C and B ⇒ C, then A ∨ B ⇒ C.

As follows from the definition, basic inference is obtained from supraclassical
causal inference by replacing the Cut postulate with Or. A detailed description
of this kind of inference has been given in [2,4]. It has been shown, in particular,
that causal rules in this formalism can already be given a purely modal logical
interpretation in possible worlds models; by this interpretation, a causal rule
A ⇒ B is representable as a modal conditional

A → �B,

where � is a standard necessity operator defined in relational Kripke frames (see
also [23]).

It has been shown in [6] that basic inference constitutes, in effect, the inter-
nal logic of causal reasoning in Pearl’s causal models. More precisely, it has
been shown that basically equivalent causal theories are intervention equivalent.
Moreover, the reverse implication has been shown to hold for the special case
of Pearl’s causal theories, that is, for causal theories obtained from structural
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equation models by the translation of [9]. Some consequences of this correspon-
dence were discussed in [7] in the context of analyzing different approaches to
the notion of actual causality.

6 Classical Causal Inference and Causal Worlds

The differences between Pearl’s theory and our approach disappear once we
restrict our rational semantics to causal models that are worlds (in the usual
classical meaning of the term). Thus, it was shown already in [2] that the pos-
tulate Or becomes an admissible derivation rule with respect to the world-based
rational semantics. Note, however, that the restriction of causal models to worlds
amounts to imposing Bivalence on the set of accepted propositions.

Definition 14. A causal inference relation will be called classical if it is supr-
aclassical and satisfies Or.

Classical causal inference combines the properties of both basic and supr-
aclassical causal inference. In particular, the causal rules of such an inference
inherit a logical semantics in the modal framework of possible worlds, in which
they are interpreted as modal conditionals A → �B. And its corresponding
rational semantics can also be restricted to causal models that are worlds.

Definition 15. – A causal world of a causal theory Δ is a classical causal
model of Δ which is also a world (maximal classically consistent set).

– A classical rational semantics of a causal theory is the set of all its causal
worlds.

Classical causal inference has been shown to provide an adequate logical
framework of reasoning with respect to the classical rational semantics.

Classical rational semantics could be viewed as the closest causal counter-
part of the traditional correspondence semantics. Nevertheless, even this rational
semantics remains nonmonotonic with respect to the underlying causal theory.

7 Conclusions

The causal calculus has been shown to provide a formal basis for reasoning and
problem-solving in many areas and applications of AI. Moreover, due to deep
and natural connections of causes with reasons and explanations, causal rea-
soning brings with it the promise of Explainable AI, an approach to artificial
intelligence that is not only practically successful but is also susceptible to ratio-
nal explanation and justification. We have seen also that this theory provides a
formal representation for Pearl’s approach to causation, and in this sense it can
be viewed as a natural basis for a unified approach to causal reasoning.

The theory of causal reasoning described in this paper poses, however, a lot of
questions and challenges for a general theory of reasoning. To begin with, being
a nonmonotonic formalism, it is based on a unidirectional connection between
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the language (of causal rules) and its (rational) semantics, and this forces us
to reconsider the basic notions associated with denotational approaches, such
as truth and meaning/reference of language expressions. It also puts into ques-
tion the very possibility, or even desirability, of constructing causal reasoning or
its semantics bottom up from propositional atoms. Thus, we have employed a
global, holist approach to incorporating classical entailment into causal reason-
ing. This construction provides all that is needed for the use of such a reasoning
in applications, including derivations of conclusions and computation of the cor-
responding models. Actual work with this formalism could defuse the suspicion
that it is somehow deficient or flawed in this respect. This construction distin-
guishes our theory also from standard proof-theoretic approaches that attempt
to provide a modular inferential description of logical connectives in terms of
associated introduction and elimination rules.

In a more general perspective, the miracle of resurrection of causal reasoning
in artificial intelligence and other important fields of science confirms once again
that causation should be viewed as an essential part of our reasoning, a kind of
reasoning that has deep, though almost forgotten, roots in human history. Our
inferential approach to causation fully endorses Elizabeth Anscombe’s claim that
causality consists in the derivativeness of an effect from its causes (see [1]), and it
goes back as far as to Aristotle’s theory of causal demonstrations as a special kind
of syllogisms (deductions), to Leibniz’s obliteration of the distinction between
reasons and causes, and to Hume’s views of inference as an ‘impression source’
of causation. This view of causal reasoning provides also natural connections
of our theory with a general approach of inferentialism (see, e.g., [19]), or at
least with a version of it that (in contrast to Sellars and Brandom) does not
put conceptual barriers between causal and inferential (normative). But all this
could be a subject of an entirely different study.
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Abstract. We propose a novel approach to capturing the acceptability
conditions of indicative conditionals using awareness logic. Specifically,
we posit that the relevance between the antecedent and consequent of a
conditional is determined by the concomitant occurrence of their aware-
ness. We provide a sound and complete axiomatization of the logic. We
compare the properties of the indicative conditionals in our framework
with other existing theories.
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1 Motivation

Conditionals are sentences that have the form “If φ, [then] ψ”. While the classical
method to deal with conditionals–the material conditional theory, is simple,
it has been criticized for producing counterintuitive inferences [8,17,24]. For
example, material conditionals with false antecedents or true consequents are
always considered to be true. Empirical experiments have shown that people do
not use the material conditional for daily inferences [8].

While there isn’t a widely accepted theory for classifying conditionals, they
generally fall into two categories: indicative and subjunctive conditionals. Sub-
junctive conditionals are used to talk about hypothetical, imagined, or unlikely
situations. The subjunctive mood is often signaled by the word “would”, as exem-
plified by sentences such as, “If I were you, I would win the game”. In contrast,
indicative conditionals are used to discuss real, factual, or likely situations. Typ-
ically, these sentences for indicative conditional employ the word “will”, as in “If
it rains tomorrow, I will not go to work”. This thesis narrows its focus on the
latter notion, indicative conditionals.

Various theories for indicative conditionals have been developed, many of
which build upon the idea of the Ramsey test [27]. Ramsey argued that we deter-
mine whether to accept a given conditional by hypothesizing its antecedent and
then evaluating the acceptability of the consequent. In other words, “If φ then ψ”
implies that we should accept ψ given φ and our background knowledge [2,22].
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This idea has led to the development of a related but distinct concept called infer-
entialism [5], which posits that for a conditional to be true, it should be possible
to infer its consequent from its antecedent. Inferentialism has not yet provided
a formal account of conditionals, as the inference between the antecedent and
consequent can be inductive or abductive. However, inferentialists have empha-
sized the importance of relevance in inference and conditionals. We can only
infer B from A when they are relevant, and a good theory of inference must
take topic-relevance into account. Relevance has also played a key role in psy-
chological theories of conditionals [10,25], and its importance has been argued
by Krzyzanowska et al. [19] and experimentally tested by Douven et al. [9].

There are several existing logic theories that address the problem of con-
ditionals through the use of relevance. One well-known example is Relevance
Logic, which was initially created by Routley and Meyer and later simplified by
Restall in 1995 [28]. However, the semantics of Relevance Logic itself fails pro-
vide a concrete definition of relevance, as the concept of relevance depends on a
ternary relation in the model which is not determined. As a result, the burden
of explaining relevance remains when interpreting the ternary relation. Another
theory related to Relevance Logic is the Analytic Implication theory of William
Parry. This theory requires that conditionals satisfy a strict variable-sharing cri-
terion [13]. However, the variable-sharing property, while useful as a syntactic
test for relevance, may not always be sufficient. In some cases, sentences that
share the same variables may still be irrelevant. Recently, Özgün and Berto [4]
developed a new approach for handling indicative conditionals that combines
Adam’s Thesis [1] with topic relevance [26]. However, similar to other theories
for conditionals based on probability, their system does not address the issue of
nested conditionals.

Based on the previous theories, this paper develops a novel framework for
indicative conditionals based on awareness and relevance. Note that instead of
the truth conditions, this paper focus on capturing the acceptability conditions
for indicative conditionals. We propose that relevance is a subjective notion and
it has a close connection to the notion of awareness. Given that awareness can
be clearly represented in awareness logic [11], the notion of relevance can be
modeled in a similar system and be used as a core requirement for accepting
indicative conditionals.

2 From Awareness to Relevance

Relevance is a complex notion that can be interpreted both subjectively and
objectively. Objective relevance generally refers to the relevance of sentences to
a specific question or problem, regardless of individual interests or contexts. This
kind of relevance is determined by causal relationships and can be evaluated inde-
pendently of any particular individual’s perspective. On the other hand, when
we talk about subjective relevance, we are generally referring to the relevance
of sentences to an individual’s specific interests, needs, or context. This kind of
relevance varies greatly from person to person and from situation to situation
[6,16].
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This paper leans towards the subjective interpretation of relevance, as it
seeks to delineate the acceptability conditions rather than the truth conditions
of indicative conditionals, in line with inferentialism. By adopting this stance,
relevance becomes a subjective notion because the inferential connections that
individuals draw can vary based on their personal knowledge, experiences, and
interpretive frameworks. What seems like a valid or relevant to one person might
not seem so to another, and vice versa.

Traditionally, relevance has been defined only as a relationship between sen-
tences: two sentences are considered relevant if they share the same atoms or
topics. This leads to the question of how to determine whether two sentences
share the same topic, which can be a challenging task. For example, it is easy
to see the relevance between sentences like “A and B” and “B”, since they share
the same sub-sentence. However, in some cases it may be more difficult to iden-
tify the relevance, such as with the sentences “Tom won the election” and “Jerry
died”. Without further context, it is difficult to see any connection between these
sentences. But if we know the context that “Tom and Jerry were the only two
candidates for a position”, then the sentence “Jerry died” could be seen as a
reason for “Tom winning the election”. This suggests that contexts should also
be taken into consideration when to determine whether two sentences are rele-
vant. Before we determine the relevance between two sentences, we should check
the relation between the sentences and the context in advance. We clarify the
terms here to avoid misunderstanding: we use “connected” to express the rela-
tion between a sentence and a context and use “relevant” to describe the relation
between two sentences.

An pressing problem is how we can tell which sentences are connected to a
context. Perhaps it’s simpler to identify which ones are definitely not connected
to the context. One intuitive answer is that, if one does not even think about
the sentence in this context, then the sentence cannot be connected. Consider,
for instance, a scenario in which a group of colleagues are discussing a complex
project at work. They are brainstorming ways to overcome a specific technical
challenge. In this context, a sentence like “We could try implementing a new
algorithm to solve this problem” is clearly connected, as it directly relates to the
topic of discussion. However, a sentence such as “I’m planning to bake cookies
this weekend” might not be considered connected to the context. Though it may
be a truthful and meaningful statement for the speaker, it does not seem to
bear any direct connection to the technical challenge being discussed. Here’s
where the idea of awareness becomes crucial. The perceived connection of a
sentence can be influenced by the shared awareness and understanding of the
individuals participating in the conversation. For instance, if the colleagues are
aware that the speaker often uses baking as a metaphor for their problem-solving
process, they might perceive a connection between the cookie-baking plan and
the work discussion. Someone without this awareness, however, would likely miss
the connection. This illustrate that, the relevance of a sentence is not just about
its content or the topic at hand, but also about the awareness and interpretive
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frameworks of the individuals involved in the conversation. Therefore, relevance
in this sense is subjective and dependent on awareness.

Given the above, we can then determine whether two sentences are relevant.
Intuitively, if two sentences are relevant, then thinking about one sentence should
lead us to think about the other. It seems that a sentence can guide our thoughts
towards sentences of relevant topics. This becomes clearer when viewed from
another angle: if there is a situation where one is contemplating a sentence
without even being aware of another sentence, these two sentences should be
deemed irrelevant. After all, we can’t consider a sentence without being aware
of the topics surrounding it.

Rather than delving into the essence of awareness, our actual aim here is a
practical method for determining the relevance between sentences. To simplify
the issue, we propose a minimal requirement for relevance: two sentences are
relevant according to the agent (if and) only if the awareness of one sentence
necessarily lead to the awareness of the other. In other words, we regard relevance
as concomitant occurrence of awareness. This is also desired from the point of
view of inferentialism, since the inference from antecedent to consequent requires
that we can get to the consequent by thinking about the antecedent.

This paper employs the framework of awareness logic to define the relevance
relation between sentences as the concomitant occurrence of their awareness.
By means of this notion of relevance, we can get an apt theory for indicative
conditionals.

3 Logic of Awareness Conditional LAC

This paper proposes to model relevance by awareness logic in order to cap-
ture the acceptability conditions of indicative conditionals. Awareness logic was
developed by Fagin and Halpern [11], which is a system that aims to describe
the properties of awareness and unawareness. It is based on the model of normal
modal propositional logic, with the addition of a function that assigns to each
world a set of propositions or propositional atoms. These propositions represent
the content that we can be aware of in a particular world. Using this model, we
can define a modal operator of awareness, stating that the agent is aware of a
proposition in a world if and only if it is contained in the set of propositions
assigned to that world [14,15,29]. This allows us to establish a link between
sentences and worlds by awareness.

The language of our logic of awareness conditional LAC is similar to the
language of basic awareness logic (without operators for knowledge), but it has
been enriched with an extra connective → for indicative conditionals and an S5
global modal operator �. We fix a countable set P of proposition letters.

Definition 1 (Language LAC). The language of topic-relevance LAC is defined
as follows:

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ⊃ ψ | �φ | A(φ)
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where p ∈ P, � is the standard S5 modal operator for necessity, A(φ) means
that the agent is aware of φ , ⊃ denotes material conditional and → denotes
indicative conditional. We abbreviate the formula (φ ⊃ ψ) ∧ (ψ ⊃ φ) as φ ≡ ψ.

In addition, we denote the set of all atoms in a formula φ by At(φ).

Definition 2. The set of all atoms in a formula φ is defined inductively as
follows:

At(p) = {p}
At(¬φ) = At(�φ) = At(A(φ)) = At(φ)
At(φ ∧ ψ) = At(φ ∨ ψ) = At(φ ⊃ ψ) = At(φ → ψ) = At(φ) ∪ At(ψ)

Definition 3 (Frame). A frame of LAC is a binary structure F = 〈W,C〉, where
W is a nonempty set of possible worlds and C is a function that assigns to each
world w a set of propositional atoms C(w) that we can be aware of in that world.

Here we adopt the kind of awareness logic of Halpern in [14,29] which stipulates
that awareness is closed under subformulas and is generated by primitive propo-
sitions. The awareness function C describes the topics of the different worlds
which represented by the propositional atoms, and the agent in any world w can
only access the atoms in C(w) which are atoms that the agent can be aware of.

Definition 4 (Model). A model of LAC is a triple M = 〈W,C, V 〉. A frame
becomes a model when it is endowed with a world-dependent valuation function
V : W × P → {1, 0}.

The semantic clauses here are exactly the same of those in awareness logic.
In our logic, support � is defined to capture the acceptability instead of truth
conditions of sentences.

Definition 5. Given a state s and a model M of LAC , the support relation � is
defined inductively as follows:

M, w � p iff V (w, p) = 1
M, w � A(φ) iff At(φ) ⊆ C(w)
M, w � ¬φ iff M, w �� φ
M, w � φ ∨ ψ iff M, w � φ or M, w � ψ
M, w � φ ∧ ψ iff M, w � φ and M, w � ψ
M, s � φ ⊃ ψ iff M, w � ¬φ or M, w � ψ
M, w � �φ iff ∀x ∈ W : M, x � φ

Definition 6. M, w � φ → ψ iff all of the three conditions are satisfied:

– Truth Functionality: M, w � φ ⊃ ψ
– Global Relevance: M, w � �(Aφ ⊃ Aψ)
– Local Awareness: M, w � A(φ ⊃ ψ)
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All the clauses in definition 5 are the same as in standard awareness logic
with an S5 modal operator. We use A(φ) to express that the agent is aware of
φ in the world, and we use �φ to express that φ is necessary.

Definition 6 establishes the three conditions that define indicative condi-
tionals. The first condition is Truth Functionality, which means that an indica-
tive conditional entails the corresponding material conditional. This condition
ensures that the truth is preserved from the antecedent to the consequent.

The second condition, Global Relevance, states that for an indicative condi-
tional to be accepted, the awareness of the consequent must necessarily follow
from the awareness of the antecedent in all possible worlds. In simpler terms,
awareness of the antecedent necessarily leads to the awareness of the consequent.
Global Relevance requires to check awareness in all possible worlds because an
agent may be contingently aware of two irrelevant sentences in the actual world.
Therefore, relevance is global, while awareness is local. It is important to note
that this condition does not stipulate that if we are aware of the consequent, we
should be aware of the antecedent, indicating that the indicative conditionals →
do not satisfy Contraposition. However, we can, of course, add this constraint,
which will be discussed in Sect. 7.

The final condition, Local Awareness, asserts that the agent should be aware
of the entire conditional statement before it is accepted. This condition makes the
indicative conditionals hyperintensional and also results in the desired invalidity
of Monotonicity. Strengthening the antecedent may render us unable to be aware
of the conditional anymore. These conditions collectively represent what we refer
to as relevance requirements for indicative conditionals.

Validity and logical consequence of LAC are defined in a classic way:

Definition 7. For any proposition φ,

– � φ iff for any world w and model M, M, w � φ
– Σ � φ iff for any world w and model M, if M, s � ψ for all ψ ∈ Σ, then
M, s � φ.

4 Principles Valid in LAC

Firstly, we examine the valid principles for indicative conditionals in LAC . The
first principle is Modus Ponens: from a conditional and its antecedent, we can
infer its consequent. This is a basic and fundamental rule of inference involving
conditionals. However, it has been challenged by Mcgee [23], who provided a
counterexample:

“Opinion polls taken just before the 1980 election showed the Republican
Ronald Reagan decisively ahead of the Democrat Jimmy Carter, with the
other Republican in the race, John Anderson, a distant third. Those apprised
of the poll results believed, with good reason: X: If a Republican wins the
election, then Y: if it’s not Reagan who wins, Z: it will be Anderson. A
Republican will win the election. Yet they did not have reason to believe:
Y→ Z: If it’s not Reagan who wins, it will be Anderson.”
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In this example, we can agree with “If X, then if Y, then Z”, and we also agree
with “X”, but we do not agree with “If Y then Z” since we believe Carter will win
the election if Reagan lose. Thus the Modus Ponens inference from ‘If X, then
if Y, then Z” and “X” to “If Y then Z” fails.

However, this is not the case in LAC if we adopt another interpretation. It is
important to note that in LAC , X → (Y → Z) is not equivalent to but strictly
stronger than (X∧Y ) → Z. Consider the statement “X: If a Republican wins the
election, then Y : if it’s not Reagan who wins Z: it will be Anderson.” This does
not mean that X → (Y → Z), since it is not the case that the speaker is aware
of both Y and Z in all worlds in which the agent is aware of X. In this case, “a
Republican wins the election” only makes the agent aware of Reagan, and the
agent become aware of Anderson only upon receiving the information that “if
it’s not Reagan who wins”. Therefore, the statement should be interpreted as
(X ∧ Y ) → Z rather than X → (Y → Z), which means that Modus Ponens is
not rejected.

Fact 1 (Modus Pones). φ → ψ, φ � ψ is valid in LAC .

Proof. For any model M and any world w, assume M, w � φ → ψ, then we get
that if M, w � φ then M, w � ψ. Given that M, s � φ, we get M, s � ψ.

The next principle is Restricted Identity. While identity may seem like a
basic principle, stating that every conditional whose consequent is identical to
the antecedent is true, the original version of Identity is not valid in LAC . This
is because we cannot guarantee that the consequent or the antecedent of the
conditional is relevant to our current context. For example, we cannot say “If
Tom is a Kakabuka, then Tom is a Kakabuka” if we do not even know the word
“Kakabuka”, even though the sentence is true. Therefore, in LAC we only have the
Restricted Identity, which states that every aware conditional whose consequent
is identical to the antecedent is accepted.

Fact 2 (Restricted Identity). A(φ) � φ → φ is valid in LAC .

Proof. For any model M and any world w, assume M, w � A(φ). Then 1) M, w �
A(φ ⊃ φ), 2) if M, w � φ then M, w � φ, 3) for any w′ ∈ W , if M, w′ � Aφ then
M, w′ � Aφ. Thus M, w � φ → φ.

The next valid principle in LAC is Transitivity, which states that a conditional
with antecedent X and consequent Y, in combination with a conditional with
antecedent Y and consequent Z, entails the conditional with antecedent X and
consequent Z. This principle has been somewhat controversial, with some arguing
that it should be rejected. A famous counterexample was provided by Adams
[1]:

“If Brown wins the election, Smith will retire to private life. If Smith dies
before the election, Brown will win it. Therefore, if Smith dies before the
election, then he will retire to private life.”



24 T. Chu

In this example, it is completely normal for someone to accept that “X: If
Brown wins the election, Y: Smith will retire to private life”, while also accept
“Z: If Smith dies before the election, X: Brown will win it”. But the conditional
from Z to Y seems absurd. Therefore Adam objected the validity of Transitivity
for indicative conditional.

However, this is not the case in LAC if we adopt another interpretation. When
we say “X: If Brown wins the election, Y: Smith will retire to private life”, we
are actually omitting the possibility that “Z: If Smith dies before the election”.
Whenever X and Y are accepted, the agent must not be aware of Z. Therefore,
in LAC , the first two conditionals should be reformulated as “X ∧ ¬A(Z) → Y ”
and “Z → X”. These two sentences cannot be accepted simultaneously, so the
counterexample provided by Adams does not hold in LAC .

Fact 3 (Transitivity). φ → ψ,ψ → χ � φ → χ is valid in LAC .

Proof. For any model M and any world w, assume M, w � φ → ψ and M, w �
ψ → χ. Then we have 1) M, w � A(φ ⊃ χ) and M, w � A(ψ ⊃ χ). 2) For
any w′ ∈ W , if M, w′ � A(φ) then M, w′ � A(ψ), and then M, s � A(χ). 3) if
M, w � φ then M, w � ψ, and then M, w � χ. Thus M, w � φ → ψ.

5 Principles Invalid in LAC

Moreover, we examine the invalid principles for indicative conditionals in LAC .
The first one is False Antecedent, which states that the falsity of the antecedent
is sufficient for the truth of the conditional. This principle should be rejected, as
it is obviously not always true. Additionally, even its restricted version, which
requires that the sentence is aware of, is also invalid.

Fact 4 (False Antecedent and Restricted False Antecedent). ¬φ � φ → ψ and
¬φ,A(φ → ψ) � φ → ψ are invalid in LAC .

Proof. Counterexample: Set the model M and the only two worlds in the model
w,w′ such that V (p) = ∅, C(w) = {p, q} and C(w′) = {p}. Then we have
M, w � ¬p ∧ A(p → q), but M, w �� p → q since M, w′ � A(p) ∧ ¬A(q).

Similarly, the principle of True Consequent, which states that the truth of
the consequent alone is sufficient for the truth of the whole conditional, should
also be rejected. Like False Antecedent, even its restricted version which requires
that the sentence is aware of, is also invalid.

Fact 5 (True Consequent and Restricted True Consequent). ψ � φ → ψ and
ψ,A(φ → ψ) � φ → ψ are invalid in LAC .

Proof. Counterexample: Set the model M and the only two worlds in the model
w,w′ such that, V (q) = {w,w′}, C(w) = {p, q} and C(w′) = {p}. Then we have
M, w � q ∧ A(p → q), but M, w �� p → q since M, w′ � A(p) ∧ ¬A(q).
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As an obviously corollary, conditionals with necessary consequent and con-
ditionals with impossible antecedent are also invalid, since necessity does not
guarantee relevance.

Fact 6 (Necessary Consequent and Impossible Antecedent). �ψ � φ → ψ and
�¬φ � φ → ψ are invalid in LAC .

Proof. The counterexamples from the fact 4 and fact 5.

The next principle is Linearity: for any two formulas X and Y either “If X
then Y” or “If Y then X” holds. It should be rejected since maybe X and Y are
totally irrelevant. Even its restricted version requiring that the agent is aware of
the sentence, is also invalid.

Fact 7 (Linearity and Restricted Linearity). � (φ → ψ)∨ (ψ → φ) and A((φ →
ψ) ∨ (ψ → φ)) � (φ → ψ) ∨ (ψ → φ) are invalid in LAC .

Proof. Counterexample: Set the model M and the only three worlds in the model
w,w′, w′′ such that C(w) = {p, q}, C(w′) = {p} and C(w′′) = {q}. Then M, w �
A((p → q) ∨ (q → p)), but M, w �� p → q and M, w �� q → p.

The next invalid principle is Monotonicity. This principle states that
strengthening the antecedent of a true conditional by adding any conjunct will
not change its truth value. There are many counterexamples to Monotonicity,
with the Sobel sequence being one of the most well-known:

– X: If Sophie had gone to the parade, Y: she would have seen Pedro dance;
but of course,

– X: if Sophie had gone to the parade and Z: been stuck behind someone tall,
¬Y: she would not have seen Pedro dance;

In this scenario we have “If X then Y” but not “If X and Z then Y”. Thus
Monotonicity should be rejected.

Fact 8 (Monotonicity). φ → ψ � (φ ∧ χ) → ψ is invalid in LAC .

Proof. Counterexample: Set the model M and the only world in model w such
that the agent is aware of both φ and ψ in w while the agent is not aware of χ.

The next invalid principle is And-to-If, which states that any conjunction
entails the corresponding conditional. If the two conjunctions are completely
irrelevant, it is unreasonable to suggest that they provide a reason for each
other. Like the previous principles, even its restricted version, which requires
that the sentence is relevant, is also invalid.

Fact 9 (And-to-If and Restricted And-to-If). φ∧ψ � φ → ψ and φ∧ψ,A(φ∧ψ) �
φ → ψ are invalid in LAC .

Proof. Counterexample: Set the model M and the only two worlds w,w′ such
that V (p) = {w,w′}, V (q) = {w,w′}, C(w) = {p, q} and C(w′) = {p}. Then we
have M, w � p ∧ q ∧ A(p ∧ q), but M, w �� p → q since M, w′ � A(p) ∧ ¬A(q).
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The same counterexample can also invalidate the necessary version of And-
to-If, since necessary truth does not guarantee the relevance between antecedent
and consequent.

Fact 10 (Necessary And-to-If). �(φ ∧ ψ) � φ → ψ is invalid in LAC .

Proof. The counterexample from fact 9.

Unlike the previous principles, the validity of Contraposition is highly con-
troversial. Some theorists, such as Stalnaker, reject it as counterintuitive, while
others, such as Lycan [21] and Bennett [3], tend to accept it. In LAC , → fails
Contraposition here because the fact that the awareness of the consequent cannot
be deduced from awareness of the antecedent. But as we will see in Sect. 7, if we
strengthen the Global Relevance condition to both direction, the new operator
for indicative conditionals can satisfy Contraposition.

Fact 11 (Contraposition). φ → ψ � ¬ψ → ¬φ is invalid in LAC .

Proof. Counterexample: Set the model M and the only two worlds in model
w,w′ such that V (q) = {w,w′}, C(w) = {p, q} and C(w′) = {q}. Then we have
M, w �� ¬ψ → ¬φ, although M, s � φ → ψ.

6 Axiomatization

Despite LAC aims to capture the acceptability of indicative conditionals, it is
very similar to the S5 awareness logic in [14], and the only additional operator
→ for indicative conditionals can be deduced from basic operators. Thus, we
have the axiomatization AIC for awareness indicative conditionals as follows:

Axiomatization AIC

CPL classic propositional tautologies and Modus Ponens
S5� S5 axioms and rules for �

Axioms for A:
A1 A(φ ∧ ψ) ≡ (A(φ) ∧ A(ψ))

A2 A(¬φ) ≡ A(φ)

A3 A(A(φ)) ≡ A(φ)

A4 A(�φ) ≡ A(φ)

A5 A(φ ⊃ ψ) ≡ (A(φ) ∧ A(ψ))

A6 A(φ → ψ) ≡ (A(φ) ∧ A(ψ))

Axiom for →:
C ((φ ⊃ ψ) ∧ A(φ ⊃ ψ) ∧ �(Aφ ⊃ Aψ)) ≡ (φ → ψ)

AIC is similar to the S5 system but enriched with axioms for awareness
and axioms for indicative conditionals. Its soundness and completeness can be
proven.
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Theorem 1. AIC is a sound and complete axiomatization of LAC : for any
proposition φ, �AIC φ if and only if � φ.

Proof. A straightforward modification of the proof of soundness and complete-
ness of S5 awareness logic. We omit the details here. For similar proofs, see
[12,14].

7 Variants, Comparison and Conclusion

In the previous section, we present a method for capturing the acceptability of
indicative conditionals through relevance requirements. However, the relevance
requirements in definition 6 can of course be further strengthened, and LAC has
at least two natural variants. The strengthening method for the first variant is
to replace the single-direction Global Relevance condition M, w � �(Aφ ⊃ Aψ)
by double-direction Global Relevance M, w � �(Aφ ⊂⊃ Aψ). This means that
the awareness of the antecedent should also follows from the awareness of the
consequent. In other words, the agent must be aware of the antecedent and con-
sequent at the same time in all possible worlds. And we can also strengthen
the Truth Functionality condition M, w � φ ⊃ ψ to Global Truth Functionality
M, w � �(φ ⊃ ψ) to get the second variant. This actually says that an indica-
tive conditional φ → ψ should entail the corresponding strict interpretation of
material implication [18] that is �(φ ⊃ ψ).

We use →1 to represent the first variant of indicative conditionals, and →2

for the second variant. Formally we can write their semantic clauses as:

Definition 8. The truth conditions for variant indicative conditionals are fol-
lows:

– M, w � φ →1 ψ iff M, w � (φ ⊃ ψ) ∧ �(Aφ ⊂⊃ Aψ) ∧ A(φ → ψ)
– M, w � φ →2 ψ iff M, w � �(φ ⊃ ψ) ∧ �(Aφ ⊃ Aψ) ∧ A(φ → ψ)

The following table compares the properties of indicative conditionals in LAC

with other existing theories. We use �1 to stand for Stalnaker conditionals [30,31]
and use �2 to stand for Evidential Conditionals from Crupi and Iacona [7].
We use ⇒ to stand for the strict interpretation of conditionals [18], that is to
abbreviate �(φ ⊃ ψ).

As we can see from the table, LAC satisfies several traditionally desired prop-
erties such as Restricted Identity, Modus Ponens, and Transitivity. This means
that the logic is stronger than some other theories for indicative conditionals,
which fail to satisfy principles like Modus Ponens [23] or Transitivity [7]. On the
other hand, problematic principles such as Truth Consequent, False Antecedent,
Linearity, Monotonicity, and And-to-If are invalid in LAC , and counterexamples
to these principles can be easily found in practical situations. The invalidity of
these principles has also been analyzed and supported by Crupi & Iacona [7] and
Berto & Özgün [4]. In addition, our theory can also get the desired invalidity of
Necessary Consequent, Impossible Antecedent and Necessary And-to-If, which
are seldom taking into account in many recent theories for conditionals.
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Principles ⊃ → →1 →2 ⇒ �1 �2

Modus Ponens � � � � � � �
Restricted Identity � � � � � � �
Transitivity � � � � � ✕ ✕

Necessary Consequent � ✕ ✕ ✕ � � �
Impossible Antecedent � ✕ ✕ ✕ � � �
True Consequent � ✕ ✕ ✕ ✕ ✕ ✕

False Antecedent � ✕ ✕ ✕ ✕ ✕ ✕

Linearity � ✕ ✕ ✕ ✕ ✕ ✕

Monotonicity � ✕ ✕ ✕ � ✕ ✕

And-to-If � ✕ ✕ ✕ ✕ � ✕

Necessary And-to-If � ✕ ✕ ✕ � � �
Contraposition � ✕ � ✕ � ✕ �

It is also noticeable that our theory works well together with the traditional
method of material implication. Unlike suppositional theories of indicative con-
ditionals, our theory does not rely on hypothetical belief and does not reject
the truth-functionality of conditionals. In fact, the indicative conditionals in our
system can be seen as material conditionals with relevance requirements. The
conditionals satisfying these requirements are considered and valued just like
material conditionals. If we imagine a maximal awareness model in which the
agent is aware of everything in every world, indicative conditionals would be
trivialized and reduced to material conditionals. This allows us to maintain the
philosophical and systematic advantages of material condition theories within
our framework [32].

Furthermore, nested conditionals can be clearly defined and easily handled
in LAC , whereas they pose difficulties in many other theories. For suppositional
conditional theories generated directly from the Ramsey Test, nested condition-
als require multiple levels of hypothesizing, which is highly complex and difficult
[20]. In particular, probabilistic approaches following Adam’s Thesis [1] do not
account for nested conditionals at all. For many of those theories for condition-
als based on modality, nested conditionals lack clear intuition due to the nested
modal relations they involve. In contrast, the semantic values of nested condi-
tionals are defined clearly and directly in LAC . To check a nested conditional we
only check a nested material conditional and check the relevance requirements
between all its components.
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Abstract. When we reason about strategic games, implicitly we need
to reason about arbitrary strategy profiles and how players can improve
from each profile. This structure is exponential in the number of players.
Hence it is natural to look for subclasses of succinct games for which
we can reason directly by interpreting formulas on the (succinct) game
description rather than on the associated improvement structure. Pri-
ority separable games are one of such subclasses: payoffs are specified
for pairwise interactions, and from these, payoffs are computed for strat-
egy profiles. We show that equilibria in such games can be described in
Monadic Least Fixed Point Logic (MLFP). We then extend the descrip-
tion to games over arbitrarily many players, but using the monadic least
fixed point extension of existential second order logic.

1 Introduction

Finite strategic games are a well-studied formalism used to analyse strategic
behaviour of rational agents. A strategic game is specified by a finite set of
players along with a finite set of strategies and a payoff function for each player.
Players choose strategies simultaneously and for each player, the corresponding
payoff function specifies the utility for the player given the profile of choices.
In terms of structural and computational analysis of games, a major drawback
of strategic games is that the representation is not compact. The two main
parameters in the representation are the number of players and the strategies
available for each player. An explicit representation of the payoff functions is
exponential in the number of players. Identifying subclasses of strategic game
with compact representation, is thus an important first step towards analysing
the structural and computational properties of the game model.

There are two possible approaches which are commonly adopted to achieve
concise representation in games. First is to retain quantitative payoffs and impose
restrictions on the payoff functions. The second is to use an appropriate logical
formalism to describe payoffs in a qualitative manner.
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In the classical approach with quantitative payoffs, it is possible to achieve
compact representation with a careful analysis of the underlying dependency
structure in the payoff functions. Such an approach, which restricts the depen-
dency of payoff functions to a “small” number of other agents is adopted in
graphical games [26]. Another approach is to explicitly impose restrictions on
the payoff functions. A simple constraint is to insist that the payoff functions
are pairwise separable. This results in the well-studied class of games with a
compact representation, called polymatrix games [10,11,25,35]. In the specific
context of coalition formation games, the restriction to pairwise separable pay-
offs results in the well studied game model called additively separable hedonic
games [5,23].

The second approach is to view payoffs as qualitative outcomes described
using some logical formalism. Boolean games [19] is a well studied model adopt-
ing this approach. In Boolean games, each player controls a disjoint subset of
atomic propositions and the payoffs are represented using Boolean formulas over
the union of these propositions. Though originally defined as a qualitative ver-
sion of two player zero-sum games, the model has been extended to reason about
multi-player games [9,20]. Epistemic Boolean games, where payoffs are specified
as epistemic formulas, were studied in [2,21].

In this paper we propose a subclass of strategic games that combine both
approaches. In our model, the payoffs are qualitative (but not necessarily
Boolean). The payoff functions are restricted to be pairwise separable. This
results in a game model which is concise while at the same time being able to
represent genuine multi-player games with non-zero sum objective. We show that
these priority separable games need not always have a pure Nash equilibrium.
Then an immediate question is whether there is an efficient procedure to check
if a Nash equilibrium exists in this class of games. We show that checking for the
existence of a Nash equilibrium is NP-complete. Nash’s Theorem states that the
mixed extension of every finite strategic game has a Nash equilibrium (in mixed
strategies). It is known that computing such a mixed strategy Nash equilibrium
is PPAD-hard [15]. In this paper, we restrict our study to pure strategies and
pure Nash equilibrium.

We express the existence of pure Nash equilibria in priority separable games
in a logical language: the monadic least fixed-point logic ( [33]). This is an exten-
sion of first order logic with monadic least fixed-point operators. In this, we
follow the spirit of descriptive complexity [24], where extensions of first order
logics describe complexity classes. The major question of interest in such inves-
tigation is to ask what logical resources are needed to describe the property
(which is Nash equilibrium in this case). We would like minimal use of the
logical resources needed. Since equilibrium computation involves iterative explo-
ration of the strategy space, by considering every possible player improvement
and player response to it, a least fixed-point operator is natural to use in this
context. However, we show that it suffices to use a monadic least fixed-point
operator, where the operator is applied only on sets (rather than on arbitrary
relations).
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A natural question that arises in the logical study is games over unboundedly
many players. In game theory, we typically specify every game with the number
of players playing in it. This seems reasonable for logical descriptions as well: we
can ask, how many players are forced by the structure present in the reasoning?
A formula can have different game models, with different numbers of players.
With the addition of binary second order variables to the logic (and monadic
least fixed-point operators), we describe Nash equilibrium in the logic. There are
complexity theoretic implications in this but we do not take it up for study in
this paper.

Various logical formalisms have been used in the literature to reason about
games and strategies. Action indexed modal logics have often been used to anal-
yse finite extensive form games where the game representation is interpreted as
models of the logical language [6–8]. A dynamic logic framework can then be
used to describe games and strategies in a compositional manner [18,30,31] and
encode existence of equilibrium strategies [20]. The work in [13] employs modal
logics similarly to study large games. Alternating temporal logic (ATL) [3] and
its variants [12,22,36] constitute a popular framework to reason about strategic
ability in games. Strategy Logic ( [12]) is of specific interest in its explicit use of
strategy quantifiers, and hence the existence of solution concepts like Nash equi-
librium can be expressed in it. In the context of two-player turn-based sequential
games on graphs Strategy Logic provides a logical mechanism for description of a
variety of equilibria. [32] provides another logical treatment of explicit reasoning
about structured strategies.

Our approach here is different from these, both in the structure of the games
studied and in the use of logic for checking properties as in descriptive complex-
ity theory. The models of the logic are strategy spaces: every node is a strategy
profile, and edges denote deviations by players. Iteration of such deviations until
no more deviation is possible suggests the use of fixed-point operators. These
are one-shot strategic form games, as distinct from models of logics like ATL,
Strategy Logic and the logic of structured strategies in [32] where the games are
turn based and of infinite duration. Moreover, while Strategy Logic discusses
two-player games, we talk of multi-player games which are determined by pair-
wise interactions among players. The work presented here follows [14] but the
emphasis there was on improvement graph dynamics, whereas we reason directly
with game descriptions here.

2 Our Model

2.1 Background

Let N = {1, . . . , n} be the set of players. A strategic game defined as G =
(N, {Si}i∈N , {pi}i∈N ) consists of the set of players N , and for each player i, a
set Si of strategies along with a payoff function pi : S1×· · ·×Sn → R. A strategy
profile is a tuple of strategies, s = (s1, . . . , sn) where for all players i, si ∈ Si.
Given a strategy profile s and a player i, let s−i = (s1, . . . , si−1, si+1, . . . , sn).



34 R. Das et al.

Thus s = (si, s−i). Let S = S1 × . . . × Sn denote the set of all strategy profiles
and S−i = S1 × . . . Si−1 × Si+1 × . . . × Sn.

We say that the strategy si ∈ Si of player i is a best response to s−i ∈ S−i

if for all s′
i ∈ Si, (s′

i, s−i) �i s. A strategy profile s is a Nash equilibrium if
for all i ∈ N , si is a best response to s−i. Existence of Nash equilibrium and
computation of an equilibrium profile (when it exists) are important questions
in the context of strategic form games. While strategic games are well-studied
as a model for games, it has the drawback that the representation is not concise.
An explicit representation of the payoff functions is exponential in the number
of players. To analyse the computational properties of games, it is important
to identify subclasses of strategic form games which have a compact represen-
tation. Polymatrix games [25] form such a subclass, where the payoff functions
are restricted to be pairwise separable. Formally, a polymatrix game is a strate-
gic game G = (N, {Si}i∈N , {pi}i∈N ) where for all players i and for all j �= i,
there exists a partial payoff function pi,j such that for any strategy profile s,
pi(s) = Σj �=i pi,j(si, sj). It can be observed that polymatix games have compact
representation, polynomial in |N | and maxi∈N |Si|.

It is often useful to explicitly specify the dependency of the pairwise separable
payoff functions in terms of a neighbourhood graph. Let G = (N,E) be a directed
graph (without self loops) over the set of players N and for each i ∈ N , let
R(i) = { j | (j, i) ∈ E } be the neighbourhood of i in G. For the players not in
the neighbourhood of a certain player, say i, we define the partial payoff function
values on those instances as 0. That is, for all strategy profiles s, for all i ∈ N ,
whenever j /∈ R(i) then pi,j(si, sj) = 0.

2.2 Priority Separable Games

Since we are interested in the logical study of games, we define a qualitative
subclass of polymatrix games called priority separable games as follows.

Let N be a finite set of players and for each i ∈ N , let Si be a finite set of
strategies for player i. Let Ω be a finite set of outcomes and for all i ∈ N , let
�i⊆ Ω × Ω be a strict total ordering over the outcome set.

We explicitly model the dependency on payoffs using a graphical structure.
Let G = (N,E) be a directed graph (without self loops) and R(i) be the neigh-
bourhood of i in G as defined earlier. We associate a linear priority ordering
within the neighbourhood for each node i ∈ N and denote this by the relation
�i ⊆ R(i) × R(i)

For i, j ∈ N , let pi,j : Si × Sj → Ω be a partial payoff function. Given
a strategy profile s, the payoff for player i ∈ N is then defined as the tuple
pi(s) = (pi,j(si, sj))j∈R(i).

A priority separable game is defined as the tuple

G = (G, (Si)i∈N , Ω, (�i)i∈N , (�i)i∈N , (pi,j)i,j∈N ).

Note that in a priority separable game G, the number of payoff entries that need
to be specified in G is bounded by 2 ·maxi∈N |Si|2 · |N |2. Thus G has a compact
representation that is polynomial in both |N | and maxi∈N |Si|.
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Given a strategy profile s, let p∗
i (s) denote the reordering of the tuple pi(s) in

decreasing order of the priority of neighbours of i. That is, if R(i) = {i1, . . . , ik}
and i1 �i i2 �i · · · �i ik, then for j ∈ {1, . . . , k}, (p∗

i (s))j = pi,ij
(si, sij

). In order to
analyse the strategic aspect of the game, we need to define how players compare
between strategy profiles. For i ∈ N , we define the relation �i⊆ S×S as follows:
s �i s′ if p∗

i (s) �lex p∗
i (s

′) where �lex denotes the lexicographic ordering.

1 {R, Y }

2 {R,B}3{Y,B}

4 {R}

5 {B}6{Y }

Fig. 1. A priority separable game

Example 1. Consider the game where N = {1, . . . , 6} and the graph G is as
given in Fig. 1. For i ∈ N the set of strategies Si is specified in Fig. 1 as a
label next to each node in G. Let Ω = {0, 1} with 0 �i 1 for all i ∈ N . For
i, j ∈ N , let pi,j = 1 if si = sj and pi,j = 0 if si �= sj . Let 3 �1 4, 1 �2 5 and
2 �3 6. For j ∈ {4, 5, 6}, |Sj | = 1 and R(j) = ∅. Consider the strategy profile
s = (Y,B,B,R,B, Y ) which is denoted with an underline in Fig. 1. Note that in
s player 1 is not playing its best response and has a profitable deviation to R.
Therefore s is not a Nash Equilibrium.

Some Classes of Priority Separable Games. Two player zero-sum games
form a well studied subclass of strategic games that has compact representation
and good computational properties. For instance, a (mixed) Nash equilibrium
in two player zero-sum games can be computed in polynomial time. It can be
observed that every two player game is a priority separable game. The restriction
to separable payoff functions extends the underlying idea of two player interac-
tion to multi-player games while retaining the attractive property of having a
concise representation. Priority separable games form a subclass of polymatrix
games with qualitative payoffs, making it an ideal model for logical analysis.

Note that it is not the case that all polymatrix games can be translated into
a priority separable game which preserves the set of Nash equilibria. This is
illustrated in the example given below.

Example 2. Consider the polymatrix game H defined as follows. The player set
N = {1, 2, 3, 4} and the graph G is as given in Fig. 2. For i ∈ N , Si is specified in
Fig. 2 as a label next to each node in G. Note that for all i ∈ {1, 2, 3}, R(i) = ∅.
Consider the partial payoff functions given below.
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4 {R, Y,B}

3 {Y,B}1{R}

2 {Y }

Fig. 2. A priority separable game

– p4,1(s4, s1) = 3 if s1 = s4 and 0 otherwise.
– p4,2(s4, s2) = 2 if s2 = s4 and 0 otherwise.
– p4,3(s4, s3) = 2 if s3 = s4 and 0 otherwise.

Now consider the priority separable game, G, defined over the same set of
players N , the same graph G and the same partial payoff functions pi,j where
Ω = {2, 3}. For all i ∈ N , let 2 �i 3. Let �4 be chosen arbitrarily. Let NE (H)
and NE (G) denote the set of Nash equlibria in H and G respectively.

Below we list all possible orderings for �4 and argue that in each case
NE (H) �= NE (G).

– 1�42�43: The strategy profile (R, Y, Y,R) ∈ NE (G) but (R, Y, Y,R) �∈ NE (H).
– 2 �4 1 �4 3 or 2 �4 3 �4 1: The strategy profile (R, Y,B, Y ) ∈ NE (G) but
(R, Y,B, Y ) �∈ NE (H).

– 3 �4 2 �4 1 or 3 �4 1 �4 1: The strategy profile (R, Y,B,B) ∈ NE (G) but
(R, Y,B,B) �∈ NE (H).

There are various interesting classes of polymatrix games which can be viewed
as priority separable games. For instance, consider a polymatrix game over a
graph G where for every i ∈ N , we can define an ordering >i⊆ R(i)× R(i) such
that for all s ∈ S and for all j ∈ R(i), pi,j(s) > Σk∈R(i):j>ik pi,k(s). Such a game
can be converted into a priority separable game which is strategically equivalent
by defining �i as >i for all i ∈ N and taking �i to be the natural ordering over
numbers. Note that priority separable games allows �i to be different for each
player i ∈ N .

A Resource Allocation Model. The restriction to priority separable payoffs
also arises naturally in other domains like resource allocation. A well-studied
model for allocation of indivisible items is the Shapley-Scarf housing market
[34] defined as follows. Let N = {1, . . . , n} be a finite set of agents and A =
{a1, . . . , an} be a finite set of indivisible items where |N | = |A|. An allocation is
a bijection π : N → A. In the most commonly studied setting, each agent i has a
preference ordering over its allocation π(i) and is independent of the allocation of
the other agents. However, in many practical instances, agents preferences could
depend on externalities like the allocation of other agents. This is particularly
relevant in the housing market where an agent’s preference for a house could
depend on identity of other agents in its immediate neighbourhood. This is also
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a natural criterion in the allocation of office space where individuals might prefer
to be located close to their group members. Priority separable externalities can
capture many of these situations.

If agents are allowed to exchange items with each other, stability of allocation
is a very natural solution concept to study. Core stable outcomes are defined as
allocations in which no group of agents have an incentive to exchange their items
as part of an internal redistribution within the coalition. For the housing market
without externalities, a simple and efficient procedure often termed as Gale’s
Top Trading Cycle, can compute a stable allocation that is core stable [34]. In
the presence of pairwise separable externalities with quantitative payoffs, the
computational properties of the model are studied in [17,28].

Existence of Nash Equilibrium. A natural question is whether priority sepa-
rable games always have a pure Nash equilibrium. Below we show that the class
of priority separable games need not always have a pure Nash equilibrium using
an example which is similar to the one given in [4] for polymatrix games.

Example 3. Consider the game given in example 1 along with the neighbour-
hood graph given in Fig. 1. For players i ∈ {4, 5, 6}, Ri = ∅ and since |Si| = 1,
for all s ∈ S, si is a best response to s−i. Thus in each strategy profile s only
the choices made by players 1, 2 and 3 are relevant. Below we enumerate all such
strategy profiles and underline a strategy which is not a best response for each
strategy profile. It then follows that this game does not have a Nash equilib-
rium. (R,R,B), (R,R, Y ), (R,B,B), (R,B, Y ), (Y ,R,B), (Y,R, Y ), (Y ,B,B),
(Y,B, Y ).

3 Computing Nash Equilibria in Priority Separable
Games

Given that priority separable games need not always have a Nash equilibrium, an
immediate question is whether there is an efficient procedure to check if a Nash
equilibrium exists in this class of games. We show that checking for the existence
of a Nash equilibrium is NP-complete. While the upper bound is straightforward,
to show NP-hardness we give a reduction from 3-SAT using an argument similar
to the one in [4].

Theorem 1. Given a priority separable game G, deciding if G has a Nash equi-
librium is NP-complete.

Proof. Given a priority separable game G and a strategy profile s, we can verify
if s is a Nash equilibrium in G in time polynomial in |N | and maxi∈N |Si|. It
follows that the problem is in NP. We show NP-hardness by giving a reduction
from 3-SAT.

Consider an instance of 3-SAT given by the formula ϕ = (a1 ∨ b1 ∨ c1) ∧
(a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck) with k clauses and m propositional variables
x1, . . . , xm. For j ∈ {1, . . . , k}, aj , bj and cj are literals of the form x� or ¬x� for
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some � ∈ {1, . . . , m}. We construct in poly-time a priority separable game Gϕ

with the neighbourhood graph structure G = (N,E) such that Gϕ has a Nash
equilibrium iff ϕ is satisfiable.

For every propositional variable x� where � ∈ {1, . . . , m}, we add a player
X� in Gϕ with SX�

= {�,⊥}. With each clause aj ∨ bj ∨ cj for j ∈ {1, . . . , k},
we associate 9 players whose neighbourhood is specified by the graph given in
Fig. 3. The strategy set for each such node (or player) in the graph is specified as
a label next to the node. We use x, y, z as variables where x, y, z ∈ {�,⊥} whose
values are specified as part of the reduction. We denote this graph by Fj(x, y, z)
indicating that x, y and z are parameters.

For a literal d, let λ(d) = � if d is a positive literal and λ(d) = ⊥ if d is
a negative literal. For each clause with literals aj , bj and cj , which is of the
form x� or ¬x�, we add to Gϕ the subgraph Fj(λ(aj), λ(bj), λ(cj)) and an edge
from X� to the node Aj , Bj or Cj . Let Ω = {0, 1} with 0 �i 1 for all i ∈ N .
For all i, i′ ∈ N , we define pi,i′ = 1 if si = si′ and pi,i′ = 0 if si �= si′ . For
each subgraph Fj(x, y, z) corresponding to the clause (aj ∨ bj ∨ cj) and nodes
Aj , Bj and Cj let X�[Aj ],X�[Bj ],X�[Cj ] denote the nodes such that (X�[Aj ], Aj) ∈
E, (X�[Bj ], Bj) ∈ E and (X�[Cj ], Cj) ∈ E respectively for �[Aj ], �[Bj ], �[Cj ] ∈
{1, . . . , m}. We specify the priority ordering for all players i with |R(i)| > 1 as
follows. For each subgraph Fj(x, y, z) we have,

– X�[Aj ] �Aj
6j �Aj

7j �Aj
Cj .

– X�[Bj ] �Bj
4j �Bj

8j �Bj
Aj .

– X�[Cj ] �Cj
5j �Cj

9j �Cj
Bj .

The crucial observation used in the reduction is the following. Consider the
subgraph Hj induced by the nodes in Fj(x, y, z) for j ∈ {1, . . . , k} along the
nodes X�[Aj ],X�[Bj ],X�[Cj ]. Consider the priority separable game G(Hj) induced
by nodes in Hj and the neighbourhood structure specified by Hj . Observe that a
strategy profile t in G(Hj) is a Nash equilibrium iff at least one of the following
conditions hold: tAj

= tX�[Aj ] or tBj
= tX�[Bj ] or tBj

= tX�[Bj ] . Using this
observation, we can argue that Gϕ has a Nash equilibrium iff ϕ is satisfiable.

Suppose s is a Nash equilibrium in Gϕ. Consider the valuation function vs :
{x1, . . . , xm} → {�,⊥} defined as follows: x� = sX�

. From the observation
above, it follows that for every Fj(x, y, z) for j ∈ {1, . . . , k} at least one of
the following conditions hold: sAj

= sX�[Aj ] or sBj
= sX�[Bj ] or sBj

= sX�[Bj ] .
Assume without loss of generality that sAj

= sX�[Aj ] . By the definition of Gϕ, we
have SAj

∩SX�[Aj ] = {λ(aj)}. By the definition of vs we have vs(x�[Aj ]) = λ(aj).
This implies that vs |= aj and therefore vs |= aj ∨ bj ∨ cj . Since this holds for all
clauses, it follows that vs |= ϕ.

Conversely, suppose ϕ is satisfiable and let v |= ϕ for some valuation v :
{x1, . . . , xm} → {�,⊥}. Consider the partially defined strategy profile sv where
sv

X�
= v(x�) for all � ∈ {1, . . . , m}. Since v |= ϕ, for all clauses aj ∨ bj ∨ cj , for

j ∈ {1, . . . , k} we have v |= aj or v |= bj or v |= cj . Without loss of generality
suppose v |= aj . By definition of Gϕ we have SAj

∩SX�[Aj ] = {λ(aj)}. Therefore,
the unique best response for node Aj in the game Gϕ is the strategy λ(aj). This



A Logical Description of Priority Separable Games 39

holds for all clauses and therefore, it is possible to extend sv to a strategy profile
which is a Nash equilibrium in Gϕ.

7{R}

Aj

{R,G, x}

Cj{G,B, z} Bj {R,B, y}

5

{R,B}

6{G,B} 4 {R,G}

9{G} 8 {B}

Fig. 3. Gadget Fj(x, y, z)

4 Monadic Least Fixed Point Logic

We now present Monadic least fixed point logic (MLFP) [33], the logical lan-
guage we will use to reason about separable games. As fist-order logic cannot
express properties like the transitive closure of a relation, its extension with the
least fixed point operator, termed FO(LFP) is used to describe path properties
on graphs. MLFP is a monadic restriction of FO(LFP) where the fixed-point
operator can be applied only to unary relation variables. The model checking
problem for MLFP over finite relational structures can be solved in time polyno-
mial in the size of the model, for a fixed formula (in the sense of data complexity
( [16])). The logic is also expressive enough to describe various interesting prop-
erties of games on finite graphs, as it can describe the transitive closure of a
binary relation.

4.1 Syntax

Let V = {x0, x1, . . .} be a countable set of first-order variables, and SV =
{S0, S1, . . .} be a countable set of second-order variables. These sets are disjoint.
A first-order vocabulary σ = {Rk0

0 , Rk1
1 , . . .} is a countable set of relation symbols

Ri of arity ki > 0.
The set of all MLFP formulas is defined inductively as follows:

α ∈ ΦMLFP := R(x1, . . . , xk) | x = y | S(x) | ¬α | α ∧ α | ∃xα | [lfpS,xα](u)

where R is of arity k, x1, . . . , xk, x ∈ V , S ∈ SV , u does not occur free in α, and
all occurrences of S in α are positive.
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The notion of free occurrence of a variable in a formula is standard. We say
that an occurrence of a relation symbol or a second order variable in a formula is
positive if it occurs under the scope of an even number of negations. (Otherwise
we call the occurrence negative.) In the formula, φ(R) def= ¬∀x∀y¬(R(y)∧¬R(x))
the first occurrence of R is positive and the second is negative. This restriction
is needed to provide semantics, where positivity ensures monotonicity of the
associated operator and hence guaranteeing existence of a least fixed-point.

Note that in a formula [lfpS,xα](u) there can be free variables other than x
(these are often called parameters).

4.2 Semantics

A σ-structure is a pair D = (A, ι) where the non-empty domain of the structure
is A, ι is an interpretation such that a relation symbol R of arity k is interpreted
as a k-ary relation over A. A model is a tuple M = (A, ι, ρ1, ρ2) where (A, ι)
is a σ-structure, and ρ1, ρ2 are interpretations of first order and second order
variables respectively. For a first order variable x, ρ1(x) ∈ A and for a second
order variable S, ρ2(S) ⊆ A.

The notion that a formula α holds in a model M is defined inductively as
follows:

– M |= R(x1, . . . , xk) iff the tuple (ρ1(x1), . . . , ρk(xk)) ∈ ι(R).
– M |= x = y iff ρ1(x) = ρ1(y).
– M |= S(x) iff ρ1(x) ∈ ρ2(S).
– M |= ¬α iff M �|= α.
– M |= α ∧ β iff M |= α and M |= β.
– M |= ∃x.α iff for some a ∈ A, M [x → a] |= α.
– M |= [lfpS,xα](u) iff ρ1(u) ∈ lfp(fα) (where the map fα is defined below).

Above, M [x → a] is the model variant (A, ι, ρ′
1, ρ2) where ρ′

1(y) = ρ1(y) for
y �= x and ρ′

1(x) = a. Similarly, define M [x → a, S → B] is the model variant
(A, ι, ρ′

1, ρ
′
2) where ρ′

1(y) = ρ1(y) for y �= x and ρ′
1(x) = a, and ρ′

2(S
′) = ρ2(S′)

for S′ �= S and ρ′
2(S) = B.

For any formula with x and S occurring free in β, fβ : ℘(A) �→ ℘(A) is
defined by: fβ(B) = {a ∈ A | M [x → a, S → B] |= β}. The map fβ is an
operator on the powerset of elements on the structure ordered by inclusion. The
positivity restriction ensures that the operator is monotone and hence has a least
fixed-point due to the Knaster-Tarski Theorem [27].

5 Expressing Nash Equilibria in MLFP

We now consider priority separable games as models for the logic. This requires
some interpreted relations, and accordingly in the syntax we use special atomic
formulas. We will use many-sorted domains, with elements of different types:
players, strategies, outcomes etc. Types will be specified by formulas: P (x) would
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denote that the domain element denoted by x is a player, whereas O(x) would
similarly denote x as an outcome, and T (x) denotes x as a strategy and so on.

Towards this, we fix n > 0 and consider only models from n-player games.
Let N = {1, . . . , n}. The game vocabulary is a tuple

σG = (P 1, T 1, O1, E2, u3, (S1
i )i∈N ,Sn+2,On+2,�3, �2),

where the superscripts represent the arities of the relational symbols. In σG , P is
intended to denote players, T for strategies, O for outcomes, E for edge relation
on players, u for the pairwise partial payoffs, Si for strategies of player i, S for
relating players and their strategies, O for relating players and their outcomes,
� for the preference on outcomes of players, and � for the priority relation on
players. In addition, we identify a subset of first order and second order player
variables VP and SVP , respectively. We use p, q, p′, q′ etc. to distinguish player
variables and Q,Q′ etc. to designate player set variables.

Correspondingly, σG structures are interpreted as priority separable games.
We abuse notation and use the same symbols for the interpreted relations as
well. Thus P ⊆ N , T,O ⊆ D (the domain that consisted of Si and Ω) such that
T ∩ O = ∅, E ⊆ (N × N), u ⊆ (N × N × O), and for each i ∈ N , Si ⊆ T ,
O ⊆ (N ×O), �⊆ (N ×O×O) and � ⊆ (N ×N ×N). For variable assignments,
we ensure that player variables map to N and player set variables map to subsets
of N . However we use x, y etc. to denote variables of all types.

We use the abbreviation x to denote the tuple of variables (x1, . . . , xn). The
abbrevation St(x) will be used for

∧

j∈N

Sj(xj), to denote strategy profiles. Out(y)

for
∧

j∈N

O(yj) for tuples of outcomes. We use S(x, p, h) to denote that the player

p chooses strategy h in profile x, and O(a, p, a) to denote that the player p gets
outcome a in the vector of outcomes a.

Our goal is to describe Nash equilibrium. A profile x is a Nash equilibrium if
there is no other profile y such that y is an improvement over x for some player
i ∈ N . Thus the formula we are looking for is Imp(p,x,y) to denote such an
improvement for player p.

There are several steps involved in specifying a player i improvement, some
routine, some tricky. For instance we need to specify that for other players, the
strategy choices remain the same, which is routine. In each profile, from the
pairwise interactions and player priorities we need to compute the outcomes for
all players, which is tricky. Indeed this is where we use the least fixed-point
operator. We now build the improvement formula, step-by-step.

We first describe formulas relating to the graph structure on players, their
priorities and preferences over outcomes.

– p is the player in the neighbourhood of q with the highest priority:

first(p, q) = E(p, q) ∧ (∀q′(E(q, q′) =⇒ �(p, q′, q))
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– In the priority preference for player p, player q comes immediately before q′:

nxt(p, q, q′) = E(q, p) ∧ E(q′, p) ∧ �(p, q, q′) ∧ ∀p′((E(p′, p) ∧ �(p, q, p′)∧
�(p, p, q′)) =⇒ (q = p′ ∨ p′ = q′))

The following formulas relate strategy profiles and outcomes.

– Player 1-step: this relates two strategy profiles that differ only in the strategy
of player p:

1-step(p,x,y) = St(x) ∧ St(y) ∧ (S(x, p, g) ∧ S(y, p, h)) =⇒ g �= h

∧ ∀q(q �= p ∧ S(x, q, g) ∧ S(y, q, h)) =⇒ g = h

– The outcome vector y is consistent with the pairwise utility relation u and
the tuple of strategies x:

Con(x,y) = St(x) ∧ Out(y) ∧
∧

i∈N

∧

j �=i

u(xi, xj , yj)

– Fix i, j ∈ N . We want to specify that pi,j(x) �i pi,j(y):

ψ1(p, q,x,a,y, b) =
Con(x,a) ∧ Con(y, b) ∧ (O(a, q, a) ∧ O(b, q, b)) =⇒ � (p, a, b)

– For a player p the outcomes are equal in two outcome tuples:

ψ2(p,a, b) = Out(a) ∧ Out(b) ∧ (O(a, p, a) ∧ O(b, p, b)) =⇒ a = b

Given two outcome vectors a and b we can now compare the outcome for
player p using these formulas. Following this we can then write the formula
Dev(p,x,a,y, b) that states that y with outcome b is an improvement for player
p from x with outcome a by a 1-step deviation.

Dev(p,x,a,y, b) = Con(x,a) ∧ Con(y, b)∧
1-step(p,x,y) ∧ ∃v.

(
[lfpM,wα](p, v,x,a,y, b) ∧ ψ1(p, v,x,a,y, b))

)

α(M,p,w,x,a,y, b) = first(p,w) ∨ ∃v
[
M(v) ∧ nxt(p,w, v) ∧ ψ2(v,a, b)

]

The least fixed point formula helps in checking whether for player i has
a lexicographic better payoff from strategy profile x to y by checking against
p∗

i (x) �lex p∗
i (y). The formula α does the iteration for the lexicographic checking.

As long as the partial payoffs are equal (which is why ψ2 features there), it keeps
accumulating the players from the neighbourhood set of p. The lfp computation
on the operator due to the formula α, scans across the payoffs p∗

i (x) and p∗
i (y).

When there is a mismatch in the payoffs the iteration halts or it accumulates all
the vertices, which would mean that the payoffs are same.

Finally, in the Dev formula we have ∃vψ1 which checks if there is a player in
the neighbourhood of i for whom there is a lexicographically greater outcome,
and along with the other conditions set we are able to express that x �p y.
Now, the existence of Nash equilibrium can be characterised using the following
formula:
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– Imp(p,x,y) = ( ∃b∃a ∧ Dev(p,x,a,y, b)).
– NE(x) = ∀p∀y¬Imp(p,x,y).
– G |= ∃x NE(x)

6 Unboundedly Many Players

In game theory, we typically specify every game with the number of players
playing in it, and there is no significant difference between analysing equilibria
in 23-player games and in 29-player games. In this sense, it is rather unnatural
to fix n, the number of players for the universe of games, parameterise the logic
by n and consider only models based on n-player games. (But this is customary
in modal logics over n-agent systems: for instance, we use epistemic modalities
indexed by each of the n agents.) However, if every model specifies its own
number of players, the number is potentially unbounded, and the syntax must
allow for infinitely many players. For reasoning about games, there is a more
tricky representational issue: strategy profiles are no longer n-tuples but maps
from a finite subset of player names to the set of strategies.

On the other hand, it should be noted that several of these representational
issues have already been faced in our MLFP specification of Nash equilibria in
priority separable games. Hence, with some extra logical effort, we can consider
models with unboundedly many players. In this section, we sketch the develop-
ment of such a logic.

The important extension we need to make to the syntax of the logic is the
addition of a set of binary second order variables to the logic. Let (Xi)i∈N be a set
of binary second order variables. We use X,Y,X ′, Y ′ etc. to denote such binary
second order variables. These variables are intended to take strategy profiles as
values; semantically, they are interpreted as X ⊆ (N × ∪iSi). Further we will
have another set of binary second order variables, (Ui)i∈N, whose members are
denoted by U, V, U ′, V ′etc. These are interpreted as U ⊆ (N × O), associating
players with outcomes.

Since we have three different types of domain elements, we represent them
by three different types of variables - p, u, v, w for player variables, o, a, b - for
outcome variables and g, h - for strategy variables.

The set of all formulas of the extended language is defined as before: the only
new addition are atomic formulas of the form X(p, g) and U(p, a) where X,U are
binary second order variable, p is a player variable, g is a strategy variable and
a an outcome variable. We need to specify the relation value taken by a second
order variable X or U is indeed a function. This is specified by the formulas:

func(X) = ∀p∀g∀h(P(p) ∧ T(g) ∧ T(h) ∧ ((X(p,g) ∧ X(p,h)) =⇒ g = h)
func(U) = ∀p∀a∀b(P(p) ∧ O(a) ∧ O(b) ∧ ((U(p,a) ∧ U(p,b)) =⇒ a = b)

Now note that all the formulas from the previous section can be translated
to formulas in the extended logic, with x being systematically replaced by X
and with a being systematically replaced by U, respectively. For instance:

ψ1(p, q,X,U,Y,V) =
Con(X,U) ∧ Con(Y,V) ∧ (O(U, q, a) ∧ O(V, q, b)) =⇒ � (p, a, b)
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specifies outcome preference on partial payoffs. Now, existence of Nash equilib-
rium can be characterised using the following formula:

– Imp(X,Y) = ∃p(P (p) ∧ Dev(p,X,Y))
– NE(X) = ∀Y¬Imp(X,Y)
– G |= ∃ X NE(X)

7 Discussion

In this paper we have studied Nash equilibria in priority separable games and
their description in monadic least fixed point logic. Proceeding further, we would
like to delineate bounds on the use of logical resources for game theoretic rea-
soning. For instance, one natural question is the characterization of equilibrium
dynamics definable with at most one second order (fixed-point) variable. More-
over, delineating the precise complexity of the logic over games with unbound-
edly many players requires further work. In this context, it would be especially
interesting to explore the framework of parameterized verification ( [1]).

Strategy Logic ( [12]) is a natural logical framework for description of Nash
equilibria. It would be interesting to explore reasoning in such logics over sub-
classes of polymatrix games, especially in terms of the impact on the model
checking problem ( [29]).

An important direction is the study of infinite strategy spaces. Clearly the
model checking algorithm needs a finite presentation of the input but this is
possible and it is then interesting to explore convergence of fixed-point iterations.
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Abstract. In most modal logics, atomic propositional symbols are
directly representing the meaning of sentences (such as sets of possible
worlds). In other words, they use only rigid propositional designators.
This means they are not able to handle uncertainty in meaning directly
at the sentential level. In this paper, we offer a modal language involving
non-rigid propositional designators which can also carefully distinguish
de re and de dicto use of these designators. Then, we axiomatize the
logics in this language with respect to all Kripke models with multiple
modalities and with respect to S5 Kripke models with a single modality.

Keywords: Modal Logic · Epistemic Logic · Non-rigid Designator ·
Ambiguity · Propositional Quantifier

1 Introduction

We frequently fail to grasp the meaning of sentences. People who learned English
only from textbooks may not get a certain contextual meaning of “this is sick!”,
and anyone who is not well versed in set theory is unlikely to fully grasp even
the literal meaning of “the Ultimate-L conjecture”. We also intentionally hide
the meaning of symbols by designing secret interpretations of symbols to com-
municate private information in public: cryptographic protocols are essentially
doing this, and the same string of zeros and ones can mean different things when
decoded by different keys.

The famous Frege’s puzzle can also be understood in this way. To people
unfamiliar with the fact that “Lewis Carroll” is the pen name of Charles Dodgson
who is also a logician and responsible for Dodgson’s method in voting theory,
“Lewis Carroll authored Alice in Wonderland” and “Charles Dodgson authored
Alice in Wonderland” express different propositions. Indeed, they are likely to
believe that the first sentence is true while the second sentence is false. However,
given that Lewis Carroll is actually Charles Dodgson, “Lewis Carroll authored
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Alice in Wonderland” and “Charles Dodgson authored Alice in Wonderland” in
fact express the same proposition.

In epistemic logic in its basic form, this ubiquitous phenomenon of uncer-
tainty in meaning is not modeled at all. A propositional symbol p is meant to
directly designate a proposition (a set of possible worlds) much like in first-order
(modal) logic an individual variable x is meant to directly designate an object
in the domain, and one can never be uncertain about what p means but only
what’s p’s truth value since p is already ‘interpreted’.

To our best knowledge, attempts to model uncertainty in meaning in the
modal logic and possible world semantics paradigm are scarce. One notable work
is [19] where different agents may interpret the same propositional symbol dif-
ferently. In the usual setting of possible world semantics with multiple agents
in Agt, this can be understood as taking a model to be (W, {Ri}i∈Agt, {Vi}i∈Agt)
where Ri is the accessibility relation for i (we write the corresponding modal
operator as ‘Bi’, ‘B’ for ‘Belief’) and for each i ∈ Agt, Vi is a valuation function
assigning to each propositional symbol p a set in ℘(W ). Then, Bip is true at a
world w iff Vi(p) ⊆ Ri(w); that is Bip says that i believes the proposition she
takes p to mean. More generally, BiBjBkp means that i believes that j believes
that k believes that p as interpreted by k. In other words, an occurrence of p
is always interpreted by the last agent i whose belief operator scopes over that
occurrence. This restriction is lifted in [18], where we can form propositional
symbols pi indexed by agent i so that pi is always interpreted by Vi. This in a
sense means that if the only uncertainty to the meaning of a propositional sym-
bol p is how different agents may interpret it differently but unambiguously, the
standard epistemic logic can simulate this by using more propositional symbols.

Another important relevant work is [17]. There, the meaning of a proposi-
tional symbol p is not merely determined by the set of possible worlds assigned
to it by the valuation function V , but fundamentally by a syntactic definition
DEFw(p) of it using other propositional symbols, and the definition could vary
from worlds to worlds. Of course, the definitions and the valuation must cohere.
Then, while an agent still knows what is the proposition assigned to p by the
valuation function V , the agent may not know the definition of p, and further
the proposition expressed by the definition of p.

In this paper, we take perhaps the most straightforward way to allow uncer-
tainty in meaning: we simply let propositional symbols be non-rigid designa-
tors of sets of possible worlds. In other words, we let the valuation function
be world relative. This approach has been taken up in [21] to formalize defi-
nite descriptions of propositions and the Brandenburger-Keisler paradox. The
paradox involves sentences such as:

(A1) Ann believes that the strangest proposition that Bob believes is that neu-
trinos travel at twice the speed of light.

(A2) Ann believes that the strangest proposition that Bob believes is true.

In [21], the first sentence is formalized as Ba(γ isϕ), and the second sentence’s
de dicto and de re readings are formalized as Bre

a T(γ) and Bdicto
a T(γ), respec-

tively, where γ is a definite description (non-rigid designator) for the strangest
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proposition that Bob believes. We find the formalism slightly cumbersome and
not fully general. Taking inspiration from concept abstraction used in first-order
intentional modal logic [11,13] and assignment operators used in [6,17,25,30],
we relabel the syntactic category of propositional variables x which are rigid
designators and use [p/x]ϕ to mean “letting x be the proposition expressed by
p, ϕ”. Since the propositional variables x are only playing the role p used to play,
we are only extending the basic language of modal logic by the binders [p/x].
With this minimal perturbation, we can already easily distinguish

– [p/x]BiBjx: letting x be the proposition p actually means, i believes that j
believes that x is true;

– Bi[p/x]Bjx: i believes that, with x being p’s meaning, j believes that x;
– BiBj [p/x]x: i believes that j believes that p is true.

The Ann and Bob sentence above can also be formalized with the help of a
necessity modality ◻ that quantifies over all possible worlds, in which case when
◻(x↔ y) is true, x and y denote the same proposition.

– Ba[p/x] ◻ (x↔ y) formalizes (A1) where y directly denotes the proposition
expressed by ‘neutrinos travel at twice the speed of light’.

– [p/x]Bax formalizes the de re reading of (A2).
– Ba[p/x]x formalizes the de dicto reading of (A2).

The semantic type of functions from worlds to sets of worlds appears in various
kinds of higher-order modal logics [12,15,27]. Indeed, there is a way to embed
our language in the higher-order intentional language presented in [15]. Objects
of the said type also bear the name ‘two-dimensional content’ and are used in
for example [3,4,23,24,28]. The semantic function of the operator [p/x] can also
be understood as ‘rigidifying’ the non-rigid designator p. From this perspective,
our work is related to generalized versions of hybrid logic [2]. Further discussion
of relations to higher-order and hybrid modal logics are included in Sect. 2 after
we formally introduce our minimalist language and its semantics.

Our main technical contributions are two axiomatization results, one with
respect to all multiagent models, and one with respect to single-agent models
where the accessibility relation is the universal relation (single-agent epistemic
models). Axiomatization in our setting poses an interesting challenge that echos
with the following ‘paradox’ on a Cantorian level: one cannot be completely
ignorant of the meaning of p in the possible world framework, because there
are always more possible meanings of p (sets of possible worlds) than there
are possible worlds, but for different meanings X of p, we need different possible
worlds to model the possibility that the agent takes X to be the meaning of p. In
completeness proofs with assignment operators, one typically extends language
so that in each maximally consistent set (MCS), each non-rigid designator has a
witness. Let p be such a non-rigid designator. Now different MCSs should have
different witnesses for p, as otherwise they are forced to take p to mean the same
thing. Put in another way, we in principle need fresh witnesses for each MCS
to maintain consistency when adding those witnesses. But then, we are back in
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Cantor’s trap: no matter how we extend our language, there will always be more
MCSs than there are variables. We will bypass this difficulty using step-by-step
constructions.

The rest of the paper is organized as follows: in Sect. 2, we formally introduce
the language and the semantics. We will also comment on the undecidability of
the set of validities for the class of universal models (single-agent S5 case) and
discuss how our language compares to higher-order and hybrid modal logics.
Section 3 deals with the class of all models, i.e., the multi-agent K case, and
in Sect. 4, we consider the class of universal models, i.e., single-agent S5 case.
Finally, we conclude in Sect. 5 with possible future research directions.

2 Formal Language and Semantics

Definition 1. We fix a countably infinite set Prop of propositional names, a
countably infinite set Var of propositional variables, and a non-empty set Agt of
unary modal operators. Then, define language L by the following grammar:

L ∋ ϕ ∶∶= x | ¬ϕ | (ϕ ∧ ϕ) | ◻ϕ | [p/x]ϕ

where x ∈ Var, p ∈ Prop, and ◻ ∈ Agt. The usual abbreviations apply. Also, we
treat [p/x] as a quantifier that binds the variable x. Thus the usual notions of
free and bound variables, free for substitution (substitutability), and so on apply
as well. ϕ[y/x] is the result of replacing all free occurrences of x in ϕ by y. We
will usually accompany this notation with a substitutability requirement.

Here symbols in Prop are non-rigid propositional designators while symbols in
Var are rigid propositional designators. Syntactically we do not allow for p ∈ Prop
to appear as an atomic formula since for example, BiBjBkp is ambiguous. Of
course, we could write BiBjBk[p/x]x when that is the intended expression.

Definition 2. A Kripke model with non-rigid propositional designators
(‘model’ for short) is a tuple (W, {Pp}p∈Prop, {R◻}◻∈Agt) where

– W is a non-empty set, intuitively the set of possible worlds;
– for each p ∈ Prop, Pp is a function from W to ℘(W ), with Pp(w) understood

as the proposition p designates at w;
– for each ◻ ∈ Agt, R◻ ⊆W 2, the accessibility relation for ◻.

Given a model M = (W, {Pp}p∈Prop, {R◻}◻∈Agt), an assignment σ for M is a
function from Var to ℘(W ). Truth in a model M = (W, {Pp}p∈Prop, {R◻}◻∈Agt) is
defined recursively relative to worlds and assignments as follows:

M, w, σ ⊧ x ⇐⇒ w ∈ σ(x)
M, w, σ ⊧ ¬ϕ ⇐⇒ M, w, σ � ⊧ϕ

M, w, σ ⊧ (ϕ ∧ ψ) ⇐⇒ M, w, σ ⊧ ϕ and M, w, σ ⊧ ψ

M, w, σ ⊧ ◻iϕ ⇐⇒ ∀v ∈W,wR◻v ⇒ M, v, σ ⊧ ϕ

M, w, σ ⊧ [p/x]ϕ ⇐⇒ M, w, σ[Pp(w)/x] ⊧ ϕ.
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Here σ[Pp(w)/x] is the function that is identical to σ except that σ[Pp(w)/x](x)=
Pp(w). This ‘f [a/x]’ notation is used for all functions. A formula ϕ is valid on
a model M if it is true at all worlds relative to all assignments (written M⊧ϕ).
ϕ is valid on a class K of models if it is valid on all models in the class K.

The analogue of the substitution lemma in first-order logic holds as well.

Lemma 1. For any model M = (W, {Pp}p∈Prop, {R◻}◻∈Agt), w ∈W , assignment
σ for M, formula ϕ ∈L, x, y ∈Var, if y is substitutable for x in ϕ, then M, w, σ⊧
ϕ[y/x] iff M, w, σ[σ(y)/x] ⊧ ϕ.

We will also be interested in the case when Agt is a singleton {◻}, and the
relation R◻ is the universal relation. Since the universal relation is uniquely
determined by the set of possible worlds, we will simply dispense with it.

Definition 3. A universal Kripke model with non-rigid propositional designa-
tors (‘universal model’ for short) is a tuple (W, {Pp}p∈Prop) where W is a non-
empty set and for each p ∈Prop, Pp ∶W →℘(W ). When Agt= {◻}, we interpreted
L on universal models M = (W, {Pp}p∈Prop) just like in Definition 2 except that
M, w, σ ⊧ ◻ϕ iff forall v ∈W , M, v, σ ⊧ ϕ.

These models can be used to model an S5 agent, for which the R◻ relation is
an equivalence relation since truth in L is preserved under generated submodel.
Due to lack of space, we will not define and prove this formally, but in fact,
more generally, L can be translated into the guarded fragment, though not the
two-variable fragment. Now, on universal models, the ‘guard’ does not really do
anything, and indeed, for the class of universal models, its set of validities is
undecidable. For a starter, note that:

Proposition 1. ◻[p/x]◇ [p/y](◻(x→y)∧◇(y∧¬x)) is satisfiable by a universal
model, and all such models are infinite.

The idea is that ◻[p/x] ◇ [p/y](◻(x → y) ∧ ◇(y ∧ ¬x)) entails there must be
an infinite strictly ascending chain of sets of possible worlds. The ‘paradox’
mentioned in the introduction is also formalizable as ◇[p/y] ◻ (x ↔ y), and
indeed no universal model can validate this formula.

Again, due to lack of space, we will not formally prove undecidability, but
the idea is to use the formula ◻[p/x](x ∧ ◻(x→ [p/y] ◻ (y↔ x))) so that we can
use ◻[p/x] to simulate the first-order quantifier ∀x and use another q ∈ Prop to
simulate a binary relation R so that R(x, y) translates to ◇(x ∧ [q/z]◇ (y ∧ z)).
Then we can translate first-order logic with a binary relation into L.

Now we briefly comment on how our language and semantics compare to
the semantics of higher-order modal logics and hybrid logics. First, we consider
the influential system IL (Intentional Logic) presented in [15]. As a higher-
order logic, we first need to define the types of its language. To simplify the
presentation, we omit the basic type e for individuals (tables and chairs) and
the complex types using it. Thus, the basic type names are s and t where s
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names the type for possible worlds and t names the type for truth values. All
types can be generated by the following BNF grammar

Type ∋ α ∶∶= t | (α→ α) | (s→ α).

Note that s is not by itself a type. When parentheses are omitted, we assume
right-association, e.t. s→ s→ t means (s→ (s→ t)). For each α ∈Type we assume
that there are countably infinitely many constants c and variables x of the type
α (when we highlight their type, we write cα and xα). Then, the set Tα of the
terms of type α are defined inductively by the following clauses:

– Constants and variables of type α are in Tα.
– If A ∈ Tα→β and B ∈ Tα, then (AB) ∈ Tβ .
– If A ∈ Tβ and x is a variable of type α, then (λx.A) ∈ Tα→β .
– If A,B ∈ Tα, then (A =B) ∈ Tt.
– If A ∈ Tα, then (̂ A) ∈ Ts→α.
– If A ∈ Ts→α, then (̌ A) ∈ Tα.

Again, we write Aα to highlight that A is of type α and assume left-association
when parentheses are omitted. Truth-functional operators such as ¬ ∈ Tt→t and
∧ ∈ Tt→t→t are not included as they can be defined by lambda terms, and the
meaning of ˆ and ˇ will become clear below.

Semantically, an object of type t is a truth value while an object of type s
is understood as a possible world, and an object of type α → β is a function
from objects of type α to objects of type β. Each term A of type α extensionally
denotes an object of type α and intentionally denotes an object of type s→ α,
namely a function from possible worlds to objects of type α. Thus, for a set-
theoretical formal semantics, given a non-empty set W for possible worlds, we
define the full domain DW

α for each type α recursively by DW
t = {0, 1}, DW

s =W ,
and DW

α→β = (DW
β )DW

α , the set of all functions from DW
α to DW

β (here we allow
α to be s). Then, a standard model for IL is a pair (W, I) where W is a non-
empty set (of possible worlds) and I is a function that maps, for all type α,
the constants c of type α to I(c) ∈DW

s→α, which we take as the intention of c in
this model. An assignment σ for a model (W, I) is a function that maps each
variable x of its type α to σ(x) ∈DW

α . Then the denotation ∣A∣W,I,w,σ of terms
A at world w relative to assignment σ in model (W, I) is defined recursively:

– ∣c ∣W,I,w,σ
=I(c)(w) and ∣x ∣W,I,w,σ

=σ(x).
– ∣AB ∣W,I,w,σ

= ∣A ∣W,I,w,σ (∣B∣W,I,w,σ).
– ∣λxα.Aβ ∣

W,I,w,σ
={(a, ∣Aβ∣

W,I,w,σ[a/xα]) | a ∈DW
α }.

– ∣A =B ∣W,I,w,σ
=1 if ∣A ∣W,I,w,σ

= ∣B∣W,I,w,σ, and is 0 otherwise.
– ∣̂ A ∣W,I,w,σ

={(v, ∣A∣W,I,v,σ) | v ∈W}.
– ∣̌ As→α ∣

W,I,w,σ
= ∣As→α ∣

W,I,w,σ (w).

At any world w, the idea of ˆA is to obtain the intention of A, the total function
from worlds to A’s denotation at those worlds, as its denotation. Conversely,
when we have a term As→α, its denotation is already ‘intentionally of type α’,
and the idea of ˇAs→α is to get the extension of A’s denotation.
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Now let us try to translate our language L into the language of IL with its
standard semantics. If we were working with the basic language of propositional
modal logic, then it would be a natural choice to regard ϕ ∈L as terms of type t.
This would require us to take atomic propositional symbols p as constants of type
t so that they could have non-constant intentions, and take modal operators ◻
as terms of type (s→t)→t as they operate on the intention of formulas. Then ◻ϕ
should be translated as ◻(̂ ϕ). However, we cannot treat propositional variables
x as constants of type t since syntactically we must be able to bind them. So they
must be a variable of some type. The natural choice we have then is variables
of type s→ t, since the natural translation for propositional names p ∈ Prop are
constants of type s→ t, and [p/x]ϕ can be understood as (λx.ϕ)p. But it is also
natural to take formulas as terms of type t, which coheres well with the truth-
functional operators, so we must deal with the fact that in L, propositional
variables are also formulas. The solution is simple: always use x̌.

More formally, define a translation T on L:

– T (x) = (̌ xs→t) where xs→t is a variable corresponding to x.
– T (¬ϕ) = ¬T (ϕ), and T (ϕ ∧ ψ) = (∧T (ϕ))T (ψ).
– T (◻ϕ) = ◻(s→t)→t(̂ T (ϕ)) where ◻(s→t)→t is a constant corresponding to ◻.
– T ([p/x]ϕ) = (λxs→t.T (ϕ))ps→t where ps→t is a constant corresponding to p.

Then it is not hard to check that, with the obvious way to expand a model and
assignment for L into a standard model and assignment for IL, ϕ and T (ϕ) are
true at precisely the same worlds.

For the hybrid way to understand L, consider the following variation L@ of
L where instead of a set Var of propositional variables, we use a set Nom of
nominal variables. Then L@ is defined by the grammar

ϕ ∶∶= (p@i) | ¬ϕ | (ϕ ∧ ϕ) | ◻ϕ | ↓iϕ

where p∈Prop, i∈Nom, and ◻∈Agt. Given a model M=(W, {Pp}p∈Prop, {R◻}◻∈Agt)
and a nominal assignment ν ∶ Nom→W , we define the semantics by M, w, ν ⊧
(p@i) iff w ∈ Pp(ν(i)) and M, w, ν ⊧ ↓iϕ iff M, w, ν[w/i] ⊧ ϕ. Then it is also
not hard to see that [p/x]ϕ can be understood as ↓ixϕ[(p@ix)/x] where ix is a
nominal variable corresponding to the variable x and ϕ[(p@ix)/x] is the result
of replacing free occurrences of x in ϕ with (p@i). Thus, a truth-preserving
translation from sentences (formulas without free propositional variables) in L
to sentences (formulas without free nominal variables) in L@ can be defined.

3 Axiomatization for Multi-agent K

In this section, we deal with the class of all models. Our completeness proof
requires adding new variables to the language. Thus let us fix a set Var+ that is
a superset of Var and Var+ ∖ Var is also countably infinite. Then by [Var,Var+]
we mean the set {X | Var ⊆X ⊆ Var+}.
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Definition 4. For any X ∈ [Var,Var+], define L(X) by the following grammar:

L(X) ∋ ϕ ∶∶= x | ¬ϕ | (ϕ ∧ ϕ) | ◻ϕ | [p/x]ϕ

where x ∈X, p ∈ Prop, and ◻ ∈ Agt. Obviously L = L(Var).

Now we define the logic NPK (non-rigid propositional K).

Definition 5. For any X ∈ [Var,Var+], let NPK(X) be the set of formulas in
L(X) axiomatized by the following axioms and rules:

– (PL) All instances of propositional tautologies in L(X)
– (K) ◻(ϕ→ ψ)→ (◻ϕ→◻ψ)
– (Comm) [p/x](ϕ→ ψ)→ ([p/x]ϕ→ [p/x]ψ) and [p/x]¬ϕ↔¬[p/x]ϕ
– (Triv) ϕ↔ [p/x]ϕ where x does not occur free in ϕ
– (Sub) [p/y]([p/x]ϕ↔ ϕ[y/x]) whenever y is substitutable for x in ϕ
– (Perm) [p/x][q/y]ϕ↔ [q/y][p/x]ϕ where x and y are distinct variables
– (MP) from ϕ and ϕ→ ψ derive ψ
– (Nec) from ϕ derive ◻ϕ for every ◻ ∈ Agt
– (Inst) from ϕ derive [p/x]ϕ

As usual, we write Γ ⊢NPK(X) ϕ to mean that Γ ∪ {ϕ} ⊆ L(X) and there is a
finite conjunction γ of formulas in Γ such that γ → ϕ is in NPK(X). By NPK
we mean NPK(Var).

The soundness of these axioms and rules is easy to check, where (Sub) is the
syntactic version of the substitution lemma. We collect some basic facts about
the logic in the following lemma:

Lemma 2. Let X,Y ∈ [Var,Var+] such that X ⊆ Y .

– NPK(X) proves equivalence under renaming of bound variables.
– If Γ ⊆ L(X) is consistent in NPK(X) (that is, Γ ⊢/ NPK(X)�), then there is a

maximally consistent set (MCS for short) Δ w.r.t. NPK(X) extending Γ . We
use choice to fix such a set uniformly as ExtNPK(X)(Γ ).

– For any Γ ⊆ L(X) and any ◻ ∈ Agt, define ◻−1Γ = {ϕ | ◻ϕ ∈ Γ}. Then if Γ is
consistent in NPK(X), for any formula ¬◻ϕ ∈ Γ , {¬ϕ} ∪◻−1Γ is consistent.

– NPK(Y ) is conservative over NPK(X): NPK(Y ) ∩ L(X) = NPK(X).

The first three points are standard exercises. For the last point, note that any
proof in NPK(Y ) uses only finitely many variables. Thus we can always find
unused variables in X and uniformly replace variables in Y ∖X used in the proof
by these new variables in X.

Definition 6. A witness assignment is an injective function v from Prop to
Var+. We often write vp for v(p). For any X ∈ [Var,Var+], a witness assignment v
is fresh for X if ran(v)∩X =∅. For any witness assignment v and X ∈ [Var,Var+],
define WF(v,X) (witnessing formulas in L(X) using v) to be

{[p/x]α↔ α[vp/x] | [p/x]α ∈ L(X), vp is substitutable for x in α}.

We also write X + v for X ∪ ran(v).
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Lemma 3. For any X ∈ [Var,Var+], Γ a MCS in NPK(X), and v a witness
assignment fresh for X, the set Γ ′

=Γ ∪WF(v,X+v) is consistent in NPK(X+v)
and has exactly one MCS extension in NPK(X + v). We denote this extension
by Γ + v.

Proof. In this proof, we write ⊢ for ⊢NPK(X) and ⊢+v for ⊢NPK(X+v). First, we
show consistency. Suppose not, then we have a finite {α1, . . . , αn} ⊆ Γ and a
finite {[pi/xi]βi↔ βi[vpi

/xi]}m
i=1 ⊆WF(v,X + v) with

⊢+v⋀
i

αi → ¬⋀
i
([pi/xi]βi↔ βi[vpi

/xi]). (1)

Now we have the following derivable formulas:

⊢+v ⋀αi → ¬⋀
i
[p1/vp1 ] . . . [pm/vpm

]([pi/xi]βi↔ βi[vpi
/xi]). (2)

⊢+v [pi/vpi
]([pi/xi]βi↔ βi[vpi

/xi]). (3)
⊢+v [p1/vp1 ] . . . [pm/vpm

]([pi/xi]βi↔ βi[vpi
/xi]). (4)

⊢+v ⋀αi →⋀
i
[p1/vp1 ] . . . [pm/vpm

]([pi/xi]βi↔ βi[vpi
/xi]). (5)

(2) is obtained from (1) by repeated use of (Inst), (Comm), and (Triv). (3) are
simply instances of (Sub). (4) are obtained from (3) by (Inst) and (Perm). (5) is
simply combining (4) for all i and add an antecedent. Thus, Γ is inconsistent in
NPK(X+v). By the conservativity of NPK(X+v) over NPK(X), Γ is inconsistent
in NPK(X), contradicting the assumption.

Now we show that Γ ′ has at most one maximally consistent extension in
NPK(X + v). For this, it is enough to show that for any ϕ ∈L(X + v), if Γ ′

⊢/ +vϕ,
then Γ ′

⊢+v ¬ϕ. So suppose Γ ′
⊢/ +vϕ. Let ψ be the result of renaming bound

variables in ϕ so that all bound variables are in X. Then Γ ′
⊢/ +vψ as NPK(X +

v) proves equivalence under such renamings (and renamings are reversible by
renamings again). Now list the free variables of ψ in ran(v) as vp1 , vp2 , . . . , vpl

and pick distinct variables x1, x2, . . . , xl in X that does not appear in ψ. Then
inductively define the formulas α0=ψ, αi+1=[pi+1/xi+1](αi[xi+1/vpi+1 ]). Then αl is
in fact [pl/xl] . . . [p1/x1](ψ[x1/vp1 ] . . . [xl/vpl

]) and moreover, for each i=0 . . . l−1,
αi+1 ↔ αi is in Γ ′, since αi[xi+1/vpi+1 ][vpi+1/xi+1] is identical to αi and hence
αi+1↔αi is in the form of [p/x]β↔β[vp/x]. Thus Γ ′

⊢/ +vαl. But now αl ∈L(X),
so by the maximality of Γ , Γ ′

⊢v+ ¬αl. By (Comm),

Γ ′
⊢v+ [pl/xl] . . . [p1/x1](¬ψ[x1/vp1 ] . . . [xl/vpl

])

Then by using formulas in WF(v,X), we see that Γ ′
⊢+v ¬ψ.

Let Γ be a maximally consistent set for NPK. To prepare for the model
building for Γ , first pick for each i ∈N a witness assignment vi such that for any
i =/ j, ran(vi) ∩ ran(vj) = ∅ and ran(vi) ∩ Var = ∅. Also, let Var0 = Var + v0 and
Vari+1 = Vari + vi+1. Then let Varω = ⋃i∈NVari.

Now we construct a tree model for Γ in stages. Each node of the tree is of
the form (s,Δ) where s is a sequence of modal operators in Agt and Δ is a MCS
in L(Varlen(s)) such that WF (vlen(s),Varlen(s)) ⊆Δ. len(s) is the length of s.
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At stage 0, the tree is T0 ={(ε, Γ +v0))} where ε is the empty sequence. Then
inductively, we define Ti+1 as the result of adding to Ti for each leaf node (s,Δ)
(it is a leaf in the sense that len(s)=i), for each ◻∈Agt, and for each formula in Δ
of the form ¬◻ϕ, the pair (s+◻, ExtNPK(Vari)({¬ϕ}∪◻−1(Δ))+vi+1). Here s+◻ is
the sequence that extends s by ◻. Finally, set MNPK

= (T, {Pp}p∈Prop, {R◻}◻∈Agt)
where:

– T = ⋃i∈NTi;
– (s1,Δ1)R◻(s2,Δ2) iff s2 = s1 + ◻

– Pp((s,Δ)) = {(s′,Δ′) ∈ T | v
len(s)
p ∈Δ′}.

Definition 7. A formal assignment g for MNPK is a function from Var to Varω
such that g(x) is either x itself or is in Varω∖Var. We extend g so that for any
ϕ ∈ L, g(ϕ) = ϕ[g(x)/x]. Note that g(x) is always substitutable for x in ϕ. For
each formal assignment g for MNPK, define assignment g by

g(x) = {(s,Δ) ∈ T | g(x) ∈Δ}.

Also, for each (s,Δ) ∈ T , we say that a formal assignment g is admissible for
(s,Δ) if ran(g) ⊆ Varlen(s).

Lemma 4. For any formula ϕ∈L, any formal assignment g for MNPK, and any
(s,Δ) ∈ T , if g is admissible for (s,Δ), then MNPK, (s,Δ), g ⊧ ϕ iff g(ϕ) ∈Δ.

Proof. For the base case, note that for any x ∈ Var, trivially by definition,

MNPK, (s,Δ), g ⊧ x⇔ (s,Δ) ∈ g(x)⇔ g(x) ∈Δ.

For the Boolean cases, we only need to note that g(¬α) =¬g(α) and g((α∧ β)) =
(g(α) ∧ g(β)) and that Δ is maximally consistent.

For one direction of the modal cases, suppose g(◻ϕ) ∈Δ. Then ◻g(ϕ) ∈Δ. By
the construction of T , for any (s+◻,Δ′) ∈T , g(ϕ) ∈Δ′. By Induction Hypothesis
(IH), and noting that since g is admissible for (s,Δ), g must also be admissible for
(s+◻,Δ′), MNPK, (s+◻,Δ′), g⊧ϕ. By the definition of R◻, MNPK, (s,Δ), g⊧◻ϕ.

For the other direction of the modal cases, suppose g(◻ϕ) ∈/Δ. Since g is
admissible for (s,Δ), g(◻ϕ) ∈ L(Varlen(s)). Since Δ is a MCS of NPK(Varlen(s)),
¬◻g(ϕ)∈Δ. By the construction of T , there is (s+◻,Δ′)∈T such that ¬g(ϕ)∈Δ′,
and then g(ϕ)∈/Δ′. By IH, MNPK, (s+◻,Δ′), g⊧/ϕ, and thus MNPK, (s,Δ), g⊧/ ◻ϕ.

Finally, for the assignment operator case, consider any formula [p/x]ϕ ∈ L.

MNPK, (s,Δ), g ⊧ [p/x]ϕ⇔MNPK, (s,Δ), g[vlen(s)
p /x] ⊧ ϕ⇔ g[vlen(s)

p /x](ϕ) ∈Δ.

The first equivalence is due to our definition of Pp, g[Pp(s,Δ)/x] = g[vlen(s)
p /x],

and the second is by IH. Observe that the formula g([p/x]ϕ)↔ g[vlen(s)
p /x](ϕ)

is precisely of the form [p/x]β↔ β[vlen(s)
p /x] ∈WF(vlen(s),Varlen(s)), where β is

the result of replacing each free variable y =/ x in ϕ by g(y). Since g is admissible
for Δ so that β ∈ L(Varlen(s)) and by construction Δ is of the form Ξ + vlen(s)

where Ξ is maximally consistent, the formula g([p/x]ϕ)↔ g[vlen(s)
p /x](ϕ) is in

Δ. Thus g[vlen(s)
p /x]ϕ ∈Δ iff g([p/x]ϕ) ∈Δ.
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Given the last truth lemma, MNPK, (ε, Γ + v0), id satisfies Γ , where id is the
identity function from Var to Var. Thus,

Theorem 1. NPK is sound and strongly complete with respect to the class of
all Kripke models with non-rigid propositional designators.

4 Axiomatization for Single Agent S5

In this section, we deal with the case where Agt = {◻} and models are universal.
To facilitate describing a special axiom for S5, where �p = (p1, . . . , pn) is a finite
sequence from Prop of length n ∈ N

+, and �x = (x1, . . . , xn) is a finite sequence
from Var+ of equal length n, by [�p/�x] we mean the stack of assignment operators
[p1/x1] · · · [pn/xn]. Also, when v is an injective function from Prop to Var+, by
v�p we mean the sequence (vp1 , . . . , vpn

). Thus [�p/v�p] is [p1/vp1 ] · · · [pn/vpn
].

Definition 8. For any X ∈ [Var,Var+], let NPS5(X) be the set of formulas in
L(X) axiomatized by all the axioms and rules defining NPK(X) and also:

– All instances of the usual S5 axioms.
– (SymSub) [�p/v�p](γ → ◻[�q/�z] ◇ (γ ∧ ⋀

m

i=1([pi/xi]ϕi ↔ ϕi[vpi
/xi]))) where �p =

(p1, . . . , pn) is from Prop, v is an injection from Prop to X, �q and �z are
sequences of equal length from Prop and X respectively, variables in �z does
not occur in γ or v�p, and vpi

is substitutable for xi in ϕi.

(SymSub) says something stronger than (Sub): under the assignment [p/y], even
if some other variable z in ϕ is bound by the value of p at some other world,
still [p/x]ϕ↔ ϕ[y/x] at this world. We can return to ‘this world’ by ◻◇ since
the underlying accessibility relation is universal (and hence symmetric). The
extra formula γ further solidifies that we are returning to ‘this world’. Then, the
soundness of these axioms and rules over universal models is not hard to check.

The analogue of Lemma 2 and Lemma 3 holds also for NPS5 since they only
use the NPK part, and for the lack of space we do not repeat then here. The
following technical lemma shows the use of (SymSub).

Lemma 5. Suppose X ∈ [Var,Var+], v1 is a witness assignment such that
ran(v1) ⊆X, v2 is a witness assignment fresh for X, Γ1 and Γ2 are both MCSs
in NPS5(X) such that WF(v1,X)⊆Γ1 and ◻−1(Γ1)⊆Γ2, and finally Δ2 =Γ2+v2.
Then Γ1 ∪WF(v1,X + v2) ∪ ◻−1Δ2 is consistent in NPS5(X + v2).

Proof. We write ⊢ for ⊢NPS5(X) and ⊢
+v2 for ⊢NPS5(X+v2). Suppose toward a

contradiction that Γ1 ∪WF(v1,X + v2) ∪ ◻−1Δ2 is inconsistent. Since Γ1 and
◻
−1Δ2 are closed under conjunctions, there are γ ∈ Γ1, δ ∈ ◻−1Δ2, and formulas

[pi/xi]ϕi↔ ϕi[v1
pi

/xi] (i = 1 . . . m) from WF(v1,X + v2) such that

γ,
m

⋀

i=1
([pi/xi]ϕi↔ ϕi[v1

pi
/xi]), δ ⊢+v2 �.



58 Y. Ding

Since NPS5 proves equivalence under renaming bound variables, without loss of
generality, we can assume that all the bound variables in all the ϕi appear in X.
By Boolean and normal modal reasoning, we have

δ ⊢
+v2 γ → ¬

m

⋀

i=1
([pi/xi]ϕi↔ ϕi[v1

pi
/xi]),

◻δ ⊢
+v2 ◻(γ → ¬

m

⋀

i=1
([pi/xi]ϕi↔ ϕi[v1

pi
/xi])),

◻δ ⊢
+v2 ¬ ◇ (γ ∧

m

⋀

i=1
([pi/xi]ϕi↔ ϕi[v1

pi
/xi])).

Since δ ∈ ◻−1Δ2, this means that ¬ ◇ (γ ∧
m

⋀

i=1
([pi/xi]ϕi ↔ ϕi[v1

pi
/xi])) is also in

Δ2. We will show that

◇(γ ∧
m

⋀

i=1
([pi/xi]ϕi↔ ϕi[v1

pi
/xi])) (β)

is also in Δ2, rendering Δ2 inconsistent. Since Γ2 is consistent, by Lemma 3,
Δ2 should also be consistent, a contradiction.

Enumerate the set {p ∈ Prop | v2
p occurs in β} as �q = (q1, . . . , ql). Then pick

fresh variables �z = (z1, . . . , zl) from X and let ψi = ϕi[z1/v2
q1 ] · · · [zl/v2

ql
] for each

i=1 . . . m. Note that since γ is from Γ1, no variables in ran(v2) occurs in γ. Now
consider the formula

[�p/v1
�p](γ →◻[�q/�z]◇ (γ ∧

m

⋀

i=1
([pi/xi]ψi↔ ψi[v1

pi
/xi]))).

Note that this is in the form of the axiom (SymSub) and is in L(X). Thus it is

in Γ1. But since WF(v1,X) ⊆Γ1, γ→◻[�q/�z]◇ (γ ∧
m

⋀

i=1
([pi/xi]ψi↔ψi[v1

pi
/xi])) is

in Γ1. Since γ ∈ Γ1, ◻[�q/�z]◇ (γ ∧
m

⋀

i=1
([pi/xi]ψi↔ ψi[v1

pi
/xi])) is also in Γ1. Since

◻
−1Γ1 ⊆ Γ2,

[�q/�z]◇ (γ ∧
m

⋀

i=1
([pi/xi]ψi↔ ψi[v1

pi
/xi])) (α)

is in Γ2, and hence is in Δ2 = Γ2 + v2. But observe that β can be obtained by
iteratively removing [qi/zi] and instantiate zi with v2

qi
(reversing the process of

constructing ψi from ϕi). Since Δ2 =Γ2 + v2, WF(v2,X + v2) ⊆Δ2. So Δ2 proves
α↔ β, and hence β is in Δ2.

Let Γ be a maximally consistent set for NPS5. To build a universal model
for Γ , pick fresh witness assignments {vi | i ∈N} and corresponding variable sets
Vari and Varω as before. It is useful to note that L(Varω) = ⋃i∈NL(Vari) since
each formula is finite and uses only finitely many variables in Varω. We fix an
enumeration of (¬◻χ1,¬◻χ2, . . . ) of all formulas in L(Varω) of the form ¬◻ϕ.
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Now we build a model for Γ in stages, where at stage i, we build a sequence
Σi
=(Σi

0, . . . , Σ
i
i) of MCSs in NPS5(Vari), a set Πi

⊆L(Vari), and a formula ¬◻θi

(here i > 0) with set Hi
= {¬ ◻ θ1, . . . ,¬ ◻ θi} (with H0

=∅) such that:

– for each j = 0 . . . i, WF (vj ,Vari) ⊆Σi
j ;

– for each j = 0 . . . i, ◻−1Σi
j =Πi;

– for each j = 1 . . . i, ¬θj ∈ Σi
j and ¬ ◻ θj is the first formula in the sequence

(¬ ◻ χ1,¬ ◻ χ2, . . . ) that appears in Πj−1
∖Hj−1.

Intuitively, Πi is the ‘modal theory’ of the model at stage i, and Hi is the set
of ¬◻ formulas processed before and at stage i.

We start the process with Σ0
=(Σ0

0) where Σ0
0 =γ+v0 and Π0

=◻
−1Σ0

0 . Then,
inductively for each i ∈ N, we define Σi+1 and Πi+1 as follows:

– Let ¬ ◻ θi+1 be the first in (¬ ◻ χ1,¬ ◻ χ2, . . . ) that is in Πi
∖Hi. There must

be one since Hi is finite while using redundant conjuncts, there are infinitely
many formulas of the form ¬ ◻ ϕ in Πi.

– Since Πi
= ◻

−1Σi
i , by (S5), Πi

∪ {¬θi+1} is consistent in NPS5(Vari). Let
Σi+1

i+1 =ExtNPS5(Vari)(Π
i
∪ {¬θi+1}) + vi+1. Then let Πi+1

= ◻
−1Σi+1

i+1 .
– For each j=0 . . . i, by construction WF (vj ,Vari)⊆Σi

j . Also, since ◻−1(Σi
j)=Π

i,
◻
−1(Σi

j) ⊆ ExtNPS5(Vari)(Π
i
∪ {¬θi+1}). Moreover, Vari+1 = Vari + vi+1. Thus,

Lemma 5 applies, and Σi
j ∪WF (vj ,Vari+1)∪Πi+1 is consistent. We let Σi+1

j =

ExtNPS5(Vari+1)(Σ
i
j ∪WF (vj ,Vari+1) ∪Πi+1). By (S5), ◻−1Σi+1

j =Πi+1.

Now we combine the sequences into a single model. For each i∈N, let Δi=⋃j≥iΣ
j
i .

We also set Π = ⋃i∈NΠi and H = ⋃i≥1H
i, which is {¬ ◻ θ1,¬ ◻ θ2, . . . }.

Lemma 6. For each i∈N: Δi is a MCS of NPS5(Varω), WF (vi,Varω)⊆Δi, and
◻
−1Δi =Π. Moreover, for any formula of the form ¬ ◻ϕ ∈Π, there is i ∈N such

that ¬ϕ ∈Δi.

Proof. Since each Σj
i is a MCS of NPS5(Varj) and (Σj

i )j≥i is also an ascending
sequence, Δi is a MCS of NPS5(Varω). Also, for each j ≥ i, WF (vi,Varj)⊆Σ

j
i ⊆Δi.

This means WF (vi,Varω) ⊆Δi. The proof for ◻−1Δi =Π is also not hard.
Now take any formula ¬ ◻ ϕ ∈Π. Let i be the smallest such that ¬ ◻ ϕ ∈Πi,

and also let j be such that ¬ ◻ ϕ = ¬ ◻ χj . Then by construction, ¬ ◻ ϕ must
be in Hi+j since at every stage after i, a formula ¬ ◻ χk before ¬ ◻ χj must be
processed if ¬ ◻ χj is not processed at that stage. This means there k ≤ i + j
such that ¬ϕ ∈Σk

k ⊆Δk.

Given the above lemma, we define MNPS5
=(D, {Pp}p∈Prop) where D={Δi | i∈N}

and for any Δi ∈D, Pp(Δi) = {Δj ∈D | vi
p ∈Δj}. Then, similar to Definition 7,

a formal assignment g for MNPS5 is a function from Var to Varω such that g(x)
is either x itself or is not in Var. Then for any ϕ ∈ L, g(ϕ) = ϕ[g(x)/x]. Further,
define the corresponding assignment g for MNPS5 by g(x) = {Δj ∈D | g(x) ∈Δj}.
The concept of admissibility is not needed here.
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Lemma 7. For any formula ϕ ∈ L, any formal assignment g for MNPS5, and
any Δi ∈D, MNPS5,Δi, g ⊧ ϕ iff g(ϕ) ∈Δi.

Proof. The base case and the Boolean cases are again easy. For the modal case,
if g(◻ϕ)=◻g(ϕ)∈Δi, then by S5 logic, ◻◻g(ϕ)∈Δi. Then ◻g(ϕ)∈Π and g(ϕ)∈Δj

for any Δj ∈ D by Lemma 6. By IH, for any Δj ∈ D, MNPS5,Δj , g ⊧ ϕ. Then
MNPS5,Δi, g ⊧ ◻ϕ.

If g(◻ϕ) = ◻g(ϕ) ∈/Δi, then by maximality, ¬ ◻ g(ϕ) ∈ Δi. By S5 logic, ◻ ¬
◻g(ϕ) ∈Δi, and ¬◻ g(ϕ) ∈Π. By Lemma 6, there is Δj ∈D such that ¬g(ϕ) ∈Δj .
By consistency and IH, MNPS5,Δj , g ⊧/ϕ. Then MNPS5,Δi, g ⊧/ ◻ ϕ.

Finally, for the assignment operator case, consider any formula [p/x]ϕ ∈ L.
Now because g[Pp(Δi)/x] = g[vi

p/x] and IH,

MNPS5,Δi, g ⊧ [p/x]ϕ⇔MNPS5,Δi, g[vi
p/x] ⊧ ϕ⇔ g[vi

p/x](ϕ) ∈Δi.

Then, noting that g([p/x]ϕ)↔g[vi
p/x](ϕ) is in WF(vi,Varω)⊆Δi, MNPS5,Δi, g⊧

[p/x]ϕ⇔ g([p/x]ϕ) ∈Δi.

By the above truth lemma, we have

Theorem 2. NPS5 is sound and strongly complete with respect to the class of
all universal Kripke models with non-rigid propositional designators.

5 Conclusion

We have only scratched the surface of the formalism proposed in this paper. The
immediate next step is to consider the logic of multi-agent epistemic models, be
it with equivalence relations, transitive relations, or some other special relations
of interest, since only then can we start talking about uncertainty in meaning in
a multi-agent setting, and consider the information dynamics on the meaning of
sentences. Models with a universal modality are also very important since the
universal modality can help us express equality between propositions. We believe
that by combining our two constructions in this paper, axiomatizations can be
obtained in most of the cases.

Once we start working in a multi-agent epistemic setting, the ideas in [18,19]
and [17] are worth incorporating. When talking about how different people may
interpret p differently, an obvious drawback of our semantics is that there is
always a ground truth of what p actually means. But in many situations, the
meaning of p may be completely relative (before a convention is reached). In that
case, the best we can do is to have versions pi of p for each agent i, represent-
ing how agent i interprets p, just like in [18]. But importantly, and differently
from [18], each pi is still non-rigid, since an agent i may well be uncertain how
j interprets p, i.e., what pj means. The issue of definition in [17] can also be
discussed in our framework. For example, when ◻ is the universal modality,
◻[p/x][q/y][r/z]◻ (x↔ (y ∧ z)) seems to say that p is defined by q ∧ r. Of course,
one may take this as only saying that p and q ∧ r are necessarily equal in the
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proposition expressed, and definitions are more hyperintentional than that. But
our framework is already hyperintentional in a sense: if we take functions from
worlds to truth values, namely sets of possible worlds, as intentional, then func-
tions from worlds to sets of possible worlds seem deserving of the description
‘hyperintentional’. A discussion of how our framework relates to other hyperin-
tentional frameworks such as [23,24,26,29] is needed here. Another important
addition to consider is information dynamics. Since p is now non-rigid, updating
with p relates to externalism in epistemology [5,9,16].

The extra axiom (SymSub) may look unseemly to many. We see two possible
ways to eliminate it. The first is through nominals [1]: then we believe the axiom
can be replaced by [p/y](i→ ◻[q/z] ◻ (i→ ([p/x]ϕ↔ ϕ[y/x]))). If we use (p@i)
and ↓i as in L@ mentioned in Sect. 2, then as the assignment operator can be
eliminated, a simple axiomatic system may be obtained. Another way is by intro-
ducing propositional quantifiers ∀x binding propositional variables x ∈ Var [10]
since what we really want is [p/y]∀z(ϕ↔ϕ[y/x]) where z could range over propo-
sitions denoted by some q at other worlds. A Barcan formula ∀x ◻ ϕ → ◻∀xϕ
and an instantiation axiom ∀xϕ→ [p/x]ϕ intuitively correspond to the minimal
requirement on the range of propositional variables. Note that if we insist that
the semantics of ∀x considers all sets of possible worlds, we will immediately run
into non-axiomatizability even in single-agent cases, unlike in situations with-
out non-rigid propositional designators and assignment operators [7,8,20], since
those non-rigid designators can simulate arbitrary modal operators, and results
such as [14,22] would apply. But without this ‘full domain’ requirement, we
believe axiomatizations are within reach. Generalizing to an algebraic setting
that can avoid assuming that there are possible worlds (world propositions) may
also be interesting. Here it may be useful to interpret [p/x]ϕ as ∀x([p]x → ϕ)
where for each p ∈ Prop, [p] is a unary modality so that [p]x means ‘what p
means is x’. This essentially goes back to the expression (γ isϕ) used in [21]. An
assumption we have made throughout the paper is that there is always a unique
proposition meant by p. This can be expressed by ∃x([p]x ∧ ∀y([p]y → (x = y)))
using equality between propositions. It remains to be seen what axiomatizability
results follow from this setting.
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Abstract. Normative arrow update logic (NAUL) is a logic that com-
bines normative temporal logic (NTL) and arrow update logic (AUL).
In NAUL, norms are interpreted as arrow updates on labeled transition
systems with a CTL-like logic. We show that the satisfiability problem
of NAUL is decidable with a tableau method and it is in EXPSPACE.

Keywords: normative system · arrow update logic · tableau method

1 Introduction

Deontic logic is the study of rules, norms, obligations and permissions, through
logical means [5,7,10,13,17], and this has also been extensively investigated in
dynamic modal logics [6,11,12,16,20]. In the field of deontic logic, there is a
sub-field that studies rules or norms by comparing the situation where a rule
is not in effect, or not being followed, to the situation where the rule/norm is
obeyed. There is no universally accepted name for this sub-field, but “social laws”
[9,18,19] and “normative systems” [1,3] are often used. We will use the term
normative systems, and refer to the behavioural restrictions under consideration
as norms.

A logic of normative systems is concerned with what things agents are capable
of doing, and what they are allowed to do if a norm is enacted. It therefore
requires a model of agency at its core. Any model of agency will do, but the
most commonly used choices are labeled transition systems with a CTL-like
logic of agency [8] and outcome function transition systems with ATL-like logic
[4]. Here, we will follow the CTL-style approach of normative temporal logic [2].
This means that a model is a labeled transition system, i.e., it contains a set S
of states and a set {R(a) | a ∈ A} of accessibility relations, where R(a) ⊆ S ×S.
A transition (s1, s2) ∈ R(a), is an action or an agent that changes the state of
the world from s1 to s2.
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In order to choose a course of action, we need to decide whether we should
adopt a norm and then check if an action is allowed by the norm. Whether an
action a is allowed may depend on a logical condition ϕ before the action takes
place, so on the situation in s1, and also may depend on a logical condition ψ
after the action took place, so on a condition satisfied in s2. We refer to s1 as
the source of the action, to ϕ as a source condition, to s2 as the target, and
to ψ as a target condition. For norms with both source and target conditions
one cannot reduce multiple source conditions to one (for example by taking the
disjunction), nor multiple target condition to one. A norm in our formalism will
be therefore represented by a list of clauses, each with a source condition and a
target condition. This is as in arrow update logic [14,21]. The arrow eliminating
updates in arrow update logic now correspond to adherence to norms.

We will also introduce more complex ways to describe norms, so we will refer
to such a list of clauses as an atomic norm. We distinguish four ways to combine
norms. If N1 and N2 are norms, then

– −N1 is the negation of N1, and allows exactly those actions that are disallowed
by N1,

– N1 + N2 is the additive combination of N1 and N2, and allows exactly those
actions that are allowed by N1 or N2,

– N1 × N2 is the multiplicative combination of N1 and N2, and allows exactly
those actions that are allowed by both N1 and N2.

– N1 ◦N2 is the sequential composition of N1 and N2, and allows exactly those
actions that are allowed by N2 in the transition system restricted to those
actions that are allowed by N1.

We further distinguish static from dynamic applications of norms. A liveness
condition such as “if the norm N is obeyed, then ϕ is guaranteed to be true
at every time in the future” can be formalized in two ways, which we denote
[N ]Gϕ (dynamic) and GNϕ (static). The difference lies in whether the norm N is
assumed to hold during the evaluation of ϕ: when evaluating [N ]Gϕ, everything
inside the scope of [N ] is considered in the transition system restricted to the
actions allowed by N . When evaluating GNϕ, on the other hand, the “forever
in the future” operator G is evaluated in the system restricted to N -allowed
actions, but ϕ is evaluated in the non-restricted system.

The dynamic operator [N ] can be expressed using only the static operators,
and the combined norms can be expressed using only atomic norms. They do
not affect the expressivity. However, the combined and dynamic norms affect the
succinctness of the language, and thus the complexity of decision problems. The
logic will be called NAUL, Normative Arrow Update Logic. A preliminary inves-
tigation of NAUL was presented in [15], with a focus on expressivity (NAUL is
strictly more expressive than CTL and AUL∗) and complexity of model checking
(in PTIME). Here we will investigate the complexity of the satisfiability problem,
by introducing a tableaux method for deciding satisfiability. First, however, we
will formally define the syntax and semantics of NAUL, and discuss an example
of its application. We will now formally define its syntax and semantics and then
investigate the complexity of satisfiability with a tableau method.
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2 Language and Semantics

Let A be a finite set of agents and P a countably infinite set of propositional
variables.

Definition 1. The formulas of LNAUL are given by

ϕ::= p | ¬ϕ | ϕ ∨ ϕ | [N ]ϕ | �Nϕ | GNϕ | FNϕ

N ::= (ϕ,B, ϕ) | (ϕ,B, ϕ) | N , (ϕ,B, ϕ) | N , (ϕ,B, ϕ)
N ::= N | −N | N + N | N × N | N ◦ N

where p,∈ P and B ⊆ A.

Remark 1. In NAUL we use only three temporal operators: �N , GN and FN .
These temporal operators include an implicit universal quantification over all
paths, so we could have denoted them in a more CTL-like fashion as AXN ,
AGN and AFN . Operators corresponding to the other temporal operators from
CTL can be defined in NAUL. For example, E(ϕ1UNϕ2) can be defined as
¬G(ϕ1,A,�)×N¬ϕ2.

In NAUL, the set of subformulas (SubF ) or subnorms (SubN) of a formula ϕ
(or a norm N) includes all formulas or norms occurring in ϕ (or N).

Strictly speaking a norm of type N is a list of clauses, but we abuse notation
by identifying it with the set of its clauses. Additionally, we use a number of
abbreviations. We refer to norms of type N as atomic norms and norms of type
N simply as norms. Note that every atomic norm is also a norm.

Definition 2. We use ∧,→,↔,
∧

,
∨

and ♦N in the usual way as abbreviations.
Furthermore, we use ĜN and F̂N as abbreviations for ¬GN¬ and ¬FN¬. We
write �B for �(�,B,�), GB for G(�,B,�) and FB for F(�,B,�). Finally, we use
�, G and F for �A, GA and FA.

Definition 3. A model M is a triple M = (S,R, v) where S is a set of states,
R : A → 2S×S maps each agent to an accessibility relation on S, and v : P → 2S

is a valuation. A pointed model is a pair (M, s) where M = (S,R, v) is a model
and s ∈ S.

A pair (s1, s2) ∈ R(a) is also called transition in M. It is denoted s1
a1	−→ s2. A

path in M is a (possibly infinite) sequence s1
a1	−→ s2, s2

a2	−→ s3, · · · of transitions
in M. A path P ′ extends a path P if P is an initial segment of P ′. The semantics
of LNAUL are given by the following two interdependent definitions.

Definition 4. Let M = (S,R, v) be a relational model and N a norm. A tran-
sition s1

a	−→ s2 satisfies N in M if one of the following holds:

1. N is an atomic norm, there is a positive clause (ϕ,B, ψ) ∈ N such that
M, s1 |= ϕ, a ∈ B and M, s2 |= ψ. Furthermore, there is no negative clause
(ϕ,B, ψ) ∈ N such that M, s1 |= ϕ, a ∈ B and M, s2 |= ψ,
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2. N is of the form −N1 and s1
a	−→ s2 does not satisfy N1,

3. N is of the form N1 + N2 and s1
a	−→ s2 satisfies N1 or N2 in M,

4. N is of the form N1 × N2 and s1
a	−→ s2 satisfies N1 and N2 in M,

5. N is of the form N1 ◦ N2, s1
a	−→ s2 satisfies N1 in M and the transition

s1
a	−→ s2 satisfies N2 in M ∗ N1.

A path s1
a1	−→ s2

a2	−→ s3 · · · is an N-path in M if every transition si
ai	−→ si+1 in

the path satisfies N in M. An N -path is full in M if there is no N -path in M
that extends it.

When the model M is clear from context, we say simply that a transition satisfies
N or that a path is an N -path.

Definition 5. Let M = (S,R, v) be a transition system and s ∈ S. The relation
|= is given as follows.

M, s |= p ⇔ s ∈ v(p) for p ∈ P
M, s |= ¬ϕ ⇔ M, s �|= ϕ
M, s |= ϕ1 ∨ ϕ2 ⇔ M, s |= ϕ1 or M, s |= ϕ2

M, s |= �Nϕ ⇔ M, s′ |= ϕ for every transition s 	−→ s′ that satisfies N
M, s |= GNϕ ⇔ for every N -path P starting in s and

every s′ ∈ P we have M, s′ |= ϕ
M, s |= FNϕ ⇔ for every full N -path P starting in s there is

some s′ ∈ P such that M, s′ |= ϕ
M, s |= [N ]ϕ ⇔ M ∗ N, s |= ϕ

where M ∗ N = (S,R ∗ N, v) and, for every a ∈ A,

R ∗ N(a) = {(s, s′) ∈ R(a) | s
a	−→ s′ satisfies N}.

Recall that the single state s is a degenerate path with no transitions. So
every transition in s satisfies every norm N , so it is an N -path. As a result,
M, s |= GNϕ implies M, s |= ϕ.

3 Example: Self-driving Cars

We will give a simple example of NAUL. Suppose we have a racetrack where a
number of self-driving cars operate. We want to equip cars with norms that will
guarantee that they avoid

(a) collisions with each other and stationary objects;
(b) “deadlock” situations where no one can act.

Let coll be the proposition variable that represents “a collision happens”. Note
that situations where no one can act are represented by �⊥.

For (a), we create a norm Nc such that if no collision has occurred then it
should prevent collisions for every point in the future. Nc is therefore successful
if we have ¬coll → [Nc]G¬coll . The simplest way is to disallow any action, then



An Arrow-Based Dynamic Logic of Normative Systems and Its Decidability 67

Nc is (⊥,A,⊥). However, we would like to let Nc allow at least one action to
avoid deadlock. Thus we take Nc := (�,A,¬F coll). It is indeed successful as we
have |= ¬coll → [Nc]G¬coll .

For (b), we interpret it as “there must be some available action that is not
only possible but also allowed”, and then we construct a Nd such than [Nd]G��
holds. we should take Nd := (�,A,¬F�⊥). This gives us |= ¬F�⊥ → [Nd]G♦�.
In other words, as long as there is an infinite path the norm Nd forces agents to
follow such a path.

For combining Nc and Nd, Nc × Nd allows agents to perform actions that
result in a situation where movement, while possible, is disallowed because it
will lead to a collision. The sequential combination solves this problem: the
norm Nc ◦ Nd allows exactly those actions that lead to neither collisions nor
situations where agents cannot or are not allowed to act. In other words, we
have |= ¬F (coll ∨ �⊥) → [Nc ◦ Nd]G(¬coll ∧ ♦�).

The self-driving cars example is also useful for illustrating the difference
between the static operators �N , GN , and FN on the one hand, and the dynamic
operator [N ] on the other. We have M, s |= GNϕ if ϕ holds after every sequence
of actions that starts in s and is allowed by N . Importantly, during the evaluation
of ϕ it is not assumed that everyone follows N . We have M, s |= [N ]Gϕ if,
under the assumption that all agents follow N permanently from now on, every
sequence of actions leads to a ϕ state. In this case, during the evaluation of ϕ,
we do assume that all agents follow N .

Sometimes we may require that Nc not only avoids collisions, but also sit-
uations where a single mistake could cause a collision. We cannot phrase this
stronger success condition as [Nc]ϕ for any ϕ. After all, the ϕ in [Nc]ϕ is evalu-
ated under the assumption that all agents follow the norm Nc—so no mistakes
are made. This is where the static operator GNc

is useful. Consider the formula
GNc

(¬coll ∧�¬coll). The � in that formula is not evaluated under the assump-
tion that the agents follow Nc, so GNc

(¬coll ∧ �¬coll) holds exactly if every
sequence of actions allowed by Nc leads to a state where there is no collision and
no single action can cause a collision.

4 Satisfiability Problem

In this section, we present a tableau method to show that the satisfiability prob-
lem of NAUL is decidable. We will use negation normal form (NNF) of formulas
or norms. An NNF formula only has negation on literals. An NNF norm only
has negations on atomic norms instead of clauses.

Definition 6 (Negation normal form (NNF)). Given a set of variables P
and a finite set of agents A.

ϕ::= p | ¬p | ϕ∧ϕ | ϕ∨ϕ | �Nϕ | �Nϕ | GNϕ | ĜNϕ | FNϕ | F̂Nϕ | [N ]ϕ | 〈N〉 ϕ

N ::= (ϕ, a, ϕ) | N , (ϕ, a, ϕ)

N ::= N | N | N + N | N × N | N ◦ N

where p ∈ P, a ∈ A.
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Definition 7. The satisfiability problem for NAUL is defined as follows:

– Input: an NNF formula ϕ.
– Output: YES if and only if there is a model (M, s) such that M, s � ϕ.

Theorem 1. Every NAUL-formula or norm can be transformed to an equivalent
formula or norm in NNF.

Proof. For NAUL-formulas, it can be shown easily by an induction. As for atomic
norms, since the order of clauses in an atomic norm does not matter, given an
atomic NAUL-norm N , and N+ as all positive clauses, N − as all negative clauses
of N , clearly N is equivalent to N+ + N − which is an NNF norm. As for the
negations of combined norms, we have the following transformations:

– N = N
– N1 + N2 = N1 × N2

– N1 × N2 = N1 + N2

– N1 ◦ N2 = N1 + N1 ◦ N2

Given an NAUL-formula ϕ or NAUL-norm N , the time of transforming it into
an NNF formula ϕ′ or NNF norm N ′ and the size of ψ or N ′ is polynomial in
the size of ϕ or N .

4.1 Tableau Method

We introduce some concepts related to tableau method.

Definition 8 (Term). There are two types of terms:

F-term 〈s;λ;ϕ〉 where s ∈ S, λ is a sequence of norms, ϕ is a formula. It
means the model has been updated by λ and ϕ is true on s.
N-term 〈s1 a	→ s2;λ; η〉 where s1, s2 ∈ S, λ, η are sequences of norms. It
means the transition s1

a	→ s2 satisfies η successively after the model is updated
by λ.

Definition 9 (Tableau). A tableau T is a structure T = (W,V,E, π) where W
is an infinite set of states, and V is a finite set of nodes, E is a binary relation
on V . Given a set of terms L, π : V → P(L) is a labelling map.

Let A,C1, · · · , Cn be sets of terms. A tableau rule is represented as

A

C1 | · · · | Cn

Above the line, A is the antecedent; below the line, there are consequents. A
tableau rule is applicable on a node if the node has terms as an instance of the
antecedent. If there are multiple consequents after applying a rule, one needs to
choose one of them.

Definition 10 (Interpretability). Given a model M = (S,R, v), it interprets
(noted as �T ) a set of terms T if any term in T satisfies:
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– M �T 〈s;λ;ϕ〉 if and only if M ∗ λ, s � ϕ.
– M �T 〈s1 a	→ s2;λ; η〉 if and only if s1

a	→ s2 satisfies η on M ∗ λ.

A set of terms T is interpretable if there exists a model M such that M interprets
all terms in T .

Definition 11. Given a tableau T , we define an order ≺ on all terms of T as

– 〈s;λ;ϕ〉 ≺ 〈s;λ′;ψ〉 if ϕ is a subformula of ψ.
– 〈s a	→ s′;λ; η〉 ≺ 〈s;λ′;ϕ〉 if η is a parameter of some operator in ϕ.
– 〈s;λ;ϕ〉 ≺ 〈s a	→ s′;λ′; η〉 if ϕ is in some clause of η.
– 〈s a	→ s′;λ; η〉 ≺ 〈s a	→ s′;λ; η′〉 if η is a sub-norm of η′;
– 〈s a	→ s′;λ;N ′〉 ≺ 〈s a	→ s′;λ′;N〉 if λ is an initial segment of λ′.

Now we define the tableau rules for NAUL. We omit terms which remain
the same after applying a certain rule. Let ε be the norm (�,A,�) after which
nothing is updated.

Definition 12 (Tableau rules).

(lit)
〈s;λ; p〉
〈s; ε; p〉

〈s;λ;¬p〉
〈s; ε;¬p〉 (∧) 〈s;λ;ϕ ∧ ψ〉

〈s;λ;ϕ〉 , 〈s;λ;ψ〉 (∨) 〈s;λ;ϕ ∨ ψ〉
〈s;λ;ϕ〉 | 〈s;λ;ψ〉

(G)
〈s;λ;GNϕ〉

〈s;λ;ϕ〉 , 〈s;λ;�NGNϕ〉 (Ĝ)
〈s;λ; ĜNϕ〉

〈s;λ;ϕ〉 | 〈s;λ;�N ĜNϕ〉
(F )

〈s;λ;FNϕ〉
〈s;λ;ϕ〉 | 〈s;λ;�N�〉 , 〈s;λ;�NFNϕ〉

(F̂ )
〈s;λ; F̂Nϕ〉

〈s;λ;ϕ〉, 〈s;λ;�N⊥〉 | 〈s;λ;ϕ〉, 〈s;λ;�N F̂Nϕ〉

(�)
〈s;λ;�Nϕ〉

〈s′;λ;ϕ〉, 〈s a1	→ s′;λ;N〉 | · · · | 〈s′;λ;ϕ〉, 〈s an	→ s′;λ;N〉
(�)

〈s;λ;�Nϕ〉 , 〈s a	→ s′; ε;λ〉
〈s′;λ;ϕ〉 , 〈s a	→ s′;λ;N〉 | 〈s a	→ s′;λ;−N ′〉 (−N ′ is the NNF of −N)

(Dyn)
〈s;λ; [N ]ϕ〉
〈s;λ,N ;ϕ〉

〈s;λ; 〈N〉 ϕ〉
〈s;λ,N ;ϕ〉

(At)
〈s ai	→ s′;λ;N〉

〈s;λ;ϕi〉, 〈s′;λ;ψi〉 where (ϕi, ai, ψi) ∈ N

(Neg)
〈s a	→ s′;λ;−N〉

〈s;λ;
∧

j∈K1
ϕ′

j〉, 〈s′;λ;
∧

j∈K2
ψ′

j〉 | · · · (@)

(Add)
〈s a	→ s′;λ;N1 + N2〉

〈s a	→ s′;λ;N1)〉 | 〈s a	→ s′;λ;N2)〉
(Multi)

〈s a	→ s′;λ;N1 × N2〉
〈s a	→ s′;λ;N1)〉, 〈s a	→ s′;λ;N2)〉
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(Seq)
〈s a	→ s′;λ;N1 ◦ N2〉
〈s a	→ s′;λ,N1;N2〉

(DN)
〈s a	→ s′;λ,N1;N2〉

〈s a	→ s′;λ;N1〉
(@): rule Neg is branching over all K1,K2 ⊆ [1, n] such that K1 ∪ K2 = {i |
(ϕi, a, ψi) ∈ N}, and K1 ∩ K2 = ∅, and ϕ′

j and ψ′
j are the NNF of resp. ¬ϕj

and ¬ψj with (ϕj , a, ψj) ∈ N .

(lit), (∧) and (∨) are Boolean rules. (G), (F ), (Ĝ), (F̂ ) handle temporal
modalities. (G) says if we have GNϕ at a word s, then we have ϕ as well as�NGNϕ at s. (F ) says if we have FNϕ at s, then either we have ϕ, or s has
some N -successor (�N� is true) and �NFNϕ. (Ĝ) says if we have ĜNϕ at s,
then either we have ϕ or �N ĜNϕ at s. (F̂ ) says if we have F̂Nϕ at s, then we
have ϕ at s and either s has no N -successor or we have �N F̂Nϕ at s. (�) says if
we have �Nϕ at s, then we can choose an agent a ∈ A to “assume” that there is
a transition s

a	→ s′ satisfying N and we have ϕ at s′. Note that (�) is the only
rule that generates new states and either a state can be actually generated will
be examined later. (�) says if we have �Nϕ at s and transition s

a	→ s′ exists,
then whether we have ϕ at s′ and s

a	→ s′ satisfies N or s
a	→ s′ does not satisfy

N . (Dyn) handles dynamic operators. It says if we have [N ]ϕ (or 〈N〉 ϕ) at s
updated by λ, then we have ϕ at s updated by λ then by N .

The other rules handle norms. (Atomic) says if we have atomic norm N for
s

ai	→ s′ where ai occurs in some clause (ϕi, ai, ψi) ∈ N , then we have ϕi at s and
ψi at s′. (Neg) says if we have N for s

a	→ s′, then given {i | (ϕi, a, ψi) ∈ N}
we choose some K1,K2 ⊆ [1, n] such that K1 ∪ K2 = {i | (ϕi, a, ψi) ∈ N} and∧

j∈K1
¬ϕj is at s and

∧
j∈K2

¬ψj is at s′. As a result, none of the clauses in N
will be satisfied by s

a	→ s′. (Add), (Multi) and (Seq) are standard with respect
to Definition 4. (DN) says if s

a	→ s′ satisfies some norm N2 after updating by
λ,N1, then it satisfies N1 after updating by λ. A special case of (DN) is

(DN*)
〈s a	→ s′;λ;N〉
〈s a	→ s′; ε;λ〉

(DN*) says if transition s
a	→ s′ is updated by λ, then it satisfies λ.

Besides above tableau rules, we also need principles to delete inconsistent
states, to set an order of applying rules, and to avoid infinite consequents.

Definition 13 (Tableau principles). Given an NNF formula ϕ, we start from
the root with label 〈s0; ε;ϕ〉. We have following the principles of generating a
tableau of ϕ:

(Inc) If a node has inconsistent literals, then mark it as “deleted”. If all conse-
quents are marked deleted, then mark the antecedent as deleted. In particular,
if one node has no consequent then mark it as deleted directly.
(Exh) We should apply rules to terms with respect to one state until no rule
is applicable on that state. When no rule is applicable on a state s, we mark
s as “exhausted”. After that, we can apply rules to terms on its successors.
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(Cyc) When a state s is marked as “exhausted’, one needs to check if there
is some exhausted ancestor s∗ of s which has the same F-terms as s on some
node t∗. If so, we should add the pair of nodes of s and s∗ (t, t∗) ∈ E and
mark s as “exhausted” as well. If a state s is merged with some ancestor, then
all successors of s are also marked as “exhausted”, and we stop to explore any
term with respect to these successors further. In addition, let ∼ ⊆ S ×S be an
equivalence relation, and use s∗ ∼ s to “merge” these two state to a reflexive
state.
(EveĜ) If all consequences of an antecedent t are marked as deleted, then
mark t as “deleted”. If ĜNϕ is in some term of a node t with respect to a
state s, and there is no reachable state from s such that ϕ occurs in some
term, then mark t as “deleted”.
(EveF) If FNϕ is in some term of a node t with respect to a state s, and there
exists a full branch from s on which ϕ does not occur in any term of state on
that branch, then mark t as ”deleted”.

If there is no rule applicable any more, the procedure of generating the tableau
terminate, and the tableau is complete. If the root of a complete tableau T is not
marked as “deleted”, then we call a path from the root to a leaf node on T an
open branch. If a complete tableau has at least one open branch, then we call it
an open tableau.

Proposition 1. For any NNF-formula ϕ, the procedure of generate a tableau
for ϕ will terminate.

For F-terms, boolean connectives, modal operators � and � are eliminated by
the corresponding rule. Temporal operators may be retained after tableau rules
and keep generating new states. The (Cyc) principle helps to avoid infinite gener-
ation of new states by merging states with the same terms. For N-terms, the com-
posite norm will be disassembled into the atomic norm and eventually reduced
to F-terms.

4.2 Soundness and Completeness

Proposition 2 (Soundness). Given an NNF-formula ϕ, if ϕ is satisfiable
then there is an open tableau rooted at (s0; ε;ϕ).

Proof. We show all tableau rules preserve interpretability. If a tableau rule has
multiple consequents, then as least one of them is interpretable.

– (lit) and (∧) preserve interpretability obviously. For (∨), if the antecedent is
interpretable, then so is one of its consequences.

– For the rules (G), (F ), (Ĝ), (F̂ ) and (Dynamic), it can be shown by semantics.
We present the case of (F ) as an example. Suppose M ∗ λ, s � FNϕ. By
semantics, for every full N -path P starting from s, there is some s′ ∈ P such
that M ∗ λ, s′ � ϕ. Since s is in every N -path starting from s, it is sufficient
if M ∗ λ, s � ϕ. Otherwise, we have there is some N -successor s′ of s such
that M ∗ λ, s′ � FNϕ. In this case, M ∗ λ, s � �N� and M ∗ λ, s � �NFNϕ.
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– (�N ): Suppose M ∗ λ, s � �Nϕ. By semantics, there is a transition s
a	→ s′

satisfying N and M ∗ λ, s′ � ϕ for some a ∈ A.
– (�N ): Suppose M∗λ, s � �Nϕ and s

a	→ s′ satisfies λ on M. If s
a	→ s′ satisfies

N on M ∗ λ, then by semantics we have M ∗ λ, s′ � ϕ. If s
a	→ s′ does not

satisfy N on M ∗ λ, then it satisfies −N on M ∗ λ.
– (Atomic): Suppose s

ai	→ s′ satisfies N on M ∗ λ. It follows that M ∗ λ, s � ϕi

and M ∗ λ, s′ � ψi. Thus M �T 〈s;λ;ϕi〉 , 〈s′;λ;ψi〉.
– (Neg): Suppose s

ai	→ v satisfies N on M ∗ λ. It follows that s
a	→ v

satisfies no clause with respect to a in N . Thus let K1 = {i | M ∗
λ, v � ¬ϕi for any (ϕi, a, ψi) ∈ N} and K2 = {i | M ∗ λ, v �
¬ψi for any (ϕi, a, ψi) ∈ N}. Therefore, we have K1∪K2 = {i | (ϕi, ai, ψi) ∈
N}, and M �T

〈
v;λ;

∧
i∈K1

¬ϕi

〉
and M �T

〈
v;λ;

∧
i∈K2

¬ψi

〉
.

– (Add), (Multi), (Seq) is straightforward by the definition.
– (DN): Suppose s

a	→ s′ satisfies N2 on M∗λ∗N1. By definition, if s
a	→ s′ is on

M∗λ ∗N1, then it satisfies N1 on M∗λ as well. Thus M �T 〈s 	→ s′;λ;N1〉.
Note that the trace-back links by (Cyc) only connect nodes with the same terms
on the same state. Thus interpretability is preserved as well.

Suppose ϕ is satisfiable, then there is a pointed model M, s � ϕ. Let s be
s0, then there is an open tableau rooted at 〈s0; ε;ϕ〉.
Proposition 3 (Completeness). Given an NNF-formula ϕ, if there is an
open tableau rooted at (s0; ε;ϕ), then ϕ is satisfiable.

Proof. Suppose there is an open tableau T rooted at 〈s0;λ;ϕ〉. Let T ∗ be a full
branch on T . We construct a model M = (S,R, v) where

– S = {[s] | 〈s;λ;ψ〉 is in T ∗}
– R = {s

a	→ s′ |
〈
s

a	→ s′; ε; ε
〉

∈ T ∗} ∪ {s
a	→ s | a ∈ A, |[s]| > 1}

– v(s) = {p | 〈s; ε; p〉 ∈ T ∗}
where [s] = {s′ ∈ S | s ∼ s′}.

We show the following claims:

1. if 〈s;λ;ψ〉 is in T ∗, then M ∗ λ, s � ψ.
2. if

〈
s1

a	→ s2;λ;N
〉

is in T ∗, then s1
a	→ s2 is in M∗λ and satisfies N on M∗λ.

Make an induction on all terms by the order ≺ in Definition 11 to show the
above claims. For Claim 2,

– If
〈
s1

ai	→ s2;λ;N
〉

∈ T ∗ where N = (ϕ1, a1, ψ1), · · · , (ϕn, an, ψn), i ∈ [1, n],
then by (Atomic) rule 〈s1;λ;ϕi〉 , 〈s;λ;ψi〉 ∈ T ∗. Then by IH, we have M ∗
λ, s1 � ϕ, M ∗ λ, s2 � ψ. Thus s1

ai	→ s2 satisfies N on M ∗ λ.
– If

〈
s1

a	→ s2;λ;N
〉

∈ T ∗ where N = (ϕ1, a1, ψ1), · · · , (ϕn, an, ψn), i ∈ [1, n],

then by (Neg) rule,
〈
s1;λ;

∧
i∈K1

¬ϕi

〉 ∈ T ∗ and
〈
s2;λ;

∧
i∈K2

¬ψi

〉 ∈ T ∗ for
some disjoint K1∪K2 = {i | (ϕi, a, ψi) ∈ N}. Thus, no ϕi and ψi are satisfied
simultaneously so that no clause in N with respect to a is satisfied. Therefore,
s1

a	→ s2 satisfies N .
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– The cases of N1 + N2, N1 × N2, and N1 ◦ N2 are straightforward by IH.

For Claim 1,

– If 〈s;λ; p〉 ∈ T ∗, then by by the rule (lit), 〈s; ε; p〉 ∈ T ∗. Thus M, s � p,
and then M ∗ λ, s � p. Similarly, if 〈s;λ;¬p〉 ∈ T ∗, then M ∗ λ, s � ¬p. The
boolean cases, dynamic case and 〈s;λ;�Nψ〉 ∈ T ∗ are straightforward by IH.

– If 〈s;λ;�Nψ〉 ∈ T ∗, then for any
〈
s

a	→ s′; ε;λ
〉

∈ T ∗, by (�N ) rule,

〈s′;λ;ψ〉 ∈ T ∗ or
〈
s

a	→ s′;λ;−N
〉

∈ T ∗. If 〈s′;λ;ψ〉 ∈ T ∗, then by IH

M∗λ, s′ � ψ; If
〈
s

a	→ s′;λ;−N
〉

∈ T ∗, then by Claim 2, s
a	→ s′ satisfies −N ,

that is to say, s
a	→ s′ does not satisfy N . Thus by semantics, M, s � �Nϕ.

– Suppose 〈s;λ;GNψ〉 ∈ T ∗. Let P = s
a1	→ s1

a2	→ s2 · · · an	→ sn+1 be any N -
path starting from s. We show that 〈s′;λ;�NGNψ〉 ∈ T ∗ and M ∗ λ, s′ �
ψ for any s′ ∈ P by induction on n + 1. By (G) rule, 〈s;λ;ψ〉 ∈ T ∗ and
〈s;λ;�NGNψ〉 ∈ T ∗. Since 〈s;λ;ψ〉 ∈ T ∗, by IH we have M ∗ λ, s � ψ.
Assume 〈sn;λ;�NGNψ〉 ∈ T ∗ and M∗λ, sn � ψ. By (G) rule again, we have
〈sn+1;λ;�NGNψ〉 ∈ T ∗. Since sn

an	→ sn+1 ∈ R, we have
〈
sn

an	→ sn+1;λ;N
〉

∈
T ∗. Then by (�N ) rule, we have 〈sn+1;λ;ψ〉. By IH, we have M∗λ, sn+1 � ψ.
Thus for every s′ ∈ P , we have M∗λ, s′ � ψ. As P is arbitrary, by semantics
M ∗ λ, s � GNψ. For terms with FNψ, ĜNψ and F̂Nψ, it is routine by IH.

Theorem 2. For any NNF formula ϕ, ϕ is satisfiable if and only if there is an
open tableau rooted at (s0, ε, ϕ).

Therefore, the satisfiability problem of NAUL is decidable. We wil show its upper
bound is in EXPSPACE.

Theorem 3. The satisfiability problem of NAUL is in EXPSPACE.

Proof. Let ϕ be an NNF formula, and T be an open tableau for ϕ. We show the
following claims:

1. The depth of T is at most exponential.
2. The width of T is at most double exponential.
3. The procedure can be done in double exponential amount of time.

Note that tableau rules does not decompose formulas strictly, thus the sizes of
formulas in the consequents may be larger than the sizes of formulas in the
antecedents. However we can give an upper bound of how many terms a single
open branch in T has.

The agenda Ag(ϕ) of a formula ϕ is the smallest set containing ε, SubF (ϕ)
as well as SubN(ϕ) and satisfying the following conditions:

– If ψ ∈ Ag(ϕ), then ¬ψ∗ ∈ Ag(ϕ);
– If GNψ ∈ Ag(ϕ), then �NGNψ ∈ Ag(ϕ);
– If ĜNψ ∈ Ag(ϕ), then �N ĜNψ ∈ Ag(ϕ);
– If FNψ ∈ Ag(ϕ), then �N�,�NFNψ ∈ Ag(ϕ);
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– If F̂Nψ ∈ Ag(ϕ), then �N⊥,�N F̂Nψ ∈ Ag(ϕ);
– If N ∈ Ag(ϕ), then N

∗ ∈ Ag(ϕ).

Clearly, the cardinality of Ag(ϕ) is polynomial in |ϕ|.
Proof of 1: For any F-term 〈s;λ;ψ〉 or N-term

〈
s

a	→ s′;λ;N
〉

occurring in
T when s is marked as exhausted, it can be shown that ψ, N ∈ Ag(ϕ) and all
elements of λ are in Ag(ϕ) by examining every rule. Firstly, we could give an
upper bound of states in one open branch. We have shown the formulas of all F-
terms are in Ag(ϕ). Since two exhausted states get merged if they have the same
F-terms, we can get at most exponential many states in the size of ϕ. Secondly,
we could give an upper bound of how many transitions are generated from one
state. Note that the (�N ) rule is the only rule that generates new transitions.
The frequency that (�N ) rule is applied is bounded by the size of ϕ, one state
has at most polynomial many arrows in the size of ϕ.

Therefore, the upper bounds of the amount of F-terms and N-terms are both
at most exponential in the size of ϕ. One open branch has at most exponential
depth as well, as there are at most exponentially many exhausted states with
the same F-terms. This is because if a state is merged with some ancestor, then
we will stop exploring terms of it. Therefore, the frequency that each state can
be merged is no more than the number of paths starting from it. Since each
exhausted state has polynomial many arrows to other states, it can be merged
at most exponentially many times. In short, the depth of one open branch is in
at most exponential.

Proof of 2: Only rule that leads to exponentially many branches is (Neg).
Given an atomic norm N , |N | is bounded by |ϕ|. The cardinality of branches is
in O(2|ϕ|). As there are at most exponentially many terms in one branch, the
width of T is in O(2|ϕ|2), so at most double exponential in the size of ϕ.

Proof of 3: The algorithm contains: applying tableau rules, checking, marking
and pruning the tableau by principles, transforming formulas with negation into
NNF. For each branch, as there are at most exponentially many terms in the size
of ϕ, all of the three procedures above can be done in an exponential amount
of time. To be specific, applying rules contains searching suitable premises and
executing. The input of searching is the power set of labels on some node, which
is exponential in the size of ϕ and the executions of applying rules are no more
than the amount of terms; the input of checking inconsistency and states with
the same terms is exponential in the size of ϕ and can be done in exponential
time; the frequency of transforming NNF formulas is at most exponential and
each transformation can be done in polynomial time.

To sum up, as we can reuse the space for each open branch, the procedure is
in EXPSPACE.

5 Conclusion

We have presented a logic named normative arrow update logic (NAUL). In
NAUL, we can combine norms in three ways: additive, multiplicative and sequen-
tial. We can also distinguish static and dynamic ways to consider norms. We have
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shown that the satisfiability problem of NAUL is decidable via a tableau method
and the complexity of this problem is in EXPSPACE. For the further research,
firstly, we conjecture the satisfiability problem of NAUL is EXPSPACE-hard
but have no proof yet. Secondly, we are interested in finding tractable fragments
of NAUL. Lastly, it may be interesting to develop a variant of arbitrary arrow
update logic (AAUL) [21] for normative systems. It would have quantifier over
norms and express “there is some norm that guarantees ϕ”.

Acknowledgement. We thank the LORI reviewers for very detailed and helpful com-
ments.
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Abstract. Here we study two connexive logics based on one of the condition-
als introduced by Church in [4] and on some negations defined through falsity
constants in the sense of Ackermann in [1].

Keywords: Churchian conditional · connexive logic · falsity constant

1 Introduction

Consider the following connexive features1, with L some logic and > and N any condi-
tional and negation, respectively:

|=L N(A > NA)
|=L N(NA > A)

|=L (A > B) > N(A > NB)
|=L (A > NB) > N(A > B)

�|=L (A > B) > (B > A)

These schemas are, from left to right and from top to bottom, Aristotle’s Thesis and its
Variant, Boethius’ Thesis and its Variant, and the Non-Symmetry of Implication.

In [4], Church introduced the conditional2

A→ch B {1} {1, 0} {0}
{1} {1} {1, 0} {0}
{1, 0} {0} {1, 0} {0}
{0} {1, 0} {1, 0} {1, 0}

that apparently can validate the connexive features above since A→ch B is not just true
when A is untrue, very much like Wansing’s connexive conditionals3, it would only
take pairing→ch with a suitable negation. Here we only consider negations defined as
A →ch f , for some falsity constant f . We aim to make at least a small contribution on

Supported by the PAPIIT projects IG400422 and IA105923.
1 See [10,12,25] for useful overviews on connexive logics.
2 1 and 0 stand for truth and falsity, respectively. The notation has been adjusted using the

mechanical procedure of [14] to transform a many-valued semantics to a bivalent Dunn seman-
tics where interpretations are sets of truth values.

3 See for example [24].
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N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 77–85, 2023.
https://doi.org/10.1007/978-3-031-45558-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45558-2_6&domain=pdf
http://orcid.org/0000-0002-1466-0240
https://doi.org/10.1007/978-3-031-45558-2_6
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the conceptual linkings between connexivity and constants, which is a yet understudied
topic in connexive logic.4

The plan of the paper is as follows. In Sect. 2, we give the technicalities to define a
weak implicational logic with negation in the sense of Church. In Sect. 3, we character-
ize the first connexive logic based on Church’s conditional. The negation of that logic is
not without problems, so in Sect. 4 we introduce the Ackermannian falsity constants that
will allow us to obtain less controversial negations and present the second connexive
logic. We prove that this second logic is weak implicational, although it does not have
a negation in Church’s sense. Finally, in Sect. 5 we prove that the chosen Churchian
conditional is not connexively stable.

2 Technical Preliminaries

Our base formal language L consists of formulas built, in the usual way, from a set of
propositional variables Prop with the binary connective→ch. We express an expansion
of a language by indicating at subscripts the symbols added. Thus, L{c} denotes that
the set of connectives is {→ch, c}. The formulas on expanded languages are also defined
as usual. In many cases below, the exact shape of a language, and therefore of a logic,
will be left implicit and will be indicated by the de facto use of connectives. The first
capital letters of the Latin alphabet, ‘A’, ‘B’, ‘C’, . . . will serve as variables ranging over
arbitrary formulas.

Definition 1 (See [22] and [4]). A weak implicational logic over L, or WIL for short,
is a logic where the following schemas are valid5:

(A > B) > ((C > A) > (C > B))
(C > (A > B)) > (A > (C > B))

(C > (C > B)) > (C > B)
(A > A)

closed under Detachment —A, A > B � B— and Uniform Substitution —If A � B then
A[q/p]�B[q/p].

Definition 2 ([4]). A WIL with negation, or WILN for short, has a propositional con-
stant f such that NA =de f . A > f and that satisfies the following schemas6:

1. (A > NB) > (B > NA)
2. (A > B) > (NB > NA)
3. A > NNA
4. NNNA > NA

5. (A > NA) > NA
6. (A > B) > (A > (NB > NA))
7. A > (NB > N(A > B))
8. NN(A > B) > (A > NNB)

4 Still, remember that Church’s conditional was introduced and employed in a proto-relevant
context. The exact connections between relevance and connexivity are still in need of expla-
nation. (See [18], [19, chapters 1–4], [2,7,9,13,26] for further discussion.) Telling whether
Church’s conditional can shed some light on that topic requires a separate work.

5 These axiom schemas are sometimes known by the names they are given in combinatorial
logic: B, C, W and I, respectively. Thus, another name for Church’s weak implicational logic is
BCWI. They are also known by the names they are given in the relevance tradition: Prefixing,
Permutation, Contraction and Identity, respectively.

6 The list may be a bit redundant, but we decided to leave it as Church himself presented it.
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9. (NNA > NNB) > (NN(NNA > NNB))
10. (NN(NN(NNC > (NN(NNA > NNB)))) > (NN(NN(NNC > NNA)) >

(NN(NNC > NNB)))
11. (NNA > NNB) > (NB > NA)
12. NN(NN(NNNNNA > NNNNNB)) > (NN(NN(B > NNA)))

Church may be demanding too much from a negation; we will return to this issue in
Sect. 4.

3 Ackermannian Falsity Constants and Our First Connexive Logic

Above we used notions from Dunn semantics to present Church’s conditional. Let us
introduce Dunn semantics more formally now.

Definition 3. A Dunn model (or just a model) for L and its expansions is a function
V : Prop−→{{0}, {1}, {0, 1}} and is then extended to functions σ to cover all formulas
according to some evaluation conditions.

Church intended his f to be false in all interpretations and to entail every propo-
sition. Thus, the truth and falsity conditions for the intended falsity constant fi would
be 1 � σ( fi) and 0 ∈ σ( fi) for any σ. Then, the intended negation, defined as Church
wanted, i.e. as ∼i A =de f . A→ch fi, can be presented tabularly as follows:

A {1} {1, 0} {0}
∼i A {0} {0} {1, 0}

This does not deliver connexivity, though: σ(∼i (A →ch∼i A)) = {0} if σ(A) = {0}. On
the other hand, σ((A→ch B)→ch∼i (A→ch∼i B)) = {0} if σ(A) = {1} and σ(B) = {0}.

This is where Ackermann’s [1] understanding of the falsity constant can become in
handy. For him, a falsity constant is false in all interpretations, but it need not entail
every other proposition.7 Consider a language with a stock of expressions that are Ack-
ermannian falsity constants, defined as follows:

Definition 4. An Ackermannian falsity constant in Dunn semantics is an expression f j

of the language such that, for all interpretation σ, 0 ∈ σ( f j).

Let us make two comments about this definition. First, the definition captures the idea
behind Ackermann’s falsity constant but duly adapted to the semantics we are work-
ing with, and that will come in handy in what follows. Second, the definition over the
semantics makes room for interpretations in which f j is true as well. This means that,
in Dunn semantics one can distinguish between expressions that are assigned the same
value, be it 1 or 0, in all interpretations, and expressions that are assigned exactly one
interpretation, be it {1}, {1, 0} or {0}. This means that falsity constants might have more
than one interpretation, they just need that the value 0 belongs to all of them.

7 See [20, §5.34] for a comparison between Ackermann’s and Church’s constants.
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Consider the language L{ f8}.8 The logic CWILN8 can be obtained by extending
valuations V in a Dunn model to interpretations σ for all formulas in L{ f8} according to
the following conditions:

σ(p) = V(p)

1 ∈ σ( f8)
0 ∈ σ( f8)

1 ∈ σ(A →ch B) iff either (case I): 1 � σ(A), or (case II) 1 ∈ σ(B) and if 0 ∈ σ(A) then
0 ∈ σ(B)
0 ∈ σ(A→ch B) iff 0 ∈ σ(A) or 0 ∈ σ(B)
A negation ∼8 A, can be defined as A→ch f8. It follows, by the evaluation conditions of
the conditional, that σ( f8) = σ(∼8 A). ∼8 A can be presented in a tabular way as follows:

A {1} {1, 0} {0}
∼8 A {1, 0} {1, 0} {1, 0}

Finally, let A be a formula and Γ be a set of formulas ofL{ f }. A is a logical consequence
of Γ in CWILN8, Γ |=CWILN8 A iff, for every σ, 1 ∈ σ(A) if 1 ∈ σ(B) for every B ∈ Γ.

Let us prove now some facts about CWILN8.

Theorem 1. CWILN8 is a WILN.

Proof. An inspection of the truth tables will show that CWILN8 meets Definition 1. To
prove that CWILN8 meets Definition 2, the following will be useful:

Remark 1. For every A and σ, σ(∼8 A) = {1, 0}. Thus, for any B and σ,
1 ∈ σ (B→ch∼8 A).

This delivers schemas 3, 4, 5, 9, 10 and 12. The remaining schemas are either of the
form C →ch (B →ch∼8 A) —like 1, 2, 7, 8 and 11— or of the form A →ch (B →ch (∼8

C →ch∼8 D)), like 6. In the former case, σ(B →ch∼8 A) = {1, 0} for every σ and hence
1 ∈ σ(C →ch (B →ch∼8 A)) for every σ. In the latter case, σ(∼8 C →ch∼8 D) = {1, 0}
for any σ, and hence 1 ∈ σ(A→ch (B→ch (∼8 C →ch∼8 D))) for every σ.

Theorem 2. CWILN8 validates Aristotle’s and Boethius’ Theses.

Proof. By Remark 1, 1 ∈ σ(∼8 (A →ch∼8 A)) and 1 ∈ σ(∼8 (∼8 A →ch A)). For
Boethius’ Theses, a similar reasoning applies: since 1 ∈ σ(∼8 A) for every σ and A,
1 ∈ σ(∼8 (A →ch∼8 B)). Hence, 1 ∈ σ((A →ch B) →ch (∼8 (A →ch∼8 B))). The proof of
the Variant is similar.

Corollary 1. CWILN8 is negation-inconsistent. By Remark 3.1, A →ch∼8 A is valid;
by Theorem 2, ∼8 (A→ch∼8 A) is valid as well. Consider also ∼8 A and ∼8∼8 A.

8 The reason for the subscript will become apparent in the next section. Meanwhile, please
simply take ‘ f8’ as a(n ugly) symbol for a certain nullary connective.
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It can be argued that f8 is not a good falsity constant because, although it is false
under all interpretations, it is also true under all interpretations. On the other hand,
∼8 A have exactly the same evaluations as f8, and it would seem preferable that the
f s define negations that are not equivalent to the f s themselves. Nevertheless, if f8 is
both a falsity and a truth constant then it is, in particular, a falsity constant. It is then a
matter of fact that to be a falsity constant does not imply not to be a truth constant nor
vice versa. Nonetheless, no constant like f8 is indispensable to make sense of connexive
logics based on the Churchian conditional, as we will show in the next section.

4 The Second Churchian Connexive Logic

One further definition is needed:

Definition 5. A strict Ackermannian falsity constant in a Dunn semantics is an Acker-
mannian falsity constant that, in some interpretation, is not true.

Accordingly, these are the strict Ackermannian falsity constants expressible in a
semantics like the one used here:

f1 f2 f3 f4 f5 f6 f7
{0} {1, 0} {0} {0} {1, 0} {0} {1, 0}
{0} {0} {1, 0} {0} {1, 0} {1, 0} {0}
{0} {0} {0} {1, 0} {0} {1, 0} {1, 0}

It is worth recalling that, in Dunn semantics, that an expression receives the same
value in all interpretations is not the same that it receives only one interpretation.
Clearly, 0 belongs in each line of the table for the f s; hence, every strict Ackerman-
nian falsity constant is constantly false and we avoid making them also truth constants
by requiring that they are not true in some interpretation.9

The following negations are defined as Church (and Ackermann) wanted, that is, as
A→ch fk, with 1 ≤ k ≤ 7:

A ∼1 A ∼2 A ∼3 A ∼4 A ∼5 A ∼6 A ∼7 A
{1} {0} {1, 0} {0} {0} {1, 0} {0} {1, 0}
{1, 0} {0} {0} {1, 0} {0} {1, 0} {1, 0} {0}
{0} {1, 0} {1, 0} {1, 0} {1, 0} {1, 0} {1, 0} {1, 0}

Note that ∼4, ∼6 and ∼7 are but f4, f6 and f7, respectively, so no new connective was
defined in those cases, and ∼5 is again the negation we are trying to do without. For
definiteness, we will restrict ourselves to the connectives with the following truth con-
dition: 1 ∈ σ(cA) iff 0 ∈ σ(A). This leaves us only with ∼3, and so we expand L with
the strict falsity constant f3.

The logic CWILN3 can be defined on top of Dunn models by extending valuations
V to interpretations σ to all formulas in L{ f3} by the following conditions:

9 Note that one of the interpretations is repeated in all the f s from f2 to f7. This means that the
constants have only two possible interpretations; we put the three rows to ease the comparison
and calculation with other formulas.
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σ(p) = V(p)

1 ∈ σ( f3) iff 1 ∈ σ(A) and 0 ∈ σ(A), for some fixed A
0 ∈ σ( f3)

and the evaluation conditions for A→ch B are as for CWILN8.10 A negation, ∼3 A, can
be defined as A→ch f3 and it can be presented in a tabular way as follows11:

A {1} {1, 0} {0}
∼3 A {0} {1, 0} {1, 0}

Logical consequence for CWILN3 is defined, mutatis mutandis, just as for CWILN8.

Theorem 3. CWILN3 is a WIL, but not a WILN.

Proof. Schemas 1, 2 and 4 are not valid. σ(A) = {1} and σ(B) = {1, 0} provide a
countermodel for 1 and 2. For 4, consider the case in which σ(A) = {1}.

Thus, CWILN3 does not have a negation in the sense of Church.12 But it may be
said to have a negation in less demanding ways. We will not enter the discussion about
the necessary properties of negation; see [5,6,11,17,23] for discussions about negations
that might validate much less than the properties asked by Church.

Remark 2. For every A and B, σ(∼3 (A→ch∼3 B)) = σ(∼3 (∼3 A→ch B)) = {1, 0}.
Corollary 2. CWILN3 validates Aristotle’s and Boethius’ Theses.

Proof. For Aristotle’s Thesis, put A instead of B in ∼3 (A →ch∼3 B)); for the Variant,
put B instead of A in ∼3 (∼3 A →ch B). Boethius’ Thesis and its Variant hold since
1 ∈ σ(A→ch B) whenever σ(B) = {1, 0}.
Corollary 3. CWILN3 is also negation-inconsistent. For example, the schemas ∼3

A →ch ((∼3 A →ch B) →ch∼3 (A →ch B)) and its negation are both valid in CWILN3.
Consider also ∼3∼3 A and ∼3∼3∼3 A.

10 The reference to an A is needed to distinguish between these different falsity constants and to
be able to calculate interpretations in combination with other formulas. This makes the falsity
constants look like unary connectives. If the reader wants to think of them in that way, that is
no problem at all, their constant character is not altered by that fact.

11 This negation can be found in [21]. See [15] for further discussion.
12 Nevertheless, all the other schemas are valid. Schemas 3, 8, 9, 10 and 12 are of the form

A > NNB, and we know that for every σ and every A, 1 ∈ σ(∼3∼3 A). Then, for every σ we
get 1 ∈ σ(A →ch∼3∼3 B). For the proof of schema 5, suppose σ((A →ch∼3 A) →ch∼3 A) = {0}.
Again, three cases arise, namely, σ(A →ch∼3 A) = {1} and σ(∼3 A) = {0}, or σ(A →ch∼3

A) = {1, 0} and σ(∼3 A) = {1} or σ(∼3 A) = {0}. It is easy to see that the three cases require
interpretations that cannot be obtained. On the benefit of brevity, we suggest the reader verify
the validity of the remaining schema, 7.
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5 Connexive Stability

Following [3], we now investigate whether Church’s conditional is connexively stable.

Definition 6. A standard negation is a unary connective N satisfying that σ(NA) = {0}
if σ(A) = {1} and σ(NA) = {1} if σ(A) = {0}.
Definition 7. A negation N is paraconsistent (in a logic L) iff A,NA �|=L B.

Definition 8. The type of standard paraconsistent negations (TSPN) is the set of stan-
dard paraconsistent negations definable according to a set of admissible evaluations.

Remark 3. If there are only three admissible interpretations, logical consequence is
truth-preservation under all interpretations and N is a standard negation, there are only
two standard paraconsistent negations, namely, de Morgan’s and Sette’s negation [21],
presented tabularly as follows:

A {1} {1, 0} {0}
¬A {0} {1} {1}

A {1} {1, 0} {0}
∼A {0} {1, 0} {1}

Definition 9. A conditional is connexively stable with respect to TSPN in L iff it meets
the connexive features of Sect. 1 together with each Ni in TSPN.

Now, it can be easily proved that

Theorem 4. The Churchian conditional is not connexively stable with respect to TSPN.

Proof. With ¬, Boethius’ Thesis is just false when σ(A) = {1} and σ(B) = {1, 0}.
None of the negations defined in Sect. 4 are standard in the specified sense, although

they are standard in a generalized sense:

Definition 10. A generalized standard negation is a unary connective N satisfying that
0 ∈ σ(NA) if 1 ∈ σ(A) and 1 ∈ σ(NA) if 0 ∈ σ(A).13

Group all these negations, together with de Morgan negation (but not Sette’s!), to
form the type of generalized standard negations, TGSN. It can be easily checked that,

Theorem 5. The Churchian conditional is not connexively stable with respect to TGSN.

Proof. Aristotle’s Thesis is invalid with ∼2. Consider the case when σ(A) = {0}.

13 Moreover, not all of those negations are paraconsistent, since ∼1 and ∼4 are not paraconsistent.
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6 Conclusions

We did exactly what we promised in the abstract and in the introduction. There are four
salient topics left for further work: (1) Investigating Church’s conditional with other
negations, e.g. de Morgan negation; (2) evaluating further connexive schemas involving
other connectives, like Aristotle’s Second Thesis, N((A > B)⊗ (NA > B)), or Abelard’s
Principle, N((A > B) ⊗ (A > NB)), which involve a conjunction ⊗; (3) studying the
compatibility connectives, if any, associated to Church’s conditional14; (4) presenting
the proof-theoretic versions of all the above.

Acknowledgments. We thank Sandra D. Cuenca, Fernando Cano-Jorge, Elisángela Ramı́rez-
Cámara, Christian Romero-Rodrı́guez and Manuel Eduardo Tapia-Navarro as well as to the
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Abstract. Notions of unknown truths and unknowable truths are important in
formal epistemology, which are related to each other in e.g. Fitch’s paradox of
knowability. Although there have been some logical research on the notion of
unknown truths and some philosophical discussion on the two notions, there
seems to be no logical research on unknowable truths. In this paper, we propose
a logic of unknowable truths, investigate the logical properties of unknown truths
and unknowable truths, which includes the similarities of the two notions and the
relationship between the two notions, and axiomatize this logic.

Keywords: unknown truths · unknowable truths · axiomatization · Fitch’s
paradox of knowability

1 Introduction

This article investigates notions of unknown truths and unknowable truths. A proposi-
tion is an unknown truth, if it is true but unknown; a proposition is an unknowable truth,
if it is true but unknowable. The two notions are related to each other in e.g. Fitch’s
paradox of knowability, which states that if there is an unknown truth, then there is an
unknowable truth.

The notion of unknown truths is important in formal epistemology. For example, it
is related to verification thesis, which says that all truths can be known. By the thesis and
two uncontroversial principles of knowledge, it follows from the notion that all truths
are actually known. In this way, the notion gives rise to a well-known counterexample
to the verification thesis. This is the so-called ‘Fitch’s paradox of knowability’. To take
another example: the notion gives us an important type of Moore sentences, which
is in turn crucial to Moore’s paradox, saying that one cannot claim the paradoxical
sentence “p but I do not know it”. A well-known result is that such a Moore sentence is
unsuccessful and self-refuting [11,18].

The notion of unknowable truths is crucial in the dispute of realists and anti-realists.
Anti-realists holds the aforementioned verificationist thesis, which states that all truths
can be known, thereby denying the very possibility of unknowable truths. In contrast,
realists believe that there are parts of reality, representable in some conceptually accessi-
ble language, that it is impossible for any agent ever to know. As guessed in [20, p. 119],
“Perhaps, in truths that cannot be known lies ‘the mystery at the heart of things’.”
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Note that the notion of unknowable truths also gives an important type of Moore
sentences, since one cannot claim the paradoxical sentence “p is true but I cannot know
it”. We can also show that such a Moore sentence is unsuccessful and self-refuting.

Some researchers in the literature discuss about whether unknowable truths exist or
not. For example, Edgington [10] admits that there are unknowable truths in the sense
of Fitch’s argument. Horsten [19] gives an interesting example of unknowable truths, by
using a revision of the Gödel sentence. Cook [6] argues that even if it is impossible for it
to be known of any particular sentence that it is both true and unknowable, we may still
know that there are unknowable truths.1 Besides, it is argued in [20, Sec. 2] that there
are unknowable truths, that is, necessary limits to knowledge. As we will show below,
under our interpretation of knowability, there are indeed unknowable truths. Thus our
interpretation is in line with the aforementioned philosophical discussion.

In the literature, there have been several interpretations for the notion of knowabil-
ity. For instance, in [3,5], knowability means ‘known after an announcement’; in [7],
knowability means the existence of proofs; in [13], knowability means capabilities to
know; in [20], it is interpreted as a capacity-knowledge modality ‘it can be known
that’; in [21], knowability means ‘known after an information update’; whereas in [17],
knowability means ‘dynamically possible knowledge of what was true before the update
of the epistemic state of the agent’. In this paper, we follow [3,5] to interpret ‘ϕ is
knowable’ as ‘ϕ is known after some truthful public announcement’, so that ‘ϕ is an
unknowable truth’ is interpreted as ‘ϕ is true and after any truthful public announce-
ment, ϕ is unknown’.

Unknowable truths (and unknown truths) is a subjective concept, since it is possible
that a proposition is an unknowable truth (an unknown truth, resp.) for an agent but not
for another. For instance, consider the true proposition “it is raining but Ann does not
know it”. This proposition is an unknowable truth (an unknown truth, resp.) for Ann,
but is not an unknowable truth (an unknown truth, resp.) for another agent Bob, who
may be aware of Ann’s ignorance. Therefore we move to the multiagent cases.

Although there have been some logical research on the notion of unknown
truths (see e.g. [12,15]), and also some philosophical discussion on the two notions [6,
9,14,20], there seems to be no logical research on unknowable truths. For instance,
there have been no axiomatization on the notion of unknowable truths. For another
example, it is unnoticed that there are many similarities and relationship between the
notions of unknown truths and unknowable truths. In this paper, we propose a logic
of unknowable truths, investigate the logical properties of unknown truths and unknow-
able truths, which include the similarities and relationship between the two notions, and
axiomatize the logic of unknowable truths.

The remainder of the article is organized as follows. Section 2 introduces the lan-
guage and semantics of the logic of unknowable truths. Section 3 investigates logical
properties of unknown truths and unknowable truths. Section 4 axiomatizes the logic of
unknowable truths and shows its soundness and completeness. We conclude with some
discussion in Sect. 5.

1 However, it is shown in [9] to be unsuccessful since the argument depends on a paradoxical
reasoning.
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2 Syntax and Semantics

Throughout the paper, we let P be a denumerable set of propositional variables, and let
I be a finite set of agents.

Definition 1. Where p ∈ P, i ∈ I, the language of the logic of unknowable truths,
denoted LUT, is defined recursively as follows:

LUT ϕ:: = p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [ϕ]ϕ | Uiϕ

Kiϕ is read “agent i knows that ϕ”, [ψ]ϕ is read “after truthful public announcement
of ψ, it is the case that ϕ”, and Uiϕ is read “ϕ is an unknowable truth for i”. Other
connectives are defined as usual; in particular, •iϕ, read “ϕ is an unknown truth for i”,
abbreviates ϕ ∧ ¬Kiϕ, and 〈ψ〉ϕ abbreviates ¬[ψ]¬ϕ. Without the construct Uiϕ, we
obtain public announcement logic PAL; without the construct [ϕ]ϕ further, we obtain
epistemic logic EL. The language LUT is interpreted on models.

Definition 2. A model M is a tuple 〈S, {Ri | i ∈ I}, V 〉, where S is a nonempty set of
states, each Ri is the accessibility relation for i, and V is a valuation. We assume that
R is reflexive.2 A frame is a model without valuations. A pointed model is a pair of a
model and a state in the model.

Definition 3. Given a model M = 〈S, {Ri | i ∈ I}, V 〉, the semantics of LUT is
defined recursively as follows.

M, s � p ⇐⇒ s ∈ V (p)
M, s � ¬ϕ ⇐⇒ M, s � ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Kiϕ ⇐⇒ for all t, if sRit, then M, t � ϕ
M, s � [ψ]ϕ ⇐⇒ if M, s � ψ then M|ψ, s � ϕ
M, s � Uiϕ ⇐⇒ M, s � ϕ and for all ψ ∈ EL,M, s � [ψ]¬Kiϕ

where M|ψ is the model restriction of M to ψ-states, and the restriction of announced
formula in the semantics of Ui is to avoid circularity. We say that ϕ is valid over a frame
F , if for all models M based on F and all states s, we have M, s � ϕ. We say that ϕ is
valid, denoted � ϕ, if it is valid over all (reflexive) frames. We say that ϕ is satisfiable,
if there is a pointed model (M, s) such that M, s � ϕ.

Intuitively, Uiϕ means that ϕ is true and unknowable for i; in more details, ϕ is true
and after each truthful public announcement, ϕ is unknown to i.

One may compute the semantics of •iϕ and 〈ψ〉ϕ as follows:

M, s � •iϕ ⇐⇒ M, s � ϕ and for some t, sRit and M, t � ϕ
M, s � 〈ψ〉ϕ ⇐⇒ M, s � ψ and M|ψ, s � ϕ.

2 Note that here for simplicity, we only consider the minimal restriction of knowledge. We can
also consider extra properties of knowledge, for instance, transitivity, Euclidicity, etc., in which
cases we add the corresponding axioms for knowledge in the axiomatization.
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3 Logical Properties

In this section, we investigate logical properties of unknown truths and unknowable
truths. Due to space limitation, we omit almost all the proofs.

3.1 Similarities

First, we can summarize some similarities between the logical properties of unknown
truths and the logical properties of unknowable truths in the following diagram.

Unknown Truths Unknowable Truths
•iϕ → ϕ Uiϕ → ϕ

•i(ϕ → ψ) → (•iϕ → •iψ) Ui(ϕ → ψ) → (Uiϕ → Uiψ)
•iϕ ∧ •iψ → •i(ϕ ∧ ψ) Uiϕ ∧ Uiψ → Ui(ϕ ∧ ψ)

•iϕ → •i•iϕ Uiϕ → UiUiϕ
validities •iϕ ↔ •i•iϕ Uiϕ ↔ UiUiϕ

¬Ki•iϕ ¬KiUiϕ
¬•iKiϕ (transitive) ¬UiKiϕ (transitive)

¬•i¬Kiϕ (Euclidean) ¬Ui¬Kiϕ (Euclidean)
[•ip]¬•ip [Uip]¬Uip

invalidities ¬•iϕ → •i¬•iϕ ¬Uiϕ → Ui¬Uiϕ

In what follows, we take some of the validities and invalidities as examples, and
leave others to the reader.

The following result states that unknowable truths are themselves unknowable
truths. One can show that it is equivalent to the statement that it is impossible for it
to be known of any particular sentence that it is both true and unknowable, where the
latter is argued by Cook [6].

Proposition 1. � Uiϕ → UiUiϕ, and thus � Uiϕ ↔ UiUiϕ.

Intuitively, one cannot know the unknowable truths, since otherwise one would
know the truths that cannot be known, which is impossible. In other words, unknow-
able truths are necessary limits to knowledge. This follows immediately from the result
below.

Proposition 2. � ¬KiUiϕ.

Remark 1. If we assume the property of transitivity, then ¬UiKiϕ is valid, which says
that all knowledge is not an unknowable truth. If we assume the property of Euclidic-
ity, we can show that ¬Ui¬Kiϕ is valid, which says that all non-knowledge is not an
unknowable truth. Similar results apply to the case for the notion of unknown truths:
¬•iKiϕ is valid over transitive frames, and ¬•i¬Kiϕ is valid over Euclidean frames.

The following states that not all non-unknowable-truths are themselves unknowable
truths.

Proposition 3. � ¬Uiϕ → Ui¬Uiϕ.
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As mentioned in the introduction, Moore sentences such as •ip and Uip are unsuc-
cessful and self-refuting. It is shown in [11] that •ip is unsuccessful and self-refuting.
Here we show that Uip is also unsuccessful and self-refuting.

Proposition 4. � [Uip]¬Uip, and thus � [Uip]Uip.

Proof. Suppose thatM, s � Uip, to show thatM|Uip, s � Uip. By supposition,M, s �
p. Thus M|Uip ⊆ M|p, and then M|Uip|Uip ⊆ M|p|Uip. Since M|p, s � Kip, we
obtain that M|p, s � Uip, that is, s /∈ M|p|Uip. It then follows that s /∈ M|Uip|Uip,
and therefore M|Uip, s � Uip.

One may ask if there are any differences between the logical properties of unknown
truths and the logical properties of unknowable truths. The answer is positive. We have
seen from [11] that •i(ϕ∧ψ) → •iϕ∨•iψ is valid. In contrast, Ui(ϕ∧ψ) → Uiϕ∨Uiψ
is invalid.

Proposition 5. � Ui(ϕ ∧ ψ) → Uiϕ ∨ Uiψ.

Proof. Consider the following model M:

t : p,¬q

i

��
s : p, q

i

��i�� i �� u : ¬p, q

i

��

We show that M, s � Ui(¬Kip ∧ ¬Kiq) but M, s � Ui¬Kip and M, s � Ui¬Kiq.

– M, s � Ui(¬Kip∧¬Kiq). Clearly, M, s � ¬Kip∧¬Kiq. Suppose, for reductio, that
there exists ψ ∈ EL such that M, s � 〈ψ〉Ki(¬Kip∧¬Kiq), and then M, s � ψ and
M|ψ, s � Ki(¬Kip ∧ ¬Kiq). Because the announcement is interpreted via world-
elimination, we consider the following three cases.

• t is retained in the updated model M|ψ . On the one hand, since M|ψ, s �
Ki(¬Kip ∧ ¬Kiq) and sRit, we obtain M|ψ, t � ¬Kip; on the other hand, as t
can only see itself and t � p, we have M|ψ, t � Kip. A contradiction.

• u is retained in the updated model M|ψ . Similar to the first case, we can show
that M|ψ, u � Kiq and M|ψ, u � ¬Kiq, a contradiction.

• Neither t nor u is retained in M|ψ . Then in M|ψ , there is only a state s which
is reflexive. Similar to the first case, we can also show that M|ψ, s � Kip and
M|ψ, s � ¬Kip, a contradiction.

– M, s � Ui¬Kip. We have seen that M, s � ¬Kip. It suffices to show that for some
ψ ∈ EL we have M, s � 〈ψ〉Ki¬Kip. This is indeed the case, because announcing
q makes t be deleted, and in the remaining model, ¬Kip is true at s and u.

– M, s � Ui¬Kiq. The proof is analogous to that of M, s � Ui¬Kip, by announcing
p instead.

3.2 Interactions

In what follows, we study the interactions between unknown truths and unknowable
truths. First, every unknowable truth is an unknown truth, but not vise versa. This indi-
cates that the notion of unknowable truths is stronger than that of unknown truths.
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Proposition 6. � Uiϕ → •iϕ, and � •iϕ → Uiϕ.

Also, intuitively, one cannot know the unknown truths. This is because unknown
truths are themselves unknowable truths. In other words, if it is an unknown truth that
p, it is an unknowable truth that it is an unknown truth that p, which is argued in [14,
Theorem 2] (see also [22, p. 154]).

Proposition 7. � •iϕ → Ui•iϕ, thus � •iϕ ↔ Ui•iϕ.

From Proposition 6 and Proposition 7, we can see that � Uiϕ → Ui•iϕ. Despite
this, the converse formula is not valid. This follows directly from Proposition 6 and
Proposition 7.

Proposition 8. � Ui•iϕ → Uiϕ.

The following states that unknowable truths are themselves unknown truths. In other
words, if it is an unknowable truth that ϕ, then it is an unknown truth that it is an
unknowable truth that ϕ.

Proposition 9. � Uiϕ → •iUiϕ, thus � Uiϕ ↔ •iUiϕ.

Fitch’s paradox of knowability states that if all truths are knowable, then all truths
are actually known. This can be shown as follows.

Proposition 10. � ¬Uiϕ for all ϕ, then � ¬•iϕ for all ϕ.

Although not every truth (e.g. unknown truths) is knowable, every logical truth
(namely, validity) is knowable.

Proposition 11. If � ϕ, then � ¬Uiϕ.

4 Axiomatization and Completeness

In this section, we will give a proof system for LUT and show its soundness and com-
pleteness.

Definition 4. The proof system LUT consists of the following axioms and inference
rules.

PL All instances of tautologies
K Ki(ϕ → ψ) → (Kiϕ → Kiψ)
KA [χ](ϕ → ψ) → ([χ]ϕ → [χ]ψ)
T Kiϕ → ϕ
AP [ψ]p ↔ (ψ → p)
AN [ψ]¬ϕ ↔ (ψ → ¬[ψ]ϕ)
AC [ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)
AK [ψ]Kiϕ ↔ (ψ → Ki[ψ]ϕ)
AA [ψ][χ]ϕ ↔ [ψ ∧ [ψ]χ]ϕ
AU Uiϕ → ϕ ∧ [ψ]¬Kiϕ, where ψ ∈ EL
MP From ϕ and ϕ → ψ infer ψ
GEN From ϕ infer Kiϕ
GENA From ϕ infer[χ]ϕ
RU From η(ϕ ∧ [ψ]¬Kiϕ) for all ψ ∈ EL infer η(Uiϕ),
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where η(�) is an admissible form. The notion of admissible forms is originated
from [16, pp. 55–56], which is called ‘necessity forms’ in [1–4], and defined as follows.

Let ϕ ∈ LUT and i ∈ I. Admissible forms η(�) are defined recursively in the
following.

η(�)::= � | ϕ → η(�) | Kiη(�) | [ϕ]η(�).
The novel thing is the axiom AU and inference rule RU, which together characterize

the semantics of Ui in a certain way: AU says that if ϕ is an unknowable truth for i, then
ϕ is true and after every truthful public announcement, ϕ is unknown to i; RU roughly
says that if ϕ is true but unknown to i after every truthful public announcement, then ϕ
is an unknowable truth for i. Other axioms and inference rules are familiar from public
announcement logic, cf. e.g. [8].

We say a formula ϕ is provable in LUT, notation: � ϕ, if ϕ is either an instantiation
of some axiom, or obtained from axioms with an application of some inference rule.

The soundness and completeness of LUT can be proved mutatis mutandis as in [4].

Theorem 1. LUT is sound and complete with respect to the class of all frames. That
is, if � ϕ, then � ϕ.

With the completeness in hand, we can give a syntactic proof for Fitch’s paradox of
knowability, which is much simpler than those in the literature, e.g. in [20].

Proposition 12. If � ¬Uiϕ for all ϕ, then � ¬•iϕ for all ϕ.

Proof. Suppose that � ¬Uiϕ for all ϕ, then � ¬Ui•iϕ. Then by Proposition 7 and
Theorem 1, � •iϕ → Ui•iϕ, and therefore � ¬•iϕ for all ϕ.

5 Conclusion and Discussion

In this paper, we proposed a logic of unknowable truths, investigated the logical proper-
ties of unknown truths and the logical properties of unknowable truths, which includes
the similarities and relationship between the two notions, and finally axiomatized the
logic of unknowable truths.

So far we have seen that the semantics of unknowable truths depends on that
of propositional knowledge. However, we have mainly focused on the relationship
between unknowable truths and unknown truths, instead of between unknowable truths
and propositional knowledge, and the notion of unknown truths is weaker than that of
propositional knowledge. So there seems to be some asymmetry between the semantics
of unknowable truths and our concerns. Then a natural question is: is there any other
semantics for unknowable truths which relates the notion to that of unknown truths
more directly/properly? Our answer is positive. We will introduce this new semantics
in the future work.

For another future work, a natural extension would be to add propositional quan-
tifiers. This can increase the expressive power of the current logic. For instance, we
can express Fitch’s paradox of knowability in the new language as follows: ∀p¬Uip →
∀p¬•ip, or equivalently, ∃p•ip → ∃pUip.
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Abstract. An important component in the interventionist account of
causal explanation is an interpretation of counterfactual conditionals as
statements about consequences of hypothetical interventions. The inter-
pretation receives a formal treatment in the framework of functional
causal models. In Judea Pearl’s influential formulation, functional causal
models are assumed to satisfy a “unique-solution” property; this class of
Pearlian causal models includes the ones called recursive. Joseph Halpern
showed that every recursive causal model is Lewisian, in the sense that
from the causal model one can construct a possible worlds model in
David Lewis’s well-known semantics that satisfies the exact same formu-
las in a certain language. Moreover, he demonstrated that some Pearlian
(non-recursive) models are not Lewisian in this sense. This raises the
question regarding the exact contour of Lewisian causal models. In this
paper, we provide a characterization of the class of Lewisian causal mod-
els and a complete axiomatization with respect to this class. Our results
have philosophically interesting consequences, two of which are especially
worth noting. First, the class of Stalnakerian causal models, a subclass
of Lewisian causal models, is precisely the class of Pearlian models that
do not contain any cycle of counterfactual dependence (in a sense of
counterfactual dependence akin to Lewis’s famous relation between dis-
tinct events). Second, a more natural class of causal models is actually
a superclass of Lewisian causal models, the logic of which respects only
weak centering rather than centering.

Keywords: Structural equation model · Counterfactual · Possible
worlds semantics

1 Introduction

A major contender in the philosophical literature on causation and causal expla-
nation is known as interventionism ([13,14]). In this broadly counterfactual app-
roach, subjunctive or counterfactual conditionals are interpreted as statements
about consequences of hypothetical interventions. This interpretation is formally
developed in the framework of functional causal models or structural equation
models (e.g., [1–4,6,7,15]). In Judea Pearl’s [11] influential formulation, causal
models are assumed to satisfy a “unique-solution” property. Joseph Halpern [5]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 94–108, 2023.
https://doi.org/10.1007/978-3-031-45558-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45558-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-45558-2_8


A Characterization of Lewisian Causal Models 95

studied the relationship between Pearlian causal models and possible worlds
models in David Lewis’s [9] well known semantics of counterfactuals (which
Halpern called counterfactual structures). Halpern showed that the class of recur-
sive causal models, a proper subclass of Pearlian causal models, is Lewisian in the
sense that for every recursive causal model, one can construct a possible worlds
model in Lewis’s theory that satisfies the exact same formulas in a certain lan-
guage as the causal model does, but some non-recursive Pearlian models are not
Lewisian in this sense. In view of these results, Halpern wrote: “My own feeling
is that these arguments show that models [that are Pearlian but not recursive]
are actually not good models for causality.” [5, p. 318] Non-recursive Pearlian
models may well be problematic models for causality, but if the consideration
here is whether a causal model is compatible with Lewisian constraints, it is a
little hasty to dismiss such models altogether, for many non-recursive models
are also Lewisian. It will be useful, therefore, to better understand the class of
Lewisian causal models.

In this paper we build on Halpern’s illuminating analysis and provide a char-
acterization of Lewisian causal models. In addition to revealing the exact contour
of Lewisian causal models, our results have philosophically interesting conse-
quences. Among other things, we show that the class of Stalnakerian causal
models, a subclass of Lewisian causal models, is precisely the class of Pearlian
causal models that are free of cycles of counterfactual dependence, in a sense of
counterfactual dependence that is akin to the famous relation between distinct
events defined by Lewis [8]. Another potentially significant implication is that a
more natural class of causal models is actually a superclass of Lewisian causal
models, the logic of which respects only weak centering rather than centering.

The rest of the paper proceeds as follows. After introducing the technical
setup in Sect. 2, we present our characterization of Lewisian causal models in
Sect. 3, and an axiomatization of the class in Sect. 4. We conclude in Sect. 5 with
some discussions of the implications of our results.

2 Preliminaries

We now introduce the setup of the problem under attack, largely following
Halpern’s [5] formulations. Let a signature be a triple 〈U,V,R〉, where U and V
are disjoint finite sets of variables, and R associates with each variable X ∈ U∪V
a finite set of values R(X). A causal model is defined over a signature:

Definition 1 (Causal Model). A causal model over a signature S =
〈U,V,R〉 is a tuple 〈S,F〉, where F is a collection of functions such that for each
X ∈ V, F contains one and only one function fX : ×Y ∈U∪V\{X}R(Y ) → R(X).

In words, fX maps each value combination of U ∪ V\{X} to a unique value
of X. It is intended to represent a causal mechanism that determines the value
of X according to the values of other variables. Notice that a causal model
specifies functions only for variables in V; the mechanisms for variables in U are
not modelled. A value setting of U represents an external input to the system.
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Once the value setting of U is given, the values of variables in V are then to
be derived according to structural equations. For this reason, variables in U are
called exogenous and those in V endogenous.

Such a causal model is also known as a structural equation model, where
each function fX can be written as a structural equation X = fX(U∪V\{X}).
Let P (X) ⊆ U ∪ V\{X} be the set of non-redundant arguments in fX . A
causal model is naturally associated with a directed graph, where each variable
in U ∪ V is represented as a vertex and an arrow is drawn from Y to X if and
only if Y ∈ P (X). A model is called recursive if the associated graph is acyclic.

For any X ⊆ U∪V, we will often abuse notation and treat X as a vector of
distinct variables. A value configuration of X is a set or vector of values x that
contains a unique value x ∈ R(X) for every X ∈ X. We call a value configuration
u of the exogenous variables U a context for the model.

Interventions can be easily represented in causal models. For the present
purposes, we only consider interventions that force a set of endogenous variables
to have a certain value configuration. Given a causal model T = 〈U,V,R,F〉,
an intervention that forces X ⊆ V to take a value configuration x is to be
represented by a submodel in the following sense:

Definition 2 (Submodel). Let T = 〈U,V,R,F〉, X ⊆ V, and x be a value
configuration of X. A submodel of T with respect to the intervention X = x,
denoted by TX=x, is 〈U,V,R,FX=x〉, where FX=x differs from F only regarding
variables in X: for every X ∈ X, fX in F is replaced by a constant function
X = x, where x is the component value in x for X.

In plain words, an intervention is supposed to be effective and local, forcing
the target variables into the target values, without affecting the mechanisms for
other variables. We stipulate that if X = ∅, TX=x = T .

Given a causal model 〈U,V,R,F〉, a solution to the model relative to a
context u is a value configuration v of V such that U = u and V = v together
are consistent with all functions in F . In Pearl’s [11] influential formulation, a
“unique-solution” constraint is imposed on causal models:

Definition 3 (Pearlian Causal Model). A causal model is called Pearlian
if every submodel (including the model itself) has a unique solution relative to
every context.

It is easy to see that the class of recursive models is a proper subclass of the
class of Pearlian causal models ([3–5]).

In this paper, we also allow models outside of the class of Pearlian models,
but we require that a model have at least one solution relative to every context.
In other words, we confine in the first place to what we call “Solutionful” causal
models:

Definition 4 (Solutionful Causal Model). A causal model is Solutionful if
the model has at least one solution relative to every context.

At this stage we do not require submodels to be also Solutionful, though as
we will see, a necessary condition for a (Solutionful) causal model to be Lewisian
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is that all its submodels are also Solutionful, which agrees with a result from
[15]. Our definition of “Lewisian causal model” below is more stringent than
that of [15] and is more appropriate because the notion in [15] inherited a bug
from [3], as pointed out by [5]. The definition is simplified if we consider only
Solutionful causal models. Since being Solutionful is a necessary condition for
even the more liberal notion of “Lewisian causal model” in [15], this restriction
does not affect our purpose.

The object language we will consider is defined over a signature S =
〈U,V,R〉, denoted by L(S). In addition to the truth-functional operators, an
operator to form subjunctive conditionals is included, symbolized as ‘�→’. The
well-formed formulas (wffs) of L(S) are defined as follows:

– For every X ∈ V and every x ∈ R(X), X = x is a wff.
– If α and β are wffs, so are ¬α, α ∧ β.
– If α is a wff of the form (X1 = x1) ∧ ... ∧ (Xn = xn), where all Xi’s are

distinct, xi ∈ R(Xi), and β is a wff that does not contain ‘�→’, then α �→ β
is a wff. A special case will be written as true �→ β when α contains no Xi.

Notice that the form of subjunctive conditionals in L(S) is restricted: no
nested conditionals or conditionals with disjunctive antecedents are allowed (see
[2] for an attempt to relax the restrictions). For convenience, we will often write
‘X = x’ as a shorthand for ‘(X1 = x1) ∧ ... ∧ (Xn = xn)’. We define α
→ β as
an abbreviation of ¬(α �→ ¬β). The truth-functional operators ∨, ⇒ and ⇔
are defined in the standard way.

Given a causal model T over S, let Sol(T ) = {(u,v)|v is a solution to T
relative to context u}; that is, Sol(T ) is the set of value configurations for U∪V
that are consistent with all functions in T . Each wff in L(S) is evaluated relative
to T and (u,v) ∈ Sol(T ), according to the following rules:

– T, (u,v) |= X = x iff v assigns value x to X.
– T, (u,v) |= ¬α iff T, (u,v) �|= α.
– T, (u,v) |= α ∧ β iff T, (u,v) |= α and T, (u,v) |= β.
– T, (u,v) |= X = x �→ β iff TX=x, (u,v′) |= β for every (u,v′) ∈ Sol(TX=x).

The last clause formulates an interventionist interpretation of subjunctive con-
ditionals. In words, it says that a subjunctive conditional is true in a causal
model relative to a context (and a solution to the model in that context) just in
case the consequent holds in all solutions to the submodel where the antecedent
is enforced relative to the context. Note that unlike [5], we take semantic eval-
uation to be relative to a solution rather than just a context. This does not
make a difference if we are confined to the set of Pearlian causal models, i.e.,
models that have a unique solution relative to every context. However, since
we go beyond Pearlian causal models, this change is important. We restrict to
Solutionful models to facilitate such a formulation.

How this semantics is related to the popular Stalnaker-Lewis semantics for
subjunctive conditionals is then an interesting question. Following [5], we adopt
an ordering-semantic formulation of possible worlds models.
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Definition 5 (Lewisian Possible Worlds Model). A Lewisian possible
worlds model over a signature S = 〈U,V,R〉 is a triple 〈Ω,R, π〉, where Ω
is a set of worlds, π is an assignment that for each X ∈ U∪V and each w ∈ Ω,
assigns a unique value x ∈ R(X) to X (i.e., π(X,w) = x), and R associates
with each w ∈ Ω a total preorder �w over Ωw ⊆ Ω, such that w ∈ Ωw and for
every v �= w ∈ Ωw, w ≺w v (i.e., w �w v and v �w w).

Intuitively, Ωw represents the set of worlds that are accessible from w, and
�w represents an ordering of “overall comparative similarity”: u �w v represents
that u is at least as similar or close to w as v is. The definition imposes a
“centering” constraint on models in that w itself is required to be closer to w
than any other world is.

Given a model M , a world w, and a formula of the form X = x, let
CM (w,X = x) = {v|v ∈ Ωw, π(X, v) = x, and v �w v′ for every v′ ∈ Ωw

such that π(X, v′) = x}; that is, CM (w,X = x) is the set of X = x-worlds
that are closest to w. Notice that CM (w,X = x) = Ø if and only if there is no
X = x-world in Ωw. Given a model M = 〈Ω,R, π〉 and a world w ∈ Ω, each wff
in L(S) gets a truth value according to the following rules:

– M,w |= X = x iff π(X,w) = x.
– M,w |= ¬α iff M,w � α.
– M,w |= α ∧ β iff M,w |= α and M,w |= β.
– M,w |= X = x �→ β iff M,v |= β for every v ∈ CM (w,X = x).

Now we can define the main target with which this paper is concerned.

Definition 6 (Lewisian Causal Model). A (Solutionful) causal model T over
a signature S = 〈U,V,R〉 is called Lewisian if there is a Lewisian possible worlds
model over S, M = 〈Ω,R, π〉, and a function μ : Sol(T ) → Ω, such that for every
ψ ∈ L(S) and (u,v) ∈ Sol(T ), T, (u,v) |= ψ iff M,μ(u,v) |= ψ.

In plain words, a causal model is Lewisian if there is a corresponding Lewisian
possible worlds model that satisfies the exact same formulas (in L) as the causal
model does. As already noted, this notion of a Lewisian causal model is not
the same as the “Lewisian causal model” defined in [15]. The latter picks out
a proper superclass of the class of causal models that concern us here and is
arguably too wide. Let TL be the set of Lewisian causal models as defined here.
We provide a characterization of TL in the next section.

3 Characterizing Lewisian Causal Models

We first establish some necessary conditions for a causal model to be Lewisian.
As previously mentioned, a necessary condition is that all submodels are also
Solutionful (which was first established in [15], but in a different setup).

Lemma 1. A causal model is Lewisian only if all its submodels are Solutionful.
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Proof. Suppose that some submodel TX=x of a (Solutionful) causal model T is
not Solutionful, i.e., TX=x relative to some context u has no solution. It follows
that for any (u,v) ∈ Sol(T ), T, (u,v) |= X = x �→ ¬X = x. On the other
hand, let v′ be any value configuration of V that is consistent with X = x. It
obviously holds that T, (u,v) |= V = v′
→ X = x.

Then it is easy to see that T is not Lewisian. Suppose for contradiction
that it is. Then there is a Lewisian possible worlds model M and a solution-
world mapping μ such that T, (u,v) |= ψ iff M,μ(u,v) |= ψ for every ψ ∈
L(S). Let w = μ(u,v), it follows that M,w |= X = x �→ ¬X = x and
M,w |= V = v′
→ X = x. There is a world w′ ∈ CM (w,V = v′) such that
M,w′ |= X = x. Therefore, in Ωw there is a world satisfying X = x, which
implies that M,w � X = x �→ ¬X = x, contradiction.

The next necessary condition was also introduced in [15], in terms of the
following property:

Definition 7 (Solution-Conservative). A causal model T is said to be
Solution-Conservative if for every X ⊆ V, every value configuration x, and
every context u, if T has a solution relative to u that assigns value x to X, then
every solution to TX=x relative to u is also a solution to T relative to u.

In plain words, no new solution should arise if some variables were fixed by
an intervention to values that could have obtained without the intervention.

Lemma 2. A causal model is Lewisian only if all its submodels are Solution-
Conservative.

Proof. Suppose that some submodel TX=x of a causal model T is not Solution-
Conservative. That is, one of the solutions to TX=x relative to some context u
assigns y to Y, but TX=x,Y=y has a solution that is not a solution to TX=x

relative to u. Since Sol(TX=x) is non-empty and finite, we can write it as
{(u,v1), ..., (u,vn)}; then T, (u,v) |= X = x �→ (V = v1 ∨ ... ∨ V = vn),
T, (u,v) |= X = x
→ Y = y, but T, (u,v) � (X = x ∧ Y = y) �→ (V =
v1 ∨ ... ∨ V = vn).

Suppose for contradiction that T is Lewisian. Then there is a Lewisian pos-
sible worlds model M and a solution-world mapping μ such that T, (u,v) |= ψ
iff M,μ(u,v) |= ψ for any ψ ∈ L(S). Let w = μ(u,v), then we have (1)
M,w |= X = x
→ Y = y, (2) M,w |= X = x �→ (V = v1 ∨ ... ∨ V = vn),
and (3) M,w � (X = x ∧ Y = y) �→ (V = v1 ∨ ... ∨ V = vn). (1) and (2)
imply that there is a world w1 ∈ CM (w,X = x) such that M,w1 |= Y = y and
M,w1 |= V = v1 ∨ ... ∨ V = vn. However, (3) implies that there is a world
w2 ∈ CM (w,X = x ∧ Y = y) such that M,w2 � V = v1 ∨ ... ∨ V = vn. Since
w1 satisfies X = x ∧ Y = y, w2 �w w1, which entails that w2 ∈ CM (w,X = x)
(because w1 ∈ CM (w,X = x)). It then follows from (2) that M,w2 |= V =
v1 ∨ ... ∨ V = vn, contradiction.

The next condition has to do with the Lewisian requirement of centering.
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Definition 8 (Solution-Determinate). A causal model is Solution-
Determinate if the model has at most one solution relative to every context.

Lemma 3. A causal model is Lewisian only if it is Solution-Determinate.

Proof. Suppose that a causal model T is not Solution-Determinate. Then relative
to some context u, T has at least two solutions. Let v1 and v2 be two different
solutions to T relative to u. We have T, (u,v1) |= (true 
→ V = v1)∧ (true 
→
V = v2).

Suppose for contradiction that T is Lewisian, that is, there is a Lewisian
possible worlds model M and a function μ such that T, (u,v1) |= ψ iff
M,μ(u,v1) |= ψ for any ψ ∈ L(S). Let w be μ(u,v1). Then M,w |= (true 
→
V = v1) ∧ (true 
→ V = v2). However, since w ∈ CM (w, true), it cannot have
any other element due to the requirement of centering in Definition 5. It follows
that M,w |= V = v1 ∧ V = v2, contradiction.

Finally, in view of Halpern’s [5, pp. 317–8] example showing that some
Pearlian models are not Lewisian (see also [16]), we need another condition.

Definition 9 (Solution-Transitive in Cycles). A causal model T is
Solution-Transitive in Cycles if for every X1,...,Xk ⊆ V, every value config-
uration xi of Xi (i = 1, ..., k), and every context u, if TXi=xi

has a solution
relative to u that is consistent with Xi+1 = xi+1 (i = 1, ..., k − 1) and TXk=xk

has a solution relative to u that is consistent with X1 = x1, then TX1=x1 has a
solution relative to u that is consistent with Xk = xk.

Lemma 4. A causal model is Lewisian only if it is Solution-Transitive in Cycles.

Proof. Suppose that a (Solutionful) causal model T is not Solution-Transitive in
Cycles. Then there are X1, ...,Xk ⊆ V, some value configurations x1, ...,xk and
some context u such that TXi=xi

has a solution relative to u that is consistent
with Xi+1 = xi+1 and TXk=xk

has a solution relative to u that is consistent with
X1 = x1, but no solution to TX1=x1 relative to u is consistent with Xk = xk.
It follows that for any (u,v) ∈ Sol(T ),

T, (u,v) |=
k−1∧

i=1

Xi = xi
→ Xi+1 = xi+1 ∧ Xk = xk
→ X1 = x1 (1)

but T, (u,v) � X1 = x1
→ Xk = xk.
Suppose for contradiction that T is Lewisian, that is, there is a Lewisian pos-

sible worlds model M and a function μ such that T, (u,v) |= ψ iff M,μ(u,v) |= ψ
for every ψ ∈ L(S). Let w = μ(u,v), thus

M,w |=
k−1∧

i=1

Xi = xi
→ Xi+1 = xi+1 ∧ Xk = xk
→ X1 = x1

but M,w � X1 = x1
 → Xk = xk. The former implies that there is some
wi ∈ CM (w,Xi = xi) such that M,wi |= Xi+1 = xi+1 and there is some wk ∈
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CM (w,Xk = xk) such that M,wk |= X1 = x1. Hence w1 �w wk �w ... �w w1.
Since w1 ∈ CM (w,X1 = x1), it follows that wk ∈ CM (w,X1 = x1). But then
M,w |= X1 = x1
→ Xk = xk, contradiction.

These four necessary conditions turn out to be jointly sufficient for a causal
model to be Lewisian.

Theorem 1. A causal model is Lewisian if and only if it is Solution-
Determinate and Solution-Transitive in Cycles, and all its submodels are Solu-
tionful and Solution-Conservative.

Proof. The “only if” direction is established by Lemmas 1–4. The proof of the
“if” direction is a bit lengthy and can be found in the Appendix.

4 Axiomatization

We now present an axiomatic system for the class of Lewisian causal models.
The following results present characteristic axioms for the four conditions in the
characterization of Lewisian causal models.

Lemma 5. A causal model T is Solution-Determinate if and only if for every
(u,v) ∈ Sol(T ), T, (u,v) |=

∨
x∈R(X)(true �→ X = x).

Proof. From left to right, suppose that T is Solution-Determinate. Then for any
context u, the solutions of T are all the same (note that T is presupposed to
be Solutionful). In other words, the solutions of T relative to u assign the same
value to every endogenous variable. Thus T, (u,v) |=

∨
x∈R(X)(true �→ X = x).

The other direction is similarly easy to verify.

Lemma 6. A causal model T is Solution-Transitive in Cycles if and only if for
every (u,v) ∈ Sol(T ), T, (u,v) |= (X1 = x1
→ X2 = x2) ∧ ... ∧ (Xk−1 =
xk−1
→ Xk = xk) ∧ (Xk = xk
→ X1 = x1) ⇒ (X1 = x1
→ Xk = xk).

Proof. From left to right, suppose T is Solution-Transitive in Cycles. Assume
that T, (u,v) |= (X1 = x1
 → X2 = x2) ∧ ... ∧ (Xk−1 = xk−1
 → Xk =
xk) ∧ (Xk = xk
→ X1 = x1) for any context u, then TXi=xi

has a solution
relative to u that is consistent with TXi+1=xi+1

(1 ≤ i ≤ k − 1). It follows
that TX1=x1 has a solution relative to u that is consistent with TXk=xk

. That
means T, (u,v) |= X1 = x1
 → Xk = xk. The other direction is similarly
straightforward.

Lemma 7. Every submodel of a causal model T is Solutionful if and only if for
every (u,v) ∈ Sol(T ), T, (u,v) |=

∨
y∈R(Y ) X = x
→ Y = y.

Lemma 8. Every submodel of a causal model T is Solution-Conservative if and
only if for every (u,v) ∈ Sol(T ), T, (u,v) |= (X = x
→ W = w∧(X = x∧W =
w)
→ Y = y) ⇒ X = x
→ (W = w ∧ Y = y).
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Lemmas 7 and 8 are essentially the same as Lemmas 4 and 5 in [15], respectively,
and we omit the proofs.

Let TL(S) denote the class of Lewisian causal models relative to a signature
S. An axiomatic system for TL(S) in the language L(S), AXL(S), consists of the
following axiom schemas:

L0 All instances of propositional tautologies
L1

∨
y∈R(Y ) X = x
→ Y = y

L2 X = x
→ Y = y ⇒ ¬X = x
→ Y = y′ where X = V\{Y } and y �= y′

L3 (
∨

x∈R(X) X = x) ∧ (X = x ⇒ X �= x′) where x �= x′

L4 V = v ⇒ VV1 = v
 → V1 = v1 ∧ ... ∧ VVn
= v
 → Vn = vn where

VVi
= V\{Vi}, V = {V1, ..., Vn} and vi is the value of Vi in v

L5 X = x
→ (β1 ∨ β2) ⇔ (X = x
→ β1) ∨ (X = x
→ β2)
L6 X = x
→ Y = y ⇔

∨
z∈R(Z) X = x
→ (Y = y ∧ Z = z) where Z =

V\(X ∪ Y)
L7 X = x
→ (Y = y ∧ Z = z) ⇒ (X = x ∧ Y = y)
→ Z = z
L8 ((X = x∧Y = y)
→ (W = w∧Z = z)∧(X = x∧W = w)
→ (Y = y∧Z =

z)) ⇒ X = x
→ (Y = y ∧ W = w ∧ Z = z) where Z = V\(X ∪ {Y,W})
L9 (X = x
→ W = w ∧ (X = x ∧ W = w)
→ Y = y) ⇒ X = x
→ (W =

w ∧ Y = y)
L10 (X1 = x1
→ X2 = x2) ∧ ... ∧ (Xk−1 = xk−1
→ Xk = xk) ∧ (Xk = xk
→

X1 = x1) ⇒ (X1 = x1
→ Xk = xk)
L11

∨
x∈R(X)(true �→ X = x)

And two rules of inference:

MP From � α ⇒ β and � α, infer � β
RE From � β1 ⇔ β2, infer � (X = x
→ β1) ⇔ (X = x
→ β2)

We can think of AXL(S) as an extension of Halpern’s system for the class of
all causal models over S [4, pp. 325–6]. Specifically, if we use the language L(S)
and the satisfaction relation defined above, the original system for all causal
models in [4] corresponds to the system consisting of L0, L2-L8, MP, RE and
a special L1 where X = V\{Y }. Naturally, the axiomatic system for Lewisian
causal models can be obtained by adding the axioms L1, L9, L10 and L11, the
characteristic formulas for the four conditions characterizing Lewisian causal
models, into the system for all causal models.

Note that the form of L2 is different from the corresponding Functionality
axiom (D1) in Halpern’s system for the full class of causal models [4]. We choose
this form to slightly simplify the completeness proof. It is also worth mentioning
that L5, L6 and RE were not explicitly listed by Halpern, but he seemed to have
implicitly used them in his proof of completeness.

Theorem 2. AXL(S) is sound and complete with respect to TL(S).

Proof. See the appendix.
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5 Conclusion

Given the prominent status of the Stalnaker-Lewis semantics of counterfactuals
and the increasing influence of the causal modelling approach, it is instructive
and useful to gain a better understanding of the connections between the two.
We have added to this understanding by providing a characterization of Lewisian
causal models, as well as an axiomatization of this class of causal models, fol-
lowing Halpern’s [4,5] seminal work.

Let us end with two observations on the implications of our results, one
about a proper subclass and the other about a proper superclass of the class
of Lewisian causal models. First, Pearlian causal models obviously satisfy the
conditions of Theorem 1, except possibly that of solution-transitivity in cycles.
So an easy corollary is that Pearlian causal models are Lewisian if and only if
they are solution-transitive in cycles. In fact, given the “unique solution” prop-
erty of Pearlian causal models, models that are both Pearlian and Lewisian
are Stalnakerian ([12]), for which the total preorder �w required in Lewisian
possible worlds models can be strengthened into a linear order. The charac-
terization of Stalnakerian causal models is thus simply Pearlian models that are
solution-transitive in cycles. Interestingly, since Pearlian models do not allow any
mutual counterfactual dependence between distinct events due to their satisfac-
tion of the so-called reversibility axiom ([16]), the further requirement of solution-
transitivity in cycles in effect rules out all cycles of counterfactual dependence,
for any such cycle would yield mutual counterfactual dependence. An implica-
tion is that although a Stalnakerian causal model can be non-recursive at the
variable level, it in a sense must be recursive at the value-of-variable level.

Second, our characterization in Theorem 1 reveals a seemingly peculiar fea-
ture of Lewisian causal models. They must be solution-determinate even though
their submodels need not be. If we take away the requirement of solution-
determinateness, we get a superclass that seems more “natural” in its character-
ization. As the proof of Lemma 3 shows, solution-determinateness corresponds
to the Lewisian requirement of centering. It is then easy to show that the more
“natural” class of causal models corresponds to a relaxation of centering to weak
centering. It remains controversial in the philosophical literature, but there have
been several proposals to relax centering to weak centering in broadly counter-
factual accounts of causation, especially in connection to mental or supervenient
causation (e.g., [10,17]). It is therefore interesting to observe that our character-
ization suggests that weak centering is in a way more natural than centering in
the context of causal models.

Appendix: Proofs of Theorems 1 and 2

Proof of Theorem 1
The “only if” direction is established by Lemmas 1–4. Here we focus on the
“if” direction. Suppose that a causal model T over signature S is Solution-
Determinate and Solution-Transitive in Cycles, and all its submodels are Solu-
tionful and Solution-Conservative. We first construct a possible worlds model



104 J. Fang and J. Zhang

M = 〈Ω,R, π〉 over S and prove it is Lewisian. Let Ω be the set of all possible
value assignments to U ∪ V. The definition of π is obvious.

To define R, we use the following notations. Since T is Solution-Determinate
and every submodel of T is Solutionful, we use s(u) to denote the unique solution
to T relative to a context u. Let s(u,x | v) denote one solution v to TX=x

relative to context u. Let Ωs(u) be the set of worlds of the form s(u,x | v)
where x is the value configuration of X and v is one of the solutions of TX=x

relative to context u.1 For a world s(u), we define �0
s(u) over Ωs(u) as follows2:

s(u,x | v) �0
s(u) s(u,y | v′) iff s(u,y | v′) assigns x to X. Let �1

s(u) be the
transitive closure of �0

s(u). Then we inductively define �s(u) as below. If �i
s(u)

is not yet strongly-connected, let wia and wib be two incomparable worlds, and
let Ai = {w ∈ Ωs(u) | w �i

s(u) wia} and Bi = {w ∈ Ωs(u) | wib �i
s(u) w}. Then

define �i+1
s(u):=�i

s(u) ∪(Ai × Bi). Let �s(u) be the first in this process that is
strongly-connected.

We assert that R associates with each s(u) a total preorder �s(u) over Ωs(u)

such that s(u) ∈ Ωs(u) and s(u) ≺s(u) v for every v �= s(u) ∈ Ωs(u). �s(u) is
strongly-connected by its construction. We now show that �i

s(u) is transitive
by induction. The base case �1

s(u) is obvious. Assume that �k
s(u) is transitive,

we show that so is �k+1
s(u). Given any s(u,x | v), s(u,y | v′), s(u, z | v′′) ∈ Ωs(u),

suppose s(u,x | v) �k+1
s(u) s(u,y | v′) and s(u,y | v′) �k+1

s(u) s(u, z | v′′). There
are four cases to consider:

Case 1: s(u,x | v) �k
s(u) s(u,y | v′) and s(u,y | v′) �k

s(u) s(u, z | v′′). By
the inductive hypothesis, s(u,x | v) �k

s(u) s(u, z | v′′). So s(u,x | v) �k+1
s(u)

s(u, z | v′′).
Case 2: s(u,x | v) �k

s(u) s(u,y | v′) and (s(u,y | v′), s(u, z | v′′)) ∈ Ak ×
Bk. There are two �k

s(u)-incomparable worlds wka and wkb such that
s(u,y | v′) �k

s(u) wka and wkb �k
s(u) s(u, z | v′′), thus s(u,x | v) �k

s(u) wka.
It follows that (s(u,x | v), s(u, z | v′′)) ∈ Ak × Bk, and so s(u,x | v) �k+1

s(u)

s(u, z | v′′).
Case 3: (s(u,x | v), s(u,y | v′)) ∈ Ak × Bk and s(u,y | v′) �k

s(u) s(u, z | v′′).
Similar to Case 2.

Case 4: (s(u,x | v), s(u,y | v′)) ∈ Ak × Bk and (s(u,y | v′), s(u, z | v′′)) ∈
Ak × Bk. Then wkb �k

s(u) s(u,y | v′) and s(u,y | v′) �k
s(u) wka, and so

wkb �k
s(u) wka, which contradicts the supposition that wka and wkb are �k

s(u)-
incomparable.

Therefore, �k+1
s(u) is also transitive. By construction, so is �s(u).

Next, we prove the other Lewisian constraints on R. Obviously, s(u) ∈ Ωs(u),
and for every v ∈ Ωs(u), s(u) �0

s(u) v, so s(u) �s(u) v. Suppose that there is some

1 X could be empty so that s(u) is in Ωs(u).
2 For the other worlds s(u,x | v) ∈ Ω, we can find a Ωs(u,x|v) such that
s(u,x | v) ∈ Ωs(u,x|v) and arbitrarily define a total preorder �s(u,x|v) such that
s(u,x | v) ≺s(u,x|v) v for any v �= s(u,x | v) ∈ Ωs(u,x|v).
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s(u,x | v) such that s(u,x | v) �= s(u) and s(u,x | v) �s(u) s(u). That means
either there exist s(u,x1 | v1),..., s(u,xm | vm) such that s(u,x | v) �0

s(u)

s(u,x1 | v1) �0
s(u) ... �0

s(u) s(u,xm | vm) �0
s(u) s(u) or there are two �0

s(u)-
incomparable worlds in the chain from s(u,x | v) to s(u). For the former case,
as s(u) assigns xm to Xm and T is Solution-Conservative, vm is the solution
to T relative to u due to Solution-Determinateness. Thus s(u,xm | vm) = s(u).
Repeat the same argument, we would have s(u,x | v) = s(u), a contradiction.
For the latter case, for any world s(u,xk | vk) such that s(u,xk | vk) �0

s(u) s(u),
s(u,xk | vk) = s(u). Assume that the pair of �0

s(u)-incomparable worlds that
are closest to s(u) is s �s(u) t with t = s(u), then s and t would be �0

s(u)-
comparable, also a contradiction.

So the constructed possible worlds model is Lewisian as desired. What
remains to be shown is that T, (u,v) |= ψ iff M,μ(u,v) |= ψ for every ψ ∈ L(S),
where μ assigns s(u)(∈ Ω) to (u,v)(∈ Sol(T )). We prove this claim by induction
on the structure of ψ.

At first we show that for any L(S) formula β that does not contain ‘�→’,
TX=x, (u′,v′) |= β iff M, s(u′,x | v′) |= β. For the case of Y = y, sup-
pose TX=x, (u′,v′) |= Y = y, then v′ assigns y to Y . Therefore, we have
M, s(u′,x | v′) |= Y = y. Conversely, if M, s(u′,x | v′) |= Y = y, then Y = y is
consistent with v′. Thus, TX=x, (u′,v′) |= Y = y. The Boolean cases are routine.

From the above result, we have T, (u,v) |= Y = y iff M,μ(u,v) |= Y = y.
We then show that T, (u,v) |= X = x �→ β iff M, s(u) |= X = x �→ β. The
other cases are straightforward by inductive hypothesis.

From left to right, if T, (u,v) |= X = x �→ β, then for all (u,vi) ∈
Sol(TX=x), TX=x, (u,vi) |= β. As β is a formula that does not contain
‘�→’, we have M, s(u,x | vi) |= β for (u,vi). Since s(u,x | vi) ∈ Ωs(u)

and s(u,x | vi) �0
s(u) v for any v ∈ Ωs(u) such that v assigns x to X,

then s(u,x | vi) �s(u) v, so s(u,x | vi) ∈ CM (s(u),X = x). Suppose that
there is a world s(u,y | v′) ∈ Ωs(u) such that s(u,y | v′) �= s(u,x | vi)
where s(u,x | vi) is the corresponding world of (u,vi) ∈ Sol(TX=x), and
s(u,y | v′) ∈ CM (s(u),X = x). Then s(u,y | v′) assigns x to X and
s(u,y | v′) �s(u) s(u,x | vi). As s(u,x | vi) �0

s(u) s(u,y | v′) according to the

definition of �0
s(u), they cannot be �1

s(u)-incomparable and then cannot be �j
s(u)-

incomparable. So, based on the definition of �s(u), it can only be the case that
s(u,y | v′) �1

s(u) s(u,x | vi) from the fact that s(u,y | v′) �s(u) s(u,x | vi).
Thus there exist s(u, z1 | v1),..., s(u, zk | vk) such that s(u,y | v′) �0

s(u)

s(u, z1 | v1) �0
s(u) ... �0

s(u) s(u, zk | vk) �0
s(u) s(u,x | vi). Together with the

fact that s(u,x | vi) �0
s(u) s(u,y | v′), that means TX=x relative to u has a

solution vi that is consistent with Zk = zk,..., TY=y relative to u has a solution
that is consistent with X = x. Since T is Solution-Transitive in Cycles, TX=x

has a solution relative to u that is consistent with Y = y. Suppose that the
solution is vk, s(u,x | vk) assigns y to Y. As s(u,y | v′) assigns x to X, the
intervention X = x and Y = y do not contradict with each other. We have
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the world s(u,x,y | v′) (= s(u,y,x | v′)). For every submodel of T is Solution-
Conservative, v′ is one of the solutions to TX=x relative to u, but s(u,y | v′) �=
s(u,x | vi), contradiction. Therefore CM (s(u),X = x) only has the worlds of
the form s(u,x | vi). Then we have that for all v ∈ CM (s(u),X = x), M,v |= β,
so M, s(u) |= X = x �→ β.

From right to left, suppose M, s(u) |= X = x �→ β. As we have proved that
the elements in CM (s(u),X = x) are the worlds of the form s(u,x | vi), then
for each s(u,x | vi), M, s(u,x | vi) |= β. It follows that TX=x, (u,vi) |= β. Then
for all (u,vi) ∈ Sol(TX=x), TX=x, (u,vi) |= β. Hence, T, (u,v) |= X = x �→ β.

Proof of Theorem 2
The soundness of AXL(S) is easy to verify and omitted to save space. To prove
completeness, we follow the canonical model approach. That is, for an AXL(S)-
consistent formula ϕ, we construct a Lewisian causal model from a maximally
AXL(S)-consistent set containing ϕ and prove ϕ is satisfied in that model.

Given an AXL(S)-consistent formula ϕ, we can extend it into a maximally
AXL(S)-consistent set C. According to the formulas in C, we define structural
equations for the canonical model as follows: for any endogenous variable X,
fX(u,y) = x iff Y = y
→ X = x ∈ C (well-defined by L1 and L2). As L3 is in
C, we can determine a value configuration vc for V which is not relative to any
context. Then the canonical model is denoted as T c, (u,vc) for every context u.

Before we prove that ϕ is true in T c, (u,vc), we shall show that T c is a
solutionful causal model, that is, T c has at least one solution given every context
u. Since L4 and V = vc are in C, VV1 = vc
→ V1 = v1∧ ...∧VVn

= vc
→ Vn =
vn ∈ C. That means fVi

(u,vc
Vi

) = vi, where vc
Vi

and vi are the respective
values of VVi

and Vi in vc for any context u. Hence, given any context u, vc can
solve all the functions. That is to say, T c has one solution vc relative to every
context, and hence is a solutionful causal model.

Now we can prove that ψ ∈ C iff T c, (u,vc) |= ψ for every context u and
every ψ ∈ L(S) by induction on the structure of ψ. If ψ is X = x, suppose that
X = x ∈ C, then V = vc is consistent with X = x and thus T c, (u,vc) |= X = x.
The other direction is similar. To prove the case of X = x
→ β, we follow the
strategy to reduce it into simpler formulas by applying some axioms and rules.
Basically, due to L0 and RE, β can be written as a disjunctive normal form. Then
thanks to L5, X = x
→ β can be separated into several formulas X = x
→ βi

where βi is a conjunction of formulas of the form Y = y or its negation. According
to L3, we have X �= x ⇔

∨
x′∈R(X)\{x} X = x′ ∈ C. After applying the rule RE

with L5 repeatedly, we can delete the negations in βi and reduce X = x
→ β
into formulas of the form X = x
→ Y = y. According to L6, to prove the
case of X = x
→ Y = y, it suffices to show that X = x
→ W = w ∈ C iff
T c, (u,vc) |= X = x
→ W = w in which W = V\X.

We establish the above clause by induction on |V\X|. When |V\X| = 1,
suppose X = x
→ W = w ∈ C, we have fW (u,x) = w and thus there is a
solution (x, w) to T c

X=x relative to u. Hence T c, (u,vc) |= X = x
→ W = w.
The other direction is similar. Assume that the above clause holds for |V\X| < k,
we now show the case of |V\X| = k. As k ≥ 2, we can write X = x
 →
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W = w as X = x
 → (W1 = w1 ∧ W2 = w2 ∧ W3 = w3). Suppose that
X = x
→ (W1 = w1 ∧ W2 = w2 ∧ W3 = w3) ∈ C, then (X = x ∧ W1 = w1)
→
(W2 = w2 ∧ W3 = w3) ∈ C due to L7. According to the inductive hypothesis,
T c, (u,vc) |= (X = x ∧ W1 = w1)
 → (W2 = w2 ∧ W3 = w3). Similarly,
T c, (u,vc) |= (X = x ∧ W2 = w2)
→ (W1 = w1 ∧ W3 = w3). Since L8 holds in
any causal model, we have T c, (u,vc) |= X = x
→ (W1 = w1∧W2 = w2∧W3 =
w3). Conversely, if T c, (u,vc) |= X = x
→ (W1 = w1 ∧ W2 = w2 ∧ W3 = w3),
then T c, (u,vc) |= (X = x∧W1 = w1)
→ (W2 = w2 ∧W3 = w3) as L7 holds in
any causal model. According to the inductive hypothesis, (X = x∧W1 = w1)
→
(W2 = w2∧W3 = w3) ∈ C. Similarly, (X = x∧W2 = w2)
→ (W1 = w1∧W3 =
w3) ∈ C. Since L8 is in C, X = x
→ (W1 = w1 ∧ W2 = w2 ∧ W3 = w3) ∈ C.

It is then easy to show that X = x
→ β ∈ C iff T c, (u,vc) |= X = x
→ β,
using the aforementioned strategy of reducing X = x
→ β via X = x
→ βdnf ,
where βdnf is a disjunctive normal form of β.

The further cases of the inductive step concern Boolean combinations of
formulas of the form X = x and formulas of the form X = x
→ β. These cases
are very straightforward. Therefore, for every ψ ∈ L(S), ψ ∈ C iff T c, (u,vc) |= ψ
for every context u.

Finally, we need to show that T c ∈ TL(S). This is trivial given what has been
shown. Since L1, L9, L10 and L11 are in C, they hold relative to T c, (u,vc).
Hence, by Lemmas 5–8, T c is solution-determinate and solution-transitive in
cycles, and every submodel of T c is solutionful and solution-conservative. That
is, T c is indeed a Lewisian causal model.
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Abstract. In this paper, we study the expressive power of revised Dat-
alog on the problems that are closed under substructures. We show that
revised Datalog cannot define all the problems that are in PTIME and
closed under substructures. As a corollary, LFP cannot define all the
extension-closed problems that are in PTIME.
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1 Introduction

Datalog and its variants are widely used in artificial intelligence and other fields,
such as deductive database, knowledge representation, data integration, cloud
computing, etc [8,11,13,18,19,23]. As a declarative programming language, it
is often used to perform data analysis and create complex queries. The com-
plexity and expressive power is an important issue of the study [1,5,19,21,22].
With the recursive computing ability, Datalog is more powerful than first-order
logic. It defines exactly the polynomial time computable queries on ordered finite
structures [9]. Hence, Datalog captures the complexity class PTIME on ordered
finite structures. While on all finite structures, the expressive power of Datalog
is very limited. It even cannot define the parity of a set [9]. A Datalog program is
constituted of a set of Horn clauses. The characteristics of syntax determine the
monotonicity properties of its semantics. That is, every Datalog (resp., positive
Datalog, the fragment of Datalog where no negated atomic formula occurs in
the body of any clauses) definable query is preserved under extensions [3] (resp.,
homomorphisms [4]). It is natural to ask from the point of view of descriptive
complexity that whether Datalog (resp., positive Datalog) captures the polyno-
mial time computable problems that are closed under extensions (resp., homo-
morphisms). The answer is negative by the work of Afrati et al. who showed that
positive Datalog cannot express all monotone queries computable in polynomial
time, and the perfect squares problem that is in polynomial time and closed
under extensions is not expressible in Datalog [3].

In model theory, many preservation theorems are proved to show the rela-
tionship between the closure properties and the syntactic properties of formulas.
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Most of these preservation theorems fail when restricted to finite structures. A
lot of research about the preservation theorems on Datalog, first-order logic (FO)
and least fixpoint logic (LFP) have been conducted on finite structures. Ajtai
and Gurevich showed that a positive Datalog formula is bounded iff it is defin-
able in positive existential first-order logic, and every first-order logic expressible
positive Datalog formula is bounded [4], where a Datalog formula is bounded if
there exists a number n such that the fixpoint of the formula can be reached for
any finite structure within n steps. Dawar and Kreutzer showed that the homo-
morphism preservation theorem fails for LFP, both in general and in restriction
to finite structures [6]. That is, there is an LFP formula that is preserved under
homomorphisms (in the finite) but is not equivalent (in the finite) to a Datalog
formula. The paper [16] studied Datalog with negation and monotonicity, and
the expressive power with respect to monotone and homomorphism properties.

bounded pos-Datalog

pos-Datalog[FO]

bounded Datalog

Datalog[FO]

bounded Datalogr

Datalogr[FO]

FO[E]

FO[H]pos-∃FO

∃FO

FO

LFP

pos-Datalog

Datalog[H]

Datalog

Datalogr

∃LFP

pos-∃LFP

LFP[E]

LFP[H]

PTIME

PTIME[E]

PTIME[H]

Fig. 1. The relationship of FO, LFP, PTIME, Datalog and its variants. Datalogr

denotes revised Datalog. pos-L denotes the positive fragment of L. ∃L denotes the
existential fragment of L. L[FO] denotes the set of L formulas that are first-order
definable. L[H] (resp., L[E]) denotes the set of L formulas (or problems computable in
L) that are preserved under homomorphisms (resp., extensions). The blue arrow shows
the containment relationship on Datalog and its variants. The red arrow shows the
relationship about the expressive power. The solid arrow implies that the relationship
is strict, and the dashed bidirectional arrow implies the equality relationship. The black
dotted arrow means whether the relationship is strict is still open.
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The papers [7,20] studied the preservation results under extensions for FO and
Datalog. All the results are summarized in Fig. 1.

Revised Datalog (Datalogr) is an extension of Datalog, where universal quan-
tification over intensional relations is allowed in the body of rules. Abiteboul and
Vianu first introduced the idea that the body of a rule in Datalog can be uni-
versally quantified [2]. The author of the paper showed that Datalogr equals
LFP on all finite structures [10]. In the paper, we study the expressive power of
Datalogr on problems with closure properties, i.e., closed under substructures
(or extensions). We conclude that a Datalogr formula is equivalent to a first-
order formula iff it is equivalent to a bounded Datalogr formula. As the main
result of the paper, we show that Datalogr cannot define all the problems that
are in PTIME and closed under substructures. Since Datalogr equals LFP, and
the complement of a substructure-closed problem is extension-closed, as a corol-
lary, LFP cannot define all the extension-closed problems that are in PTIME.
This result contributes the strict containment LFP[E] � PTIME[E] in Fig. 1. A
technique of tree encodings for arbitrary structures is used in the proof. For an
arbitrary set of structures K ∈ EXPTIME, we can encode them into a set of
substructure-closed structures K′, where the tree used to encode the structure
in K is exponentially larger. Therefore, K′ is in PTIME. For every structure
in K′, there is a characteristic structure ST of it such that they are equivalent
with respect to Datalogr-transformations. Since ST can be computed from the
structure in K in logspace, this implies that K is also in PTIME, contrary to the
time hierarchy theorem. Figure 2 shows the sketch of the proof.

Fig. 2. The idea of the proof for the nondefinability of Datalogr.

The paper is organized as follows: In Sect. 2, we give the basic definitions
and notations. In Sect. 3, we recall invariant relations on perfect binary trees,
and introduce the technique of tree encodings for arbitrary structures. And we
prove the nondefinability results for Datalogr on substructure-closed problems.
Finally, we conclude the paper in Sect. 4.

2 Preliminaries

Let τ = {c1, . . . , cm, P1, . . . , Pn} be a vocabulary, where c1, . . . , cm are constant
symbols and P1, . . . , Pn are relation symbols. A τ -structure is a tuple A =
〈A, cA

1 , . . . , cA
m, PA

1 , . . . , PA
n 〉 where A is the domain, and cA

1 , . . . , cA
m, PA

1 , . . . , PA
n

are interpretations of the constant and relation symbols over A, respectively. We
assume the equality relation “=” is contained in every vocabulary, and omit the
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superscript “A” when it is clear from context. We call A finite if its domain A is
a finite set. Unless otherwise stated, all structures considered in this paper are
finite. We use arity(R) to denote the arity of a relation R, and use “ | |” to indicate
the cardinality of a set or the arity of a tuple, e.g., |A| denotes the cardinality of
A and |(x1, x2, x3)| = 3. A finite structure is ordered if it is equipped with a linear
order relation “≤”, and the successor relation “SUCC”, the constants “min” and
“max” for the minimal and maximal elements, respectively, with respect to “≤”.
Let A = 〈A, cA

1 , . . . , cA
m, PA

1 , . . . , PA
n 〉 and B = 〈B, cB

1 , . . . , cB
m, PB

1 , . . . , PB
n 〉 be

two structures. If B ⊆ A, cA
i = cB

i (1 ≤ i ≤ m), and PB
j = PA

j ∩ Barity(Pj)

(1 ≤ j ≤ n), then we say that B is a substructure of A, and A is an extension
of B.

An r-ary global relation R of a vocabulary τ is a mapping that assigns to
every τ -structure A an r-ary relation RA over A such that for every isomorphism
π : A � B and every a1, . . . , ar ∈ A, A |= RAa1 . . . ar iff B |= RBπ(a1) . . . π(ar).
A query is a global relation. We say that a query Q is expressible in a logic L if
there is an L-formula that defines Q. Two formulas are equivalent if they define
the same query. Given two logics L1 and L2, we use L1 ≤ L2 to denote that
every L1-formula is equivalent to an L2-formula. If L1 ≤ L2 and L2 ≤ L1, then
we denote it by L1 ≡ L2.

Suppose that a relation symbol X occurs positively in ϕ(x̄) and |x̄| =
arity(X). Given a structure A, we can define a monotonic sequence
X0,X1,X2, . . . , where X0 = ∅ and Xi+1 = {ā | (A,Xi) � ϕ[ā]} for i ≥ 0,
such that Xi ⊆ Xi+1. Since A is finite, the sequence will eventually reach a
fixpoint.

Definition 1. The least fixpoint logic LFP is an extension of first-order logic
by adding the following rule [9]:

– If ϕ is an LFP formula, X occurs positively in ϕ, and |x̄| = |ū| = arity(X),
then [LFPx̄,Xϕ]ū is an LFP formula.

Given an LFP formula [LFPx̄,Xϕ]ū, for any structure A and ā ∈ Aarity(ā),
we have A � [LFPx̄,Xϕ]ā iff ā is in the fixpoint of the sequence induced by X
and ϕ on A.

Proposition 1. [15,24] LFP captures PTIME on ordered finite structures.

Definition 2. Let τ be a vocabulary. A Datalog program Π over τ is a finite
set of rules of the form

β ← α1, . . . , αl

where l ≥ 0 and

(1) each αi is either an atomic formula or a negated atomic formula,
(2) β is an atomic formula Rx̄, where R doesn’t occur negatively in any rule of

Π.
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β is the head of the rule and the sequence α1, . . . , αl constitute the body.
Every relation symbol occurring in the head of some rule of Π is intensional, and
the other symbols in τ are extensional. We use (τ,Π)int and (τ,Π)ext to denote
the set of intensional and extensional symbols, respectively. We also allow 0-ary
relation symbols. If Q is a 0-ary relation, its value is from {∅, {∅}}. Q = ∅ means
that Q is FALSE and Q = {∅} means that Q is TRUE. We use the least fixpoint
semantics for Datalog programs. A Datalog formula has the form (Π, P )x̄, where
P is an r-ary intensional relation symbol and x̄ = (x1, . . . , xr) are variables that
do not occur in Π. For a (τ,Π)ext-structure A and ā = (a1, . . . , ar) ∈ Ar,

A |= (Π, P )x̄[ā] iff (a1, . . . , ar) ∈ P(∞),

where P(∞) is the least fixpoint for relation P when Π is evaluated on A. If P
is 0-ary, then A |= (Π, P ) iff P(∞) = {∅}.

3 Datalogr on Problems with Closure Properties

3.1 Revised Datalog Programs

Definition 3. In Definition 2, if we replace Condition (1) by

(1′) each αi is either an atomic formula, or a negated atomic formula, or a
formula ∀ȳRȳz̄, where R occurs in the head of some rule,

then we call this logic program revised Datalog program, denoted by Datalogr.

Example 1. Let G = 〈V,E〉 be a directed acyclic graph, and the set of nodes
V partitioned into two disjointed sets Vuni and Vexi. The nodes in Vuni (resp.,
Vexi) are universal (resp., existential). The notion of alternating path is defined
recursively. There is an alternating path from s to t in G if

– s = t; or
– s ∈ Vexi, ∃x ∈ V such that (s, x) ∈ E and there is an alternating path from x

to t; or
– s ∈ Vuni, ∃x ∈ V such that (s, x) ∈ E, and ∀y ∈ V , if (s, y) ∈ E then there is

an alternating path from y to t.

The alternating graph accessibility problem is defined as follows:

Input: A directed acyclic graph G = 〈Vuni ∪ Vexi, E〉 and two nodes s, t.
Output: Yes if there is an alternating path from s to t in G, otherwise no.

This problem is P-complete [14]. The following Datalogr program Π defines the
alternating graph accessibility problem

Paltxy ← x = y;
Paltxy ← ¬Vunix,Exz, Paltzy;
Punix ← Vunix,Exy;
Qxzy ← Punix,¬Exz;

Qxzy ← Punix,Exz, Paltzy;
Paltxy ← Punix,∀zQxzy;

P ← Paltst.
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We have (τ,Π)int = {Palt, Q, Puni, P} and (τ,Π)ext = {E, Vuni, s, t}. The relation
Puni saves the nodes in Vuni that have a successor. The relation Palt saves the
pairs (x, y) such that there is an alternating path from x to y. We use Qxzy to
denote that for any x ∈ Puni, either there is no edge from x to z, or there is an
alternating path from z to y. For any directed acyclic (τ,Π)ext-structure A, we
have A |= (Π, P ) iff there is an alternating path from s to t.

The Datalog formulas are preserved under extensions [7], i.e., if a structure
B satisfies a Datalog formula ϕ and A is an extension of B, then A also satisfies
ϕ. A directed acyclic graph with an alternating path from s to t can be extended
to a directed acyclic graph without any alternating path from s to t by adding
new nodes. So Datalog cannot define the alternating graph accessibility problem,
which implies that Datalogr is strictly more expressive than Datalog. Allowing
universal quantification over intensional relations is essential for Datalogr to
increase its expressive power. With the help of it, every FO(LFP) formula can
be transformed into an equivalent Datalogr formula.

Proposition 2. [10] Datalogr ≡ LFP on all finite structures.

A Datalog program is positive if no negated atomic formula occurs in the
body of any rule. A Datalog formula (Π, P )t̄ is bounded if there is an n ≥ 0
such that P(n) = P(∞) for all structures. A bounded (positive) Datalog formula
is equivalent to an existential (positive) first-order formula, and vice versa [9].
Furthermore, a positive Datalog formula is bounded iff it is equivalent to a
first-order formula. The statement is false for all Datalog formulas. There is an
unbounded Datalog formula that is equivalent to an FO formula, but no bounded
Datalog formula is equivalent to it [4]. Unlike Datalog, if an unbounded Datalogr

formula is equivalent to an FO formula, then it must be equivalent to a bounded
Datalogr formula.

Proposition 3. A Datalogr formula is equivalent to a first-order formula iff it
is equivalent to a bounded Datalogr formula.

Proof. Suppose that a Datalogr formula is equivalent to a first-order formula
ϕ. Using the method in [10] we can construct a bounded Datalogr formula that
is equivalent to ϕ. For the other direction, the proof in [9] which shows that
every bounded Datalog formula is equivalent to an FO formula remains valid for
bounded Datalogr formulas.

3.2 Invariant Relations on Perfect Binary Trees

In [17], Lindell introduced invariant relations that are defined on perfect binary
trees, and showed that there are queries computable in PTIME but not definable
in LFP. A perfect binary tree is a binary tree in which all internal nodes have two
children and all leaf nodes are in the same level. Let T = 〈V,E, root〉 be a perfect
binary tree, where V is the set of nodes, E is the set of edges and root is the
root node. Suppose that R is an r-ary relation on V and f is an automorphism
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of T . Given a tuple ā = (a1, . . . , ar) ∈ R, we write f(ā) = (f(a1), . . . , f(ar)) and
f [R] = {(f(a1), . . . , f(ar)) | (a1, . . . , ar) ∈ R}. We say that R is an invariant
relation if for every automorphism f , R = f [R]. It is easily seen that the equality
= and E are invariant relations.

First we give several technical lemmas. The proofs of Lemmas 1, 2, 3, and 5
can be found in the full arXiv version of the paper.

Lemma 1. If R1 and R2 are r-ary invariant relations, then ¬R1, R1 ∩ R2 and
R1 ∪ R2 are also invariant relations.

Lemma 2. Suppose that R is an r-ary invariant relation, R′ is a k-ary invariant
relation and g is a permutation of {1, . . . , r}. Define

R1 = {(ag(1), . . . , ag(r)) | (a1, . . . , ar) ∈ R},

R2 = {(a1, . . . , ar, b1, . . . , bk) | (a1, . . . , ar) ∈ R and (b1, . . . , bk) ∈ R′}.

Then R1 and R2 are also invariant relations.

Lemma 3. Suppose that R is a (k + r)-ary invariant relation. Define

R1 = {(a1, . . . , ar) | (b1, . . . , bk, a1, . . . , ar) ∈ R for all nodes b1, . . . , bk}
R2 = {(a1, . . . , ar) | ∃b1, . . . , bk such that (b1, . . . , bk, a1, . . . , ar) ∈ R}.

Then R1 and R2 are also invariant relations.

Let a, b be two nodes of a perfect binary tree T , we use a � b and d(a) to
denote the least common ancestor of a, b and the depth of a, respectively. For
example, in Fig. 3 there is a perfect binary tree in which d(root) = 0, d(a) = 1,
d(c) = d(e) = 2, and c � e = root.

Let (a1, . . . , ar) be an r-ary tuple of nodes, its characteristic tuple is defined
as

(a1, . . . , ar)∗ = (d(a1), d(a1 � a2), . . . , d(a1 � ar),
d(a2), d(a2 � a3), . . . , d(a2 � ar),

. . . , d(ar))

which is a r(r+1)
2 -ary tuple of numbers. Let R be an invariant relation, the

characteristic relation of R is defined to be

R∗ = {(a1, . . . , ar)∗ | (a1, . . . , ar) ∈ R}.

root

a

c d

b

e f

0

1

2

Fig. 3. A perfect binary tree of depth 3.
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Proposition 4. [17] Let ā = (a1, . . . , ar) and b̄ = (b1, . . . , br) be two tuples, and
R an r-ary invariant relation of a perfect binary tree T .

– (a1, . . . , ar)∗ = (b1, . . . , br)∗ iff there is an automorphism f of T such that
f(ā) = b̄.

– If (a1, . . . , ar)∗ = (b1, . . . , br)∗, then ā ∈ R iff b̄ ∈ R.

For any two invariant relations R1 and R2, R1 = R2 iff R∗
1 = R∗

2.

3.3 Tree Encodings and Characteristic Structures

This section is devoted to the definitions of tree encodings and characteristic
structures, and the propositions about the equivalent relationship between them
on Datalogr programs, which will be used in the next section.

Definition 4. Let T be a perfect binary tree, R an r-ary relation on T . R is
a saturated relation if for any nodes a1, . . . , ar, b1, . . . , br, whenever d(ai) =
d(bi) (1 ≤ i ≤ r), then (a1, . . . , ar) ∈ R iff (b1, . . . , br) ∈ R.

The following proposition can be proved easily from the definitions of invari-
ant relations and saturated relations.

Proposition 5. A saturated relation is also an invariant relation.

From now on we make the assumption: τ is the vocabulary {R1, . . . , Rk}, and
τ ′ = τ ∪ {root, E}, where root is a constant symbol and E is a binary relation
symbol that is not in τ . We define a class of τ ′-structures

T = {〈V, root, E,R1, . . . , Rk〉 | 〈V,E, root〉 is a perfect binary tree,
R1, . . . , Rk are saturated relations on it}.

Definition 5. Let A = 〈{0, 1, . . . , h − 1}, RA
1 , . . . , RA

k 〉 be a τ -structure. The
tree encoding of A is a τ ′-structure C(A) = 〈V, root, E,RT

1 , . . . , RT
k 〉 ∈ T , such

that 〈V,E, root〉 is a perfect binary tree of depth h, and for any relation symbol
Ri (1 ≤ i ≤ k) and any nodes a1, . . . , ari

∈ V ,

C(A) |= RT
i a1 · · · ari

iff A |= RA
i d(a1) · · · d(ari

)

where ri is the arity of Ri, and d(aj) (1 ≤ j ≤ ri) is the depth of aj.

Roughly speaking, C(A) encodes A in a tree, but its size is exponentially
larger. Conversely, given a τ ′-structure T = 〈V, root, E,RT

1 , . . . , RT
k 〉 ∈ T , we

can compute the τ -structure A encoded by T as follows:

(1) The domain is {0, . . . , h − 1}, where h is the depth of T;
(2) For each i = 1, . . . , k,

RA
i = {(d(a1), . . . , d(ari

)) | ∃a1, . . . , ari
∈ V such that T |= RT

i a1 · · · ari
}.
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We use C−1(T) to denote the corresponding τ -structure A encoded by T.
Let FULm = V m be a relation of arity m, where m ≥ 1 and V is the domain of
T. Define the vocabulary

σ = {0,SUCC, R �=, R¬e,FUL∗
m} ∪ {R∗

1, . . . , R
∗
k, (¬R1)∗, . . . , (¬Rk)∗}

where FUL∗
m has arity m(m+1)

2 , R �= and R¬e have arity 3, R∗
i or (¬R1)∗ has

arity ri(ri+1)
2 (1 ≤ i ≤ k and ri is the arity of Ri).

Definition 6. Given a τ ′-structure T = 〈V, root, E,R1, . . . , Rk〉 ∈ T , the char-
acteristic structure ST of T is a σ-structure

〈{0, 1, . . . , h − 1},0,SUCC, R �=, R¬e,FUL∗
m, R∗

1, . . . , R
∗
k, (¬R1)∗, . . . , (¬Rk)∗〉

where h is the depth of T, 0 is a constant interpreted by 0, SUCC is the successor
relation on the domain, and R �=, R¬e,FUL∗

m, R∗
1, . . . , R

∗
k, (¬R1)∗, . . . , (¬Rk)∗

are the characteristic relations of �=, (¬E), FULm, R1, . . . , Rk, ¬R1, . . . ,¬Rk,
respectively.

In the following we show that for every Datalogr program Π on the tree
encodings, there is a Datalogr program Π∗ on the corresponding characteristic
structures such that Π∗ simulates Π. More precisely, Π∗ handles the character-
istic relations of the relations in Π. Let Π = {γ1, . . . , γs} be a Datalogr program
on T . Suppose X1, . . . , Xw are all intensional relation symbols in Π and for each
rule γi, let nγi

be the number of free variables occurring in γi. Set

m = max{nγ1 , . . . , nγs
, arity(R1), . . . , arity(Rk), arity(X1), . . . , arity(Xw)}.

We shall construct, based on Π, a Datalogr program Π∗ such that for any
Datalogr formula (Π, P ), there exists a Datalogr formula (Π∗, P ∗), and T |=
(Π, P ) iff ST |= (Π∗, P ∗) for any T ∈ T , where P and P ∗ are 0-ary.

Every element of T is a node of a perfect binary tree, while every element of
ST is a number which can be treated as the depth of some node. Hence, for each
variable x in Π, we introduce a new variable ix, and for any two variables x1, x2

in Π, we introduce a new variable ix1�x2 . For a tuple of variables x̄ = x1 · · · xr,
we use the following abbreviations:

(x̄)∗ = ix1ix1�x2 · · · ix1�xr
ix2ix2�x3 · · · ixr−1�xr

ixr
,

∀(x̄)∗ = ∀ix1∀ix1�x2 · · · ∀ix1�xr
∀ix2∀ix2�x3 · · · ∀ixr−1�xr

∀ixr
.

Without loss of generality, we treat iu�v and iv�u as the same variable. Addi-
tionally, we assume that the 0-ary relation is also an invariant relation, and the
characteristic relation of a 0-ary relation is itself.

First we construct a quasi-Datalogr program Π′ as follows. For each rule
β ← α1, . . . , αl in Π, suppose that v1, . . . , vn are the free variables in it, we add
the formula

FULmv1v2 · · · vn−1vnvn · · · vn
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to the body and obtain a new rule

β ← α1, . . . , αl,FULmv1v2 · · · vn−1vn · · · vn.

For each new rule, we

– replace x = y by ix = ix�y, ix�y = iy (reason: d(x) = d(x � y) = d(y)), for
constant root, we replace iroot by constant 0, and replace iroot�x also by 0,
since root � a = root for any node a;

– replace Exy by ix = ix�y,SUCCix�yiy (reason: d(y) = d(x�y)+1 = d(x)+1);
– replace x �= y by R �=ixix�yiy (reason: R �= is the characteristic relation of �=);
– replace ¬Exy by R¬eixix�yiy (reason: R¬e is the characteristic relation of

¬E);
– replace P x̄ by P ∗(x̄)∗, where P is in {R1, . . . , Rk,FULm}, or an intensional

relation symbol;
– replace ¬Rx̄ by (¬R)∗(x̄)∗, where R is a symbol in {R1, . . . , Rk};
– replace ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs by

ΨP =

⎛
⎝

FUL∗
m(z1z2 · · · zs−1zs · · · zs)∗∧

∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs
∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs(

FUL∗
m(y1 · · · ytz1 · · · zs · · · zs)∗ → P ∗(y1 · · · ytz1 · · · zs)∗)

⎞
⎠

where P is an intensional relation symbol.

By adding FULm to each rule of Π and replacing it with FUL∗
m in Π′, we

can restrict to characteristic tuples. Π′ is not a Datalogr program because of ΨP .
Note that ΨP is equivalent to the Datalogr formula (Π1, Q2)t̄, where

Π1 : Q(y1 · · · ytz1 · · · zs)∗ ← ¬FUL∗
m(y1 · · · ytz1 · · · zszs · · · zs)∗;

Q(y1 · · · ytz1 · · · zs)∗ ← P ∗(y1 · · · ytz1 · · · zs)∗;
Q1(z1 · · · zs)∗ ← ∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs

∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs
Q(y1 · · · ytz1 · · · zs)∗;

Q2(z1 · · · zs)∗ ← Q1(z1 · · · zs)∗,FUL∗
m(z1z2 · · · zs−1zs · · · zs)∗.

The Datalogr program Π∗ can be obtained by adding Π1 to Π′ and changing ΨP

to Q2(z1 · · · zs)∗.

Remark 1. We cannot replace ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs directly by

∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs
∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs

P ∗(y1 · · · ytz1 · · · zs)∗

since there may be T ∈ T , ā ∈ T, and an invariant relation P such that

T � ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs[ā], and
ST � ∀(y1 · · · yt)∗∀iy1�z1 · · · ∀iy1�zs

∀iy2�z1 · · · ∀iyt�zs−1∀iyt�zs

P ∗(y1 · · · ytz1 · · · zs)∗[(ā)∗].
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For example, let T be the structure with the perfect binary tree of Fig. 3 and
relation

P = {(root, root), (root, a), (root, b), (root, c), (root, d), (root, e), (root, f)}.

Obviously, we have T � ∀yP (root, y). But ST � P ∗(0, 1, 1) since (0, 1, 1) is
not the characteristic tuple of any tuple in T. This problem can be solved by
changing ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs to the equivalent formula

FULmz1 · · · zs−1zs · · · zs ∧∀y1 · · · ∀yt(FULmy1 · · · ytz1 · · · zs · · · zs → Py1 · · · ytz1 · · · zs).
We replace FULm and P by their characteristic relations FUL∗

m and P ∗, respec-
tively, to obtain ΨP . This guarantees that only characteristic tuples are consid-
ered.

Example 2. The following Datalogr program Π computes the transitive closure
R of edges E

Π : Rx1x2 ← Ex1x2;
Rx1x3 ← Rx1x2, Ex2x3.

The corresponding Datalogr program Π∗ below computes the characteristic rela-
tion R∗ of R.

Π∗ : R∗ix1ix1�x2ix2 ← ix1 = ix1�x2 ,SUCCix1�x2ix2 ,

FUL∗
3ix1ix1�x2ix1�x2ix2ix2ix2 ;

R∗ix1ix1�x3ix3 ← R∗ix1ix1�x2ix2 , ix2 = ix2�x3 ,SUCCix2�x3ix3 ,

FUL∗
3ix1ix1�x2ix1�x3ix2ix2�x3ix3 .

Lemma 4. Given ψP = ∀y1 · · · ∀ytPy1 · · · ytz1 · · · zs, a structure T ∈ T , let ΨP

be defined as above, and Q1 = {ā | T |= ψP [ā]}, Q2 = {ē | ST |= ΨP [ē]}. If P is
an invariant relation on T, then (Q1)∗ = Q2.

Proof. Because P is an invariant relation, by Lemma 3 and the definition of Q1,
we know that Q1 is also an invariant relation. We first show that (Q1)∗ ⊆ Q2.
Suppose that ē ∈ (Q1)∗ for some ē ∈ ST, there must exist a tuple ā from T such
that ā ∈ Q1, (ā)∗ = ē, and b̄ā ∈ P for all tuples b̄ of T, i.e.,

T |=
(
FULmz1 · · · zs−1zszs · · · zs∧

∀y1 · · · ∀yt(FULmy1 · · · ytz1 · · · zszs · · · zs → Py1 · · · ytz1 · · · zs)
)
[ā].

By the definition of ΨP we see that ST |= ΨP [(ā)∗], which implies ē ∈ Q2.
To prove Q2 ⊆ (Q1)∗, consider an arbitrary tuple ē ∈ ST such that ē ∈ Q2.

By the definition of Q2 and ΨP , we have ST |= FULm(z1 · · · zszs · · · zs)∗[ē], so
there exists a tuple ā of T such that ē = (ā)∗. On the contrary, assume ā /∈ Q1,
then there is a tuple b̄ such that b̄ā /∈ P . Because P is an invariant relation, for
any tuples b̄′ and ā′, if (b̄ā)∗ = (b̄′ā′)∗ then b̄′ā′ /∈ P . Combing that P ∗ is the
characteristic relation of P we conclude that

ST � P ∗(y1 · · · ytz1 · · · zs)∗[(b̄ā)∗], and (1)
ST � FUL∗

m(y1 · · · ytz1 · · · zszs · · · zs)∗[(b̄ā)∗]. (2)
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(1) and (2) give ST � ΨP [(ā)∗]. Hence, ē /∈ Q2, contrary to the assumption that
ē ∈ Q2. Therefore, ā must be in Q1, which implies ē ∈ (Q1)∗. ��

Let P be an intensional relation symbol in Π, and T a structure in T . We
use P(n) (n > 0) to denote the relation obtained in the n-th evaluation of Π on
T for P , and PT[Π] to denote the relation obtained by applying Π on T for P ,
i.e., the fixpoint of the sequence P(0), P(1), P(2), . . .

Proposition 6. For any intensional relation symbol P in Π and any T ∈ T ,
PT[Π] is an invariant relation on T and (PT[Π])∗ = (P ∗)ST[Π∗]. Moreover, if P
is a 0-ary intensional relation symbol, then T |= (Π, P ) iff ST |= (Π∗, P ∗).

Proof. We first show that if P is an intensional relation symbol in Π and T is
a structure in T , then PT[Π] is an invariant relation on T. Let P 1, . . . , Pm′

be
all intensional relation symbols in Π. Consider the following formula constructed
for each P i

φP i(x̄P i) =
∨

{∃v̄(α1 ∧ · · · ∧ αl) | P ix̄P i ← α1, . . . , αl ∈ Π and v̄ are the
free variables in α1 ∧ · · · ∧ αl that are different from x̄P i}.

If the relation defined by each αs is an invariant relation, then by Lemmas 1,
2 and 3, we know that the relation defined by φP i is also an invariant relation.
Each αs is either an atomic (or negated atomic) formula with the relation symbol
from {=, E,R1, . . . , Rk} where the relations defined by them are all invariant
relations, or an atomic formula P j x̄, or a formula ∀ȳP j ȳz̄ (1 ≤ j ≤ m′).

When computing the fixpoint of P 1, . . . , Pm′
, we set P i

(0) = ∅ (1 ≤ i ≤ m′),
where ∅ is an invariant relation. By Lemma 3 we know that if P j is an invariant
relation then the relation defined by ∀ȳP j ȳz̄ is also an invariant relation. We
proceed by induction on n. Suppose that P 1

(n), . . . , P
m′
(n) are invariant relations,

then each

P i
(n+1) = {ā | (T, P 1

(n), . . . , P
m′
(n)) |= φP i(x̄P i)[ā]}, or

P i
(n+1) = {∅ | (T, P 1

(n), . . . , P
m′
(n)) |= φP i}

is also an invariant relation. Therefore, the fixpoints P 1
(∞), . . . , P

m′
(∞) are invariant

relations, i.e., PT[Π] is an invariant relation on T.
Next we shall show that (PT[Π])∗ = (P ∗)ST[Π∗]. It suffices to prove that

(P i
(n))

∗ = (P i)∗
(n) (1 ≤ i ≤ m′) for each n ≥ 0. The proof is by induction on n.

Basis: If n = 0, then P i
(0) = ∅, (P i)∗

(0) = ∅ (1 ≤ i ≤ m′). We have (P i
(0))

∗ =
(P i)∗

(0) (1 ≤ i ≤ m′).

Inductive Step: Assuming (P i
(k))

∗ = (P i)∗
(k) (1 ≤ i ≤ m′), we show that

(P i
(k+1))

∗ = (P i)∗
(k+1) (1 ≤ i ≤ m′). The case where P i is 0-ary is trivial, in the

following we only consider the relation P i of no 0-ary.
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To prove (P i
(k+1))

∗ ⊆ (P i)∗
(k+1), suppose ē ∈ (P i

(k+1))
∗ for some ē ∈ ST.

There must be a tuple ā of T such that ā ∈ P i
(k+1) and ē = (ā)∗. By the

semantics of Datalogr we know that

P i
(k+1) = {ā | (T, P 1

(k), . . . , P
m′
(k)) |= φP i(x̄P i)[ā]}.

By the definition of φP i , there is a rule P ix̄P i ← α1, . . . , αl in Π such that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= ∃v̄(α1 ∧ · · · ∧ αl)[ā].

Thus, there exists some b̄ such that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= (α1 ∧ · · · ∧ αl)[āb̄].

Because P ix̄P i ← α1, . . . , αl is a rule of Π, we can infer that

(P i)∗(x̄P i)∗ ← α′
1, . . . , α

′
l,FUL∗

m(x̄P i v̄ṽ′)∗

is a rule of Π∗, where α′
1, . . . , α

′
l and FUL∗

m(x̄P i v̄ṽ′)∗ are obtained by replacing
α1, . . . , αl,FULm with the corresponding formulas respectively in the construc-
tion of Π∗. Note that we replace ∀ȳP ȳz̄ by ΨP , and by Lemma 4 the relation
defined by ΨP is the characteristic relation of that defined by ∀ȳP ȳz̄. By the
definition of ST and the induction hypothesis (P i

(k))
∗ = (P i)∗

(k) (1 ≤ i ≤ m′) we
deduce that

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= (α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[(āb̄)∗], i.e.,

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= ∃ū(α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[(ā)∗]

where ū are the free variables in α′
1 ∧· · ·∧α′

l ∧FUL∗
m(x̄P i v̄ṽ′)∗ that are different

from (x̄P i)∗. Combining ē = (ā)∗ we obtain ē ∈ (P i)∗
(k+1).

To prove (P i)∗
(k+1) ⊆ (P i

(k+1))
∗, suppose ē ∈ (P i)∗

(k+1) for some ē ∈ ST.
There must exist a rule

(P i)∗(x̄P i)∗ ← α′
1, . . . , α

′
l,FUL∗

m(x̄P i v̄ṽ′)∗ (3)

in Π∗ such that

〈ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)〉 |= ∃ū(α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[ē].

Hence there exists a tuple f̄ ∈ ST such that

(ST, (P 1)∗
(k), . . . , (P

m′
)∗
(k)) |= (α′

1 ∧ · · · ∧ α′
l ∧ FUL∗

m(x̄P i v̄ṽ′)∗)[ēf̄ ].

The formula FUL∗
m(x̄P i v̄ṽ′)∗ guarantees that (āb̄)∗ = ēf̄ and (ā)∗ = ē for some

tuple āb̄ of T. Because P 1
(k), . . . , P

m′
(k) are invariant relations, by the induction

hypothesis (P i
(k))

∗ = (P i)∗
(k) (1 ≤ i ≤ m′) we know that

〈T, P 1
(k), . . . , P

m′
(k)〉 |= (α1 ∧ · · · ∧ αl)[āb̄]

where α1, . . . , αl occur in the rule P ix̄P i ← α1, . . . , αl that is the original of (3)
in Π. Hence ā ∈ P i

(k+1), which implies ē ∈ (P i
(k+1))

∗. This completes the proof. ��
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3.4 Nondefinability Results for Datalogr

The complexity class EXPTIME contains the decision problems decidable by a
deterministic Turing machine in O(2nc

) time. By the time hierarchy theorem,
we know that PTIME is a proper subset of EXPTIME. In this section, for every
class of structures K ∈ EXPTIME, we construct a class K′ of structures that is
in PTIME and closed under substructures, and show that if K′ is definable by a
Datalogr formula, then K is in P, which is impossible.

Let c be a constant, and A = 〈{0, . . . , h − 1}, RA
1 , . . . , RA

k 〉 a τ -structure.
The trivial extension A+ = 〈{0, . . . , h − 1, h, . . . , h + hc − 1}, RA

1 , . . . , RA
k 〉 of A

is a τ -structure obtained by adding hc dummy elements to the domain of A and
keeping all other relations unchanged.

For technical reasons we introduce a new unary relation symbol U and let
τU = τ ∪ {U}, τ ′

U = τ ∪ {root, E, U}. From now on when we speak of a τ ′
U -

structure
G = 〈V, root, E, U,R1, · · · , Rk〉

we assume that

(1) 〈V,E, root〉 is a directed acyclic graph and the nodes reachable from root
form a binary tree, and

(2) all relations U,R1, · · · , Rk are saturated relations restricted on T (G), which
is the largest perfect binary subtree of G with root as the root.

It is easy to check that if a τ ′
U -structure G satisfies the aforementioned two

conditions, then all its substructures also satisfy the two conditions.

Definition 7. Let K be a class of τ -structures. Define a class K′ of τ ′
U -structures

such that, for any G = 〈V, root, E, U,R1, . . . , Rk〉, let h be the largest number
where all nodes in the first h levels of T (G) are marked by U , G ∈ K′ iff the
following Condition (1) or Condition (2) holds.

Condition (1)
(a) The depth of T (G) is h + hc.
(b) The relations R1, . . . , Rk do not hold on any tuple that contains a node

in the last hc consecutive levels of T (G).
(c) C−1(T (G)) is the trivial extension of C−1(Th(G)), where Th(G) is the

subtree of T (G) by restricting to the first h levels.
(d) C−1(Th(G)) ∈ K when ignoring the relation U .

Condition (2)
(a) The depth of T (G) is strictly less than h + hc.

Proposition 7. Let K be an arbitrary class of τ -structures decidable in 2nc

time, where n is the cardinality of the structure’s domain, and K′ defined as
above. Then

(i) K′ is closed under substructures;
(ii) K′ is decidable in PTIME.
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Proof. To prove (i), suppose that G is a τ ′
U -structure in K′, then it satisfies

either Condition (1) or Condition (2) in Definition 7. Let H be an arbitrary sub-
structure of G. If G satisfies Condition (2), then H also satisfies Condition (2),
and is in K′. Suppose that G satisfies Condition (1), then the perfect binary
tree T (H) either equals T (G), which implies H satisfies Condition (1), or the
depth of T (H) is less than that of T (G), which implies H satisfies Condition (2).
Altogether, H ∈ K′.

To prove (ii), let G be an arbitrary τ ′
U -structure, we just need to do the

following steps to check whether G ∈ K′:

(1) Check that 〈V,E〉 is a directed acyclic graph.
(2) Check that all nodes reachable from root form a binary tree.
(3) Compute T (G), the largest perfect binary subtree with root as root.
(4) Check that U,R1, . . . , Rk are saturated relations on T (G).
(5) Compute the largest number h such that all nodes in the first h levels of

T (G) have property U .
(6) Check whether the depth of T (G) is less than h + hc.
(7) If the depth of T (G) is h + hc, then check whether (b), (c) and (d) in

Condition (1) of Definition 7 hold.

Note that C−1(Th(G)) has h elements and K is decidable in 2nc

time, the state-
ment (d) in Condition (1) of Definition 7 can be verified in polynomial time since
if the depth of T (G) is h + hc then the input size is at least 2h+hc

. ��

Let K and K′ be defined as in Proposition 7. For an arbitrary τ -structure
A, let AU be the τU -structure obtained by marking every element in A by U ,
A+

U the trivial extension of AU by adding |A|c elements, and T the τ ′
U -structure

such that C−1(T) = A+
U . If K′ is axiomatizable by a Datalogr formula (Π, Q),

then
A ∈ K iff T ∈ K′ iff T |= (Π, Q). (4)

Define the vocabulary

σU = {0,SUCC, R �=, R¬e,FUL∗
m, U∗, R∗

1, . . . , R
∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗}.

By Definition 6, we can compute T’s characteristic structure that is a σU -
structure

ST =
〈
{0, 1, . . . , |A| + |A|c − 1},0,SUCC, R �=, R¬e,FUL∗

m, U∗,
R∗

1, . . . , R
∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗〉

where 0 is interpreted by 0, SUCC is the successor relation on the domain
and R �=, R¬e, FUL∗

m, U∗, R∗
1, . . . , R

∗
k, (¬U)∗, (¬R1)∗, . . . , (¬Rk)∗ are the charac-

teristic relations of �=, (¬E), FULm, U , R1, . . . , Rk, ¬U,¬R1, . . . ,¬Rk, respec-
tively. By Proposition 6, we know there is a Datalogr formula (Π∗, Q∗) such that
T |= (Π, Q) iff ST |= (Π∗, Q∗). Combining (4), we have A ∈ K iff ST |= (Π∗, Q∗).
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Lemma 5. ST is logspace computable from A.

By Lemma 5, we know that ST is computable from A in polynomial time. Hence,
K is in PTIME. Since K is an arbitrary class in EXPTIME, this would imply
EXPTIME=PTIME, which contradicts the time hierarchy theorem. So we must
have:

Proposition 8. There is a problem in PTIME and closed under substructures
but not definable in Datalogr.

If a problem is closed under substructures, then its complement is closed
under extensions. By Proposition 2, we can obtain the following corollary.

Corollary 1. DATALOGr[E] = LFP[E] � PTIME[E].

4 Conclusion

Revised Datalog is an extension of Datalog by allowing universal quantification
over intensional relations in the body of rules. On all finite structures, Datalogr

is strictly more expressive than Datalog, and has the same expressive power as
that of LFP. In classical model theory, the closure properties of a formula are usu-
ally related to some syntactic properties. Many preservation theorems have been
proven to reflect this relationship. When restricted to finite structures, most of
these preservation theorems fail. Due to the syntax and semantics of Datalog, we
can treat it as the dual of SO-HORN logic, which is closed under substructures [12].
It follows that Datalog is closed under extensions. A lot of work has been conducted
between Datalog and FO (or LFP) to study the closure property. In this paper,
we study the expressive power of revised Datalog on the problems that are closed
under substructures. We show that Datalogr cannot define all the problems that
are in PTIME and closed under substructures. As a corollary, LFP cannot define all
the extension-closed problems that are in PTIME. A method of tree encodings for
arbitrary structures is used in the proof. If we replace the extension closure prop-
erty by the homomorphism closure property, it is still open whether the statement
also holds. This is desirable for future work.
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Abstract. We use Concurrent Game Models (CGM) in which simple
conditional promises are assigned the role of negotiation steps aiming to
represent the formation of temporary coalitions and their agendas. By
transforming these extended CGMs into equivalent CGMs with incom-
plete information, established methods for rational synthesis become
enabled. The interpretation of promises is compatible with that of
announcements as in dynamic epistemic logics. To accommodate require-
ments on plays that are written wrt the runs of the original model, we
use temporal projection that hides negotiation steps.

Keywords: concurrent game models · rational synthesis · temporary
coalitions · announcements · temporal projection

Introduction

This paper is about reducing temporary coalitions in the context of rational syn-
thesis. A concrete setting for rational synthesis for temporal objectives, without
temporary coalitions, was originally proposed [14]. This work is a revision of the
approach to the topic in [16], where it was assumed that negotiation could be
abstracted away entirely and coalitions were supposed to be pairwise disjoint.
Here we commit to a simple epistemic logic-based protocol for agreements on
single moves in CGMs, a variant of that from [1], where, unlike requests, grants,
refusals, etc., [23,25,29], conditional promises which eventually lead to agree-
ments, are analyzed. Like [16], agreements that last longer than a single move can
emerge due to voluntary renewals, a sign of stability. Long term agreements that
are sealed ahead of all implementation are left outside this paper, to facilitate
reasonable self-containedness. Unlike [16], starting from a CGM for the given
game, here we do the obvious thing by observing that negotiation moves are
interleaved with the given game’s implementation ones. Negotiation actions are
unilateral conditional promises, and (overlapping) temporary coalitions (agree-
ments) are formed by the exchange of promises. E.g., the timetable and price
list of a transportation service, which are conditional promises on behalf of that
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service, together with the purchase of a ticket, which makes the promise’s condi-
tion true, lead to a temporary agreement with the service earning a fare and the
passenger making a leg of her journey to a point where she will possibly rely on
the viability of another agreement for spending a night and further agreements
for the following legs of the journey, each of these agreements being expected
to be desirable to the parties involved at their respective starting times. Imple-
mentation actions are suppressed in moves with negotiation actions in them
and filibustering is avoided by requiring promises to be increasingly restrictive.
Several agreements can be entered simultaneously as long as all of them can
be honoured, which is straightforward to check mechanically. At this point this
model is markedly simpler than reality because (a) checking promises requires
awareness such as what only the promisor is certain to have, and (b) it is usual
of, e.g. a bank, to be ultimately unable to deliver in full. Since negotiation is
about players’ mental states, the resulting CGM is always a partial information
one. Voluntary renewals restrict the need for co-ordination to accounting of other
players’ promises as a distinct type of activity. This setting brings a reduction
of temporary coalitions to rational synthesis for independent players, e.g. with
ordered objectives as in [8].

We subscribe to this approach here but stayed away from it in [16]. The
balance between [16] and this paper was tipped for us by [12] where the possi-
bility to simultaneously participate in several coalitions was considered, de-facto
generalizing coalitions to agreement signatory sets with players allowed to enter
multiple agreements each. Along with announcements [1,4,5,15,22], where the
idea of epistemic actions that restrict mental states maps to coalition agreements
restricting future behaviour, the approach also concurs with epistemic planning
[3,7,26], where epistemic and implementation actions are unified. In our setting,
within a period of negotiation, promises (offers as in auctions) ‘stand’. Once an
implementation action occurs, ‘things change’ and promises become obsolete.
Our work can be related to the system proposed and investigated in [10] too,
where axiomatic systems are centerstage and the semantic compatibility arises
from the use of epistemic models.

We complement the reduction of problems about temporary coalitions to
the respective thoroughly studied rational synthesis problems by an off-the-shelf
translation based on temporal projection of temporal conditions on the given
game’s model, such as players’ objectives, into conditions on the model with
negotiation moves interleaved.

1 Preliminaries

Concurrent Game Models (CGM). An (incomplete information) CGM for some
given sets of players Σ = {1, . . . , N} and atomic propositions AP is a tuple

M =̂ 〈W,WI , 〈Act i : i ∈ Σ〉, 〈∼i: i ∈ Σ〉, 〈Pi : i ∈ Σ〉, o, V 〉 (1)

where W is the set of states, WI ⊆ W is the set of the initial states, Act i is
the set of actions of player i ∈ Σ, ActΓ =̂

∏

i∈Γ

Act i, ∼i, i ∈ Σ, are equivalence
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relations on W , Pi : W → P(Act i)\{∅} is the protocol of player i, i ∈ Σ,
o : W × ActΣ → W is the outcome function, and V ⊆ W × AP is the valuation
relation. Given a w ∈ W+, we put

Rinf
M (w) =̂ {v ∈ Wω : v0 . . .v|w|−1 = w, (∀k)(∃a ∈

∏

i∈Σ

Pi(v
k))(vk+1 = o(vk, a))}.

for the set of all the infinite plays in M which are continuations of w. The set
Rfin

M (w) ⊆ W+ of the finite continuations of w is defined similarly. Pi(w′) =
Pi(w′′) is required for w′, w′′ ∈ W such that w′ ∼i w′′. We denote wk′

. . .wk′′

by w[k′..k′′]. Only immediate observation ability is captured by ∼i. Under the
perfect recall assumption, w1 ∼i w2 =̂ |w1| = |w2|∧

∧

k<|w1|
wk

1 ∼i wk
2 . We assume

AP and Act i, i ∈ Σ, to be pairwise disjoint for notational convenience.

Temporal Objectives are (TL-definable) subsets of Wω. Comprehensive studies
on such objectives with (pre-)orders to represent players’ preferences such as [8]
focus on regular conditions and include algorithmic solutions.

Epistemic Temporal Logic on CGMs. The relations ∼i enable the interpretation
of epistemic modalities and reasoning about the mental states of players in epis-
temic logics for strategic ability as in [17,30,31] and their underlying temporal
epistemic logics [13,20,21,32,33]. The system of epistemic TL that we use in
this paper to specify promises and objectives is a CTL∗. It has linear time past
formulas ψ in the role usually played by state formulas in systems of CTL∗ and
future formulas ϕ as the operands of the path quantifier:

ϕ::= ⊥ | p | ϕ ⇒ ϕ | Kiϕ | CΓ ϕ | ∃ψ | ϕ | (ϕSϕ) ψ::= ϕ | ψ ⇒ ψ | © ψ | (ψUψ)

where p ∈ AP , i ∈ Σ and Γ ⊆ Σ.
Satisfaction has the form M,w, k |= . . . for all formulas, with w being an

infinite play and k < ω:

M,w, k |= p iff V (p,wk);
M,w, k |= CΓ ϕ iff M,v, k |= ψ for all v such that v[0..k](

⋃

i∈Γ

∼i

)∗
w[0..k];

M,w, k |= ∃ψ iff M,v, k |= ψ for some v ∈ Rinf
M (w[0..k]).

The clauses for ⊥, ⇒, ©,  (’yesterday’), (.S.), and (.U.) are as usual. �, ¬, ∨,
∧, ≡ and ∀, are defined as usual. We write Ki for C{i} and Piϕ for ¬Ki¬ϕ.
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Storing Latest Moves. Any CGM M can be transformed into an equivalent CGM
M1 where moves a ∈ ActΣ are stored in their destination states. We let

M1 =̂ 〈W 1,W 1
I , 〈Act i : i ∈ Σ〉, 〈∼1

i : i ∈ Σ〉, 〈P 1
i : i ∈ Σ〉, o1, V 1〉

where
W 1 =̂W × (ActΣ ∪ {∗}), W 1

I =̂WI × {∗};
〈w′, a′〉 ∼1

i 〈w′′, a′′〉 =̂w′ ∼i w′′ ∧ (a′ = a′′ = ∗ ∨ a′
i = a′′

i );
P 1

i (〈w, a〉) =̂Pi(w), o1(〈w, b〉, a) =̂ 〈o(w, a), a〉.
Here ∗ �∈ ⋃

i∈Σ

Act i. M1’s vocabulary is APAct =̂AP ∪ ⋃

i∈Σ

Act i. We let

V 1(x, 〈w, b〉) =̂
{

b �= ∗ ∧ bi = x, if x ∈ Act i;
V (x,w), if x ∈ AP.

M1 is similar to the bound-1 unwinding of a Kripke model, cf. e.g. [6].

2 From CGMs to CGMs with Negotiation

The building blocks of negotiation are unilateral promises where a player i ∈
Σ\Γ promises to some set of prospective partners Γ ⊆ Σ\{i} that it will choose
an action from B ⊂ Act i, if the players from Γ promise to choose an action
profile from A ⊂ ActΓ . Let X̂ =̂

∨

x∈X

∧

j∈Δ

xj for X ⊆ ActΔ and Δ ⊆ Σ. Let

promisei,Γ (A,B) =̂C{i}∪Γ (KiÂ ⇒ CΓ B̂) . (2)

Then the above promise is fulfilled in M1 wherever ∀ © promisei,Γ (A,B)
holds. Mutually binding agreements are the logical corollaries of the promises
exchanged. Observe that the knowledge that a move a ∈ A is to be played,
and not actually playing the move makes promise (2) work. Given any CGM
M , using M ’s corresponding M1, a corresponding negotiation CGM M̌ can be
defined with the additional facility of logging promises and rejecting promises
which are not honorable. The following technical notions provide for this.

Definition 1. Let Si be the set of the formulas of the form (2), S∧
i =̂ { ∧

k<n

sk :

sk ∈ Si, k < n, n < ω}, i ∈ Σ. Let S∧ =̂ { ∧

k<n

sk : sk ∈ Si, k < n, n < ω, i ∈ Σ}.

Definition 2. Compound promise s ∈ S∧ is honorable if,

(i) for every a ∈ ActΣ, either s ∪ {CΣai : i ∈ Σ} is consistent, or s ∪ {CΣai}
is inconsistent for some i.

(ii) there exists an a ∈ ActΣ such that s ∪ {CΣai : i ∈ Σ} is consistent.
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Condition (i) states that an a ∈ ActΣ either fulfills all the promises in place, or
ai alone is a breach of i’s promises by some i ∈ Σ. Condition (ii) ensures that
what is promised is doable. Unlike just consistency of s, honorability implies that
every agent can verify its ability to honour its promises using its own knowledge.
Building on the example of AGM-style update operations [2], the promise update
operation � prevents accepting promises that are not honorable:

Definition 3. Given s0 ∈ S∧ and s ∈ S∧
i , s0 � s =̂ s0 ∧ s, if s0 ∧ s is honorable.

Otherwise s0 � s =̂ s0.

In the sequel we call moves a such that ai ∈ S∧
i for some i ∈ Σ negotiation

moves. We call moves a ∈ ∏

i∈Σ

Act i implementation moves. The protocols of a

state w ∈ W can be expressed as de-facto unconditional promises by putting
p(w) =̂

∧

i∈Σ

CΣ

∨
Pi(w) and i’s knowledge on the promises that are logical corol-

laries of some s ∈ S∧ can be expressed by ki(s) =̂ {s′ ∈ S∧ :|= s ⇒ Kis
′}.

Definition 4. The Negotiation CGM (NCGM) of CGM (1) is

M̌ =̂ 〈W̌ , W̌I , 〈Ǎct i : i ∈ Σ〉, 〈∼̌i : i ∈ Σ〉, 〈P̌i : i ∈ Σ〉, ǒ, V̌ 〉 (3)

where

W̌ =̂W 1 × S∧, W̌I =̂ {〈w, p(w)〉 : w ∈ W 1
I }; Ǎct i =̂Act i ∪ S∧

i ;
〈w′, a′, s′〉∼̌i〈w′′, a′′, s′′〉 =̂ 〈w′, a′〉 ∼1

i 〈w′′, a′′〉 ∧ ki(s′) = ki(s′′);
P̌i(〈w, a, s〉) =̂P 1

i (〈w, a〉) ∪ S∧
i = Pi(w) ∪ S∧

i ;

ǒ(〈w, b, s〉, a) =̂
⎧
⎨

⎩

〈o(w, a), a, p(o(w, a))〉, if a is implementation;
〈w, b, (. . . (s � p1) � . . . � pK−1) � pK〉,

if a is negotiation and p1, . . . , pK are a′s promise actions;
V̌ (x, 〈w, a, s〉) =̂V 1(x, 〈w, a〉), x ∈ APAct .

The definition of ǒ encodes the accumulation of promises along negotiation, and
the effect of implementation moves as in the given game. Observe that, if i �= j,
then s � p � q = s � q � p for p ∈ S∧

i , q ∈ S∧
j as a promise can only be rejected

if inconsistent with previous ones by the same player. Hence the ordering of the
promises p1, . . . , pK in Definition 4 is irrelevant.

3 From NCGMs to Honest Play CGMs

Given the CGM (1), its corresponding honest play CGM M̄ is obtained from
the corresponding M̌ by redefining P̌i to enable precisely those runs (plays) in
which promises are honoured.

Definition 5. Run 〈w0, ∗, s0〉〈w1, a1, s1〉 . . . ∈ Rinf
M̌

(〈w0, ∗, s0〉) is honest, if, for
all k,

(i) sk ∧ Pia
k+1
i is consistent for all i such that ak+1

i ∈ S∧
i ;
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(ii) sk ∧ Pi

∧

j∈Σ

ak+1
j is consistent, if ak ∈ ActΣ, i.e., ak is implementation;

(iii) sk ∧ ¬(sk � ak+1
i ) is consistent for all i such that ak+1

i ∈ S∧
i .

In finite M , Condition (iii) rules out filibustering, that is, infinite negotiations.
All the other components of M̄ being as in M̌ , we put

P̄i(〈w, b, s〉) =̂ {a ∈ Pi(w) :�|= s ⇒ Ki¬a} ∪ {S ∈ S∧
i :�|= s ⇒ ¬S, �|= s ⇒ S}.

If 〈w′, a′, s′〉∼̌i〈w′′, a′′, s′′〉, then ki(s′) = ki(s′′). The honorability and the net
novelty of a promise by player i can be determined from ki(s). Hence P̄i respects
∼̌i-equivalence as required by the definition of CGM.

In M̄ , promises work like announcements in the sense of dynamic epis-
temic logic [1,5,22]: M̄,w |= ∀ © s|w−1| where 〈s|w−1|, a|w−1|, s|w−1|〉 =̂w|w−1|,
concurs with the satisfaction of [ϕ]Kϕ about truthful announcements. Hence
computing P̄i can be viewed as a special case of epistemic update, with every
announcement (promise) restricting the continuations of the reference finite play
from its latest state on.

Let η =̂
∨

i∈Σ

∨S∧
i , where s ∈ S∧

i appear as action names. Then η indicates

that the latest move was a negotiation one. Then, since protocols allow only
implementation actions that are consistent with promises in M̄ , we have:

Proposition 1. Let 〈w0, ∗, p(w0)〉 ∈ W̄I , w ∈ Rinf
M̄

(〈w0, ∗, p(w0)〉) and
〈wk, ak, sk〉 =̂wk, k ≥ 1. Then M̄,w, k |= ∀ © (ηU(sk ∧ ¬η)) for all k < ω. Every
honest run in Rinf

M̌
(wI) appears in Rinf

M̄
(wI) too.

4 Writing Player Objectives for NCGMs

Reasoning about players’ objectives which are written for the given game’s CGM
M can be facilitated by translating them into equivalent ones where the presence
of negotiation moves is accounted of and abstracted away. The translation is
based on Keller’s work [24]; variants for LTL, regular expressions, and discrete
time ITL [9,27] can be found in [11,18], and [28], respectively. It is based on the
state projection temporal operator Π of ITL from [19]. Here follows a definition
of Π on LTL (CTL∗ path) formulas in CGMs:

Definition 6. Given a run w in CGM M and an LTL formula ψ, let w|ψ be
obtained from w by deleting the states wn such that M,w, n �|= ψ, n < |w|. Let
d(w, k) be the number of deletions in w[0..k], k < |w|. Then

M,w, k |= ψ1Πψ2 iff |w|ψ1 | = ω, d(w, k) ≤ k, and M,w|ψ1 , k − d(w, k) |= ψ2.

In general, w|ψ1 is not guaranteed to be a play, nor to be infinite, even if w is.
However, both requirements are met in M̄ , in case ψ1 is ¬η from Proposition 1:
Deleting negotiation moves correctly links the remaining states by the respective
implementation moves because sk, which restrict protocols in M̄ , become reset
by implementation moves. Infinite (filibustering) sequences of negotiation moves,
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which could render w|¬η finite, are ruled out in finite CGM M by Condition (iii)
from Definition 5. Hence an objective L written for M would be achieved along
run w ∈ Rinf

M (w0), w0 ∈ WI , iff there exists a v ∈ Rinf
M̄

(〈w0, ∗, p(w0)〉) such that
M̄,v, 0 |= (¬η)ΠL and w consists of the w-components of v|¬η.

The use of (.U.) in Proposition 1 can be viewed as the translation of (¬η)Πsk.

Concluding Remarks

We have highlighted the possibility to combine some fundamental techniques into
a setting that allows the reduction of temporary coalitions with the players bound
by self-interest. We find the merit of this study to be that it emphasizes that
conceptual complexity can be contained. Features that appear to be necessary
to add to CGMs for reasoning about temporary coalitions can be enjoyed at the
specification stage and then processed so that known techniques can be used
in their original forms. The key observation is that, with coalitions assumed to
be depending for their longevity on self-interest all the way, negotiation can be
largely restricted to single move agendas. There is no really bad obstacle for
the forging of long term agreements to be put in the same framework too. The
approach of [10] confirms this. However, since infinitely many long term promises
are possible even for finite Act i, filibustering may require special attention.

Acknowledgement. The author wishes to thank Ben Moszkowski for his comments
on this work.
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Abstract. Epistemic monadic Boolean algebras are obtained by enrich-
ing monadic Boolean algebras with a knowledge operator. Epistemic
monadic logic as the monadic fragment of first-order epistemic logic is
introduced for talking about knowing things. A Halmos-style represen-
tation of epistemic monadic Boolean algebras is established. Relativiza-
tions of epistemic monadic algebras are given for modelling updates.
These logics are semantically complete.

Keywords: Monadic Boolean algebra · epistemic logic · relativization

1 Introduction

Epistemic logic introduced by Hintikka [10] studies modal principles of knowl-
edge and belief, which are widely applied in many areas. Dynamic epistemic
logic enriches epistemic logic with logical dynamics, which model the update of
knowledge and belief (cf. e.g. [1,2,5]). In the model-theoretic semantics, updates
are viewed in general as a kind of relativization, and they extend static epistemic
logic in such a way that explicit reduction axioms are admitted in the mechanism
of dynamics (cf. e.g. [2]). From the algebraic perspective, updates are interpreted
as quotient maps which are obtained by congruence relations with respect to
information encoding epistemic actions (cf. e.g. [11–13,16]). Philosophical reflec-
tions on these works show that the existing symbolisms of dynamic epistemic
logic mainly concern knowledge and belief on propositions which represent the
information content conveyed by sentences. They study little about knowing or
believing things. One feature of them is that they are not quantificational.

When quantification is involved in knowledge or belief, first-order modal logic
seems to be a natural formalism. For example, let T (x) be the predicate that
stands for the property of being a tiger. Then, using a simple first-order epis-
temic language (cf. e.g. [6]), we can formalize the sentence that Bob knows that
there are tigers simply as KBob∃xT (x). An immediate philosophical question
arises from the the famous distinction between de re and de dicto modality.
However, the formula ∃xKBobT (x) seems not allowing a de re reading because
Bob’s knowing that a thing is tiger cannot be a property of that thing. Thus,
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the de re/de dicto distinction cannot occur in an appropriate first-order epis-
temic logic. A second philosophical question concerns further the semantics of
first-order epistemic logic. One possible choice is that each epistemic state in
a model is assigned a domain of objects. But the constant domain assumption
seems plausible due to the intuition that being an object at an epistemic state is
certainly independent of the epistemic attitudes of agents. Thus, we should take
the constant domain semantics and corresponding first-order epistemic logic into
consideration.

There are some related works on first-order epistemic logics in the literature
(cf. e.g. [15,17]). In the present paper, we work with the monadic fragment of
first-order epistemic logic and use Halmos’ monadic (Boolean) algebra as a tool
(cf. [7]). We investigate first-order epistemic logic within the algebraic setting.
A monadic Boolean algebra is a pair (A,∃) where A is a Boolean algebra and ∃
is an existential quantifier. The universal quantifier ∀ is dually defined. When a
knowledge operator ♦ and its dual � are introduced, we can express the sentence
that Bob knows tigers as �BobT where T is a unary predicate standing for tigers.
We restrict to the single-agent case, and what has been done can be easily
extended to multi-agent scenarios. With the knowledge operator �, the sentence
that an agent knows all tigers are cats can be formalized as �∀(T → C) where
→ is the Boolean implication and C stands for cats. We can prove �T → �∃T
which means knowing tigers implies knowing the existence of tigers.

Like Halmos’ representation theorem of monadic algebras (cf. [7,8]), we prove
that every epistemic monadic algebra (A,∃,♦) is isomorphic to a functional one.
After that, we introduce epistemic monadic logics, and a syntactically defined
logic is given as a particular epistemic monadic logic. Furthermore, we present
updates on epistemic monadic algebras by relativizations. Given a certain ele-
ment s in an epistemic monadic algebra (A,∃,♦), the relativization (As,∃s,♦s)
and corresponding updated epistemic monadic logic are developed. Note that
these relativizations differ from the standard public announcements in the sense
that iterated relativization does not produce new knowledge. Finally we give
syntactically defined relativized epistemic monadic logics.

2 Monadic Boolean Algebras

An algebra (A,∧,¬, 0,∃) is called a monadic (Boolean) algebra (‘MA’ for short)
if (A,∧,¬, 0) is a Boolean algebra and ∃ is a unary operator on A such that the
following conditions hold for all p, q ∈ A:

(M1) ∃0 = 0.
(M2) p ≤ ∃p.
(M3) ∃(p ∧ ∃q) = ∃p ∧ ∃q.

The lattice order ≤ on A is defined by: p ≤ q if and only if p = p ∧ q, or
equivalently q = p ∨ q. For all p, q ∈ A, we define 1 := ¬0 and the operators
p ∨ q := ¬(¬p ∧ ¬q), p → q := ¬(p ∧ ¬q) and p ↔ q := (¬(p ∧ ¬q)) ∧ (¬(q ∧ ¬p)).
Let ∀p := ¬∃¬p. The operator ∃ on A is called an existential quantifier, and its
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dual ∀ is called a universal quantifier. We write (A,∃) for a monadic algebra,
A is assumed to be a Boolean algebra. Let MA be the variety of all monadic
algebras.

A polynomial ∃p means that p exists. It is well-known that monadic algebras
are algebras for the monadic fragment of first-order logic. In such a fragment,
we can express the existence or universality of a set of objects. For example,
“Tigers exist” can be expressed by ∃T where T stands for the set of all tigers.

Fact 1 (cf. [7]). Let (A,∃) be a monadic algebra. The following hold for all
p, q ∈ A: (1) ∃1 = 1; (2) ∃(p ∨ q) = ∃p ∨ ∃q; (3) if p ≤ ∃q, then ∃p ≤ ∃q and
∀p ≤ ∀q; (4) ∀p ≤ p, ∃∃p = ∃p and ∀∀p = ∀p; (5) ∃∀p = ∀p and ∀∃p = ∃p.

Lemma 1. Let A be a Boolean algebra. Then (A,∃) is a monadic algebra if and
only if for every p, q ∈ A, the following conditions hold: (M2) p ≤ ∃p, (M4)
∃∃p ≤ ∃p and (Adj∃,∀) ∃p ≤ q if and only if p ≤ ∀q.

Proof. Assume (A,∃) is a monadic algebra. We show that (Adj∃,∀) holds. Sup-
pose ∃p ≤ q. By Fact 1, p ≤ ∃p = ∀∃p ≤ ∀q. Assume p ≤ ∀q. Then
∃p ≤ ∃∀q = ∀q ≤ q. Conversely, it suffices to derive (M1) and (M3) from (M2),
(M4) and (Adj∃,∀). Clearly 0 ≤ ∀0. By (Adj∃,∀), ∃0 = 0. Let s, r ∈ A. Clearly
s ≤ ∀∃s. Hence, if s ≤ r, then ∃s ≤ ∃r and ∀s ≤ ∀r. By (M2) and (Adj∃,∀),
∀(s∧ r) = ∀s∧∀r and ∃(s∨ r) = ∃s∨∃r. Clearly ∃(p∧∃q) ≤ ∃p∧∃∃q ≤ ∃p∧∃q.
Suppose ∃(p ∧ ∃q) ≤ r. Then p ∧ ∃q ≤ ∀r. Then p ≤ ∀¬q ∨ ∀r. Then
∃p ≤ ∃(∀¬q ∨ ∀r) = ∀∃q → ∃∀r. By (M4) and (Adj∃,∀), ∃q ≤ ∀∃q. Then
∃p ≤ ∃q → ∃∀r. Then ∃p ∧ ∃q ≤ ∃∀r. Clearly ∃∀r ≤ ∀r. By (M2), ∀r ≤ r. Then
∃p ∧ ∃q ≤ r. Hence ∃p ∧ ∃q ≤ ∃(p ∧ ∃q). 
�

By Lemma 1, the pair 〈∃,∀〉 of quantifiers on a monadic algebra satisfies the
adjointness condition. By (M2) and (M4), ∃ is a closure operator and ∀ is an
interior operator on A. The variety MA is exactly the variety of modal S5-algebras
(cf. e.g. [4]). For the representation of monadic algebras, the modal approach uses
relational structures while Halmos [7] introduced functional monadic algebras.

Definition 2. Let A be a Boolean algebra and X �= ∅ (domain). Let AX be the
set of all functions from X to A such that (i) (AX ,∧,¬, 0) is a Boolean algebra
with respect to pointwise Boolean operations, namely 0(x) = 0, (¬p)(x) = ¬p(x)
and (p ∧ q)(x) = p(x) ∧ q(x) for all p, q ∈ AX and x ∈ A; (ii) if p ∈ AX , the
supremum

∨
R(p) and the infimum

∧
R(p) exist in A where R(p) = {p(x) : x ∈

X}. For all p ∈ AX and x ∈ X, let (∃p)(x) =
∨

R(p) and (∀p)(x) =
∧

R(p).
Every subalgebra of (AX ,∧,¬, 0,∃) is called a functional monadic algebra.

Note that the operator ∃ on AX is an existential quantifier on A. We can also
check that ∀p = ¬∃¬p for all p ∈ AX . Halmos [8] introduced a representation
theorem for monadic algebras which says that every monadic algebra is isomor-
phic to a functional one. Moreover, for the definition of a logic in the setting
of monadic algebras, Halmos [7] proposed that a monadic Boolean logic and its
model are defined as a monadic algebra with an ideal.
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Definition 3. I is a monadic ideal if I is an ideal of B, and if b ∈ I, then
∃b ∈ I. A monadic logic is a pair (A, I) where A is a monadic algebra and I is
a proper monadic ideal in A. An element p ∈ A is refutable if p ∈ I. A model is
a pair (A, {0}) where A is a monadic algebra. An interpretation of a monadic
logic (A, I) in a model (B, {0}) is a MA-homomorphism f : A → B such that
f(p) = 0 for every p ∈ I. An element p ∈ A is universally invalid if f(p) = 0 for
every interpretation f . A monadic logic (A, I) is semantically complete if every
universally invalid element in A is refutable.

We develop further a syntactically defined monadic logic. Let V = {Pi : i ∈
ω} be a denumerable set of variables. The term algebra T is defined as follows:

T � ϕ::= P | ⊥ | ¬ϕ | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | ∃ϕ

The connectives �,→,↔ and ∀ are defined as usual. Let var(ϕ) be the set of
all variables in ϕ. We write ϕ(P1, . . . , Pn) for the term ϕ such that var(ϕ) ⊆
{P1, . . . , Pn}. For a monadic algebra (A,∃), a n-ary term ϕ(P1, . . . , Pn) induces
a n-ary polynomial ϕA(p1, . . . , pn) on A. A term is valid (notation: MA |= ϕ) if
ϕA(p1, . . . , pn) = 1 for all p1, . . . , pn ∈ A and monadic algebra (A,∃).

Definition 4. The Hilbert-style axiomatic system H consists of the following
axiom schemata and inference rules:

(Tau) All instances of Boolean valid terms.
(T∃) ϕ → ∃ϕ
(4∃) ∃∃ϕ → ∃ϕ

ϕ → ψ ϕ
(MP)

ψ

∃ϕ → ψ
(Adj∃,∀)

ϕ → ∀ψ

The double line in (Adj∃,∀) means that both terms are derivable from each other.
A term ϕ is derivable in H (notation: �H ϕ) if there is a derivation of ϕ in H.

A term ϕ is H-equivalent to ψ (notation: ϕ ∼H ψ) if �H ϕ ↔ ψ. The relation
∼H is a congruence on T . For every term ϕ, let ϕε be the equivalence class of ϕ
module ∼H. Let AH be the Tarski-Lindenbaum quotient algebra of T which is a
monadic algebra. For every ϕ,ψ ∈ T , ϕε ≤ ψε if and only if �H ϕ → ψ. Then
the least element in AH is ⊥ε. With these observation we get the fact that MA
is an adequate algebraic semantics for H.

Fact 5. For every term ϕ ∈ T , �H ϕ if and only if MA |= ϕ.

Let IH = {ϕε : �H ¬ϕ}. Clearly IH is a monadic ideal in AH. Then (AH, IH)
is a monadic logic (cf. Definition 3) in the sense of Halmos.

Theorem 1. (AH, IH) is semantically complete.

Proof. Assume ϕε is universally invalid. Let (B, {0}) be a model and f an
interpretation of (AH, IH) in (B, {0}). Then f(ϕε) = 0. Hence ϕε = ⊥ε. Then
�H ψ ↔ ⊥. Then �H ¬ϕ and so ϕε ∈ IH. 
�

Since monadic algebras are exactly modal S5-algebras, we have the relational
semantics for MA by introducing frames with equivalence relation (cf. e.g. [4]).
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3 Epistemic Monadic Algebras

As in the study of epistemic logic, we introduce an epistemic operator on a
monadic algebra (A,∃). For each p ∈ A, the agent knows p is expressed as �p.
If an agent knows p, then the agent knows the existence of p. Bob’s knowing
tigers implies Bob knows there are tigers. This principle is expressed as �p →
�∃p. Dually ♦p means that the agent reckons the possibility of p. As what
is done in the standard epistemic logic, we define epistemic monadic algebras
by introducing principles of knowledge (cf. e.g. [10]). We shall extend Halmos’
representation of monadic algebras to epistemic monadic algebras.

Definition 6. An epistemic monadic algebra (‘EMA’ for short) is an algebra
(A,∃,♦) where (A,∃) is a monadic algebra and ♦ is a unary operator on A such
that the following principles hold for all p, q ∈ A:

(E1) ♦0 = 0.
(E2) p ≤ ♦p.
(E3) ♦(p ∧ ♦q) = ♦p ∧ ♦q.
(E4) ∃♦p = ♦∃p.

An operator ♦ satisfying these principles is called a possibility knowledge opera-
tor. The dual operator � defined by �p := ¬♦¬p is called a necessity knowledge
operator. For every epistemic monadic algebra (A,∃,♦), we say an element p ∈
A is ∃-closed if ∃p = p; and p is ♦-closed if ♦p = p. Let ∃(A) = {p ∈ A : ∃p = p},
♦(A) = {p ∈ A : ♦p = p} and Cl(A) = ♦(A) ∪ ∃(A).

By (E1)–(E3), the operator ♦ is an existential quantifier and hence � is a
universal quantifier. (E4) means that, there exists something which the agent
reckons possible to be p if and only if the agent reckons that there exists p. This
principle is plausible in the constant semantics of epistemic monadic logic. The
properties of quantifiers hold for knowledge operators.

Fact 7. Let (A,∃,♦) be an EMA. For every p ∈ A, the following hold: (1)
�p ≤ �∃p and ♦p ≤ ♦∃p; (2) �p ≤ p and �p ≤ ��p; (3) ¬�p ≤ �¬�p; (4)
∀�p = �∀p; and (5) (Adj♦,�) ♦p ≤ q if and only if p ≤ �q.

Lemma 2. Let (A,∃) be a monadic algebra. Then (A,∃,♦) is an EMA if and
only if for all p, q ∈ A, (E2), (E4), (4♦) ♦♦p ≤ ♦p and (Adj♦,�) hold.

Proof. The proof is quite similar to Lemma 1. 
�

The principle �p ≤ p expresses the truth of knowledge, and we have the
principles of positive introspection �p ≤ ��p and negative introspection ¬�p ≤
�¬�p. The principle ∀�p = �∀p means the universality of knowing is the
knowing of universality. This is the monadic version of the Barcan formula, which
is valid in constant domain semantics (cf. e.g. [6, p.108]). Epistemic monadic
algebras are algebras for the monadic fragment of a first-order modal logic.
Since we have two kinds of S5-modalities ♦ and ∃, an EMA is indeed a bi-modal
S5-algebra.
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Lemma 3. Let (A,∃,♦) be an epistemic monadic algebra. Then ∃(A) and ♦(A)
are subalgebras of A.

Proof. Clearly 0 ∈ ∃(A). Assume p ∈ ∃(A). Then ∃p = p. By p ≤ ∀∃p = ∀p, we
have ∃¬p ≤ ¬p. Then ¬p ∈ ∃(A). Assume p, q ∈ ∃(A). Then ∃(p∧q) ≤ ∃p∧∃q =
p ∧ q. Then p ∧ q ∈ ∃(A). Assume p ∈ ∃(A). By ∃∃p = ∃p, we have ∃p ∈ ∃(A).
Moreover, ∃♦p = ♦∃p = ♦p and so ♦p ∈ ∃(A). Hence ∃(A) is a subalgebra of A.
Similarly ♦(A) is a subalgebra of A. 
�

Let A be a Boolean algebra. A quantifier Q on A is simple if Q0 = 0 and
Qp = 1 for all p ∈ A \ {0}. Let (A,∃,♦) be an epistemic monadic algebra. A
(Boolean) ideal I in A is proper if 1 �∈ I. An ideal I in A is epistemic monadic
if ∃(I) ∪ ♦(I) ⊆ I. Let Iem(A) and Ip

em(A) be the set of all epistemic monadic
ideals and proper epistemic monadic ideals respectively. An epistemic monadic
algebra A is simple if {0} is the only proper epistemic monadic ideal in A.

Lemma 4. An epistemic monadic algebra (A,∃,♦) is simple if and only if ∃
and ♦ are simple quantifiers on A.

Proof. Assume A is simple. Suppose p ∈ A and p �= 0. Let I = {q ∈ A : q ≤ ∃p}
and J = {s ∈ A : s ≤ ♦p}. Clearly I, J are ideals and p ∈ I∩J . Then I = J = A.
Then 1 ∈ I ∩ J and so ∃p = 1 = ♦p. Conversely, assume ∃ and ♦ are simple.
Suppose I is a proper monadic ideal in A. Clearly 0 ∈ I. Let 0 �= p ∈ A. Then
∃p = 1 = ♦p. If p ∈ I, then ∃p = ♦p = 1 ∈ I. Hence I = {0}. 
�

Now we introduce functional epistemic monadic algebras. Note that we have
two quantifiers in an epistemic monadic algebra. According to the fact AW×D ∼=
(AD)W , the domain that we choose should be the form W × D where W and
D are disjoint nonempty sets. Intuitively, W is the domain for ♦ and D is the
domain for ∃.

Definition 8. Let (A,∧,¬, 0) be a Boolean algebra, D∩W = ∅ and Z = W ×D.
For all p ∈ AZ , w ∈ W and x ∈ D, we write pw(x) for p(w)(x). Let

Rw
D(p) = {pw(x) : x ∈ D} and Rx

W (p) = {pw(x) : w ∈ W}.

Let (AZ ,∧,∨,¬, 0) be the Boolean algebra with respect to pointwise Boolean
operations such that the supremums

∨
Rw

D(p),
∨

Rx
W (p) and the infimums∧

Rw
D(p),

∧
Rx

W (p) exist in A for all p ∈ AZ , x ∈ D and w ∈ W . For every
p ∈ AZ , w ∈ W and x ∈ D, we define

(∃∗p)w(x) =
∨

Rw
D(p) (∀∗p)w(x) =

∧
Rw

D(p)

(�∗p)w(x) =
∧

Rx
W (p) (♦∗p)w(x) =

∨
Rx

W (p).

Lemma 5. Let (A,∧,¬, 0) be a Boolean algebra, D ∩ W = ∅, Z = W × D.
Then ∃∗ is an existential quantifier and ♦∗ is a possibility knowledge operator
on AZ .
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Proof. Let p, q ∈ AZ , w ∈ W and x ∈ D. By Halmos [7], it is easy to show ∃∗ is an
existential quantifier. For (E2), we have (♦∗p)w(x) =

∨
Rx

W (p) =
∨

w∈W pw(x).
Hence pw(x) ≤ (♦∗p)w(x). For (4♦), we have

(♦∗♦∗p)w(x) =
∨

Rx
W (♦∗p) =

∨

w∈W

(♦∗p)w(x) =
∨

w∈W

pw(x) = (♦∗p)w(x).

For (E4), we have

(∃∗♦∗p)w(x) =
∨

x∈D

(♦∗p)w(x) =
x∈D∨

w∈W

pw(x) =
∨

w∈W

(∃∗p)w(x) = (♦∗∃∗p)w(x).

For (Adj♦,�), assume ♦∗p ≤ q. For all w ∈ W and x ∈ D, (♦∗p)w(x) =∨
Rx

W (p) =
∨

{pw(x) : w ∈ W} ≤ qw(x). Note that (�∗q)w(x) =
∧

Rx
W (q) =∧

{qw(x) : w ∈ W}. Suppose u ∈ W . Then pw(x) ≤ (♦∗p)w(x) = (♦∗p)u(x) ≤
qu(x). Hence pw(x) ≤ (�∗q)w(x). Assume p ≤ �∗q. For all w ∈ W and
x ∈ D, pw(x) ≤ (�∗q)w(x). Then (♦∗p)w(x) ≤ (�∗q)w(x). Clearly (�∗q)w(x) ≤
qw(x). Hence (♦∗p)w(x) ≤ qw(x). By Lemma 2, ♦∗ is a possibility knowledge
operator. 
�

Every subalgebra of the algebra (AZ ,∧,¬, 0,∃∗,♦∗) is called a functional
epistemic monadic algebra on A.

Theorem 2. An epistemic monadic algebra is simple if and only if it is isomor-
phic to a functional EMA on the two-element Boolean algebra 2.

Proof. Assume (A,∃,♦) is a subalgebra of 2Z where Z = W ×D and D∩W = ∅.
Let 0 �= p ∈ A. Then there exist w ∈ W and x ∈ D such that pw(x) = 1. Then
1 ∈ Rw

D(p)∩Rx
W (p). Then ∃∗p = 1 = ♦∗p. This means that ∃∗ and ♦∗ are simple.

By Lemma 4, A is simple. Conversely, assume (A,∃,♦) is simple. Then A is a
Boolean algebra. By Stone’s representation, there exists a set D �= ∅ such that
A is embedded into 2D. Let W = {w} be a singleton set such that D ∩ W = ∅

and Z = W × D. Then A is Boolean isomorphic to a subalgebra B of 2Z . By
Lemma 4, ∃ and ♦ are simple. Hence A is also EMA-isomorphic to B. 
�

Next we show a Halmos-style representation theorem for epistemic monadic
algebras. For a set X, let idX be the identity function on X. We start from an
appropriate definition of constants and richness with respect to Boolean algebras.

Definition 9. Let (A,∃,♦) be an epistemic monadic algebra and B,C be
Boolean algebras such that Cl(A) ⊆ B ∩ C.

– An epistemic C-constant of B is a Boolean homomorphism g : B → C with
g�Cl(A) = idCl(A). Let C♦(B) be the set of all epistemic C-constants of B.

– An existential B-constant of A is a Boolean homomorphism f : A → B with
f�Cl(A) = idCl(A). Let B∃(A) be the set of all existential B-constants of A.

We say A is 〈B,C〉-rich if for every p ∈ A, (i) if f ∈ B∃(A), then there exists
g ∈ C♦(B) with ♦p = g(f(p)); and (ii) there exists f ∈ B∃(A) with ∃p = f(p).
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Theorem 3 (Halmos representation). Let (A,∃,♦) be a 〈B,C〉-rich epis-
temic monadic algebra where B and C are Boolean algebras with Cl(A) ⊆ B∩C.
Let W = C♦(B), D = B∃(A) and Z = W × D. Then A is isomorphic to a func-
tional epistemic monadic algebra on CZ .

Proof. The function π : A → CZ is defined as p �→ pπ where pπ ∈ CZ is given
as follows: for every g ∈ W and f ∈ D, pπ

g (f) = g(f(p)). First, we observe that
π is a Boolean homomorphism by the following equations:

0π
g (f) = f(0) ∧ g(0) = 0

(¬p)π
g (f) = g(f(¬p)) = ¬g(f(p)) = ¬pπ

g (f)

(p ∧ q)π
g (f) = g(f(p ∧ q)) = g(f(p)) ∧ g(f(q)) = pπ

g (f) ∧ qπ
g (f).

Now we show π is an EMA-homomorphism. By the definition, (∃p)π
g (f) =

g(f(∃p)) = g(∃p) and we have

(∃∗pπ)g(f) =
∨

Rg
D(pπ) =

∨

k∈D

pπ
g (k) =

∨

k∈D

g(k(p)).

By the richness of A, there exists h ∈ D such that ∃p = h(p). Then (∃p)π
g (f) =

g(h(p)). Then (∃p)π
g (f) ≤ (∃∗pπ)g(f). Let k ∈ D. By p ≤ ∃p, g(k(p)) ≤

g(k(∃p)) = g(∃p). Then (∃∗pπ)g(f) ≤ (∃p)π
g (f). Hence (∃p)π

g (f) = (∃∗pπ)g(f).
By the definition, (♦p)π

g (f) = g(f(♦p)) = g(♦p) = ♦p and we have

(♦∗pπ)g(f) =
∨

Rf
W (pπ) =

∨

s∈W

pπ
s (f) =

∨

s∈W

s(f(p)).

By the richness of A, there exists s ∈ W with ♦p = s(f(p)). Then (♦p)π
g (f) ≤

(♦∗pπ)g(f). Let t ∈ W . By p ≤ ♦p, t(f(p)) ≤ t(f(♦p)) = t(♦p) = ♦p. Then
(♦∗pπ)g(f) ≤ (♦p)π

g (f). Hence (♦p)π
g (f) = (♦∗pπ)g(f). Finally, we show π is

injective. Assume 0 �= r ∈ A. By the richness of A, there is f ∈ D with ∃r = f(r).
Let g ∈ W . Then rπ

g (f) = g(f(r)) = g(∃r) = ∃r �= 0. Hence rπ �= 0. Suppose
p �≤ q ∈ A. Then p ∧ ¬q �= 0. Then (p ∧ ¬q)π = pπ ∧ ¬qπ �= 0. Then pπ �≤ qπ. 
�

Like the Definition 3, an epistemic monadic logic is defined as a pair (A, I)
where A is an epistemic monadic algebra and I ∈ Iem(A). Now we give a Hilbert-
style axiomatic system which is the syntactically defined epistemic monadic logic.
The set of terms T♦ is obtained from T by adding ♦.

Definition 10. The Hilbert-style axiomatic system E is obtained from H by
adding the axiom schemata and rules:

(T♦) ϕ → ♦ϕ (4♦) ♦♦ϕ → ♦ϕ (BC) ♦∃ϕ ↔ ∃♦ϕ
♦ϕ → ψ

(Adj♦,�)
ϕ → �ψ

Let �E ϕ denote that ϕ is derivable in E.
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For a term ϕ ∈ T♦, let EMA |= ϕ denote that ϕ is valid in EMA. We obtain
again the Tarski-Lindenbaum algebra (AE,∃E,♦E) which belongs to EMA. For
every ϕ ∈ T♦, �E ϕ if and only if EMA |= ϕ. Let IE = {ϕε : �E ¬ϕ}. Then IE is
an epistemic monadic ideal in AE and so (AE, IE) is an epistemic monadic logic.

Theorem 4. (AE, IE) is semantically complete.

Proof. The proof is similar to the proof of Theorem 1. 
�

4 Relativizations of Epistemic Monadic Algebras

In this section, we introduce relativizations of epistemic monadic algebras, which
algebraically model dynamics on epistemic monadic logics. Given an epistemic
monadic logic (A, I), we define the relativized logic of (A, I) when a piece of new
information comes to the agent. Similarly we consider relativized models for an
epistemic monadic logic. Here, we only treat the single-agent case.

Definition 11. Let (A,∧,¬, 0,∃,♦) be an epistemic monadic algebra and s ∈
♦(A) ∩ ∃(A). Let As = [0, s] = {p ∈ A : p ≤ s}. For all p, q ∈ As, we define

¬sp = s ∧ ¬p; 0s = 0; p ∧s q = p ∧ q; ∃sp = s ∧ ∃p; ♦sp = s ∧ ♦p.

The operations 1s,∨s,→s and ↔s are defined as usual. Moreover, let ∀sp :=
¬s∃s¬sp and �sp := ¬s♦s¬sp.

Clearly 1s = ¬s0s = s∧¬0 = s∧ 1 = s. Moreover, p∨s q = ¬s(¬sp∧s ¬sq) =
¬s((s∧¬p)∧ (s∧¬q)) = s∧¬(s∧¬(p∨q)) = s∧ (p∨q) = (s∧p)∨ (s∧q) = p∨q.
We have p →s q = ¬sp ∨s q = (s ∧ ¬p) ∨ q = (s ∧ ¬p) ∨ (s ∧ q) = s ∧ (p → q).
Furthermore, ∀sp = s ∧ ¬(∃s(s ∧ ¬p)) = s ∧ ¬(s ∧ ∃(s ∧ ¬p)) = s ∧ ¬∃(s ∧ ¬p) =
s ∧ ∀(s → p). Similarly �sp = s ∧ �(s → p).

Lemma 6. If (A,∃,♦) is an epistemic monadic algebra and s ∈ ∃(A) ∩ ♦(A),
then (As,∃s,♦s) is an epistemic monadic algebra.

Proof. Note that (As,∧s,¬s, 0s) is a Boolean algebra and the proof is omitted
here. Now we show ∃s is an existential quantifier. Clearly ∃s0s = s ∧ ∃0 =
s ∧ 0 = 0. Let p, q ∈ As. Then p ≤ s and q ≤ s. Then p ≤ s ∧ ∃p = ∃sp.
Moreover, ∃s(p ∧s ∃sq) = s ∧ ∃(p ∧ (s ∧ ∃q) = s ∧ ∃(p ∧ ∃q) = s ∧ (∃p ∧ ∃q) =
(s∧∃p)∧(s∧∃q) = ∃sp∧s∃sq. Similarly ♦s is also an existential quantifier. Clearly
♦s∃sp = s∧♦(s∧∃p) and ∃s♦sp = s∧∃(s∧♦p). By ♦(s∧∃p) ≤ ♦∃p = ∃♦p and
∃(s ∧ ♦p) ≤ ∃♦p = ♦∃p, we have s ∧ ♦(s ∧ ∃p) ≤ s ∧ ∃s ∧ ♦∃p = s ∧ ∃s ∧ ∃♦p =
s∧∃(∃s∧♦p) = s∧∃(s∧♦p) and s∧∃(s∧♦p) ≤ s∧♦s∧∃♦p = s∧♦s∧♦∃p =
s ∧ ♦(♦s ∧ ∃p) = s ∧ ♦(s ∧ ∃p). Hence ♦s∃sp = ∃s♦sp. Then ♦s is a possibility
knowledge operator. 
�

Lemma 7. Let (A,∃,♦) be an epistemic monadic algebra and s ∈ ∃(A) ∩♦(A).
Then (As,∃s,♦s) is an EMA-homomorphic image of (A,∃,♦).
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Proof. The function η : A → As is defined by η(p) = p ∧ s for every p ∈ A.
Clearly η is surjective. Now we show η is an EMA-homomorphism. Obviously
η(0) = 0 ∧ s = s and η(1) = 1 ∧ s = s. Moreover, η(p ∧ q) = p ∧ q ∧ s =
(p ∧ s) ∧s (q ∧ s) = η(p) ∧s η(q). We have η(¬p) = ¬p ∧ s and then ¬sη(p) =
¬s(p ∧ s) = s ∧ ¬(p ∧ s) = (s ∧ ¬p) ∨ (s ∧ ¬s) = s ∧ ¬p = η(¬p). Clearly
η(∃p) = s ∧ ∃p = s ∧ (∃s ∧ ∃p) = s ∧ ∃(p ∧ ∃s) = s ∧ ∃(s ∧ p) and then
∃sη(p) = ∃s(s ∧ p) = s ∧ ∃(s ∧ p) = η(∃p). Similarly η(♦p) = ♦sη(p). 
�

For every epistemic monadic algebra (A,∃,♦), let C (A) = ∃(A) ∩ ♦(A). For
every s ∈ C (A), the algebra (As,∃s,♦s) is called the s-relativization of A. By
Lemma 6, (As,∃s,♦s) is an epistemic monadic algebra.

Lemma 8. Let (A,∃,♦) be an epistemic monadic algebra and I ∈ Iem(A). For
every s ∈ C (A), the set Is = {p ∈ I : p ≤ s} belongs to Iem(As).

Proof. Assume s ∈ C (A). Clearly Is is a Boolean ideal. Assume p ∈ Is. Then
p ∈ I and p ≤ s. Then ∃p ≤ ∃s = s and ♦p ≤ ♦s = s. Since I ∈ Iem(A), we
have ∃p,♦p ∈ I. Then ∃p,♦p ∈ Is. 
�

Let (A, I) be an epistemic monadic logic where (A,∃,♦) is an epistemic
monadic algebra. For every s ∈ C (A), by Lemma 8, Is is an epistemic monadic
ideal in (As,∃s,♦s). Then (As, Is) is called the s-relativization of the logic (A, I).

Theorem 5. Let (A, I) be an epistemic monadic logic and s ∈ C (A). If (A, I)
is semantically complete, then (As, Is) is semantically complete.

Proof. Assume that (A, I) is semantically complete. Let p ∈ As be universally
invalid. Let (B, {0}) be a model and f : A → B be an interpretation of (A, I).
We define a function fs : As → B by setting fs(q) = f(q) for all q ∈ As.
Now we show that fs is an interpretation of (As, Is). Clearly fs is a Boolean
homomorphism. We have fs(∃sq) = fs(s ∧ ∃q) = fs(s) ∧ fs(∃q) = f(s) ∧ f(∃q).
Since q ∈ As, q ≤ s and so ∃q ≤ ∃s = s. Then f(∃q) ≤ f(s) and so fs(∃sq) =
f(∃q) = ∃f(q). Similarly fs(♦sq) = f(♦q) = ♦f(q). Hence fs is an EMA-
homomorphism. Let q ∈ Is. Then q ∈ I and q ≤ s. Then f(q) = 0 = fs(q).
Hence fs is an interpretation of (As, Is). By the assumption that p ∈ AI is
universally invalid, we have fs(p) = 0. Then p = 0 ∈ Is. Hence p is refutable. 
�

By Theorem 5, every s-relativization of a semantically complete epistemic
monadic logic is also semantically complete. Now we specialize the relativization
to syntactically defined relativizing epistemic monadic logics. We first give the
relativizing operators. Let O = {ϕ ∈ T♦ : �E ϕ ↔ ♦ϕ and �E ϕ ↔ ∃ϕ}. For
every ϕ ∈ O, we call 〈ϕ〉 a relativizing operator. The set of relativizing epistemic
monadic terms T ϕ

RE is obtained from T♦ by adding 〈ϕ〉. Let [ϕ]α := ¬〈ϕ〉¬α.
The complexity c(α) of a term α ∈ T ϕ

RE is defined inductively as follows:

c(P ) = 0 = c(⊥).
c(�α) = c(α) + 1, where � ∈ {¬,∃,♦, 〈ϕ〉}.

c(α ∧ β) = max{c(α), c(β)} + 1.

Note that ϕ is a fixed term in the relativizing operator 〈ϕ〉.
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Definition 12. The Hilbert-style axiomatic system REϕ is obtained from E by
adding the following axiom schemata and inference rules:

(1) (Axϕ) ϕ → 〈ϕ〉ϕ
(2) Reduction axioms:

(RAat) 〈ϕ〉P ↔ ϕ ∧ P (RA⊥) 〈ϕ〉⊥ ↔ ⊥
(RA¬) 〈ϕ〉¬α ↔ ϕ ∧ ¬〈ϕ〉α (RA∧) 〈ϕ〉(α ∧ β) ↔ 〈ϕ〉α ∧ 〈ϕ〉β
(RA∃) 〈ϕ〉∃α ↔ ϕ ∧ ∃〈ϕ〉α (RA♦) 〈ϕ〉♦α ↔ ϕ ∧ ♦〈ϕ〉α

(RA〈ϕ〉) 〈ϕ〉〈ϕ〉α ↔ 〈ϕ〉α

(3) Inference rules:

α → β
(Mon)

〈ϕ〉α → 〈ϕ〉β
α (Gen[ϕ])

[ϕ]α

Let �DEϕ
α denote that α is provable in DEϕ.

Lemma 9. If �REϕ α ↔ β, then �REϕ γ ↔ γ(β/α) where γ(β/α) is the term
obtained from γ by replacing one or more occurrences of β in γ by α.

Proof. Assume �REϕ α ↔ β. The proof proceeds by induction on the complexity
of α ∈ T ϕ

RE. If γ = P or γ = β, then γ(β/α) = α and so �REϕ
γ ↔ γ(β/α).

The Boolean and modal cases are shown easily by induction hypothesis. Suppose
γ = 〈ϕ〉χ. By induction hypothesis and (Mon), �REϕ γ ↔ γ(β/α). 
�

Lemma 10. For every term α ∈ T ϕ
RE, the following hold in REϕ: (1) �REϕ

〈ϕ〉α → ϕ; (2) �REϕ [ϕ]ϕ; (3) �REϕ [ϕ]�ϕ; (4) �REϕ [ϕ]∀ϕ; (5) �REϕ 〈ϕ〉ϕ ↔ ϕ.

Proof. For (1), the proof proceeds by induction on the complexity of α. The
only interesting case is α = 〈ϕ〉β. By induction hypothesis, �REϕ

〈ϕ〉β → ϕ.
By (RA〈ϕ〉), �REϕ

〈ϕ〉〈ϕ〉β → ϕ. For (2), by (Axϕ), �REϕ
ϕ → 〈ϕ〉ϕ. Then

�REϕ
¬(ϕ ∧ ¬〈ϕ〉ϕ). By (RA¬), �REϕ

¬〈ϕ〉¬ϕ. For (3), we have �REϕ
�[ϕ]ϕ by

(2). Then �REϕ ¬(ϕ ∧ ♦〈ϕ〉¬ϕ). By (RA♦), �REϕ ¬〈ϕ〉♦¬ϕ. Then �REϕ [ϕ]�ϕ.
Note that Lemma 9 is used in the whole proof. Similarly �REϕ

[ϕ]∀ϕ. For (4), it
is obtained by (1) and (Axϕ). 
�

The term [ϕ]�ϕ means that the agent knows ϕ under the relativization ϕ.
The term [ϕ]∀ϕ says that ϕ is universal under the relativization ϕ.

Lemma 11. For every term α ∈ T ϕ
RE, there exists β ∈ T♦ such that �REϕ

α ↔ β.

Proof. The proof proceeds by induction on the complexity of α. The atomic,
Boolean and epistemic cases are easily done by induction hypothesis. Assume
α = 〈ϕ〉χ. The proof is given easily by subinduction on the complexity of χ. In
each case we use the reduction axioms. Details are omitted. 
�
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The axiomatic system REϕ is not talking about public announcements but
relativization. When a piece of information ϕ is revieved, the agent accepts ϕ
and relativizes its knowledge with respect to ϕ. In the algebraic form, instead of
using updates on algebra by public announcements in [12], we use relativizations
of epistemic monadic algebras. For a term α(P1, . . . , Pn) ∈ T ϕ

RE, a EMA (A,∃,♦)
and p1, . . . , pn ∈ A, we write A |= α[p1, . . . , pn] for αA(p1, . . . , pn) = 1.

Definition 13. Let ϕ(P1, . . . , Pn) ∈ T♦, �E ϕ ↔ ♦ϕ and �E ϕ ↔ ∃ϕ. Let
(A,∃,♦) be an EMA and α(P1, . . . , Pn) ∈ T ϕ

RE. For all p1, . . . , pn ∈ A, A |=
〈ϕ〉α[p1, . . . , pn] if and only if A |= ϕ[p1, . . . , pn] and As |= α[p1 ∧ s, . . . , pn ∧ s]
where s = ϕA(p1, . . . , pn).

By the Definition 13, we have A |= [ϕ]α[p1, . . . , pn] if and only if A |=
ϕ[p1, . . . , pn] implies As |= α[p1 ∧ s, . . . , pn ∧ s].

Lemma 12. For every α ∈ T ϕ
RE, if �REϕ

α, then EMA |= α.

Proof. The proof proceeds by induction on a derivation of α(P1, . . . , Pn) in
REϕ. If α is an axiom of E, then EMA |= α. Let (A,∃,♦) be an EMA. By
Lemma 6, (As,∃s,♦s) is an EMA. We show EMA |= ϕ → 〈ϕ〉ϕ. Assume
A |= ϕ[p1, . . . , pn]. Then ϕA(p1, . . . , pn) = 1. By Lemma 7, η(ϕA(p1, . . . , pn)) =
ϕAs(p1 ∧ s, . . . , pn ∧ s) = s. Then As |= ϕ[p1 ∧ s, . . . , pn ∧ s]. Similarly
we obtain that all reduction axioms are valid in EMA. Here we check only
EMA |= RA〈ϕ〉 and the proof of others is omitted. Note that (As)s is isomor-
phic to As. Suppose (〈ϕ〉〈ϕ〉α)A(p1, . . . , pn) = 1. Then ϕA(p1, . . . , pn) = 1 and
(〈ϕ〉α)As(p1 ∧ s, . . . , pn ∧ s) = s. Note that ϕAs(p1 ∧ s, . . . , pn ∧ s) = s. Then
αAs(p1∧s, . . . , pn∧s) = s. Hence (〈ϕ〉α)A(p1, . . . , pn) = 1. The other direction is
shown similarly. It is easy to see (Mon) and (Gen[ϕ]) preserve validity in EMA. 
�

Theorem 6. For every α ∈ T ϕ
RE, if EMA |= α, then �REϕ

α.

Proof. Assume EMA |= α. By Lemma 12 and Lemma 11, there exists β ∈ T♦
such that EMA |= α ↔ β. Then EMA |= β. Then �E β. Then �REϕ

β. By Lemma
11 again, �REϕ

α ↔ β and hence �REϕ
α. 
�

Return to the Halmos’ style epistemic monadic logics. Take the Lindenbaum-
Tarski algebra (AE,♦,∃) for the system E. Let ϕ ∈ T♦. Assume �E ϕ ↔ ♦ϕ and
�E ϕ ↔ ∃ϕ. Then ϕε ∈ C (AE). Now consider the ϕε-relativization (AE

ϕε , IEϕε)
which can be viewed as the algebraization of the system REϕ.

Corollary 1. (AE
ϕε , IEϕε) is semantically complete.

Proof. By Theorem 4 and Theorem 5. 
�

The reduction axiom RA〈ϕ〉 says that double relativization is equal to one.
This point differs from the standard public announcement logic dramatically.
But if we take all relativizing operators 〈ϕ〉 with ϕ ∈ O, we get a bunch of
relativizing monadic epistemic logics. The more fundamental feature of these
relativizations is that they provide algebraic models for one-step dynamics of
agent’s knowing sets of things.



Epistemic Monadic Boolean Algebras 147

5 Concluding Remarks

There are two main contributions of the present paper. Firstly, we extend
Halmos’ monadic Boolean algebras to epistemic monadic algebras. Epistemic
monadic logics are also provided. We demonstrate the Halmos-style representa-
tion theorem for these algebras in particular. Secondly, we show how relativiza-
tions of epistemic monadic algebras work for talking about updates. Undoubt-
edly, there are several ways to expand on the current work. The results for the
single-agent case can be clearly extended to the multi-agent cases. Then they
can be extended to polyadic algebras (cf. [9]), and thus we have algebras for the
full first-order epistemic logic, and relativizations are considered again. More-
over, as is shown in [12], we can deal with intuitionistic epistemic logic and
extend our work to monadic Heyting algebras (cf. [3]). These directions need
more philosophical considerations.
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Abstract. In 1989, Plaza introduced the “knowing value” operator Kvid
to characterize the “Mr. Sum and Mr. Product” puzzle in propositional
modal logic. Previous research had primarily focused on the Kvd opera-
tor, which captures the idea of knowing the value of a designator d. This
paper expands the scope of application for the Kv operator beyond desig-
nators to include predicates, interpreting the KvP operator as denoting
knowledge of the value of a predicate P . Additionally, we present two
distinct semantics - MS (Mention-Some) semantics and MA (Mention-
All) semantics - for the KvP operator, and prove the strong completeness
theorem for two axiom systems containing only the KvP operator, as well
as two axiom systems containing both the KvP and Kvd operators.

Keywords: Knowing-value Logic · Epistemic Logic · Knowing-value
of Predicates · Completeness

1 Introduction

Epistemic Logic is a branch of modal logic that studies possibilities and necessi-
ties from a knowledge perspective. In Epistemic Logic, the modal operator K can
be used to express the knowledge of a person or agent regarding a proposition,
such as “someone knows that ϕ is true” (referred to as “knowing that” in [15]).
This language or notation can help people better understand and analyze the
structure, characteristics, and influence of knowledge. Epistemic Logic provides
tools and techniques for describing and handling semantic concepts such as pos-
sibility, necessity, belief and knowledge, which can be applied in fields such as
philosophy, computer science, cryptography and linguistics [5].

Although research on “knowing that” constitutes a significant portion of
Epistemic Logic, it can be observed from natural language expressions that peo-
ple also use other forms of knowledge expressions in daily life, such as “knowing
whether” (“I know whether this proposition is correct”), “knowing what” (“I
know what your password is”), and “knowing how” (“I know how to swim”).
These constructions were called knowing-wh: know followed by a wh-question
word [15]. Within the scope of logical research on “knowing what”, there is
a more precise research area, which is “knowing value”, or knowing what the
value is. The statement mentioned above “I know what your password is” can
be rephrased as “I know what the value of your password is” or “I know the
value of your password”.
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In 1983, Ma and Guo [11] introduced the formula S ∗ c to denote “S knows
what the term c is”, and provided an equivalent definition using existential
quantification, namely ∃xKS(c = x). Plaza [13], on the other hand, proposed
the “knowing value” operator Kvid to describe the well-known puzzle of Mr.
Sum and Mr. Product. Based on the axiomatization EL of epistemic logic, Plaza
presented two valid axioms for the Kv operator (we name them as Kv4 and Kv5),
and form the axiomatization S5ELKV for the logic S5ELKv [13]:

The axiom system S5ELKV

Axioms Rules

Taut All instances of tautologies MP
ϕ ϕ → ψ

ψ

DistK Ki(ϕ → ψ) → (Kiϕ → Kiψ) NecK
� ϕ

� Kiϕ
T Kiϕ → ϕ
4 Kiϕ → KiKiϕ
5 ¬Kiϕ → Ki¬Kiϕ
Kv4 Kvid → KiKvid
Kv5 ¬Kvid → Ki¬Kvid

Although Plaza [13] stated in Remark 1.10, item 5 that the axiom system
is sound and complete, the proposition was not proven. However, the K-version
rather than S5-version of this proposition is proved by Gu and Wang. By proving
the completeness of the axiom system SMLKV, Gu and Wang indirectly proved
that the axiom system ELKV (S5ELKV-T-4-5-Kv4-Kv5 ) is strongly complete
with respect to the logic ELKv [8].

In recent years, the concept of “knowing value” has continuously driven
the development of various branches related to knowing-wh in Epistemic Logic.
Other logical areas related to “knowing value”, such as public announcement
[1,16], dependency relations [2,4,14], and public inspection [1,3,6], have also
received a great deal of attention from scholars. Previous studies about Kv oper-
ators itself have primarily focused on the Kvd operator (knowing the value of a
designator), or its relativized version Kvr

i (ϕ, d) [16,17]. What should we do if we
want to express an agent i knows the value of a concept?

For example, from the extension of the concept, when we view the concept
“cafes within 2 km” as a set, it is obvious that we know the value of the concept
“cafes within 2 km” as long as we know which elements are in the set “cafes within
2 km”. But how should we express concepts in logical languages? A convenient
way is to use predicates to represent concepts. In first-order predicate
logic, when we give an interpretation I based on a first-order language L and
a L-structure M = (M, I) (M is the domain of M), we need to interpret the
predicates in this language. Usually, we interpret an n-ary predicate P as a
subset of Mn. In particular, if we use a unary predicate P 1

c to represent “cafes
within 2 km” in a structure with the domain of all cafes, then the interpretation
of P 1

c is a subset of the large set of all cafes. When we say “I know the value
of the concept ‘cafes within 2 km’,” it means “I know the value of the predicate
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‘cafes within 2 km’.” To formally describe these contents, we will introduce a
new operator called the “knowing predicate value” operator KvP in this paper.

To indicate that we know the value of a predicate P , it is evident that we need
to be able to answer the question “what is the value of P?” In 1976, Hamblin sug-
gested a question sets up a choice-situation between a set of propositions, namely,
those propositions that count as answers to it [9]. Furthermore, Groenendijk and
Stokhof proposed two different interpretations of interrogatives: mention-some
interpretation and mention-all interpretation [7]. To answer a question,
the respondent only needs to provide at least one possible option of the question
under mention-some interpretation, while the mention-all interpretation requires
the respondent to exhaustively list all the options satisfying the question’s prop-
erties. They use two formulas to differentiate two interpretations: ∃xKIPx for
mention-some, and ∀x(Px → KIPx) for mention-all.1 For instance, if the pred-
icate P represents “cafes within 2 km”, we may ask under what circumstances
we can say that someone (denoted as a) “knows the value of the predicate ‘cafes
within 2 km’.” Clearly, a must be capable of correctly answering the question
“what cafes are within 2 km”. Suppose there are only two cafes in 2 km, Star-
bucks and Costa, then both “Starbucks” and “Starbucks and Costa” could be
counted as answers to the question under mention-some interpretation, but only
“Starbucks and Costa” can be counted as an answer under mention-all inter-
pretation. Therefore, a “knowing predicate value” operator, KvP , can have both
Mention-Some (MS) and Mention-All (MA) semantics.

In this paper, we axiomatize the single-agent logics MSELKvP1 and
MAELKvP1, which only contain the KvP operator, as well as MSELKv1

and MAELKv1, which contain both the KvP and Kvd operators. By proving
the strong completeness of axiomatizations of these four logics, we hope to gain
a better understanding of the essence of the “knowing value” operator.

This paper is structured into four sections. Section 2 provides an introduction
to the single-agent version of epistemic logic with Kv operator. Section 3 focuses
on the construction of four axiom systems about KvP operator and their corre-
sponding completeness proofs. Finally, in Sect. 4, we provide our conclusion and
outlook, summarizing the research results of this paper and highlighting some
potential future research directions.

1 However, the mention-all interpretation proposed by Groenendijk and Stokhof does
not imply exhaustiveness, which means the respondent of a question may contain
false belief. For example, suppose there are only two cafes in 2 km, Starbucks and
Costa. The answer “Starbucks, Costa and Peet’s” may also count as an answer of the
question “What is the value of the predicate ‘cafes within 2 km’?” under Groenendijk
and Stokhof’s mention-all interpretation. To avoid this, in this article, when we
refer to “mention-all interpretation”, we actually mean the “strongly exhaustive
interpretation” proposed in [10]. In this situation, the formulation of mention-all
interpretation should be ∀x(K̂Px → KIPx).
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2 Preliminaries

Given a countable set P of atomic propositions and a countable set of nonrigid
designators D, the language of epistemic logic with Kv operator (single-agent
version) LELKv1(P,D) is defined as follows:

ϕ ::= � | p | Kvd | ¬ϕ | (ϕ ∧ ϕ) | Kϕ

where p ∈ P, d ∈ D. The formula Kvd means “knows the value of d”. Define
⊥ := ¬�, ϕ∨ψ := ¬(¬ϕ∧¬ψ), ϕ → ψ := ¬ϕ∨ψ, K̂ϕ := ¬K¬ϕ. In the following,
we fix P and D so that we simply write LELKv1 for LELKv1(P,D).

It should be noted that the designators considered in this paper are nonrigid
designators, which means that in different possible worlds, the same designator
may refer to different objects. For example, the designator tbeijing represents
“the temperature (◦C) of Beijing”. If tbeijing is a nonrigid designator, then it is
possible that in w, the value of tbeijing is 23, while in u, the value of tbeijing is 5.

An epistemic model for LELKv1 is a tuple M = 〈S,∼, O, V, VD〉 where S is
a non-empty set of possible worlds, ∼ is an equivalence relation over S, O is
a non-empty set of objects, V is a valuation function assigning a set of worlds
V (p) ⊆ S to each p ∈ P, and VD : D × S → O is an assignment function.

Given a pointed epistemic model M, s, the semantic of Kvd is defined as
follows:

M, s � Kvd ⇐⇒ for any t1, t2 ∈ S: if s ∼ t1 and s ∼ t2, then VD(d, t1) =
VD(d, t2).

3 Axiom Systems About KvP Operator

3.1 Axiom Systems MSELKVP1 and MAELKVP1 for LELKvP1

As we may quote what Plaza had said [13]: “An agent is said to know the value
of a designator d if d has the same value in all worlds indistinguishable from
the actual one.” Previous investigations of Kv operators have predominantly
concentrated on the Kvd operator, which pertains to knowledge of the value
of a designator, or its relativized variant, Kvr

i (ϕ, d). In this section, we extend
the Kv operator to apply to both designators and predicates. We confine our
attention exclusively to the single-agent versions of logics and models based
on S5 frames (in other words, epistemic models).

To better understand the semantics of KvP operator, we consider the follow-
ing example:

Suppose Pd means “d attended the lecture that was held in the library
yesterday afternoon”, then KvP (i.e., “I know the value of ‘the person who
attended the lecture that was held in the library yesterday afternoon”’) can be
understood in two ways:

– Mention-Some (MS): I know someone who attended the lecture that was given
in the library yesterday afternoon. In MS semantics, for the expression to be
true, the speaker only needs to know that a particular person (e.g. the speaker
himself) attended the lecture.
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– Mention-All (MA): I know everyone who attended the lecture in the library
yesterday afternoon. In MA semantics, for the expression to be true, the
speaker must know everyone who attended the lecture yesterday afternoon.

Based on the idea of the above example, we can give the following informal
definition of semantics: Suppose for any unary predicate P and any possible
world w, V (P,w) denotes the set of objects that are assigned to P in w. Then
we say KvP is true in MS semantics if there exists an object o such that for
every possible world u accessible from w, o ∈ V (P, u), while in MA semantics
all V (P, u) must be equal.

Now we start to formalize the language, model and semantics.
Given a countable set P of predicates and a countable set of nonrigid des-

ignators D, the language LELKvP1(P,D) is defined as follows:

ϕ ::= � | Pd1...dn | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | KvP

where P ∈ P is an n-ary predicate, and d ∈ D is a nonrigid designator. In
the following, we simply write LELKvP1(P,D) as LELKvP1 . In particular, we
allow the existence of 0-ary predicates P 0

1 , P 0
2 , . . . in the language. For any 0-ary

predicate P 0, we can simply understand it as a propositional variable p.
An S5ELKvP1 model is a tuple M = 〈W,∼, O, V 〉 that satisfies:

– W is a non-empty set of possible worlds.
– ∼ is an equivalence relation on W .
– O is a non-empty set of objects, and we call O the domain of M.
– V is an assignment function on S5 frame F = 〈W,∼, O〉, where:

• for any n-ary predicate P ∈ P, V (P,w) ⊆ On2, and;
• for any possible world w and any nonrigid designator d ∈ D, V (d,w) ∈ O.

For any S5ELKvP1 model M = 〈W,∼, O, V 〉, MS semantics are defined as
follows:

M, w |=MS � ⇐⇒ always holds
M, w |=MS Pd1.....dn ⇐⇒ 〈V (d1, w), ..., V (dn, w)〉 ∈ V (P, w)

M, w |=MS ¬ϕ ⇐⇒ M, w �MS ϕ
M, w |=MS ϕ ∧ ψ ⇐⇒ M, w |=MS ϕ and M, w |= MS ψ

M, w |=MS Kϕ ⇐⇒ for any possible world u ∈ W : w ∼ u implies M, u |=MS ϕ
M, w |=MS KvP ⇐⇒ there exist objects o1, ..., on ∈ O such that
(P is an n-ary predicate) for every possible world t ∼ w we have 〈o1, ..., on〉 ∈ V (P, t)

In MA semantics, only the semantic of KvP differs from that in MS semantics:

M, w |=MA KvP ⇐⇒ for any possible world t ∼ w, V (P, t) = V (P,w)

2 It should be particularly noted that for the 0-ary predicate P 0, V (P 0, w) ⊆ O0 =
{∅}.
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For MS semantics, we say that a formula ϕ is valid in a model M (written
as M �MS ϕ) if for any possible world w ∈ W in the model M = 〈W,∼, O, V 〉,
we have M, w �MS ϕ. We say that a formula ϕ is valid in a frame F (written as
F �MS ϕ) if for any model M = 〈F , V 〉 based on the frame F , we have M �MS ϕ.
We make similar definitions for the MA semantics.3 We have two different logics,
MSELKvP1 and MAELKvP1, corresponding to the two semantics.

Now consider a 0-ary predicate P 0, what does it mean when we say KvP 0

in both MS and MA semantics? In MS semantics KvP 0 is equal to KP 0. In MA
semantics, however, KvP 0 is equivalent to KP 0 ∨ K¬P 0, which is essentially a
“knowing whether” operator KwP 0.4

Compare to the axioms for Kvid in S5ELKV mentioned in Sect. 1 (the axioms
Kv4 and Kv5 ), it is not hard to see that KvP operator also obeys the positive
and negative introspections, which means KvP4 axiom (KvP → KKvP ) and
KvP5 axiom (¬KvP → K¬KvP ) are valid.

According to [11–13,15], we can equivalently express Kvid as a first-order
modal formula ∃xKi(d = x). Likewise, we can also express KvP in MS and
MA semantics as ∃x1...∃xnKPx1...xn and ∀x1...∀xn(K̂Px1...xn → KPx1...xn),
respectively. By analogy with the introduction rule for universal quantifiers in
first-order logic, we can formulate the following two rules regarding KvP :

– MS’ : ψ → K̂¬Pd1...dn

ψ → ¬KvP , where di does not occur in ψ

– MA’ : ψ → (K̂Pd1....dn → KPd1....dn)
ψ → KvP

, where di does not occur in ψ

Based on the single-agent version of S5ELKV, we propose two axiom systems
MSELKVP1 and MAELKVP1 (See next page).

3 As for 0-ary predicate P 0, the semantics for formulas with P 0 are:

– M, w |=MS P 0 if and only if M, w |=MA P 0, if and only if ∅ ∈ V (P, w),
– M, w |=MS KvP if and only if for every possible world t ∼ w, we have ∅ ∈ V (P, t),
– M, w |=MA KvP if and only if for any possible world t ∼ w, we have V (P, t) =

V (P, w).

4 However, this does not imply that one operator has stronger expressive power than
the other in MS semantics. Although the Kv operator can be combined with 0-
ary predicates, it cannot express combinations of predicates within its scope (such
as conjunction ∧, disjunction ∨, etc.). Meanwhile, although logical connectives can
be used within the scope of the K operator, we cannot express sentences such as
“knowing the value of an n-ary predicate P” only using K.
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The axiom system MSELKVP1

Axioms Rules

Taut All instances of tautologies MP
ϕ ϕ → ψ

ψ

DistK K(ϕ → ψ) → (Kϕ → Kψ) NecK
� ϕ

� Kϕ

T Kϕ → ϕ MS’ � ψ → K̂¬Pd1...dn

� ψ → ¬KvP
4 Kϕ → KKϕ RE

� ψ ↔ χ

� ϕ ↔ ϕ[ψ/χ]
5 ¬Kϕ → K¬Kϕ
KvP4 KvP → KKvP

Note that in MS’ rule, di does not occur in ψ.

The axiom system MAELKVP1

Axioms Rules

Taut All instances of tautologies MP
ϕ ϕ → ψ

ψ

DistK Ki(ϕ → ψ) → (Kiϕ → Kiψ) NecK
� ϕ

� Kiϕ

T Kiϕ → ϕ MA’ ψ → (K̂Pd1....dn → KPd1....dn)
ψ → KvP

4 Kiϕ → KiKiϕ RE
� ψ ↔ χ

� ϕ ↔ ϕ[ψ/χ]
5 ¬Kiϕ → Ki¬Kiϕ
KvP4 KvP → KKvP

Note that in MA’ rule, di does not occur in ψ.

As we can see, KvP5 axiom is omitted in both axiom systems. The reason
for this omission is that KvP5 axiom can be derived from KvP4, T, 5 axioms
and RE rules.

Before proving the soundness result, some definitions should be made:
Definition 1. Given a frame F = 〈W,∼, O〉 and its assignment function V , an
object o ∈ O and a designator d ∈ D, V [(d,w)/o] is an assignment function on
F where:
– For any n-ary predicate P ∈ P and possible world w′, V [(d,w)/o](P,w′) =

V (P,w′);
– For any designator d′ ∈ D and possible world w′, if d′ �= d or w′ �= w, then

V [(d,w)/o](d′, w′) = V (d′, w′);
– V [(d,w)/o](d,w) = o.

We shorten V [(d1, w)/o1][(d2, w)/o2]...[(dn, w)/on] to V [(d̄, w)/ō], and
shorten V [(d̄, u1)/ō] [(d̄, u2)/ō]... to V [d̄/ō, w] for brevity (where u1, u2, ... is the
enumeration of all successors of w, that is, ui ∼ w for all i).

By induction on formulas, we can prove the following proposition:
Proposition 1. For any ϕ and designators d1, ..., dn ∈ D that do not occur
in ϕ, if F , V, w � ϕ, then for any objects o1, ..., on ∈ O and possible world
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u (u needs not to be different from w), we have F , V [(d̄, u)/ō], w � ϕ, hence
F , V [d̄/ō, w], w � ϕ.

Now we prove the soundness of MSELKVP1 and MAELKVP1:

Theorem 1 (Soundness Theorem for MSELKVP1 and MAELKVP1).
Under MS (MA) semantics, MSELKVP1 (MAELKVP1) is sound with respect
to the class of S5 frames.

Proof. All we need to check is that KvP4 is valid and MS’(MA’) is validity-
preserving under MS (MA) semantics. We show that cases for MSP and MAP’.

Now, we prove KvP4 is valid under MS semantics and MA’ is validity-
preserving under MA semantics. The other cases are similar.

– Suppose for any arbitrary model M = 〈W,∼, O, V 〉 and an arbitrary world w
on W , if M, w �MS KvP , then by the definition of MS semantics, there exist
objects o′

1, ..., o
′
n ∈ O such that for any v ∼ w, 〈o′

1, ..., o
′
n〉 ∈ V (P, v). Since

M underlies an S5 frame, for any world u satisfying u ∼ w, we have v ∼ u.
Therefore, for any world u satisfying u ∼ w, there exist objects o′

1, ..., o
′
n ∈ O

such that for any v ∼ u, 〈o′
1, ..., o

′
n〉 ∈ V (P, v), that is, M, u �MS KvP . From

the arbitrariness of u, we have M, w �MS KKvP . Therefore, KvP4 is valid on
the class of S5 frames under MS semantics.

– Suppose MA’ is not validity-preserving, then there must be formulas ψ
and K̂Pd1....dn → KPd1....dn (di does not appear in ψ), S5 frame F =
〈W,∼, O〉, assignment function V on F and some possible world w on W

such that ψ → (K̂Pd1....dn → KPd1....dn) is valid in every S5 frame, but
F , V, w �MA ψ → KvP . Since F , V, w �MA ψ → KvP , F , V, w �MA ψ
and F , V, w �MA KvP . According to MA semantics, there is a possible
world u ∼ w with V (P, u) �= V (P,w). It can be assumed that there exist
o1, ..., on ∈ O such that 〈o1, ..., on〉 ∈ V (P, u) but 〈o1, ..., on〉 /∈ V (P,w)
(the other case is the same). And since F , V, w �MA ψ and none of di

occurs in ψ, it follows from Proposition 1 that F , V [d̄/ō, w], w �MA ψ .
Because ψ → (K̂Pd1....dn → KPd1....dn) is valid in every S5 frame, we
have F , V [d̄/ō, w], w �MA K̂Pd1....dn → KPd1....dn. Because 〈o1, ..., on〉 ∈
V [d̄/ō, w](P, u) (since 〈o1, ..., on〉 ∈ V (P, u)), F , V [d̄/ō, w], u �MA Pd1....dn,
thus F , V [d̄/ō, w], w �MA K̂Pd1....dn. Therefore, by
F , V [d̄/ō, w], w �MA K̂Pd1....dn → KPd1....dn, we have F , V [d̄/ō, w], w �MA

KPd1....dn. Since w ∼ w, F , V [d̄/ō, w], w �MA Pd1....dn, i.e. 〈o1, ..., on〉 ∈
V [d̄/ō, w](P,w), which contradicts the assumption that 〈o1, ..., on〉 /∈ V (P,w).
Therefore, MA’ is validity-preserving on the class of S5 frames under MA
semantics. ��
Now we start our completeness proof. We adopt a similar approach as the

completeness proof in first-order logic (building Henkin sets and construct-
ing witnesses) to prove the strong completeness of MSELKVP1. We make some
special treatment when constructing Henkin sets:
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Definition 2. For any n-ary predicate P and set Γ of LELKvP1 formulas, we
say that KvP has MSP witness in Γ if KvP ∈ Γ implies the existence
of n designators d1, ..., dn such that KPd1....dn ∈ Γ . We say that Γ is a MSP-
Henkin set if Γ is maximal MSELKVP1-consistent, and KvP has MSP witness
in Γ for any KvP ∈ Γ .

Here, we have a slightly different definition of witness compared to first-
order logic. In first-order logic, if ∃xPx ∈ Γ , we say that the formula ∃xPx has
a witness in Γ if and only if there exists a term t such that Pt ∈ Γ . However, in
the above definition, we do not use the “if and only if” definition but only keep
one direction.

The reason why we only keep one direction is partly because we only need one
direction to prove the strong completeness of MSELKVP1, and partly because
we cannot prove the other direction, i.e., the implication from KPd1...dn ∈ Γ to
KvP ∈ Γ is not necessarily valid if there exist n designators d1, ..., dn.5

The following proposition would be of great help in the completeness proof:

Proposition 2. Let Γ be a set of LELKvP1 formulas, P be any n-ary predicate,
and d1, ..., dn be any designators. If Γ is MSELKVP1-consistent with KvP , then
for any designators d1, ..., dn that do not occur in Γ , Γ is also MSELKVP1-
consistent with KPd1...dn.

Proof. Suppose Γ is MSELKVP1-consistent with KvP . Let d1, ..., dn be any des-
ignators that do not occur in Γ ∪{KvP}. If Γ is not MSELKVP1-consistent with
KPd1...dn, then Γ �MSELKVP1 ¬KPd1...dn. Therefore, there exist γ1, ..., γm ∈ Γ
such that �MSELKVP1 (γ1 ∧ ... ∧ γm) → ¬KPd1...dn. According to the MS’ rule,
we have �MSELKVP1 (γ1 ∧ ... ∧ γm) → ¬KvP . Hence, Γ �MSELKVP1 ¬KvP , which
contradicts our assumption that Γ is MSELKVP1-consistent with KvP . ��

Apparently, not all maximal MSELKVP1-consistent sets in LELKvP1 are
MSP-Henkin sets. To address this issue, we need to enrich the existing lan-
guage LELKvP1 to ensure that we can construct an MSP-Henkin set Γ+ based
on a consistent set Γ in LELKvP1 .

We add a countably infinite number of new designators c1, c2, ... ∈ C into
LELKvP1 to form an expanding language L+

ELKvP1
= LELKvP1(P,D∪C). Then

we can prove the following proposition:

Proposition 3. Every maximal MSELKVP1-consistent set Γ in LELKvP1 can
be extended to an MSP-Henkin set Γ+ in L+

ELKvP1
.

Proof. Let KvP1,KvP2, ... be the sequence of all LELKvP1 formulas of the form
KvP . We define a sequence of new designator tuples ē1, ē2, ... as follows: for each
k ≥ 1, let ēk = 〈c′

1, ..., c
′
ary(Pk)

〉, where ary(Pk) denotes the arity of predicate Pk,
and c′

1, ..., c
′
ary(Pk)

∈ C are the first ary(Pk) new designators that do not appear
in ē1, ..., ēk−1. We abbreviate Pkēk as Pkc′

1...c
′
ary(Pk)

. Define the sequence of

5 From a semantic perspective, if there exist d1, ..., dn such that M, w �MS KPd1...dn,
then since di is a nonrigid designator, we may not have M, w �MS KvP .
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formula sets in L+
ELKvP1

as Γ0 ⊆ Γ1 ⊆ ·· ·, where: (1) Γ0 = Γ ; (2) for each k ≥ 0,
Γk+1 = Γk ∪ {KvPk → KPkēk}.

According to the assumption, Γ0 is consistent. Suppose that Γ0, ..., Γk are
all consistent, but Γk+1 is not consistent. Then, Γk and KvPk → KPkēk are
not consistent, so Γk is not consistent with both ¬KvPk and KPkēk. Since Γk is
consistent and not consistent with ¬KvPk, we have that Γk is consistent with
KvPk. Now, we have that Γk is consistent with KvPk but not consistent with
KPkēk, which contradicts the assumption and Proposition 2. Therefore, each
Γk+1 is consistent.

Let Γω =
⋃

n<ω
Γn. Then, Γω is consistent. Hence by Lindenbaum’s Lemma, it

could be extended to an MSP-Henkin set Γ+ in L+
ELKvP1

. ��
Definition 3. The canonical model Mc for MSELKVP1 is a tuple 〈W c,∼c,
Oc, V c〉, where:

– W c = MCS × {0, 1}, where MCS is the set of all MSP-Henkin sets in
L+

ELKvP1
. If the formula ϕ is in the maximal consistent set contained in s,

then we write ϕ ∈ s. If ϕ ∈ s and ϕ ∈ t, then we write ϕ ∈ s ∩ t.
– s ∼c t ⇐⇒ {ϕ | Kϕ ∈ s} ⊆ t.
– Oc = (D ∪ C) × W c.
– V c is the assignment function that satisfies the following conditions:

• for any nonrigid designator d ∈ D ∪ C, V c(d, s) = (d, s);
• for any n-ary predicate P and possible world s ∈ W c,

V c(P, s) =

⎧
⎨

⎩

⋃

t∼cs
{〈(d1, t), ..., (dn, t)〉 | Pd1....dn ∈ t}, KvP ∈ s.

{〈(d1, s), ..., (dn, s)〉 | Pd1....dn ∈ s}, KvP /∈ s.

Clearly, the canonical model Mc is an S5ELKvP1 model. It should be
noted that in the construction of possible worlds, we do not simply use MSP-
Henkin sets in L+

ELKvP1
as our possible worlds. For each MSP-Henkin set, we

construct a copy (i.e., for each MSP-Henkin set, we have two different possible
worlds corresponding to it). The reason for this modification is to ensure that
when KvP is not included in the MSP-Henkin set contained in some possible
world s (KvP /∈ s), the formula KvP is not true at Mc, s (if KvP /∈ s, then
Mc, s �MS KvP ).

Based on KvP4 axiom and the construction of V c(P, s), we can easily prove
the followings:

Proposition 4. s ∼c t if and only if {ϕ | Kϕ ∈ s} = {ϕ | Kϕ ∈ t}, hence ∼c is
an equivalence relation.

Proposition 5. For any s ∼c t, KvP ∈ s if and only if KvP ∈ t.

Proposition 6. If KvP ∈ s, then V c(P, s) = V c(P, t) for all t ∼c s. If KvP /∈ s,
then V c(P, s) ∩ V c(P, t) = ∅ for all t ∼c s such that t �= s.
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However, the above propositions alone are not enough to prove the Truth
Lemma. Given an MSP-Henkin set s ∈ W c in L+

ELKvP1
and assuming that

K̂ϕ ∈ s, we can certainly construct a possible world s′ such that ϕ ∈ s′ and s′ is
a maximal consistent set, but we cannot directly conclude that s′ is necessarily an
MSP-Henkin set in L+

ELKvP1
(at least this conclusion is not obvious). Therefore,

we still need to prove the following Existence Lemma:

Lemma 1 (Existence Lemma). Given an MSP-Henkin set s ∈ W c in
L+

ELKvP1
, if K̂ϕ ∈ s, then there exists an MSP-Henkin set t ∈ W c in L+

ELKvP1

such that s ∼c t and ϕ ∈ t.

Proof. Let t′ = {ψ | Kψ ∈ s} ∪ {ϕ}. It is easy to show that t′ is consistent.
By Lindenbaum’s Lemma, we can extend t′ to a maximal consistent set t in
L+

ELKvP1
.

We now show that t is an MSP-Henkin set: for any KvP ∈ t, assume that
¬KvP ∈ s. Then, by T and KvP4 axiom, we have KvP ↔ KKvP ∈ s, so
¬KKvP ∈ s. By 5 axiom and ¬KKvP ∈ s, we have K¬KKvP ∈ s. Moreover,
according to KvP ↔ KKvP ∈ s, we have K¬KvP ∈ s. By the construction of
t′, we have ¬KvP ∈ t, which contradicts KvP ∈ t. Therefore, for any KvP ∈ t,
we have KvP ∈ s. Since s is an MSP-Henkin set in L+

ELKvP1
, there exist n

designators d1, ..., dn such that KPd1...dn ∈ s. According to 4 axiom and the
construction of t′, we also have KPd1...dn ∈ t.

Therefore, t is an MSP-Henkin set in L+
ELKvP1

. By Proposition 4, s ∼c t and
ϕ ∈ t. ��

Now we prove the Truth Lemma and the completeness result for MSELKVP1:

Lemma 2 (Truth Lemma for MSELKVP1). For any L+
ELKvP1

formula ϕ,
we have ϕ ∈ s if and only if Mc, s �MS ϕ.

Proof. We only need to prove the cases where ϕ = Pd1...dn or ϕ = KvP .

– If ϕ = Pd1...dn, consider whether KvP ∈ s holds or not.
• If KvP ∈ s, then V c(P, s) =

⋃

t∼cs
〈(d1, t), ..., (dn, t)〉 | Pd1...dn ∈ t}. We

have Mc, s �MS Pd1...dn if and only if 〈(d1, s), ..., (dn, s)〉 ∈ V c(P, s), if
and only if Pd1...dn ∈ s (s ∼c s).

• If KvP /∈ s, then V c(P, s) = {〈(d1, s), ..., (dn, s)〉 | Pd1...dn ∈ s}. We have
Mc, s �MS Pd1...dn if and only if 〈(d1, s), ..., (dn, s)〉 ∈ V c(P, s), if and
only if Pd1...dn ∈ s.

Therefore, Pd1...dn ∈ s if and only if Mc, s �MS Pd1...dn.
– If ϕ = KvP , we also consider whether KvP ∈ s holds or not.

• If KvP ∈ s, then V c(P, s) =
⋃

t∼cs
〈(d1, t), ..., (dn, t)〉 | Pd1...dn ∈ t}. Since s

is an MSP-Henkin set, there exist designators c1, ..., cn ∈ D∪C such that
KPc1...cn ∈ s. By T axiom, we have Pc1...cn ∈ s, so 〈(c1, s), ..., (cn, s)〉 ∈
V c(P, s), which means V c(P, s) is non-empty. By Proposition 6 and the
MS semantics, we have Mc, s �MS KvP .
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• If KvP /∈ s, then V c(P, s) = {〈(d1, s), ..., (dn, s)〉 | Pd1...dn ∈ s}. By
Proposition 6, we only need to prove that there exists a non-self successor
of s. Assume s = (Γ, x), where Γ is an MSP-Henkin set and x ∈ {0, 1}.
Let s′ = (Γ, 1 − x). Obviously, by the definition of ∼c and T axiom, we
have s ∼c s′ and s �= s′. Therefore, we have Mc, s �MS KvP .

Therefore, for any L+
ELKvP1

formula ϕ, we have ϕ ∈ s if and only if Mc, s �MS

ϕ. ��
Suppose V1 is an assignment function in L+

ELKvP1
and V2 is in LELKvP1 , and

both functions are on frame F . We say that V1 and V2 agree on ϕ, if ϕ is an
LELKvP1 formula, and for any designator d, predicate P in ϕ and any possible
world w, we have V1(d,w) = V2(d,w) and V1(P,w) = V2(P,w).

By induction on formulas, it would not be hard to prove the Coincidence
Lemma:

Lemma 3 (Coincidence Lemma). If V1 and V2 agree on ϕ, then
F , V1, w �MS ϕ if and only if F , V2, w �MS ϕ.

We call 〈F , V2〉 a LELKvP1-reduct of 〈F , V1〉 if and only if V1 and V2 agree
on all LELKvP1 formulas.

With Coincidence Lemma, we can easily prove the completeness theorem for
MSELKVP1:

Theorem 2 (Completeness Theorem for MSELKVP1). Under MS seman-
tics, MSELKVP1 is strongly complete with respect to the class of S5 frames.

Proof. Suppose Γ is an arbitrary MSELKVP1- consistent set of LELKvP1 for-
mulas, then by Proposition 3, can be extended to an MSP-Henkin set Γ+ in
L+

ELKvP1
. By Lemma 2, Mc, Γ+ �MS Γ . Let M− = 〈W c,∼c, Oc, V −〉, where

V − is an assignment function in LELKvP1 and for any designator d, predicate
P and possible world w, V −(d,w) = V c(d,w) and V −(P,w) = V c(P,w). Then
M− is a LELKvP1-reduct of M c, and by Lemma 3, M−, Γ+ �MS Γ , which means
Γ is MSELKvP1-satisfiable. Hence we have the strong completeness result for
MSELKVP1. ��

When proving the completeness result for MAELKVP1, we need to slightly
change the definition of MAP-Henkin set and canonical model, and have the
followings:

Definition 4. For any n-ary predicate P and set Γ of LELKvP1 formulas, we
say that ¬KvP has MAP witness in Γ if ¬KvP ∈ Γ implies the existence
of n designators d1, ..., dn such that K̂¬Pd1...dn ∧ K̂Pd1...dn ∈ Γ . We say that
Γ is a MAP-Henkin set if Γ is maximal MAELKVP1-consistent, and ¬KvP
has MAP witness in Γ for ¬KvP ∈ Γ .

Proposition 7. Every maximal MAELKVP1-consistent set Γ in LELKvP1 can
be extended to an MAP-Henkin set Γ+ in L+

ELKvP1
.
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Proof. We show the main difference between this proof and the proof of Propo-
sition 3. Define the sequence of formula sets in L+

ELKvP1
as Γ0 ⊆ Γ1 ⊆ ···, where:

(1) Γ0 = Γ ; (2) for each k ≥ 0, Γk+1 = Γk ∪ {¬KvPk → (K̂¬Pkēk ∧ K̂Pkēk)}. ��
Definition 5. The canonical model Mc for MAELKVP1 is a tuple 〈W c,∼c

, Oc, V c〉, where:

– W c is the set of all MAP-Henkin sets in L+
ELKvP1

.6

– s ∼c t ⇐⇒ {ϕ | Kϕ ∈ s} ⊆ t.
– Oc = (D ∪ C) × W c.
– V c is the assignment function that satisfies the following conditions:

• for any nonrigid designator d ∈ D ∪ C, V c(d, s) = (d, s);
• for any n-ary predicate P and possible world s ∈ W c,

V c(P, s) =

⎧
⎨

⎩

⋃

t∼cs
{〈(d1, t), ..., (dn, t)〉 | Pd1....dn ∈ t}, KvP ∈ s.

{〈(d1, s), ..., (dn, s)〉 | Pd1....dn ∈ s}, KvP /∈ s.

It would be easy to prove the following completeness theorem according to
the proof of Theorem 2:

Theorem 3 (Completeness Theorem for MAELKVP1). Under MA seman-
tics, MAELKVP1 is strongly complete with respect to the class of S5 frames.

3.2 Axiom Systems MSELKV1 and MAELKV1 for LELKvdP1

In this part, we will add the “knowing value” operator Kvd for single agent on
the basis of language LELKvP1 , and obtain the following language LELKvdP1 :

ϕ ::= � | Kvd | Pd1...dn | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | KvP

The definitions of MS and MA semantics are the same as those in LELKvP1 ,
where the semantics of the Kvd operator is defined in the same way as in the
language LELKv1 . We use shorthand notation

∧
Kvdi to represent the formula∧

1≤i≤n

Kvdi. We present two axiom systems MSELKV1 and MAELKV1.

6 It should be noted that we do not need to construct possible world copies for MAP-
Henkin sets here. This is because the definition of MAP-Henkin set ensures that every
¬KvP ∈ s in an MAP-Henkin set s has a corresponding MAP witness K̂¬Pd1...dn ∧
K̂Pd1...dn ∈ s, which naturally leads to at least two distinct successor possible worlds
of s.
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The axiom system MSELKV1

Axioms Rules

Taut All instances of tautologies MP
ϕ ϕ → ψ

ψ

DistK Ki(ϕ → ψ) → (Kiϕ → Kiψ) NecK
� ϕ

� Kiϕ

T Kiϕ → ϕ MS’ � ψ → (
∧

Kvdi → K̂¬Pd1...dn)
� ψ → ¬KvP

4 Kiϕ → KiKiϕ RE
� ψ ↔ χ

� ϕ ↔ ϕ[ψ/χ]
5 ¬Kiϕ → Ki¬Kiϕ
Kv4 Kvd → KKvd
KvP4 KvP → KKvP
MS

∧
Kvdi ∧ KPd1...dn → KvP

Note that in MS’ rule, di does not occur in ψ.

The axiom system MAELKV1
Axioms Rules

Taut All instances of tautologies MP
ϕ ϕ → ψ

ψ

DistK Ki(ϕ → ψ) → (Kiϕ → Kiψ) NecK
� ϕ

� Kiϕ

T Kiϕ → ϕ MA’
� ψ → (

∧
Kvdi ∧ K̂Pd1...dn → KPd1...dn)

� ψ → KvP

4 Kiϕ → KiKiϕ RE
� ψ ↔ χ

� ϕ ↔ ϕ[ψ/χ]
5 ¬Kiϕ → Ki¬Kiϕ

Kv4 Kvd → KKvd

KvP4 KvP → KKvP

MA
∧

Kvdi ∧ K̂Pd1...dn ∧ KvP → KPd1...dn

Note that in MA’ rule, di does not occur in ψ.

It could be easily found out that we have added MS and MA axioms in
MSELKV1 and MAELKV1, respectively. This is because by adding the formula∧
Kvdi, we can “convert” d1, ..., dn from nonrigid designators to rigid ones, which

enables us to better characterize the relationship between the KvP operator and
formulas such as Pd1...dn. With the Kvd operator, we can further obtain the
following conclusions:

Proposition 8. For any frame F , possible world w, designator tuple d̄ =
〈d1, ..., dn〉 and object tuple ō = 〈o1, ..., on〉, we have F , V [d̄/ō, w], w �MS

∧
Kvdi

and F , V [d̄/ō, w], w �MA

∧
Kvdi.

It would not be difficult to prove the soundness theorem for the two axiom
systems.

We give out some important definitions for both axiom systems, and prove
the Truth Lemma for Kvd formulas in MS (MA) semantics. Based on the earlier
parts of this paper, it is not difficult to infer the remaining content of the proof.
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Definition 6. For any n-ary predicate P and set Γ of LELKvdP1 formulas, we
say that KvP has MS witness in Γ if KvP ∈ Γ if and only if there exist
n designators d1, ..., dn such that

∧
Kvdi ∧ KPd1...dn ∈ Γ . We say that Γ is

a MS-Henkin set if Γ is maximal MSELKV1-consistent, and KvP has MS
witness in Γ for KvP ∈ Γ .

Definition 7. The canonical model Mc for MSELKV1 is a tuple 〈W c,∼c,
Oc, V c〉, where:

– W c = MCS × {0, 1}, where MCS is the set of all MS-Henkin sets in
L+

ELKvdP1
.

– s ∼c t ⇐⇒ {ϕ | Kϕ ∈ s} ⊆ t.
– Oc = (D ∪ C) × W c.
– V c is the assignment function that satisfies the following conditions:

• For any nonrigid designator d ∈ D ∪ C, we have V c(d, s) = |(d, s)|R,
where
R = {((d, s), (e, t)) | d = e, s ∼c t and Kvd ∈ s} ∪ {((d, s), (d, s)) | d ∈
D ∪ C, s ∈ W c};

• For any n-ary predicate P and possible world s ∈ W c, we have
V c(P, s) = {〈|(d1, s)|R, ..., |(dn, s)|R〉 | Pd1...dn ∈ s}.

Definition 8. For any n-ary predicate P and set Γ of LELKvdP1 formulas, we
say that ¬KvP has MA witness in Γ if ¬KvP ∈ Γ if and only if there exist
n designators d1, ..., dn such that

∧
Kvdi ∧ K̂¬Pd1...dn ∧ K̂Pd1...dn ∈ Γ . We say

that Γ is a MA-Henkin set if Γ is maximal MAELKV1-consistent, and ¬KvP
has MA witness in Γ for ¬KvP ∈ Γ .

Definition 9. The canonical model Mc for MAELKV1 is a tuple 〈W c,∼c,
Oc, V c〉, where:

– W c = MCS × {0, 1}, where MCS is the set of all MA-Henkin sets in
L+

ELKvdP1
.

– s ∼c t ⇐⇒ {ϕ | Kϕ ∈ s} ⊆ t.
– Oc = (D ∪ C) × W c.
– V c is the assignment function that satisfies the following conditions:

• For any nonrigid designator d ∈ D ∪ C, we have V c(d, s) = |(d, s)|R,
where
R = {((d, s), (e, t)) | d = e, s ∼c t and Kvd ∈ s} ∪ {((d, s), (d, s)) | d ∈
D ∪ C, s ∈ W c};

• For any n-ary predicate P and possible world s ∈ W c, we have

V c(P, s) =

⎧
⎨

⎩

⋃

t∼cs
{〈(d1, t), ..., (dn, t)〉 | Pd1....dn ∈ t}, KvP ∈ s.

{〈(d1, s), ..., (dn, s)〉 | Pd1....dn ∈ s}, KvP /∈ s.
.

Proposition 9. R is well-defined in both canonical models, i.e., R is an equiv-
alence relation.



164 B. Hong

As we can see, in the construction of W c of M c for both axiom systems,
we build a copy for each MS-Henkin (MA-Henkin) set. The construction of
copies here would be used when we prove the Truth Lemma for Kvd formulas
(Kvd ∈ s ⇔ Mc, s �MS Kvd). Take MSELKV1 for example.

(⇐) If Kvd /∈ s, then assume s = (Γ, x), where Γ is a MSELKV1-Henkin
set and x ∈ {0, 1}. Let s′ = (Γ, 1 − x). Obviously, by the definition of ∼c

and T axiom, we have s ∼c s′. Suppose |(d, s)|R = |(d, s′)|R. Then we have
Kvd ∈ s, which contradicts the assumption. Hence, |(d, s)|R �= |(d, s′)|R, i.e.,
VD(d, s) �= VD(d, s′), so Mc, s � Kvd.

(⇒) If Kvd ∈ s, then (d, s)R(d, t) for any t such that s ∼c t, i.e., |(d, s)|R =
|(d, t)|R and VD(d, s) = VD(d, t). Therefore, we have Mc, s � Kvd.

With the approach similar to the proof of MSELKVP1 and MAELKVP1, we
can easily prove the completeness theorem for MSELKV1 and MAELKV1:

Theorem 4 (Completeness Theorem for MSELKV1 and MAELKV1).
Under MS (MA) semantics, MSELKV1 (MAELKV1) is strongly complete with
respect to the class of S5 frames.

4 Conclusion and Future Work

This paper focuses on the axiomatization problem of logics with the “know-
ing predicate value” operator KvP . We introduce KvP operator to characterize
the notion of “knowing the value of a predicate P”, and provides two different
semantics - MS semantics and MA semantics - for the KvP operator based on
two linguistic interpretations of problems (Mention-Some and Mention-All inter-
pretations) at the beginning of the paper. In the remaining parts of the paper,
we prove the strong completeness theorem for two sets of axiom systems con-
taining only the KvP operator, as well as two sets of axiom systems containing
both the KvP and Kvd operators.

Based on the work done by this paper, we believe that there are still many
directions that deserve further research and exploration:

– The multi-agent version for MSELKVP1, MAELKVP1, MSELKV1 and
MAELKV1. As all four axiom systems presented in this paper are single-agent
versions, proving their corresponding multi-agent versions would be a good
research direction. To solve this problem, we can consider two approaches:
one is to abstract the semantics of the KvP operator and prove the complete-
ness of the multi-agent version of the abstract language, following the method
in [8]; the other is to extend the existing canonical model proof method and
prove the multi-agent version following the proof method in [17].

– The integration of MS and MA semantics. The only difference between MS
and MA semantics are the interpretation of KvP formulas. Therefore, by
integrating MS and MA semantics, we may find some interesting interactions
between the two KvP operators.
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– The modification of MS and MA semantics. In MS and MA semantics, we
would have {〈V (d1, w), ..., V (dn, w)〉 | M, w |=MS Pd1...dn} ⊆ V (P,w),
but not necessarily that {〈V (d1, w), ..., V (dn, w)〉 | M, w |=MS Pd1...dn} =
V (P,w). This seems a little bit controversial. If we try to modify the seman-
tics so that {〈V (d1, w), ..., V (dn, w)〉 | M, w |= Pd1...dn} = V (P,w) holds all
the time, the axiom systems might have some interesting transformations.

In addition to the above directions, in recent years, topics such as public
inspection [6], de re updates [3], and “knowing-function” operator [4,14], which
are related to the concept of “knowing value”, have also received much attention
from scholars. The work of this paper can also be combined with the above
topics, such as considering a function as a predicate, so we can express “knowing-
function” in terms of the “knowing predicate value” operator, and thus create
some new interactions with Dependence Logic.
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Abstract. Since conceptual metaphor theory was put forward, the view
that metaphors affect human cognition by constructing cognitive frames
has been very influential. From the view of cognitive metaphor studies,
the focus of metaphor formalization is no longer to describe the substi-
tution of metaphorical meaning for literal meaning, but to consider the
cognitive frames of concepts in conventional situations and the selection
of information in specific contexts. Following the perspective of cogni-
tive metaphor theory, this article constructs a logic based on situation
semantics to provide a possible way to interpret the information transfer
in the process of metaphor comprehension. It describes different con-
cept domains by assigning each situation a unique theme and reflects
an agent’s belief by supporting relations between situations and propo-
sitions. Then we can distinguish between different kinds of information
flow in metaphor comprehension.

Keywords: Cognitive Metaphor · Situation theory · Logical semantics

1 Introduction

In a broad sense, metaphors can be defined as using different types of concepts
to explain an object. Sometimes they are used to make the expression more novel
and vivid, and sometimes used to explain concepts that are difficult to convey
directly. Cognitive metaphor theorists generally defend that “metaphor is perva-
sive in everyday life, not just in language but in thought and action. Our ordinary
conceptual system, in terms of which we both think and act, is fundamentally
metaphorical in nature” [12, p. 3]. With a familiar source domain, people can
construct a cognitive frame and abstract and unfamiliar target concepts can be
put into it for understanding. It is a basic way for humans to gain new knowl-
edge. For example, when one says, “he is at a crossroads in his life”. It does not
means he is standing at some intersection, but he is facing choices that will shape
his future and may be confused. Most of us have the experience of standing at
a crossroads. At a crossroads, you have multiple choices, and different decisions
will lead you in different directions. But how could information about travel can
carry the information about life? Such a perspective no longer regards metaphor
simply as a language skill but as a basic way of human cognition.
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Metaphoric cognition is regarded as one of the three major topics in cogni-
tive science in the twentieth century. It has been widely discussed in cognitive
linguistics (e.g. Conceptual Metaphor Theory [11,13], Conceptual Integration
Theory [7], The Career of Metaphor Theory [1,6], Deliberate Metaphor The-
ory [16]) and cognitive psychology [3,7]. Also, there is a booming interest in
an interdisciplinary field interfacing with cognition and computation [5,8,9,15].
But relatively little work has been done on logical semantics, and most of them
are piecemeal [14,17,18].

2 Background

After the introduction of information theory, linguistics have gradually recog-
nized the similarity between the process of verbal communication and informa-
tion exchange, and see information transfer as a basic functions of language.
According to situation theory, ontologically, a situation is an entity as a part
of the structured actual world that an agent recognizes and chooses [2, p. 31].
Technically, a situation is a set of infons. An infon is the basic unit of informa-
tion, it can be denoted as a tuple σ = 〈R, a1, . . . , an, �, i〉, where R is a n-ary
relation, a1, . . . , an are individuals, � is a space-time location, i called polarity is
a element of {0, 1}. What an infon expresses is that at a certain space and cer-
tain time, some individuals has or does not have the property. The conjunction
or disjunction of infons forms compound infons. Given a situation s and infon
σ, s supports σ, which means that infon σ is satisfied in the situation s, denoted
as s � σ, s � σ if and only if σ ∈ s [2, p. 31]. The interpretation of a sentence is
considered to be a collection of several infons1.

The correlation between events is to some extent universal. To describe such
stable connection, elements in an infon can be abstracted as free variables. A
situation containing variables is called an abstract infon, and concrete or abstract
infons with some common elements can consist a situation type. Conversely,
abstract infons can also be reversed to concrete infons by anchors. An anchor is
a function f assigns to each parameter in the parameter set a concrete object in
the object set [2, p. 52].

3 Logic of Metaphor Comprehension

Referring to [4] and considering the specificity of metaphorical comprehension,
we give a language and semantics to formalize the information transfer and use
it to describe metaphor understanding process. This logic of metaphor compre-
hension will be denoted as LM .

1 The processing method with infons as the basic unit follows Devlin. In Situations
and Attitudes, Barwise and Perry use events and event types.
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3.1 Syntax

We assume a propositional language with finite constants a1, . . . , an, variables
x1, . . . , xn; n-ary relations R1, . . . , Rn; themes t1, . . . , tn; classical logic operators
¬,∼,→,∧; a binary info operator (., .) applying two basic formulas or a basic
formula and a theme results in a formula; and a unary preference operator P .

This is a language containing terms, basic formulas and formulas. the terms
are individual variables and constants, and a basic formula can be defined as:

– If R is a n-ary relation, α1, . . . , αn are terms, then p = R(α1, . . . , αn) is a
basic formula.

– If ϕ is a basic formula, then so are ¬ϕ, ∼ ϕ.

After defining basic formulas, we can further give the formal definition of
formulas.

Definition 1 (Formulas). The formulas of LM can be defined as following:

– A basic formula is a formula.
– A theme is a formula.
– If p is a basic formula and t is a theme, then (t, p) is a formula.
– If p and p′ are basic formulas, then (p, p′), M(p, p′) are formulas.
– If ϕ is a formula, then so are ¬ϕ, ∼ ϕ, Pϕ.
– If ϕ and ψ are formulas, then so are ϕ → ψ.

Here, we use a special element “theme”. It is the topic of a expression, so it
is a concept, and all infons with the same t constitute a concept domain about
t. P is a preference operator. (p, p′) says that information p conveys meaning p′,
M(p, p′) indicates that p is the literal information of a metaphor expression and
p′ is the actual meaning.

Since the information in a situation is partial, it is necessary to distinguish
between “not contain this information” and “contain negative information”. In
the language, there are two different kinds of negation, ¬ϕ is called a strong
negation and ∼ ϕ is called a weak negation. Other connectives such as ∧ and ∨
are introduced as abbreviations in the usual way, except that the negation used
in these definitions are weak (i.e. ϕ∨ψ =df∼ ϕ → ψ and ϕ∧ψ =df∼ (ϕ →∼ ψ)).

3.2 Semantics

Let D be the domain of individuals, R be a set of relations, and {0, 1} be a polar-
ity set, T be a set of themes. An infon is an ordered n-tuple 〈t, R, α1, . . . , αn, i〉,
where R ∈ R, α1, . . . , αn ∈ D, i ∈ {0, 1}. And denote in as a set of infons. A situ-
ation structure S is a pair (in,	), indicating some prioritized information. Espe-
cially, a situation is consisted of several infons denoted as {infon1, . . . , infonn}.
f : INF → T is a function on the set of infons, when the input in a infon a,
the output f(a) is the theme in this infon. In an exact situation, the agent may
focus on a specific topic, the all infons may have a same theme (in the following
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we abbreviate the theme t in a situation s as ts). 	 is a reflexive, transitive,
strictly noetherian2 relation on situations expressing the preference.

Definition 2 (Model). A model M is a tuple 〈S, I〉, where S is a situation
structure. I is an interpretation, which maps n-ary relation symbols to n-ary rela-
tions, and individual constants to individuals. And let g be the variable assign-
ment.

Since the polarity can be 1 or 0, there are two satisfaction relations between
point models and formulas in LM . M, s, g �+ ϕ can be read as “ϕ is supported
in the situation s(with respect to M and g)”, and M, s, g �− ϕ can be read as
“ϕ is rejected in the situation s (with respect to M and g)”. Compared with [4],
this model differs in three ways:

(1) For metaphor comprehension, it is true that the specific spacial-temporal
context is important, but it only affects our choice of which concepts to
extract from the conceptual domain, rather than the common sense-based
knowledge base of the concept. Here, we need information elements to reflect
the information of general significance, and the selection of relevant infor-
mation is reflected in preference reasoning, so information of time and space
is not so necessary.

(2) It add themes to express one of the most important concept in CMT called
“concept domains”, since identifying metaphorical concepts is the basic
premise for determining whether a sentence is a metaphor and understanding
a metaphor.

(3) It add an operator P to express the cognitive preference. With the preference
operator, we can describe the typical perceptions of this concept in our com-
mon knowledge base, which is called image schemes in cognitive metaphor
research.

Definition 3 (Truth value). The valuation of a term ti can be defined as
following:

‖t‖M,g =
{

I(t), if ti is a constant;
g(t), if ti is a variable.

Then the truth value of LM formulas in a situation s in M is defined as
follows:

2 A relation R is strictly noetherian if and only if there is no infinite sequence
w0, w1, . . . such that 〈w0, w1〉 ∈ R, 〈w1, w2〉 ∈ R, . . . and such that w0 �= w1, w1 �=
w2.
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M, s, g �+ R(t1, . . . , tn) iff 〈I(R), ‖t1‖, . . . , ‖tn‖, 1〉 ∈ s
M, s, g �− R(t1, . . . , tn) iff 〈I(R), ‖t1‖, . . . , ‖tn‖, 0〉 ∈ s
M, s, g �+ t iff ∀inf ∈ s : f(inf) = t
M, s, g �− t iff ∀inf ∈ s : f(inf) �= t
M, s, g �+ ¬ϕ iff M, s, g �− ϕ
M, s, g �− ¬ϕ iff M, s, g �+ ϕ
M, s, g �+∼ ϕ iff M, s, g �+ ϕ
M, s, g �−∼ ϕ iff M, s, g �+ ϕ
M, s, g �+ ϕ → ψ iff M, s, g �+ ϕ ⇒ M, s, g �+ ψ
M, s, g �− ϕ → ψ iff M, s, g �+ ϕ & M, s, g �− ψ
M, s, g �+ Pϕ iff ∀s′ : s′ 	 s ⇒ M, s′, g �+ ϕ
M, s, g �− Pϕ iff ∃s′ : s′ 	 s & M, s′, g �− ϕ

M, s, g �+ (t, p) iff ∀s′ : M, s′, g �+ t ⇒ M, s′, g �+ Pp
M, s, g �− (t, p) iff ∀s′ : M, s′, g �+ t ⇒ M, s′, g �+ Pp
M, s, g �+ (p, p′) iff ∀s′ : ((M, s′, g �+ p ⇒ M, s′ �+ Pp′)

& (M, s′, g �+ ¬p ⇒ M, s′, g �+ P¬p′))
M, s, g �− (p, p′) iff ∀s′ : ((M, s′, g �+ p ⇒ M, s′ �− Pp′)

& (M, s′, g �+ ¬p ⇒ M, s′, g �− P¬p′))

Then we can use information transfer language to define metaphor expres-
sions.

Definition 4 (Metaphorical expression).
A metaphor expression can be divided into two categories: direct metaphorical

expression MD(p, p′) and indirect metaphorical expression MI(p, p′).

– MD(p, p′) is a direct metaphorical information transfer in model M, respected
to situation s and assignment g (denoted as M, s, g �+ MD(p, p′)), if and only
if for all situation s′, if s′ � p, then M, s′, g � (ts′ , p′) and ts �= ts′ .

– MI(p, p′) is an indirect metaphorical information transfer in model M,
respected to situation s and assignment g (denoted as M, s, g �+ MI(p, p′)),
if and only if for all situation s′, if s′ � p,then M, s′, g � (ts′ , p′′) and
M, s, g � p′′ → p′ and ts �= ts′ .

Steen has distinguished between direct metaphor and implied metaphor. He
called a metaphor that gives the source domain and target domain directly as
the direct metaphor; otherwise, implied metaphor is a kind of metaphor whose
framework associated with the source domain and target domain only exists in
cognition. He mainly discussed the situation that the mapping from properties or
objects in a source domain to a target domain. In fact, in some complex metaphor
understanding, semantics are not obtained by direct cross-domain mapping, but
need to integrate the contents of the two conceptual domains and continue to
reason in the new conceptual domain. To describe this kind of metaphor, the core
difference between direct and indirect metaphor given here is that the meaning
of direct metaphor is directly mapped across domains, while indirect metaphor
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depends on further reasoning after mapping. The example “we are at a cross-
roads” we mentioned before is a direct metaphor, since the target information
“facing choices” can be inferred from “at a crossroads”. While the following
example is an indirect metaphor.

Example 1. (When talking about a surgeon, one says:) He is a butcher.

Let p denote the proposition “He is a butcher”.; p′ denote “He cuts limbs
rudely”.; p′′ denote “His skills are poor”.; t denote the theme “Surgeon”; and t′

denote the theme “Butcher”, then

1. M, s, g �− p.
2. M, s, g �+ p′, but p′ not relevant information.
3. M, s, g �+ p′′, it’s what the information the expression wants to transfer.

That is, there is some s′, it satisfies M, s′, g �+ p, but M, s′ �− Pp′, so
M, s, g �− (p, p′), and M, s, g �+ M(p, p′′).

More precisely, now s �+ M(p, p′′) but s �+ M(p, p′), and in situations with
theme t, st �+ p′ → p′′. From s �+ M(p, p′) we can get s �+ p′, and therefore,
s �+ p′′. While in situations with theme t′, st′ �+ p′ → p′′, actually, here
st′ �− p′ → p′′, so s �+ p′′.

From the truth value of MD(p, p′), we can get requirements of being a direct
metaphor. p conveys p′ is metaphorical, if

1. p conveys p′, i.e. �+ p → Pp′ and �+ ¬p → P¬p′.
2. �+ p → ts �= ts′ .

If condition (1) is not satisfied, there are two cases: a) When ¬(p → Pp′) is
not satisfied. It shows that the preference relationship between the two propo-
sitions does not hold. For example, in expressions like “I am feeling down
/depressed” or “I am really low these days”, “down”, “depressed”, “low” can
express upset or sad, but cannot express happy, since under the frame of ori-
entation metaphor “SAD IS DOWN”. b) When p → Pp′ is satisfied, but
¬(¬p → P¬p′) is not satisfied. It shows that negation does not maintain a
relationship between two propositions. For example, “He is a professor” usually
infers “He is knowledgeable”, but “He is not a professor” cannot infer “He is not
knowledgeable”.

And condition (2) says that for every situation supports p, the theme of this
situation (a part of the source domain) is not the same as the one of the actual
situation (a part of the target domain). This condition is to ensure the mapping
is cross-domain (or say is constructed on different domains). Therefore, the literal
and non-literal meanings are from different categories. For example, “It is not
necessary to care about the destination of life”, the category of “destination” is
“travel”, not “life”. If condition (2) is not met, i.e. ∃s′ : M, s′, g �+ p & ts = t′s,
there is a situation supporting p with the same theme as the current situation.
For example, the expression “Shanghai, the Paris of the Orient” is an analogy
but not a metaphor, because both Shanghai and Paris belong to the category
“city”.
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Proposition 1. Given a model M = 〈S, I〉 , for any situation s ∈ S and assign-
ment g, M(p, p′) ∧ t → ¬(t, p) is true in the model.

It indicates that for a metaphor, the literal information cannot be understood
in the target domain.

Proposition 2. If two propositions have an information transfer relation, their
negations maintain this relation, or say, the existence of one property leading
to the existence of another property is equivalent to the absence of this property
leading to the absence of another one. i.e. (p, p′) ↔ (¬p,¬p′)

The most common cross-domain mappings are built on similarity, or more
precisely, refers to the similarity in the midst of difference [10]. See Example 2.

Example 2. (When talking about the current status of life, one says:) John is at
a crossroads now.

Let Cro stands for “at a crossroads”; Con stands for “be confused”; Dif
stands for “meet with difficulties”; Dri stands for “...drive...”; and j stands for
“John”.

The metaphorical concept of this expression is “LIFE IS JOURNEY”. From
this we can get two different themes: t1 = life, t2 = journey. It embraces the
similarities between concept life and concept journey. And the literal information
of the sentence is Cro(j).

In a journey frame, “at a crossroads” usually means that there are multiple
directions and one cannot decide. When this kind of property is replaced in the
frame of life, it means that the choice of life cannot be determined and someone
is confused about his or her life. So in this metaphor, the non-literal meaning
“be confused” can be inferred from “at a crossroads”.

Suppose S = {s0, s1, s2, s3, s4}, where s0 = {life, 〈Con, j, 1〉} is the actual
situation,

s1 = {life, 〈Con, j, 0〉, 〈Dif, j, 1〉}, s2 = {journey, 〈Cro, j, 1〉},
s3 = {journey, 〈Cro, j, 1〉, 〈Con, j, 1〉}, s4 = {journey, 〈Cro, j, 0〉, 〈Con, j, 0〉},
And considering in people’s usual cognition, “at a crossroads” can be associ-

ated with “be confused”, so the agent will prefer situations containing both
these properties, preference 	= {(s3, s2), (s3, s3), (s4, s4)}. Then we can get
M, s0, g �+∼ Cro(j) and M, s0, g �+∼ ¬Cro(j)
Here, the actual situation is talking about life, “at a crossroads” is not related to
this theme. So the listener could not associate it and cannot make a conclusion
of whether it is true or false, that is, both Cro(j) and ¬Cro(j) are not supported
in this situation.

A situation supports (p, p′) here expresses that the situation satisfies a con-
straint in situation theory, that is, a situation that satisfies p′ can be obtained
from a situation that satisfies p. Here, information “at a crossroads” is to convey
information “be confused”.

M, s0, g �+ (Cro(x), Con(x))
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Then thinking about negative forms: “We are not at a crossroads”. Since
M, s0, g �+ (¬Cro(x),¬Con(x)), and M, s0, g �+ M(¬Cro(x),¬Con(x))

4 Conclusion

In this article, we have proposed a formalization from a cognitive perspective,
especially based on Conceptual Metaphor Theory, to describe information trans-
fer in a metaphor interpretation. It describes that a metaphor is a special kind
of non-literal expression that depends on some accepted connections between
concepts. And the transfer of negative information is equivalent to positive infor-
mation, and the information association required for negative expression can be
reliably obtained from the conventional association of positive information. And
it reflect cross-domain mapping and the role of concept domains (or say, cogni-
tive frames) in metaphor interpretation. Also, metaphorical understandings at
different levels a can be distinguished.

In the future work, we hope to explain different roles of reasoning in the same
concept domain and cross domains in metaphor understanding. In addition, it is
necessary to consider metaphor cognition in a dynamic information environment.
With the emergence of new information, the agent’s knowledge of the situations,
as well as the preference for related information may change, which will affect
the results of metaphor cognition.
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Abstract. A succession of events is a sequence of events such that after
one event is finished, the next one occurs successively. In this paper, we
extended linear temporal logic with a new modality to capture the case
that a sequence of events successively occurs. We compared the expres-
sivity between this extended linear temporal logic and the standard linear
temporal logic.

Keywords: Linear temporal logic · Successive events · Expressivity

1 Introduction

Temporal logic broadly refers to a family of modal logics for reasoning about
temporal information. It originated from the logical framework of tense logic
introduced in [17–19] by Prior. Prior’s basic tense logic has been further discussed
and extended, as a result, the whole of these developed logical frameworks is
known as Temporal logic. Temporal logic has become a commonly used tool in
various fields such as philosophy, computer science, artificial intelligence, and
linguistics. For a detailed survey, see [7].

Linear time temporal logic is the most widely used type of temporal logic in
computer science. It was first proposed in [16] and well studied in [4]. In linear
temporal logic, time is conceived as a linear, discrete succession of time instants.
In [16], Pnueli proposed to use linear temporal logic to specify and verify the
properties of computer programs. For example, the property that “when p is
true, next q will be true” can be formalized in linear temporal logic as

p → ©q.

where the modality © means “on the next time instant it will be the case that”.
This property holds on a linear temporal logic model, if and only if for each time
instant n, if p is true on n then q is true on the next time instant n + 1.

A succession of events is a sequence of events occurring in succession. For
example, first close the door, and next lock it. Firstly send a message, and next
mark the message as “sent”. A sequence of events occurring in succession means
after one event is successfully executed and finished, the next event starts to
be executed subsequently. Please note that the modality © in linear temporal

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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logic refers to the next time instant in time flow, but not to the next event in an
event sequence. Thus, successive events cannot be naturally formalized in linear
temporal logic.

There is a difference between the event that happens next another event and
the event that happens on the next time instant. Let the current time instant
be n. The event happens next the event ψ might not happen on the next time
instant, i.e. n + 1. The reason is that ψ might not be an instant event but a
duration event. By instant events, we mean events that can be finished in one
time instant, such as the event p ∧ q. By duration events, we mean events that
need to be done in more than one time instants, such as the event p ∧ ©p. If
ψ is the instant event p ∧ q, the event that happens next ψ will happen on the
next time instant n + 1. However, if ψ is the duration event p ∧ ©p, the event
that happens next ψ will happen on the time instant n + 2, because the time
period of executing the event ψ will last from n to n + 1. The modality next
involved in successive events is the next event but not the next time instant.
Thus, successive events cannot be naturally formalized in linear temporal logic.
The following example will explain it in more details.

Consider the sentence S that “when the event ψ occurs, q will occur next
after ψ”. It will be inaccurate to formalize it in linear temporal logic as the
formula

φ = ψ → ©q.

The reason will be discussed in the followings.
If ψ is an instant event, i.e. a propositional letter or a boolean formula of

propositional letters, S indeed can be formalized as φ, because the next time
instant after ψ happens to be the next time instant from now. However, if ψ
is the formula ©p, which is a duration event, the next time instant after ψ
is executed as the next-next time instant from now. In this case, S should be
formalized as

©p → © © q.

Moreover, if ψ is the formula p ∨ ©p, there will be two cases that ψ is
successfully executed: either p or ©p. Thus, the next time instant after ψ is
either the next time instant next p or the next time instant next ©p. Hence, if
ψ is p ∨ ©p, S should be formalized as

(p → ©q) ∨ (©p → © © q).

From the example above, we can see that successive events cannot be natu-
rally expressed in linear temporal logic, due to the fact that the modality © in
linear temporal logic refers to the next time instant, but not to the next event. In
this paper, we proposed a new binary modality to express that “after one event
finished, another event successively occurs”. The logical language is interpreted
on standard models of linear temporal logic, but we give a dynamic semantics
for the new successive modality. Conceptually, the next time instants after φ is
successfully executed are similar to the remaining states after φ is successfully
announced in public announcement logic (see [5,15,21]). We also show that a



178 Y. Li and J. Zhao

formula with the new successive modality can be equivalently reduced to a for-
mula in linear temporal logic, even if the reduced formula is unintuitive and
cumbersome.

The paper is organized as follows. Section 2 introduces the syntax and the
semantics of the temporal logic for successive events. Section 3 shows that the
expressivity of the temporal logic for successive events is the same as the standard
linear temporal logic. Section 4 discusses the succinctness of this temporal logic
for successive events and briefly compares this logic with interval-based temporal
logic. Section 5 concludes with some remarks.

2 Syntax and Semantics

In this section, we extend the basic linear temporal logic with a new binary
modality and give a dynamic semantics for this extended language.

Let P be a set of propositional letters.

Definition 1 (Language). The language L©〈·〉 is defined by the following BNF
rules (where p ∈ P):

φ ::= � | p | ¬φ | (φ ∧ φ) | ©φ | 〈φ〉φ

The auxiliary connectives ⊥,→,∨ are defined as abbreviations as usual.
Moreover, the formula ¬〈φ〉¬ψ is abbreviated as [φ]ψ.

The formula ©φ intuitively means that event φ will occur at the next time
instant. The formula 〈φ〉ψ means that after φ is finished, ψ will occur successively.

The language L©〈·〉 is interpreted on linear temporal models defined as fol-
lows.

Definition 2 (Models). A (linear temporal) model is a triple σ = 〈N, <, V 〉
where:

– N is the set of natural numbers;
– < is the less-than relation on N;
– V : N → 2P is a valuation that assigns a set of propositional letters to each

natural number.

For each n ∈ N, (σ, n) is a pointed model.

It is known that a linear model σ can also be seen as an infinite word in the
alphabet 2P, that is, σ : N → 2P. Thus, we will write V (n) as σ(n), where V is
the valuation in σ.

The intuition of a successive formula 〈φ〉ψ to be true at the time instant n
is that ψ is true at some time instant m where m is the next time instant when
φ is successfully finished. Hence, in order to define the semantics, we need to
define the notion that “next time instants” after φ is successfully finished.

Before the formal definitions, we first give some intuitive examples. Let the
current time instant be n.
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– After the event p is done, the immediate next time instant is n + 1.
– After the event ©p is done, the immediate next time instant is n + 2.
– After the event p∧©p is done, the immediate next time instant also is n+2.

This means that if the next time instant after φ is m and the next time instant
after ψ is k, then the next time instant after φ∧ψ should be the max number
of m and k.

– After the event p∨©p is done, the immediate next time instant is either n+1
or n + 2. This means that the next time instant after φ might not be a single
time instant but a set of time instants, and that each time instant in this set
is a well qualified next time instant after φ.

– After the event (p∨©© p)∧©p is done, the immediate next time instant is
either n+2 or n+3. The reason is that n+2 is the next time instant after the
event p ∧ ©p and n + 3 is the next time instant after the event © © p ∧ ©p.

Before formally defining the time instants after doing φ, we need the auxiliary
operation �. The intuition of the operation � is to merge two sets of time instants.

Definition 3 (�). Let A and B be two sets of natural numbers. The set A � B
is defined as {max(n,m) | n ∈ A,m ∈ B}.

Please note that if either A or B is emptyset then A � B is emptyset.
For example, if the next time instant after p is {n + 1} and the next time

instant after ©p is {n + 2}, then the next time instant after p ∧ ©p should be
the time instant {n + 2}, i.e. {n + 1} � {n + 2}.

If the next time instants after doing the event φ is the set A = {n+1, n+3},
and the next time instants after doing the event ψ is the set B = {n + 2, n + 4},
then the next time instants after doing the event φ ∧ ψ is mergence of the set A
and B, that is, A � B = {n + 2, n + 3, n + 4}.

Table 1. n|φ

n|� = {n + 1}

n|p =

{
n + 1 p ∈ σ(n)

∅ p �∈ σ(n)

n|φ∨ψ = n|φ ∪ n|ψ
n|©φ = (n + 1)|φ
n|〈φ〉ψ =

⋃
n′∈n|φ n′|ψ

n|¬� = ∅

n|¬p =

{
n + 1 p �∈ σ(n)

∅ p ∈ σ(n)

n|¬¬φ = n|φ
n|¬(φ∨ψ) = n|¬φ � n|¬ψ

n|¬©φ = (n + 1)|¬φ

n|¬〈φ〉ψ = n|¬φ ∪ (
�

n′∈n|φ n′|¬ψ)

Next we are going to define the notion of the time instant set after successfully
doing φ on the time instant n.

Definition 4 (n|φ). Given a pointed model (σ, n) and a formula φ ∈ L©〈·〉, the
set of time instants, n|φ, is defined in Table 1, which intuitively means the set of
the next time instants after the event φ is successfully finished.
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The intuition of this definition is that n|φ is set of time instants after φ is
successfully done in n.

The set n|p is {n + 1} if p is true on n. Otherwise, n|p is the empty set.
Generally, if φ is not true on φ, then n|φ is the empty set.

The set n|φ∨ψ is the union of the set n|φ and the set n|ψ, which means that
a next time instant after doing φ ∨ ψ is either a next time instant after doing φ
or a next time instant after doing ψ.

The set n|¬φ∧¬ψ is the mergence of the set n|¬φ and n|¬ψ, which means that
a next time instant after doing the event ¬φ∧¬ψ is a next time instant on which
both ¬φ and ¬ψ are successfully done.

A next time instant n′′ after φ and ψ are successively done on n, i.e. n′′ ∈
n|〈φ〉ψ, is a next time instant after ψ is done on the time instant which is a next
time instant after φ is done on n, i.e. n′′ ∈ ⋃

n′∈n|φ n′|ψ.
If the events φ and ψ do not successively happen on n, it means two cases:

the first case is that φ does not happens on n; The second case is that even
though φ successively happens on n, but ψ does not happen on each next time
instant after φ (in other words, ¬ψ happens on each next time instant after φ).

Example 1. Let the model σ0 be defined as follows:

0 �� 1 �� 2 �� 3 �� · · ·
{p} {p, q} {p, q} {r}

We then have the followings:

– 0|p∨©p = {1, 2}
– 0|(p∨©©p)∧©p = {2, 3}
– 0|〈p〉q = {2}
– 0|〈p∨©p〉q = {2, 3}
– 0|¬〈p∨©p〉r = {3}

Now we are ready to define the semantics of L©〈·〉.

Definition 5 (Semantics). The satisfaction relation between pointed models
and formulas is defined in Table 2.

By the semantics, it is obvious that � ©φ ↔ 〈�〉φ, which means that the
modality © can be defined by the modality 〈·〉. We will write σ, n � φ as n � φ,
when the model σ is obvious from the context.

Example 2. Let the model σ be defined as follows:

0 �� 1 �� 2 �� 3 �� · · ·
{p} {p} {q} {p}

We then have that 0|p∨©q = {1} and 1|p∨©q = {2, 3}. And it is easy to check
that

0 � 〈p ∨ ©q〉〈p ∨ ©q〉p.
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Table 2. The semantics of L©〈·〉

σ, n � �
σ, n � p ⇐⇒ p ∈ σ(n)

σ, n � ¬φ ⇐⇒ σ, n �� φ

σ, n � φ ∨ ψ ⇐⇒ σ, n � φ or σ, n � ψ

σ, n � ©φ ⇐⇒ σ, n + 1 � φ

σ, n � 〈φ〉ψ ⇐⇒ σ, n � φ and σ, n′ � ψ for some n′ ∈ n|φ

Proposition 1. Given a pointed model (σ, n), we have that for each φ ∈ L©〈·〉,
n|φ �= ∅ iff n � φ.

Proof. We prove it by induction on the length of φ.

– φ := p or φ := �. It is obvious.
– φ := ψ ∨ χ. Apparently, len(ψ) < len(ψ ∨ χ) and len(χ) < len(ψ ∨ χ). By

induction hypothesis, we get n|ψ �= ∅ iff n � ψ and n|χ �= ∅ iff n � χ. And by
definition in (1), n|ψ∨χ �= ∅ if and only if the case that n|ψ �= ∅ or n|χ �= ∅,
thus by IH we can get it’s equivalent to the condition that n � ψ or n � χ,
i.e. n � ψ ∨ χ.

– φ := ©ψ. Since len(ψ) < len(©ψ), by IH we can get (n + 1)|ψ �= ∅ iff
n + 1 � ψ, i.e. n|©ψ iff n � ©ψ.

– φ := 〈ψ〉χ. We have to show n|〈ψ〉χ =
⋃

n′∈n|ψ n′|χ �= ∅ iff n � ψ and ∃n′ ∈
n|ψ, n′ � χ. Since len(ψ) < len(〈ψ〉χ), by IH we can get n|ψ �= ∅ iff n � ψ.
First, assuming that n|ψ = ∅, which directly implies n|〈ψ〉χ = ∅, moreover by
IH on ψ, it’s if and only if the case that n � ψ, thus we obtain n � 〈ψ〉χ.
Then, for the case that n|ψ �= ∅. Consider the condition that n′|χ = ∅, samely
by IH on χ, we can get n′ � ¬χ for all n′ ∈ n|ψ, thus n � 〈ψ〉χ. Conversely,
for n′|χ �= ∅, by IH on χ we get n′ � χ, and it’s not hard to obtain n � 〈ψ〉χ.

– φ := ¬ψ. We then have the following 5 cases:
• φ := ¬p or φ := ¬�. It is obvious.
• φ := ¬¬χ. Since len(χ) < len(¬¬χ), by IH we can get n|χ �= ∅ iff n � χ,

and easily obtaining n|¬¬χ �= ∅ iff n � ¬¬χ.
• φ := ¬©χ. Note the fact that ¬©χ = ©¬χ. Since len(¬χ) < len(©¬χ),

by IH we can get (n+1)|¬χ �= ∅ iff n+1 � ¬χ, which by semantics means
n|©¬χ iff n � ©¬χ,i.e. n|¬©χ iff n � ¬ © χ.

• φ := ¬(χ ∨ θ) = ¬χ ∧ ¬θ. Since len(¬χ) < len(¬(χ ∨ θ)) and len(¬θ) <
len(¬(χ ∨ θ)). By IH we get n|¬χ �= ∅ iff n � ¬χ and n|¬θ �= ∅ iff n � ¬θ.
If n|¬(χ∨¬θ) �= ∅, by definition in Table 1 and Definition 3, it forces both
n|¬χ and n|¬θ to be non-empty, then by IH we can get n � ¬χ and n � ¬θ,
thus n � ¬(χ ∨ θ). Conversely, if n � ¬χ ∧ ¬θ, likewise by IH we can get
n|¬χ �= ∅ and n|¬θ �= ∅, again by definition in Table 1 and Definition 3,
there must be at least one element in n|¬χ∧¬θ, i.e. n|¬χ∧¬θ �= ∅.

• φ := ¬〈χ〉θ.We have to show n|¬〈χ〉θ = n|¬χ ∪ (
�

n′∈n|χ n′|¬θ) �= ∅ iff
n � χ or ∀n′ ∈ n|χ, n′ � ¬θ. Since len(¬χ) < len(¬〈χ〉θ), by IH we can
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get n|¬χ �= ∅ iff n � ¬χ. Assuming that n|¬χ = ∅, by IH we can get
n � χ. Consider the case that n|χ = ∅, similarly by IH on χ we get n � χ,
which contradicts to the assumption, so it is required that n|χ �= ∅. Then,
if n′|¬θ = ∅, it follows that n|¬〈χ〉θ = ∅, and by IH on ¬θ, we can get
n′

� θ, thus obtaining n � ¬〈χ〉θ. Conversely, if n′|¬θ �= ∅. And for the
case that n′|¬θ �= ∅, it follows that n|¬〈χ〉θ �= ∅, and by IH on ¬θ it forces
∀n′ ∈ n|χ, n′ � ¬θ, so we obtain n � ¬〈χ〉θ. Moreover, for the case that
n|¬χ �= ∅, by IH we can easily obtain n � ¬〈χ〉θ.

Due to � p∧©� ↔ p, the following proposition indicates that the operation
of equivalence replacement might not preserve truth value if the operation takes
place in the scope of the modality 〈·〉.
Proposition 2. � 〈p ∧ ©�〉p ↔ 〈p〉p
Proof. Construct a linear model σ. Let the valuation sets σ(k) = σ(k +1) = {p}
(k ∈ N, p ∈ P) and assigns ∅ to every other natural numbers.

Since p ∈ σ(k) implies k � p, similarly, p ∈ σ(k + 1) implies k + 1 � p, from
which we can derive k + 1 ∈ k|p and it follows that k � 〈p〉p.

But it is not the case that k � 〈p ∧ ©�〉p. Suppose it’s true otherwise, then
we get: k � p ∧ ©� and ∃k′ ∈ k|p∧©	, k′ � p. Note that k|p = {k + 1} and
k|©	 = (k + 1)|	 = {k + 2}, so we get k|p∧©	 = k|p � k|©	 = {k + 2}. Since
p �∈ σ(k + 2), by semantics we get k � 〈p ∧ ©�〉p which contradicts to the
assumption. Thus, we can obtain � 〈p ∧ ©�〉p ↔ 〈p〉p.

3 Expressivity

In this section, we will make a comparison of the expressivity of L©〈·〉 and
the expressivity of the basic linear temporal logic L© defined below. Since L©

is a fragment of L©〈·〉, it means that L©〈·〉 is at least as expressive as L©.
Afterward, we will show that each φ ∈ L©〈·〉 can be equivalently reduced to a
formula ψ ∈ L©, which means that L© is at least as expressive as L©〈·〉. Thus,
it is proved that L©〈·〉 and L© are equally expressive.

The language L© is the fragment of L©〈·〉 without the modality 〈·〉 is defined
as:

φ ::= � | p | ¬φ | (φ ∨ φ) | ©φ.

Our strategy is to define a translation function which will translate each
L©〈·〉-formula into an L©-formula, and then show that each L©〈·〉-formula is
equivalent to its translation L©-formula.

In the translation, we need to rewrite a L©-formula into its disjunctive nor-
mal form, which is defined as follows. The intuition of disjunctive normal form
is that the negation symbol ¬ will occurs only next to atom letters and that
the temporal modality © will not occur outside the conjunction and disjunction
symbols. For example, a disjunctive normal form of the formula ¬ © (p ∧ ©q) is
©¬p ∨ © © ¬q.
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Definition 6 (Disjunctive normal form). Given a formula φ ∈ L©, we do
the following steps:

1. do the following replacement until each negation symbol is next to a proposi-
tional letter:
(a) replace each subformula ¬(ψ ∨ χ) with ¬ψ ∧ ¬χ;
(b) replace ¬ © ψ with ©¬ψ;
(c) replace ¬¬ψ with ψ;

2. do the following replacement until each © symbol is next to either a proposi-
tional letter or a negation symbol:
(a) replace ©(ψ ∨ χ) with (©ψ ∨ ©χ);
(b) replace ©(ψ ∧ χ) with (©ψ ∧ ©χ);

3. do the following replacement until no disjunctive symbols are in the scope of
conjunctive symbols:
(a) replace ψ ∧ (χ1 ∨ χ2) with (ψ ∧ χ1) ∨ (ψ ∧ χ2)
(b) replace (χ1 ∨ χ2) ∧ ψ with (χ1 ∧ ψ) ∨ (χ2 ∧ ψ).

We call the final formula a disjunctive normal form of φ, denoted by φ∨.

Let ©n+1φ be the formula © ©n φ and ©0φ = φ. We name those formulas
of form ©np or ©n¬p as temporal literals, where n ∈ N and p ∈ P. From the
definition of disjunctive normal form, it can be seen that each formula φ∨ is a
disjunction of conjunctions of temporal literals.

Note that a disjunctive normal form of φ is not defined as a disjunction of
conjunctions of temporal literals that is equivalent to φ. The reason is that we
would like to avoid the case that p ∧ ©� is a disjunctive normal form of p.

Given a disjunctive normal form φ∨, we use Cs(φ) to denote the set of
disjuncts of φ∨. For example, for φ∨ = (p ∧ ©2p) ∨ (©p ∧ ©4¬q), we have
Cs(φ∨) = {p ∧ ©2p,©p ∧ ©4¬p}.

Next, we are going to show that n|φ = n|φ∨ for each φ ∈ L© (i.e. Proposi-
tion 5). Before that, we need the following auxiliary propositions.

Proposition 3. Given a formula φ ∈ L© and a pointed model (σ, n), we have
that n|(©φ)∨ = (n + 1)|φ∨ .

Proof. Let φ∨ be the formula
∨

i≤n(
∧

j≤im
lj), where lj is a temporal literal. It

follows that (©φ)∨ is the formula
∨

i≤n(
∧

j≤im
©lj). Then, it is easy to check

that n|(©φ)∨ = (n + 1)|φ∨ .

Proposition 4. Given a formula φ ∧ ψ ∈ L© and a pointed model (σ, n), we
have that n|(φ∧ψ)∨ = n|φ∨ � n|ψ∨ .

Proof. Note that (φ∧ψ)∨ =
∨

φ′∈Cs(φ∨)

∨
ψ′∈Cs(ψ∨)(φ

′ ∧ψ′). So that n|(φ∧ψ)∨ =
⋃

φ′∈Cs(φ∨)

⋃
ψ′∈Cs(ψ∨) n|φ′∧ψ′ =

⋃
φ′∈Cs(φ∨)

⋃
ψ′∈Cs(ψ∨)(n|φ′ � n|ψ′). On the

other hand, n|φ∨ �n|ψ∨ =
⋃

φ′∈Cs(φ∨) n|φ′
� ⋃

ψ′∈Cs(ψ∨) n|ψ′ . Since it is not hard
to check

⋃
φ′∈Cs(φ∨)

⋃
ψ′∈Cs(ψ∨)(n|φ′ �n|ψ′) =

⋃
φ′∈Cs(φ∨) n|φ′

� ⋃
ψ′∈Cs(ψ∨) n|ψ′ ,

so we are able to obtain n|(φ∧ψ)∨ = n|φ∨ � n|ψ∨ .
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Now we are ready to show that n|φ = n|φ∨ for each φ ∈ L©.

Proposition 5. Given a pointed model (σ, n), we have that for each φ ∈ L©,
n|φ = n|φ∨ .

Proof. We prove it by induction on the length of φ.

– φ := p or φ := �. It is obvious.
– φ := ψ ∨ χ. Since (ψ ∨ χ)∨ = ψ∨ ∨ χ∨, along with the inductive hypothesis

we can derive n|(ψ∨χ)∨ = n|ψ∨∨χ∨ = n|ψ∨ ∪ n|χ∨ = n|ψ ∪ n|χ = n|ψ∨χ.
– φ := ©ψ. By Proposition 3 and IH, we can easily get n|(©ψ)∨ = (n+1)|ψ∨ =

(n + 1)|ψ = n|©ψ.
– φ := ¬ψ. We then have the following 5 cases:

• φ := ¬p or φ := ¬�. It is obvious.
• φ := ¬¬χ. It is obvious due to the fact that (¬¬χ)∨ = χ∨.
• φ := ¬ © χ. Note that (¬ © χ)∨ = (©¬χ)∨, and again by Proposition 3

and IH, we can get n|(¬©χ)∨ = n|(©¬χ)∨ = (n + 1)|(¬χ)∨ = (n + 1)|¬χ =
n|©¬χ = n|¬©χ.

• φ := ¬(χ ∨ θ) = ¬χ ∧ ¬θ. By Proposition 4 and IH, we can easily get
n|(¬χ∧¬θ)∨ = n|(¬χ)∨ � n|(¬θ)∨ = n|¬χ � n|¬θ = n|¬χ∧¬θ.

The following proposition states that each L©-formula is equivalent to its
disjunctive normal form.

Proposition 6. For each φ ∈ L©, � φ ↔ φ∨.

Proof. This follows from Propositions 1 and 5.

Next we are going to define the translation function. Before that, we first
introduce the notion of modal depth.

Definition 7 (Modal depth). The function d : L© → N is defined as follows:

d(�) = 0 d(p) = 0
d(¬φ) = d(φ) d(φ ∨ ψ) = max(d(φ), d(ψ))
d(©φ) = d(φ) + 1

Definition 8 (Translation). The translation function t : L©〈·〉 → L© is
defined in Table 3.

The following proposition states that the translation function indeed trans-
lates each L©〈·〉-formula into an L©-formula.

Proposition 7. For each φ ∈ L©〈·〉, t(φ) ∈ L©.

Proof. This can be easily shown by induction on the length of φ.

Next we are going to show that each L©〈·〉-formula is equivalent to its trans-
lation formula. The key is to show that n|φ = n|t(φ) for each φ ∈ L©〈·〉 (i.e.
Proposition 10). Before that, we need the following two auxiliary propositions.
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Table 3. The translation function

t(�) = �

t(p) = p

t(φ ∨ ψ) = t(φ) ∨ t(ψ)

t(©φ) = ©t(φ)

t(¬�) = ¬�
t(¬p) = ¬p

t(¬¬φ) = t(φ)

t(¬(φ ∨ ψ)) = t(¬φ) ∧ t(¬ψ)

t(¬ © φ) = ©t(¬φ)

t(〈φ〉ψ) =
∨

φi∈Cs(t(φ)∨)(φi ∧ ©d(φi)+1t(ψ))

t(¬〈φ〉ψ) = t(¬φ) ∨ ∧
φi∈Cs(t(φ)∨)(φi ∧ ©d(φi)+1¬t(ψ))

Proposition 8. Given φ, ψ ∈ L© and a pointed model (σ, n), we have that⋃
n′∈n|φ∨ n′|ψ =

⋃
φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ.

Proof. Note that n′ ∈ n|φ∨ implies n′ ∈ n|∨
φ′∈Cs(φ∨) φ′ , thus n′ ∈ ⋃

φ′∈Cs(φ∨) n|φ′ .
And, we have that

⋃
n′∈n|φ∨ n′|ψ =

⋃
φ′∈Cs(φ∨)(n|φ′)|ψ. On the other hand, we

have
⋃

φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ =
⋃

φ′∈Cs(φ∨)(n|φ′ � n|©d(φ′)+1ψ). Now we are
ready to show that ∀φ′ ∈ Cs(φ∨), (n|φ′)|ψ = (n|φ′ � n|©d(φ′)+1ψ):

Let φ′ = ©d(φ′)pφ′ , where pφ′ ∈ P. Then n|φ′ = n|©d(φ′)pφ′ = (n +
d(φ′))|pφ′ = {n+d(φ′)+1 | n+d(φ′) � pφ′}. For n|φ′ �n|©d(φ′)+1ψ, note the fact
that it requires n|φ′ �= ∅ and n|©d(φ′)+1ψ �= ∅. By Proposition 1, we can derive
n + d(φ′) � pφ′ from n|©d(φ′)pφ′ �= ∅. Moreover, d(φ′) < d(©d(φ′)+1ψ) implies
n|φ′ �n|©d(φ′)+1ψ = {n+d(φ′)+1 | n+d(φ′) � pφ′ and n+d(φ′)+1 � ψ}. Again,
by Proposition 1, we are able to obtain (n|φ′)|ψ = n|φ′ � n|©d(φ′)+1ψ. Finally, it
is suffice to show that

⋃
n′∈n|φ∨ n′|ψ =

⋃
φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ.

Proposition 9. Given φ, ψ ∈ L© and a pointed model (σ, n), we have that
�

n′∈n|φ∨ n′|ψ =
�

φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ.

Proof. Since n′ ∈ n|φ∨ implies n′ ∈ ⋃
φ′∈Cs(φ∨) n|φ′ , we can derive

�

n′∈n|φ∨ n′|ψ =
�

φ′∈Cs(φ∨)(n|φ′)|ψ. On the other hand, we have
�

φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ =
�

φ′∈Cs(φ∨)(n|φ′ � n|©d(φ′)+1ψ). Following from
the former proof of Proposition 8, we are capable to show that: ∀φ′ ∈
Cs(φ∨), (n|φ′)|ψ = (n|φ′ �n|©d(φ′)+1ψ). So it’s reasonable to reach the conclusion
that

�

n′∈n|φ∨ n′|ψ =
�

φ′∈Cs(φ∨) n|φ′∧©d(φ′)+1ψ.

Now we are ready to show that n|φ = n|t(φ) for each φ ∈ L©〈·〉.

Proposition 10. Given a pointed model (σ, n), we have that for each φ ∈ L©〈·〉,
n|φ = n|t(φ).
Proof. We prove it by induction on the length of φ.
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– φ := p or φ := �. It is obvious.
– φ := ψ ∨ χ. Since n|t(ψ∨χ) = n|t(ψ)∨t(χ) = n|t(ψ) ∪ n|t(χ), and by IH we get

n|t(ψ) ∪ n|t(χ) = n|ψ ∪ n|χ = n|ψ∨χ.
– φ := ©ψ. Since n|t(©ψ) = n|©t(ψ) = (n + 1)|t(ψ) and n|©ψ = (n + 1)|ψ. By

IH on ψ, we can get (n + 1)|t(ψ) = (n + 1)|ψ, thus n|t(©ψ) = n|©ψ.
– φ := 〈ψ〉χ. Following from the translation function in Table 3 along with

the Proposition 8, we can get n|t(〈ψ〉χ) = n|∨
ψi∈Cs(t(ψ)∨)(ψi∧©d(ψi)+1t(χ)) =

⋃
ψ∈Cs(t(ψ)∨) n|ψi∧©d(ψi)+1t(χ) =

⋃
n′∈n|t(ψ)∨ n′|t(χ). Then by Proposition 5

and IH, we can obtain n|〈ψ〉χ =
⋃

n′∈n|ψ n′|χ =
⋃

n′∈n|t(ψ)∨ n′|t(χ) = n|t(〈ψ〉χ).
– φ := ¬ψ. We then have the following 5 cases:

• φ := ¬p or φ := ¬�. It is obvious.
• φ := ¬¬χ. It is obvious due to the fact that t(¬¬χ) = t(χ).
• φ := ¬ © χ. Note the fact that ¬ © χ = ©¬χ, so we have n|¬©χ =

n|©¬χ = (n+1)|¬χ. Moreover, n|t(¬©χ) = n|©t(¬χ) = (n+1)|t(¬χ). By IH
on χ, we can get (n+1)|¬χ = (n+1)|t(¬χ), which means n|©¬χ = n|t(©¬χ),
i.e. n|¬©χ = n|t(¬©χ).

• φ := ¬(χ ∨ θ) = ¬χ ∧ ¬θ. By IH, it is not hard to get n|t(¬χ∧¬θ) =
n|t(¬χ)∧t(¬θ) = n|t(¬χ) � n|t(¬θ) = n|¬χ � n|¬θ = n|¬χ∧¬θ.

• φ := ¬〈χ〉θ. Following from the translation function in Table 3 and
Proposition 9, we can get n|t(〈ψ〉χ) = n|∨

ψi∈Cs(t(ψ)∨)(ψi∧©d(ψi)+1t(χ)) =
⋃

ψ∈Cs(t(ψ)∨) n|ψi∧©d(ψi)+1t(χ) =
⋃

n′∈n|t(ψ)∨ n′|t(χ). Then by Proposition
5 and IH, we get n|¬〈χ〉θ = n|¬χ ∪ �

n′∈n|χ(n′|¬θ) = n|t(¬〈χ〉θ).

The following theorem states that each L©〈·〉-formula is equivalent to its
translation formula.

Theorem 1. For each φ ∈ L©〈·〉, � φ ↔ t(φ).

Proof. This follows from Propositions 1 and 10.

4 Discussion

4.1 Succinctness

It is known that public announcement logic has the same expressivity as epis-
temic logic, but public announcement logic is exponentially more succinct than
epistemic logic (see [13]). In this section, we will discuss the succinctness of
L©〈·〉.

For each i ∈ N, the formula φi ∈ L©〈·〉 is defined as follows:

φ0 = (p ∨ ©p)
φi+1 = 〈φi〉(p ∨ ©p)
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Table 4. Models of φ2

0 1 2 3 4 5

p p p

p p p

p p p

p p p

p p p

p p p

p p p

p p p

It is obvious that the length φi is bounded by a linear function of i. However,
each φi contains 2i different cases. Take φ2 as an example, which is the following
formula:

〈〈(p ∨ ©p)〉(p ∨ ©p)〉(p ∨ ©p).

It contains the following 8 different cases:

〈〈p〉p〉p, 〈〈p〉p〉 © p, 〈〈p〉 © p〉p, 〈〈p〉 © p〉 © p,
〈〈©p〉p〉p, 〈〈©p〉p〉 © p, 〈〈©p〉 © p〉p, 〈〈©p〉 © p〉 © p.

These 8 cases correspond to the 8 models depicted in Table 4.
The 8 cases can also be expressed by the following L©-formula:

(p ∧ ©((p ∧ ©(p ∨ ©p)) ∨ ©(p ∧ ©(p ∨ ©p))))
∨© (p ∧ ©((p ∧ ©(p ∨ ©p)) ∨ ©(p ∧ ©(p ∨ ©p)))),

which is the formula ψ2 defined below. For each i ∈ N, ψi is defined as follows:

ψ0 = (p ∨ ©p)
ψ′

i = (p ∧ ©ψi)
ψi+1 = (ψ′

i ∨ ©ψ′
i)

Moreover, it can be shown that � φi ↔ ψi for each i ∈ N. It is obvious
that the length of ψi is no less than 2i. We conjecture that ψi is the shortest
L©-formula that is equivalent to ψi.

4.2 Comparison with Interval-Based Temporal Logic

Interval-based temporal logic is interpreted on temporal models where the under-
lying temporal ontology is time intervals, instead of time instants (see [2,6,8]).
There have been various proposals and developments of interval-based temporal
logics in the philosophical logic literature, such as [1,3,8–12,14,20,22].

An interval on the natural numbers N is a set of continuous natural numbers.
For example, the interval [n,m] is the set {k ∈ N | n ≤ k ≤ m}. In an influential
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early work on the formal study of interval-based temporal ontology, Allen in [2]
considered the family of all binary relations that can arise between two intervals
in a linear order, including the meet relation. The interval A meets the interval
B if and only if the last number of A equals the first number of B. For example,
the interval [1, 3] meets the interval [3, 5].

The next modality 〈·〉 discussed in this paper can be interpreted on intervals.
The interval relation corresponding the modality 〈·〉 is not the relation meet. For
example, if p ∧ ©p is true on both the intervals [1, 2] and the intervals [3, 4], we
can say that the successive events 〈p∧©p〉(p∧©p) is true on the interval [1, 4].
However, the interval [1, 2] does not meet the interval [3, 4].

Although we can say that the interval [1, 2] is before the interval [3, 4], the
before relation is not the relation modeled by the modality 〈·〉. The before relation
discussed by Allen in [2] is that the interval A is before the interval B (in other
words, B is after A) if and only if the last number of A is bigger than the
first number of B. The relation modeled by 〈·〉 is the immediate after relation
on intervals. To the limitation of the author’s knowledge, such relation is not
discussed in literatures.

5 Conclusion

In this paper, we proposed a new temporal modality 〈·〉 to capture successive
events. We extended the basic linear temporal logic, which refers to the linear
temporal logic with the only modality next, by including the new successive
modality. In semantics, we interpreted this new modality in a dynamic way that
is similar to the public announcement modality in public announcement logic.
We studied the expressivity of this new modality and showed that this new
modality can be defined in the basic linear temporal logic. Additionally, We also
discussed the succinctness of this extended linear temporal logic.

Regarding future work, one natural question is whether this extended linear
temporal logic is exponentially more succinct than the basic linear temporal
logic. In Sect. 4, we merely discuss this question through an example, which does
not provide precise proof. In the future, we will try to prove its succinctness in
detail. Another interesting direction is to interpret this logic on interval-based
temporal logic and find out whether the modality 〈·〉 can be expressed by the
interval-based temporal logic by [8].

Acknowledgement. The authors thank four anonymous reviewers for their useful
comments, which helped us to improve the presentation. This work is supported by
the Fundamental Research Funds for the Central Universities (No. 63233137).
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Abstract. This paper proposes non-labelled sequent calculi, G(K45PAL) and
G(S5PAL), for the public announcement expansions of modal logics K45 and S5.
We transform each of the recursion axioms of PAL into left and right rules for the
sequent calculi. For G(K45PAL), the cut elimination theorem is shown using the
complexity measure introduced by van Ditmarsch et al. (2007). This measure was
originally employed to establish semantic completeness via recursion axioms.
While the cut elimination theorem fails in G(S5PAL), we adopt Takano’s strategy
(1992) to establish that the cut formula in G(S5PAL) can be restricted to the set
of suitably extended subformulas (i.e., closure) of the conclusion of the cut rule.

Keywords: Public Announcement Logic · Epistemic Logic · Cut Elimination ·
Sequent Calculus · Analytic Cut

1 Introduction

Sequent calculus, also called Gentzen system, is a logic system devised by Gerhard
Gentzen in the 1930s, which opened a field of proof theory by structuring logical deduc-
tions [8,9], with the notion of sequent Γ ⇒ Δ, which expresses the implication from
premises Γ to conclusions Δ, i.e., if all formulas in Γ hold then some formula in Δ holds.
A crucial aspect of sequent calculus is the concept of cut-elimination (Gentzen’s Haupt-
satz), which simplifies proofs by removing instances of the cut rule, thereby yielding
more intuitive and transparent “cut-free” proofs, where the cut rule is of the following
form:

Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
Γ,Π ⇒ Δ, Σ (Cut)

.

This process uncovers the constructive content of proofs and contributes to our under-
standing of proof normalization and proof search [30].
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When we turn our eyes on modal logics, sequent calculi were provided, e.g., by
Ohnishi and Matsumoto [19]. For modal logics such as KT and S4, traditional sequent
calculi are acknowledged to be sound, complete, and cut-free in [19]. On the other hand,
for modal logic S5, the cut-elimination theorem fails for a sequent calculus G(S5) of
modal logic S5, as explained in [20, p.116]. To recover the cut elimination theorem,
it is necessary to either incorporate global side conditions, as in the work of Braüner
[5], or extend the sequent format with additional structures such as hypersequents (for
example, see Poggiolesi [23]), display calculus (for example, see Dosen [7]), or labelled
sequents by Negri [15]. In particular, Negri [15] introduced a universal method for
producing contraction- and cut-free labelled sequent calculi for a broad spectrum of
normal modal logics. Instead of regaining the cut elimination, Takano [28] established
that, while system G(S5) does not allow the elimination of cuts, it can be shown that
every application of the cut rule in G(S5) can be replaced by an analytic application of
the cut rule, where the cut rule is analytic if the cut formula ϕ is a subformula of the
conclusion Γ,Π ⇒ Δ, Σ of the cut rule above.

Public announcement logic PAL serves as a theoretical framework for interpreting
knowledge shifts within multi-agent systems [22]. It expands the multi-agent version
of modal logic S5 (epistemic logic) with a public announcement operator [ϕ]ψ that
reads as “if ϕ is true, then after the public announcement of ϕ, ψ holds.” The semantic
completeness of PAL is reduced to that of S5 by an equivalence-preserving translation
of a formula from the syntax of PAL to a formula in the syntax of S5. A key part
of this reduction consists of the recursion axioms that push an occurrence of a public
announcement operator inside the whole formula, along with the complexity measure
that enables us to conduct induction properly.

The labelled formalism introduced by Negri [15] has subsequently been employed
by several authors in the construction of labelled cut-free sequent calculi for PAL, as
documented in the works of Maffezioli and Negri [14], Balbiani et al. [2], Nomura et
al. [18], and Wu et al. [32]. Furthermore, sequent calculi have been defined for var-
ious logics in the field of dynamic epistemic logic, even if one insists on adhering
to the conventional notion of sequents and avoiding labelled formalism. Hatano and
Sano [10] introduced a cut-free non-labelled sequent calculus for a constructive vari-
ant of dynamic logic of relation changers by van Benthen and Liu [4]. They trans-
formed each of the recursion axioms to left and right inference rules of the proposed
sequent calculus and emphasized the importance of the complexity measure from [6]
as part of a cut-elimination argument. Then Wirsing and Knapp [31] provided a cut-
free non-labelled sequent calculus, denoted as G4P,A, for action model logic with S4
as its base logic (since we cannot eliminate the cut rule for S5). They also transformed
recursion axioms for action model logic to sequent rules and utilized the complexity
measure defined in [6] for the cut-elimination argument. However, there have been no
non-labelled sequent calculi for public announcement logic or action model logic with
the multi-agent version of S5 as the base logic. This paper focuses on public announce-
ment logic.

In this work, we introduce sequent calculi named G(K45PAL) and G(S5PAL) for
the public announcement expansions of multi-agent K45 and S5, respectively. Unlike
labelled sequent calculi, our proposed calculi do not internalize accessibility relations or
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incorporate labels. Instead, like in [10,31], our inference rules for public announcement
operators are derived naturally from the recursion axioms specified in [6] (it is worth
noting that our inference rules for public announcement operators have almost the same
form as those in [32] when disregarding the labels).

To emphasize the proof-theoretic importance of the complexity measure introduced
in [6], we first establish that G(K45PAL) enjoys the cut-elimination theorem. Although
our sequent calculi do not enjoy the subformula property (i.e., a sequent is derivable
only in terms of sequents consisting of subformulas of the original sequent), we nat-
urally extend the notion of subformula to the notion of closure. With this notion of
closure, we follow Takano’s approach [28] to syntactically establish that every applica-
tion of the cut rule in G(S5PAL) can be replaced by such an application of the cut rule
that the cut formula can be taken from the closure of the conclusion of the cut rule. In
other words, our calculus G(S5PAL) remains analytic in terms of the notion of closure.
We also emphasize that the complexity measure from [6] plays an important role in this
syntactic argument.

The structure of this paper is organized in the following manner: Section 2 reviews
syntax and semantics of multi-agent version of K45 and S5. In Sect. 3, we introduce
the sequent calculi G(K45PAL) and G(S5PAL). Section 4 presents the proof of cut-
elimination for G(K45PAL) in terms of the complexity measure introduced by van
Ditmarsch et al. (2007). Section 5 adopts Takano’s strategy (1992) to establish that the
cut formula in G(S5PAL) can be restricted to the set of suitably extended subformulas
(i.e., closure) of the conclusion of the cut rule. Finally, Sect. 6 concludes the paper.

2 Preliminaries

Let Prop be a countably infinite set of propositional variables and Ag a non-empty finite
set of agents. The syntax L for epistemic logic is defined inductively as follows:

L � ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | Kaϕ

where p ∈ Prop and a ∈ Ag. Moreover, the syntax L+ for public announcement logic is
defined inductively as follows:

L+ � ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | Kaϕ | [ϕ]ψ

We use ϕ↔ ψ as an abbreviation for (ϕ→ ψ) ∧ (ψ→ ϕ) and ϕ ∨ ψ as an abbreviation
for ¬ϕ → ψ. For a finite set Δ,

∧
Δ and

∨
Δ are the conjunction or disjunction of all

formulas in Δ (when Δ is empty,
∧
Δ := 
 and

∨
Δ := ⊥). A K-formula is a formula of

the form Kaϕ.
The following definition and lemma are from [6, Definition 7.21] and [6, Lemma

7.22], respectively and they are key ingredients for establishing semantic completeness
of the public announcement logic in [6].

Definition 1. The complexity c of a formula ϕ in L+ is inductively defined as

c(p) := 1,
c(¬ϕ) := 1 + c(ϕ),

c(ϕ1 • ϕ2) := 1 +max(c(ϕ1), c(ϕ2)) (• ∈ {→,∧}),
c(Kaϕ) := 1 + c(ϕ),
c([ϕ]ψ) := (4 + c(ϕ)) · c(ψ).
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Lemma 1. The following inequalities hold in L+:

(1) c(ψ) > c(ϕ) if ϕ ∈ Sub(ψ) and ϕ is distinct from ψ as a formula,
(2) c([ϕ]¬ψ) > c([ϕ]ψ),
(3) c([ϕ](ψ1 • ψ2)) > c([ϕ]ψi) (• ∈ {→,∧}),
(4) c([ϕ]Kaψ) > c(Ka[ϕ]ψ),
(5) c([ϕ][ψ]γ) > c([ϕ ∧ [ϕ]ψ]γ).

The set Sub(ϕ) of all subformulas is defined as usual. Moreover we define the
extended notion CL(ϕ) of Sub(ϕ) as follows (our notion is a simplification of [6, Defini-
tion 7.27] in the setting without the common knowledge operators). Inference rules for
public announcements in our sequent calculi do not satisfy the subformula property but
the extended version of the subformula property in terms of CL(ϕ).

Definition 2. The closure CL(ϕ) of an L+-formula ϕ is defined inductively as follows:

CL(p) := {p}
CL(¬ϕ) := CL(ϕ) ∪ {¬ϕ}

CL(ϕ • ψ) := CL(ϕ) ∪ CL(ψ) ∪ {ϕ • ψ}(• ∈ {→,∧})
CL(Kaϕ) := CL(ϕ) ∪ {Kaϕ}
CL([ϕ]p) := CL(ϕ) ∪ {p, [ϕ]p}

CL([ϕ]¬ψ) := CL(ϕ) ∪ CL([ϕ]ψ) ∪ {[ϕ]¬ψ}
CL([ϕ](ψ • γ)) := CL([ϕ]ψ) ∪ CL([ϕ]γ) ∪ {[ϕ](ψ • γ)}(• ∈ {→,∧})

CL([ϕ]Kaψ) := CL(Ka[ϕ]ψ) ∪ CL(ϕ) ∪ {[ϕ]Kaψ}
CL([ϕ][ψ]γ) := CL([ϕ ∧ [ϕ]ψ]γ) ∪ {[ϕ][ψ]γ}

For a set Ξ of formulas, we define CL(Ξ) :=
⋃
ϕ∈Ξ CL(ϕ).

Note that Sub(ϕ) ⊆ CL(ϕ) and CL(ϕ) is finite. Moreover, if a formula ϕ is from L, it
follows that CL(ϕ) = Sub(ϕ). By Lemma 1, we obtain the following.

Lemma 2. c(ψ) > c(ϕ) if ϕ ∈ CL(ψ) and ϕ is distinct from ψ as a formula.

We move on to the semantics. A frame F is a tuple (W, (Ra)a∈Ag) where W is a set of
states and Ra ⊆ W ×W is a binary relation on W for each a ∈ Ag. A model M is a tuple
(W, (Ra)a∈Ag,V) where (W, (Ra)a∈Ag) is a frame and V is a function from Prop to P(W).
Let M = (W, (Ra)a∈Ag,V) be a model and w ∈ W. The notion of ϕ being true at w in M
(notation: M,w |= ϕ) is defined inductively as follows:

M,w |= p iff w ∈ V(p),
M,w |= ¬ϕ iff M,w �|= ϕ,
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M |= ψ,
M,w |= ϕ→ ψ iff M,w �|= ϕ or M |= ψ,
M,w |= Kaϕ iff for all v ∈ W,wRav implies M, v |= ϕ,
M,w |= [ϕ]ψ iff M,w |= ϕ implies Mϕ,w |= ψ,

where Mϕ = (Wϕ, (Rϕa)a∈Ag,Vϕ), Wϕ = {w ∈ W |M,w |= ϕ } ,Rϕa = Ra ∩ (Wϕ ×Wϕ) and
Vϕ(p) = V(p) ∩Wϕ.

A formula ϕ is valid in a model (notation: M |= ϕ) if M,w |= ϕ for all w ∈ W. A
formula ϕ is valid in a frame F (notation: F |= ϕ) if (F,V) |= ϕ for all valuations V .
Given a class F of frames, ϕ is valid in F if ϕ is valid in F for every F ∈ F.
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Definition 3. We define FK45 to be the class of all transitive and euclidean frames
and FS5 to be the class of all reflexive, transitive and euclidean frames. We define that
K45 and S5 are the sets of all L-formulas that are valid in the class of FK45 and FS5,
respectively. The public announcement expansion K45PAL of K45 is the set of all L+-
formulas that are valid in the class FK45. The public announcement expansion S5PAL
of S5 is the set of all L+-formulas that are valid in the class FS5.

It is well-known that all logics in Definition 3 can be axiomatized in Hilbert systems
by the axioms and inference rules as in Table 1 (see [6]).

Table 1. Hilbert Systems H(K45), H(S5), H(K45PAL) and H(S5PAL)

All the Axioms and Rules of H(K45)

(Taut) all instances of propositional tautologies

(K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

(4) Kaϕ→ KaKaϕ

(5) ¬Kaϕ→ Ka¬Kaϕ

(MP) From ϕ→ ψ and ϕ, we may infer ψ

(Nec) From ϕ, we may infer Kaϕ

Additional Axiom for H(S5)

(T) Kaϕ→ ϕ
Additional Recursion Axioms for H(K45PAL) and H(S5PAL)

([]at) [ϕ]p↔ (ϕ→ p)

([]∧) [ϕ](ψ ∧ γ)↔ ([ϕ]ψ ∧ [ϕ]γ)

([]→) [ϕ](ψ→ γ)↔ ([ϕ]ψ→ [ϕ]γ)

([]¬) [ϕ]¬ψ↔ (ϕ→ ¬[ϕ]ψ)

([]K) [ϕ]Kaψ↔ (ϕ→ Ka[ϕ]ψ)

([][]) [ϕ][ψ]γ ↔ [ϕ ∧ [ϕ]ψ]γ

Proposition 1. Hilbert systems H(K45) and H(S5) are sound and complete for FK45

and FS5, respectively. Hilbert systems H(K45PAL) and H(S5PAL) are sound and com-
plete for FK45 and FS5, respectively.

Proof. Since all the results are well-known, we review how the complexity c(ϕ) plays a
role in the case of the semantic completeness proof of Hilbert system H(S5PAL) as did
in [6]. We can define a translation t from L+ to L that removes all the occurrences of
the public announcement operators from outermost occurrences. Then we can prove by
induction on the complexity c(ϕ) that t(ϕ) ↔ ϕ are both valid in FS5 and a theorem of
H(S5PAL) (see [6, Lemma 7.24]). Then we proceed as follows. Suppose that a formula
ϕ in L+ is valid in FS5. It follows that t(ϕ) ∈ L is also valid in FS5. Since H(S5) is
semantically complete for FS5, t(ϕ) is a theorem of H(S5) hence of H(S5PAL). By the
equivalence t(ϕ)↔ ϕ in H(S5PAL), we conclude that ϕ is a theorem of H(S5PAL). ��



Sequent Calculi of Public Announcement Expansions of K45 and S5 195

3 Sequent Calculi

In this section we introduce our sequent calculi G(K45PAL) and G(S5PAL).

3.1 Sequent Calculi G(K45) and G(S5)

A sequent Γ ⇒ Δ is a pair of finite multisets Γ and Δ of formulas and it read as: if
all formulas in Γ hold, then at least one formula in Δ holds. This section reviews the
known sequent calculi G(K45) and G(S5) for multi-agent K45 and S5, respectively.
Both calculi build on LK0 (see [28]), which is the propositional fragment of a sequent
calculus LK [8,9] of the first-order classical logic.

Definition 4. A sequent calculus LK0 consists of the following.

– Axioms:
ϕ⇒ ϕ (id)

– Structural Rules:

Γ ⇒ Δ
Γ ⇒ Δ, ϕ (⇒ w) Γ ⇒ Δ

ϕ, Γ ⇒ Δ (w⇒)
Γ ⇒ Δ, ϕ, ϕ
Γ ⇒ Δ, ϕ (⇒ c)

ϕ, ϕ, Γ ⇒ Δ
ϕ, Γ ⇒ Δ (c⇒)

– Logical Rules:

Γ ⇒ Δ, ϕ1 Γ ⇒ Δ, ϕ2

Γ ⇒ Δ, ϕ1 ∧ ϕ2
(⇒ ∧)

ϕi, Γ ⇒ Δ
ϕ1 ∧ ϕ2, Γ ⇒ Δ (∧ ⇒)

ϕ, Γ ⇒ Δ
Γ ⇒ Δ,¬ϕ (⇒ ¬)

Γ ⇒ Δ, ϕ
¬ϕ, Γ ⇒ Δ (¬ ⇒)

ϕ, Γ ⇒ Δ, ψ
Γ ⇒ Δ, ϕ→ ψ (⇒→)

Γ ⇒ Δ, ϕ ψ,Π ⇒ Σ
ϕ→ ψ, Γ, Π ⇒ Δ, Σ (→⇒)

– Cut:
Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
Γ,Π ⇒ Δ, Σ (Cut)ϕ

The sequent calculus G(K45) is LK0 expanded with the following rule:

Γ,KaΓ ⇒ KaΔ, ϕ

KaΓ ⇒ KaΔ,Kaϕ
(KK45)

.

The sequent calculus G(S5) expands LK0 with the following rules:

KaΓ ⇒ KaΔ, ϕ

KaΓ ⇒ KaΔ,Kaϕ
(⇒ KS5)

ϕ, Γ ⇒ Δ
Kaϕ, Γ ⇒ Δ (K ⇒)

.

For each calculus, we define the notion of derivability of a sequent as a finite tree
generated from axioms (id) by inference rules specific to the calculus.

Proposition 2. Let Λ ∈ {K45,S5}.
(1) If Γ ⇒ Δ is derivable in G(Λ) then

∧
Γ → ∨Δ is a theorem of H(Λ).

(2) If ϕ is a theorem of H(Λ), then⇒ ϕ is derivable in G(Λ).
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Proposition 3 (Shvarts [27]). The cut rule is admissible in G(K45), i.e., if Γ ⇒ Δ
is derivable in G(K45) then the same sequent is also derivable in the sequent calculus
G(K45) without the cut rule.

A formula p→ Ka¬Ka¬p is derivable in G(S5) with the cut rule as follows:

Ka¬p⇒ Ka¬p
⇒ ¬Ka¬p,Ka¬p (⇒ ¬)

⇒ Ka¬Ka¬p,Ka¬p (⇒ KS5)

p⇒ p
¬p, p⇒ (¬ ⇒)

Ka¬p, p⇒ (K ⇒)

p⇒ Ka¬Ka¬p (Cut)Ka¬p

⇒ p→ Ka¬Ka¬p (⇒→)
.

As noted in [20], however, we cannot eliminate the above application of the cut rule.
Moreover, Takano [28] established the following syntactically (a semantic argument
can be found in [29]).

Proposition 4 (Takano [28]). Every application of the cut rule of G(S5) can be
replaced with an analytic one.

3.2 Sequent Calculi G(K45PAL) and G(S5PAL)

Definition 5. The sequent calculi G(K45PAL) and G(S5PAL) are the ones which are
obtained from G(K45) and G(S5), respectively, by supplementing the following rules
on public announcements:

ϕ, Γ ⇒ Δ, p
Γ ⇒ Δ, [ϕ]p

(⇒ [] at)
Γ ⇒ Δ, ϕ p, Π ⇒ Σ

[ϕ]p, Γ, Π ⇒ Δ, Σ ([] at⇒)

ϕ, [ϕ]ψ, Γ ⇒ Δ
Γ ⇒ Δ, [ϕ]¬ψ (⇒ []¬)

Γ ⇒ ϕ, Δ Π ⇒ Σ, [ϕ]ψ
[ϕ]¬ψ, Γ, Π ⇒ Δ, Σ ([]¬ ⇒)

Γ ⇒ Δ, [ϕ]ψ1 Γ ⇒ Δ, [ϕ]ψ2

Γ ⇒ Δ, [ϕ](ψ1 ∧ ψ2)
(⇒ []∧)

[ϕ]ψi, Γ ⇒ Δ
[ϕ](ψ1 ∧ ψ2), Γ ⇒ Δ ([]∧ ⇒)

[ϕ]ψ, Γ ⇒ Δ, [ϕ]γ
Γ ⇒ Δ, [ϕ](ψ→ γ) (⇒ []→)

Γ ⇒ Δ, [ϕ]ψ [ϕ]γ,Π ⇒ Σ
[ϕ](ψ→ γ), Γ, Π ⇒ Δ, Σ ([]→⇒)

ϕ, Γ ⇒ Δ,Ka[ϕ]ψ
Γ ⇒ Δ, [ϕ]Kaψ

(⇒ [] K)
Γ ⇒ Δ, ϕ Ka[ϕ]ψ,Π ⇒ Σ

[ϕ]Kaψ, Γ, Π ⇒ Δ, Σ ([] K ⇒)

Γ ⇒ Δ, [ϕ ∧ [ϕ]ψ]γ
Γ ⇒ Δ, [ϕ][ψ]γ

(⇒ [] [])
[ϕ ∧ [ϕ]ψ]γ, Γ ⇒ Δ

[ϕ][ψ]γ, Γ ⇒ Δ ([] []⇒)

As the reader may see, these new rules are naturally obtained from recursion axioms
for public announcements in Table 1. For example, a formula Ka[ϕ]ψ in the premise of
the rule (⇒ []K) is not a subformula of the conclusion of the rule, but it is in the closure
of the conclusion. For each of the new rules above, every formula in premises of the
rule is an element of the closure of the conclusion of the rule. In this sense, our calculi
enjoy the extended subformula property in terms of the notion of closure (Definition 2).
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A derivation of the left-to-right direction of the axiom ([] K) is given as follows.

ϕ⇒ ϕ Ka[ϕ]ψ⇒ Ka[ϕ]ψ
ϕ, [ϕ]Kaψ⇒ Ka[ϕ]ψ

([] Ka ⇒)

[ϕ]Kaψ⇒ ϕ→ Ka[ϕ]ψ
(⇒→)

⇒ [ϕ]Kaψ→ (ϕ→ Ka[ϕ]ψ)
(⇒→)

.

Proposition 5. Let Λ ∈ {K45PAL,S5PAL}.
(1) If Γ ⇒ Δ is derivable in G(Λ) then

∧
Γ → ∨Δ is a theorem of H(Λ).

(2) If ϕ is a theorem of H(Λ), then⇒ ϕ is derivable in G(Λ).

4 Cut-Elimination for G(K45PAL)

This section establishes the cut-elimination theorem for G(K45PAL). The following is
an extended version of the cut rule from [12], which plays the similar role essentially
as Mix rule by Gentzen [8] to handle the difficulty caused by contraction rules.

Definition 6. (Ecut) is the following rule:

Γ ⇒ Δ, ρm ρn, Π ⇒ Σ
Γ,Π ⇒ Δ, Σ (Ecut)ρ

,

where m, n ∈ N, i.e., m and n are possibly zero.

It is noted that when m = n = 1 (Ecut) is the same as (Cut).

Definition 7. We define G−(K45PAL) as the same calculus as G(K45PAL) except that
the cut rule is excluded. The sequent calculus G∗(K45PAL) is the same calculus as
G(K45PAL) except that the cut rule is replaced with (Ecut).

Definition 8. The formulas that do not change in an inference rule except for (KK45) in
Definition 4 and (⇒ KS5) in Definition 4 are called parameters. For the other formulas,
those occurring in the lower sequent of an inference rule are called principal formulas,
and those occurring in the upper sequent are called active formulas. For (KK45) and
(⇒ KS5), the principal formulas are defined to be KaΓ, KaΔ and Kaϕ hence there are
no parameters in these rules.

For example, the principal formula of ([] []⇒) is [ϕ][ψ]γ.

Theorem 1. If Γ ⇒ Δ is derivable in G∗(K45PAL), then it is also derivable in
G−(K45PAL). Therefore, if Γ ⇒ Δ is derivable in G(K45PAL) then it is also derivable
in G−(K45PAL).
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Proof. It suffices to prove the first statement. For our purpose, we establish the follow-
ing (Hauptsatz): If in the following derivationD of G∗(K45PAL):

D ≡
.... L

Γ ⇒ Δ, ϕm rule(L)

.... R
ϕn, Π ⇒ Σ rule(R)

Γ,Π ⇒ Δ, Σ (Ecut)ϕ
,

there is no other (Ecut) in derivations of Γ ⇒ Δ, ϕm and ϕn, Π ⇒ Σ, then there is a
derivation in G−(K45PAL) of the sequent Γ,Π ⇒ Δ, Σ. We prove this statement on
a derivation D by double induction on the complexity c(D) and weight w(D) of the
derivation D (or the lexicographic order of the complexity and the weight), which are
defined as follows (see [12, pp.135–136]):

– The complexity c(D) of a derivation D is c(ϕ) of the cut-formula ϕ of (Ecut), as
defined in Definition 1.

– The weight w(D) of a derivation D is the number of all sequents in derivations L
and R.

If m = 0 or n = 0, it follows our goal can be obtained by weakening rules. Hence we
suppose m > 0 and n > 0 below. We divide the argument into the following cases.

1. Let rule(L) or rule(R) be (id).
2. Let rule(L) or rule(R) be structural rules.
3. Let rule(L) or rule(R) be logical rules or rules for Ka and public announcements

where the cut-formula is not principal.
4. Let rule(L) and rule(R) be rules of the same connective and the cut-formula is

principal in both rules.
Since cases (1) and (2) are handled similarly to the cut-elimination proof for LK0

(cf. [12]), we comment on the cases where our new public announcement rules are
concerned with. In particular, we deal with one typical instance of case (4) where the
complexity measure of Definition 1 plays a role.

Suppose rule(L) is (⇒ [] []) and rule(R) is ([] [] ⇒) where the cut-formula is
principal in both rules. In this case, the derivationD is of the following form:

Γ ⇒ Δ, ([ϕ][ψ]γ)m−1, [ϕ ∧ [ϕ]ψ]γ
Γ ⇒ Δ, ([ϕ][ψ]γ)m

(⇒ [] [])
[ϕ ∧ [ϕ]ψ]γ, ([ϕ][ψ]γ)n−1, Π ⇒ Σ

([ϕ][ψ]γ)n, Π ⇒ Σ ([] []⇒)

Γ,Π ⇒ Δ, Σ (Ecut)[ϕ][ψ]γ
.

We transform this derivation into:

Γ ⇒ Δ, ([ϕ][ψ]γ)m−1, [ϕ ∧ [ϕ]ψ]γ ([ϕ][ψ]γ)n, Π ⇒ Σ
Γ,Π ⇒ Δ, Σ, [ϕ ∧ [ϕ]ψ]γ

(Ecut)1
[ϕ][ψ]γ

Γ ⇒ Δ, ([ϕ][ψ]γ)m [ϕ ∧ [ϕ]ψ]γ, ([ϕ][ψ]γ)n−1, Π ⇒ Σ
[ϕ ∧ [ϕ]ψ]γ, Γ, Π ⇒ Δ, Σ (Ecut)2

[ϕ][ψ]γ

By induction hypothesis (Ecut)1 and (Ecut)2 can be eliminated since their complex-
ities are the same and their weights are reduced. Then, we obtain the following:

.... L
Γ,Π ⇒ Δ, Σ, [ϕ ∧ [ϕ]ψ]γ

.... R
[ϕ ∧ [ϕ]ψ]γ, Γ, Π ⇒ Δ, Σ

Γ, Γ, Π,Π ⇒ Δ, Δ, Σ.Σ (Ecut)3
[ϕ∧[ϕ]ψ]γ

Γ, Π ⇒ Δ, Σ (c)
,
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where (Ecut)3 can be eliminated because its complexity is reduced by Lemma 1 (5):
c([ϕ][ψ]γ) > c([ϕ ∧ [ϕ]ψ]γ). ��

As a corollary of Theorem 1, we can show that G(K45PAL) is a conservative exten-
sion of G(K45) as follows.

Corollary 1. If a sequent Γ ⇒ Δ in L is derivable in G(K45PAL) then it is also deriv-
able in G(K45).

5 Extended Analytic Cut Property of G(S5PAL)

This section establishes that every application of the cut rule in G(S5PAL) can be
replaced with an application of the cut rule such that the cut formula is in the closure of
the conclusion of the cut.

Definition 9. A cut
Γ ⇒ Δ, ϕ ϕ,Π ⇒ Σ
Γ,Π ⇒ Δ, Σ (Cut)ϕ

is analytic if ϕ ∈ CL(Γ,Π, Δ, Σ), otherwise it is non-analytic. A derivation without non-
analytic cuts is said to be an analytic derivation, or an a-derivation for short. The
sequent calculus Ga(S5PAL) is the same calculus as G(S5PAL) except that (Cut) is
always analytic.

We say that an (Ecut)ρ of Definition 6 is admissible in Ga(S5PAL) if derivability
in Ga(S5PAL) of both upper sequents Γ ⇒ Δ, ρ and ρ, Π ⇒ Σ of the (Ecut)ρ implies
derivability in Ga(S5PAL) of the lower sequent Γ,Π ⇒ Δ, Σ. In order to establish
the following main lemma regarding the extended analytic cut property of G(S5PAL),
we employ Takano’s argument for [28, Lemma 3.2] with necessary modifications to
account for our public announcement operators. The proof of the lemma can be found
in Appendix A.

Lemma 3. Suppose that (Ecut)ψ is admissible in Ga(S5PAL) for all ψ ∈ CL(ϕ). If the
sequent KaΓ ⇒ KaΔ is derivable in Ga(S5PAL), but with an application of (⇒ KS5)
for its lowest inference, then the sequent KaΓ ⇒ Ka(Δϕ), ϕ is derivable in Ga(S5PAL),
where Δϕ denotes the set which is obtained from Δ by deleting all the occurrences of ϕ.

Definition 10. We define G∗(S5PAL) as the same calculus as G(S5PAL) except that
the cut rule is replaced with (Ecut).

Theorem 2. If Γ ⇒ Δ is derivable in G∗(S5PAL) then it is also derivable in
Ga(S5PAL). Therefore, if Γ ⇒ Δ is derivable in G(S5PAL) then it is also derivable
in Ga(S5PAL).

Proof. The following argument is also an improvement of Takano’s argument in [28],
in which we use (Ecut) instead of Mix rule by Gentzen [8] to simplify the outline of
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the argument. It suffices to prove the first statement. For our purpose, we establish the
following: If in the following derivationD of G∗(S5PAL):

D ≡
.... L

Γ ⇒ Δ, ϕm rule(L)

.... R
ϕn, Π ⇒ Σ rule(R)

Γ,Π ⇒ Δ, Σ (Ecut)ϕ
,

there is no other (Ecut) in derivations of Γ ⇒ Δ, ϕm and ϕn, Π ⇒ Σ, then there is a
derivation in Ga(S5PAL) (i.e., all cuts are analytic) of the sequent Γ,Π ⇒ Δ, Σ. That
is, we can assume without loss of generality that the last (Ecut) is non-analytic.

We prove this statement on a derivation D by double induction on the complexity
and weight (or the lexicographic order of the complexity and the weight) of a derivation
D, which are defined as the same as in the proof of Theorem 1. If m = 0 or n = 0, it
follows that our goal can be obtained by weakening rules, hence we suppose m > 0 and
n > 0 below. We divide the argument into the following cases determined by the rules
applied last above the (Ecut).

(1) Let rule(L) or rule(R) be (id).
(2) Let rule(L) or rule(R) be a structural rule.
(3) Let rule(L) or rule(R) be an analytic cut.
(4) Let rule(L) or rule(R) be a logical rule or a rule for Ka and public announce-

ments where the cut-formula is not principal.
(5) Let rule(L) and rule(R) be rules of the same connective and the cut-formula is

principal in both rules.

Since cases (1) and (2) are handled similarly as in the proof of Theorem 1. We
comment on the new case (3) and case (5) where we need to use Lemma 3.

– (3) We only deal with the case where rule(L) is an analytic cut (when rule(R) is
an analytic cut, the argument is analogous). OurD looks as follows:

Γ′ ⇒ Δ′, ψ, ρa ψ, Γ′′ ⇒ Δ′′, ρb
Γ′, Γ′′ ⇒ Δ′, Δ′′, ρa+b

(Cut)aψ
ρn, Π ⇒ Σ

Γ′, Γ′′, Π ⇒ Δ′, Δ′′, Σ (Ecut)ρ

where ψ ∈ CL(Γ′, Γ′′, Δ′, Δ′′, ρa+b) since (Cut) is analytic. Here we divide the
argument into the following two cases: ψ ≡ ρ and ψ � ρ. Suppose ψ ≡ ρ. We
transformD into:

Γ′ ⇒ Δ′, ψ, ρa ρn, Π ⇒ Σ
Γ′, Π ⇒ Δ′, Σ (Ecut)ρ

Γ′, Γ′′, Π ⇒ Δ′, Δ′′, Σ (w)
.

By induction hypothesis, this (Ecut) can be eliminated since its weight is reduced.
Suppose ψ � ρ. We transformD into:

Γ′ ⇒ Δ′, ψ, ρa ρn, Π ⇒ Σ
Γ′, Π ⇒ Δ′, ψ, Σ (Ecut)1

ρ

ψ, Γ′′ ⇒ Δ′′, ρb ρn, Π ⇒ Σ
ψ, Γ′′, Π ⇒ Δ′′, Σ (Ecut)2

ρ

Γ′, Γ′′, Π, Π ⇒ Δ′, Δ′′, Σ, Σ (Ecut)3
ψ

Γ′, Γ′′, Π ⇒ Δ′, Δ′′, Σ (c)
.
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In this derivation (Ecut)1 and (Ecut)2 can be eliminated by induction hypothesis
since their weights are reduced. For (Ecut)3, we divide the argument into the follow-
ing two cases: ψ ∈ CL(ρ) and ψ � CL(ρ).

• Suppose ψ ∈ CL(ρ). Since ψ � ρ, the complexity of (Ecut)3 is reduced by
Lemma 2: c(ρ) > c(ψ). Hence it can be eliminated by induction hypothesis.
• Suppose ψ � CL(ρ). Since the original (Cut) is analytic, ψ ∈
CL(Γ′, Γ′′, Δ′, Δ′′, ρa+b). Then we have ψ ∈ CL(Γ′, Γ′′, Δ′, Δ′′). Thus
(Ecut)3 becomes an analytic cut since ψ ∈ CL(Γ′, Γ′′, Δ′, Δ′′) ⊆
CL(Γ′, Γ′′, Π, Π, Δ′, Δ′′, Σ, Σ).

– (5) Suppose rule(L) is (⇒ KS5) and rule(R) is (K ⇒) where the cut-formula is
the principal formula in both rules. In this case, the derivationD runs as follows:

KaΓ ⇒ KaΔ, ϕ, (Kaρ)m

KaΓ ⇒ KaΔ,Kaϕ, (Kaρ)m
(⇒ KS5)

ρ, (Kaρ)n−1, Π ⇒ Σ
(Kaρ)n, Π ⇒ Σ (K ⇒)

KaΓ,Π ⇒ KaΔ,Kaϕ, Σ
(Ecut)Kaρ.

Here we divide the argument into the following two cases: ϕ ≡ ρ and ϕ � ρ. Since
the standard argument can be applied to the case of ϕ ≡ ρ, we focus on the case of
ϕ � ρ. Suppose ϕ � ρ. By Lemma 3, if KaΓ ⇒ KaΔ,Kaϕ, (Kaρ)m is derivable in
Ga(S5PAL), then KaΓ ⇒ Ka(Δρ),Kaϕ, ρ is also derivable in Ga(S5PAL). Hence we
transform the derivation into:

KaΓ ⇒ Ka(Δρ),Kaϕ, ρ

KaΓ ⇒ KaΔ,Kaϕ, (Kaρ)m ρ, (Kaρ)n−1, Π ⇒ Σ
KaΓ,Π, ρ⇒ KaΔ,Kaϕ, Σ

(Ecut)1
Kaρ

KaΓ,KaΓ,Π ⇒ Ka(Δρ),KaΔ,Kaϕ,Kaϕ, Σ
(Ecut)2

ρ

KaΓ,Π ⇒ KaΔ,Kaϕ, Σ
(c)

.

By induction hypotheses, (Ecut)1 can be eliminated since its weight is reduced,
and (Ecut)2 can be eliminated since its complexity is reduced by Lemma 2 and
ρ ∈ Sub(Kaρ) ⊆ CL(Kaρ). ��
As a corollary of Theorem 2, we can show that G(S5PAL) is a conservative exten-

siion of G(S5) as follows.

Corollary 2. If a sequent from L is derivable in G(S5PAL) then it is also derivable in
G(S5).

Proof. Suppose a sequent from L is derivable in G(S5PAL). By Theorem 2, it follows
that the sequent is derivable in Ga(S5PAL) by a derivationD. To regardD as a deriva-
tion in Ga(S5) it suffices to show that each application of analytic cut in G(S5PAL)
preserves the subformula property (not the extended subformula property in terms of
CL) when the conclusion of the cut is in L. Let the cut formula ρ be in the closure of the
conclusion Γ,Π ⇒ Δ, Σ of the cut, i.e., ρ ∈ CL(Γ,Π, Δ, Σ). Since the conclusion is from
L, we get CL(Γ,Π, Δ, Σ) = Sub(Γ,Π, Δ, Σ). So, ρ ∈ Sub(Γ,Π, Δ, Σ) holds, as desired. ��
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6 Conclusion

We propose two non-labelled sequent calculi for the public announcement expansions
of the multi-agent K45 and S5. The calculus G(K45PAL) is demonstrated to be cut-
free, while G(S5PAL) is proven to enjoy the extended subformula property in terms of
closure. In both proofs, the complexity measure c(ϕ) from [6] plays a crucial role from
a proof-theoretic viewpoint. This aspect was not emphasized in [32] due to the fact that
the cut-elimination theorem of the labelled sequent calculus for public announcement
expansion in [32] was reduced to that of multi-agent S5 (similarly to semantic com-
pleteness, as seen in the proof of Proposition 1). By Theorems 1 and 2, any sequent
Γ ⇒ Δ that is derivable in G(K45PAL) or G(S5PAL) has a derivation in which all the
sequents are constructed from CL(Γ, Δ) (it should be noted that CL(Γ, Δ) is finite and
that CL(Γ, Δ) = Sub(Γ, Δ) when Γ and Δ are from L). By employing Gentzen’s argument
(cf. [21]) in terms of reduced sequents, we can establish the following:

Corollary 3. G(K45PAL) and G(S5PAL) are decidable.

This decidability argument for our non-labelled sequent calculi can be regarded as a
merit compared to the existing labelled sequent calculi [2,18,32] for public announce-
ment logic, because the notion of label makes [32]’s argument for the decidability more
involved than ours ( [2,18] did not discuss the decidability of the calculi).

There are three future directions of further research. First of all, there are other
extensions of logics with public announcements that also incorporate recursion axioms,
such as intuitionistic PAL [3,13,17], bilattice PAL [25] and relevant PAL [24]. We can
endeavor to develop sequent calculi for those logics with the similar approach as in this
paper.

Second, in light of the cut-free non-labelled sequent calculus in [31] for action
model logic that is based on S4, it would be worthwhile to explore the development
of a comparable calculus for that based on S5 (for a cut-free labelled sequent calculus
for action model logic, the reader can refer to [16]).

Finally, although cut-elimination theorem does not hold in G(S5), there are attempts
for obtaining cut-free sequent calculi such as hypersequent calculus by [1], the struc-
tured system of [26], and bi-sequent calculus in [11]. Based on these calculi, it would
be interesting to see if we can obtain a cut-free sequent calculus for PAL and how the
complexity of Definition 1 will be used.

A Proof of Lemma 3

Recall that a K-formula is a formula of the form Kaϕ for some formula ϕ. Let ϕ be
a formula and Ξ and Ω sets of formulas. Then, Ξϕ (or ΞΩ) denotes the resulting set
by deleting from Ξ all the occurrences of ϕ (or formulas in Ω, respectively). In what
follows, when Γ ⇒ Δ is derivable in Ga(S5PAL), we denote Ga(S5PAL) � Γ ⇒ Δ. We
can establish the following in the same way as in the proof of [28, Lemma 3.1].

Lemma 4. Suppose Ξ ⊆ CL(Γ, Δ). If the sequent Φ,Γ ⇒ Δ,Ψ is derivable in
Ga(S5PAL) for every partition 〈Φ;Ψ〉 of Ξ, then Γ ⇒ Δ has a derivation in
Ga(S5PAL).
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In what follows, we provide a proof of Lemma 3, whose statement is the following.

Suppose that (Ecut)ψ is admissible in Ga(S5PAL) for all ψ ∈ CL(ϕ). If the
sequent KaΓ ⇒ KaΔ is derivable in Ga(S5PAL) with an application of (⇒ KS5)
for its lowest inference, then the sequent KaΓ ⇒ Ka(Δϕ), ϕ is derivable in
Ga(S5PAL), where Δϕ denotes the set which is obtained from Δ by deleting all
the occurrences of ϕ.

Proof. Let D be such derivation of KaΓ ⇒ KaΔ in Ga(S5PAL) with an application of
(⇒ KS5) for its lowest inference. We divide our argument into the following two cases:
Kaϕ ∈ CL(KaΓ,Ka(Δϕ)) and Kaϕ � CL(KaΓ,Ka(Δϕ)). When Kaϕ ∈ CL(KaΓ,Ka(Δϕ)) we
have the following derivation:

.... D
KaΓ ⇒ KaΔ

ϕ⇒ ϕ
Kaϕ⇒ ϕ (K ⇒)

KaΓ ⇒ Ka(Δϕ), ϕ
(Cut)aKaϕ,

where (Cut)aKaϕ
is analytic by assumption. So, in what follows, we always assume

(a) Kaϕ � CL(KaΓ,Ka(Δϕ)).

Moreover, we replace any application of (Cut) inD
Θ⇒ Ω, ϕ ϕ,Π ⇒ Σ
Θ,Π ⇒ Ω, Σ (Cut)ϕ

such that ϕ ∈ Θ ∪ Π ∪ Ω ∪ Σ with applications of weakening rules. By (a) Kaϕ �
CL(KaΓ,Ka(Δϕ)), we can establish the following claim (as did in the proof of [28,
Lemma 3.2]).

Claim 1 None of the sequents ofD contain Kaϕ in its antecedent.

Define Ξ to be a sequence of all formulas except Kaϕ which occur in the lower
sequents of some applications of (⇒ KS5) in D. It follows that Ξ only consist K-
formulas. By the extended subformula property, we have Ξ ⊆ CL(KaΓ,Ka(Δϕ), ϕ). Our
goal is to show that KaΓ ⇒ Ka(Δϕ), ϕ is derivable in Ga(S5PAL). By Lemma 4, it
suffices to show the following.

(2.1) For every partition 〈KaΦ; KaΨ〉 of Ξ, KaΦ,KaΓ ⇒ Ka(Δϕ), ϕ,KaΨ is derivable
in Ga(S5PAL).

Fix any partition 〈KaΦ; KaΨ〉 of Ξ. Then, we divide our argument into the following
two cases:

(i) (KaΦ ∩ Ka(Δϕ) � ∅ or KaΓ ∩ KaΨ � ∅) or
(ii) (KaΦ ∩ Ka(Δϕ) = ∅ and KaΓ ∩ KaΨ = ∅).
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Suppose that (i) KaΦ ∩ Ka(Δϕ) � ∅ or KaΓ ∩ KaΨ � ∅. Then, either KaΦ ⇒ Ka(Δϕ)
or KaΓ ⇒ KaΨ is derivable in Ga(S5PAL) by weakening rules. Hence KaΦ,KaΓ ⇒
Ka(Δϕ), ϕ,KaΨ is derivable in Ga(S5PAL) by weakening rules.

Therefore, we always suppose that (ii) KaΦ ∩ Ka(Δϕ) = ∅ and KaΓ ∩ KaΨ = ∅ in
what follows. By definition of Ξ, we have KaΓ ⊆ Ξ and Ka(Δϕ) ⊆ Ξ. Since 〈KaΦ; KaΨ〉
is a partition of Ξ, it follows from (ii) that (c) KaΓ ⊆ KaΦ and Ka(Δϕ) ⊆ KaΨ .

Let us consider the uppermost application rule(D′) of (⇒ KS5) inD:

D′
KaΠ ⇒ KaΣ, ψ

KaΠ ⇒ KaΣ,Kaψ
(⇒ KS5) = rule(D′)

such that (d) KaΠ ⊆ KaΦ and KaΣ ∪ {Kaψ} ⊆ KaΨ ∪ {Kaϕ}. Such an application
exists certainly, because, in the lowermost application (⇒ KS5) in the derivationD (i.e.,
rule(D)), by (c) KaΓ ⊆ KaΦ and Ka(Δϕ) ⊆ KaΨ hence KaΔ ⊆ KaΨ ∪{Kaϕ}. Moreover
we have the following claim:

Claim 2 ψ � Kaϕ.

Proof. Now our goal is to show the following item:

(2.1′) KaΦ,KaΓ ⇒ Ka(Δϕ), ϕ,KaΨ is derivable in Ga(S5PAL).

It suffices to show the following.

(2.2) For every sequent Θ ⇒ Ω which lies above the lower sequent of rule(D′), (i.e.,
inD′), the sequent KaΦ,Θ⇒ ΩKaϕ,KaΨ is derivable in Ga(S5PAL).

Suppose (2.2) holds. By applying (2.2) to the upper sequent KaΠ ⇒ KaΣ, ψ of
rule(D′), it follows that KaΦ,KaΠ ⇒ Ka(Σϕ), ψ,KaΨ is derivable in Ga(S5PAL).
To show (2.1′), we divide the argument into the following two cases: ψ ≡ ϕ and ψ � ϕ.

First, let ψ ≡ ϕ. Then, by (d) KaΠ ⊆ KaΦ and KaΣ ∪ {Kaψ} ⊆ KaΨ ∪ {Kaϕ}, we
have Ka(Σϕ) ⊆ KaΨ . Hence (2.1′) holds by structural rules:

KaΦ,KaΠ ⇒ Ka(Σϕ), ϕ,KaΨ

KaΦ,KaΓ ⇒ Ka(Δϕ), ϕ,KaΨ .

Second, let ψ � ϕ. Then by (d) KaΠ ⊆ KaΦ and KaΣ ∪ {Kaψ} ⊆ KaΨ ∪ {Kaϕ}, we have
Ka(Σϕ) ∪ {Kaψ} ⊆ KaΨ . Hence (2.1′) holds by structural rules:

KaΦ,KaΠ ⇒ Ka(Σϕ), ψ,KaΨ

KaΦ,KaΠ ⇒ Ka(Σϕ),Kaψ,KaΨ
(⇒ KS5)

KaΦ,KaΓ ⇒ Ka(Δϕ), ϕ,KaΨ .

Therefore we are going to establish (2.2). Fix any sequent Θ ⇒ Ω in D′. Let n be the
height of derivation D′. To show (2.2), it suffices to prove the following statement by
induction on k � n:

∀Θ⇒ Ω in D′ (if the height of Θ⇒ Ω is k,

then KaΦ,Θ⇒ ΩKaϕ,KaΨ is derivable in Ga(S5PAL)).

��
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7. Došen, K.: Sequent-systems and groupoid models. I. Studia Logica: Int. J. Symbolic Logic
47(4), 353–385 (1988)

8. Gentzen, G.: Investigations into logical deduction. Am. Philos. Q. 1(4), 288–306 (1964)
9. Gentzen, G.: Investigations into logical deduction: II. Am. Philos. Q. 2(3), 204–218 (1965)

10. Hatano, R., Sano, K.: Three faces of recursion axioms: the case of constructive dynamic
logic of relation changers. J. Log. Comput. (2022). https://doi.org/10.1093/logcom/exac013

11. Indrzejczak, A.: Sequents and Trees: An Introduction to the Theory and Applications of
Propositional Sequent Calculi. Studies in Universal Logic, Springer, Switzerland (2021)

12. Kashima, R.: Mathematical Logic. Modern Foundamental mathematics, sakura Publishing
Co., Ltd (2009). (In Japanese)

13. Ma, M., Palmigiano, A., Sadrzadeh, M.: Algebraic semantics and model completeness for
intuitionistic public announcement logic. Ann. Pure Appl. Logic 165(4), 963–995 (2014)

14. Maffezioli, P., Negri, S.: A proof-theoretical perspective on public announcement logic.
Logic Philos. Sci. IX, 49–59 (2011)

15. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34(5), 507–544 (2005)
16. Nomura, S., Ono, H., Sano, K.: A cut-free labelled sequent calculus for dynamic epistemic

logic. J. Log. Comput. 30(1), 321–348 (2020)
17. Nomura, S., Sano, K., Tojo, S.: A labelled sequent calculus for intuitionistic public

announcement logic. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR
2015. LNCS, pp. 187–202. Springer, Heidelberg (2015)

18. Nomura, S., Sano, K., Tojo, S.: Revising a labelled sequent calculus for public announcement
logic. In: Yang, S.C.-M., Deng, D.-M., Lin, H. (eds.) Structural Analysis of Non-Classical
Logics. LASLL, pp. 131–157. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-48357-2 7

19. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi. Osaka Math. J. 9(2), 113–
130 (1957)

20. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi. II. Osaka Math. J 11(2),
115–120 (1959)

21. Ono, H.: Proof-theoretic methods in nonclassical logic -an introduction. In: Theories of
Types and Proofs, vol. 2, pp. 207–255. Mathematical Society of Japan (1998)

22. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
23. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symbolic Logic

1(1), 3–15 (2008)
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Abstract. In this paper, we consider the non-normal modal logics over
monotonic modal logic M with extensions of any combination of (N),
(P), (T), and (4) i.e. {M,MN, . . . ,MNPT4}. We study the algebras cor-
responding to these logics and give some examples of them. We further
introduce the Gentzen-style sequent calculi with soundness and com-
pleteness proved. Finally, we prove the FMP of these logics and thus
decidability based on our systems by algebraic proof-theoretic methods.

Keywords: Non-normal modal logics · FMP · Decidability

1 Introduction

A modal logic is called normal if it contains the following axioms and rule (M):
if α → β, then ♦α → ♦β, (C): ♦(α ∨ β) → ♦α ∨ ♦β, and (N): ♦⊥ → ⊥. The
classical propositional logic (denoted by CPL) extended with (M), (C), and (N)
is denoted by system K, of which the corresponding axiom is (K): ♦(α ∨ β) ↔
♦α ∨ ♦β. Clearly, non-normal modal logics are modal logics that do not satisfy
these conditions. For instance, Lewis’s [20] systems S1, S2, S3 and Lemmon’s [19]
systems E2 and E3 are all non-normal modal logics. Non-normal modal logics
play a significant role in modern modal logic since different interpretations of
normal modalities may lead to anti-intuitive and unacceptable conclusions in
various fields of logic and philosophy. In epistemology and epistemic logic, the
legitimacy of an equivalent form of axiom (K): �(α → β) → (�α → �β) (known
as epistemic closure in epistemology) is controversial since many scholars claimed
that knowledge is not closed under known implications, which may cause logical
omniscience problem (cf. [11]). In ethics and deontic logic, Forrester’s paradox
shows that the acceptance of axiom (K) may result in contradictory consequences
like moral dilemmas (cf. [24]). Similar motivations can be found in the logic of
agency and ability, philosophy of action, majority logic, logic of high probability,
and logic of group decision making as well (cf. [6,28]). Besides, when it comes
to more exact disciplines such as mathematics, non-normal modal logics can be
used to represent some classes of arithmetic formulas (cf. [1]).

Non-normal modal logics have been studied since the beginning of modern
modal logic (cf. [3,16,19,20,25,29,30]). They are defined as CPL extended with
(M), (C), (N) and (E). (E) means the congruence rule: if α ↔ β, then ♦α ↔ ♦β.
A logic that satisfies (E) is called congruential. Taking system E (CPL extended
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 207–221, 2023.
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with (E)) as a minimal logic, then one gets the so-called “classical cube” (cf. [3]).
Various investigations have been made for these structures. Vardi [32] proved that
E and any its extension with (M), (C), (N), (P), (T), (4) are decidable. Lavend-
homme and Lucas [17] introduced the sequent calculi for monotonic modal logicM
and congruential modal logic E which admit cut elimination. They provided deci-
sion procedures for M, E, EC, MC and MN based on inversion of rules. Orlandelli
[27] provided the first sequent calculi for non-normal logics EP and MP. Indrze-
jczak [12] further considered some extensions of M with (D), (T), (4), (B), (5),
and gave decision procedures for MT, MD, M4, MT4, M5, MD5, M45 and MD45.
Indrzejczak [12] also studied the MN-counterparts of M and showed that sequent
calculi for MND, MNT, MN4, MN5, MNT4, MND4, MN45 and MND45 admit cut-
elimination. Similar results were obtained on E as well (cf. [15]). Tableau, natu-
ral deduction, labeled sequent calculi, nested sequent calculi, hypersequent cal-
culi and display calculi for some of these logics were studied as well (cf. [4,5,7–
9,13,14,18,26]). From the algebraic perspective, Hansen [10] described the alge-
braization of monotonic modal logics. For the FMP and decidability result, Chel-
las [3] proved that the logics in classical cube extended with (T), (P), (D) enjoy
FMP by the filtration technique. However, to the best of the authors’ knowledge,
there is no proof of FMP for these logics extended with (4) (cf. [6]). Shkatov and
Alten [31] showed the universal theory of monotonic modal algebra is co-NP-
complete by the theory of partial algebra.

We continue this line of research. We consider the non-normal modal logic M
and its extensions with axioms from (N): ♦⊥ → ⊥, (P): � → ♦�, (T): α → ♦α,
and (4): ♦♦α → ♦α. These extensions are listed in the following Fig. 1, where
the direction of an arrow represents the extension with another axiom:

M

MNMPMTM4

MNPMNTMPTMN4MP4MT4

MNPTMNP4MNT4MPT4

MNPT4

Fig. 1. The class of non-normal modal logic based on M

Clearly, some of the logics in the above figure are not independent. For exam-
ple, the MNPT4 is equivalent to MNT4 since (P) is simply a special case of (T).
Although some of these logics have been studied, there still lacks systematic
research about them from the algebraic proof-theoretic approach. Since axioms
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(T) and (4) are quite essential in representing many objects’ properties, like
knowledge and time, it is pretty natural to take these axioms into consideration.

In this paper, we will introduce a serial monotonic modal algebras AM =
{M, . . . ,MNPT4} for all logics in LM = {M, . . . ,MNPT4}. The examples of
algebras M, MN, MP, M4, MNP, MN4, MPT, MP4, MNPT, MNP4, and MNPT4
are given. We prove the FMP of these logics and thus decidability. The FMP
results of these logics are beneficial supplements to current research, especially
given the fact that the lacking of FMP results of logics in the classical cube
extended with (4). These results show that a further study on the context-
freeness of these logics and thus a decidable algorithm is possible. Our method
is inspired by [21–23].

The present paper is organized as follows. In Sect. 2, we introduce a class
of algebras corresponding to LM = {M, . . . ,MNPT4}. In Sect. 3, we show their
Gentzen-style sequent calculi with soundness and completeness results. In Sect. 4,
we prove the finite model property of these logics.

2 Algebra

In this section, we study a class of algebras AM = {M, . . . ,MNPT4} that corre-
spond to the logics in previous Fig. 1. We first introduce the monotonic modal
algebra M as the basis for the entire discussion. Further, we consider various
extensions of M with any combinations of (N), (P), (T), (4), and give some
examples of them.

Definition 1 ([10]). A monotonic modal algebra M is a structure (A,∧,
∨,¬,♦, 0, 1), where (A,∧,∨,¬, 0, 1) is a Boolean algebra and ♦ is a unary oper-
ation on A satisfying the following condition: for all a, b ∈ A,

(M) If a ≤ b, then ♦a ≤ ♦b.

Definition 2. Algebra MX is any extension of M satisfying X which is (possibly
empty) any combinations of the following list of conditions: for all a ∈ A,

(N) ♦0 = 0; (P) ♦1 = 1; (T) a ≤ ♦a; (4) ♦♦a ≤ ♦a.

Clearly, MX is M when X is empty. Then we use MX to denote any algebras
from the class of algebra M with its various possible extensions namely MX ∈
AM . In what follows, we show some algebraic properties of the algebra structures
we have defined so far, including the basic algebra structure M and various
extensions of it. We denote ♦n(α) = ♦(♦n−1(α)),♦0(α) = α.

Lemma 1. For any MX, the following properties hold: for any a, b, c ∈ A and
n,m ≥ 0,

(1) a ∧ b ≤ 0 iff b ≤ ¬a;
(2) If ♦na ≤ b, then ♦n(a ∧ c) ≤ b;
(3) If ♦na ≤ b and ♦na ≤ c, then ♦na ≤ b ∧ c;
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(4) If ♦n+1a ≤ b, then ♦n♦a ≤ b;
(5) If ♦na ≤ b, then ♦n+1a ≤ ♦b;
(6) If ♦na ≤ b and ♦mb ≤ c, then ♦n+ma ≤ c.

Lemma 2. The following holds for corresponding MX: for any a, b, c ∈ A and
n ≥ 0,

(1) ♦n0 ≤ 0 holds for any MX where (N) is in X;
(2) If ♦n+11 ≤ a, then ♦n1 ≤ a holds for any MX where (P) is in X;
(3) If ♦n+1a ≤ b, then ♦na ≤ b holds for any MX where (T) is in X;
(4) If ♦n+1a ≤ b, then ♦n+2a ≤ b holds for any MX where (4) is in X.

Example 1. The lattices in Fig. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are examples
of M, MN, MP, M4, MNP, MN4, MPT, MP4, MNPT, MNP4, and MNPT4
respectively. Note that ♦(a∨b) �= ♦a∨♦b for any a, b ∈ A for all these examples.
For instance, ♦(a∨c) = d �= ♦a∨♦c = f in Fig. 2 and ♦(a∨c) = 1 �= ♦a∨♦c = e
in Fig. 12.

1

f

e

0

d b

a c

1 0 a b c d e f

♦ d f f d f d d d

Fig. 2. An example of M

1

f

e

0

d b

a c

1 0 a b c d e f

♦ d 0 d a 0 d d 0

Fig. 3. An example of MN

1

f

e

0

d b

a c

1 0 a b c d e f

♦ 1 c c 1 1 1 1 c

Fig. 4. An example of MP

1

f

e

0

d b

a c

1 0 a b c d e f

♦ d f f d d d d f

Fig. 5. An example of M4
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1

f

e

0

d b

a c

1 0 a b c d e f

♦ 1 0 0 1 e c 1 0

Fig. 6. An example of MNP

1

a

0

b

1 0 a b

♦ a 0 0 0

Fig. 7. An example of MN4

1

f

e

0

d b

a c

1 0 a b c d e f

♦ 1 d d 1 1 1 1 d

Fig. 8. An example of MPT

1

a

0

b

1 0 a b

♦ 1 a a a

Fig. 9. An example of MP4

1

f

e

0

d b

a c

1 0 a b c d e f

♦ 1 0 d 1 c 1 1 f

Fig. 10. An example of MNPT

1

a

0

b

1 0 a b

♦ 1 0 0 0

Fig. 11. An example of MNP4
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1

f

e

0

d b

a c

1 0 a b c d e f

♦ 1 0 a 1 c 1 1 1

Fig. 12. An example of MNPT4

Hereafter, we use MX and MX to denote the class of all MXs and the logic
of MX respectively.

3 Sequent Calculus

In this section, we introduce the Gentzen-style sequent calculi for any MX ∈ LM ,
denoted by GMX ∈ GM = {GM, . . . ,GMNPT4}. We start with the basic system
GM and present its various extensions by adding corresponding axioms or rules.
Their soundness and completeness results will be proved as well.

Definition 3. The set of formulas (terms) F is defined inductively as follows:

F � α ::= p | � | ⊥ | α ∧ β | ¬α | ♦α

where p ∈ Var, a denumerable set of propositional variables. A formula α is
called atomic if α ∈ Var ∪ {�,⊥}. The complexity of a formula α, denoted by
c(α), is defined inductively as follows:

c(α) = 0 if α is atomic;
c(†α) = c(α) + 1 if † is a unary operator;

c(α � β) = max{c(α), c(β)} + 1 if � is a binary operator.

Further, we use the following abbreviations:

α ∨ β := ¬(¬α ∧ ¬β) �α := ¬♦¬α

Definition 4. The set of all formula structures FS is defined inductively as
follows:

FS � ◦n(α) ::= α | ◦n(α)

where α ∈ F . Here we denote ◦n(α) = ◦(◦n−1(α)), ◦0(α) = α. A sequent is an
expression of the form ◦n(α) ⇒ β where ◦n(α) is a formula structure and β is a
formula. Let α ⇔ β denote α ⇒ β and β ⇒ α. A context is a formula structure
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◦n(−) with a designated position (−) which can be filled with a formula structure.
In particular, a single position (−) is a context. Let ◦n(α) be a formula structure
obtained from ◦n(−) by substituting formula α for (−). For any formula struc-
ture ◦n(α), the formula f(◦n(α)) means a formula obtained from the formula
structure ◦n(α) by replacing all structure operators ◦ with their corresponding
formula operators. f(◦n(α)) is defined inductively as follows:

f(α) = α f(◦(α)) = ♦(f(α))

Clearly, ◦ is the structure operator for ♦ and f(◦n(α)) = ♦n(f(α)). Every
nonempty formula structure ◦n(α) has a parsing tree with formulas in ◦n(α)
as leaf nodes and structural operators in ◦n(α) as non-leaf nodes.

Example 2. The expression ◦10(−) is a context. If we replace the formula α =
p∧q for the position − in ◦n(−), we get the formula structure ◦10(α) = ◦10(p∧q).

Definition 5. The Gentzen-style sequent calculus GM for non-normal modal
logic M consists of the following axioms and rules: for n ≥ 0,

(1) Axioms:

(Id) α ⇒ α (Dis) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

(�) ◦n (α) ⇒ � (⊥) ⊥ ⇒ α (DN) ¬¬α ⇒ α

(2) Logical rules:

α ∧ β ⇒ ⊥
β ⇒ ¬α

(¬I)
β ⇒ ¬α

α ∧ β ⇒ ⊥ (¬E)
◦n(αi) ⇒ β

◦n(α1 ∧ α2) ⇒ β
(∧L)(i = {1, 2})

◦n(α) ⇒ β ◦n (α) ⇒ γ

◦n(α) ⇒ β ∧ γ
(∧R)

◦n+1(α) ⇒ β

◦n(♦α) ⇒ β
(♦L)

◦n(α) ⇒ β

◦n+1(α) ⇒ ♦β
(♦R)

(3) Cut rule:
◦n(α) ⇒ β ◦m (β) ⇒ γ

◦m+n(α) ⇒ γ
(Cut)

The sequent calculus GMX for MX is obtained from GM by adding (possibly
empty) X which is any combination of the following axiom or rules:

(N) ◦n+1 (⊥) ⇒ ⊥ ◦n+1(�) ⇒ β

◦n(�) ⇒ β
(P)

◦n+1(α) ⇒ β

◦n(α) ⇒ β
(T)

◦n+1(α) ⇒ β

◦n+2(α) ⇒ β
(4)

A derivation of a sequent ◦n(α) ⇒ β in GMX is a finite tree of sequents
in which each node is either an instance of an axiom schema or derived from
child node(s) by an inference rule and the root node is ◦n(α) ⇒ β. A sequent
◦n(α) ⇒ β is provable in GMX, denoted by �GMX ◦n(α) ⇒ β, if there is a
derivation of ◦n(α) ⇒ β in GMX. We write �GMX α ⇔ β if �GMX α ⇒ β and
�GMX β ⇒ α. For the derivation tree D, the height of the derivation tree (also
called the length of proof), denoted by |D|, is the maximal length of branches in
D. The height of a single node derivation is zero. The subscript GMX in �GMX is
omitted if no confusion arises.
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Lemma 3. The following properties hold in any GMX:

(1) � α ∨ ¬α ⇔ �;
(2) � α ∧ ¬α ⇔ ⊥;
(3) � α ⇒ ¬¬α;
(4) If � α ⇒ β, then � ¬β ⇒ ¬α;
(5) � (α ∧ β) ∨ (α ∧ γ) ⇒ α ∧ (β ∨ γ);
(6) If � α ⇒ β, then � ♦α ⇒ ♦β;

Proof. We only provide the proofs for (4), (5), (6). The derivations of (4), (6)
are as follows:

α ⇒ β β ⇒ ¬¬β
(Cut)

α ⇒ ¬¬β
(¬E)

α ∧ ¬β ⇒ ⊥
(¬I)¬β ⇒ ¬α

α ⇒ β
(♦R)◦(α) ⇒ ♦β
(♦L)♦α ⇒ ♦β

For (5), It suffices to show that α ∧ β ⇒ α ∧ (β ∨ γ):

¬β ∧ β ⇔ ⊥ ⊥ ⇒ ¬¬γ
(Cut)¬β ∧ β ⇒ ¬¬γ

(¬E)
(¬β ∧ ¬γ) ∧ β ⇒ ⊥

(¬I)
β ⇒ ¬(¬β ∧ ¬γ)

(∧L)
α ∧ β ⇒ ¬(¬β ∧ ¬γ)

α ⇒ α (∧L)
α ∧ β ⇒ α

(∧R)
α ∧ β ⇒ α ∧ ¬(¬β ∧ ¬γ)

Lemma 4. The following properties hold for corresponding GMX:

(1) � ♦⊥ ⇒ ⊥ for any GMX containing (N) axiom;
(2) � � ⇒ ♦� for any GMX containing (P) rule;
(3) � α ⇒ ♦α for any GMX containing (T) rule;
(4) � ♦♦α ⇒ ♦α for any GMX containing (4) rule.

Proof. We only provide the proofs for (3) and (4).

α ⇒ α (♦R)◦(α) ⇒ ♦α
(T)

α ⇒ ♦α

α ⇒ α (♦R)◦(α) ⇒ ♦α
(4)◦ ◦ (α) ⇒ ♦α
(♦L) × 2♦♦α ⇒ ♦α

Definition 6. Given a MX A = (A,∧,∨,¬,♦, 0, 1), an assignment in A is a
function θ : Var → A. Every assignment σ in A can be extended homomorphi-
cally. Let σ̂(α) be the element in A denoted by α. An algebraic model is a pair
(A, σ) where A is an algebraic structure, and σ is an assignment in A. A sequent
◦n(α) ⇒ β is true in an algebraic model (A, σ), notation |=A,σ ◦n(α) ⇒ β, if
σ̂(f(◦n(α))) ≤ σ̂(β). A sequent ◦n(α) ⇒ β is true in a class of algebraic structure
K, notation |=K ◦n(α) ⇒ β, if |=A,σ ◦n(α) ⇒ β for any algebraic model (A, σ)
with A ∈ K. A sequent rule with premises ◦n

1 (α1) ⇒ β1, . . . , ◦n
m(αm) ⇒ βm and

conclusion ◦n
0 (α0) ⇒ β0 preserves truth in K, if |=A,σ ◦n

0 (α0) ⇒ β0 whenever
|=A,σ ◦n

i (αi) ⇒ βi for 1 ≤ i ≤ m, for any algebraic model (A, σ) with A ∈ K.
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Theorem 1 (Soundness and Completeness). Any GMX is sound and com-
plete with respect to its corresponding MX.

Proof. The soundness can be obtained by the induction on the length of proof
with Lemma 1 and Lemma 2, while the completeness can be obtained by the
FMP result in the next section.

4 Finite Model Property

In this section, we prove the FMP results for any GMX, that is, we will show that
if �GMX α ⇒ β, then there exists a finite MX model M such that �|=M α ⇒ β.
Then, we get the decidability for all GM ∈ GM . Our proof strategy is that we
will focus on GMNPT4’s FMP and decidability since it is the strongest system in
Fig. 1. Then the FMP and decidability result of other GMX weaker than GMNPT4
can be obtained independently from GMNPT4’s proof simply by deleting the
redundant cases. Note that the � symbol in this section means �GMNPT4 if no
confusion arises.

Definition 7. Let T be a set of formulas, a formula structure ◦n(α) is a T -
formula structure if α ∈ T . Let FS(T ) be the set of all T -formula structures. Let
the notation c(T ) denote the closure of T under (�,⊥,∧,¬) and subformulas. A
sequent ◦n(α) ⇒ β is a T -sequent if α, β ∈ T . We use � ◦n(α) ⇒T β if there is
a derivation of ◦n(α) ⇒ β such that all sequents appearing in it are T -sequents.

Lemma 5 (Interpolation). If � ◦m+n(α) ⇒T β and n ≥ 1, then there is a
γ ∈ T such that � ◦n(α) ⇒T γ, � ◦m(γ) ⇒T β and � ◦(γ) ⇒T γ for any m,n.

Proof. We proceed by induction on the length of proof of ◦m+n(α) ⇒T β. The
proof for axioms is obvious. Take (�) as an example, that is ◦m+n(α) ⇒ �.
Since � ∈ T , then � is the required interpolant. For (N), ⊥ is the required
interpolant. Assume that the end sequent is obtained by rule (R). Let us consider
the following cases, others can be treated similarly.

(R)=(∧L). Assume the premise is � ◦m+n(ϕ) ⇒T β and the conclusion is
� ◦m+n(ϕ∧ψ) ⇒T β where α = ϕ∧ψ. By induction hypothesis, there is a γ ∈ T
such that (1) � ◦n(ϕ) ⇒T γ, � ◦m(γ) ⇒T β and � ◦(γ) ⇒T γ. Then from (1)
by (∧L), one obtains � ◦n(ϕ ∧ ψ) ⇒T γ. Therefore, γ is a required interpolant.

(R)=(∧R). Assume the premises are � ◦m+n(α) ⇒T ϕ and � ◦m+n(α) ⇒T ψ
where β = ϕ ∧ ψ. By induction hypothesis, there are γ1, γ2 ∈ T such that (1)
� ◦n(α) ⇒T γ1, (2) � ◦n(α) ⇒T γ2, (3) � ◦m(γ1) ⇒T ϕ, (4) � ◦m(γ2) ⇒T ψ,
(5) � ◦(γ1) ⇒T γ1, (6) � ◦(γ2) ⇒T γ2. By applying (∧L) to (3) and (4), one has
(7) � ◦m(γ1 ∧ γ2) ⇒T ϕ and (8) � ◦m(γ1 ∧ γ2) ⇒T ψ. Next, we apply (∧R) to
(7) and (8), one has � ◦m(γ1 ∧γ2) ⇒T ϕ∧ψ. Again by applying (∧R) to (1) and
(2), one has � ◦n(α) ⇒T γ1 ∧ γ2. Similarly, we apply (∧L) and (∧R) to (5) and
(6), one has � ◦(γ1 ∧γ2) ⇒T γ1 ∧γ2. Therefore, γ1 ∧γ2 is a required interpolant.

(R)=(♦R). Assume the premise is ◦k(α) ⇒T β, then the conclusion is �
◦k+1(α) ⇒T ♦β where 1 ≤ n ≤ k. By induction hypothesis, there is a γ ∈ T
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such that (1) � ◦n(α) ⇒T γ, (2) � ◦k−n(γ) ⇒T β and (3) � ◦(γ) ⇒T γ. By
applying (♦R) to (2), one has � ◦k−n+1(γ) ⇒T ♦β. Note that (1) and (3) still
hold for the conclusion. Therefore, γ is a required interpolant. The (♦L) case
can be treated similarly.

(R)=(T). Assume the premise is � ◦k+1(α) ⇒T β, then the conclusion is
� ◦k(α) ⇒T β. Assume n + m = k, then by induction hypothesis, there is a
γ ∈ T such that (1) � ◦n(α) ⇒T γ, (2) � ◦k+1−n(γ) ⇒T β with m = k + 1 − n
and (3) � ◦(γ) ⇒T γ. Next, by applying (T) to (2), one has � ◦k−n(γ) ⇒T β
with m = k − n. Note that (1) and (3) still hold for the conclusion. Therefore,
γ is a required interpolant. The (P) case can be treated similarly.

(R)=(4). Assume the premise is � ◦k+1(α) ⇒T β, then the conclusion is
� ◦k+2(α) ⇒T β. If m + n = 2 i.e. k = 0, then by induction hypothesis, there is
a γ ∈ T such that � ◦(α) ⇒T γ, (1) � γ ⇒T β and (2) � ◦(γ) ⇒T γ. Then by
applying (Cut) to (1) and (2), one obtains � ◦(γ) ⇒T β. Thus γ is a required
interpolant. Otherwise, assume m + n ≥ 3, by induction hypothesis, there is
a γ ∈ T such that � ◦n(α) ⇒T γ, � ◦k+1−n(γ) ⇒T β and � ◦(γ) ⇒T γ. If
n �= k + 1, then by rule (4) on � ◦k+1−n(γ) ⇒T β or � ◦n(α) ⇒T γ, one has
� ◦k+2−n(γ) ⇒T β or � ◦k+2(α) ⇒T γ. Therefore, γ is a required interpolant.
Assume n = k + 1, then this case can be treated by a similar method when
n + m = 2. Therefore, γ is a required interpolant.

(R)=(Cut). Assume the premises are (1) � ◦k(α) ⇒T ϕ and (2) � ◦l(ϕ) ⇒T
β, then the conclusion is � ◦k+l(α) ⇒T β. Obviously m + n = k + l. Further,
assume n ≤ k, then by induction hypothesis one has (3) � ◦n(α) ⇒T γ, (4)
� ◦k−n(γ) ⇒T ϕ and (5) � ◦(γ) ⇒T γ. By applying (Cut) to (2) and (4), one
has � ◦k+l−n(γ) ⇒T β with m = k + l − n. Note that (3) and (5) still hold for
the conclusion. Therefore, γ is a required interpolant. Otherwise assume n > k,
one has m < l. Then by induction hypothesis, there is a γ ∈ T such that (6)
� ◦l−m(ϕ) ⇒T γ, (7) � ◦m(γ) ⇒T β and (8) � ◦(γ) ⇒T γ. By applying (Cut)
to (1) and (6), one has � ◦k+l−m(α) ⇒T γ with n = k + l − m. Note that (7)
and (8) still hold for the conclusion. Therefore, γ is a required interpolant.

Remark 1. The above interpolation lemma is not the standard form of Craig’s
interpolation. It is more like an inverse of the analytic cut. The additional content
i.e. � ◦(γ) ⇒T γ is specially designed for solving the case of (R)=(4) when
m + n = 2. Such a lemma is rooted in Buszkowski’s work [2] towards finite
embeddability property and FMP of nonassociative Lambek calculus and its
various lattice extensions. Lin [21,22] further studied this lemma to prove some
non-classical modal logics’ FMP or SFMP.

We define a kind of disjunctive normal form formula on the language. A
formula α is called a letter if α ∈ Var, α = �, α = ⊥ or α = ♦β for some
formulas β. Let Le be the set of all letters in the language. A formula α is called
a literal if α ∈ Le or α = ¬β for some β ∈ Le. We denote the set of literals
under language L by Li. A formula in disjunctive normal form (DNF) is the
disjunction of one or more disjuncts, each of which is the conjunction of one
or more literals. Note that the DNF of a formula defined here is actually the
equivalent expression obtained by the abbreviation of α ∨ β := ¬(¬α ∧ ¬β).
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Let T be a set of formulas such that T = c(T ). Suppose that Tli ⊆ T is the
set of all literals in T . We say T is finitely based if Tli is finite. For any formula
α ∈ T , there is a DNF formula β ∈ T such that α is equivalent to β by axiom
(Dis) and axiom (DN). If one omits the repetition of literals, then one has a
unique formula in DNF which is equivalent to α. We denote the unique DNF
formula corresponding to α by dfT (α). Let df(T ) = {dfT (α) | α ∈ T }. If Tli is
finite, then df(T ) is finite.

Corollary 1. If � ◦n+m(α) ⇒T β and n ≥ 1, then there is a γ ∈ df(T ) such
that � ◦n(α) ⇒T γ and � ◦m(γ) ⇒T β for any m,n.

Definition 8 (Order ≤T on FS(T )). Let ◦n(α), ◦m(β) ∈ FS(T ), we define
an order ≤T on FS(T ) as follows: ◦n(α) ≤T ◦m(β) iff for any context ◦k(−)
and formula ϕ ∈ T , if ◦k(◦m(β)) ⇒T ϕ, then ◦k(◦n(α)) ⇒T ϕ.

Let ◦n(α) ≈T ◦m(β) be ◦n(α) ≤T ◦m(β) and ◦m(β) ≤T ◦n(α), then ≈T is
an equivalence relation. Let [α]T = {◦m(β) | ◦m(β) ≈T α & ◦m (β) ∈ FS(T )}
for any α ∈ T . Let [T ] = {[α]T | α ∈ T )}. Since [α]T = [dfT (α)]T and the
number of [dfT (α)]T is finite, [T ] is finite.

Lemma 6. For any ◦(α) ∈ FS(T ), there is a β ∈ df(T ) such that ◦(α) ≈T β.

Proof. For any ◦k(−) and γj ∈ T , assume that � ◦k(◦(α)) ⇒T γj . By Corollary
1, there is a βj ∈ df(T ) such that � ◦(α) ⇒T βj and � ◦k(βj) ⇒T γj . Obviously,
the number of γj is finite. Let δ be the conjunction of all βj . Clearly δ ∈ T . By
(∧R) and (∧L), one has (1) � ◦(α) ⇒T δ and (2) � ◦k(δ) ⇒T γj . Then dfT (δ) ∈
df(T ). Let β = dfT (δ), then one has (3) � ◦(α) ⇒T β and (4) � ◦k(β) ⇒T γj .
Thus, the assumption � ◦k(◦(α)) ⇒T γj implies (4) � ◦k(β) ⇒T γj , then one
has β ≤T ◦(α). Further, assume that (5) � ◦l(β) ⇒T δ for some context ◦l(−)
and formula δ ∈ T . By applying (Cut) to (3) and (5), one has � ◦l(◦(α)) ⇒T δ.
Therefore, one has ◦(α) ≤T β. Consequently, one has ◦(α) ≈T β.

Definition 9 (Quotient Algebra). The quotient algebra of [T ] is a structure
Qa = ([T ],∧∗,∨∗,¬∗,♦∗,⊥∗,�∗) where �∗,⊥∗ and operations ∧∗,¬∗ and ♦∗ in
[T ] are defined as follows:

(1) �∗ = [�]T ;
(2) ⊥∗ = [⊥]T ;
(3) ¬∗[α]T = [¬α]T ;
(4) [α]T ∧∗ [β]T = [α ∧ β]T ;
(5) ♦∗[α]T = [γ]T s.t. γ ≈T ◦(α).

We define [α]T ≤∗ [β]T as [α]T ∧∗ [β]T = [α]T and [α]T ∨∗ [β]T =
¬∗(¬∗[α]T ∧∗ ¬∗[β]T ). Clearly by the definition of ♦∗[α]T and Lemma 6, [γ]T
exists and is unique. Further, let [α1]T = [α2]T , one can show that ♦∗[α1]T =
♦∗[α2]T . Since α1 ∈ [α1]T , then α1 ∈ [α2]T . By the definition of the equivalence
class, one has α1 ≈T α2. Given any context ◦k(−) and formula β ∈ T . Assume
that � ◦k(◦(α1)) ⇒T β, then one has � ◦k(◦(α2)) ⇒T β. Therefore, one has
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◦(α2) ≤T ◦(α1). By similar argument, one has ◦(α1) ≤T ◦(α2). Consequently,
one has ◦(α1) ≈T ◦(α2). Assume ♦∗[α1]T = [γ]T such that γ ≈T ◦(α1), then
γ ≈T ◦(α2) and [γ]T = ♦∗[α2]T . Therefore ♦∗[α1]T = ♦∗[α2]T . Other opera-
tions in Definition 9 can be checked similarly. Consequently, all these operations
are well-defined.

Lemma 7. The following are equivalent: (1) α ≤T β; (2) � α ⇒T β; (3)
[α]T ≤∗ [β]T .

Proof. For (1) and (2), assume � α ⇒T β. Given any context ◦k(−) and formula
ϕ ∈ T , assume that � ◦k(β) ⇒T ϕ. By (Cut) one has � ◦k(α) ⇒T ϕ. Therefore,
one has α ≤T β. Conversely, assume α ≤T β. Since � β ⇒T β, then one has �
α ⇒T β. For (2) and (3), Assume [α]T ≤∗ [β]T , then one has [α]T ∧∗ [β]T = [α]T .
Since [α]T ∧∗ [β]T = [α ∧ β]T , then one has [α ∧ β]T = [α]T . By the definition
of the equivalence class, one has α ∧ β ≈T α. Further, one has α ≤T α ∧ β
and α ∧ β ≤T β. Therefore one has α ≤T β. Conversely, assume α ≤T β,
then one has � α ⇒T β. By (∧R), one has � α ∧ β ⇔T α. Therefore, one has
[α ∧ β]T = [α]T = [α]T ∧∗ [β]T . Therefore, [α]T ≤∗ [β]T . Consequently, α ≤T β
iff [α]T ≤∗ [β]T .

Lemma 8. The following conditions hold for Qa: for any [α]T , [β]T , [γ]T ∈ [T ],

(Inf) [γ]T ≤∗ [α]T ∧∗ [β]T iff [γ]T ≤∗ [α]T and [γ]T ≤∗ [β]T ;
(Sup) [α]T ∨∗ [β]T ≤∗ [γ]T iff [α]T ≤∗ [γ]T and [β]T ≤∗ [γ]T ;
(Dis) [α]T ∧∗ ([β]T ∨∗ [γ]T ) = ([α]T ∧∗ [β]T ) ∨∗ ([α]T ∧∗ [γ]T );

(Bound) ⊥∗ ≤∗ [α]T ≤∗ �∗;
(LC) [α]T ∧∗ ¬∗[α]T = ⊥∗;

(LEM) [α]T ∨∗ ¬∗[α]T = �∗;
(M) If [α]T ≤∗ [β]T , then ♦∗[α]T ≤∗ ♦∗[β]T ;
(N) ♦∗⊥∗ = ⊥∗;
(P) ♦∗�∗ = �∗;
(T) [α]T ≤∗ ♦∗[α]T ;
(4) ♦∗♦∗[α]T ≤∗ ♦∗[α]T .

Proof. We only provide the proofs for (M), (N), (P), (T), and (4).

(M) Assume [α]T ≤∗ [β]T . Let ♦∗[α]T = [γ1]T and ♦∗[β]T = [γ2]T such that
◦(α) ≈T γ1 and ◦(β) ≈T γ2. It suffices to prove that � γ1 ⇒T γ2. From
the assumption by Lemma 7, one obtains � α ⇒T β. By Lemma 7 and
Definition 8, � ◦(β) ⇒T γ2. Hence by (Cut), one obtains � ◦(α) ⇒T γ2.
Therefore � γ1 ⇒T γ2.

(N) Let ♦∗[⊥]T = [γ]T such that γ ≈T ◦(⊥). It suffices to prove γ ≈T ⊥.
Clearly � ⊥ ⇒ γ from (⊥). From axiom (N), one has � ◦(⊥) ⇒ ⊥. Thus
� γ ⇒ ⊥.

(P) Let ♦∗[�]T = [γ]T such that ◦(�) ≈T γ, then one has � ⇒T γ by Lemma
7 and (P). Obviously, one has ◦(�) ⇒T �. Therefore, one has ♦∗�∗ = �∗.

(T) Let ♦∗[α]T = [γ]T such that γ ≈T ◦(α). It suffices to prove � α ⇒T γ.
Clearly, � ◦(α) ⇒T γ. Then by (T), one obtains � α ⇒T γ.
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(4) Let ♦∗[α]T = [θ1]T and ♦∗[θ1]T = [θ2]T such that θ1 ≈T ◦(α), θ2 ≈T
◦(θ1). It suffices to show θ2 ≤T θ1 by Lemma 7. Assume that � ◦k(θ1) ⇒T
ϕ for some context ◦k(−) and ϕ ∈ T . Hence � ◦k(◦(α)) ⇒T ϕ. Then by
rule (4), one obtains � ◦k(◦(◦(α))) ⇒T ϕ. Whence � ◦k(◦(θ1)) ⇒T ϕ.
Therefore � ◦k(θ2) ⇒T ϕ. Thus, θ2 ≤T θ1.

Theorem 2. Qa = ([T ],∧∗,∨∗,¬∗,♦∗,⊥∗,�∗) is a finite MNPT4.

Lemma 9. If ♦α ∈ T , then ♦∗[α]T = [♦α]T .

Proof. Assume ♦∗[α]T = [γ]T such that γ ∈ T and ◦(α) ≈T γ. It suffices to
show γ ≈T ♦α. Assume that � ◦k(γ) ⇒T ϕ for some context ◦k(−) and ϕ ∈ T .
Then � ◦k(◦(α)) ⇒T ϕ. By (♦L), � ◦k(♦α) ⇒T ϕ. Assume � ◦k(♦α) ⇒T ϕ.
Clearly � ◦(α) ⇒T ♦α. Then by (Cut), � ◦k(◦(α)) ⇒T ϕ. Thus � ◦k(γ) ⇒T ϕ.

Lemma 10. If �GMNPT4 α ⇒ β, then �|=Qa [α]T ≤∗ [β]T .

Proof. Let T be the smallest set containing α, β such that T = c(T ),
assume that �GMNPT4 α ⇒ β, then �GMNPT4 α ⇒T β. Construct Qa =
([T ],∧∗,∨∗,¬∗,♦∗,⊥∗,�∗) as above and an assignment σ : Var −→ [T ] such
that σ(p) = [p]T . By induction on the complexity of the formula, one can
easily prove that σ̂(δ) = [δ]T by Definition 9 and Lemma 9. Assume that
|=Qa,σ [α]T ≤∗ [β]T , then by Lemma 7, one has � α ⇒T β, which contradicts to
our initial assumption. Therefore, if �GMNPT4 α ⇒ β, then �|=Qa [α]T ≤∗ [β]T .

Corollary 2. If �GMNPT4 α ⇒ β, then �|=MNPT4 μ(α) ≤ μ(β) where μ is a
mapping from Var to a finite MNPT4.

Theorem 3 (FMP). All GMX ∈ {GM, . . . ,GMNPT4} have FMP.

Proof. One can check that all the proofs of GMX can be obtained independently
by deleting the redundant cases in the proof of GMNPT4.

Theorem 4 (Decidability). All GMX ∈ {GM, . . . ,GMNPT4} are decidable.

5 Concluding Remark

We investigate the non-normal modal logics M and various extensions of it i.e.
logics from {M,MN, . . . ,MNPT4} and obtain their FMP and thus decidability.
Such results are new contributions to the current research of these logics, espe-
cially for those logics with axiom (4). Naturally, the method used in this paper
can be certainly extended to those logics with axioms expressed by ♦ and ∧.
Another future work will be establishing decidable algorithms for these logics.
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Abstract. This paper proposes a minimal logic of fine-grained infor-
mation dynamics via belief bases. The framework is shown to be able
to accommodate explicit belief, implicit belief, awareness of and aware-
ness that, where awareness of agents is not treated as a tacit premise.
A sound and complete axiomatization of static logic is established, upon
which a series of dynamic operations are defined. It is argued that these
dynamics adapt different scenarios. Our logic is minimal because to each
agent we only attach two databases, from which a variety of epistemic
attitudes are generated.

Keywords: Belief base · Awareness · Dynamic epistemic logic

1 Introduction

Since the first recognition of the logical omniscience problem in epistemic logic
[12], awareness has long been a well-accepted concept for formalizing realistic
agents. The earliest work on awareness by Fagin & Halpern [5] establishes a
solid foundation for researchers, who mainly follow two approaches: the semantic
approach [2,11,19,20,25], where awareness is generated by atomic propositions,
and the syntactic approach [1,22,26], where the set of formulas of which an agent
is aware can simply be any given set of formulas.

Grossi & Velázquez-Quesada (G&V) [9,10] combine the two approaches and
present a formal analysis of awareness of that concerns the atomic propositions
an agent has available or can resort to, and awareness that that concerns the
formulas an agent acknowledges as true, where the two notions technically corre-
spond to the two approaches, respectively. To motivate their work, the authors
probe into a scenario from the classic movie “12 Angry Men”, where agents
become aware of previously unnoticed details (some atomic propositions) and
make inherent knowledge (being true in every accessible state and acknowledged
as true) explicit.

However, it is possible that agents cannot remember the specific piece of
information while having available all the relevant atomic propositions. Consider
the following scenario.
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Lucy is typesetting an article. She has made a mistake and wants to undo
her previous action. But she cannot recall the keyboard shortcut of “undo”
although she is facing the keyboard and aware of every button on it.

As we all know, the “undo” shortcut is CTRL+Z. Let p indicate “ ‘CTRL’ is
pressed”, q indicate “ ‘Z’ is pressed”, r indicate “the previous action is undone”.
Thus, Lucy is aware of p, q and r, but cannot remember p ∧ q → r. And this
situation is not covered by G&V’s theory. Yet someone may argue that Lucy
simply doesn’t know this shortcut. To respond to this challenge, let’s consider the
following scenario which explains Lucy indeed having some information about
the shortcut.

Now Lucy is attending an exam on basic computer skills. On the test
paper there is a choice question “Choose the correct key combination of the
shortcut of ‘undo the previous action’.” The four answers to this question
are “ALT+A”, “ALT+Z”, “CTRL+A” and “CTRL+Z”. Staring at the four
options, Lucy suddenly recollects what she has learned in class and is
confident that the correct answer is “CTRL+Z”.

This example is quite familiar to us as the options effectively reminds Lucy
of what she has acquired before. To make this happen, an agent needs to notice
the exact piece of information rather than its elements.

To tackle this problem, we argue that agents can remember1 complex for-
mulas as well as atomic propositions. In contrast with G&V’s work, here we
adopt belief bases [15,16] rather than Dynamic Epistemic Logic (DEL, [4]) to
represent beliefs or knowledges for two reasons. One is that it follows Levesque
[14], “...a sentence is explicitly believed when it is actively held to be true by an
agent and implicitly believed when it follows from what is believed” (p. 198).
We argue that it better conforms to the actual process of reasoning compared
with Fagin & Halpern (F&H)’s logic of general awareness which defines explicit
belief as a formula implicitly believed by an agent and of which the agent is
aware. The other is that, in light of Lorini & Song [17,18], an agent’s belief base
is a rough approximation of his working memory, and an agent’s awareness is
not a primitive but is directly computed from the agent’s belief base. As such,
belief bases well captures the previous scenario, where p ∧ q → r is known by
Lucy somehow but not inside her working memory, then the option “CTRL+Z”
reminds her and put p ∧ q → r into her working memory, and Lucy becomes
aware of p ∧ q → r and other formulas formed by p, q and r at the same time.

This work is an extension of [18] by incorporating the notion of awareness
that and awareness of agents, where the latter is introduced by van Ditmarsch
and French [2] but is not involved in [18]. We follow G&V [9,10] and let aware-
ness that concern the formulas an agent acknowledges as true but not neces-
sarily explicitly known i.e., not necessarily within her working memory. After
1 G&V argue that becoming aware of is different with remembering. However, their

framework does not deal with the notion of remembering. In our work, we process
the two notions at the same time, and simply treat the awareness-of set as the set
of atomic propositions occurring in the working memory.
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establishing the static framework, we study a series of dynamics including learn-
ing, becoming aware of, recalling, forgetting, deductive inference, etc. From this
perspective, we offer a minimalistic logic approach to explicit, implicit belief,
awareness of and awareness that.

The remainder of this paper is organized as follows. In Sect. 2 we define the
language for implicit belief, explicit belief, awareness of and awareness that.
Section 3 proposes the belief base semantics for our language. Section 4 offers
an axiomatization and sketches the proof of soundness and completeness for it.
Section 5 is the principal part of this paper. We define a series of actions including
learning, forgetting, explicit announcement, etc. Several examples formalized by
these dynamic operations are presented. Section 6 concludes the paper and points
out future works.

2 Language

This section presents the language of the Logic of Fine-grained Belief (LFB). It
extends the language in [18] with modalities of awareness that and awareness of
agents. Let Atm = {p, q, . . .} be a countably infinite set of atomic propositions
and let Agt = {1, . . . , n} be a finite set of agents. Let V ar = Atm ∪ Agt, where
V ar is the set of variables. The language L0(Atm,Agt) is defined as follows:

α ::= p | ¬α | α1 ∧ α2 | �iα | ✩iα | ©iα | ©i,j ,

where p ranges over Atm and i, j ranges over Agt .
The language LLFB(Atm,Agt) extends L0(Atm,Agt) by building a new level

of language with implicit belief operators and is defined as follows:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ | ©iϕ,

where α ranges over L0(Atm,Agt) and i ranges over Agt .
When the context is unambiguous, we write L0 instead of L0(Atm,Agt) and

LLFB instead of LLFB(Atm,Agt). The other Boolean connectives ∨, → and ↔
are defined from ¬ and ∧ in the standard way. We make 	 a primitive symbol
and treat it as vacant truth. The formula �iα is read “agent i explicitly believes
that α is true”, ©iϕ is read “agent i is aware of ϕ”, ✩iα is read “agent i is aware
that α is true”, ©i,j is read “agent i is aware of agent j”. Note that ©i,j can be
treated as an atom, and other operators from the first level can be iterated or
nested, such as �i�iα, �i✩iα and ✩i©i(α ∧ ©i,j).

The formula �iϕ is read “agent i implicitly believes that ϕ is true”. The dual
operator ♦i is defined as follows:

♦iϕ
def= ¬�i¬ϕ,

where ♦iϕ is read “ϕ is consistent with agent i’s explicit beliefs”. Note that
the awareness-of operator ©i appears at both levels of the language, but the
modalities �i and ✩i only appears at the first level. As a result, we can have
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awareness operators in the scope of �i or ✩i, but not implicit belief operators
in the scope of �i or ✩i.

The following function V ar : LLFB −→ 2V ar specifies the variables occurring
in a formula:

V ar(	) = ∅,

V ar(p) = {p}, for p ∈ Atm,

V ar(©i,j) = {i, j},

V ar(¬ϕ) = V ar(ϕ),
V ar(ϕ1 ∧ ϕ2) = V ar(ϕ1) ∪ V ar(ϕ2),

V ar(Yiα) = {i} ∪ V ar(α), for Y ∈ {�,©, ✩},

V ar(Yiϕ) = {i} ∪ V ar(ϕ), for Y ∈ {�,©}.

Let Γ ⊆ LLFB be finite, we define V ar(Γ) :=
⋃

ϕ∈Γ V ar(ϕ). For simplicity,
letAtm(ϕ) = V ar(ϕ)∩Atm, Atm(Γ) = V ar(Γ)∩Atm, Agt(ϕ) = V ar(ϕ)∩Agt,
Agt(Γ) = V ar(Γ) ∩ Agt.

3 Semantics

In this section, we present the belief base semantics for LLFB, where an agent’s
set of doxastic alternatives are not primitive but computed from them. The basic
constituent of our semantics is the following notion of state.

Definition 1. A state is a tuple S = (B,At,Ao, V ), where
– B = {B1, . . . , Bn}, where Bi ⊆ L0 is agent i’s belief base for every i ∈ Agt ,
– At = {At1, . . . , Atn}, where Bi ⊆ Ati ⊆ L0 is agent i’s awareness-that set

for every i ∈ Agt ,
– Ao = {Ao1, . . . , Aon}, where Aoi = Var(Bi) is agent i’s awareness-of set for

every i ∈ Agt ,
– V ⊆ Atm is the actual environment.

Compared with [18], this definition is enriched with an awareness-that set for
every agent. And we let each agent’s belief base be a subset of her awareness-that
set. It follows the intuition that each agent acknowledges some formulas as true,
and part of them are active in her working memory and form her belief base.
The set of all states is denoted by S. With the definition of state, we have the
following interpretations for the formulas in L0.

Definition 2. For any S = (B,At,Ao, V ) ∈ S:

S |= p ⇐⇒ p ∈ V,

S |= ¬α ⇐⇒ S �|= α,

S |= α1 ∧ α2 ⇐⇒ S |= α1 and S |= α2,

S |= �iα ⇐⇒ α ∈ Bi,

S |= ✩iα ⇐⇒ α ∈ Ati,

S |= ©iα ⇐⇒ Var(α) ⊆ Aoi,

S |= ©i,j ⇐⇒ j ∈ Aoi.
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The only caveat is that, for an agent being aware of a formula, we require her
to be aware of every variable (atomic propositions and agents) occurring in the
formula. This is different with [18] that assumes an agent is aware of all agents in
Agt. The following definition builds multi-agent fine-grained belief model from
states.

Definition 3. A multi-agent fine-grained belief model (MFBM) is a pair
(S,Cxt), where S ∈ S and Cxt ⊆ S.

Following [16], in the following definition we compute the agents’ epistemic
accessibility relations from their belief bases.

Definition 4. For any i ∈ Agt, Ri is the binary relation on S such that for any
S = (B,At,Ao, V ), S′ = (B′, At′, Ao′, V ′) ∈ S,

(S, S′) ∈ Ri if and only if ∀α ∈ Bi, S′ |= α2.

The following definition gives interpretations for formulas in the second level
of LLFB. The boolean cases are omitted.

Definition 5. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then,

(S,Cxt) |= α ⇐⇒ S |= α,

(S,Cxt) |= �iϕ ⇐⇒ ∀S′ ∈ Cxt, if SRiS
′

then (S′, Cxt) |= ϕ,

(S,Cxt) |= ©iϕ ⇐⇒ Var(ϕ) ⊆ Aoi.

The following two definitions specify two properties of MFBMs, that corre-
spond to consistency and reflexivity in Kripke model.

Definition 6. The MFBM (S,Cxt) satisfies global consistency (GC) if and only
if, for every i ∈ Agt and for every S′ ∈ ({S} ∪ Cxt), there exists S′′ ∈ Cxt such
that (S′, S′′) ∈ Ri.

Definition 7. The MFBM (S,Cxt) satisfies belief correctness (BC) if and only
if S ∈ Cxt and, for every i ∈ Agt and for every S′ ∈ Cxt, (S′, S′) ∈ Ri.

For X ⊆ {GC,BC}, MFBMX is the class of MFBMs satisfying all the con-
ditions in X. It is easy to see that MFBM{GC,BC} = MFBM{BC}.

2 An alternative is to define the epistemic alternatives by all formulas in the awareness-
that set of agent i, so that everything the agent acknowledges as true holds in all
her epistemic possibilities. Such a definition gives the model an entirely different
meaning. We draw the arrows based on belief bases because an agent makes infer-
ences from what she has in her working memory. If the arrows are generated from her
awareness-that set, then her epistemic possibilities denote what she can “potentially”
infer from what she acknowledges as true.
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4 Axiomatics

In this section, we define some variants of the LFB logics and prove their sound-
ness and completeness for their corresponding model classes.

We define the base logic LFB to be the extension of classical propositional
logic given by the following axioms and rule of inference:

(
�iϕ ∧ �i(ϕ → ψ)

) → �iψ (K�i
)

�iα → �iα (Int�i,�i
)

�iα → ✩iα (Int�i,✩i
)

�iα → ©iα (Int�i,©i
)

©i ϕ ↔
∧

p∈Atm(ϕ)

©ip ∧
∧

j∈Agt(ϕ)

©i,j (AGPA)

ϕ

�iϕ
(Nec�i

)

For X ⊆ {D�i
,T�i

}, let LFBX be the extension of logic LFB by every axiom
in X, where,

¬(�iϕ ∧ �i¬ϕ) (D�i
)

�iϕ → ϕ (T�i
)

To prove completeness of each logic LFBX, let us define the following corre-
spondence function between axioms and semantic properties:

– cf(D�i
) = GC,

– cf(T�i
) = BC.

Theorem 1. Let X ⊆ {D�i
,T�i

}. Then, the logic LFBX is sound and complete
for the class MFBM{cf(x):x∈X}.

Proof. As the proof procedure is similar with that of [18], here we only sketch the
main techniques. Above all, we need to define two Kripke-style semantics. One is
called notional model semantics, the model of which satisfies certain properties
corresponding to MFBMs. The other is called quasi-model semantics, where the
model relaxes the properties of notional model semantics. Then we prove that
the three semantics are equivalent in terms of satisfiability with respect to a finite
set of formulas. Following that, we employ the canonical model method to prove
that LFBX is complete for the corresponding class of quasi-models. Subsequently,
by the equivalence result, it is straightforward that LFBX is complete for the class
MFBM{cf(x):x∈X}. For soundness, the proof is standard.
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5 Dynamics of Belief and Awareness

This section accommodates a variety of dynamics involving awareness and belief.
According to Lorini [16], belief base models have distinct advantage on private
dynamics, as operations only modify the belief bases of some agents but not of
all agents, and the accessibility relations are recomputed after that. This leads
to a “parsimonious” account of private informative actions. MFBMs inherits this
merit and adapts to even richer notions of private dynamics.

5.1 Operation Definitions

Firstly, we provide a formal definition of the action of learning. In fact, it is
almost identical with “Private Belief Expansion” in [16]. The only difference is
that we have to attend to the awareness-of and awareness-that set when adding
a new formula to an agent’s belief base. One may notice an agent can learn
something already in her belief base, or in her awareness-that set but not in her
belief base, or in neither of the two sets.

Definition 8. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
learning operation works as follows.

(S,Cxt) |= [+iα]ϕ ⇐⇒ (S+iα, Cxt) |= ϕ,

with S+iα = (B+iα, At+iα, Ao+iα, V ), where for all j ∈ Agt:

B+iα
j = Bj ∪ {α} At+iα

j = Atj ∪ {α} if i = j,

B+iα
j = Bj At+iα

j = Atj otherwise,

Ao+iα
j = V ar(B+iα

j ).

Secondly, we move to the action of recalling. Being different with the learning
action, an agent can only recall what is already in her awareness-that set.

Definition 9. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
recalling operation works as follows.

(S,Cxt) |= [⊕iα]ϕ ⇐⇒ (S⊕iα, Cxt) |= ϕ,

with S⊕iα = (B⊕iα, At,Ao⊕iα, V ), where for all j ∈ Agt:

B⊕iα
j = Bj ∪ {α} if i = j and α ∈ Ati,

B⊕iα
j = Bj otherwise,

Ao⊕iα
j = V ar(B⊕iα

j ).

Thirdly, we define the action of becoming aware of. This operation is a little
tricky, as we want to make the agent become aware of some propositions or
agents without changing what she believes or acknowledges as true. To make
this happen, we stipulate formulas of the form ϕ ∨ 	 as vacant formulas that
only affect an agent’s awareness-of set without forcing her to believe anything.
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Definition 10. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
becoming aware of operation works as follows.

(S,Cxt) |= [�iψ]ϕ ⇐⇒ (S�iψ, Cxt) |= ϕ,

with S�iψ = (B�iψ, At�iψ, Ao�iψ, V ), where for all j ∈ Agt:

B�iψ
j = Bj ∪ {ψ ∨ 	} At�iψ

j = Atj ∪ {ψ ∨ 	} if i = j

B�iψ
j = Bj At�iψ

j = Atj otherwise,

Ao�iψ
j = V ar(B�iψ

j ).

To make the semantics simple, we don’t have separate operators for becom-
ing aware of propositions and agents. As a result, when capturing an action
of becoming aware of an agent j, simply make j occur in the formula ψ, for
instance, let ψ be the form �j	3. It makes sense because when we are aware
of some agent, we believe that she has the ability to believe something i.e., to
believe truth.

It’s worth mentioning that a similar notion “attention” is used interchange-
ably with awareness in some literature [13]. According to the latter, inattention
concerns “...concepts that the agent in principle understands, but has not thought
to apply to the case at hand”, which seems another depiction of working memory.
So our notion of awareness can be regarded as attention, and it is different with
another notion of “conceptual grasp” awareness.

Fourthly, we enter into the actions of reducing information and talk about
forgetting. To forget is to completely lose one piece of information, and one needs
to relearn it if she wants to explicitly believe or know it again. It roots in the
experience shared by us that, when we believe that we are touching something
new, someone tells us that we have learned it before, and such a reminder may
frustrate us a little bit.

Definition 11. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
forgetting operation works as follows.

(S,Cxt) |= [−iα]ϕ ⇐⇒ (S−iα, Cxt) |= ϕ,

3 We are using “dummy” formulas to formalize the actions of becoming aware. One can
argue that this forces the agent to know/believe something, regardless of how simple
that might be. We have to acknowledge that this is the shortcoming or defect of
our approach of awareness dynamics. However, we would like to put more emphasis
on the minimality and simplicity of our structure. The purpose is to propose a
compatible method to incorporate awareness dynamics into belief base structure by
making the minimal change on the original model. Compared with Fagin & Halpern’s
awareness logic, belief base semantics models explicit and implicit belief without
invoking the notion of awareness and it is good thing [16]. We want to show that
our semantics supports awareness and its dynamics anyway. Another defense for
this treatment is that it conforms to the way of computers processing data. Belief
bases are analogous to computer memories. Raw data are stored in them and are
“translated” into different kinds of messages based on certain rules.
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with S−iα = (B−iα, At−iα, Ao−iα, V ), where for all j ∈ Agt:

B−iα
j = Bj \ {α} At−iα

j = Atj \ {α} if i = j,

B−iα
j = Bj At−iα

j = Atj otherwise,

Ao−iα
j = V ar(B−iα

j ).

From this definition, we can find out two forms of forgetting. One is some
information disappearing from the agent’s working memory and inactive storage
all at once, maybe her head is impacted by blunt force unfortunately, causing her
to lose track of what she is thinking about and lose part of her memory. The other
is some information fading from the agent’s awareness-that set unconsciously,
which frequently occurs in our life. For simplicity, we don’t differentiate these
two kinds of forgetting and capture them by only one type of action.

There are proposals for representing actions for forgetting [3,6] working
within the DEL setting. Van Ditmarsch et al. [3] formalize forgetting by means
of a dynamic operator, the latter corresponds to an event model that trans-
forms the original Kripke-style model into a new one containing copies of states
with different valuations, so that the agent becomes ignorant of certain atomic
propositions (for instance, from being certain of p to uncertainty of p and ¬p).
Fernández-Duque et al. [6] extend [3] to capture the forgetting of complex propo-
sitional formulas using a slightly more complicated technique that applies to a
Kripke-style model. Compared with their works, our approach provides a “parsi-
monious” account of actions of forgetting, since it does not require to duplicate
epistemic models and to make them exponentially larger in a series of actions.
Moreover, our approach easily supports multi-agent dynamics of forgetting as
one agent’s belief change does not influence others’ belief bases. And it cap-
tures agents forgetting modal formulas as well as propositional formulas without
complicating the technique.

Fifthly, we would like to introduce a notion indicating information being
dropped from working memory while still stored in the agent’s awareness-that
set. We simply call the action “dropping”.

Definition 12. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
dropping operation works as follows.

(S,Cxt) |= [�iα]ϕ ⇐⇒ (S�iα, Cxt) |= ϕ,

with S�iα = (B�iα, At,Ao�iα, V ), where for all j ∈ Agt:

B�iα
j = Bj \ {α} if i = j,

B�iα
j = Bj otherwise,

Ao�iα
j = V ar(B�iα

j ).

Intuitively, we can only drop some information currently active in our working
memory4.
4 A reviewer puts forward an interesting question: couldn’t an agent have (in reality)

an explicit belief that is not in her working memory? For example, a belief that she
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Sixthly, we define a new form of announcement quite different from public
announcement introduced by Plaza [21]. As we all know, DEL interprets knowl-
edge by means of uncertainty i.e., an agent not knowing whether p is equivalent
to she being uncertain about p (p does not have a uniform value in all her acces-
sible states). As a result, to formalize public announcement, we need to shrink
the DEL model and make agents certain about what is announced. However, in
our model, explicit knowledge is captured by formulas included in agents’ belief
bases. Then, if we want to formalize public announcement in an explicit manner,
we have to add the particular formula into the belief bases of all agents.

Definition 13. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
operation of explicit announcement works as follows.

(S,Cxt) |= [�iα]ϕ ⇐⇒ (S	iα, Cxt) |= ϕ,

with S	iα = (B	iα, At	iα, Ao	iα, V ), where for all j ∈ Agt:

B	iα
j = Bj ∪ {α} At	iα

j = Atj ∪ {α} if α ∈ Bi,

B	iα
j = Bj At	iα

j = Atj otherwise,

Ao	iα
j = V ar(B	iα

j ).

There are two more features of the announcement operation that deserved to
be noted. Compared with [21], an explicit announcement is made by a specific
agent rather than an external source, which follows the announcement operation
in [10]. Not only that, it is quite a different notion of public announcements in
[16]. In fact, it can be viewed as a group version of private belief base expansion
in [16], except that the formula being added should be already included in agent
i’s belief base.

Finally, following G&V [9,10], the deductive inference operation also turns
out to be a model transformation, which is not regarded by Lorini [16].

Definition 14. Let (S,Cxt) be a MFBM with S = (B,At,Ao, V ). Then the
operation of deductive inference works as follows.

(S,Cxt) |=
[

α→β
↪−−−→i

]

ϕ ⇐⇒ (S
α→β

↪−−−→i , Cxt) |= ϕ,

with S
α→β

↪−−−→i = (B
α→β

↪−−−→i , At
α→β

↪−−−→i , Ao, V ), where for all j ∈ Agt:

B
α→β

↪−−−→i
j = Bj ∪ {β} At

α→β

↪−−−→i
j = Atj ∪ {β} if i = j and {α, α → β} ⊆ Bi,

B
α→β

↪−−−→i
j = Bj At

α→β

↪−−−→i
j = Atj otherwise.

holds explicitly (say that she uses it as justifications of her actions) but that she
is not currently explicitly considering. But it is still there, in her mind somewhere,
not dropped. Here is my answer. An agent needs certain explicit beliefs to guide or
justify her behavior. In the beginning, she has to keep them in her working memory.
After a while, when such behavior turns into a habit, she does not need to hold such
beliefs in her working memory anymore. Then, the habit becomes independent of
the beliefs that used to guide or justify the behavior.
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By the definition, in order to make a deduction, an agent should explicitly
believe the premises in the first place.

Fig. 1. Logical relationships among the notions of: awareness of, awareness that and
explicit knowledge. The dashed arrows denote the actions by which we can move
between different attitudes. Note that, by dropping or forgetting the belief of α, the
agent possibly remains aware of atomic propositions occurring in α (if there remain
other pieces of beliefs involving them), and possibly ceases to be aware of them (if no
other belief involves them).

Figure 1 provides an overview on how these three notions are related by the
private actions defined above. Through learning, recalling and deductive infer-
ence, an agent can get explicit beliefs from what she is aware of or aware that.
Among the three actions, learning is the strongest that helps agents obtaining
totally unfamiliar information. However, from explicit belief, we could move to
awareness that by dropping, and possibly move to awareness of by dropping and
forgetting. It is worth noting that, explicit belief is not equal to awareness of
plus awareness that, i.e., the latter two notions are just a necessary condition
for the former.

5.2 Scenarios

Example 1. Now we are ready to account for the scenario in Introduction. Assume
Lucy is agent i at state S = (B,At,Ao, V ) included in a MFBM (S,Cxt). In the
beginning, Lucy is aware that p ∧ q → r, but does not explicitly know it5.

(S,Cxt) |= ✩i(p ∧ q → r) ∧ ¬�i(p ∧ q → r)

5 In this case, since S |= p ∧ q → r, we use knowing instead of believing.
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Then she stares at the keyboard and becomes aware of p and q. Besides, as she
is thinking about undoing the previous action, she becomes aware of r. However,
these actions together do not lead her to recall p ∧ q → r.

(S,Cxt) |= [�ip] [�iq] [�ir]((©ip ∧ ©iq ∧ ©ir) ∧ ¬�i(p ∧ q → r))

When Lucy is attending the exam, she notices the correct answer of “undo the
previous action”. She recalls what she has learned before and becomes explicitly
knowing p ∧ q → r.

(S,Cxt) |= [⊕i(p ∧ q → r)]�i(p ∧ q → r)

Need to add that, there is a substantial difference between learning and recalling.
To learn something, we need to get clear-cut information, not like the choice
question that does not inform us of which one is the correct answer. In this case,
it is the forth option as a reminder about what Lucy is aware that makes Lucy
recalls p ∧ q → r and become explicitly know it.
Example 2. This part is devoted to capture the famous scenario from “12 Angry
Men” brought up by G&V [9,10]. Assume agent A is at state S = (B,At,Ao, V )
included in a MFBM (S,Cxt). In the beginning, the jury explicitly know noth-
ing6 but are aware that mkns → gls, gls → esq and esq → ¬glt. We takes

(S,Cxt) |= [+Amkns]✩A(mkns → gls) ∧ ✩A(gls → esq) ∧ ✩A(esq → ¬glt)

The relevant atomic propositions are defined as follows.

gls : the woman wears glasses mkns : she has marks in the nose
esq : her eyesight is in question glt : the accused is guilty

In court, A learns mkns and then drops it.

(S,Cxt) |= [+Amkns]�Amkns (S+Amkns, Cxt) |= [�Amkns]✩Amkns

During the jury discussion, agent H’s action of scratching his nose makes A recall
mkns. After that, A recalls the three relevant implications from his personal
experience.

((S+Amkns)�iα, Cxt) |= [⊕Amkns]�Amkns

((S+Amkns)�iα, Cxt) |= [⊕A(mkns → gls)]�A(mkns → gls)
((S+Amkns)�iα, Cxt) |= [⊕A(gls → esq)]�A(gls → esq)
((S+Amkns)�iα, Cxt) |= [⊕A(esq → ¬glt)]�A(esq → ¬glt)

Let S1 = (((((S+Amkns)�iα)⊕Amkns)⊕A(mkns→gls))⊕A(gls→esq))⊕A(esq→¬glt) be
the state after A recalls all the relevant information. Then A makes an explicit
announcement about mkns.

For all j ∈ Agt, (S1, Cxt) |= [�Amkns]�jmkns.

6 Again, since S |= mkns ∧ gls ∧ esq ∧ ¬glt, we use knowing instead of believing.
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A can also make deductive inferences to reach the conclusion that the accused
is not guilty7.

(S1, Cxt) |=
[

mkns→gls
↪−−−−−−−→A

] [
gls→esq

↪−−−−−→A

] [
esq→¬glt

↪−−−−−−→A

]

�A¬glt

Example 3. There are two robots i and j that never met each other before,
where i is a new type, and j is an old type. Given the condition that every robot
is coded with the information of all robots previously manufactured, i is aware of
j, while j is unaware of i. Now i and j are passing through a corridor in opposite
directions. Because they are sending identifiers by radio, they notice each other
and write the information into their databases. In this case, j receives relatively
more information than i. It is for the reason that, j not only becomes knowing
that i is passing through the corridor, but also becomes aware of i.

Let i and j be at state S = (B,At,Ao, V ) included in a MFBM (S,Cxt).
Initially, we have

(S,Cxt) |= ©i,j ∧ ¬ ©j,i .

Let α indicate “i passes the corridor”, let β be “j passes the corridor”. When the
two robots meet each other, both learn that α and β.

(S,Cxt) |= [+iα]�iα ∧ [+iβ]�iβ ∧ [+jα]�jα ∧ [+jβ]�jβ

Not only that, both recognize each other and learn that the other robot becomes
explicitly knowing α ∧ β, and j becomes aware of i

(S,Cxt) |= [+i(�j(α ∧ β))]�i�j(α ∧ β)
(S,Cxt) |= [+j(�i(α ∧ β))]�j�i(α ∧ β) ∧ ©j,i

6 Conclusion and Perspectives

This paper has proposed an investigation of notions of explicit and implicit
belief, awareness of and awareness that. The novelty of our work rests with two
aspects: one is that we do not assume awareness of all agents as a primitive, the
other comes from the belief bases model we are using, that renders a minimal
logic supporting fine-grained information dynamics. The latter involves a series
of actions including learning, recalling, forgetting, dropping, becoming aware
of, explicit announcement and deductive inference. These actions are defined
as operations on agents’ belief bases and awareness-that sets, highlighting the
computational advantages of belief base model. Through these actions, a variety
of examples are formalized. Besides, we have provided an axiomatization of the
static logic, of which the soundness and completeness are proved by a similar
process as that in [18].

An extended version of this paper will deliberate about a detailed compari-
son between our structure and the framework by G&V [9,10]. Specifically, our
7 We have simplified the scenario and omitted the agents other than A and H.
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definition of awareness that is slightly different with theirs, and we have differ-
ent opinions on the notions of becoming aware of and recalling. Moreover, the
reduction axioms of the dynamic operators are also part of the future work. Since
our work is an extension of the logic in [18], and several embedding results are
proved in the latter, it is reasonable to conjecture that analogous embeddings
are to be held with respect to the logic in this paper.

Due to the technically concise nature of our model, it’s worth to consider
incorporating more notions into the belief base structure. One candidate is about-
ness [7,8,27]. The idea simple: though a proposition is false generally, it can be
true about certain issue. So a proposition may be partial truth. Here we quote a
simple example from Russell [23].

Certain philosophers, he says, having “arrived at results incompatible with
the existence of error, . . . have then had to add a postscript explaining
that what we call error is really partial truth. If we think it is Tuesday
when it is really Wednesday, we are at least right in thinking that it is a
day of the week. If we think America was discovered in 1066, we are at
least right in thinking that something important happened in that year”.

In my opinion, partial truth reveals certain connections underlying atomic
propositions. Let p, q and r indicate “It happened on Tuesday”, “It happened on
Wednesday” and “It happened on a week day”, respectively. Then, if p is true,
r must be true. But the reverse does not hold. If a witness gives her testimony
that p, but the truth is q, it needs the attorney to make more inquiries, such as
“Do you have any proof that it was a week day?”, to discover the truth of r. In
fact, our previous paper [24] involves a similar notion concerning the connections
between different atomic propositions leading to agents becoming aware of new
propositions. A feasible way to tackle this problem is making such connections
rules explicitly known by certain agents, i.e., let the rules be included in their
belief bases, who can make inferences based on these rules and make inquiries
according to consequence.
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Abstract. In this article, we present a definition of a hyperintension-
ality appropriate to relevant logics. We then show that relevant logics
are hyperintensional in this sense, drawing consequences for other non-
classical logics, including HYPE and some substructural logics. We fur-
ther prove results concerning extensionality in relevant logics. We close
by discussing related concepts for classifying formula contexts and poten-
tial applications of these results.

1 Introduction

Hyperintensionality, being able to distinguish necessarily equivalent formulas,
has become an important topic in philosophical logic.1 The growing impor-
tance of hyperintensionality for philosophical concepts has been highlighted
by Nolan [24], calling it the “hyperintensional revolution.” One can, of course,
extend classical logic with hyperintensional operators,2 but one might wonder
whether other logics could offer something distinctive with respect to hyperinten-
sional operators. Recently, Leitgeb [19] defended the non-classical logic HYPE
as exhibiting a distinctive combination of simplicity and strength. Among its
claimed features is providing a kind of hyperintensionality, a claim disputed by
Odintsov and Wansing [25]. We will offer some support to Leitgeb’s claim, pro-
ceeding via a discussion of relevant logics. Given some of the distinctions that
relevant logics draw, such as distinguishing logical truths, it is natural to suspect
that relevant logics build in a kind of hyperintensionality. We will argue that this
suspicion is borne out by providing some hyperintensional contexts in relevant
logics. In so doing, we will draw out some consequences for HYPE and other
substructural logics.

In the remainder of this section, we will supply some brief background on rele-
vant logics, in particular the logic R. Then, we will precisely define some concepts

1 See Berto and Nolan [4].
2 Some of the standard examples of hyperintensional operators added to classical logic,
often though not always modeled using impossible worlds, include belief operators,
knowledge operators, and conditional operators. See Wansing [40], Alechina and
Logan [1], and Berto et al. [5], among others, for recent examples, and see Berto
and Jago [6, ch. 7] for an overview of the work on epistemic logics. For a general
approach to hyperintensional operators, see Sedlár [31].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 238–250, 2023.
https://doi.org/10.1007/978-3-031-45558-2_18
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to classify formula contexts in Sect. 2, notably extensionality and hyperinten-
sionality. In Sect. 3, we will present our main results concerning hyperintensional
contexts in relevant logics, drawing out a consequence for HYPE. Finally, in Sect.
4, we will look at two further definitions for classifying formula contexts and dis-
cuss some upshots of our results.

Relevant logics are a family of non-classical logics with a distinctive con-
ditional, or implication, connective.3 One of the important ways in which the
relevant conditional is distinctive can be found in Belnap’s variable sharing crite-
rion: If A → B is valid, then A and B share a propositional variable. The variable
sharing criterion is typically taken as a necessary condition on being a relevant
logic. We will focus on the standard logical vocabulary of {→,∧,∨,¬}, consid-
ering the addition of a modal operator �, below. The biconditional, A ↔ B,
will be defined as (A → B) ∧ (B → A). To contrast the relevant conditional and
biconditional with the classical material ones, we will use ⊃ and ≡ for the latter
connectives, defining A ⊃ B as ¬A ∨ B and A ≡ B as (A ⊃ B) ∧ (B ⊃ A). In
the context of relevant logics, and generally any non-classical logic, A ⊃ B and
A ≡ B will be defined as in classical logic.

While there are many relevant logics, our focus will be on the logic R. R is a
relatively strong logic. We will present the axioms and rules for it, where ⇒ is
used to demarcate premises from conclusion in the rules.

(1) A → A
(2) (A ∧ B) → A, (A ∧ B) → A
(3) ((A → B) ∧ (A → C)) → (A →

(B ∧ C))
(4) A → (A ∨ B), B → (A ∨ B)
(5) ((A → C) ∧ (B → C)) → ((A ∨ B) →

C)
(6) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(7) ¬¬A → A

(8) (A → ¬B) → (B → ¬A)

(9) (A → B) → ((B → C) → (A → C))

(10) A → ((A → B) → B)

(11) (A → (A → B)) → (A → B)

(12) A,A → B ⇒ B

(13) A,B ⇒ A ∧ B

The logic R is the least set of formulas containing all the axioms and closed
under the rules. Other relevant logics can be obtained by variation of axioms
(8)–(11), dropping those axioms or possibly adding others, and by addition of
other rules. The focus will be on R, although we will briefly consider some weaker
relevant logics towards the end of Sect. 3. Let us now turn to some concepts for
classifying formula contexts.

2 Classifying Contexts

Let us begin with some definitions. Following Williamson [41], define a formula
context as a pair (C, p), of a formula and an atom. Given a context (C, p), the
formula C(A) is what results by replacing every occurrence of p in C with the
formula A.

3 See Dunn and Restall [10], Bimbó [7], or Mares [20] for overviews of the area. See
Anderson and Belnap [2] and Routley et al [27] for broader discussions.
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Definition 1 (Extensionality). A formula context (C, p) is extensional iff for
all formulas A and B,

– |= (A ≡ B) ⊃ (C(A) ≡ C(B))

This is a fine definition of extensionality for classical logic and its extensions.
It is not, however, appropriate for all non-classical logics. The reason is that
in many non-classical logics, including relevant logics, the interest is on the
primitive conditional connective, and the associated biconditional, rather than
the material conditional of the logic, and the associated material biconditional.4

Therefore, we will replace the definition of extensional context with one that
uses the appropriate conditional and biconditional of the logic.

Definition 2 (Extensionality in L). A formula context (C, p) is extensional
in the logic L iff for all formulas A and B,

– |=L (A ↔ B) → (C(A) ↔ C(B)),

where |=L is the consequence relation of L.

This is a natural adaptation of Williamson’s definition to a non-classical context.
For a more general study of extensionality and related concepts, we would need to
make the relativity to the chosen conditional and biconditional explicit, so that
the two options above would be (⊃,≡)-extensionality and (→,↔)-extensionality,
respectively. There are alternative definitions of extensionality using different
combinations of →, ⊃, ↔, and ≡, but we won’t explore those further here.5 Our
interest is not on extensional contexts per se, although we will return to them at
the end of the next section. Our interest is, rather, in their use in the definition
of non-hyperintensional contexts.

Definition 3 (Non-hyperintensionality, hyperintensionality). A formula
context (C, p) is non-hyperintensional in L iff for all formulas A and B,

– |=L �(A ↔ B) → �(C(A) ↔ C(B)).

A formula context is hyperintensional in L iff it is not non-hyperintensional.
A logic L is hyperintensional iff there is a formula context (C, p) that is

hyperintensional in L.

Unpacking the definitions, a formula context (C, p) is hyperintensional iff there
are formulas A and B such that 	|=L �(A ↔ B) → �(C(A) ↔ C(B)). An imme-
diate consequence of the definitions is the following proposition.

Proposition 4. Let M be a sublogic of L. If L is hyperintensional, then so is M.
4 In the context of relevant logics, many of the contraction-free logics lack any theorems
not containing ‘→’, for which see Slaney [32]; so (⊃,≡)-extensionality will be a
less useful concept there. Yet, it still seems sensible to say that those logics have
some extensional contexts made up only of the vocabulary {∧,∨,¬}. Thanks to an
anonymous referee for raising this point.

5 See Humberstone [15,16] and [17, 455] for more on extensionality of connectives.
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Hyperintensionality is preserved downwards to sublogics. This will be important
for our main result.

Before we proceed, it is worth noting an important intermediate category
of formula contexts that we will not discuss below, namely the intensional con-
texts. These are contexts that are not extensional but are non-hyperintensional.
Investigation of intensional contexts will be left for future work.

3 Hyperintensionality

Although there are many relevant logics, we will focus on the logic R, which is the
strongest of the standard relevant logics.6 The definitions of extensional, non-
hyperintensional, and hyperintensional contexts should be understood as indexed
to R, and its modal extensions, with the displayed conditional and biconditional
being those of R. One could obtain versions of the definitions for other logics by
changing the index.

Once we have settled the question of the base logic, there is a further question
concerning which necessity to use in the statement of non-hyperintensionality.
For a general study of hyperintensionality, care needs to be taken regard-
ing what modal axioms, if any, should be required to ensure that the non-
hyperintensionality definition yields satisfactory results. Williamson uses the
necessity of S5 in stating his definition. The necessity of S5 would be a fine
necessity for our purposes, but we can obtain stronger results with a differ-
ent necessity.7 A logic being hyperintensional is a matter of the invalidity of an
instance of the non-hyperintensionality scheme, and, since invalidity is preserved
from stronger logics down to weaker logics, using stronger modal principles will
give stronger results concerning hyperintensionality. To motivate the appropriate
modal principles, we will take a detour through logical necessity.

Anderson and Belnap showed how to define logical necessity in their logic E,
a close relative of R, obtained by changing axiom (10) to its rule form, A⇒(A →
B) → B, and adding a reductio axiom, (A → ¬A) → ¬A. Anderson and Belnap
define �A as (A → A) → A.8 This can be understood as saying that logic
implies A, which is a fair definition of logical necessity. In the context of E, �,
so defined, has an S4-ish logic, and in the context of weaker relevant logics, it
obeys weaker principles. In the context of R, however, the defined connective �
is trivial in the sense that A ↔ �A is a logical truth. Taking this biconditional
as a logic’s modal axioms gives the modal logic known as TRIV. We will call the
extension of R with the TRIV biconditional the logic R.TRIV. While the necessity
of R.TRIV is not plausible as a kind of logical necessity, it is useful for the sort of

6 See Mares [23] for defense of R.
7 The concept of S5 necessity exhibits some subtleties in the context of relevant logics,
for which see Standefer [36].

8 One can obtain an alternative definition by using the Ackermann truth constant,
t, which is glossed as the conjunction of all logical truths. Using the Ackermann
constant, �A can be defined as t → A. The equivalence of the two definitions is
demonstrated by Mares and Standefer [21], among others.
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negative results we are after, so we will use it as the necessity in the definitions
of non-hyperintensionality and hyperintensionality.

To obtain our main result, namely that many plausible modal extensions of
R are hyperintensional, we first prove a lemma using matrix methods. A matrix
has a set V of semantic values, with a subset of designated values D ⊆ V , and
operations on V for interpreting each connective of the language. A valuation
v is a function from atoms to V that is extending to the whole language using
the operations of the matrix. A valuation v on a matrix is a counterexample to
a formula A iff v(A) 	∈ D.

Lemma 5. The formula (p ↔ q) → ((p ∧ r) ↔ (q ∧ r)) is not a theorem of R.

Proof. We will use a three-valued matrix. For the set of values, V , we take
{0, 1

2 , 1}, with D = { 1
2 , 1}. The value of complex formulas is computed using the

following tables.

→ 0 1
2 1 ¬

0 1 1 1 1
1
2 0 1

2 1 1
2

1 0 0 1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

A valuation v is a countermodel for a formula A iff v(A) = 0, which is to say
that v(A) is not designated.

Every axiom of R is designated on every valuation and the rules preserve
designation.9 By an inductive argument, this implies that every theorem of R
receives a designated value. To show that a formula is not a theorem of R, it
suffices to provide a valuation that assigns it 0. In the case of interest, v(p) = 1,
v(q) = 1, and v(r) = 1

2 will work.10 This valuation gives v(p ↔ q) = 1, while
v((p ∧ r) ↔ (q ∧ r)) = 1

2 . As 1 → 1
2 = 0,

v((p ↔ q) → ((p ∧ r) ↔ (q ∧ r))) = 0,

as desired.

The formula scheme (A ↔ B) → ((A ∧ C) ↔ (B ∧ C)) is not a theorem of R.11

With this result in hand, we can turn to our main result.

Theorem 6. The logic R.TRIV is hyperintensional.

Proof. To show that R.TRIV is hyperintensional, we need a formula context
which is hyperintensional. Take the formula context (s ∧ r, s). The formula

�(p ↔ q) → �((p ∧ r) ↔ (q ∧ r))

9 This was shown by Robert Meyer. See Anderson and Belnap [2, 470].
10 This countermodel was found using John Slaney’s program MaGIC. See https://

users.cecs.anu.edu.au/∼jks/magic.html.
11 Axioms of this form were studied by Routley et al [27, 345] and by Urbas and

Sylvan [38]. Thanks to Andrew Tedder for drawing my attention to these citations.

https://users.cecs.anu.edu.au/~jks/magic.html
https://users.cecs.anu.edu.au/~jks/magic.html
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is not valid in R.TRIV. This is because we can use the fact that A ↔ �A to
focus on the equivalent

(p ↔ q) → ((p ∧ r) ↔ (q ∧ r)),

which was shown not to be a theorem of R in Lemma 5.

Thus, we have demonstrated that R.TRIV is hyperintensional. It is worth noting
that, for similar reasons, (p ∨ r, p) is a hyperintensional context as well. As an
immediate corollary, we have the following result.

Corollary 7. Let L be any sublogic of R.TRIV. Then L is also hyperintensional.

The sublogics of R.TRIV include all the well-known relevant logics, such as T, E,
and B, as well as (multiplicative, additive) linear logic, and further it includes
many of their extensions with well-known modal principles. We can extend a
base logic L with a non-trivial, primitive necessity operator, �, rather than a
defined one. However, as long as L is a sublogic of R, we can, in many cases of
interest, embed the result into R.TRIV using the embedding τ(�A) = �τ(A),
i.e. τ(�A) = (τ(A) → τ(A)) → τ(A), provided the modal principles for � are
among those of TRIV. For such logics, the countermodel above will suffice to
demonstrate hyperintensionality, setting v(�A) = v(A).

There are modal logics that are not sublogics of TRIV, although the majority
of the philosophically significant ones are sublogics of TRIV. Perhaps the most
prominent modal logics that are not sublogics of TRIV are provability logics,
logics that include the axiom �(�A → A) → �A.12 These have not been stud-
ied much in the context of relevant logics, although Mares [22] is an exception,
studying a provability logic extension of R. Although the above countermodel
does not work for Mares’s provability logic, the same invalid formula demon-
strates that the logic is hyperintensional. For other modal logics that are not
sublogics of R.TRIV, it is left open whether they are hyperintensional or not.

As noted above, in relevant logics, one can define a logical necessity operator:
�A is (A → A) → A. For the logic R, this necessity obeys the TRIV principles,
although for weaker base logics, the defined necessity is more like a familiar kind
of necessity. Using this definition, we can view relevant logics as modal logics and
use the defined necessity in the definition of hyperintensionality. In this sense, R
and its sublogics are hyperintensional.

We will observe one additional corollary of Lemma 5.

Corollary 8. There are contexts that fail to be extensional in R.

Proof. As the lemma shows, (s ∧ r, s) fails to be extensional in R.

For similar reasons, (s∨r, s) also fails to be extensional in R. While it is perhaps
not surprising that R, and all of its sublogics, contain non-extensional contexts,
it is worth noting that the particular non-extensional contexts provided involve

12 See Boolos [8] and Verbrugge [39] for more on provability logics.
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only conjunction or only disjunction, both typically thought of as extensional.13

In the context of R, at least, Williamson’s definition of extensional context, with
⊃ and ≡, would say that (s∧r, s) is an extensional context, an (⊃,≡)-extensional
context in the nomenclature of the previous section. This is not the case for many
of the weaker relevant logics, which is a consequence of the results of Slaney [32].

By contrast, if we consider the set of connectives often described as inten-
sional, or non-extensional, {→,¬, ◦}, where ◦ is the fusion connective, we find
that they are all extensional.

Proposition 9. Let (C, p) be a context built from atoms and only the connec-
tives →,¬, and ◦. Then (C, p) is extensional in R.

Proof. The connective ◦ is definable in R as A ◦ B =Df ¬(A → ¬B). The result
is then proved by induction on structure of C, which is straightforward using
axioms (8) and (11). The inductive hypothesis is that |=R (A ↔ B) → (D(A) ↔
D(B)), for less complex contexts (D, p).

For the conditional case, the context is (D → E, p). As (D(A) → E(A)) →
(D(A) → E(A)) is provable by axiom (1), we can prove

(A ↔ B) → ((A ↔ B) → ((D(A) → E(A)) → (D(B) → E(B))))

with the two appeals to the inductive hypothesis and some simple transitivity
moves available in R. An appeal to axiom (11) then yields half of the desired
result. The other half is obtained similarly.

For the negation cases, we use (8) and the desired result follows immediately.

For logics that lack axioms (8), (10), or (11), the proposition may fail. In weaker
logics, some contexts built from the connectives {→,¬, ◦} can fail to be exten-
sional. As we will see shortly, all the standard relevant logics include the rule
form of axiom (9) used in the proof. Let us look at some examples of failures
of extensionality in logics lacking axioms (8), (10), or (11). The logic RW is
obtained from the axiomatization of R by dropping axiom (11).

Proposition 10. In RW, the context (r → r, r) is not extensional.

Proof. We leave it to the reader to find a countermodel using MaGIC.

The logic T is obtained from the axiomatization of R by removing (10) and
adding (A → ¬A) → ¬A. In it, fusion is not definable in terms of negation and
conditional. Contexts built from fusion fail to be extensional.

Proposition 11. In T, (p ◦ r, p) is not extensional.

Proof. We leave it to the reader to find a countermodel using MaGIC.

Although fusion fails to be extensional, T still enjoys some extensionality similar
to that of R.

13 Cf. Gabbay [13] corollary 21.
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Proposition 12. In T, all contexts constructed from the vocabulary {→,¬} are
extensional.

Proof. The negation and conditional cases from the proof from Proposition 9
can be reproduced here, omitting fusion.

It is worth looking at an example of a failure of extensionality for contexts built
from negation that can be found in the logic B. The logic B is the weakest relevant
logic that is standardly discussed, and it is obtained from R by dropping axioms
(8)–(11) and adding the following rules.

– A → ¬B ⇒ B → ¬A
– A → B ⇒ (C → A) → (C → B)
– A → B ⇒ (B → C) → (A → C)

Some formulas in the basic vocabulary fail to be extensional in B, beyond the
examples provided above.

Lemma 13. In B, the formula context (¬p, p) is not extensional.

Proof. In B,
(p ↔ q) → (¬p ↔ ¬q)

is invalid. We can adapt the matrix from the proof of Lemma 5 to show this. We
change the set of designated values to {1}, replace the conditional table with

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

and all valuations on the resulting matrix assign all the theorems of B designated
values.14 The valuation v where v(p) = 1 and v(q) = 1

2 is a counterexample to
the target formula.

To obtain HYPE, or at least its logical truths, from R, we add A → (B → A)
and trade axiom (8) for its rule form, A → ¬B ⇒ B → ¬A. It follows that
we can obtain HYPE by adding some axioms to B. B shares with HYPE the
feature of having contraposition as a rule but, crucially, not as an axiom, which
results in the failure of the pertinent instance of the extensionality scheme above.
In fact, this example extends to HYPE as well. This provides an example of
hyperintensionality in B.TRIV, as the context (¬p, p) is also hyperintensional in
B.TRIV, and so in all sublogics. A similar point holds for HYPE, and in fact, the
same matrix demonstrates the failure of extensionality. Thus, HYPE exhibits
hyperintensionality in the same sense as relevant logics. With these results in
hand, let us turn to some further concepts for classifying formula contexts and
some discussion.

14 This countermodel was found using John Slaney’s program MaGIC.
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4 Discussion

Odintsov and Wansing [25] adopt an alternative notion of hyperintensionality,
using self-extensionality,15 also known as congruentiality,16 which they argue is
closer to the suggestions of Cresswell [9]. Adapting their definition to the present
setting, a formula context (C, p) is congruential (in L) iff for all formulas A and
B,

– if |=L A ↔ B, then |=L C(A) ↔ C(B).

A logic is congruential iff all formula contexts are congruential in that logic.
Relevant logics and their usual modal extensions are congruential, although there
are modal extensions which are not congruential.17

It is worth distinguishing congruentiality and hyperintensionality for two
reasons. First, it is natural to maintain the distinction between (i) claims that
are necessarily equivalent but not logically equivalent and (ii) claims that are
both necessarily and logically equivalent. One might think that certain truths of
mathematics or metaphysics are necessarily, but not logically, equivalent. Second,
hyperintensionality builds in a modal element that is absent in congruentiality
in the sense that the former, but not the latter requires a modal operator be
used in its definition. Third, and relatedly, congruentiality can be given an alter-
native definition that does not involve object language biconditionals, instead
using mutual entailments, but hyperintensionality cannot be given such defini-
tion. Both hyperintensionality and congruentiality are important and interesting
classifications of formula contexts, so it is worth distinguishing them.

Let us consider one further concept that could be considered for hyperinten-
sionality in the present context. Although the discussion so far has proceeded at
the level of logics, independent of any models, one could introduce models for
relevant logics, such as the ternary relational models,18 enabling us to talk about
the sets of worlds where formulas hold, using [A]M for the set of worlds where
A holds in a model M . We could introduce a singulary modality, the universal
modality U, such that UA holds at a world iff [A]M is the set of all worlds in the
model M . One could then say a formula context (C, p) is U-hyperintensional in
L iff for some formulas A and B,

– 	|=L U(A ↔ B) → U(C(A) ↔ C(B)).

We’ll say a logic is U-hyperintensional iff it has a formula context (C, p) that is
U-hyperintensional. The logic R is not U-hyperintensional. Since every sublogic
of R.TRIV is hyperintensional, this tells us that the modal principles of U are not
contained in TRIV, which puts it well outside the usual modal logics. Proponents
of relevant logics, however, have a reason not to accept U, as it leads to violations

15 See Wójcicki [42, 342], who uses the term ‘selfextensional’, Font [12, ch. 7], Avron [3],
for example. Thanks to Rohan French and Andrew Tedder for references.

16 See Humberstone [18, 19], among others.
17 See Savić and Studer [28] and Standefer [34] for examples.
18 See Restall [26, ch. 11] for a good introduction to ternary relational models.
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of Belnap’s variable sharing criterion.19 Proponents of relevant logics have reason
not to accept that connective and to reject this sense of hyperintensionality. It is
not the salient sense of hyperintensionality for the proponent of relevant logics.

It is worth pointing out that relevant logics have a feature that is, in some
ways, similar in spirit to hyperintensionality. Classical logic is monothetic in the
sense that for any two logical truths A and B, A ↔ B is a logical truth.20 From
the point of view of classical logic, there is only a single logical truth. HYPE is
also monothetic, replacing the classical biconditional with the biconditional of
HYPE, and similarly for intuitionistic logic. Relevant logics are polythetic mean-
ing that there are non-equivalent logical truths, that is, there are logical truths
A and B such that A ↔ B is not a logical truth.21 In relevant logics, one can
draw distinctions between logical truths, much as (classical) hyperintensional-
ity allows one to draw distinctions among necessary truths. One can use logical
truths, such as p → p and q → q, to show that the formula context (s ∧ r, s)
is hyperintensional. By contrast, any logic that contains the weakening axiom,
A → (B → A), and where the conditional obeys modus ponens will be mono-
thetic.

The results of this paper show that almost all the common modal extensions
of relevant logics have hyperintensional contexts. This result extends to HYPE,
although the range of such contexts appears more limited there than in R. As
one weakens the logic, the range of hyperintensional contexts grows, a feature
that extends to HYPE and other substructural logics as well. Hyperintensionality
is of interest in a wide range of philosophical applications of logic, such logics
of belief and epistemic logics. There is further work to do to see the extent to
which the sorts of hyperintensionality identified here has natural application to,
say, logics of belief or epistemic logics. A promising direction for future work is
to precisely characterize the range of hyperintensional contexts in the different
relevant and substructural logics. This will be useful in better understanding the
ways in which logical omniscience can fail in non-classical settings.22 One can, of
course, appeal to various modeling techniques used to obtain hyperintensional
contexts over classical logic to obtain such contexts in relevant logics. These
modeling techniques will likely interact with the natural hyperintensionality of
relevant logics in surprising ways.

To summarize, relevant logics are hyperintensional when considering many
natural kinds of necessity, in at least one important sense. One can extend rele-
vant logics with a singulary modal operator for universal necessity, U, to obtain
another sense of hyperintensionality. Relevant logics fail to be hyperintensional
in that sense, although the relevant logician has antecedent reason not to accept

19 See Standefer [35,36] for discussion.
20 See Humberstone [17, 231].
21 This point was also made by Standefer [33], albeit in discussion of justification logics.
22 See, for example, Sedlár [29,30], Standefer, Shear, and French [37], and Ferenz [11],

among others, for some discussion of logical omniscience in non-classical settings.
For a contrasting recent discussion of omniscience in the setting of classical logic,
see Hawke, Özgün, and Berto [14].
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that modality and not to be interested in that sense of hyperintensionality. Rel-
evant logics and their modal extensions are, generally, congruential, so they are
not hyperintensional in the sense preferred by Odintsov and Wansing. Nonethe-
less, we do agree with Odintsov and Wansing’s closing suggestion to study non-
self-extensional, or non-congruential, operators, as non-classical logics likely have
much to contribute in those areas. Despite being congruent, relevant logics are
polythetic, which allows them to draw distinctions in ways reminiscent of hyper-
intensionality.
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Abstract. The philosophical literature that tackles foundational ques-
tions about normativity often appeals to normative reasons—or consid-
erations that count in favor of or against actions—and their interaction.
The interaction between normative reasons is usually made sense of by
appealing to the metaphor of (normative) weight scales. This paper sub-
stitutes an argumentation-theoretic model for this metaphor. The upshot
is a general and precise model that is faithful to the philosophical ideas.

Keywords: Argumentation theory · Normative reasons · Weighing

1 Introduction

Philosophers who explore normative matters often appeal to normative (prac-
tical) reasons, understanding them as considerations that count in favor of or
against actions. When discussing the interaction between reasons, they often use
such phrases as “the action supported on the balance of reasons” and “reasons
in favor outweigh the reasons against”, inviting an image of weight scales for
reasons. The simplest model of these (normative) weight scales works, roughly,
as follows. Reasons speaking in favor of ϕ-ing go in one pan of the scales, and
reasons against go in the other. If the weight of the reasons in the first pan is
greater, ϕ ought to be carried out. If the weight of the reasons in the second pan
is greater, ϕ ought not to be carried out.

While philosophers have explored various ideas about the exact workings of
the weight scales and also looked at some alternatives, their investigations have
mostly been carried out in informal terms. The goal of this paper is to develop
a formal model of (normative) weight scales, drawing on formal argumentation.
Instead of starting from scratch, we repurpose Gordon and Walton’s model of
“balancing arguments” [4].

This paper is structured as follows. Section 2 sketches the philosophical ideas
on weighing reasons. Sections 3 and 4 set up the model. Section 5 discusses our
main results and some of the work that is most closely related to ours.
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N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 251–259, 2023.
https://doi.org/10.1007/978-3-031-45558-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45558-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-45558-2_19


252 D. Streit et al.

2 (Normative) Weight Scales

This section provides a bird’s-eye view summary of the main ideas from the philo-
sophical literature on weighing reasons. Note that it is an opinionated sketch: we
simplify where possible and bracket a whole plethora of important and complex
questions. (For more thorough overviews, see, e.g., [6] and [9, pp. 1–7].)

Normative reasons are typically taken to be facts that are not subject to
debate. Thus, the fact that the person next door is in need of help is a reason
for you to help them, regardless of your values and preferences, as well as your
views on ethics and metaethics. Reasons are always reasons for someone: they
favor or speak against someone’s action. They are also intimately tied to their
weights, which are comprised of a magnitude and a polarity. Magnitude has to do
with the relative importance of the reason; polarity with whether it is a reason
for or against. Reasons against an action count (either directly, or indirectly) as
favoring alternative actions.

Reasons play a core role in determining the deontic statuses of actions. Thus,
whether some action is permitted/required/ought to be taken depends on the
reasons that count for/against it and their interaction. In staying with the weight
scales metaphor, we say that one is permitted to ϕ just in case the net weight
of the reasons for ϕ-ing is at least as high as the net weight of the reasons
for the alternatives. (For a discussion of subtle changes one could make to this
definition, see, e.g., [9].)

An important and hotly debated question concerns the effects of context on
the weights of reasons. Positions range from extreme atomist views on which a
reason’s weight is context-independent to extreme holist views on which a fact
that is a reason for ϕ-ing in one context can be a reason against ϕ-ing in a differ-
ent one, or cease to be a reason at all. Most philosophers find positions at both
ends of the spectrum implausible, preferring views on which there is both (some)
stability in reasons’ weights and that allow for (some) context-sensitivity. A com-
mon move here is to appeal to what we might call normatively-relevant consider-
ations that aren’t reasons. Such considerations don’t qualify as reasons because
they don’t count for/against actions. However, they can affect the weights of rea-
sons, and so have an (indirect) effect on an action’s deontic status. It’s common
to distinguish between two types of such considerations: undercutters and modi-
fiers. An undercutter nullifies the weight of a reason, effectively making it cease
to be a reason. Modifiers are of two types: attenuators and amplifiers. An atten-
uator reduces the magnitude of a reason, making it less weighty. An amplifier
amplifies the magnitude of a reason, making it more weighty. Undercutters and
modifiers suggest the view that every reason has a context-independent default
weight and a context-specific final weight, and that any difference between the
two can be accounted for by appeal to undercutters and modifiers. This view is
common, and it seems up to debate whether it is closer to atomism or holism.

3 Normative Graphs

In this section, we explain how to represent the structural relations that can
obtain between normative reasons, other normatively-relevant considerations,
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and alternative actions (or options). (In the next one, we focus on modeling the
normative effects that these can exert on each other.)

As background, we assume a propositional language (L) with the standard
connectives. We use the term ‘normatively-relevant consideration’ (or simply
‘consideration’) to refer to reasons, undercutters, and modifiers. Following the
philosophical literature, we assume that every consideration (a) has a default
weight; (b) can be undercut; and (c) can have its weight changed by modifiers.
Jointly, the relevant considerations are meant to determine the deontic status of
actions available to an agent. Adapting the notion of issue from [4], we think
of options as a finite subset of L representing a set of mutually exclusive and
exhaustive actions available to the agent. Adapting the notion of argument from
[4], we define considerations as follows:

Definition 1 (Normatively-relevant consideration). A consideration is a
tuple C = (p, c, u, a−, a+, w), where the first five elements are formulas of L
called, respectively, premise, conclusion, undercutter, attenuator, and amplifier,
while the sixth element is a positive real number called default weight.

We will use the following scenario to illustrate this and future definitions—
note that the expressions in brackets are atomic sentences of L:

Example 1. You are to choose between two options: to go to the movies with me
(Movies), or to have dinner with your mom at her favorite restaurant (Dinner).
You have made a promise to me (Promise). What’s more, you were very insis-
tent when making the promise: you said that you would keep it no matter what
(Insist). Dining with mom would make her happy (MomHappy). The restau-
rant also happens to serve your favorite cake (Cake). Also, it is Mother’s Day
(MothersDay) and you haven’t seen your mom in a while (LongT ime).

Notice that the options here are {Movies, Dinner}. The intuitive idea that
your promise is a reason to go to the movies is captured by the considera-
tion C1 = (Promise,Movies, u1, a

−
1 , a+

1 , w1). Similarly, the idea that going to
the restaurant will make your mom happy and that the restaurant serves your
favorite cake are reasons to have dinner with mom is represented by C2 =
(MomHappy,Dinner, u2, a

−
2 , a+

2 , w2) and C3 = (Cake,Dinner, u3, a
−
3 , a+

3 , w3)
respectively. The idea that your being very insistent when making the promise
amplifies C1 is captured by consideration C4 = (Insist, a+

1 , u4, a
−
4 , a+

4 , w4).
Notice that the conclusion of C4 (a+

1 ) corresponds to the amplifier of C1, which
means that C4 amplifies C1 or that C4 is an amplifier of C1. The rest of the
example is captured by considerations C5 = (MothersDay, a+

2 , u5, a
−
5 , a+

5 , w5),
C6 = (LongT ime, a+

2 , u6, a
−
6 , a+

6 , w6), and C7 = (Release, u1, a
−
7 , a+

7 , w7).
The considerations that are in force in a given context form a graph structure.

This is captured by our next definition—given a consideration C = (p, c, u, a−,
a+, w), we let pC = p; cC = c; uC = u; a−

C = a−; a+
C = a+, and wC = w:1

1 We follow [4] in calling the structures specified in Definition 2 graphs as they can
be mapped straightforwardly to directed graphs.
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Definition 2 (Normative graph). A normative graph is a triple of the form
N = (S,O,R), where S is a finite subset of L; O ⊆ S called the set of options;
and R is a finite set of considerations, where for every C ∈ R, pC , cC , uC , a−

C ,
a+
C are all members of S and wC ∈ R>0.

Fig. 1. Movies or Mom’s favorite restaurant

Figure 1 depicts the full graph comprising our example visually. The two
options are represented as circles in the middle. Each consideration is depicted
as comprised of five nodes, some of which are shared between considerations.
For example, the node Insist is the premise of C4 = (Insist, a+

1 , u4, a
−
4 , a+

4 , w4),
and the node a+

1 is the conclusion of C4 and the amplifier of C4. The nodes u4,
a−
4 , and a+

4 stand for the remaining elements of C4. They are grayed out, since
no other considerations affect C4. The default weight of C4 is presented on the
edge between premise and conclusion.

Notice that the graph structure in Fig. 1 is finite, directed, and acyclic. This is
no coincidence. Following the philosophical literature, we allow that graphs rep-
resenting the structural relations between normatively-relevant considerations
and options are complex. However, we also require that they are finite and never
contain any cycles. In particular, this rules out intra-consideration circularity,
where e. g. the premise and conclusion are identical.

Before moving on, we introduce some terminology. Given a graph N =
(S,O,R), we call a consideration C ∈ R a reason (for o ∈ O) if cC = o. We
say that C attenuates C ′ if cC is the attenuator of some consideration C ′, we
say that it amplifies C ′ if cC is an amplifier of C ′ and that it undercuts C ′ if
cC is the uncercutter of C ′. Overloading the terms, we sometimes call a con-
sideration that undercuts or modifies another reason an undercutter or modifier
respectively. Sometimes we may want to add, remove, or replace considerations
in a graph. While the addition and removal are straightforward to define, one
needs to be careful with replacement. Given a graph N = (S,O,R) and a con-
sideration C, we let N + C denote the graph that results from adding C to
N and N − C the graph that results from removing C from N . A graph that
results from replacing C by another consideration C ′ in N is denoted by N+C′

−C .
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It is defined as (N − C) + C ′ only in case either both C and C ′ are reasons, or
both C and C ′ modify or undercut the same consideration. This ensures that
the replaced consideration occupies the same place in the graph.2

4 Weighing Functions

This section explains how we model the effects of normatively-relevant consid-
erations on each other, along with their effects on options.

Suppose that we had a function fN which, given any normative graph N ,
would output the final weights of all considerations in it. Such a function would
put us in a position to determine which options are permitted and which are
forbidden in a rather straightforward way, where Cs = {C ∈ R | cC = s, s ∈ S}:

Definition 3 (Resolution function). Given a normative graph N =
(S,O,R), an option o ∈ O, and a function fN , let rN (o) = permitted if, for
every o∗ ∈ O,

∑
C∈Co

fN (C) ≥ ∑
C∈Co∗ fN (C); rN (o) = forbidden otherwise.

And if there is a unique permitted option, we say that it ought to be carried out.
Of course, we still need to specify fN . The way we calculate the final weight

of a consideration C is via a two-step process using an additional function gN .
In the first step, we aggregate the (final) weights of C’s amplifiers, attenuators,
and undercutters. In the second step, we obtain the final weight of C on the
basis of these aggregated weights and the default weight of C. This will be the
job of fN . (For readability, we will often omit the superscript where the context
makes clear which graph we are talking about.) Note that even if we have a
concrete aggregation function g at our disposal, there are many choices we could
make for how f calculates the final weight from the output of g and C’s default
weight. So, before we define any concrete functions, it will be useful to think
about some plausible constraints or principles that they should satisfy. (Many
of the principles of weighted argumentation analyzed in [2] can be translated to
our setting and make sense here as well.)

Definition 4 (Principles). Let N = (S,O,R) be an arbitrary normative
graph, C some consideration, and C ′ and C∗ a modifier and an undercutter
of C, then:
2 It’s worth noting two features of our model that might turn out to be either advan-

tages or drawbacks. First, we represent reasons with negative polarity—reasons that
speak against actions—only indirectly. In our model, any reason is always a reason
for an option. So, it is a reason against an option only in so far as it adds to the final
weight of an alternative option. Second, it is sometimes claimed that reasons can
switch their polarity when combined [8]. Thus, in an (in)famous example, Prakken
and Sartor [8] describe the effects of heat and rain on your going jogging: taken by
themselves, the facts that it is raining and that it is hot constitute reasons for you
not to go jogging, but, taken in combination, they speak in favor of going jogging.
If these cases exist, our model cannot account for them. However, given that their
existence is disputed (see e.g., [3,7,9]), our model may well gives the correct verdict
here.
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1. No Effects from Spurious Reasons: If C is a reason in N + C, then if
fN+C(C) = 0, then for all options o, rN (o) = rN+C(o).

2. No Effects from Spurious Modifiers: For any modifier C /∈ R of a
consideration C ′ ∈ R with fN+C(C) = 0, we have fN (C ′) = fN+C(C ′).

3. No Valence Flips for Modifiers: Given an amplifier C of some consid-
eration C ′ ∈ R, fN (C ′) ≥ fN−C(C ′). Analogously, for an attenuator C of
some consideration C ′, fN (C ′) ≤ fN−C(C ′).

4. Modifier Reciprocity: For any C ∈ R, if g(a+
C) = g(a−

C) and g(uC) = 0,
then we have f(C) = wC .

5. Modeler’s Delight: For any consideration C ∈ R, we have f(C) ≥ 0. If
g(uC) > 0, then f(C) = 0.

6. Normative Parsimony The function governing the weight of different con-
siderations is uniform (and not gerrymandered) for reasons, undercutters,
and modifiers.

7. Relativity Given a consideration C = (p, c, u, a−, a+, w) and x > 0, let x×C
be (p, c, u, a−, a+, x×w). Given a set of considerations R, let x×R = {x×C :
C ∈ R} and x × N = (S,O, x × R). Then rN (o) = forbidden iff rx×N (o) =
forbidden.

8. Distinct Roles If C ′ ∈ R, C∗ /∈ R, fN+C∗
(C∗) �= 0 and fN (C) �= 0, then

f
N+C∗

−C′ (C) �= fN (C). And if C∗ ∈ R, C ′ /∈ R, fN (C∗) �= 0 and fN−C∗
(C) �=

0, then fN+C′
−C∗ (C) �= fN (C).

Principles 1 and 2 state that the addition of both reasons and modifiers with
the (final) weight of 0 should have no effects on which options are permissible
and the final values of other specific considerations. Principle 3 states that no
attenuator (no matter the rest of the graph) should ever help strengthen the
weight of the consideration it modifies and that no amplifier should help weaken
the weight of the consideration it modifies. Similarly, Principle 4 states that if the
(aggregated) weight of attenuators and amplifiers is the same, their contributions
cancel out and the final weight of the consideration they modify (if it is not
undercut) is simply its default weight. Principles 5 and 6 are meant to ensure that
weights get calculated in accordance with the scales metaphor. Principle 5 says
that the minimal weight a consideration can have is 0 and that 0 is the weight it
has if it is undercut. Principle 6 requires that the final weights of different kinds
of normatively-relevant considerations are computed in the same way. Principle
7 states that weights have no meaning outside of the ratio scale they constitute.
Principle 8, which one may or may not accept depending on one’s metaethical
inclinations, states that the roles of modifiers and undercutters in the economy
of reasons should be distinct. (In particular, it states that an attenuator is never
strong enough to entirely remove the weight of a consideration.)

With these principles in mind, we turn to concrete examples. Recall that we
are looking for two functions g and f . The simplest thing to do for g is to add
the (final) values of the nodes that “feed into” a consideration:

g+(x) =
∑

C′∈Cx

f(C ′)
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Notice that g+ treats undercutters in an intuitive way, returning 0 just in case
there either are no undercutters or all of them are themselves undercut. The
leaves of the graph get assigned the weight 0. So, given a function f , we can
compute the final weight of a consideration, working from the leaves up the tree.

Turning to the function f , we define two concrete functions here. The first of
these, f+, assigns a final weight of zero if either the consideration is undercut or
if the combined weight of its attenuators is greater than that of its amplifiers and
its default weight. Otherwise, it returns the default weight plus the difference
between the combined weight of its amplifiers and attenuators. (Note that 1 is
the indicator function.)

f+(C) = 1{0}(g(uC)) ∗ max(0, g(a+
C) − g(a−

C) + wC)

The second function f× uses modifiers as multipliers: amplifiers increase the
weight of a consideration by a factor, and attenuators lower it by a factor.

f×(C) = 1{0}(g(uC)) ∗ 1 + g(a+
C)

1 + g(a−
C)

∗ wC

5 Results and Related Work

We take it that Principles 1–7 state conditions that should be satisfied by all
functions, while Principle 8 (Distinct Roles) is up for debate. Our first result
runs thus—its proof is straightforward and omitted for reasons of space.

Theorem 1. Functions g+ and f× satisfy all principles stated in Definition 4.
Functions g+ and f+ satisfy all principles but Distinct Roles.

While (f× and g+) allow for attenuators to be as strong as undercutters and
(f+ and g+) doesn’t, a plausible result about the relationship between atten-
uators and undercutters can be established for both. Intuitively, it states that
undercutters can be seen as a limit case of attenuators:

Theorem 2. Given the functions (f× and g+) or (f+ and g+) and any consider-
ation C0, there is a series of attenuators Ci such that each Ci attenuates C0 that
can be added to the normative graph N , such that limi→∞ fN+∪j=i

j=1Cj (C0) = 0.

Notice that Definition 4 is only the first step towards mapping out the space
of normative principles that weighing functions can (should) satisfy. We leave
fully-fledged principle-based analysis for future work. In the remainder of this
section, we briefly compare our model to the work that comes the closest to it:
Gordon and Walton’s model of “balancing arguments” [4], the work on weighted
argumentation by Amgoud et al. [1,2], and Horty’s model of reasons [5].

We repurposed the model from [4] to a particular domain. As a result, we
obtained a model that is simpler in a number of respects. For instance, the
graphs that we work with are acyclic, and we have no need for labeling. The
way we interpret weights is also different: where [4] assign values from [0, 1] to
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arguments, interpreting them as the “level of acceptance”, we allow all positive
reals. As a result, we have also dropped the notion of “proof standard”, which
gets at the idea of a threshold of evidence for accepting a conclusion. No such
threshold seems to exist in the context of practical normative reasons.

Amgoud et al. [1,2] work with the interval [0, 1], representing argument accep-
tance in their principle-based analysis of weighted argumentation. Their model
assigns both default and final weights to arguments: attacks on arguments lower
the final weight, while support increases it. The bulk of their principles can
be restated in our framework, and many of them apply to reasons for action.
In fact, our Principles 1–6 can be seen as translations from [2]. There are two
main differences between the approach of Amgoud et al. and ours. First, the
target of Amgoud et al. is the acceptability of arguments and not the interac-
tion between normative reasons. Second, due to the interval scale used in their
mode, an argument can be fully accepted simply due to the arguments “feeding
into it”. In our model, an issue is essentially contrastive: an option’s normative
status always depends on all reasons for all options. It also means that some of
our principles (e.g., Principle 8) make little sense in the framework of Amgoud
et al., while other principles aren’t applicable in our model. Nevertheless, our
principles both serve to show the (dis)similarities between normative reasons
and arguments, we believe that there is a whole host of principles in the style of
[2] unique to normative reasons that are still to be explored in future work.

Lastly, there is the model of Horty [5], which is meant to play a similar role
to ours. The main advantage of our model over Horty’s is its closer alignment
to the idea of weight scales: our model associates magnitudes with reasons and
lets us model combination or aggregation of weights in a straightforward way.
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Abstract. A normative sentence contains information which is used for either
describing some deontic situations or prescribing a new norm. Considering the
differences between them, we introduced the notion of relativized conditional
obligations based on ideality sequences. On the one hand, each ideality sequence
can be treated as a normative system which prescribes the relative ideality of
states of affairs. On the other hand, a bare structure provides a factual background.
Once these are done, every betterness structure based on a given ideality sequence
and a bare structure describes the conditional obligations. Deletion and postfixing
are two updates on the normative system which can bring about corresponding
obligations successfully or not. Jørgensen’s dilemma can be conceptualized by
using the notion of successful updates. A sound and strongly complete axiom
system for the logic of relativized conditional obligations PCDL is established.

Keywords: normative system · conditional obligation · ideality sequence ·
update normative system · successful update · Jørgensen’s dilemma ·
axiomatization

1 Introduction

A normative sentence contains information which is used for either describing some
deontic situations or prescribing a new norm. The descriptive use is normally shown in
an indicative mood. The prescriptive use usually appears in an imperative mood. These
different uses of normative sentences inspire different deontic logics.

In the descriptive sense, normative propositions describe agents’ deontic states,
thereby having truth values. For example, ‘Pieter ought to drive on the right’ has a
certain truth value under some circumstances. In the Netherlands, it is true, but it is
false in England. Varieties of deontic logic were developed following this approach,
such as SDL [14], dyadic deontic logics [3,4], and deontic Stit logic [2,5], etc.

In the prescriptive sense, we pay more attention to norms rather than normative
propositions since norms are used for prescribing new rules and hence do not have truth
values. For example, a norm can be a command which changes agents’ deontic states.
As a consequence, a puzzling question arises: if imperatives have no truth values, is
there a logic of imperatives? The question is known as Jørgensen’s dilemma. The basic
strategy to resolve the problem is introducing an independent set of norms which can be
updated by adding new norms or subtracting norms from it (see [8,10,12]). Following
the idea, this paper also splits off normative systems from deontic models. However,
our normative systems will be characterized by ideality sequences where norms are
not independent with each other. Rather, they are structural. Moreover, the updates on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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ideality sequences would make effects on conditional obligations by changing better-
ness relations in deontic models. Accordingly, we give the notion of successful updates
and the Jørgensen’s dilemma can be resolved.

2 Preliminaries

We first introduce Hansson’s dyadic deontic logic. The language is LCDL (CDL stands
for ‘conditional deontic logic’). Let P be a countable set of propositional atoms.

Definition 1 ( Language LCDL). The language LCDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Uϕ | ©(ϕ|ϕ)

where p ∈ P.

The formula Uϕ stands for “ϕ is necessary”; ©(ϕ|ψ) can be read as “if ψ is the
case, ϕ ought to be the case”. Û is the dual of U .

Definition 2. A betterness structure is a tuple M = 〈S,�, V 〉 where

– S is a nonempty set of states;
– �⊂ S × S is a partial order (transitive and antisymmetric);
– V ⊂ P → P(S).

The set of states S provides a factual background for a model. The betterness relation
shows which states are better or worse. It is worth noting that in Hansson’s tradition,
betterness relations are given a priori.

Definition 3 (Semantics of LCDL [4]). Let M = 〈S,�, V 〉 be a betterness structure.
The semantics of LCDL is defined as follows (only the non-trivial cases are shown):

– M, s |= Uϕ ⇐⇒ for each t ∈ S, M, t |= ϕ;
– M, s |= ©(ϕ|ψ) ⇐⇒ max� ‖ψ‖M ⊆ ‖ϕ‖M .

Here, ‖ϕ‖M = {t | M, t |= ϕ} and max� T = {s | ∀t ∈ T (s � t ⇒ t � s)}
The set max� ‖ψ‖M represents these best ψ-states in ‖ψ‖M with respect to �.

An agent has a conditional obligation ©(ϕ|ψ) in a possible world s if and only if all
the best ψ-states also satisfy ϕ. Thus, ©( | ) is a global operator whose semantics
are not related to which possible world that we are standing on. It describes the ideal
proposition (ϕ) under some certain condition (ψ).

3 Betterness Structures Based on Ideality Sequences

Betterness structures provide a basis for the description aspect of our research. They
are used for describing obligations that an agent has. In contrast, the notion of ideality
sequence to be introduced is the normative system in this paper. It prescribes what
propositions are better or worse.
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Definition 4. A pair I = (I ∪ {ε},�) is an ideality sequence where

– I ⊂ LPL is a finite (can be empty) set of propositional formulas;
– �: I × (I ∪ {ε}) is a strict linear order such that for each ϕ ∈ I , ϕ � ε.

An ideality sequence provides us an ordering on propositional formulas. For example,
if ϕ � ψ, it means that ψ is dominantly better than ϕ. The constant ε is used for
representing the empty sequence when I = ∅.

Notations: given an ideality sequence I = (I ∪{ε},�) and I �= ∅, for each ϕ ∈ I ,

– Iϕ = {ϕ′ ∈ I | ϕ � ϕ′ or ϕ′ = ϕ};
– if ϕ ∈ I and ϕ is not the maximal element in I , then

∨
I+ϕ =

∨{ϕ′ ∈ I | ϕ � ϕ′};
– if ϕ ∈ I and ϕ is the maximal element in I , then

∨
I+ϕ = ⊥.

Definition 5 (Bare structure). A pair M = (W,V ) is a bare structure where

– W is a non-empty set of states;
– V : P → P(W ) is a valuation.

A bare structure only provides a factual background of a model. But given an ideality
sequence, a betterness relation can be derived from a bare structure and thereafter, a
betterness structure is constructed.

Definition 6 (Betterness structure based on ideality sequence). Given an ideality
sequence I = (I ∪ {ε},�) and a bare structure M = (W,V ), the betterness structure
based on I and M is MI = (W,�I , V ) where �I : W × W is the betterness relation
between states satisfying the following condition:

s �I t ⇐⇒ either (i) or (ii), where
(i) ∃ϕ ∈ I : (M, t |= ϕ and ∀ψ ∈ I(ϕ � ψ → M, s �|= ψ))
(ii) ¬∃ψ ∈ I : (M, s �|= ψ or M, t �|= ψ)

The definition of s �I t intuitively means that the best formula from I that t sat-
isfies is not worse than the best formula from I that s satisfies. The betterness relation
derived in this way is a total preorder (transitive and strongly connected) which is dif-
ferent from original Hansson’s definition. But it still shows which states are better or
worse in a given bare structure.

Proposition 1. Given an ideality sequence I = (I ∪ {ε},�) and the betterness struc-
ture based on I, i.e., MI = (W,�I , V ), if T ⊆ W is non-empty, then max�I T �= ∅.

Since I is finite, the proof is trivial. The idea of ideality sequence comes from the
notion of priority structure and priority sequence in [11] and [7].

4 Making Norms: Generating Normative Systems

There have witnessed amount of research about the updates on obligations in deontic
logic (see [9,12,16]). Here we will show several ways of updating a given ideality
sequence. We treat ideality sequences as synonyms for ‘normative systems’. Given an
ideality sequence I = (I ∪ {ε},�), we use I = 〈ϕ1, ϕ2, · · · , ϕn, ε〉 to denote the
sequence of formulas in I with respect to �, where ϕi � ϕj if i ≤ j.

The first fundamental update is deletion.
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Definition 7 (Deletion). Given an ideality sequence I = (I ∪ {ε},�) and ϕ1 is the
least formula in I, deleting ϕ1 from I yields the ideality sequence I−ϕ1 where ϕ1 in
I is removed and the betterness order � for the remaining formulas is preserved.

ϕ1 ϕ2 ϕ3 ϕ2 ϕ3
delete ϕ1

The deletion update captures abolishing a norm. It is related to the notion of repeal
or annulment in law. The above figure is an example where the arrows from ϕi to ϕj

represent ϕi � ϕj .
The second update is postfixing which was originally proposed in [7].

Definition 8 (Postfixing [7]). Let I = (I ∪ {ε},�) and ϕ �∈ I .

– If I �= ∅ and I = 〈ϕ1, · · · , ϕn, ε〉, then postfixing ϕ to I is I � ϕ =
〈ϕ,ϕ1, · · · , ϕn, ε〉.

– If I = ∅, then postfixing ϕ to I is I � ϕ = 〈ϕ, ε〉.
Postfixing introduces a sub-ideal proposition to the original normative system. It is

relevant to the notion of ‘derogation’ in law. An example of postfixing is shown as the
following figure:

ϕ1 ϕ2 ϕ0 ϕ1 ϕ2

postfix ϕ0

The third update is prefixing which can be originally found in [11]. It is used for
adding a better proposition than the original best proposition. The last update is inser-
tion. It is employed to refine our ideality sequence. In the technical level, not all types
of updates are elementary since we can construct any ideality sequence from a given
ideality sequence by only deletion and postfixing. The idea is straightforward: delete all
the formulas in the original one and then postfix the formulas one by one according to
the order of the target sequence.

5 The Logic PCDL

In this section, we will establish the logic of relativized conditional obligations PCDL.
The term PCDL is an acronym of ‘Prescriptive Conditional Deontic Logic’.

5.1 Language and Semantics

Definition 9. The language LPCDL is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Uϕ | ©I(ϕ|ϕ)
I ::= ε | χ; I

where p ∈ P and χ ∈ LPL.
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©I(ϕ|ψ) means that based on the ideality sequence I, it ought to be ϕ given ψ.

Definition 10 (Semantics of LPCDL). Let M = 〈W,V 〉 be an arbitrary bare structure.
The semantics of LPCDL is given as follows (only nontrivial cases):

M, s |= Uϕ iff ‖ϕ‖M = W ;
M, s |= ©I(ϕ|ψ) iff max�I ‖ψ‖M ⊆ ‖ϕ‖M ;

The semantics of ©I(ϕ|ψ) is also equivalent to MI , s |= ©(ϕ|ψ) where ©(ϕ|ψ)
is Hansson’s conditional obligations (see Definition 3). And we know that if ‖ψ‖M �=
∅,max�I ‖ψ‖M �= ∅ by Proposition 1. The truth value of ©I(ϕ|ψ) is decided by the
ideality sequence I and the bare structure we are concerning about.

Fact 1. The following two formulas are valid:

(1) ©ϕ1;I(ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ¬ϕ1) → ¬ ©I (ϕ1|¬

∨
I);

(2) ¬ ©I (ϕ1|¬
∨

I) ∧ Û(¬∨
I ∧ ϕ1) → ©I�ϕ1(ϕ1|¬

∨
I);

The proof details are omitted due to page limitation. Formula (1) represents that
deleting the norm ϕ1 defeats the obligation to see to it that ϕ1 when ¬ϕ1 is possible
under the condition ¬∨

I . Formula (2) means that postfixing the norm ϕ1 brings about
the new obligation to see to it that ϕ1 when ϕ1 is possible under the condition ¬∨

I .

5.2 Axiomatization

Our axiom system relies on the following formula schema which captures the best states
in a bare structure under some condition. Given an ideality sequence I = (I ∪ {ε},�)
and an arbitrary LPCDL-formula ψ, the formula schema is:

θI
ψ :

∨
χ∈I((χ ∧ ψ) ∧ U(

∨
I+χ → ¬ψ)) ∨ (ψ ∧ U(

∨
I → ¬ψ))

Lemma 1. Given an ideality sequence I = 〈I ∪ {ε},�〉 and a bare structure (M, s),

M, s |= θI
ψ iff s ∈ max�I ‖ψ‖M

The proof is omitted due to page limitation. Lemma 1 indicates that θI
ψ captures

the best ψ-states with respect to �I . In the light of θI
ψ , we can give the Kangerian-

Andersonian reduction (KA-reduction) for the relativized conditional obligations and
therefore the proof system of the logic PCDL.

Proposition 2 (KA-reduction). Given a bare structure (M, s) and an ideality
sequence I,

M, s |= ©I(ϕ|ψ) ↔ U(θI
ψ → ϕ)

It is easy to prove Proposition 2 by the semantics of ©I(ϕ|ψ). The KA-reduction
reduces formula ©I(ϕ|ψ) to a LML-formula1 without any deontic operator. Therefore
we can provide the proof system of the logic PCDL.

1 LML represents the language of the classical modal logic S5.
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Definition 11. The proof system PCDL consists of the following axiom schemas and
inference rules:

(TAUT) All instances of tautologies
(K) U(ϕ → ψ) → (Uϕ → Uψ)
(T) Uϕ → ϕ
(4) Uϕ → UUϕ
(5) ¬Uϕ → U¬Uϕ
(KA) ©I(ϕ|ψ) ↔ U(θI

ψ → ϕ)
(MP) From ϕ and ϕ → ψ, infer ψ
(N) From ϕ, infer Uϕ
(RE) From ϕ ↔ ψ, infer χ ↔ χ[ϕ/ψ]

The soundness of the axiom (KA) has been given in Proposition 2. And it is easy to
prove that the inference rule (RE) is sound since we can prove that ‘from � θ ↔ χ,
infer � ©I(θ|ψ) ↔ ©I(χ|ψ) and � ©I(ϕ|θ) ↔ ©I(ϕ|χ)’ is valid. The remaining
axioms and inference rules are also sound since they are classical axioms or rules from
modal logic S5. By the axiom (KA), we can reduce every formula with the operator
©I( | ) to a formula without the operator. Therefore, completeness of the axiom system
PCDL with respect to the semantics can be proved by translating LPCDL-formulas to
LML-formulas via reduction axioms and induction on the complexity of the formulas
(see Chap. 7.4 in [13]).

Theorem 1. The logic PCDL is sound and strongly complete with respect to the class
of bare structures.

6 Successful Updates and Jørgensen’s Dilemma

Making a norm does not always bring the corresponding obligation to agents. We call it
‘Moorean phenomena’ in deontic context. In this section, we first provide some philo-
sophical investigations on the agent’s conditional obligations. Notations: If I1 = ϕi; I2,
let I1 − ϕi = I2 and let I2 � ϕi = I1.

6.1 Successful Updates

©I(ϕ|ψ) is a normative proposition which is satisfied or not in a bare structure. How-
ever, sometimes, an agent does not have an obligation to achieve ϕ even though ϕ has
already been a norm in the concerning normative system. This happens since norms
exist outside the bare structures. This suggests that obligations are not only decided by
normative systems, but also by these facts embedded in the bare structures.

In order to clarify the discrepancy between norms and obligations, we first elaborate
on the well-known Kantian principle that “ought implies can”. How should we interpret
the term ‘can’? Many deontic logicians have been attempting to introduce the ability or
agency into the deontic logics [1,6]. We, however, propose to interpret the ‘can’ in a
more straightforward sense – possibility. We say ϕ is possible in a bare structure (M, s)
if and only if M, s |= Ûϕ.
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Fact 2.
(a) |= ©I(ϕ|�) → Ûϕ

(b) |= (©I(ϕ|ψ) ∧ Ûψ) → Ûϕ

The two validities illustrate that if an agent ought to achieve some situation, then it must
be possible. In other words, they can be done.

Definition 12. (Successful updates) Let I1 = (I1 ∪ {ε},�) be an ideality sequence
and let I1 = ϕ1; I2.

−ϕ1 is a successful update on I1 in (M, s) iff M, s |= ¬ ©I1−ϕ1 (ϕ1|¬
∨

I2)
�ϕ1 is a successful update on I2 in (M, s) iff M, s |= ©I2�ϕ1(ϕ1|¬

∨
I+1ϕ1

)

Briefly speaking, a successful command to delete a norm is supposed to release
some obligations and a successful command to add a norm is meant to assign
some new obligations. The issues of successful updates are closely related to CUGO
principle (‘Commands Usually Generate Obligations’) put forward by Yamada [15]:
[!(i,j)ϕ] ©(i,j) ϕ, which can be read as “after a command to i given by an authority j
to see to it that ϕ, i has an obligation to j to see to it that ϕ”. In our framework, we can
distinguish between the commands which do generate obligations and those commands
which do not. We therefore can rename the CUGO principle as SCGO which means
that ‘Successful Commands Generate Obligations’.

6.2 Resolving Jørgensen’s Dilemma

Jørgensen’s dilemma is know as the following inference:

Example 1.
(1) Let the door be open!
(2) It is impossible that the door is open but it is not unlocked.
(3) Let the door be unlocked!

Sentences (1) and (3) are commands given by a commander. Sentence (2) suggests
that the content of norm (3) is implied by the content of norm (1). Our intuition is that
the set of obligations brought about by (1) includes the obligations brought about by
(3). We conceptualize Example 1 as follows.

Given an ideality sequence I = (I ∪ {ε},�) and a bare structure (M, s), let OI
ψ =

{ϕ | M, s |= ©I(ϕ|ψ)}. In the following part, proposition o represents that the door
is open and u represents that the door is unlocked. Assume that, the original ideality
sequence is I = (ε,�) and the bare structure is (M, s). Sentence (1) is a speech act
postfixing a new norm o to I. It yields a new ideality sequence I � o. Sentence (2) can
be interpreted as the formula ¬Û(o ∧ ¬u) which is logically equivalent to U(o → u).
Sentence (3) is a different speech act which postfixes a new norm u to I forming I � u.
The set of obligations brought about by (1) is OI�o

¬ ∨
I = {ϕ | M, s |= ©I�o(ϕ|¬∨

I)}.
The set of obligations brought about by (3) is OI�u

¬ ∨
I = {ϕ | M, s |= ©I�u(ϕ|¬∨

I)}.
According to our intuition, it should be the case that OI�u

¬ ∨
I ⊆ OI�o

¬ ∨
I .

Proposition 3. Let (M, s) be an arbitrary bare structure and I = (I ∪ {ε},�) be an
arbitrary ideality sequence. If �ψ is a successful update on I in (M, s) and M, s |=
U(ψ → χ), then �χ is also a successful update on I in (M, s) and OI�χ

¬ ∨
I ⊆ OI�ψ

¬ ∨
I .
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Proposition 3 indicates that the success of (1) and information (2) implies that (3)
is successful and the obligations triggered by (3) are also triggered by (1).

Example 2.
(1*) There is no longer need to let the door be open!
(2) The door cannot be opened unless it is unlocked.
(3*) There is no longer need to let the door be unlocked!

Example 2 involves different updates on ideality sequences. Sentence (1*) deletes
a norm o from the ideality sequence o; I. Sentence (3*) deletes u from the ideality
sequence u; I. We consider it as a valid inference since we intuitively think deleting o
defeats more obligations than deleting u.

Proposition 4. Let (M, s) be an arbitrary bare structure and I = (I ∪ {ε},�) be
an arbitrary ideality sequence. If −ψ is a successful updates on ψ; I in (M, s) and
M, s |= U(ψ → χ), then −χ is also a successful updates on χ; I in (M, s) and

(Oχ;I
¬ ∨

I − O
(χ;I)−χ
¬ ∨

I ) ⊆ (Oψ;I
¬ ∨

I − O
(ψ;I)−ψ
¬ ∨

I ).

Proposition 4 indicates that the success of (1*) and information (2) implies that (3*)
is successful and the obligations defeated by (3*) are also defeated by (1*).

7 Related Work and Conclusion

This paper studies the notion of relativized conditional obligations based on ideality
sequences. Each ideality sequence is a normative system which provides a criterion
on the relative ideality of propositions. Every betterness structure based on an ideality
sequence describes the conditional obligations. Deletion and postfixing are two elemen-
tary updates on the normative system which can bring about corresponding obligations
successfully or not. Jørgensen’s dilemma is conceptualized properly. Furthermore, a
sound and strongly complete axiom system for the logic of relativized conditional obli-
gations PCDL is established.

Acknowledgement. The author is greatly indebted to Barteld Kooi, Rineke Verbrugge and
Davide Grossi for many insightful discussions on the related topics of this work and helpful
comments on earlier versions of this paper.
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Abstract. Binarizing belief aggregation tackles the problem of aggre-
gating individuals’ probabilistic beliefs on logically connected proposi-
tions into the group’s binary beliefs. One common approach to associat-
ing probabilistic beliefs with binary beliefs would be applying thresholds
to probabilities. This paper aims to introduce and classify a range of
threshold-based binarizing belief aggregation rules while characterizing
them based on different forms of monotonicity and other properties.

Keywords: Binarizing Belief Aggregation · Credence and Belief ·
Judgement Aggregation · Probabilistic Opinion Pooling ·
Threshold-based Approaches

1 Introduction: Binarizing Belief Aggregation

This paper addresses the challenge of aggregating individual probabilistic beliefs
on logically connected propositions into collective binary beliefs, which we call
binarizing belief aggregation. In [18,19], we showed impossibility results demon-
strating that binarizing belief aggregation procedures cannot simultaneously sat-
isfy proposition-wise independence and logical closure of collective belief, under
certain reasonable conditions. In this study, we examine specific aggregation
procedures, with a particular focus on threshold-based approaches.

Let me start with an example. Let A and B be two propositions. The agenda
comprises A,B, A∧B, and their negations. A group consists of three individuals,
and each individual provides probabilistic beliefs. The objective is to derive the
group’s binary beliefs based on individual credences. Table 1 illustrates various
aggregation methods based on thresholds. The first method forms Group’s beliefs
1 using the following procedure: the group believes a proposition X if and only
if every individual’s probability of X is at least 0.6. Note that disbelief in a
proposition X means belief in its negation, while suspending judgment on a
proposition X says neither believing X nor disbelieving X. The second method
gives Group’s beliefs 2 as follows: the group believes a proposition X if and
only if the average of individuals’ probabilities of X exceeds 0.6. While group
beliefs are typically expected to be rational—consistent and deductively closed—
, one might observe that the second collective beliefs do not meet this standard.
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Indeed, the group believes two propositions A and ¬(A ∧ B), which entails, by
logical closure, that the group believes the proposition ¬B. To address this issue,
we can devise belief binarization methods that guarantee rational binary beliefs.
For instance, the third method demonstrates that selecting a threshold value of
0.8 for the average of individuals’ probabilities of a proposition results in the
group acquiring rational binary beliefs as shown in Group’s beliefs 3.

Table 1. An Example of Event-wise Threshold-based Binarizing Belief Aggregation

Propositions A B A ∧ B

Agent 1 0.9 0.7 0.6

Agent 2 0.8 0.4 0.2

Agent 3 0.4 0.7 0.1

Average 0.76 0.5 0.3

Group’s Beliefs 1 Belief Suspension Suspension
Group’s Beliefs 2 Belief Suspension Disbelief
Group’s Beliefs 3 Suspension Suspension Suspension

Consistent and deductively closed binary beliefs can be conceived as a collec-
tion of doxastically plausible possible worlds or scenarios, which we call a belief
core. A proposition is believed if and only if it is true at all doxastically plausible
possible worlds, i.e., it is a superset of a belief core. In this context, applying a
threshold to the probabilities of possible worlds to identify all plausible possi-
ble worlds would be a natural method. Table 2 illustrates this. The individuals’
probabilistic beliefs in the previous table are now presented as probabilities of
all possible worlds associated with the same agenda as before. The first method
forms Group’s beliefs 4 using the following procedure: the group’s belief core
includes possible world w if and only if every individual’s probability of w is at
least 0.3. As a result, only the possible world where A∧¬B is true constitutes the
belief core. The second method yields Group’s beliefs 5 as follows: the group’s
belief core includes possible world w if and only if the average of every individ-
ual’s probability of w is at least 0.3. It is worth noting that these world-threshold
procedures can always achieve consistent and deductively closed beliefs, unless
the belief core is empty, as the group is supposed to believe all and only the
supersets of the belief core.

Table 2. An Example of World-wise Threshold-based Binarizing Belief Aggregation

Possible Worlds A ∧ B A ∧ ¬B ¬A ∧ B ¬A ∧ ¬B
Agent 1 0.6 0.3 0.1 0

Agent 2 0.2 0.6 0.2 0

Agent 3 0.1 0.3 0.6 0

Average 0.3 0.4 0.3 0

Group’s Beliefs 4 X O X X
Group’s Beliefs 5 O O O X
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As demonstrated in the examples above, threshold-based binarizing belief
aggregation methods are closely intertwined with the problem of belief-credence
connection, often referred to as belief binarization. Let’s delve deeper into this
aspect with broader theoretical interconnections. Binarizing belief aggregation
can be viewed as a generalization of judgment aggregation dealing with binary
beliefs, or as a generalization of belief binarization determining binary beliefs
from probabilistic beliefs.1 In judgment aggregation (e.g., [3]) or belief binariza-
tion, binary beliefs in a proposition are associated with a high quota of indi-
viduals believing the proposition or a high probability of the proposition. These
rules are based on some sorts of thresholds to identify a high probability and
are termed as threshold-based approaches. The most well-known approach is the
Lockean thesis (LTt), which posits that an agent (in the context of aggregation,
the group) should believe a proposition if and only if its probability exceeds a
given threshold t. However, the lottery paradox demonstrates that LTt does not
guarantee consistency and logical closure unless t is set at 1. Numerous reso-
lutions have been put forth. Some challenge closure under conjunction [10,12],
while others offer alternatives of probabilism [17], or modifications to the Lock-
ean thesis [15,16]. Similar challenges are highlighted in the discursive dilemma
and the aforementioned impossibility results in binarizing belief aggregation. In
addressing these problems, our approach retains probabilism while developing
a taxonomy to find ways to relax LTt. To achieve this, we will systematically
introduce and classify various types of threshold-based binarizing belief aggrega-
tors and characterize them. Threshold-based rules are typically characterized by
some kind of monotonicity. For example, quota rules for judgment aggregation
can be characterized using a specific type of monotonicity [3]. In belief binariza-
tion, Leitgeb’s stability theory of belief [15] and Lin & Kelly’s camera shutter
rule [16] can also be interpreted as threshold-based rules that adhere to certain
types of monotonicity. We will investigate exactly which types of monotonic-
ity and what other properties of aggregators are needed to fully characterize
threshold-based rules.

2 Classification of Threshold-Based Rules

We first set the notation and terminology that will be needed throughout this
paper. Let W be a finite non-empty set of all possible worlds. We assume the set
of all events to be the powerset P(W ) of W , so that probabilities of the singleton
set of each world are well-defined, which will be used for world-threshold rules.
Further, let N := {1, ..., n} be a set of individuals (n ≥ 2). For each individual
i ∈ N , Pi denotes i’s probability function on P(W ), and we write P for a
profile (P1, ..., Pn) of probability functions. An opinion pooling function (OP)
f is defined to be a function taking a profile P of probability functions and
returning a probability function f(P ) on P(W ); a binarization rule (BR) G is
defined as a function mapping a probability function P to a binary belief G(P ),
1 Indeed, various articles have pointed out the structural parallels between judgment

aggregation and belief binarization [2,7–9].
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i.e., a function from P(W ) to {0, 1}; we call F a binarizing belief aggregator (BA)
if F is a function assigning to a profile P of probability functions a binary belief
F (P ) : P(W ) → {0, 1}.

Individuals’
probabilistic
Beliefs P

Group’s
probabilistic
Belief f(P)

Opinion

Pooling

Group’s
binary

Belief F (P)

(2) Binarization G (Threshold Rules)

(1) Direct Threshold Rules

Fig. 1. Threshold-based BAs

Now we introduce and classify some relevant threshold-based binarizing belief
aggregators. First of all, we can categorize BAs in general, including threshold-
based ones, into two groups according to whether they can be represented by a
combination of OP and BR (Fig. 1). The BAs in the first group do not go through
an opinion pooling procedure and thus do not form the group’s probability. They
are called direct threshold rules. The other group is called pooling + threshold-
based binarization. If a BA F belongs to the second group, then we have F = G◦f
for some OP f and some BR G, and we write F = f +G.2

The next two criteria we propose for classifying threshold-based BAs per-
tain to types of thresholds employed. One is whether a threshold is applied to
probabilities of events (in this case, we call it an event-th.) or probabilities of
worlds (in this case, we call it a world-th.); we might have to believe all and only
the events whose probability exceeds the event-th. or we might have to believe
the set of all worlds with a probability above the world-th. and its supersets.
The other is whether a threshold depends on inputs, i.e., profiles of individual
probability functions. A threshold depending on inputs is called a local (event-
or world-) th., and a threshold independent of inputs is called a global (event-
or world-) th. On the basis of these three criteria, we can systematically present
eight distinct classes of threshold-based BAs. Let us formulate the four classes
of direct threshold rules first.

Definition 1 (Direct Threshold Rules). Let F be a BA with the domain P
n,

where P denotes the set of all probability functions on P(W ).
(i) F is called a direct threshold rule with global event-th. if for each A ∈ P(W )
there exist (�A,i)i∈N ∈ {>,≥}N and (tA,i)i∈N ∈ [0, 1]N such that for all P ∈ P

n

it holds that F (P )(A) = 1 iff Pi(A) �A,i tA,i for all i ∈ N ;
(ii) F is called the one with global world-th. if there exist (�w,i)(w,i)∈W×N ∈ {>
,≥}W×N and (sw,i)(w,i)∈W×N ∈ [0, 1]W×N such that for all P ∈ P

n and all A ∈
2 For different kinds of probabilistic opinion pooling methods, see [4,5], and [6].
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P(W ) it holds that F (P )(A) = 1 iff A ⊇ {w ∈ W |Pi(w)�w,i sw,i for all i ∈ N};
(iii) F is called the one with local event-th. if for each P ∈ P

n there exist
(�P ,i)i∈N ∈ {>,≥}N and (tP ,i)i∈N ∈ [0, 1]N such that for all A ∈ P(W ) it
holds that F (P )(A) = 1 iff Pi(A) �P ,i tP ,i for all i ∈ N ;
(iv) F is called the one with local world-th. if for each P ∈ P

n there exist
(�P ,i)i∈N ∈ {>,≥}N and (sP ,i)i∈N ∈ [0, 1]N such that for all A ∈ P(W ) it
holds that F (P )(A) = 1 iff A ⊇ {w ∈ W |Pi(w) �P ,i sP ,i for all i ∈ N}.

Notice that in the definition of the rules with event-ths.(tA,i and tP ,i), thresh-
olds are applied to probabilities of events and used to determine the belief set
F (P )−1(1)(:= {A ∈ P(W )|F (P )(A) = 1}). By contrast, world-ths.(sA,i and
sP ,i) are applied to obtain the belief core of the binary belief F (P ), defined
as usual as the event of which supersets are all and the only believed events.
Simply put, by the event-th. rules, the events with a probability being above
(either greater than or not less than) the event-ths. form the belief set. And
by the world-th. rules, the worlds with a probability being above the world-ths.
constitute the belief core.

Both event-threshold and world-threshold approaches can be either global or
local. Local thresholds (tP ,i or sP ,i) are thresholds that vary with probability
profiles P . Conversely, global thresholds (tA,i or sw,i) do not depend on prob-
ability profiles, but might differ for different events A or worlds w. We term
thresholds uniform, if they are the same for all events or worlds. Notice that
in our definition, local thresholds are all uniform by design since otherwise, the
notion of local threshold rule would be empty in the sense that every rule can
be seen as a local non-uniform threshold rule. It is important to notice one more
dependency of thresholds in direct threshold rules. We encompass general cases
where individuals may possess different threshold values, which is why we add
the subscript i to all types of thresholds in direct rules.

Now consider an inequality symbol � in each definition, which designates
either ≥ or >. The distinction between the two is not relevant when it comes to
local thresholds. The reason is that for each tP ,i �= 0 there exists t′P ,i �= 1, and for
each t′P ,i �= 1 there exists tP ,i �= 0 such that {A ∈ P(W )|Pi(A) ≥ tP ,i} = {A ∈
P(W )|Pi(A) > t′P ,i} because P(W ) is finite. The same reasoning applies to local
world-th. rules because W is finite. As for global threshold rules, an inequality
with ≥ and one with > cannot be represented by each other. For example,
there exists no t′A,i satisfying {Pi ∈ P|Pi(A) ≥ tA,i} = {Pi ∈ P|Pi(A) > t′A,i},
with A, i and tA,i being fixed, because P is not discrete. Therefore, to deal with
global thresholds, the distinction is not superfluous. One more important feature
regarding (strict) inequalities is that each individual i, each event A/world w
(in the case of global event-/world- th.) and each profile P (in the case of local
th.) can have a different kind of inequality—either strict or not—, just as each
of them can have a different value of threshold. (The subscripts represent the
dependency.) This enables us to study the most general cases.

Lastly, note that the inequalities in each definition should be satisfied for
all individuals. This can be generalized by relaxing “all individuals” to certain
proportion of individuals, but in this research we will focus on the basic case of
unanimously exceeding each one’s threshold, which is easy to characterize. Sum-
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marizing, we define direct threshold-based rules using the following inequalities
to determine the belief set in the case of event-th. and the belief core in the case
of world-th.

event-th. for belief set world-th. for belief core

global th Pi(A) �A,i tA,i for all i Pi(w) �w,i sw,i for all i
local th Pi(A) �P ,i tP ,i for all i Pi(w) �P ,i sP ,i for all i

We next turn to pooling + threshold-based binarization. Let f be an OP with
the universal domain P

n. Now we first form the group’s probability f(P ) ∈ P

and then use it as an input of a BR G, which outputs a binary belief G(f(P )).
In this way, the composition of an OP and a BR can be used as a method
of binarizing belief aggregation. Since individuals’ opinions are collected into
the group’s probability, we do not need to evaluate whether each individual’s
probability is above some threshold. Instead, we evaluate the group’s probability
f(P ) ∈ P. Thus, on substituting Pi(A) and Pi(w) with f(P )(A) and f(P )(w),
respectively, we obtain the definition of the four classes of pooling + threshold-
based Binarization.

event-th. for belief set world-th. for belief core

global th f(P )(A) �A tA f(P )(w) �w sw

local th f(P )(A) �P tP f(P )(w) �P sP

The definition can be stated in full detail as follows.

Definition 2 (Pooling(f) + Threshold-based Binarization). Let f be an
OP with the domain P

n and F be a BA with the domain P
n.

(i) F is called a pooling(f) + threshold-based binarization with global event-th.
if for each A ∈ P(W ) there exist �A ∈ {>,≥} and tA ∈ [0, 1] such that for all
P ∈ P(W )n it holds that F (P )(A) = 1 iff f(P )(A) �A tA;
(ii) F is called the one with global world-th. if there exist (�w)w∈W ∈ {>,≥}W
and (sw)w∈W ∈ [0, 1]W such that for all P ∈ P(W )n and all A ∈ P(W ) it holds
that F (P )(A) = 1 iff A ⊇ {w ∈ W |f(P )(w) �w sw};
(iii) F is called the one with local event-th. if for each P ∈ P(W )n there exist
�P ∈ {>,≥} and tP ∈ [0, 1] such that for all A ∈ P(W ) it holds that F (P )(A) =
1 iff f(P )(A) �P tP ;
(iv) F is called the one with local world-th. if for each P ∈ P(W )n there exist
�P ∈ {>,≥} and sP ∈ [0, 1] such that for all A ∈ P(W ) it holds that F (P )(A) =
1 iff A ⊇ {w ∈ W |f(P )(w) �P sP }.

The contrast between event-ths. and world-ths., and the one between global
and local thresholds can be made in the same way as in the direct threshold rules:
(i) and (iii) utilize event-ths. so that the group believes events with a high group
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probability, and (ii) and (iv) apply world ths. so that the belief core consists of
worlds with a high group probability. Thresholds and types of the inequalities
might be different for each event and for each world in (i) and (ii), whereas they
might be different for each probability profile in (iii) and (iv). The point that
allowing two types of inequality is not redundant can be applied here as well.

If we focus only on the relation between the group’s probability and the
resulting binary belief, we can see that this framework embraces a variety of
theories in the literature on belief binarization. The famous Lockean thesis (LTt)
combined with an OP f is no more than the rules with global even-th. t. Among
various attempts to weaken LTt, we note two of the most well-studied threshold-
based approaches. One is Leitgeb’s stability theory of belief [13–15]. According
to the theory, an event should be believed if and only of it has a stably high
probability, in the sense that its conditional probability on every not disbelieved
event is above r, which he calls the Humean thesis of belief (HTr, r ∈ [12 , 1)).
According to the theory, this relation between probability functions and binary
beliefs ensures deductive closure, and so any binary belief satisfying HTr has
a belief core. For the stability condition to hold, the belief core must consist
of worlds with high probability and the threshold identifying high probability
depends on the probability function. This can be said in our framework as the
following: the belief core is determined by a local world-th. Moreover, the theory
shows that any event excluding any world in the belief core has lower probability
than the belief core, so all and only the events with probability above a local
event-th. are believed. So, the stability theory generates the rules with local
event-ths., which can be seen as the rules with local world-ths. at the same
time. And the other approach to note is Lin & Kelly’s Camera Shutter rules
(CSs, s > 1), which collect the worlds whose probability ratio to the maximal
probability is above 1

s as the elements of the belief core [16]. These rules utilize
a special kind of local world-th., which is the maximal probability divided by s.3

3 Properties of Threshold-Based Rules

To characterize the eight classes of threshold-based BAs in Sect. 2, we intro-
duce properties of BAs. The first property concerns the notion of deductive
closure of binary beliefs, which are outputs of BAs. A BA F is called collec-
tively deductively-closed (CDC) if F (P ) is deductively-closed, i.e., the belief set
F (P )−1(1) is non-empty and closed under intersection and superset for all P
in the domain of F . CDC will be used especially to characterize the rules with
world-ths. because these rules presuppose that the resulting binary belief F (P )
have a belief core, which is equivalent to CDC.

Next we turn to independence and neutrality. In [18] and [19], we investigated
event-wise independence and event-neutrality, whose tension with CDC leads to
impossibility results. In this paper, we introduce, in addition, six different kinds
of independence and neutrality. Roughly speaking, independence means that in
order to decide whether an event/a world belongs to the belief set/belief core,
3 For other types of belief binarization rules based on local world-th. see [1] and [11].
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only the probability assigned to that event/world matters. By contrast, neu-
trality means that every event/world is determined to be included in the belief
set/belief core by the same rule, and thereby, all events/worlds are considered
equally. We can use this notion to characterize uniform thresholds.

Before providing the formal definition, let us mention some points needed to
understand the definition: recall that world-ths. are used to determine the belief
core, and bear in mind that F (P )(w) = 0, where w is the complement of {w},
implies that w is in the belief core of F (P ), if F (P ) has the belief core. Here are
the definitions of independence and neutrality to characterize the direct rules
and the ones of f-independence and f-neutrality for pooling(f) + binarization.

Definition 3 (Independence and Neutrality). A BA F is called
(i) (event-wise) independent(IND) if for every A ∈ P(W ), there is a function
GA such that F (P )(A) = GA(P (A)) for all P in the domain of F ;
(ii) world-wise independent(INDw) if for every w ∈ W , there is a function Gw

such that F (P )(w) = Gw(P (w)) for all P in the domain of F ;
(iii) event-neutral(eNEU) if for every P ∈ P

n, there is a function GP such that
F (P )(A) = GP (P (A)) for all A ∈ P(W );
(iv) world-neutral(wNEU) if for every P ∈ P

n, there is a function GP such that
F (P )(w) = GP (P (w)) for all w ∈ W .

Definition 4 (f-Independence and f-Neutrality). Let f be an OP. A BA
F is called
(i) f-(event-wise) independent(f-IND) if for every A ∈ P(W ), there is a function
GA such that F (P )(A) = GA(f(P )(A)) for all P in the domain;
(ii) f-world-wise independent(f-INDw) if for every w ∈ W , there is a function
Gw such that F (P )(w) = Gw(f(P )(w)) for all P in the domain;
(iii) f-event-neutral(f-eNEU) if for every f(P )(∈ P), there is a function Gf(P )

such that F (P )(A) = Gf(P )(f(P )(A)) for all A ∈ P(W );
(iv) f-world-neutral(f-wNEU) if for every f(P )(∈ P), there is a function Gf(P )

such that F (P )(w) = Gf(P )(f(P )(w)) for all w ∈ W .

Alternatively, F is defined to be IND/INDw/eNEU/wNEU if
(i′) for every A ∈ P(W ), if P (A) = P ′(A), then F (P )(A) = F (P ′)(A) for all
P ,P ′ in the domain/
(ii′) for every w ∈ W , if P (w) = P ′(w), then F (P )(w) = F (P ′)(w) for all P ,P ′

in the domain/
(iii′) for every P , if P (A) = P (B), then F (P )(A) = F (P )(B) for all A,B ∈
P(W )/
(iv′) for every P , if P (w) = P (v), then F (P )(w) = F (P )(v) for all w, v ∈ W .
While (i′) and(ii′) state that the same individual probabilities of an event/a world
yield the same collective belief in the event/world, (iii′) and (iv′) assert that if two
events/worlds have the same individual probabilities, then the collective belief
in them should be the same. Similarly, equivalent definitions can be formulated
for being f-IND/f-INDw/f-eNEU/f-wNEU.

Now, we formalize various kinds of monotonicity that play a central role in
characterizing threshold-based rules. Since we defined independence and neu-
trality in the above separately, here we define strict monotonicity (It will be
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shown that strict monotonicity taken together with independence and neutrality
amounts to monotonicity). Informally, strict monotonicity means the following.
Assume that an event/a world is in the belief set/belief core of the resulting
collective binary belief of a probability profile. The first two kinds ((i) and (ii) in
Definition 5) of strict monotonicity will imply that all other probability profiles
with greater probability values of the event/the world should yield the same
result. In contrast, the other two ones ((iii) and (iv)) will entail that all other
events/worlds with greater probability values in the probability profile should
also be in the belief set/belief core. f-strict-monotonicity in Definition 6 can be
explained in a similar way if we replace a probability profile with a collective
probability, which is the output of an OP f .

Definition 5 (Strict-Monotonicity). A BA F is called
(i) strict-monotone(SMON) if for every A ∈ P(W ), if for some i ∈ N , Pi(A) <
P ′
i (A) and for all j �= i Pj(A) = P ′

j(A), and if F (P )(A) = 1, then F (P ′)(A) = 1
for all P ,P ′ in the domain;
(ii) worldwise strict-monotone(SMONw) if for every w ∈ W , if for some i ∈ N ,
Pi(w) < P ′

i (w) and for all j �= i Pj(w) = P ′
j(w), and if F (P )(w) = 0, then

F (P ′)(w) = 0 for all P ,P ′ in the domain;
(iii) event-strict-monotone(eSMON) if for every P in the domain, for some
i ∈ N , Pi(A) < Pi(B) and for all j �= i Pj(A) = Pj(B), and if F (P )(A) = 1,
then F (P )(B) = 1 for all A,B ∈ P(W );
(iv) world-strict-monotone(wSMON) if for every P in the domain, for some
i ∈ N , Pi(v) < Pi(w) and for all j �= i Pj(v) = Pj(w), and if F (P )(v) = 0, then
F (P )(w) = 0 for all w, v ∈ W .

Definition 6 (f-Strict-Monotonicity). Let f be a OP and F be a HA on
(W,P(W )). F is called
(i) f-strict-monotone(f-SMON) if for every A ∈ P(W ), f(P )(A) < f(P ′)(A)
and if F (P )(A) = 1, then F (P ′)(A) = 1 for all P ,P ′ in the domain;
(ii) f-world-wise strict-monotone(f-SMONw) if for every w ∈ W , f(P )(w) <
f(P ′)(w) and if F (P )(w) = 0, then F (P ′)(w) = 0 for all P ,P ′ in the domain;
(iii) f-event-strict-monotone(f-eSMON) if for every P in the domain, f(P )(A) <
f(P )(B) and if F (P )(A) = 1, then F (P )(B) = 1 for all A,B ∈ P(W );
(iv) f-world-strict-monotone(f-wSMON) if for every P in the domain, f(P )(v) <
f(P )(w) and if F (P )(v) = 0, then F (P )(w) = 0 for all w, v ∈ W .

Alternatively, in (i) of Definition 5 the condition that “for some i ∈ N ,
Pi(A) < P ′

i (A) and for all j �= i Pj(A) = P ′
j(A)" can be replaced by

“P (A) ≤ P ′(A) and P (A) �= P ′(A)" where ≤ and �= between two vectors
are understood as component-wise comparison. This is because the condition
of (i) can be applied iteratively. The same can be said for (ii)-(iv) of Defini-
tion 5 as well. This indicates that combining independence or neutrality with
strict-monotonicity yields monotonicity—e.g., IND plus SMON amounts to the
statement that for every A ∈ A, if P (A) ≤ P ′(A), and if F (P )(A) = 1, then
F (P ′)(A) = 1 for all P ,P ′ in the domain, which we call monotonicity(MON).
For other cases, the same reasoning can be applied.
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Finally, we present the notion of conjunctiveness, which will prove pivotal
in characterizing direct threshold rules. In essence, conjunctiveness can be elu-
cidated as follows: Assume that two probability profiles (P and P ′) generate
beliefs in a given event. And consider any probability profile (P ′′) of which
values of the event consist of the individual-wise minimum probabilities of the
event out of the two profiles. Then it also should generate a belief in the event.
For example, if P (A),P ′(A), and P ′′(A) are given by the following table and
F (P )(A) = F (P ′)(A) = 1, then F (P ′′)(A) = 1. In the table, minR signifies the
minimum value in R for any R ⊆ R.

P (A) P ′(A) P ′′(A) = (min{Pi(A), P ′
i (A)})i

Agent 1 0.8 0.7 0.7
Agent 2 0.6 0.9 0.6

An analogous notion can also be applied to worlds in a belief core. There
can be other kinds of conjunctiveness: if two events/worlds are believed/in the
belief core, then so are any events/worlds whose probabilities are individual-
wise minimum values out of probabilities of the first two events/worlds. These
notions are needed, because, in the context of direct threshold rules, we demand
that all of the individuals’ probabilities, not just a portion should surpass their
respective thresholds. This can be seen as the requirement that each individual-
wise minimum of Pi(A) in {P (A) ∈ [0, 1]n|F (P )(A) = 1} should also exceed
each individual’s threshold. Here is the formal definition.

Definition 7 (Conjunctiveness). Let F be a HA on (W,P(W )). F is called
(i) conjunctive(Conj) if F (P )(A) = 1 and F (P ′)(A) = 1, then F (P ′′)(A) = 1
for any P ′′ such that P ′′

i (A) = min{Pi(A), P ′
i (A)} for all i;

(ii) world-wise conjunctive(Conjw) if F (P )(w) = 0 and F (P ′)(w) = 0, then
F (P ′′)(w) = 0 for any P ′′ such that P ′′

i (w) = min{Pi(w), P ′
i (w)} for all i;

(iii) event-conjunctive(eConj) if F (P )(A) = 1 and F (P )(B) = 1, then
F (P )(C) = 1 for any C such that Pi(C) = min{Pi(A), Pi(B)} for all i;
(iv) world-conjunctive(wConj) if F (P )(v) = 0 and F (P )(w) = 0, then
F (P )(u) = 0 for any u such that Pi(u) = min{Pi(v), Pi(w)} for all i.

4 Characterizations of Threshold-Based Rules

We are now ready to characterize eight classes of threshold rules introduced in
Sect. 2 in terms of properties in Sect. 3. Assume that a BA F and an OP f have
the domain P

n. Our results can be presented in Table 3.
As depicted in the table, every threshold rule satisfies some kind of strict

monotonicity combined with independence in the case of global thresholds and
with neutrality in the case of local thresholds, which we call monotonicity. For
example, in case (2)(i), the rules are characterized by f-MON, which is defined
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Table 3. Characterizations of Threshold Rules

(1) Direct Threshold Rules (2) Pooling(f)+Th.Binarization

(i) global event-th IND, SMON, Conj f-IND, f-SMON

(ii) global world-th CDC, INDw, SMONw, Conjw CDC, f-INDw, f-SMONw

(iii) local event-th eNEU, eSMON, eConj f-eNEU, f-eSMON

(iv) local world-th CDC, wNEU, wSMON, wConj CDC, f-wNEU, f-wSMON

as f-IND plus f-SMON, and in case (2)(iii) by f-eMON, which is f-eNEU plus f-
eSMON. To characterize the rules involving world threshold rules we additionally
need CDC because they presuppose the existence of a belief core. Lastly, we
need to add a kind of conjunctiveness to characterize direct threshold rules. The
subsequent two theorems make this formally precise where the requirement of
universal domain (UD) asserts that a BA F has the domain of Pn.

Theorem 1 (Characterization of Direct Threshold Rules). (i) The
direct threshold rules with global event-ths. are fully characterized by UD, IND,
SMON and CONJ;
(ii) so are the ones with global world-ths. by UD, CDC, INDw, SMONw and
CONJw;
(iii) so are the ones with local event-ths. by UD, eNEU, eSMON and eCONJ;
(iv) so are the ones with local world-ths. by UD, CDC, wNEU, wSMON and
wCONJ

Proof. (i) It is obvious that the rule satisfies the properties. For the other direc-
tion, we need to find tA,i and �A,i for each i ∈ N , with A being fixed. By UD
and IND, we can let F (P )(A) = GA(P (A)) for all P ∈ P(W )n. In the case of
GA

−1(1) = ∅, let tA,i := 1 and �A,i :=> for all i ∈ N . Otherwise, let tAi :=
inf{ai|a ∈ GA

−1(1)} for each i ∈ N . We divide N into two subgroups N1 and N2

where N1 is the set of individuals j such that the set {aj |a ∈ GA
−1(1)} has the

infimum and N2 is the set of the rest individuals. For every individual j ∈ N1,
set �A,j :=≥ and for other individuals k ∈ N2 define �A,k :=>. First observe
that if for some j ∈ N1, xj < tA,j or for some k ∈ N2, xk ≤ tA,k, then GA(x) = 0
by the definition of infimum. What is left is to show that GA(y) = 1 for all y
such that for every j ∈ N1 and k ∈ N2, yj ≥ tA,j and yk > tA,k. Since tA,i is the
infimum of the i-th components of the vectors in GA

−1(1) and we have SMON
and IND, it follows that for every i there is a vector ai in GA

−1(1) such that
the i-th component is yi. Note that ai has the following form where n := |N |:

a1 = (y1 , a12 , a13 , ... , a1n)

a2 = (a21 , y2 , a23 , ... , a2n)
...

an = (an1 , an2 , an3 , ... , yn)

By iterated application of CONJ, we have GA((min{ail|i ∈ N})l∈N ) = 1. Since
we have min{ail|i ∈ N} ≤ yl for all l ∈ N , by SMON and IND, we get GA(y) = 1,
as desired.
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(ii) We can prove this in much the same way, the only differences being (a)
F (P )(w) = Gw(P (w)) where F (P )(w) = 0 iff w ∈ B by CDC, with B being the
belief core of F (P ), (b) tA,i/�A,i/GA/G−1

A (1)/GA(x) = 0/GA(y) = 1 replaced
by sw,i/�w,i/Gw/G−1

w (0)/Gw(x) = 1/GA(y) = 0 and (c) IND/SMON/CONJ
replaced by INDw/SMONw/CONJw.

(iii) Similarly, (a) let F (P )(A) = GP (P (A)) and replace (b)
tA,i/�A,i/GA/ G−1

A (1) by tP ,i/�P ,i/GP /G−1
P (1) and (c) IND/SMON/CONJ

by eIND/eSMON/ eCONJ. Note that in this case N1 = N(thereby N2 = ∅),
because given P , G−1

P (1)(⊆ {P (A)|A ∈ P(W )}) is finite since P(W ) is finite.
(iv) Likewise, (a) let F (P )(w) = GP (P (w)) and replace (b) tA,i/�A,i/GA/

G−1
A (1) /GA(x) = 0/GA(y) = 1 by sP ,i/�P ,i/GP /G−1

P (0)/ GP (x) =
1/GP (y) = 0 and (c) IND/SMON/CONJ by wIND/wSMON/wCONJ. Note
that in this case N1 = N as in (iii) since W is finite.

Theorem 2 (Characterization of Pooling(f) + Threshold-based Bina-
rization). Let f be an OP with the universal domain P(W )n.
(i) The Pooling(f) + Threshold Binarization rules with global event-ths. are fully
characterized by UD, f-IND and f-SMON;
(ii) so are the ones with global world-ths. by UD, CDC, f-INDw and f-SMONw;
(iii) so are the ones with local event-ths. by UD, f-eNEU and f-eSMON;
(iv) so are the ones with local world-ths. by UD, CDC, f-wNEU and f-wSMON

Proof. (i) It is clear that the rule satisfies the properties. For the other direction,
by UD and f-IND we can let F (P )(A) = GA(f(P )(A)) for all P ∈ P(W )n. In the
case of GA

−1(1) = ∅, let tA := 1 and �A :=>. Otherwise, let tA := inf GA
−1(1).

If GA
−1(1) has the infimum, then let �A :=≥, and otherwise let �A :=>. Our

claim follows by f-SMON and f-IND.
(ii) This follows in the same manner with (a) F (P )(w) := Gw(f(P )(w))

where F (P )(w) = 0 iff w ∈ B by CDC, where B is the belief core of F (P ).
(b) tA/�A/GA/G−1

A (1) replaced by sw/�w/Gw/G−1
w (0) and (c) f-IND/f-SMON

replaced by f-INDw/f-SMONw.
(iii) Similarly, (a) let F (P )(A) = Gf(P )(f(P )(A)) and replace (b)

tA/�A/GA/ G−1
A (1) by tP /�P /Gf(P )/G−1

f(P )(1) and (c) f-IND/f-SMON by f-
eIND/f-eSMON. Note that when Gf(P )

−1(1) �= ∅, Gf(P )
−1(1) always has the

infimum and thereby we can set �f(P ) :=≥, because given P , G−1
f(P )(1)(⊆

{f(P )(A)|A ∈ P(W )}) is finite since P(W ) is finite.
(iv) Likewise, (a) let F (P )(w) = Gf(P )(f(P )(w)) and replace (b)

tA/�A/GA/ G−1
A (1) by sP /�P /Gf(P )/G−1

f(P )(0) and (c) f-IND/f-SMON by f-
wIND/f-wSMON. when Gf(P )

−1(0) �= ∅, we can set �f(P ) :=≥, because W is
finite.

These two characterization theorems furnish a valuable framework for the
analysis and comparison of the eight categories of threshold-based rules. We
begin by examining part (i) of Theorem 1. It shows that the direct rules with
global event-thresholds satisfy IND, which indicates that they are vulnerable to
the oligarchy result described in [18] and [19]: any BA with CDC and IND leads
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to the oligarchy procedure under certain minor conditions unless the logical con-
nection of the agenda is too simple. To circumvent this problem, alternative
approaches become necessary, e.g., procedures reducing the complexity of the
agenda such as premise-based rules, methods with some inconsistency manage-
ment with minimal change, or other kinds of threshold rules without IND.

Global event-ths. might cause the same problem in pooling(f)+threshold-based
binarization as well. As seen in part (i) of Theorem 2, it satisfies f-IND. If the
OP f satisfies independence as well—e.g., linear pooling—in the sense that for
every A ∈ P(W ), if P (A) = P ′(A), then f(P )(A) = f(P ′)(A) for all P ,P ′, the
entire process complies with IND. This, in turn, leads to the oligarchy result,
akin to the scenario discussed earlier. It is also worth pointing out that employ-
ing binarization with global event-ths. does not guarantee collective deductive
closure (CDC), as the lottery paradox shows.

Next, let us move to direct threshold rules. For the scope of this paper, we
narrow our exploration to the simplest variants of direct threshold rules, wherein
each individual’s probability is required to unanimously surpass their individual
threshold. This requirement aligns with Conj. While this norm might find justifi-
cation in certain scenarios where every individual’s opinion should be respected,
it might seem less reasonable in various other contexts.

Now we turn to pooling + threshold based binarization with world-ths. or local
event-ths. in parts (ii)-(iv) of Theorem 2. As highlighted in Sect. 2, binarization
with local thresholds involves the rules satisfying Humean thesis (HT r) and the
Camera Shutter (CS s) rules. In contrast to global event-ths., not only rules with
world-ths. but also certain rules with local event-ths. elude the above problem of
rationality. Firstly, the rules with world-ths. like the CSs rules guarantee CDC,
as demonstrated in parts (ii) and (iv). Secondly, not every local event-ths.-based
binarization ensures rationality. However, it’s noteworthy that HTr can give rise
to a special kind of local event-ths.-based rules. By integrating our findings with
the stability theory of belief, we uncover the following observation:

a BA F satisfies f-eMON (f-eNEU plus f-eSMON) and CDC if and only if
(f(P ), F (P )) satisfies HT

1
2 for all P in the domain.

It also deserves special mention that according to the stability theory of
belief, the rules generated by HTr can be seen as local world-threshold rules
as well, which implies that the rules satisfy f-wMON (f-wNEU plus f-wSMON).
Accordingly, the following also holds:

a BA F satisfies f-eMON, f-wMON and CDC if and only if (f(P ), F (P ))
satisfies HT

1
2 for all P within the domain.

5 Conclusion

This paper introduced binarizing belief aggregation based on various kinds of
thresholds. We systematically examined a range of potential threshold rules and
described the characteristics associated with these rules. Within the literature
on belief binarization, there have been previous approaches that rely on thresh-
olds, and this paper proposed combining these approaches with opinion pooling.
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However, alternative methods exist for both belief binarization [21] and binariz-
ing belief aggregation [20], which involve strategies such as minimizing distance
from probability functions or maximizing expected accuracy. These avenues offer
promising directions for future research.

Furthermore, it’s worth noting that several assumptions underpinning
threshold-based rules could be relaxed to yield a more nuanced exploration. For
instance, in direct threshold-based rules, the requirement of unanimity could be
eased to accommodate a super-majority consensus. Additionally, the condition
of deductive closure could potentially be replaced by consistency alone, or the
universal domain could be relaxed, akin to what’s observed in premise-based
judgment aggregation approaches. These adjustments provide rich ground for
further investigations and extensions.

In addition to the methods investigated in this paper, it would be valuable
to explore alternative binarizing belief aggregation procedures. One potential
approach to consider is the combination of threshold-based belief binarization
with judgment aggregation methods. This involves applying a belief binarization
method to individual probabilistic beliefs first, and then utilizing a judgment
aggregation method. Further investigation into these approaches would allow
for a comparison with the various binarizing belief aggregation rules examined
in this paper.
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Chisu Kim for the excellent and insightful feedback. This research is based on work
supported by the German Academic Scholarship Foundation and the Alexander von
Humboldt Foundation.
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Abstract. This paper explores the cooperation mechanisms for the pris-
oner’s dilemma game, a canonical example for studying cooperation
mechanisms, with Bayesian games. By the approach allowing simultane-
ous moves with the assumption that the players might be self-interested
or norm-following, we establish four possible Bayesian game models, all
of which are cooperation mechanisms for the prisoner’s dilemma game
except for the model in which one of the two players must be self-
interested.

Keywords: Cooperation · Prisoner’s Dilemma · Norm-follower ·
Bayesian Game

1 Introduction

In game theory players are assumed to be rational individuals who represent
preferences by their own interests when making decisions [13]. Based on this
assumption, we can identify Nash equilibria as solutions for a given game. Nev-
ertheless, we will face a social dilemma that the results obtained by the Nash
equilibrium are inferior to the Pareto optimal outcomes. In particular, the pris-
oner’s dilemma is a well-known example of social dilemmas.

Specifically, the prisoner’s dilemma game (the PD game for short) can be
illustrated by Table 1, where C stands for the action “cooperation”, and D
denotes the action “defection”. It is clear that, whatever the other does, each
player is better off defecting than cooperating. Consequently, for each player,
the cooperation action is strictly dominated by the defection action, and (D,D)
is the unique Nash equilibrium in the PD game. However, the outcome yielded
by the equilibrium is worse for each than that they would have obtained when
both cooperate.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Table 1. Prisoner’s Dilemma

C D

C 2, 2 0, 3

D 3, 0 1, 1

There has been an increasing research focus on social cooperation involv-
ing the PD game in the literature. With which, researchers offer some valuable
approaches to exploring the problem of social dilemmas, for example, norms
for social cooperation under the concept of collective rationality [7,9,15], the
repeated prisoner’s deilemma [5,8,10], the evolutionary perspective [1,6,11,12],
the mutually beneficial perspective [2,3], the reward and punishment approach
[4,14,16], among many others.

The PD game is a strategic game, which assumes that each player must know
the structure of the game. In many interactive situations the players, however,
are not completely informed about the other players’ characteristics or types.
Consequently, the players might not know the other players’ preferences, and
thus the structure of the game cannot be determined.

In her seminal book [3], Bicchieri introduces some possible types for the play-
ers in the PD game, which is worthy of consideration here to guide for studying
the cooperation mechanisms. In particular, she mentions a norm-following type
who desires to cooperate, which means that for a norm-follower in the PD game,
the action profile (C,C) is ranked first in the preference ordering. With the aid
of this notion, this paper investigates some cooperation mechanisms for the PD
game. More specifically, we find the cooperation mechanisms by simultaneous
moves with two possible types. Since a Bayesian game is a generalized version
of strategic games with incomplete information, we will construct some possible
game models based on Bayesian games to deal with this problem.

2 Bayesian Games

To analyze a strategic game, we shall assume that each player must know the
structure of the game she is playing. We need to establish a model under incom-
plete information to relax the assumption of strategic games. Such a model is
called a Bayesian game.

Definition 1. A Bayesian game is a tuple G = (N, (Ai),Ω, (Ti), P, (ui)), where
N is a set of players, Ai is the set of actions of player i, Ω is a set of states,
Ti is the set of types of player i, P is a common belief (a probability distribution
over Ω), and ui is the payoff function of player i representing her preference.

A strategy of player i in a Bayesian game si is a function that assigns to each
of his type an action in the set of actions available to him. Formally, si : Ti → Ai.
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Let Si be the set of strategies of player i. By the definition of strategy in an
extensive game, we have

Si = Ai × · · · × Ai.
︸ ︷︷ ︸

cardinality of the set Ti

Before defining the notion of equilibrium for Bayesian games, let us present
how to obtain the expected payoff to a strategy profile. According to Definition
1, a Bayesian game consists of some strategic games, in which each strategic
game is determined by one of states. Since there is a common belief over the
set of states, we can identify player i’s expected payoff to any strategy profile
s = (si, s−i) as follows:

Ui(s) =
∑

ω∈Ω

P (ω)uω
i (si(ti), s−i(t−i)), (1)

where uω
i is player i’s payoff function over the set

∏

i∈N Ai in the strategic game
determined by the state ω.

Using Formula (1), we can obtain the strategic form (N, (Si), (Ui)) corre-
sponding to a Bayesian game, and define Nash equilibria of the strategic game
as the solutions for the Bayesian game, which are called Bayesian equilibria.

3 Mechanisms with Bayesian Games

In the PD game, each player is perfectly informed about the opponent’s char-
acteristics. In particular, the game is assumed that each player knows that the
opponent is self-interested. As such each player knows the game she is playing.
Now we relax the assumption: the player might be another type rather than
a self-interested one. More specifically, in the PD game, each player is a self-
interested type whose preference ranking is (D,C) � (C,C) � (D,D) � (C,D).
In a variant of the traditional PD game instead, each player might be a norm-
follower whose preference ranking is (C,C) � (D,D) � (D,C) � (C,D).

Next, we investigate the cooperation mechanisms based on this idea by ver-
ifying four possible cases. Let us first consider the case that each player has an
indeterminate type: self-interested or norm-following. In this game there are two
states, and neither player knows the state.

Definition 2. A variant of the PD game in which neither player knows the state
is defined as a Bayesian game G1 = (N, (Ai),Ω, (Ti), P, (ui)), where N = {1, 2},
A1 = A2 = {C,D}; Ω = {ω1, ω2}, where ω1 stands for the state that each player
is the self-interested type denoted as t1, and ω2 stands for the state that each
player is a norm-follower denoted as t2; T1 = T2 = {t}, where t = t1 or t = t2;
P = (p, 1 − p) is a probability distribution over Ω, p ∈ (0, 1), and u1 and u2 are
the players’ payoff functions.

The game G1 can be illustrated as Fig. 1. The frames labeled 1 and 2 enclosing
both states indicate that player 1 and player 2 do not know the relevant state,
which represents the players’ cognitive conditions.
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Fig. 1. G1: neither player knows the state

Remark 1. The strategy sets of the players in the game G1 are S1 = A1 =
{C,D} and S2 = A2 = {C,D}, respectively.

Proposition 1. The strategy profile (C,C) is a Bayesian equilibrium of G1 if
p ≤ 2

3 .

Proof. We first determine the strategic form of G1. As we shown, the strategy set
of each player is {C,D}. To construct the strategic form of G1, we shall identify
the expected payoff to each strategy profile. Consider the strategy profile (C,C).
By Formula 1, we have

U1(C,C) = P (ω1)uω1
1 (C,C) + P (ω2)uω2

1 (C,C)
= 2p + 3(1 − p) = 3 − p.

We can similarly obtain the expected payoffs of each player to other strategy
profiles. Thus, we have the strategic form of G1 as Table 2.

Table 2. Strategic form of G1

C D

C 3− p, 3− p 0, 1 + 2p

D 1 + 2p, 0 2− p, 2− p

By this game table, if p ≤ 2
3 , then the best response of player 1 to player 2’s

strategy C is C, and the best response of player 2 to player 1’s strategy C is
also C. Therefore, the strategy profile (C,C) is a Bayesian equilibrium of G1 if
p ≤ 2

3 .

Proposition 1 shows that if the probability of each player being self-interested
type ranges in [0, 2

3 ], then for each player C is an equilibrium strategy. As such,
the proposition establishes that the Bayesian game G1 is a cooperation mech-
anism for PD game. Note that the strategy profile (D,D) is also a Bayesian
equilibrium of G1, since for any p, the best response of player 1 to player 2’s
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strategy D is D, and the best response of player 2 to player 1’s strategy D is
also D. Nevertheless, the two players have a motivation to choose the action C,
as each player’s expected payoff to the equilibrium (C,C) is bigger than that to
the equilibrium (D,D).

Now consider the case that player 1, who has two possible types, is informed
of the state: she knows the state ω1 if she is self-interested, while the state ω2 if
she is a norm-follower; instead, player 2, a self-interested person, is not informed
the state: she does not know player 1’s type. In this case, a game modeling such
a situation can be defined as follows.

Definition 3. A variant of the PD game in which only player 1 knows the
state and player 2 is self-interested is defined as a Bayesian game G2 =
(N, (Ai),Ω, (Ti), P, (ui)), where T1 = {t1, t2}, and T2 = {t1}.

The game G2 can be illustrated as Fig. 2. The strategy sets of player 1
and player 2 in the game G2 are S1 = A1 × A2 = {C,D} × {C,D} =
{CC,CD,DC,DD} and S2 = {C,D}, respectively.

Fig. 2. G2: player 1 is informed of the
state and player 2 is self-interested

Fig. 3. G3: player 1 is informed of the state
and player 2 is a norm-follower

Proposition 2. The strategy profile (DD,D) is the unique Bayesian equilib-
rium of G2.

Proof. We can identify the expected payoff of each player to each strategy profile
by Formula 1. Thus, we have the strategic form of G2 as Table 3. According to
the game Table 3, for player 2 the strategy D is strictly dominates his other
strategies, and the best response of player 1 to player 2’s strategy D is DD.
Hence the strategy profile (DD,D) is the unique Bayesian equilibrium of G2.

Proposition 2 shows that the interactive situation designed by the game G2

is not a proper cooperation mechanism for the PD game, since the action “coop-
eration” is not a component of the Bayesian equilibrium of the game G2. Note
that player 2 in this game is a self-interested person. It is, therefore, natural
to investigate the question: what will happen if the game G2 remains the same
expect that player 2 is a norm-follower?
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Table 3. Strategic form of G2

C D

CC 3− p, 2 0, 3

CD 1 + p, 2p 2− 2p, 1 + 2p

DC 3, 2− 2p p, 3− 2p

DD 1 + 2p, 0 2− p, 1

Table 4. Strategic form of G3

C D

CC 3− p, 3 0, 1

CD 1 + p, 3p 2− 2p, 2− p

DC 3, 3− 3p p, 1 + p

DD 1 + 2p, 0 2− p, 2

Definition 4. A variant of the PD game in which only player 1 knows the
state and player 2 is a norm-follower is defined as a Bayesian game G3 =
(N, (Ai),Ω, (Ti), P, (ui)), where T1 = {t1, t2}, and T2 = {t2}.

Similarly, we can set Fig. 3 to illustrate the game G3. Note that player 2
is norm-following in this case. As the game G2, the strategy sets of player
1 and player 2 in the game G3 are S1 = A1 × A2 = {C,D} × {C,D} =
{CC,CD,DC,DD} and S2 = {C,D}, respectively.

Proposition 3. The strategy profile (DC,C) is a Bayesian equilibrium of G3 if
p ≤ 1

2 .

Proof. By Formula 1, we can obtain the expected payoff of each player to each
strategy profile, by which we can establish the strategic form of G3 as Table 4.
According to this table, if p ≤ 1

2 , then we have 3 − 3p ≥ 1 + p. In this case, the
best response of player 1 to player 2’s strategy C is DC, and the best response of
player 2 to player 1’s strategy DC is C. Therefore, the strategy profile (DC,C)
is a Bayesian equilibrium of G3 if p ≤ 1

2 .

Proposition 3 establishes that if the probability of player 1 being self-
interested tpye ranges in [0, 1

2 ], then player 1’s strategy DC and player 2’s strat-
egy C are combined to be a Bayesian equilibrium. As a result, the Bayesian
game G3 can be regarded as a cooperation mechanism for the PD game.

Finally, we consider a more complicated case that neither player knows the
state and each player has two possible types. Hence, there are four elements in
the set of states.

Definition 5. A variant of the PD game in which neither player knows the
state and each player has two possible types is defined as a Bayesian game
G4 = (N, (Ai),Ω, (Ti), P, (ui)) that can be illustrated by Fig. 4, where Ω =
{ω1, ω2, ω3, ω4}, T1 = T2 = {t1, t2}, and P = (p1, p2, p3, p4) is a probability
distribution over Ω, p4 = 1 − p1 − p2 − p3.

Remark 2. In the game G4 the strategy sets of players are S1 = S2 = {C,D}×
{C,D} = {CC,CD,DC,DD}.
Proposition 4. The strategy profile (DC,DC) is a Bayesian equilibrium of G4

if p4 ≥ p2 and p4 ≥ p3.
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Fig. 4. G4: neither player knows the state and each player has two possible types

Table 5. Strategic form of G4

CC CD DC DD

CC 3 − p1 − p2,

3 − p1 − p3

2p1 + 3p3,

1 + p1 + p3

3−3p1−p2−3p3,

3

0,

1 + 2p1 + 2p3

CD 1 + p1 + p2,

2p1 + 3p2

2 − 2p2 − p3,

2 − p2 − 2p3

1 − p1 + p2 + p3,

3p1 + 3p2 + p3

2 − 2p1 − 2p2,

2 + p1 − p2 − p3

DC 3,

3 − 3p1 − 3p2

3p1 + p2 + 3p3,

1 − p1 + p2 + p3

3 − 2p1 − 3p3,

3 − 2p1 − 3p2

p1 + p2,

1 + p2 + 2p3

DD 1 + 2p1 + 2p2,

0

2 + p1 − p2 − p3,

2 − 2p1 − 2p3

1 + 2p2 + p3,

p1 + p3

2 − p1 − p2,

2 − p1 − p3

Proof. As before, we can identify the expected payoff of each player to each
strategy profile by Formula 1. Hence, we have the strategic form of G4 as Table 5,
where the upper and lower parts in the payoff matrix are the payoffs of player 1
and player 2, respectively.

It can be verified by Table 5 that if p4 ≥ p2 and p4 ≥ p3, then the best
response of player 1 to player 2’s strategy DC is DC, and the best response of
player 2 to player 1’s strategy DC is also DC. Therefore, the strategy profile
(DC,DC) is a Bayesian equilibrium of G4.

By Proposition 4, the strategy DC is an equilibrium strategy for each player
when the probability that they are of norm-following type is not less than the
probability that they are of different types. As such, the game set by Definition
5 also provides a cooperation mechanism for the PD game.

4 Conclusion

The PD game is a canonical example for studying cooperation mechanisms. In
this paper we have explored the cooperation mechanisms for the PD game with
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Bayesian games. Under the assumption that the players in the PD game might
be self-interested or norm-following, we have established four possible Bayesian
game models: the game where there are two states, and neither player knows the
state and players are self-interested or norm-following; the game where player
1, who has two possible types, is informed of the state, and player 2, a self-
interested person, is not informed the state; the game where player 1, who has
two possible types, is informed of the state, and player 2, a norm-follower, is
not informed the state; and the game where neither player knows the state and
each player has two possible types. We have further demonstrated that they are
cooperation mechanisms for the PD game except for the model in which one of
the two players must be self-interested.
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Abstract. In this paper we propose a satisfaction measure for the the-
ory of belief revision, which should be an alternative to the classical
distance measure for defining revision operators. We present the idea of
satisfaction measure as a monotonic condition, and characterize how it
affects the revision operation by proving an extension of the AGM rep-
resentation theorem (H. Katsuno and A. Mendelzon, 1991). A unique
syntactical form, the disjunction of all prime implicants, is used to com-
pile the belief bases. Then we develop a method to generate revision
operators meet that monotonic condition. Lastly, we compare such an
operator to four operators of other kinds with an example, then high-
light its novelty and advantages.

Keywords: Belief revision · Satisfaction measure · Prime implicant

1 Introduction

The theory of belief revision [17] studies the change of beliefs when an agent
receives new information. If the new information is contradictory with one’s
beliefs, there is no obvious way to combine them together into a consistent set of
beliefs. C. Alchourrón, P. Gärdenfors and D. Makinson [1] established a theory
where they proposed several rational postulates for this kind of change of beliefs.
Known as AGM theory, their pioneering work has inspired plenty of studies in
this literature [6].

A basic principle of AGM theory is that the new information is believed
to be true and should be accepted unconditionally, and therefore the revision
operation, if necessary, is imposed only on one’s old beliefs. Others argued that
in some scenarios we should give equal credence to both old beliefs and new
information, and they defined revision operators that are non-prioritized [18] or
commutative [13]. H. Katsuno and A. Mendelzon [9] concerned the case where
beliefs are formalized by propositional formulae, and represented AGM postu-
lates elegantly with pre-orders over possible worlds. From that perspective, an
AGM revision operator chooses from the models of new information that are
closest to the old beliefs, which, in this sense, are revised carefully by minimal
change.

The (pseudo-)distance measure [12] is a natural way to evaluate the closeness
from possible worlds to formulae. For instance, M. Dalal [5] proposed to take
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each propositional atom as a distance unit, and as shown in [9], Dalal’s revision
operator turned out to be better than many others in terms of AGM postulates.
However, according to its definition [12], a distance function, which measures
the distance from a possible world to another, may or may not be relevant to
the contents of possible worlds themselves. So we can see that the notion of
“distance” is just used there in an abstract and metaphorical way.

This paper aims to present the measure of satisfaction as an alternative to
the distance. The satisfaction measure firstly concerns the closeness from a pos-
sible world to a term, a formula of special form, and captures an intuition that
the number of atoms on which they differ plays a critical role for evaluating
that closeness. This idea is similar to Dalal’s but expressed as a weaker condi-
tion. Furthermore, the measurement is extended to evaluate the closeness from
a possible world to an arbitrary formula by taking as a bridge the set of all
prime implicants (of that formula), which not only has the merit of syntactical
uniqueness but also fits the satisfaction measure semantically.

Thus there are two pillars of our work: the notion of satisfaction and the syn-
tax compilation towards prime implicants. Although neither one is completely
new for this literature, we apply them in a different way. P. Pozos-Parra et
al. have studied both belief merging [3] and belief revision [4] with a notion
similar to satisfaction, which they called partial satisfiability. While they put
forward specific operators for merging or revision, we intend to develop a gen-
eral framework that characterizes a category of revision operators. We present
the satisfaction measure as a monotonic condition in addition to AGM theory,
and prove an extension of the AGM representation theorem [9]. Moreover, J.
Marchi et al. [15] have proposed revision operators induced by prime implicants
as well as prime implicates. While they combined prime forms with distance
measure mostly for a better complexity performance, we take prime implicants
as a necessary complement for satisfaction measure. We also give reasons for
choosing prime implicants over prime implicates which was taken in [15] as the
basis for their new notion of minimal change.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
notations, then define the prime forms and discuss the property of prime impli-
cants in particular. A brief review of AGM theory and distance measure is given
in Sect. 3. We characterize the satisfaction measure for revision operators in
Sect. 4.1, then develop a method to generate operators of that kind in Sect. 4.2.
We also in Sect. 5 compare such an operator to others of [4,5,15] with an exam-
ple followed by some remarks. We conclude in Sect. 6 with a discussion of future
work.

2 Preliminaries

2.1 Language

We consider a propositional language L over a finite set P of atoms and the
connectives (¬,∨,∧,→,⊥,�) are defined as usual. An interpretation or possible
world I is a function from P to {T,F}, and it is a model of a formula ϕ ∈ L if
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and only if I � ϕ in the classical truth functional way. Let �ϕ� denote the set of
all models of ϕ and W = ���. ϕ is consistent if �ϕ� �= ∅. ϕ1 is equivalent to ϕ2,
denoted by ϕ1 ≡ ϕ2, if �ϕ1� = �ϕ2�. ϕ2 is a logical consequence of ϕ1, denoted
by ϕ1 � ϕ2, if �ϕ1� ⊆ �ϕ2�. var(ϕ) is the set of atoms occurring in ϕ. For any
set N, |N | denotes the cardinality of it.

We say l is a literal if l = p or l = ¬p where p ∈ P . C =
∨

X is a clause
and D =

∧
X is a term if X is a set of literals. By this definition, there is no

repetition of literals in a clause or term. In the case of X = ∅, we have
∨ ∅ ≡ ⊥

and
∧ ∅ ≡ �. A disjunctive normal form (DNF) is a formula of the form

∨
Y

where Y is a set of terms. A conjunctive normal form (CNF) is a formula of the
form

∧
Y where Y is a set of clauses. For any ϕ ∈ L, there are algorithms [8]

to equivalently transform it to a DNF or CNF. As usual, we identify two terms
(clauses) as the same if they only differ in the order of literals within them, the
same principle also applies to DNF and CNF.

By abuse of notation, a possible world I, regarded as a conjunction of all
literals l s.t. I(l) = T, is also a term. Moreover, we write ρ ∈ ϕ for ρ being
a conjunct (disjunct) of ϕ when ϕ is a term (clause). Then notations from set
theory can be applied in the obvious way. Let D1,D2 be two terms, D1 ⊆ D2

means that l ∈ D1 =⇒ l ∈ D2, while D1 ∪ D2, D1 − D2 and D1 ∩ D2 denote
respectively the terms obtained from D1 by adding, omitting, and selecting all
the literals in D2. D is a term identified by flipping all the literals of D, e.g., if
D = p1 ∧ ¬p2 ∧ p3, then D = ¬p1 ∧ p2 ∧ ¬p3.

Let ≤ be a pre-order over W. I � J denotes the case where I ≤ J and J ≤ I,
while I < J means I ≤ J and I �� J . For any A ⊆ W, min(A,≤) = {I ∈ A |
∀J ∈ A, J �< I} and max(A,≤) = {I ∈ A | ∀J ∈ A, I �< J}.

A belief base K is a finite set of formulae, which represents the current beliefs
of one agent. For simplicity, a base K can also be regarded as the formula
ϕ =

∧
K.

2.2 Prime Implicates and Prime Implicants

The dual notions of implicate and implicant [10] are closely related to CNF and
DNF respectively.

Definition 1 (Implicate and implicant).

– A clause C is an implicate of a formula ϕ if ϕ � C.
– A term D is an implicant of a formula ϕ if D � ϕ.

Definition 2 (Prime implicate and prime implicant).

– Let ϕ �≡ �, C is a prime implicate of ϕ if ϕ � C and there is no other
implicate C ′ of ϕ s.t. C ′ � C.

– Let ϕ �≡ ⊥, D is a prime implicant of ϕ if D � ϕ and there is no other
implicant D′ of ϕ s.t. D � D′.
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Let dnfϕ be an arbitrary DNF s.t. dnfϕ ≡ϕ �≡ ⊥, it is easy to see that each
disjunct of dnfϕ is an implicant of ϕ. We can convert dnfϕ to the set of all prime
implicants of ϕ, denoted by IPϕ, and we have ϕ ≡ ∨

IPϕ. The set of all prime
implicates of ϕ, denoted by PIϕ, can be converted from an arbitrary cnfϕ in
the same manner and we also have ϕ ≡ ∧

PIϕ. This kind of conversion could
be achieved by the Tison’s methods in [19] or the quantum notation in [15]; for
more methods of generating prime implicates/implicants, see [10].

Example 3. Let ϕ be a formula such that var(ϕ) = {p1, p2, p3, p4} and all of its
models are listed as follows:

p1 p2 p3 p4

I1 T F T T
I2 T F F T

I3 T F F F
I4 F T F T
I5 F F T T

I6 F F F T
I7 F F F F

Clearly, ϕ ≡ I1 ∨ · · · ∨ I7. Notice that I5 and I6 only differ on the atom p3, we
can make an implicant (of ϕ) D′ = ¬p1 ∧ ¬p2 ∧ p4 by eliminating p3/¬p3 from
I5/I6 since D′ ≡ I5 ∨ I6 and D′ |= ϕ. Later, ¬p1 can also be eliminated form
D′ once we noticed another implicant (of ϕ) D′′ = p1 ∧ ¬p2 ∧ p4 generated from
I1 and I2. This procedure ends up with D1 = ¬p2 ∧ p4, D2 = ¬p2 ∧ ¬p3 and
D3 = ¬p1 ∧ ¬p3 ∧ p4, from which no more literals could be eliminated, and we
get IPϕ = {D1,D2,D3}.

An implicant D of ϕ is non-trivial if D �≡ ⊥. Let Dϕ be the set of all non-
trivial implicants of ϕ. Intuitively, an implicant D ∈ Dϕ is a partial description
of worlds that can guarantee the truth of ϕ, i.e., for any world I, I ⊇ D =⇒
I � ϕ, and a prime implicant D′ of ϕ is such a description with no redundant
information, as defined in [16]: D′ ∈ Dϕ and for all literals l, D′ − {l} � ϕ.
So we can prove that IPϕ = min(Dϕ,⊆), and �ϕ� = max(Dϕ,⊆). From this
perspective, IPϕ describes all distinct minimal ways for making the truth of ϕ,
while each I ∈ �ϕ� is maximal.

Taking the view of that IPϕ is the essential description for the truth-being of
ϕ, we in this paper measure how close a world J � ϕ could be a model of ϕ by
checking its relation with each D ∈ IPϕ, while the classical way of this literature
is checking J ’s relation with each I ∈ �ϕ�.

3 A Brief Review of Belief Revision

3.1 AGM Postulates

Suppose ϕ is a belief base which is going to accept a piece of new information
μ, the revised belief base is denoted by ϕ ◦ μ. The prevailing AGM theory [1]
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proposed eight postulates which a revision operator should comply with, then
they are rephrased as six postulates (R1)–(R6) [9] for the case of propositional
language:

(R1) ϕ ◦ μ � μ.
(R2) If ϕ ∧ μ � ⊥, then ϕ ◦ μ ≡ ϕ ∧ μ.
(R3) If μ � ⊥, then ϕ ◦ μ � ⊥.
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2, then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2.
(R5) (ϕ ◦ μ) ∧ ψ � ϕ ◦ (μ ∧ ψ).
(R6) If (ϕ ◦ μ) ∧ ψ � ⊥, then ϕ ◦ (μ ∧ ψ) � (ϕ ◦ μ) ∧ ψ.

Also, in [9] we can find a representation theorem for AGM revision operators:

Definition 4. A faithful assignment is a function that maps each ϕ ∈ L to a
pre-order ≤ϕ over W such that:

(C1) If I, I ′ ∈ �ϕ�, then I ≮ϕ I ′.
(C2) If I ∈ �ϕ� and I ′ /∈ �ϕ�, then I <ϕ I ′.
(C3) If ϕ ≡ ψ, then ≤ϕ = ≤ψ.

Theorem 5. A revision operator ◦ satisfies postulates (R1)–(R6) if and only if
there exists a faithful assignment that maps each ϕ to a total pre-order ≤ϕ such
that:

�ϕ ◦ μ� = min(�μ�,≤ϕ).

3.2 Distance Measure

The classical way of model-based revision operators to define a pre-order ≤ϕ is
measuring the distance from worlds to ϕ.

Definition 6. A distance function d : W × W → N satisfies following condi-
tions:

– d(I, J) = 0 if and only if I = J .
– d(I, J) = d(J, I).

Definition 7. Given a distance function d, the pre-order ≤d
ϕ over W associated

with ϕ is defined as:

– I ≤d
ϕ J if and only if d(I, ϕ) ≤ d(J, ϕ).

– d(I, ϕ) =

{
min{d(I, J) | J ∈ �ϕ�} if ϕ �≡ ⊥;
1 if ϕ ≡ ⊥.

We write ◦d for the revision operator s.t. �ϕ ◦d μ� = min(�μ�,≤d
ϕ).

Two distance functions are worth mentioning here. The widely used Ham-
ming distance dH counts the number of atoms on which two worlds differ [5,14]:
dH(I, J) = |{p | I(p) �= J(p)}|. And the drastic distance dD is simply defined as:
dD(I, J) = 0 if I = J ; dD(I, J) = 1 if I �= J .
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4 Satisfaction Measure for Revision

4.1 Partial Satisfaction of Terms

To define a total pre-order ≤ϕ that meets conditions (C1)–(C3), the primary
task is to decide how to sort the worlds that do not satisfy ϕ. This paper aims
to define ≤ϕ by measuring to what extent a world J /∈ �ϕ� can partially satisfy
ϕ. When ϕ is a consistent term D, an intuition is that the more the literals
of D that are satisfied by J , the more satisfaction D will get in the world J .
Specifically, we propose a monotonic condition for ≤D:

(C4) If D �≡ ⊥ and J ∩ D ⊆ I ∩ D, then I ≤D J .

To characterize how (C4) affects the revision behavior of D ◦μ, we introduce
two postulates (R7) and (R8), which use IPμ as an effective tool to compare
the overlaps between D and each model of μ. The relation between (C4) and
(R7),(R8) is exhibited by including them in an extension of Theorem 5.

(R7) If D �≡ ⊥, μ �≡ ⊥, there exists a Di ∈ IPμ s.t. Di ∪ (D − Di) � D ◦ μ.
(R8) If D �≡ ⊥, μ �≡ ⊥, then for any Di,Dj ∈ IPμ s.t. D − Dj ⊆ D − Di,

Dj ∪ (D − Dj) � D ◦ μ =⇒ Di ∪ (D − Di) � D ◦ μ.

Theorem 8. A revision operator ◦ satisfies postulates (R1)–(R8) if and only if
there exists an assignment that maps each ϕ to a total pre-order ≤ϕ over W that
satisfies conditions (C1)–(C4) and:

�ϕ ◦ μ� = min(�μ�,≤ϕ).

Proof. This theorem is extended from Theorem 5, which was finely proved by
Katsuno and Mendelzon in [9]. We follow their approach and omit the repeating
part. The main task here is to prove the corresponding relation between (C4)
and (R7),(R8).

(=⇒) Suppose ◦ satisfies (R1)–(R8), we define the total pre-order ≤ϕ over
W as I ≤ϕ J if and only if I ∈ �ϕ� or I ∈ �ϕ ◦ μ� where �μ� = {I, J}. Now we
prove that ≤D satisfies (C4).

Let I, J be two worlds s.t. J ∩ D ⊆ I ∩ D, there are two cases to consider.

(1) IPμ = {I, J}. Since J ∩D ⊆ I∩D, we have D−J ⊆ D−I. Notice that for any
world K, K∪(D−K) = K, by (R8) we have J ∈ �D◦μ� =⇒ I ∈ �D◦μ�. By
(R1),(R3), we know that �D ◦μ� is a non-empty subset of �μ�, so I ∈ �D ◦μ�.
By definition, we get I ≤D J .

(2) IPμ = {D′}, and there is a literal l /∈ D′ s.t. I = D′ ∪ l and J = D′ ∪ l.
Since J ∩ D ⊆ I ∩ D, we have l /∈ D. By the fact that var(D′) ∪ var(l) = P ,
we know that for any literal k ∈ D, if k �= l, then k ∈ D′ or k ∈ D′. So
D′ ∪ (D − D′) ⊆ D′ ∪ l = I. By (R7), we have I ∈ �D ◦ μ� and I ≤D J holds.

(⇐=) Suppose there is an assignment that maps each ϕ to a total pre-order
≤ϕ over W that satisfies conditions (C1)–(C4), we define a revision operator as
�ϕ ◦ μ� = min(�μ�,≤ϕ). Now we prove that ◦ satisfies postulates (R7) and (R8).

Let Di ∈ IPμ, for all I ∈ �μ� s.t. I ⊇ Di, we have:
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– I ∩ D = D − I ⊆ D − Di.
– I ∩ D = D − Di ⇐⇒ D − Di ⊆ I ⇐⇒ Di ∪ (D − Di) ⊆ I.

So we can conclude that for all I, J ⊇ Di, if Di∪(D−Di) ⊆ I, then J∩D ⊆ I∩D
and by (C4) I ≤D J holds, which means:

– I � Di ∪ (D − Di) =⇒ I ∈ min(�Di�,≤D).

Then by the definition of ◦, for any Di ∈ IPμ, if Di ∪ (D − Di) � D ◦ μ, then for
all I ∈ �Di�, I � D ◦ μ.

For (R7), suppose there is no Di ∈ IPμ s.t. Di ∪ (D −Di) � D ◦μ, then there
is no I ∈ �μ� s.t. I � D◦μ. This is contradictory with the fact that min(�μ�,≤D)
is a non-empty subset of �μ�, so (R7) holds.

For (R8), suppose Di,Dj ∈ IPμ and D − Dj ⊆ D − Di. For any I, J s.t. I ⊇
Di∪(D−Di) and J ⊇ Dj ∪(D−Dj), we have I∩D = D−Di ⊇ D−Dj = J ∩D.
By (C4) we get I ≤D J , then by the definition of ◦, J ∈ �D◦μ� =⇒ I ∈ �D◦μ�.
So, (R8) holds. �

4.2 Satisfaction Function

In compliance with (C4), we define the pre-order ≤ϕ by introducing a function
that measures the satisfaction of terms. The set of all consistent terms in L is
denoted by D.

Definition 9. A satisfaction function s : W × D → [0, 1] satisfies following
conditions:

– s(I,D) = 1 if and only if I � D.
– s(J,D) ≤ s(I,D) if J ∩ D ⊆ I ∩ D.

Definition 10. Given a satisfaction function s, the pre-order ≤s
ϕ over W asso-

ciated with ϕ is defined as:

– I ≤s
ϕ J if and only if s(I, ϕ)≥s(J, ϕ).

– s(I, ϕ) =

{
max{s(I,D) | D ∈ IPϕ} if ϕ �≡ ⊥;
0 if ϕ ≡ ⊥.

We write ◦s for the revision operator s.t. �ϕ ◦s μ� = min(�μ�,≤s
ϕ).

The value of s(I,D) represents to what extent the term D is satisfied by
the world I. The first condition of Definition 9, corresponding to (C1) and (C2),
states that D is fully satisfied only by its models. The second condition, concern-
ing the case where D is partially satisfied, admits the monotonicity demanded
by (C4). In Definition 10, by taking advantage of the uniqueness of IPϕ, the
principle of syntax irrelevance, i.e., the condition (C3), is promised, and the
function s is extended to measure the satisfaction of all formulae in L. A world
I is recognized to be closer to ϕ in comparison to another world J if and only if
ϕ’s satisfaction in I is higher than that in J .

≤s
ϕ is properly defined since the following proposition is easily true.

Proposition 11. Let s be a satisfaction function, then for any ϕ ∈ L, ≤s
ϕ

satisfies conditions (C1)–(C4).
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5 Comparison

5.1 Satisfaction vs. Distance

The notion of satisfaction measure is clear and specific in the sense that it
acknowledges the true/false state of atoms in a world, the very identity of that
world, to be the primary factor for measuring the closeness from that world to
formulae, while this is not necessarily true for the distance measure. At the same
time, however, the definition of satisfaction function is broad and flexible enough
that the most common distance functions can be simulated by satisfaction func-
tions. So, the revision operators based on distance such as ◦dD and ◦dH can be
redefined in terms of satisfaction functions.

Proposition 12. Let sD, sH be two satisfaction functions such that:

sD(I,D) =

{
1 ifI � D;
0 ifI � D.

sH(I,D) =
|P | − |I ∩ D|

|P | .

For any ϕ, μ, we have ϕ ◦dD μ ≡ ϕ ◦sD μ and ϕ ◦dH μ ≡ ϕ ◦sH μ.

Proof. It is easy to check that sD and sH meet the conditions in Definition 9.
We prove that for all ϕ ∈ L and all I, J ∈ W, both I ≤dD

ϕ J ⇐⇒ I ≤sD
ϕ J

and I ≤dH
ϕ J ⇐⇒ I ≤sH

ϕ J hold. The former one is obvious. For the latter, the
non-trivial case is when ϕ �≡ ⊥ and we have that:

I ≤sH
ϕ J

⇐⇒ sH(I, ϕ) ≥ sH(J, ϕ)

⇐⇒ min{|I ∩ D| | D ∈ IPϕ} ≤ min{|J ∩ D| | D ∈ IPϕ}
⇐⇒ min{dH(I,K) | K ∈ �ϕ�} ≤ min{dH(J,K) | K ∈ �ϕ�}
⇐⇒ I ≤dH

ϕ J. �

5.2 An Example with Five Operators

Firstly, we define a normal satisfaction function sN which serves as a paradigm
for satisfaction functions:

sN (I,D) = |I∩D|
|D| .

The principle of sN is as simple as that each atom within a term is of equal
importance for accumulating the term’s satisfaction. For instance, two out of
three literals within the term D = p1 ∧ p2 ∧ ¬p3 are satisfied by the world
I = {p1,¬p2,¬p3, · · · }, hence from the perspective of sN the satisfaction of D
in I should just be 2

3 .
Moreover, we introduce the revision operator ◦ps in [4] which is based on

the function of normal partial satisfiability. Generally, ϕ ◦ps μ is syntax sensitive
w.r.t. ϕ since its function applies to all DNF and CNF formulae. As a result, ◦ps
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satisfies conditions (R1)–(R6), especially (R4), if and only if the belief base ϕ is
compiled into a unique syntactical from. In [4], the authors have no preference
for this choice of ϕ’s form. Actually, if ϕ is in the form of canonical DNF, i.e.,∨

�ϕ�, ◦ps would coincide with ◦dH ; and if ϕ is in the form of
∨
IPϕ, we have

ϕ ◦ps μ ≡ ϕ ◦sN μ. For comparison, we study the case where ϕ is in the form of∧
PIϕ and rephrase the operator as ◦PI

ps such that:

– �ϕ ◦PI
ps μ� = min(�μ�,≤ps

ϕ ).
– I ≤ps

ϕ J if and only if ps(I, ϕ) ≥ ps(J, ϕ).

– ps(I, ϕ) =

⎧
⎨

⎩

1
|PIϕ|

∑

Cj∈PIϕ

ps(I, Cj) if ϕ �≡ �;

1 if ϕ ≡ �.

– ps(I, C) =

{
1 if I � C;
0 if I � C.

In [15], J. Marchi et al. proposed two revision operators: ◦D
IP that based on

the Hamming distance between terms which are induced by prime implicants of
formulae, and ◦D̂

IP that based on the notion of exclusive coordinates which relates
to both prime implicants and prime implicates. Without digging into details of
those two operators, we use the example in [15] to compare the revision results
of those two and ◦dH , ◦sN , ◦PI

ps .

Example 13. Let ϕ be the formula we studied in Example 3 s.t.:∨
IPϕ = D1 ∨ D2 ∨ D3 where D1 = ¬p2 ∧ p4, D2 = ¬p2 ∧ ¬p3,

D3 = ¬p1 ∧ ¬p3 ∧ p4.
and μ be a formula s.t. μ ∧ ϕ � ⊥ and

∨
IPμ = (p1 ∧ p2) ∨ (p3 ∧ ¬p4).

The authors of [15] have shown that:∧
PIϕ = C1 ∧ C2 ∧ C3 ∧ C4 where C1 = ¬p2 ∨ ¬p3, C2 = ¬p2 ∨ p4,

C3 = ¬p2 ∨ ¬p1, C4 = ¬p3 ∨ p4.
and the revision results of their operators are:

– ϕ ◦D
IP μ = (p1 ∧ p2 ∧ ¬p3) ∨ (¬p2 ∧ p3 ∧ ¬p4) ∨ (p1 ∧ p2 ∧ p4)

– ϕ ◦D̂
IP μ = (¬p2 ∧ p3 ∧ ¬p4) ∨ (p1 ∧ p2 ∧ ¬p3 ∧ p4).

Now, we enumerate all worlds in �μ� and exhibit how ◦dH , ◦sN and ◦PI
ps operate

for the revision of ϕ ◦ μ:
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p1 p2 p3 p4
dH(J, ϕ) sH(J, ϕ) ps(J, ϕ)

I1, I2, I3, I4, I5, I6, I7 D1, D2, D3 C1, C2, C3, C4

J1 T T T T min{1, 2, 3, 2, 2, 3, 4} max{1
2
,
0

2
,
1

3
} 0 + 1 + 0 + 1

4

J2 T T T F min{2, 3, 2, 3, 3, 4, 3} max{0
2
,
0

2
,
0

3
} 0 + 0 + 0 + 0

4

J3 T T F T min{2, 1, 2, 1, 3, 2, 3} max{1
2
,
1

2
,
2

3
} 1 + 1 + 0 + 1

4

J4 T T F F min{3, 2, 1, 2, 4, 3, 2} max{0
2
,
1

2
,
1

3
} 1 + 0 + 0 + 1

4

J5 T F T F min{1, 2, 1, 4, 2, 3, 2} max{1
2
,
1

2
,
0

3
} 1 + 1 + 1 + 0

4

J6 F T T F min{3, 4, 3, 2, 2, 3, 2} max{0
2
,
0

2
,
1

3
} 0 + 0 + 1 + 0

4

J7 F F T F min{2, 3, 2, 3, 1, 2, 1} max{1
2
,
1

2
,
1

3
} 1 + 1 + 1 + 0

4

Then we can conclude that:

– �ϕ ◦dH μ� = {J1, J3, J4, J5, J7} = �ϕ ◦D
IP μ�

– �ϕ ◦PI
ps μ� = {J3, J5, J7} = �ϕ ◦D̂

IP μ�
– �ϕ ◦sN μ� = {J3}

5.3 Remarks

(1) The fact that ◦dH coincides with ◦D
IP is admitted by the Theorem 4 in [15].1

Both operators are applying the Hamming distance, one on models and the
other on prime implicants. Since each prime implicant of a formula ϕ represents
a subset of �ϕ�, ◦D

IP can be regarded as a cross-check for computing ◦dH without
bothering deep into the level of models, and therefore it is not surprising that
◦D
IP has a better complexity performance as J. Marchi et al. have asserted in [15].

(2) For the formulae ϕ, μ in Example 13, we have �ϕ ◦PI
ps μ� = �ϕ ◦D̂

IP μ�.
We wonder whether this equation is universally true since both operators are
taking the prime implicates (of ϕ) as the basis for the notion of minimal change.
However, it turns out that there are counterexamples. By checking the revision
results of ϕ ◦ μ1 and ϕ ◦ μ2 where:

– μ1 = ¬p2 ∧ ¬p4
– μ2 = (¬p2 ∧ ¬p4) ∨ (¬p1 ∧ ¬p2)
– IPϕ = (p3 ∧ p2 ∧ p5) ∨ (p3 ∧ p1 ∧ p4) ∨ (p3 ∧ p2 ∧ p4)
– PIϕ = p3 ∧ (p1 ∨ p2) ∧ (p2 ∨ p4) ∧ (p4 ∨ p5)

we can see that neither �ϕ ◦D̂
IP μ� ⊆ �ϕ ◦PI

ps μ� nor �ϕ ◦PI
ps μ� ⊆ �ϕ ◦D̂

IP μ� holds.2

So ◦D̂
IP does not always coincide with ◦PI

ps . The difference between them is that

1 The operator ◦dH is named as ◦D in [15].
2 See [15] for the details of ◦D̂

IP.
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while ◦PI
ps directly picks the models of μ that can satisfy most C ∈ PIϕ, the

operator ◦D̂
IP, roughly speaking, picks the ones that can satisfy most C ∈ PIϕ

from the terms which are generated from prime implicants of μ by complying
with some D ∈ IPϕ. From this perspective, we argue that the operator ◦D̂

IP is
not a successful application of prime implicants since it is not as accurate as ◦PI

ps
for sorting the models in �μ� according to the satisfaction of

∧
PIϕ, which, as

we perceive, is the genuine intention of [15].
◦sN vs. ◦dH . The difference between them is that each atom in var(ϕ) is of

equal importance w.r.t. dH(J, ϕ), while this kind of equality is only locally true
within each D ∈ IPϕ w.r.t. sN (J,D).

For example, J1 is one atom away from a model (I1) of D1, but the atoms
that really count for sN (J1,D1) are only p2, p4 for the fact that there is always
a world in {I1, I2, I5, I6} = �D1� to match J1 regarding p1, p3 no matter how
J1 is defined on them. So, we have sN (J1,D1) = 1

2 . Since |D1| = |D2| = 2 and
|D3| = 3, each atom in D3 is of less importance for sN (J,D3) than that of D1

or D2 ( 13 < 1
2 ). By checking each dH(J, ϕ) in the above table, we can find that

among all five worlds in �ϕ ◦dH μ�, i.e., the models of μ which are one atom
distance from ϕ, only J3 has claimed this minimal distance from {I4, I6} = �D3�
(dH(J3, I4) = 1). And that is why J3 was differentiated from others and became
the sole selection in �ϕ ◦sN μ� ( 23 > 1

2 ).
◦sN vs. ◦PI

ps . The difference between them is basically the difference between
prime implicants and prime implicates. As shown in Definition 9 and 10, we in
this paper preferred to take the belief base ϕ in the form of

∨
IPϕ.

Firstly, by Theorem 5, the purpose of defining a pre-order ≤ϕ is to make
sure that the revision result is as close as possible to ϕ, and of course the best
scenario is where the revision result could satisfy ϕ. So it is a natural approach to
measure how close a world is to certain conditions that satisfy ϕ, as a D ∈ IPϕ

or an I ∈ �ϕ�. From this perspective, the satisfaction measure, to which ◦sN

pertains, is on the same page with the classical distance measure, while ◦PI
ps is

not.
Secondly, it is true that the prime implicates altogether could make up a

condition that satisfies ϕ since
∧
PIϕ ≡ ϕ, but each C ∈ PIϕ individually is

rather about a condition that falsifies ϕ since by definition ¬C � ¬ϕ. Actually,
for each C ∈ PIϕ, there is a D ∈ IP¬ϕ s.t. D ≡ ¬C. Moreover, although
◦sN and ◦PI

ps are sharing the same idea that each conjunct in a conjunction is
of equal importance for accumulating the truth of that conjunction, it sounds
less plausible for ◦PI

ps . Unlike the atoms within a term which are independent
individually, the conjuncts of

∧
PIϕ are more complex and correlate to each

other, and therefore can not be accumulated one by one. For example, if a world
I satisfies the C1 in the Example 13, then it must satisfy either C2 ∧ C3 or C4.

That being said, both ◦sN and ◦PI
ps are proper AGM operators, and the choice

between them is debatable.
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6 Conclusion and Future Work

The main motivation of this paper is to study the model-based revision operators
with satisfaction measure, which should be a fair alternative to the classical
distance measure. The idea of satisfaction measure was declared in a condition
(C4), which was later characterized by two postulates (R7),(R8) in an extension
of the AGM representation theorem. By introducing the notion of satisfaction
function, we developed a method to generate total pre-orders that meet the
condition (C4) along with (C1)–(C3) required by the faithful assignments.

There are other revision operators motivated by similar ideas, e.g., the ◦B in
[2] is defined as: �ϕ ◦B μ� =

⋃
I∈�ϕ� min(�μ�,≤I) where J1 ≤I J2 ⇐⇒ J2 ∩ I ⊆

J1∩I. But those operators are not proper AGM operators because the inclusion
relation ⊆ is a partial order and their methods failed to integrate ≤I of different
I ∈ �ϕ� into a total pre-order as required. In contrast, an operator ◦s based on
satisfaction measure can avoid this problem since the function s places ≤D of
all D ∈ IPϕ within a unified measurement, i.e., [0, 1].

Another feature of this paper is that we chose to compile the information from
a belief base ϕ into the form of

∨
IPϕ, the disjunction of all prime implicants of

ϕ. There are two reasons for this choice. For one, the satisfaction of a formula ϕ
can be naturally reduced to the satisfactions of its prime implicants since each
D ∈ IPϕ is a minimal condition to satisfy ϕ. The other reason is that we need
a unique syntactical form to neutralize the sensitivity of syntax caused by the
definition of satisfaction function.

As regards the future work, we intend to characterize a specific type of
AGM operators. Notice that the conditions (C1)–(C3) of faithful assignment
are defined for each individual ≤ϕ, which means the pre-orders associated with
different formulae are independent of each other. However, we are generally inter-
ested in the operators, as all of those mentioned in this paper, that stick with one
method for assigning pre-orders to all formulae in L. To characterize this kind of
internal coherence of an operator, we need conditions about how the pre-orders
of different formulae relate to each other. For now, we have two conditions under
consideration:

(C5) If I ≤ϕ1 J and I ≤ϕ2 J , then I ≤ϕ1∨ϕ2 J .
(C6) If D1 ⊆ D2 and for all L ∈ D2 − D1, L ∈ I ⇐⇒ L ∈ J holds, then

I ≤D1 J ⇐⇒ I ≤D2 J .

Unfortunately, neither of them is an ideal option. The condition (C5) is too
weak, on the one hand, for the distance measure since no matter how irregular a
distance function d is, the associated pre-order ≤d

ϕ by Definition 7 could meet it
for the fact that �ϕ1 ∨ϕ2� = �ϕ1�∪ �ϕ2�. On the other hand, (C5) is not suitable
for the satisfaction measure because it rules out most pre-orders ≤s

ϕ in Definition
10 including ≤sN

ϕ . As for the condition (C6), it is similar to the elimination
property in social choice theory [7], and it describes a coherent relation among
the pre-orders ≤D. (C6) is respected by both ◦dH and ◦sN . The problem is
that (C6) has nothing to say about ≤ϕ when ϕ is not a term. To get a full
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understanding of such coherence, we should consider more conditions and check
whether they are suitable for the operators of other kinds in the literature.

Also, we are interested to extend satisfaction measure to other related issues.
For example, the study of belief merging [11] would benefit from satisfaction
measure by a standard of fairness. A merging operator can be regarded as a
revision operator for multiple belief bases. For a merging operator based on
Hamming distance, the belief bases could have different influence on the result
since the largest distance number of each base could be different from each
other. A merging operator with satisfaction measure, in contrast, will normalize
the influence of each base into [0, 1] then output an impartial merging result.
With the method in [11], we can define a merging operator Δs from a revision
operator ◦s. All the IC postulates of belief merging will be respected by Δs

except (IC4), and that should not be a problem since the symmetrical property
in (IC4) is rather a customized condition for the distance measure.
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Thomas Ågotnes1,2(B) and Chiaki Sakama3

1 University of Bergen, Bergen, Norway
thomas.agotnes@uib.no

2 Shanxi University, Taiyuan, China
3 Wakayama University, Wakayama, Japan

sakama@wakayama-u.ac.jp

Abstract. In Hollis’ paradox, A and B each chose a positive integer and whisper
their number to C. C then informs them, jointly, that they have chosen differ-
ent numbers and, moreover, that neither of them are able to work out who has
the greatest number. A then reasons as follows: B cannot have 1, otherwise he
would know that my number is greater, and by the same reasoning B knows that
I don’t have 1. But then B also cannot have 2, otherwise he would know that my
number is greater (since he knows I don’t have 1). This line of reasoning can
be repeated indefinitely, effectively forming an inductive proof, ruling out any
number – an apparent paradox. In this paper we formalise Hollis’ paradox using
public announcement logic, and argue that the root cause of the paradox is the
wrongful assumption that A and B assume that C’s announcement necessarily is
successful. This resolves the paradox without assuming that C can be untruthful,
or that A and B are not perfect reasoners, like other solutions do. There are simi-
larities to the surprise examination paradox. In addition to a semantic analysis in
the tradition of epistemic logic, we provide a syntactic one, deriving conclusions
from a set of premises describing the initial situation – more in the spirit of the
literature on Hollis’ paradox. The latter allows us to pinpoint which assumptions
are actually necessary for the conclusions resolving the paradox.

Keywords: Epistemic Logic · Hollis’ Paradox · Public Announcement Logic

1 Introduction

In A paradoxical train of thought [9], Martin Hollis describes the following situation.

A thinks of a number and whispers it privately to C. B does the same. C tells them,
‘You have each thought of a different positive whole number. Neither of you can
work out whose is the greater’. . . . Sitting alone in his homebound train, A muses
as follows. ’I picked 157 and have no idea what B picked. So, assuming that he
indeed chose a different positive whole number, C is right. . . .Well, clearly B did
not choose 1, as he would then be able to work out that mine is greater; and by
the same token he knows that I did not choose 1. So he did not choose 2, since
he could then use the previous reasoning to prove that my number is greater.
Similarly, he can know that I did not choose 2 either. With 2 out of the way, I

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Alechina et al. (Eds.): LORI 2023, LNCS 14329, pp. 306–321, 2023.
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infer that he did not choose 3; and he can infer that I did not choose 3. . . . I can
keep this up for ever. But that is absurd. It means that I cannot have picked 157,
which I certainly did’.

Several solutions attempting to resolve the apparent paradox have been proposed
[11,14,17] (see also Hollis’ response to the two first in [10]). What they have in com-
mon is that they argue that the announcement by C might not be truthful, and even if it
were A and B might not have justified belief in that. Like most well known epistemic
puzzles, Hollis’ paradox leaves many assumptions implicit or ambiguous, so let us in
this paper assume the following: (a) all agents always tell the truth (if they say some-
thing it is true and they know that it is true) and (b) this is common knowledge among
all agents. Thus, we will be modelling knowledge rather than belief, and at any point
in time an agent’s knowledge is a result of the information she has received. We also
assume that it is common knowledge that everyone is a perfect reasoner1.

As far as we are aware, no formal analysis of Hollis’ paradox appears in the liter-
ature, unlike most other well known epistemic or doxastic puzzles or paradoxes which
have been studied using dynamic epistemic logic – see [18,19] for an overview and
references. Indeed, the precision and clarity of formal logic have been crucial in under-
standing these puzzles and clarify hidden premises (and these puzzles have again been
a driving force as case studies in the development of dynamic epistemic logic).

In this paper we use public announcement logic [15] to model and analyse Hollis’
paradox. This allows us to untangle subtleties in the alleged paradox, and in particular
to be precise about the distinction between truth before an announcement and after, a
distinction often lost in other analyses of the paradox. We argue that the root cause of
the paradoxical situation is a wrongful assumption that the announcements by C always
are successful, i.e., that they always remain true after they are announced. In Hollis’
argument, this assumption is used as a premise in the inductive “proof”. This has, as
far as we know, not been pointed out in other studies of the paradox, and we believe
this is the first solution to the paradox that does not rely on weakening the assumptions
outlined above. However, it should come as no surprise. As pointed out already in [14],
Hollis’ paradox is similar2 to the surprise examination paradox3 which was first anal-
ysed using dynamic epistemic logic by Gerbrandy [7,8]. Gerbrandy pointed out that the
root cause of that paradox is the same phenomenon that lies behind many other epis-
temic puzzles with counter-intuitive solutions, the muddy children (or three wise men)
problem [5] being the most well known, namely that announcements can become false
as a result of being announced4 – they are not necessarily successful. Olin [14] also
points out that there are still “important differences” between the two paradoxes. We
discuss the connection further in the last section of the paper.

In addition to arguing why, under the assumptions outlined above, Hollis’ paradox
is actually not a paradox, we shed light on other epistemic aspects of the puzzle, such

1 Hollis [9] already hints at this assumption: “. . . each of us has to assume that the other is not
stupid. . . ”.

2 Olin [14] claims that it is “a version of surprise examination”; Hollis [10] on the other hand
argues that his paradox is “wider”.

3 See [12] for an overview of different variants and a discussion of historic origins.
4 In muddy children, that happens in the last joint announcement by the children.
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as whether common knowledge must be assumed (it must not) or how many layers
of nested knowledge are relevant (two). We provide two alternative and complemen-
tary analyses: a semantic analysis (in the style of Gerbrandy) where we give a single
model of the initial situation described in the story and show that it has certain logical
properties (Sect. 3), as well as a syntactic analysis (more in the style of Hollis and his
respondents in Analysis, but formalised) where we describe the situation using a set of
logical formulas and show that the same properties can be derived (Sect. 4). First, we
give a brief technical introduction to epistemic logic and the logic of public announce-
ments (see [19] for more details).

2 Background

2.1 Epistemic Logic

The most popular epistemic logic (i.e., logic for reasoning about knowledge) is modal
propositional epistemic logic [5]. It extends propositional logic over a set of primitive
propositions P with modalities Ka, where a is one of the agents in a given finite set
Ag of agents. Intuitively, Kaφ means that agent a knows φ. Formally, the language is
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Kaϕ

where p ∈ P and a ∈ Ag. It is interpreted in (epistemic) models M = (S,∼, V ) where
S is a non-empty set of states (or worlds); ∼ gives an equivalence relation ∼a on S for
each a ∈ Ag, a’s accessibility relation; and V : P → ℘(S) is a valuation function,
saying which primitive propositions are true in which states. Intuitively, s ∼a t models
that agent a cannot discern between the states s and t; if the state of the world is s she
considers it possible that it is actually t, and vice versa.

We write M, s |= φ to denote the fact that formula φ is true in state s of model M ,
defined recursively as follows:

M, s |= p ⇔ s ∈ V (p) M, s |= Kaϕ ⇔ (∀t ∈ S)(s ∼a t ⇒ M, t |= ϕ)
M, s |= ¬ϕ ⇔ M, s 	|= ϕ M, s |= ϕ ∧ ψ ⇔ M, s |= ϕ & M, s |= ψ

Thus, Kaϕ is true if and only if ϕ is true in all indiscernible (for a) states. We use
the usual derived propositional connectives, in addition to K̂aφ for ¬Ka¬φ, intuitively
meaning that agent a considers that φ possible, i.e., that ϕ is true in at least one indis-
cernible state.

2.2 Public Announcement Logic

Public announcement logic (PAL) [15] extends epistemic logic in order to be able to
reason about change in agents’ knowledge and ignorance, resulting from a specific type
of events: public announcements (such as the ones made by C in Hollis’ paradox).
Syntactically PAL extends epistemic logic with modalities of the form [φ] where φ is
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a formula. A formula [φ]ψ intuitively means that after φ is truthfully5 and publicly
announced, ψ becomes true. Formally, the language is defined by the following gram-
mar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Kaϕ | [ϕ1]ϕ2

where p ∈ P and a ∈ Ag. This language is also interpreted in epistemic models, extend-
ing the interpretation of the epistemic language with a clause for the public announce-
ment operators. Informally, [φ]ψ is true in a state s in a model M (M, s |= [φ]ψ) if ψ is
true in state s (M ′, s |= ψ) in the model (call it M ′) resulting from removing all states
t in M where φ is false (M, t |= ¬φ). This captures the epistemic effects of a pub-
lic announcement of φ: after the announcement, no-one considers it possible that ¬φ
was6 true, no-one considers it possible that anyone considered ¬φ possible, and so on
(it becomes common knowledge that φ was true, capturing the word “publicly” above).
Formally:

M, s |= [ϕ]ψ ⇐⇒ (M, s |= ϕ ⇒ M |ϕ, s |= ψ)

where M |ϕ = (S′,∼′, V ′) is a model such that for any a ∈ Ag and p ∈ P , S′ = {t ∈
S | M, t |= ϕ}, ∼′

a=∼a ∩(S′ × S′), and V ′(p) = V (p) ∩ S′.
The precondition M, s |= φ in the interpretation of [φ]ψ is needed because without

it the definition would not be well-defined: if φ is false in s then s itself would be
removed in the model update. This captures the “truthful” in the informal reading “after
φ is truthfully and publicly announced, ψ becomes true” - or, alternatively, “if φ is true
then ψ will become true after φ is publicly announced”. The dual, 〈φ〉ψ = ¬[φ]¬ψ,
means that φ is true and ψ will become true after φ is publicly announced.

We write M |= φ to denote the fact that φ is true in all states in model M . A formula
φ is valid if M |= φ for all models M . When Γ is a set of formulas, Γ |= φ means that
for all M, s, if M, s |= Γ then M, s |= φ (φ is logically entailed by Γ ).

We say that a formula φ is an (un)successful update in M, s iff M, s |= 〈φ〉φ
(M, s |= 〈φ〉¬φ); φ is a successful formula iff [φ]φ is valid and an unsuccessful for-
mula if not.

2.3 Axioms

Axiomatisations of epistemic logic and Public Announcement Logic are shown in
Table 1. These axiomatisations are sound and complete [15,19], in the sense that any
formula is valid if and only if it can be derived using these axioms and rules.

We write � φ to denote that formula φ is derivable (is a theorem), i.e., that there is
a finite sequence of formulas ending with φ where every formula is either an instance
of an axiom schema or the result of applying an inference rule to formulas earlier in the
sequence. When Γ is a set of formulas, Γ � φ (“φ can be derived from Γ ”) means that
there is a finite subset {γ1, . . . , γk} of Γ such that � ∧

1≤i≤k γi → φ.

5 Here and in the following we mean “truthful” in the strong sense that the announcement is in
fact true (rather than only believed to be true).

6 If φ is, e.g., a primitive proposition, then “was true” is the same as “is true”. However, this is
not the case in general: it could be that φ was true in a certain state before the announcement,
but became false in the same state as a result of the announcement. The canonical example of
the latter is the so-called Moore sentence φ = p ∧ ¬Kap.
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3 A Semantic Analysis

Table 1. Axiomatisation of epistemic logic (left) and PAL (left and right).

Propositional tautology instances Prop

Ka(φ → ψ) → (Kaφ → Kaψ) KD [φ]p ↔ (φ → p) APerm

Kaφ → φ T [φ]¬ψ ↔ (φ → ¬[φ]ψ) ANeg

Kaφ → KaKaφ 4 [φ](ψ ∧ χ) ↔ ([φ]ψ ∧ [φ]χ) AConj

¬Kaφ → Ka¬Kaφ 5 [φ]Kaψ ↔ (φ → Ka[φ]ψ) AKnow

From φ and φ → ψ, infer ψ MP [φ][ψ]χ ↔ [φ ∧ [φ]ψ]χ AComp

From φ, infer Kaφ Nec

Hollis’ paradox is well suited to a semantic (model theoretic) analysis, because the story
intuitively and implicitly completely describes a single epistemic model. Figure 1 shows
the epistemic model of the agents’ knowledge after they have chosen their numbers but
before C makes any announcement. A state corresponds to each agent having selected
a number, we will refer to the combination as a selection. We only model A and B (as
agents a and b respectively); C’s knowledge is not relevant for the paradox beyond the
assumption that his two announcements are actually true when they are made. Let 7a
be an atomic proposition meaning that agent a has chosen the number 7, and similarly
for other numbers and for agent b. Also, let pa mean that agent a’s number is strictly
greater than agent b’s, and pb that agent b’s number is strictly greater than agent a’s.
We can now formalise the two announcements “you have each thought of a different
number” and “neither of you can work out whose is the greater”, respectively as:

ann1 = pa ∨ pb ann2 = ¬Kapa ∧ ¬Kapb ∧ ¬Kbpa ∧ ¬Kbpb

While ann1 is straightforward, the formalisation ann2 of the second announcement
deserves comment. In this formalisation we interpret “work out” as “deduce”. “Work
out” doesn’t seem to imply, e.g., waiting for further information, asking questions, or
guessing. Indeed, this is a common interpretation: informal descriptions of Hollis’ para-
dox that have appeared after the original statement [9] explicitly use “deduce” instead
of “work out”; e.g., [16] (“Neither of you can deduce which number is greatest”). It is
worth noting that this formalisation is similar to Gerbrandy’s formalisation of the the
announcement in the surprise exam paradox [8], and that it has been argued [2] that the
latter does not capture the intended meaning and that a stronger self-referential proposi-
tion is needed. In Sect. 5 we discuss why the same argument does not apply to our case.
Also note that this formalisation is made in the context of the assumptions made in the
introduction (common knowledge of truthfulness, perfect reasoners). A formula Kaφ
holds iff φ follows from the information agent a currently has, and can thus be deduced
by a perfect reasoner. ¬Kaφ holds if a cannot deduce φ (work out that φ holds).

In this initial model, agents a and b each only know their own number and consider
any possibility for the other agent’s number. They have no additional information (yet).
For example, we have that M1, (2, 3) |= ¬Kapb: if A has selected 2 and B has selected
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Fig. 1. Initial model M1. In state (2, 3) agent a has chosen the number 2 and agent b has chosen
the number 3, and so on for the other states. The accessibility relation for agent a is depicted
using dotted lines. Reflexive loops and transitive “jumps” are not shown; the actual accessibility
relation is the reflexive, transitive closure of the relation in the picture. More intuitively: agent a
cannot discern between states on the same row. Similarly for agent b, solid lines, and the same
column. Atom pais true in all states to the left of the underlined diagonal; pb in all states to the
right of the diagonal. States where ann1 is false are underlined. ann2 is true in all states.

3, then A does not know that B’s number is highest. In fact, in all states, i.e., no matter
what the selection is, it holds that none of the agents know which number is greatest:
M1 |= ann2. However, note that if the selection, e.g., is (1, 1), A knows that her number
cannot be strictly greater than B’s: M1, (1, 1) |= Ka¬pa.

Let us now consider the situation immediately after C makes the announcement
ann1. This announcement is informative for A and B; they learn something from it.
Thus we have to update the model M1 with the new information ann1 which is jointly
received by a and b. We do that by removing the states in model M1 where ann1 is
false. The resulting model, M2, is shown in Fig. 2.

As mentioned, the agents’ knowledge has now changed, and in particular we have
that M2 |= 1a → Kapb. Similarly, M2 |= 1b → Kbpa. In words: if A has chosen the
number 1, she now knows that she has a strictly lower number than B. Written another
way: M1 |= 1a → [ann1]Kapb.

As a consequence, we now (after the first announcement) have that the statement
ann2 is not true in, e.g., state (1, 3): M2, (1, 3) |= ¬ann2.

Consider now the announcement of ann2 by C. The consequence of this announce-
ment is that no one no longer considers states where ann2 was false (at the moment
the announcement was made) possible (i.e., the bold states in the figure), and we update
model M2 by removing those states. The resulting model, M3, is also illustrated in
Fig. 2. Observe that we now have that, e.g., M3, (2, y) |= Kapb for all y > 2, and
M3, (x, 2) |= Kbpa for all x > 2. In other words, M2 |= 2a → [ann2]Kapb, or:
M1 |= 2a → [ann1][ann2]Kapb – no matter what the selection is, if A’s number is 2
then she will know that B’s number is highest after both announcements.
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Fig. 2. M2 (top), the result of announcing ann1 in M1. M3 (bottom), the result of announcing
ann2 in M2. States where ann2 is false are in bold. ann1 is true in all states.

Let us consider the claims in the statement of the paradox. “clearly B did not choose
1”: this is true; M1 |= [ann1][ann2]Ka¬1b. “. . . and by the same token he knows that
I did not choose 1”: also true; M1 |= [ann1][ann2]Kb¬1a. “So he did not choose 2,
since he could then use the previous reasoning to prove that my number is greater”: no,
this is in fact not true. In fact, no matter what the selection is, each of the two agents
considers it possible that the other agent has 2 unless she has it herself:

M1 |= ¬2a → [ann1][ann2]¬Ka¬2b
and similarly with a and b swapped. This shows that the inductive argument in the
“proof” of the paradox halts. The reason that the argument in the “proof” of the paradox
doesn’t work is that while the announcement ann2might have been successful, A and B
cannot know that:M1 |= (¬2a∧¬2b) → [ann1][ann2](ann2∧¬Kaann2∧¬Kbann2).

So why do we still have states (2, y) and (x, 2) in the model after the second
announcement? Observe that the second announcement removed all states (1, y) and
(x, 1). What enabled this was that ann1was announced first – without that ann2would
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not have removed those states. ann2 plays a similar role for the states (2, y) and (x, 2):
after the announcement of ann2, ann2 becomes false in those states. However, it was
true in the same states before the announcement, which is why they are not removed.

It could perhaps be argued that C implicitly meant something stronger than just that
ann2 was true at the moment it was announced, for example that it would also stay
true after the announcement (and that this was clear to A and B)7. That would be mod-
elled explicitly by the announcement ann2′ = ann2 ∧ [ann2]ann2 = 〈ann2〉ann2.
The effect of that announcement would in fact be identical to the effect of announc-
ing ann2 twice in a row. As argued above, the third announcement (announcing ann2
a second time) would remove the (2, y) and (x, 2) states. Now, after this annouce-
ment, ann2 becomes false in all (3, y) and (x, 3) states. Formally: M1 |= 3a →
[ann1][ann2][ann2]Kapb (while M1 |= 3a → [ann1][ann2]¬Kapb). We can con-
tinue this argument: repeating the announcement “Neither of you can deduce which
number is greatest” removes more and more states. It is only in this sense that “you
can extend this line of reasoning to include any number you like” is true: extending this
line of reasoning implies that the announcement has to be made again to exclude the
number 2, and again for the number 3, and so on. If repeated enough times, we will
reach a point where either A or B has learned who has the greatest number, and the
announcement is unsuccessful and cannot be repeated any more8. In the statement of
the paradox, the announcement is only made once, which explains why the reasoning
cannot be extended beyond the number 1. This resolves the paradox.

4 A Syntactic Analysis

We now turn to analyse the paradox syntactically, by describing the situation as a set of
formulas Γ , and deriving conclusions from them. In particular, we will show, similarly
to in the model theoretic analysis, that

Γ � [ann1][ann2]Ka¬1b
– after the two announcements A knows that B does not have 1, but

Γ � 157a → [ann1][ann2]¬Ka¬2b
– she does not know that B does not have 2 (in the case that A has 157 as in the
description of the paradox), stopping the inductive train of thought in its tracks.

4.1 Describing the Initial Situation

We start by defining Γ , describing A’s and B’s initial knowledge and ignorance. For the
purpose of the two derivations mentioned above we basically only need two premises
(more discussion on this perhaps surprising fact below).

7 Gerbrandy [8, pp. 27–29] discusses the same point in the context of surprise examination.
8 This can be expressed elegantly by the iterated announcement operator in [13]: M1 |=
〈ann2∗〉¬ann2, which is true iff M1 |= 〈ann2〉 · · · 〈ann2〉

︸ ︷︷ ︸

n

¬ann2 for some n ≥ 1. See

also [20] for a further discussion of this and related operators.
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The first is that everyone knows their own number. For any i ∈ {a, b}:

xi → Kixi (A0)

and furthermore that this is known by both A and B. For any i, j ∈ {a, b}:

Kj(xi → Kixi) (A1)

Since (A1) implies (A0) (see epistemic logic axiom T ), we actually only need (A1). We
will use axiom T in the same way implicitly in the following.

The second is that initially (before any announcements) each agent considers it
possible that the other has chosen any number (and this is known by both). For any
i, j ∈ {a, b} and any number y, we write i for “the other agent”, i.e., a = b and b = a:

KjK̂iyi (A2)

In addition to these two9 premises we need some bookkeeping: the logic of the
linear order of the natural numbers and the agents’ knowledge of that. This is captured
by the following three premises.

First, the relationship between pb and pa. If i’s number is greatest, then the other
agent’s number is not (and this is known). For any i, j ∈ {a, b}:

Kj(pi → ¬pi) (A3)

Second, we need two premises describing the relationship between atoms of the
form 156a and pa. The first says that one is the lowest number (and anyone knows
this, and anyone knows that anyone knows this10). The second is that if agent i has the
greatest number then pi holds (and this is known). For any i, j, k ∈ {a, b} and numbers
x > y:

KjKk(1i → ¬pi) (A4)

KjKk((xi ∧ yi) → pi) (A5)

Thus, we let Γ be all instances of (A1)–(A5):

Γ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Kj(xi → Kixi),

KjK̂iyi,

Kj(pi → ¬pi),
KjKk(1i → ¬pi),
KjKk((xi ∧ yi) → pi)

: i, j, k ∈ {a, b}, x, y ∈ N, x > y

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where N is the set of natural numbers. Note that, while Γ is an infinite set of premises,
any derivation Γ � φ of φ from Γ can only use a finite number of those premises.

9 There are two schemas but actually infinitely many formulas.
10 We could assume that these premises are common knowledge, writing e.g., C{a,b}(1i → ¬pi).
However, it turns out that assuming common knowledge is not needed, and it is of interest to
illucidate exactly how many levels of nested knowledge are sufficient: e.g., two levels for (A4).



A Formal Analysis of Hollis’ Paradox 315

4.2 Simplifying Announcements

It is a straightforward exercise in PAL to show that, for any φ,

� [ann1][ann2]φ ↔ [β]φ (1)

where

β = (pb ∨ pa)∧
¬Kb(pa → pb) ∧ ¬Kb(pb → pa) ∧ ¬Ka(pa → pb) ∧ ¬Ka(pb → pa)

From Kb(pb → ¬pa) ∈ Γ (A3) and similarly for the other combinations, we also
have11:

Γ � α ↔ β (2)

where
α = (pb ∨ pa) ∧ K̂bpa ∧ K̂bpb ∧ K̂apa ∧ K̂apb

4.3 I Know that She Does Not Have 1

We now show that Γ � [ann1][ann2]Ka¬1b. Here and in the following we often com-
bine several proof steps. In particular, we liberally use known epistemic logic and PAL
theorems – referred to as “S5” and “PAL” respectively.

1 Γ � Ka(1b → Kb1b) (A1)
2 Γ � KaKb(1b → ¬pb) (A4)
3 Γ � Ka(Kb1b → Kb¬pb) 2, S5
4 Γ � Ka(1b → Kb¬pb) 1, 3, S5
5 Γ � Ka(1b → ¬α) 4, P rop
6 Γ � Ka(α → ¬(α → 1b)) 5, P rop
7 Γ � Ka(α → ¬[α]1b) 6, APerm
8 Γ � Ka[α]¬1b 7, ANeg
9 Γ � α → Ka[α]¬1b 8, P rop
10 Γ � [α]Ka¬1b 9, AKnow
11 Γ � [ann1][ann2]Ka¬1b 10, Eq.(1), Eq.(2), P rop

4.4 But I Don’t Know that She Does Not Have 2

We show that Γ � 157a → [ann1][ann2]¬Ka¬2b. “x/y” means “replace x with y”.

11 Observe that α expresses that (1) the two numbers are different, and (2) both agents consider
each of the numbers to be the greatest (α implies ann1∧ann2 but not the other way around).
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1 Γ � K̂a2b (A2), S5
2 Γ � 157a → Ka157a (A1), S5
3 Γ � Ka((157a ∧ 2b) → pa) (A5), S5
4 Γ � Ka157a → Ka(2b → pa) 3, S5, Prop
5 Γ � 157a → K̂a(2b ∧ (2b → pa)) 1, 2, 4, S5
6 Γ � 157a → K̂a(2b ∧ (pb ∨ pa)) 5, Prop
7 Γ � KaK̂a2b (A2)
8 Γ � Ka157a → KaK̂a(2b ∧ 157a) 7, S5
9 Γ � Ka((2b ∧ 157a) → pa) (A5), S5
10 Γ � Ka157a → KaK̂apa 8, 9, S5
11 Γ � 157a → KaK̂apa 2, 10, Prop
12 Γ � 157a → KaK̂apb Like 7−11 : 2b/158b and pa/pb
13 Γ � KaK̂b3a (A2)
14 Γ � Ka(2b → Kb2b) (A1)
15 Γ � Ka(2b → K̂b(3a ∧ 2b)) 13, 14, S5
16 Γ � KaKb(3a ∧ 2b → pa) (A5)
17 Γ � Ka(2b → K̂bpa) 15, 16, S5
18 Γ � Ka(2b → K̂bpb) Like 13−17 : 3a/1a and pa/pb
19 Γ � 157a → K̂a(2b ∧ α) 6, 11, 12, 17, 18, S5
20 Γ � 157a → (α → ¬Ka(α → ¬2b)) 19, Prop
21 Γ � 157a → (α → ¬Ka(α → ¬(α → 2b))) 20, Prop
22 Γ � 157a → (α → ¬Ka(α → ¬[α]2b)) 21, APerm
23 Γ � 157a → (α → ¬Ka[α]¬2b) 22, ANeg
24 Γ � 157a → (α → (α ∧ ¬Ka[α]¬2b)) 23, Prop
25 Γ � 157a → (α → ¬(α → Ka[α]¬2b)) 24, Prop
26 Γ � 157a → (α → ¬[α]Ka¬2b) 25, AKnow
27 Γ � 157a → [α]¬Ka¬2b 26, ANeg
28 Γ � 157a → [ann1][ann2]¬Ka¬2b 29, Eq. (1), Eq.(2)

4.5 Dealing with Infinite Disjunction

In the previous section we showed how to derive Γ � 157a → [ann1]
[ann2]¬Ka¬2b, and which assumptions were sufficient for that derivation. The num-
ber 157, taken from the original formulation of the paradox, is of course arbitrary –
it could be replaced with 15 or 1570 or indeed any number different from 2 itself.
So we get Γ � 15a → [ann1][ann2]¬Ka¬2b and so on in the same way. By this
reasoning, it seems that we should be able to get the more general Γ � ¬2a →
[ann1][ann2]¬Ka¬2b. However, this does in fact not hold – the assumptions in Γ
turn out to not be strong enough to make ¬2a → [ann1][ann2]¬Ka¬2b derivable. To
see this, consider the model M4 and its transformations as a result of the two announce-
ments in Fig. 3. It is easy to see that M4, (−, 3) |= Γ , but since M6, (−, 3) |= Ka¬2b
we have that M4, (−, 3) 	|= [ann1][ann2]¬Ka¬2b. In other words, Γ 	|= ¬2a →
[ann1][ann2]¬Ka¬2b, and thus Γ 	� ¬2a → [ann1][ann2]¬Ka¬2b.
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Fig. 3. Models M4 (top), as well as M5 (middle) and M6 (bottom) – the results of announcing
ann1 in M4 and ann2 in M5, respectively. States where ann1/ann2 is false are underlined/in
bold. The valuation is the same as in M1 for corresponding states. For the “new” states (first row),
the valuation is as follows: xb is given by the state, e.g., 3b is true in state (−, 3); xa is false in
all these states; the truth values of pa and pb are indicated in the figure.
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So, Γ must be strengthened if we want to derive ¬2a → [ann1][ann2]¬Ka¬2b,
so that models like M4 are ruled out. That model contains states where one agent (a)
has not chosen any number, clearly conflicting with the description of the puzzle12.
However, the assumption that A has chosen some number corresponds to an infinite
disjunction of the form

∨
x≥1 xa, which cannot be written as a formula.

It turns out, however, that a weaker assumption is sufficient. Notice that if we have
that ¬1a and ¬2a and 2b, it follows that pa – if A doesn’t have 1 or 2 she must have
a number greater than B’s number 2. ¬1a ∧ ¬2a ∧ 2b → pa does not follow from Γ
(to see this observe that it is false in state (−, 2) in M4). We now strengthen Γ with a
generalisation of that assumption, namely, for any i, j ∈ {a, b}, k ≥ 1 and m ≤ k:

Kj(¬1i ∧ ¬2i ∧ · · · ∧ ¬ki ∧ mi → pi) (A6)

We will also need a negative variant of A1 (everyone knows their own number),
saying that if I have not chosen x then I know that. For any i, j ∈ {a, b}:

Kj(¬xi → Ki¬xi) (A1’)

Finally, we will need to assume the following as a first principle (any i ∈ {a, b}):

Ki(K̂apb ∧ K̂bpa) (A7)

– in the initial situation (before any announcements), A considers it possible that B has
chosen a greater number, and conversely for B (note that we cannot assume, e.g., K̂apa
– because if A has 1 she does not consider it possible that her number is greater than
B’s).

Let Γ ′ be Γ extended with premises (A6), (A1’) and (A7), i.e., Γ ′ = Γ ∪{Kj(¬1i∧
¬2i∧· · ·∧¬ki∧mi → pi),Kj(¬xi → Ki¬xi),Ki(K̂apb∧K̂bpa) : i, j ∈ {a, b}, k ≥
1,m ≤ k}. We now show that Γ ′ � ¬2a → [ann1][ann2]¬Ka¬2b.

In the following, by “L. 4.4:x-y” we mean “like in lines x to y in the proof in Sect.
4.4”.

12 Nevertheless, that was no problem for 157a → [ann1][ann2]¬Ka¬2b, which happens to
hold in those models too.
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1 Γ ′ � (¬1a ∧ ¬2a) → K̂a(2b ∧ (pb ∨ pa)) L. 4.4:1-6; 157a/(¬1a ∧ ¬2a),
(A1)/(A1’), (A5)/(A6)

2 Γ ′ � (¬1a ∧ ¬2a) → KaK̂apa L. 4.4:7-11; 157a/(¬1a ∧ ¬2a)
(A5)/(A6)

3 Γ ′ � K̂apb (A7)
4 Γ ′ � (¬1a ∧ ¬2a) → KaK̂apb 3, Prop
5 Γ ′ � KaK̂bpa (A7)
6 Γ ′ � Ka(2b → K̂bpa) 5, S5
7 Γ ′ � Ka(2b → K̂bpb) L. 4.4:13-18; 3a/1a, pa/pb
8 Γ ′ � (¬1a ∧ ¬2a) → K̂a(2b ∧ α) 1, 2, 4, 6, 7, S5
9 Γ ′ � (¬1a ∧ ¬2a) → [α]¬Ka¬2b L. 4.4:19-27
10 Γ ′ � (¬1a ∧ ¬2a) → (α → 〈α〉¬Ka¬2b) 9, PAL
11 Γ ′ � (¬1a ∧ ¬2a ∧ α) → 〈α〉¬Ka¬2b 10, Prop
12 Γ ′ � α → ¬1a as in Sec. 4.3
13 Γ ′ � (¬2a ∧ α) → 〈α〉¬Ka¬2b 11, 12, Prop
14 Γ ′ � ¬2a → (α → 〈α〉¬Ka¬2b 13, Prop
15 Γ ′ � ¬2a → [α]¬Ka¬2b 14, PAL ([19, Prop. 4.13])
16 Γ ′ � ¬2a → [ann1][ann2]¬Ka¬2b 15, Eq. (1), Eq. (2)

5 Discussion

We have argued that under assumptions about common knowledge of truthfulness
and perfect reasoners, Hollis’ paradox can be resolved by observing that the second
announcement is not neccessarily successful. Note that it will actually be a successful
update – except in the cases that either A or B has chosen 1 or 2. Thus, a more precise
explanation is that the agents don’t know whether the announcement was successful. As
is well known in dynamic epistemic logic, an announcement can be unsuccessful yet
informative, a likely source of the confusion behind the so-called paradox.

As mentioned in the introduction, there are similarities between Hollis’ paradox
and the surprise examination paradox. In particular, they are built on the same fallacy:
that announcements always are successful. This was first pointed out for the surprise
examination paradox by Gerbrandy [8], using a variant of public announcement logic,
in a similar way to the semantic analysis in this paper. Several other logical analyses
have since appeared [2–4,12]. While it can be argued that the root cause behind the
two “paradoxes” is the same (unsuccessful formulas), the logical modelling is quite
different. Gerbrandy’s formalisation has in common with our formalisation of Hollis’
paradox that there is an initial announcement that eliminates some states in the model
and that the (false) assumption that the initial announcement would stay true after that
initial elimination would eliminate yet more states and that this can be repeated in sev-
eral steps eventually leading to a paradoxical situation where all states have been elimi-
nated. In both cases the “paradox” can be seen as an inductive “proof” that actually fails
after the first step due to the false premise that the initial announcement is successful. A
significant difference is that in the surprise examination paradox the state space is finite,
while in Hollis’ paradox the state space is infinite and an inductive argument is crucial.
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Other significant differences is that the state space in Gerbrandy’s solution is very sim-
ple, consisting of only three states, and our model of Hollis’ paradox is more complex,
while on the other hand the announcement of “the exam date will be a surprise” in the
former13, is more complex than ann2. The reason for the latter is the iterative opening
of the doors which has no correspondent in Hollis’ paradox. In fact, from a modelling
perspective Hollis’ paradox has more in common with Sum and Product [6], with a
state space that is a (in that case finite) subset of the cartesian product of the natural
numbers and where states are eliminated in a sequence of announcements. In that case
the announcements are given explicitly and there is no paradox.

It has however, been forcefully argued [2] that Gerbrandy’s non-self-referential for-
malisation of the announcement is not a very natural interpretation of the sentence “the
exam date will be a surprise” nor is it indeed the interpretation most commenters on the
paradox agree with. This argument hinges on the word “will” which refers to the future
and in particular, it is argued, to the actual future immediately after the announcement
is made, and thus that a self-referential interpretation of the statement to mean “you will
not know in advance the exam day (i.e., after hearing this very announcement”)14. This
is indeed convincing, but we argue that the same argument does not apply to Hollis’
paradox where the announcement is “neither of you can work it out” (or “neither of you
can deduce it” [16]). Granted, “can work out” (or “deduce”) seems to refer to the future
as well, but a perfect reasoner has at any point already “worked out” (deduced) all pos-
sible consequences of her knowledge. The operative word here is “can”, referring to the
present, the announcement is not “neither of you will be able to work out”.

Our formalisation hinges on the two assumptions of common knowledge of truth-
fulness and perfect reasoners, both of which it would be interesting to relax in future
work on formalisations. Modeling non-perfect reasoners (see, e.g., [1]) might seem par-
ticularly relevant since it gives more meaning to the phrase “can work out”, but there are
no clues in the description of the paradox how the agents abilities to “work out” things
are limited (indeed, on the contrary, as mentioned in the introduction Hollis hinted at
joint knowledge of good reasoning abilities).

While the semantic modelling of the initial situation in Hollis’ paradox allowed us
to pinpoint exactly where the inductive argument breaks down, existing discourse on
Hollis’ paradox [9–11,14,17] typically employ (informal) derivations of conclusions
from premises in some implicit epistemic/doxastic logic. In keeping with this tradition
we also provided a “syntactic” analysis where we modelled the initial situation as a set
of premises and derived our conclusions from them – albeit in a more detailed, formal
way. This furthermore allowed us to pinpoint which of the facts in the initial situation
were sufficient for the conclusions. It turned out that we did not need to completely
describe the grid model from the semantic analysis. Furthermore, while it can clearly
be argued that it is implicitly assumed that it is common knowledge that A and B each
know their own number, the derivation of the fact that none of the agents can rule out

13 (we∧¬Kwe)∨ (th∧ [¬we]¬Kth)∨ (fr ∧ [¬we][¬th]¬Kfr)∨K⊥. Note that Gerbrandy
assumes that the knowledge modalities are K45 rather than S5.

14 Note that this kind of self-reference is not the same as saying that “you don’t know it now and
you still don’t know it after it is announced that you don’t know it now” as briefly discussed at
the end of Sect. 3.
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that the other one has 2 only relies on general knowledge (everybody-knows) of that
fact. That conclusion only relies on up to 2 levels of nested knowledge of any of the
premises (everybody knows that everybody knows).

The fact that we don’t need to assume common knowledge of the premises has
an interesting corollary. Intuitively, a “static” epistemic or doxastic logic seems to be
insufficient to deal with the paradox, because we need to be able to reason about knowl-
edge/beliefs at different time points – in particular “before” and “after” announcements.
Indeed, failure to make that distinction is exactly what lies behind the original paradox
as well as other attempts to resolve it. However, the fact that we don’t need common
knowledge means that the premises, conclusions and the whole derivation can be trans-
lated into pure (static!) epistemic logic [15]! So, Hollis’ paradox can be resolved by
pure “static” epistemic reasoning about the initial situation after all.
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