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This book is dedicated to our friend and
colleague Wilfried Becker on the occasion of
his retirement.



Preface

Prof.-Dr. Ing. Wilfried Becker 
TU Darmstadt 
Institute of Structural Mechanics 
 
 
 
 
 
 
born: March 27, 1957  
 
Professional and scientific experience  
 
1976-82 Studies in Mathematics and Physics at TH Darmstadt,  

graduated wit 1. Staatsexamen 
1984-86 Studies in Mechanics at TH Darmstadt,  

Diploma 
1986-89 Research assistant at Institute of Mechanics at TH Darmstadt, 

PhD in the field of fracture mechanics 
1990-96 Systems engineer with Daimler-Benz Aerospace, 

Development, sizing and optimization of lightweight structures 
   1993 Habilitation at TH Darmstadt  

with a thesis in the field of composite mechanics 
1996-2003 full professor for Mechanics at University of Siegen 
since 2003 full professor for Mechanics at TU Darmstadt, 
                     head of the Institute of Structural Mechanics at TU Darmstadt  
 
Scientific areas of work 
 

− Solid and Structural Mechanics 

− Composite Mechanics 

− Fracture Mechanics 

− Structural Optimization 
 
Publications:   
 
> 300 papers in international journals and conferences 
author of 3 books 
 
Editorial Board Member of:  

− Archive of Applied Mechanics 

− Composite Structures   

− Composites Science and Technology 

− International Journal of Advances in Mechanics and Applications of 
Industrial Materials 

− Luftfahrttechnisches Handbuch – Faserverbund-Leichtbau 

Wilfried Becker

At the end of September 2022 our colleague and
friend Prof. Dr.-Ing.habil. Wilfried Becker, who sig-
nificantly influenced the fieldof researchwithhis work
on the structural mechanics of composite structures,
retired. Up to his retirement, he was a full professor for
Mechanics and the head of the Institute of Structural
Mechanics at the University of Technology Darmstadt
(Germany). As a professor, he has trained several gen-
erations of undergraduate and graduate students. At
the same time, as author or co-author of numerous sci-
entific articles and books, he has significantly shaped
the field and also gained international recognition.

Wilfried Becker was born on March 27, 1957. His
professional and scientific career started in 1976 with
entering the TH Darmstadt as a student in Mathe-
matics and Physics. In 1982 he graduated with 1st
state exam. In 1984, he continued his studies (now in
Mechanics) at TH Darmstadt and obtained in 1986
the diploma degree. From 1986 until 1989, he was a research assistant at the Institute
of Mechanics at TH Darmstadt. Under supervision of Prof. Dietmar Gross he pre-
pared his PhD thesis in the field of fracture mechanics “Dugdale-Riss-Lösungen und
deren Verwendung zur mikromechanischen Modellierung von anisotropem Damage”
(Dugdale crack solutions and their use for micromechanical modeling of anisotropic
damage) [1].

From 1990 until 1996 he was a systems engineer at Daimler-Benz Aerospace.
His research focus was on development, design and optimization of lightweight
structures. In 1993, he defended his habilitation at TH Darmstadt. The title of his
thesis was “Beiträge zur analytischen Behandlung ebener Laminate” (Contributions
to the analytical treatment of plane laminates) [2].

In 1996, Wilfried Becker was appointed as full professor for Mechanics at Uni-
versity of Siegen as the successor of Prof. Hans Eschenauer. In 2003, he became a
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full professor for Mechanics and head of the Institute of Structural Mechanics at TU
Darmstadt. His scientific areas of work are

• Solid and Structural Mechanics
• Composite Mechanics
• Fracture Mechanics
• Structural Optimization

He has prepared (partly together with several co-authors) more than 300 publications
for international peer-reviewed journals and conferences and he published three books
[3–5]. In addition, he served as an editorial board member of:

• Archive of Applied Mechanics
• Composite Structures
• Composites Science and Technology
• International Journal of Advances in Mechanics and Applications of Industrial

Materials
• Luftfahrttechnisches Handbuch – Faserverbund-Leichtbau

We wish Wilfried Becker many more years in good health and hope that his
scientific contributions will continue to be recognized by other scientists in the
future.

Magdeburg, Holm Altenbach
Freiburg im Breisgau, Jörg Hohe
Darmstadt Christian Mittelstedt

July 2023
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Chapter 1
Numerical and Experimental Analysis of Elastic
Three-layer Plate Under Static and Low Velocity
Impact Loading

Holm Altenbach, Dmytro Breslavsky, Stanislav Konkin, Volodymyr Lysenko, and
Konstantin Naumenko

Abstract Computational and experimental approaches to determine the values of
physical and mechanical properties of three-layer sandwich plates, consisting of two
outer layers of fiberglass and a core of expanded polystyrene, bonded with epoxy glue,
is proposed. To measure displacements and strains, an experimental stand which
uses mechanical dial gauges and strain gauges, was developed. Experimental data
are presented for static and low-velocity impact loading on the plate when a spherical
impactor falls on it. The finite element analysis of the plate is carried out and the
results are compared with experimental data.

1.1 Introduction

Multilayer composite panels are widely used in various industrial applications, includ-
ing aerospace industry. One of the fairly common types of such structural elements
are three-layer plates and shells. Due to their low weight as well as increased stiffness
and strength compared to the material of the core part, which occupies the main
volume of the plate, they are widely used in practice [1].
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Currently, the design of structures in various fields of technology is carried out
automatically, using specialized software, CAD/CAE systems. CAE modules, in most
cases based on the Finite Element Method (FEM), are used for computational analysis
at the design stage in order to select the best parameters in terms of ensuring the
required stiffness and strength. One of the most important issues that are solved in
this case is the determination of the physical and mechanical properties of composite
elements for their further use in calculations.

This task is often associated with a large number of difficulties. They appeared
with the complexity of the experimental determination of the properties of composite
elements as a whole. Already at the manufacturing stage, from the point of view of
Solid Mechanics, a multilayer panel is a composite structure, the properties of which
differ significantly from the properties of the constituent materials. The methods
of experimental determination of physical and mechanical properties known for
homogeneous materials often do not work [1, 2].

Let us consider the main results obtained recently in the study of the stress-strain
state of multilayer plates under static and dynamic loading, including impact. The
main theoretical approaches and justification the methods of computational analysis
are described in [3]–[4]. However, the practical implementation of the developed
methods often contains a large number of special techniques and algorithms, which
often combine real experimental studies. Their description in relation to multilayer
panels with low velocity impacts is presented in [5]–[6].

A review of classical methods and equipment for the experimental investigations of
impact deformation processes at low velocity testing, created before 2000, is presented
in [5], and recently developed, in [7]. The authors of reviews note that robust and
reliable non-destructive testing of composites is essential to ensure the safety concerns
and maintenance costs. The most well-known non-destructive testing methods for
detecting and evaluating the development of defects/damages in composites are
considered, for each of which the principles, standard methods, equipment and tools
used to study composites, are discussed.

A review of already created computational methods for predicting deformation
under low-velocity impact contain in [8]. Next, we consider new developments in
this area. The low-speed impact of a rigid impactor on three-layer sandwich panels,
which causes local deflection of the front sheet and irreversible deformation of the
core, was studied in [9]. The protective effect of thin plastic layers inserted between
the front sheet and the core in order to compensate the deflections is considered. The
problem for different core materials - foam plastic, polyurethane foam and others was
solved by the FEM. It is noted that the intermediate layer of polyurethane provides
better impact resistance.

The impact behavior of a deformable thin sandwich plate under low-velocity
impact was studied in [10]. The fabrication method and two types of experimental
setups using drop impacts with a micro-processor based data acquisition system are
described. The dominant type of failure is experimentally determined, which is local
sheet crushing. The experimental and FEM simulation results of the critical impact
energy, the deformed shape as well as of the maximum values of deflection, contact
force, intrusion and the specific absorbed energy were compared.
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Dynamic responses of sandwich panels with aluminum foam cores under impact
loading were studied in [11] using experiments and FE modeling. Impact tests were
done using a drop weight impactor at various low velocities. In addition, experiments
were carried out with different facing sheet materials. It is shown that the impact
response of a sandwich panel is mainly determined by the front sheet. Calculations
using FEM show that the critical impact energy, required to destroy the front sheet,
increases with an increase in the density of the first core layer.

Fiber metal laminates (FML) were used in [12] as a coating on a polypropylene
honeycomb core to form a sandwich structure. Impact tests at low velocity were
carried out. The authors found that the maximum impact load increases to a threshold
value at which it reaches a plateau. The optical images obtained after the impact were
analyzed. A varying in the damaged area with an increase in the impact energy was
noted.

The behavior of sandwich panels with different core structures after damage in a
low-velocity impact was studied in [13]. The damage spread was determined using
ultrasonic control. To assess the strength of damaged panel sandwich structures, they
were tested in bending to failure.

The low-velocity impact behavior of composite sandwich panels with various
types of core structures was studied in [14]. Panels made of carbon/fiber epoxy
composite face sheets and polyurethane rigid core were considered. The material
properties of the components were determined through tensile and compression tests.
A hard impactor was dropped onto the plates. Calculations using the FEM confirmed
the experimental results. The advantages of different cores are analyzed based on the
analysis of impact strength.

Sandwich panels with various combinations of woven monolithic front sheets
made of carbon and kevlar were considered in [15]. Low-velocity impact tests were
carried out using various energy levels. The damage caused by the fracture of a
multilayer structure is estimated. It is noted that the results of the calculations are
consistent with the experimental data.

The study presented in [16] describes the results of numerical simulation of the
response of sandwich panels with an expanded polystyrene core to low velocity
impacts. The effect of foam core density on impact energy absorption by the panel
was analyzed. The ABAQUS/Explicit FEA package was used in the calculations.
The ability to absorb impact energy depending on the different density of the core is
estimated.

Sandwich panels with a core reinforced with polyester pins were studied in [17].
The results were compared with obtained for non-reinforced plates with foam filler.
The response to impact with low velocity and compression characteristics after
impact were analyzed. The impact damage area was calculated using MATLAB
image processing technology. Tests showed that pin reinforcement improved load-
bearing capacity as well as significantly reduced the area of impact damage.

An attempt to discuss the mechanism of sandwich panels failure with fiber-
glass/epoxy face sheets reinforced with metal fibers during low-velocity impact and
compression after impact (CAI) is made in [18]. The time dependence of the con-
tact force, the absorbed energy and the deflection during the impact were obtained
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experimentally. CAI tests are conducted using Digital Image Correlation (DIC)
technology.

Investigations which are presented in [19] were devoted to the study of vibrations
of three-layer composite plates in a wide frequency range. Experimentally, using
Dynamic Mechanical Analysis, the equivalent complex modulus of the three-layer
and polymer core characteristics were determined. Stripes under forced periodic
straines were investigated. A scanning laser vibrometer was used for measurements.
The measurement results are compared with the data obtained by calculation using
the model of Guyader [20] and model of Ross, Kerwin and Ungar [21].

A three-layer composite plate element for FE dynamic simulation of a multilayer
plate with a core made of a frequency-dependent viscoelastic material was presented
in [22]. Its vibrational characteristics have also been studied experimentally. There
is a satisfactory agreement between the results.

Laminated glass and photovoltaic panels are also being investigated using similar
numerical and experimental methods [23, 24]. FEM was used in [25] to simulate the
destruction of laminated glass loaded with an explosion. The method of separation of
nodes is used, which allows solving the problem without loss of mass or momentum.
The simulation data were compared with experimental results obtained in a shock
tube. The results of an experimental determination of the response of multilayer
plates consisting of layers of glass and polymers contains in [6].

Thus, at present, it can be considered an established approach, in which both
experimental data and FEM simulation of a deformed state are used to study the
behavior of thin-walled multilayer structural elements. This paper is devoted to the
description of the developed experimental equipment for studying the dynamics of
three-layer plates under low-velocity impact as well as the results of verification of
the FEM calculations.

1.2 Description of Measurement System

The system of tensometric measurements ”TENZO-21” (hereinafter referred to as
the "System") is designed to conduct experimental investigations of two-dimensional
structural elements in order to determine their deformed state using strain gauges [26].
In order to measure strains, strain gauges and corresponding measurement channels
are combined into triplets (sockets) X,Y,XY.

The system specifications are given as follows

• number of measuring channels for connecting strain gauges is 5 x 3 = 15
• nominal resistance of strain gauges is 350 Ohm
• displaying the conditional numerical values of the selected group of sockets and

the number of the socket on the LCD (liquid crystal display) (2 periods of 16
characters each)

The strain sensors (strain gauges) BF350-3AA with nominal resistance 350 Ohm
were selected. As an ADC, modules based on the HX711 chip were used. Due to the
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need for a sufficiently large number of ports for connecting modules, ensuring high
performance and functionality, the Arduino Mega 2560 Rev3 controller was chosen.
The system software includes the following components: a working program written
in C language, a CH341 driver V3.1 and a program for receiving, displaying and
registering measurement data.

Measurement technique. Since there are three non-zero components of the strain
tensor during plate bending, sockets with three strain gauges are used, which must
be glued to the surface of the plate under study. An drawing for the strain gauges
placement is shown in Fig. 1.1. After carrying out the appropriate preparation of the
test sample surface, the strain gauges are glued with cyanoacrylic glue. Connection
of strain gauges is made by soldering POS-61 solder with rosin flux. Twisted pairs
of MGTF-0.25 wire are used for connections. After soldering, a digital ohmmeter
checks the serviceability of the strain gauge (obtained resistance was in the range
of 350–352 Ohm). The connecting wires are fixed, and the socket is covered with a
protective cover. Pairs of wires from strain gauges are connected to the corresponding
socket terminals. The measured data are written in a text file.

Fig. 1.1 Layout of strain
gauges.

X1
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XY1

X2

Y2

XY2
X3
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5
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1.3 Method and Results of Measurements Using Dial Gauges

The deformed state of three-layer plates planned for use as a skin for a future heavy
unmanned aerial vehicle (UAV) of a hybrid type, built on the basis of using only
internal combustion engines [27], was investigated. A sketch of such vehicle is shown
in Fig. 1.2. It is planned to use plates made in the laboratory of the Department of
Computer Modeling of Processes and Systems NTU KhPI. The plates have three
layers - two outer, made of fiberglass with 1 mm thick, and an inner one, 48 mm thick.
It is made from expanded polystyrene. The layers are bonded with epoxy adhesive.
For experimental tests, three plates were made, see Fig. 1.3. Their dimensions are
0.55x0.20x0.055m. The investigations of the mechanical behavior of these plates
consisted of two cycles of experiments: tests under static load and under impact. The
plates were rigidly fixed behind one small side. For this, clamp-type devices were
used. A general view of the experimental setup with a fixed plate is shown in Fig.
1.4.

In the first experimental cycle, a static load was implemented using standard
weights with an interval of 0.15 kg. They were added to a hanger connected to a
hook fixed in the middle of the edge of the plate (Fig. 1.4). Plate deflections were
measured using mechanical extensometers equipped with dial gauges (resolution of
0.01 mm). Measurements were made for two points located in the middle of the
plate at a distance of 0.15 m and 0.25 m from the loaded edge in succession for all
three plates. For each plate, three cycles of loading and unloading were carried out.
The measurement data were averaged. The difference between the results both for
different cycles and for different plates did not exceed 17%. The obtained averaged

Fig. 1.2 Design sketch of a
heavy unmanned aerial vehicle
(UAV) of a hybrid type.

3 layerplate

Fig. 1.3 Three-layer plates.
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Fig. 1.4 General view of the
experimental unit with a fixed
plate under static load.

results are presented in Fig. 1.5 (point 0.15 m away from the edge of the plate) and
Fig. 1.6 (point 0.25 m away from the edge of the plate, Fig. 1.4).

1.4 Method and Results of Measurements Using Strain Gauges

With the help of the tensometric stand developed during this study (see Sect. 1.3),
an investigation of the deformed state of the three-layer plates under consideration

w, mm

P, N0 2.00 4.00 6.00 8.00 10.00
0

0.5

1

1.5

2

Fig. 1.5: Plate normal deflection versus load value for the point at 0.15 m distance from the edge of
the plate.
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Fig. 1.6: Plate normal deflection versus load value for the point at 0.25 m distance from the edge of
the plate.

was carried out. As noted, strain gauge data (the value of electrical signals on each
strain gauge) is written to a text file. Further, using known methods [2] for calibrating,
detecting the sensitivity of the measuring complex and determining the conversion
factors for measuring the values of the strain components by strain gauges, a series
of experiments on static load was carried out. In this case, similar load programs that
were used when measuring static deflections were used. Three cycles of stepwise
loading/unloading of the studied plate were carried out. At each load, the value of
the strain gauge signal was recorded for each sensor at a given weight m. The general
view of the experimental stand is shown in Fig. 1.7 (loaded plate with installed sensor
sockets) and Fig. 1.8 (operator’s workplace). For each socket, a measurement was
made and the dependences of the signal value from the statically applied force during
loading and unloading were obtained. With each addition of a load, measurements
were made only when the motion of the device was completely stopped. As an
example, Fig. 1.9 shows the data for socket #4, located on the upper surface (Fig.
1.1) as well as Fig. 1.10 demonstrates the data for #5 (plate bottom, located in the
center from the bottom side of the plate). The data are presented by use of System
measurement units (me). The data are averaged over 5 experiments. It can be seen
from the graphs that the strain components follow a linearly elastic law. The numbers
in figures show the corresponding directions of location of strain gauges :1-x (0◦),
2-y (90◦), 12-45◦. Further, in order to prepare for the experimental-computational
determination of the deformed state of the plates under dynamic (including impact)
loads, an experimental study of the dynamics of the plates under consideration was
carried out when a steel spherical impactor with a mass of 230 g, falls on them from
a height of 0.08 m. The impact point was at the plate’s midline at 0.11 m from its
free edge. The impactor was released at a fixed time and moved vertically until it met
the plate. The methodology for such experimental studies is described in [28].



1 Numerical and Experimental Analysis of Elastic Three-layer Plate . . . 9

Fig. 1.7 Loaded plate with
installed sensor sockets.

Fig. 1.8 Operator’s work-
place.

As an example, some results of measurements of linear strains are shown in Fig.
1.11 (socket #5) and Fig. 1.12 (socket #4). Similar results were obtained for sockets
1, 2, 3. The data are averaged over five measurements. The curve numbers mark the
corresponding directions of location of strain gauges 1 – x (0◦), 2 – y (90◦). Due to
the fact that the main task is to determine the maximum strain values upon impact,
we present data only for the area of their growth. Consequently, according to the
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Fig. 1.9: Signal values versus statically applied force. Socket #4.
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Fig. 1.10: Signal values versus statically applied force. Socket #5.

results of measurements on the developed experimental equipment, it was possible
to obtain the values of the voltage on strain gauges under impact loading.

1.5 Sensor Calibration Method and Numerical Analysis

Due to the fact that a composite three-layer plate is a rather complex object, which,
firstly, acquires its physical and mechanical properties after the completion of the
manufacturing process, and secondly, due to the thickness of the plate (50 mm),
it is not possible to manufacture an experimental one-dimensional specimen (its
thickness will be of the same order with a standard length of 100 mm for specimens
tested in tension or bending), the following calculation and experimental method for
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Fig. 1.11: Impact loading. Signal values versus time. Socket #5.
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Fig. 1.12: Impact loading. Signal values versus time. Socket #4.

calibrating strain gauge sensors was adopted in the work. It is based on the use of a
comprehensively tested engineering software package ANSYS [29] for the numerical
assessment of the stress-strain state of the considered three-layer plates.

Briefly, the methodology is as follows. At first stage the set of numerical experi-
ments for the determining the material elastic moduli was done. As is known, the
material of such plates is described with a sufficient degree of accuracy by the model
of an orthotropic material [1]. So, the number of typical numerical experiments
(tension, compression and torsion) for the FE models of the material specimens
were done and the elastic moduli E𝑥 , E𝑦 and the shear moduli G𝑥𝑦 , G𝑥𝑧=G𝑦𝑧 and
Poisson’s ratios 𝜈𝑥𝑦=𝜈𝑦𝑧=𝜈𝑥𝑧 were determined.

At the second stage, the experimental results were obtained on tests with the
static loaded plates (see Sect. 1.3) were compared with FEM numerical data for such
problem. After comparisons the values of material elastic moduli were insignificantly
varied in order to obtain the best results fitting.
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Let us consider the results of the final simulation of the plate deformation process
under static load. Note that this structural element from the point of view of the
Solid Mechanics can be considered a thin plate (its thickness is much less than the
dimensions in the plane). In this regard, it is appropriate to use finite elements for
modeling, the main relations for which are obtained from the theory of plates [30]. On
the other hand, when analyzing the impact interaction processes, when the impactor
contacts precisely with the outer layer made of fiberglass, and the stress state in the
vicinity of the contact is three-dimensional, the three-dimensional formulation of the
problem is necessary.

So, in connection with the above arguments, we consider the solution of the
problem with two formulations: using the theory of plates and the general three-
dimensional one. In the first case, we use the FE SHELL 181, in the second - SOLID
185.

Figure 1.13 contains the calculation scheme of the plate when using FE SHELL
181. This scheme was chosen after a cycle of calculations designed to establish
the convergence of solutions. The dots indicate the nodes, the values of the normal
deflections in which were used to plot the dependence of the normal deflection on the
coordinate. For example, for the value of the force applied inside the edge of the plate
with a value of 10.5N, such a graph is shown in Fig. 1.14 The solid line indicates the
calculated data, the dots are the results of deflection measurements at points 0.15 m
and 0.25 m away from the edge of the plate, respectively. As can be seen from Fig.
1.14, the calculated results are quite close to the experimental ones, the difference in
deflection values does not exceed 2.3%.

Than the calculation was made using the FE SOLID 185. The mesh selected
after convergence studies is shown in Fig. 1.15. In this case, the dependence of the
deflection of the upper points of the plate on the coordinates along the midline is
almost similar to presented on Fig. 1.14.

After refining the values of the components of the matrix included in the for-
mulation of the generalized Hooke’s law, the following values were obtained:
𝐸𝑥 = 𝐸𝑦 = 68 MPa, 𝐸𝑧 = 3.4 MPa, 𝐺𝑥𝑦 = 29 MPa, 𝐺𝑥𝑧 = 𝐺𝑦𝑧 = 1.44 MPa,
𝜈𝑥𝑦 = 𝜈𝑦𝑧 = 𝜈𝑥𝑧 = 0.15. It should be noted a significant increase in the elasticity
moduli 𝐸𝑥 , 𝐸𝑦 of the composite material compared to the value of this modulus for
expanded polystyrene at a tension (23.6 MPa). This, of course, reflects the influence
of two thin layers of fiberglass.

Next, a similar cycle of experiments on the static load of the plates as well FE data
were used for the case of the strain measurements by strain gauges. According to

Fig. 1.13 Finite Element mesh
of the plate with SHELL181
elements. X
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Fig. 1.14: Dependence of the normal deflection of the plate on the coordinate for the applied force
of 10.5N using the plate theory.

Fig. 1.15 Solid Finite Element
mesh of the plate using
SOLID185 elements.
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the obtained sets of numerically and experimentally determined components of the
strain tensor at the points of location of the of strain gauges sockets, the coefficients
k1, k2, k12 are calculated as proposed in [2]

𝑘1 =
Y𝑥
𝑢1
, 𝑘2 =

Y𝑦

𝑢2
, 𝑘12 =

Y𝑥 · 𝑙2 + Y𝑦 ·𝑚2 +𝛾𝑥𝑦 · 𝑙 ·𝑚
𝑢12

, (1.1)

where Y𝑥 , Y𝑦 , 𝛾𝑥𝑦 - calculated values of strain tensor components, 𝑢1, 𝑢2, 𝑢12 are
measured values of voltage and

𝑙,𝑚 =

√
2

2
.

After determining the coefficients of correspondence between the values of the
voltage and the numerically obtained strain components, it becomes possible to verify
the results of numerical simulation of non-stationary dynamic processes. For this,
the results of an experimental study of the process of impact loading of plates by a
spherical impactor are used. When a satisfactory convergence of experimental and
numerical data is obtained, it becomes possible to consider computer simulation data
as reliable and subsequently apply them in the analysis of various design options.
In this paper, the technique under consideration is used to verify the data of the
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computational analysis of the impact load of three-layer plates planned for the skin
of a new UAV.

Next, consider the results of calculating the deformed state of the plate. To
determine the coefficients for recalculating the data for determining the data from
strain gauges, we use FEA with new grids, the location of the nodes in which
corresponds to the location of the centers of the strain gauge sockets. The view of
the mesh for the problem using a plate element with a similar cross section for the
three-dimensional problem is shown in Fig. 1.16. Dots show the location of the
specified nodes. The numbers in the figure reflect the corresponding dimensions of
the sides of the elements.

Tables 1.1 and 1.2 present the results of calculating the values of the strain tensor
components at the nodes of the model, corresponding to the location of the centers
of the strain gauges sockets. Table 1.1 contains the results obtained using the FE
SHELL181, as well as Table 1.2 - for use of FE SOLID185.

From the analysis of the data given in the tables, it can be concluded that the
results when using different approaches are quite similar. The difference in signs
between the measurement data (Figs. 1.9 and 1.10) and calculations is due to the
applied directions of the axes in the coordinate systems used. When using the plate
element, it is considered that all calculations are made for the middle surface, so the
strain’s sign for the socket #5 s the same as the signs at the points of sockets #1-4.
Next, we will use the calculation data in the general three-dimensional formulation
to determine the coefficients for converting the values of signal measurements to the
values of strains.

Fig. 1.16 FE mesh of the plate.
Determining the strain tensor
components.

x
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Table 1.1: Data for the components
of the strain tensor using SHELL 181
elements.

Socket 𝜖 𝑥 .10−3 𝜖 𝑦 .10−3 𝛾𝑥𝑦 .10−3

1 -0.137 0.0389 0.0121

2 -0.284 0.0495 0.0446

3 -0.137 0.0389 -0.0121

4 -0.284 0.0495 -0.0446

5 -0.560 0.0887 0

Table 1.2: Data for the components
of the strain tensor using SOLID 185
elements.

Socket 𝜖 𝑥 .10−3 𝜖 𝑦 .10−3 𝛾𝑥𝑦 .10−3

1 -0.122 0.071 0.0702

2 -0.249 0.05 0.0062

3 -0.122 0.071 -0.0702

4 -0.249 0.05 -0.0062

5 0.492 -0.109 0
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Using dependencies (1.1), the average values of these coefficients were obtained.
For strain gauges of sockets #1-4 located on the upper surface of the plate, the value
of 𝑘1 = 𝑘2 = 𝑘12 = 2 ·10−5 was determined. For strain gauges of the socket #5 located
on the lower surface of the plate, the value was: 𝑘1 = 𝑘2 = 𝑘12 = 5 ·10−6. In this case,
when processing the data, the determined values of the coefficients deviated in the
range of 4-7% for each direction.

Further, due to the obtained possibility of strain determining in the impact mode,
a comparison of the experimental data with the data of numerical simulation was
performed for the considered plate. The description of the experiment is presented
in Sect. 1.4.

The impact loading process was modeled according to the experimental conditions.
A spherical impactor fell from a height of 0.08 m onto a plate (Fig. 1.17). The values of
stresses, strains and displacements in the nodes of the FE model were calculated. The
obtained components of the strain tensor at the points corresponding to the location
of the strain gauges were compared with the values obtained experimentally and
calculated by use determined coefficients. As an example, the results of comparing
the values of linear strains for a point on the plate’s bottom corresponding to the
location of the socket #5 (Fig. 1.18) are presented. Numerical data are represented by
solid lines,experimental data by points. Here curve 1 corresponds to the componentY𝑥 ,
curve 2 to Y𝑦 . As can be seen from the graphs, there is a satisfactory correspondence
between the calculated and experimental data: for the components Y𝑥 the difference

Fig. 1.17 Model for impact
loading analysis.
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Fig. 1.18: Comparison of numerical (solid lines) and experimental (points) values of strains at the
point of the plate, which corresponds to the location of the socket #5.
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Fig. 1.19: Distribution of the maximum von Mises equivalent stresses on the surface of the plate at
the time of impact.

does not exceed 12%, for the components Y𝑦 it equal to 20%. In general, the divergence
for all strain gauge sockets points do not exceed 20%. Thus, based on the results
of the comparisons, we obtain a conclusion about the possibility of the numerical
estimation of the stress-strain state of the plates made from the three-layer material
under consideration.

As an example, let us give the distributions of the von Mises equivalent stresses
(Fig. 1.19) on the surface of the plate at the time of impact contact with it. Note the
essential localization of stresses at the point of impact. The maximum values of von
Mises stresses do not exceed 0.44 MPa.

1.6 Conclusions

The deformed state of three-layer composite plates, made for the the body part of
the UAV under design, loaded by static and impact loading, was experimentally
determined. Plate structure consist of two outer fiberglass layers and a core of
expanded polystyrene bonded with epoxy glue are considered. An experimental stand
using clock-type mechanical sensors and strain gauges was developed to measure
displacements and strains. The numerical-experimental approach for the choice of
the values of the orthotropy parameters of the material is discussed. The results of
verification studies conducted to analyze the reliability of the results of impact loading
are described. The obtained results show a satisfactory convergence of experimental
and calculated finite element data, which allows us to conclude that it is possible
to use the developed approach and the experimental stand when designing the new
parts of aircraft bodies.
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Chapter 2
Reviewing Yield Criteria in Plasticity Theory

Holm Altenbach and Vladimir A. Kolupaev

Abstract Mathematical plasticity theory assumes in many cases that deformation
occurs without a change in volume. A yield surface, which limits elasticity under
arbitrary combinations of stresses, is thus the function of the deviatoric components
of the stress tensor. The yield criteria define this limit surface in the principal stress
space. The commonly accepted criteria are Tresca, von Mises and Schmidt-
Ishlinsky. Nowadays, they are not sufficient for modelling of real material be-
haviour in critical components and are generalized in the different ways.

Numerous criteria proposed over the last 150 years are hardly used because their
utility is not obvious. In addition, the cost of material testing, parameter adjustment
and complexity of criterion implementation often outweighs the benefits of accurate
material description. Furthermore, there is no clear procedure for selecting the best
criterion for a particular application.

This paper summarises frequently discussed yield criteria and assigns them to
five derivation paths. Based on the introduced nomenclature, a verification standard
for these criteria is outlined and the number of yield criteria is reduced to a few
manageable cases. The criteria are classified into criteria of trigonal and hexagonal
symmetry in the 𝜋-plane with 𝐶0- and 𝐶1-continuity for solving various problems.

Four missing criteria are identified, but their mathematical formulation is still sub-
ject to discussion. Four other yield criteria, which best meet plausibility requirements,
are recommended instead. These criteria are suitable for all pressure-insensitive
isotropic materials. The development and selection of particular criteria for certain
groups of materials are therefore no longer necessary.
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There are many paths leading to the peak
of Mount Fuji, but the goal is the same.

Morihei Ueshiba [1]

2.1 Introduction

The design of components manufactured from ductile materials is based on the
methods of plasticity theory. One of the cornerstones of this theory is the concept
of the yield surface, which sets the elasticity limit under arbitrary combinations of
stresses [2, 3]. Phenomenological criteria describe the yield surface in a simplified
way. In mathematical plasticity theory for isotropic materials the yield criterion is
only a function of the deviatoric components of the stress tensor since pressure-
insensitivity can be assumed [3].

The choice of yield surface is crucial for reliable material description, optimization
routines and design results. This choice depends on the available measured data of
the material, the engineer’s knowledge of the state of the art and some subjective
preferences. The aim of this work is to reduce bias in the modelling.

For academic purposes and in simplified design, Tresca and von Mises
criteria and sometimes also Schmidt-Ishlinsky criterion are applied, which do
not differentiate between tension and compression loads. These basic criteria are
only functions of the equivalent stress 𝜎eq. The equivalent stress 𝜎eq is equated to
the yield stress under uniaxial load, e.g. tensile load (T)

𝜎eq = 𝜎
T
0 . (2.1)

The subscript 0 in 𝜎T
0 refers to the stress angle as a function of the deviatoric stresses

– the geometric property of the tensile load. It is futile to discuss on the basis of a
single test which of these criteria is the best for a particular application, see [4–10]
and cf. [11–18].

To distinguish the basic criteria, an additional test is necessary, e.g. shear test (S).
As a rule, these criteria show deviations from the shear yield data 𝜎S

30. In this case, a
criterion as a function of 𝜎eq and one setting parameter is required. For real materials,
a difference is also measured in tensile (T) and compressive (C) properties

𝜎T
0 ≠ 𝜎C

60. (2.2)

In this case, a criterion as a function of 𝜎eq and two parameters should be applied
for reliable material description.

Numerous yield criteria have been proposed over the last 150 years. The best
known are the criteria of Drucker [19], Freudenthal-Gou [20], Sayir-
Sobotka [21, 22], Spitzig-Richmond [23–25], Dodd–Naruse [26] and
Yu [9, 27] with one parameter in addition to the equivalent stress. Yield criteria with
two parameters are Podgórski [28–31], Altenbach-Zolochevsky [32] and
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the cosine ansatz [33–37], among other. Some authors have introduced several criteria
which complicates their identification by the researchers’ name.

Behind the legion of names, the background of the criteria gets lost. The lack of
systematisation has led to the same criteria being proposed by various authors, e.g.:

• Freudenthal-Gou criterion is developed later in [38–42],
• Sayir-Sobotka criterion is introduced also in [43–51],
• Spitzig-Richmond criterion – in [32, 52–55],
• Podgórski criterion – in [56–58],
• the cosine ansatz – in [59, 60].

In some of the references above, the impact of the pressure-sensitivity in the formula-
tions of the strength criteria is neglected to obtain the yield criteria for comparison.

A large number of reviews are known on the subject of yield and strength criteria,
see [4, 9, 10, 13, 27, 32, 33, 61–75], among others. These reviews are mainly a list of
criteria: superficial analyses of properties or preferences are indicated. The lists are
either structured by publication year, alphabetically by researchers’ name or a number
of parameters [32, 76–78]. First, Yu introduced a classification of yield criteria into
single, octahedral and twin-shear stress criteria [9, 27]. Later, the systematisation of
the criteria according to the power of the stress 𝑛 in polynomially formulated criteria
has been proposed, but only 𝑛 ≤ 12, 𝑛 ∈ N are recommended [36].

It is considered that “our present knowledge of initial yield criteria for isotropic
ductile materials is quite good, and fortunately these yield criteria are of a reasonably
simple nature” [67], yet all of the above systematisations are not universal and do not
answer the question which criterion is best for a given application. Moreover, they
do not highlight the shortcomings of the criteria.

The second aim of this work is to discover paths in the derivation of a “very
general criterion” [67] for isotropic materials – unus pro omnibus casibus, see the
statements in [13, 74, 79, 80]. It is postulated that possible geometric shapes of the
criterion should maintain extreme convexity limits [81, 82]. Further, this criterion
should be obvious and numerically trivial, and the function of a few parameters that
can be determined from simple tests. Then, no particular criteria for thermoplastics,
metals or alloys are necessary. The “special theories” can be later obtained by suitable
parameter restrictions [36].

The peculiarity of our work is the introduced nomenclature with a subsequent
reduction of all reviewed yield criteria to fundamental cases, which contain the
known criteria or approximate them closely. The criteria are classified into criteria
of trigonal and hexagonal symmetry in the 𝜋-plane (deviatoric plane) that do or do
not distinguish between tensile and compressive loads. Further, these criteria with
𝐶0- and 𝐶1- continuity can be used for solving various problems.

With the help of the introduced systematization, four missing yield criteria are
identified, but their appropriate formulations are unknown. Pragmatically, they are
replaced by four yield criteria, which meet the plausibility assumptions in the best
known way. These criteria are suitable for all pressure-insensitive isotropic materials.
Other criteria are not general enough and therefore redundant.

The present work is organized as follows
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• invariants of the stress tensor (Sect. 2.2),
• methods, requirements and restrictions in the formulation of the criteria (Sect. 2.3),
• nomenclature and designation of yield criteria and geometric values for their

comparison (Sect. 2.4),
• five typical paths of deriving the yield criteria (Sect. 2.5).

The most important points of our work are refreshed in conclusion (Sect. 2.6).

2.2 Invariants of Stress Tensor

Criteria for isotropic material behaviour must be invariant with respect to an arbitrary
rotation of the coordinate system [10, 83, 84]. Therefore, they are established using the
invariants of the symmetric second-rank stress tensor𝜎𝜎𝜎. As a result of the eigenvalue
problem, the principal values (principal stresses) are obtained and denoted by 𝜎I, 𝜎II
and 𝜎III [32, 61, 85]. For uniqueness, the following order is assumed [86–91]

𝜎I ≥ 𝜎II ≥ 𝜎III. (2.3)

The invariants of the stress tensor play an important role in the formulation of the
equivalent stress expressions.

2.2.1 Axiatoric-Deviatoric Invariants

The axiatoric-deviatoric invariants [10, 32, 61]: the trace (axiator) 𝐼1 of the stress
tensor

𝐼1 = 𝜎I +𝜎II +𝜎III (2.4)

and the invariants 𝐼 ′2 and 𝐼 ′3 of the stress deviator

𝐼 ′2 =
1
6

[
(𝜎I −𝜎II)2 + (𝜎II −𝜎III)2 + (𝜎III −𝜎I)2

]
=

=
1
2

[(
𝜎I − 1

3
𝐼1

)2
+

(
𝜎II − 1

3
𝐼1

)2
+

(
𝜎III − 1

3
𝐼1

)2
] (2.5)

and [85, 92]

𝐼 ′3 =
(
𝜎I − 1

3
𝐼1

) (
𝜎II − 1

3
𝐼1

) (
𝜎III − 1

3
𝐼1

)
=

=
1
3

[(
𝜎I − 1

3
𝐼1

)3
+

(
𝜎II − 1

3
𝐼1

)3
+

(
𝜎III − 1

3
𝐼1

)3
] (2.6)
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are often used in the modelling. The first invariant 𝐼1 is employed to model pressure-
sensitivity. The second and third invariants can be interpreted as “the average
quadratic” and “cubic deviation of a given state of stress from the mean hydro-
static stress” [85, 93–95].

The stress tensor𝜎𝜎𝜎 can be decomposed into hydrostatic and deviatoric components
[10, 32]



𝜎I 0 0

0 𝜎II 0

0 0 𝜎III


=



1
3
𝐼1 0 0

0
1
3
𝐼1 0

0 0
1
3
𝐼1


+



𝜎I − 1
3
𝐼1 0 0

0 𝜎II − 1
3
𝐼1 0

0 0 𝜎III − 1
3
𝐼1


(2.7)

to highlight their impact in the criterion. With the stresses of the deviator

𝑠I = 𝜎I − 1
3
𝐼1, 𝑠II = 𝜎II − 1

3
𝐼1 and 𝑠III = 𝜎III − 1

3
𝐼1 (2.8)

the invariants 𝐼 ′2 and 𝐼 ′3 can be expressed as [96–101]

𝐼 ′2 =
1
6

[
(𝑠I − 𝑠II)2 + (𝑠II − 𝑠III)2 + (𝑠III − 𝑠I)2

]
=

1
2

(
𝑠2I + 𝑠2II + 𝑠2III

)
= − (𝑠I 𝑠II + 𝑠II 𝑠III + 𝑠III 𝑠I)

(2.9)

and [98, 100–102]
𝐼 ′3 =

1
3

(
𝑠3I + 𝑠3II + 𝑠3III

)
= 𝑠I 𝑠II 𝑠III. (2.10)

The expression of the second invariant of the deviator 𝐼 ′2 in the principal shear stresses
[9, 88, 96, 103–105]

𝜏12 =
1
2
(𝜎I −𝜎II) , 𝜏23 =

1
2
(𝜎II −𝜎III) , 𝜏31 =

1
2
(𝜎III −𝜎I) (2.11)

as, cf. [104, 106–108],

𝐼 ′2 =
2
3

(
𝜏2

12 + 𝜏2
23 + 𝜏2

31

)
(2.12)

is useful for various interpretations. Note, the sign of the shear stresses does not
affect the result of 𝐼 ′2. The principal shear stresses are the extreme values of the shear
stresses, i.e. these take on their maximum or minimum value. If the principal shear
stresses occur, the normal stresses assume their mean value. The stress state 𝜏12, 𝜏23,
𝜏31 ≠ 0 with 𝜎11 = 𝜎22 = 𝜎33 = 0 is impossible, cf. [42].

The transformation (2.11) has the following linear-algebraic properties: the equa-
tions allow to obtain the principal shear stresses from the principal normal stresses
in a unique way. The same is not true for the inverse transformation. It is necessary
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to consider the expressions (2.11) as a system of linear equations with respect to
the principal stresses, assuming that the shear stresses are known. Because of the
condition [6, 88, 100, 109–111]

𝜏12 + 𝜏23 + 𝜏31 = 0 (2.13)

this system is not of full rank, so it has an infinite number of solutions, which means
that the transformation is not unique [112]. We obtain with [112]

𝑠I =
2
3
(𝜏12 − 𝜏31) , 𝑠II =

2
3
(𝜏23 − 𝜏12) and 𝑠III =

2
3
(𝜏31 − 𝜏23) (2.14)

the third invariant of the deviator 𝐼 ′3, cf. [106, 107, 113]

𝐼 ′3 = −23

33 (𝜏12 − 𝜏23) (𝜏23 − 𝜏31) (𝜏31 − 𝜏12) . (2.15)

2.2.2 Normalized Functions of Invariants

• the scaled axiator 𝐼1 (2.4) of the stress tensor [36, 114]

𝜉1 = 𝐼1/
√

3 (2.16)

describes the coordinate of load (𝜎I, 𝜎II, 𝜎III) on the hydrostatic axis (space
diagonal of the normal stress space),

• the root of the scaled second invariant of the stress deviator (2.5)

𝜌HW =
√︃

2 𝐼 ′2 (2.17)

as radius in the plane orthogonal to the hydrostatic axis at the cross section
𝜉1 = const.

Instead of the invariant (2.17), the invariant

𝜌 =
√︃

3 𝐼 ′2 (2.18)

is often used [36, 115]. This scaling is preferred due to the equivalence

𝐼 2
1 = 3 𝐼 ′2 (2.19)

valid for the uniaxial tensile limit load (T)

𝜎I = 𝜎
T
0 , 𝜎II = 𝜎III = 0 (2.20)

Normalized functions of the invariants (2.4) to (2.6) are obtained from a transforma-
tion of the coordinate system ( ), ,𝜉1 𝜉2 𝜉 (Fig. 2.1, )(𝜎I, 𝜎II, 𝜎III) to 3
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and uniaxial compressive limit load (C)

𝜎I = 𝜎II = 0, 𝜎III = −𝜎C
60. (2.21)

The subscript 0 in 𝜎T
0 and 60 in 𝜎C

60 refer to the corresponding stress angles as a
geometric property of the load, which will be introduced in Subsect. 2.2.3.

The invariants (2.16) and (2.17) are sometimes preferred because of the interpreta-
tion of the loads in the principal stress space (Haigh-Westergaard coordinates
[36, 114]). The invariant (2.18) is used for comparison the measured data with the
uniaxial tensile test.

The third invariant of the deviator 𝐼 ′3 (2.6) has no physical or geometric mean-
ing. Note, this invariant is an odd function of the stresses. The apparently logical
normalisation by power as a consequence of (2.16) and (2.17)

𝜗3 = sign[𝐼 ′3]
(
33

2
��𝐼 ′3��

)1/3

in the formulation of the criterion is not recommended because it leads to non-convex
surfaces [36, 116], cf. [23, 24, 50, 65, 85, 117, 118]. Other invariants are given for
instance in [10, 32, 61, 119].

2.2.3 Dimensionless Invariants

Dimensionless invariants are crucial for analysing stress states and comparing mea-
sured data from different materials in the same diagrams:

• the elevation𝜓 in Burzyński-plane
(
𝐼1,

√︁
3 𝐼 ′2

)
[120, 121], see also [10, 61, 122–

126]

tan𝜓 =

√︁
3 𝐼 ′2
𝐼1

, 𝜓 ∈ [0, 𝜋 ] (2.22)

or the stress triaxiality factor [119, 127–130]

[ =
1

tan𝜓
(2.23)

and
• the stress angle \ in the 𝜋-plane (deviatoric plane or plane with 𝐼1 = const.)

[131–133], see also [10, 101, 134–137]

cos3\ =
3
√

3
2

𝐼 ′3(
𝐼 ′2

)3/2 , \ ∈
[
0,
𝜋

3

]
. (2.24)

(𝜉1, 𝜓, \) (𝜉1, 𝜌HW, \)
coordinate systems. The subscripts in the loads 𝜎T

0 , 𝜎S
30 and 𝜎C

60 with the designation
and cylindricalTheyresult fromtheutilisationofthespherical
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T – uniaxial tension, S – shear and C – uniaxial compression correspond to the
respective stress angle \ in degrees [81, 82].

Further stress angle invariants [51, 101, 138], see also [10] are obtained with a
double-angle function [139]

cos6\ = 2cos2 3\ −1 = 2
33

22

(
𝐼 ′3

)2

(
𝐼 ′2

)3 −1 (2.25)

and

cos12\ = 2cos2 6\ −1 = 2
(
2cos2 3\ −1

)2
−1 = 2

(
2

33

22

(
𝐼 ′3

)2

(
𝐼 ′2

)3 −1

)2

−1 (2.26)

and can be used to consistently represent the criterion as a function of only cos3\ or
cos6\ .

The third invariant of deviator 𝐼 ′3 (2.5) can be expressed as a function of 𝜌 (2.18)
and cos3\ [51, 101]

𝐼 ′3 =
2

3
√

3

√︃(
𝐼 ′2

)3 cos3\ =
2
33 𝜌

3 cos3\, (2.27)

what is usable for some generalizations [81].
The principal stresses 𝜎I, 𝜎II and 𝜎III in the criterion can be replaced using the

invariants 𝐼1, 𝜌 and \ [140], see also [141, 142]

𝜎I =
1√
3

(
𝜉 + 𝜌HW cos [\]

)
,

𝜎II =
1√
3

(
𝜉 + 𝜌HW cos

[
\ − 2

3
𝜋

] )
,

𝜎III =
1√
3

(
𝜉 + 𝜌HW cos

[
\ + 2

3
𝜋

] )
.

(2.28)

The particular stress states at the stress angle [136]

\ = 0 if 𝜎I > 𝜎II = 𝜎III,

\ =
𝜋

6
if 𝐼 ′3 = 0,

\ =
𝜋

3
if 𝜎I = 𝜎II > 𝜎III

(2.29)

are used for the experimental set-up and analysis of the limit surfaces.
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2.3 Formulation of and Assumptions in Yield Criteria

For safe design, possible stress states in the component must be within the limit
surface defined by the yield or strength criterion. A criterion is an engineering tool:
there are no physical principles underlying such a formulation. Only plausibility
assumptions provide reliable criteria for meaningful applications.

2.3.1 Formulation of Yield Criteria

The criteria for isotropic materials are formulated using invariants of the stress tensor
(Sect. 2.2):

• the principal stresses (principal invariants) 𝜎I, 𝜎II and 𝜎III [10, 32, 143, 144]

Φ
(
𝜎I, 𝜎II, 𝜎III, 𝜎eq

)
= 0, (2.30)

• the trace 𝐼1 of the stress tensor and the invariants 𝐼 ′2, 𝐼 ′3 of the stress deviator
(2.4) – (2.6) [4, 72, 136, 145–148]

Φ
(
𝐼1, 𝐼

′
2, 𝐼

′
3, 𝜎eq

)
= 0, (2.31)

• the cylindrical invariants 𝜉1, 𝜌 and \ (2.16) – (2.24) [128, 133, 136, 149–151]

Φ
(
𝜉1, 𝜌, \, 𝜎eq

)
= 0 (2.32)

and
• the spherical invariants 𝜉, 𝜓 and \ (2.16), (2.24) and (2.22) [36, 61, 128, 152]

Φ
(
𝜉1, 𝜓, \, 𝜎eq

)
= 0. (2.33)

In the formulations (2.32) and (2.33), the invariant 𝜉1 (2.16) is the scaled invariant
𝐼1 that describes the coordinate of the load on the hydrostatic axis, the radius 𝜌 in
the 𝜋-plane (2.17) is the scaled root of the second invariant 𝐼 ′2 and \ (2.24) is the
corresponding stress angle in the 𝜋-plane. The radius 𝜌 can be replaced by the stress
triaxiality factor 𝜓 (2.22) or (2.23), which gives a description of the surface in terms
of the spherical invariants.

All these formulations (2.30)–(2.33) are, from a mathematical point of view,
equivalent. Formulation (2.30) has a historical origin and is primarily mentioned
in textbooks of strength of materials and plasticity theory in the discussion of the
classical criteria:

• Rankine criterion or the maximum normal stress criterion,
• Tresca criterion based on the maximum shear stress,
• von Mises criterion of the maximum distortion energy and
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• Schmidt-Ishlinsky criterion of the absolute value of the maximum deviatoric
stress.

Formulations according to (2.31) were intensively elaborated until the beginning
of the XXI century. Although such criteria are still being developed, they are not
user-friendly [81].

The formulations (2.32) and (2.33) allow for the manipulation of the geometric
properties of the surface Φ. The formulation (2.32) is very effective in terms of
applicability and satisfying plausibility assumptions [81]. The formulation (2.33) has
found hardly any practical application and is included here for the sake of complete-
ness: it will be omitted from our discussion. One or the other of the formulations
(2.30)–(2.33) may be preferred depending on the academic goals, the modelling
concept, the consideration of plausibility assumptions or the desired application.

If pressure-insensitivity is assumed, the first invariant 𝐼1 has no effect on yielding
or failure [10, 84]. For this property, the formulations (2.31) and (2.32) can be reduced
to the criteria

Φ(𝐼 ′2, 𝐼 ′3, 𝜎eq) = 0 or Φ(𝜌, \, 𝜎eq) = 0. (2.34)

Polynomial formulations of Φ(𝐼 ′2, 𝐼 ′3, 𝜎eq) in terms of series of the deviatoric invari-
ants 𝐼 ′2 and 𝐼 ′3 are well elaborated [36] but cannot be recommended for application
because of additional outer contours around the physically meaningful surface in
the 𝜋-plane. As a rule, the equivalent stress 𝜎eq is implicit in such equations, which
increases the numerical effort.

For the sake of completeness, the formulation of the yield criteria (2.34) in the
principal shear stresses (2.11)

Φ(𝜏12, 𝜏23, 𝜏31, 𝜎eq) = 0 (2.35)

is mentioned here. The criteria of Tresca, von Mises and Schmidt-
Ishlinsky are formulated in this way, see [96, 109, 111, 153]. Although all
yield criteria can be expressed in terms of principal shear stresses, this method has
lost its relevance for modelling and is now only used for academic purposes.

2.3.2 Plausibility Assumptions

There are no physical principles underlying the formulation of the yield and strength
criteria Φ, which has led to their remarkable number [154, 155]. In order to select the
best possible and most suitable criteria for the application, several requirements were
stated in the past. These requirements can be interpreted as plausibility assumptions:
they are not mandatory, but the quality of the criteria can be assessed taking into
account the plausibility assumptions.

The known plausibility assumptions (PA) are summarized in [81]. We limit
ourselves to the essentials
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PA1: explicit solvability of the criterion w.r.t. the equivalent stress 𝜎eq > 0,
PA2: single surface in principal stress space without any additional outer contours

and plane intersections: the equivalent stress 𝜎eq has only one root,
PA3: no case discrimination in the formulation,
PA4: possible reformulation of the yield criterion (2.30) or (2.35) in the invariants

of deviator 𝐼 ′2 and 𝐼 ′3 or 𝜌 and \ for any parameter setting,
PA5: restriction of the hydrostatic tensile stress,
PA6: numerical robustness in the application,
PA7: surface convexity restriction,
PA8: maximum generality and
PA9: requirements on the parameters:

PA9.1: no parameters as power,
PA9.2: minimum number of parameters,
PA9.3: clear parameter restriction,
PA9.4: non-dimensional parameters,
PA9.5: geometric meaning of the parameters and
PA9.6: unique assignment of the limit surface to parameters of the criterion.

The criteria that meet all PAs are not found. However, these PAs reduce the known
criteria to a manageable number [81].

To satisfy the assumption PA1 and PA2, the equivalent stress 𝜎eq of the yield
criterion can be specified explicitly:

𝜎eq = Φ(𝜏12, 𝜏23, 𝜏31), (2.36)

𝜎eq = Φ(𝜎I, 𝜎II, 𝜎III) or 𝜎eq = Φ(𝑠I, 𝑠II, 𝑠III), (2.37)

𝜎eq = Φ(𝐼 ′2, 𝐼 ′3) (2.38)

and
𝜎eq = Φ(𝜌, \). (2.39)

Such formulations are advantageous for iterative computations, e.g. in FEM codes.
With PA2, numerous polynomial formulations as a series development of 𝐼 ′2 and

𝐼 ′3 are excluded. PA3 prohibits the use of the max, min and modulus functions,
which cause singularities. The PA4 and PA9.1 are related: the formulations with the
parameter as power are not numerically stable (PA6) and this parameter in (2.36) and
(2.37) does not allow a reformulation with the invariants in the general case.

PA5 can be derived from the bonding breaking mechanisms [68, 118, 128, 156–
161]. In this case, the criteria are the functions of the first invariant (2.4). It is not
discussed here as we have limited our review to consideration of the criteria for
pressure-insensitive materials.

PA7 states that the convexity constraints should be given to the criterion and
PA8 requires the extreme yield surfaces to be included. PA9.2 limit the number of
tests necessary to fit the parameter of the criterion. PA9.3 prohibits the function of
parameters as a constraint. PAs9.4 and 9.5 allow interpretation of the parameters for
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“mastery” of the criterion and comparison of different fitting results. PA9.6 ensures
unambiguity in fitting.

Consistent application of the PAs reduces the possible equations to the formulation
(2.39). We may further postulate a multiplicative split of the yield criteria into a
function of the radius Ψ(𝜌) and a function of the stress angle Ω(\) [10]

𝜎eq = Ψ(𝜌)Ω(\). (2.40)

To highlight deviations of the surface’ shape in the 𝜋-plane from the circle of
von Mises criterion (Fig. 2.1) [109, 162]

𝜎eq =
√︃

3𝐼 ′2 with Ω(\) = 1, (2.41)

the function of Ψ(𝜌) is often replaced by
√︁

3𝐼 ′2 [128, 155, 163, 164], which yields

𝜎eq =
√︃

3𝐼 ′2 Ω(\). (2.42)
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�휎II

�휎I

�휎III

Schmidt-Ishlinsky

Tresca

vonMises

hydros
tatic ax

is

Fig. 1 Criteria of Tresca, vonMises and Schmidt-Ishlinsky in the principal stress space
(�휎I, �휎II, �휎III ) [10, 163].

designation of the criteria is performed based on their geometric shapes in the
�휋-plane [11].

The possible shapes of the yield criteria in the �휋-plane are constrained by the
convexity requirement. The global upper and lower convexity restrictions are referred
to as extreme yield figures [41, 184, 185, 216, 277, 287]. Extreme yield figures can
take the shape of isogonal and isotoxal polygons of trigonal or hexagonal symmetry.
Regular polygons are limit cases of the extreme yield figures.

Isogonal polygons are equiangular.An isotoxal polygon is equilateral, i.e. all sides
are of the same length [73, 159, 319]. In general, isogonal and isotoxal hexagons
are of trigonal symmetry (Fig. 2a). The regular hexagons of Tresca and Schmidt-
Ishlinsky criteria have an additional symmetry axis and are of hexagonal symmetry
(Figs. 2b and 3). Hexagonal symmetry is also present in isogonal and isotoxal dode-
cagons (twelve-sided polygons).

In this paper, the basic (regular) yield figures are labelled according to their shapes
in the �휋-plane, cf. [277]:

• the designation © reflects vonMises criterion with its circular cross section in
the �휋-plane,

• regular triangles in the �휋-plane are denoted with 3,
• regular hexagons with 6,
• regular enneagons with 9,

Fig. 2.1: Criteria of Tresca, von Mises and Schmidt-Ishlinsky in the principal stress
space (𝜎I, 𝜎II, 𝜎III ) [36, 61].
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Normalizing criteria with respect to the appropriate uniaxial tensile limit load, e.g.,
the tensile yield or strength 𝜎T

0 (2.1) leads to the final formulation

𝜎eq =
√︃

3𝐼 ′2
Ω(\)
Ω(0) , (2.43)

which includes several known yield criteria and is useful for application. Possible
pressure-sensitive extensions of the yield criterion, e.g. with the linear 𝐼1-substitution
[36, 81]

𝜎eq →
𝜎eq −𝛾1 𝐼1

1−𝛾1
with 𝛾1 ∈ [0, 1[, (2.44)

which limits the hydrostatic tensile stress (PA5), are not a part of our discussion.

2.4 Designation and Comparison of Yield Criteria

A clear designation of the yield criteria is proposed, which provides a consistent
overview and simplifies their selection for application [81]. The useful criteria are
systematized in tables anddiagrams. A methodof comparing yield criteria is presented
allowing the identification of missing criteria.

2.4.1 Nomenclature of Yield Criteria

The mathematical expressions for the yield criteria Φ can be very different, which
makes their comparison in terms of best fit not directly possible, cf. [27, 142, 163, 165–
168] among others. A unique nomenclature and consequent designation of the criteria
is performed based on their geometric shapes in the 𝜋-plane [81].

The possible shapes of the yield criteria in the 𝜋-plane are constrained by the
convexity requirement. The global upper and lower convexity restrictions are referred
to as extreme yield figures [57, 82, 128, 129, 169, 170]. Extreme yield figures can
take the shape of isogonal and isotoxal polygons of trigonal or hexagonal symmetry.
Regular polygons are limit cases of the extreme yield figures.

Isogonal polygons are equiangular. An isotoxal polygon is equilateral, i.e. all sides
are of the same length [171–173]. In general, isogonal and isotoxal hexagons are of
trigonal symmetry (Fig. 2.2a). The regular hexagons of Tresca and Schmidt-
Ishlinsky criteria have an additional symmetry axis and are of hexagonal symmetry
(Figs. 2.2b and 2.3). Hexagonal symmetry is also present in isogonal and isotoxal
dodecagons (twelve-sided polygons).

In this paper, the basic (regular) yield figures are labelled according to their shapes
in the 𝜋-plane, cf. [82]:

• the designation ⃝ reflects von Mises criterion with its circular cross section in
the 𝜋-plane,
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6̂ − ©

can be replaced with Szwed criterion with also one parameter (Table 2)

6̂ − © − 6̄

and is therefore obsolete. Altenbach-Zolochevsky �퐶0-criterion (�퐶0-CTS) with
two parameters [4, 7, 10]

3̂ − 6̂ | © −3̄
can be replaced with the modified Altenbach-Zolochevsky�퐶0-criterion with the
same number of parameters [11, 158, 159, 167, 270]

3̂ − 6̂ | 1̂2 | 6̄ − 3̄.

The symbol | is explained in Table 2, comments. Here, only one �퐶1-criterion of
vonMises is replaced with the regular dodecagon 1̂2. The definition range of the
modified formulation is significantly larger.

a. b.

Fig. 1 Yield criteria in the �휋-plane normalized with respect to the tensile stress �휎T
0 : a. Isogonal

(black) and isotoxal (blue) hexagons of trigonal symmetry, b. Regular hexagons of Schmidt-
Ishlinsky (black) and Tresca (blue) criteria of hexagonal symmetry and the circle of vonMises
criterion (red) of rotational symmetry [270].

4.2 Shapes of Yield Criteria in 0-plane

Cross sections of pressure-insensitive criteria may be described in the �휋-plane as
functions �휌(�휃) (Fig. 3). Let us introduce geometric properties on any cross section
�퐼1 = const. as relations of radii at the angles

�휃 =
�휋

24
,
�휋

12
,
�휋

8
,
�휋

6
,
�휋

4
and

�휋

3
(45)

to the radius �휌(0) as

Fig. 2.2: Yield criteria in the 𝜋-plane normalized with respect to the tensile stress 𝜎T
0 : a. Isogonal

(black) and isotoxal (blue) hexagons of trigonal symmetry, b. Regular hexagons of
Schmidt-Ishlinsky (black) and Tresca (blue) criteria of hexagonal symmetry and the circle
of von Mises criterion (red) of rotational symmetry [82].
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Tresca
Coulomb
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Benthem, Hill, Yu

Kolupaev

KolupaevSokolovsky
Billington, Yu

Ishlinsky-Ivlev
Shesterikov

Maxwell
Huber
vonMises
Hencky

Fig. 2 Basic yield figures described by a circle and regular polygons of trigonal or hexagonal
symmetry in the �휋-plane [11]. The symbols of symmetry follow according to [232].

Table 2 Designation of the most important yield criteria and number of parameter in addition to
the equivalent stress �휎eq [11, 159, 270].

Name Abbreviation Designation Eq. Parameters References

Capurso (Ivlev) Cap 3̂ − 6̂ − 3̄ (141) 1 [57, 143, 275, 278]

Sayir-Sobotka cubic criterion CC 3̂ − © − 3̄ (133) 1

[36, 176, 179, 278],
[279, 289, 321], see
also [119, 120, 171],
[172, 178, 250, 266]

Haythornthwaite Hay 3̂ − 6̄ − 3̄ (143) 1 [55, 116, 117, 278]
Yu yield criterion YYC 6̂ − 1̂2 − 6̄ (146) 1 [334, 335, 336, 340]

Szwed bicubic criterion∗ BCC 6̂ − © − 6̄ (138) 1 [299, 300, 301, 316]
Multiplicative ansatz criterion MAC 6̂ − 1̄2 − 6̄ (149) 1 [159, 160, 165, 184]

Podgórski∗∗ Pdg 3̂ − 6̂ | © −3̄ (153) 2 [249, 250, 251, 252]
Rosendahl Rsn 6̂ − 1̂2 | © −6̄ (159) 2 [11, 269, 270]

�퐶0-criterion of trig. sym. �퐶0-CTS 3̂ − 6̂ | 1̂2 | 6̄ − 3̄ (164) 2 [158, 159, 270]
Capurso+Haythornthwaite �퐶1-CTS 3̂ − 6̂ | © | 6̄ − 3̄ (144) 2 [8, 46, 159]

�퐶0-criterion of hex. sym. �퐶0-CHS 6̂ − 1̂2 | 2̂4 | 1̄2 − 6̄ (170) 2 [269, 270]
YYC+MAC �퐶1-CHS 6̂ − 1̂2 | © | 1̄2 − 6̄ (151) 2 [159, 166]

Comments: ∗ - supplementary sources [24, 113, 125, 128, 129, 149, 176, 178, 239, 303] and our references
[46, 159, 160, 157]; ∗∗ - supplementary sources [39, 40, 174, 175, 243, 299, 300, 301] and our investigations

[158, 159, 269, 270]. The symbol | refers the vertical line in the diagrams Figs. 6 and 7.

�푟7.5 =
�휌(�휋/24)
�휌(0) , �푟15 =

�휌(�휋/12)
�휌(0) , �푟22.5 =

�휌(�휋/8)
�휌(0) ,

�푟30 =
�휌(�휋/6)
�휌(0) , �푟45 =

�휌(�휋/4)
�휌(0) , �푟60 =

�휌(�휋/3)
�휌(0) .

(46)

The subscripts of �푟

7.5, 15, 22.5, 30, 45, or 60

Fig. 2.3: Basic yield figures described by a circle and regular polygons of trigonal or hexagonal
symmetry in the 𝜋-plane [81]. The symbols of symmetry follow according to [174].

• regular triangles in the 𝜋-plane are denoted with 3,
• regular hexagons with 6,
• regular enneagons with 9,
• regular dodecagons with 12,
• regular icositetragons with 24, etc.

Further regular polygons with the number of corners divisible by three are also
accepted as yield criteria for isotropic materials, but they are particular.

Circumflex ˆ and macron ¯ refer to an upward pointing tip or upward facing flat
base of the criterion shape in the 𝜋-plane, respectively: 3̂, 3̄, 6̂, etc. (Fig. 2.3 and
Table 2.1).

The purpose of the designation is to provide a visual representation of the basic
yield figures included in the discussed criteria (Table 2.2).

Limit surfaces for isotropic materials can be characterized by the regular polygons
and the circle in the 𝜋-plane they contain. The criteria involving less than three of the
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Table 2.1: Basic criteria in the 𝜋-plane (Fig. 2.3) with the values 𝑟15, 𝑟30 and 𝑟60 (2.46) [81, 82].

Designation 𝑟15 𝑟30 𝑟60 References

3̂ √
2/2 1/√3 1/2

[175], see also
[21, 91, 176–180]

3̄ √
2
(√

3− 1
)

2/√3 2
[181], see also [32, 175, 182–185],

[10, 21, 71, 170, 186, 187]

6̂ √︁
3/2

(√
3− 1

) √
3/2 1

[99, 146, 188–191], see also
[3, 10, 75, 106, 109, 111, 131, 192]

and [78, 177, 193–197],
[100, 126, 198–202]

6̄ √
2
(√

3− 1
)

2/√3 1
[3, 9, 96, 145, 203–207],

see also [7, 83, 106, 208–210],
[42, 72, 136, 211–216]

9̂ cos
𝜋

9
cos

𝜋

36

cos
𝜋

9
cos

𝜋

18

cos
𝜋

9
[36, 81, 82]

9̄ √
2

(√
3− 1

)
sec

𝜋

18
sec

𝜋

9
[36, 81, 82]

1̂2 1
2

√︃
2+

√
3 1 1

[205]∗, see also [217–222],
[68, 212, 223–228]

1̄2 √
2

(√
3− 1

)
1 1 [229, 230], see also [231, 232]

2̂4
1 1 1 [36, 81, 82]

2̄4
1 1 1 [81, 82]

1 1 1

[109, 162, 233–237], see also
[64, 88, 98, 103, 114, 145, 198, 238, 239],
[72, 74, 75, 99, 111, 202, 240, 241] and

[10, 85, 87, 194, 196, 242–244]
∗ – The criterion is named Sokolovsky criterion (Fig. 2.3) following Pisarenko-Lebedev
[68] “. . . it was attempted to introduce some intermediate criteria by replacing the hexagonal prism
of Coulomb with a dodecagonal prism [100] (inscribed in von Mises cylinder) . . . ” [36].
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Table 2.2: Designation of the most important yield criteria and number of parameter in addition to
the equivalent stress 𝜎eq [36, 81, 82].

Name Abbrevi- Designation Eq. Para- References
ation meters

Capurso (Ivlev) Cap 3̂− 6̂− 3̄ (2.141) 1 [21, 175, 177, 245]

Sayir-Sobotka
cubic criterion CC 3̂−⃝ − 3̄ (2.133) 1

[21, 43, 49, 246],
[22, 170, 247], see

also [44–46],
[29, 47, 48, 50]

Haythornthwaite Hay 3̂− 6̄− 3̄ (2.143) 1 [21, 210, 248, 249]
Yu yield criterion YYC 6̂− 1̂2− 6̄ (2.146) 1 [9, 27, 250, 251]

Szwed bicubic criterion∗ BCC 6̂−⃝ − 6̄ (2.138) 1 [51, 101, 252, 253]
Multiplicative ansatz criterion MAC 6̂− 1̄2− 6̄ (2.149) 1 [36, 254–256]

Podgórski∗∗ Pdg 3̂− 6̂ | ⃝ −3̄ (2.153) 2 [28–31]
Rosendahl Rsn 6̂− 1̂2 | ⃝ −6̄ (2.159) 2 [81, 82, 257]

𝐶0-criterion of trig. sym. 𝐶0-CTS 3̂− 6̂ | 1̂2 | 6̄− 3̄ (2.164) 2 [36, 82, 155]
Capurso -

Haythornthwaite 𝐶1-CTS 3̂− 6̂ | ⃝ | 6̄− 3̄ (2.144) 2 [33, 35, 36]

𝐶0-criterion of hex. sym. 𝐶0-CHS 6̂− 1̂2 | 2̂4 | 1̄2− 6̄ (2.170) 2 [82, 257]
YYC + MAC 𝐶1-CHS 6̂− 1̂2 | ⃝ | 1̄2− 6̄ (2.151) 2 [36, 112]

Comments: ∗ - supplementary sources [48, 49, 258–265] and our references [35, 36, 115, 254]; ∗∗ -
supplementary sources [51, 56–58, 101, 142, 252, 266] and our investigations [36, 82, 155, 257].
The symbol | refers the vertical line in the diagrams Figs. 2.7 and 2.8.

regular geometries are considered as particular cases of the general formulation and
excluded from our discussion, see PA8. The limitation to three regular geometries is
motivated in Table 2.2 and Subsect. 2.4.2.

Generalized yield criteria involving three to five basic geometries are significant
for application. Only twelve such criteria are known (Table 2.2). The number of their
parameters does not exceed one in the first case and two – in the other two cases
(PA9.2) in addition to 𝜎eq. However, the assumption PA2, that the criteria should
be a single surface in the principal stress space with no case discrimination in the
formulation (PA3), is only fulfilled for criteria as functions of the stress angle \
(2.43).

In our view, further criteria are not effective for application. For exam-
ple, Lemaitre-Chaboche yield criterion “intermediary between those of
von Mises and Tresca” as a function of 𝐼 ′2 and 𝐼 ′3 invariants with one parameter
in addition to 𝜎eq [196, 267], see also [32, 33, 268–271] describing the transition

6̂−⃝
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can be replaced with Szwed criterion with also one parameter (Table 2.2)

6̂−⃝− 6̄

and is therefore obsolete. Altenbach-Zolochevsky 𝐶0-criterion (𝐶0-CTS)
with two parameters [32, 61, 154]

3̂− 6̂ | ⃝−3̄

can be replaced with the modified Altenbach-Zolochevsky 𝐶0-criterion with
the same number of parameters [36, 81, 82, 155, 164]

3̂− 6̂ | 1̂2 | 6̄− 3̄.

The symbol | is explained in Table 2.2, comments. Here, only one 𝐶1-criterion of
von Mises is replaced with the regular dodecagon 1̂2. The definition range of the
modified formulation is significantly larger.

2.4.2 Shapes of Yield Criteria in 𝝅-plane

Cross sections of pressure-insensitive criteria may be described in the 𝜋-plane as
functions 𝜌(\) (Fig. 2.4). Let us introduce geometric properties on any cross section
𝐼1 = const. as relations of radii at the angles

\ =
𝜋

24
,
𝜋

12
,
𝜋

8
,
𝜋

6
,
𝜋

4
and

𝜋

3
(2.45)

to the radius 𝜌(0) as

𝑟7.5 =
𝜌(𝜋/24)
𝜌(0) , 𝑟15 =

𝜌(𝜋/12)
𝜌(0) , 𝑟22.5 =

𝜌(𝜋/8)
𝜌(0) ,

𝑟30 =
𝜌(𝜋/6)
𝜌(0) , 𝑟45 =

𝜌(𝜋/4)
𝜌(0) , 𝑟60 =

𝜌(𝜋/3)
𝜌(0) .

(2.46)

Fig. 2.4 Isogonal (black) and
isotoxal (blue) hexagons in
the 𝜋-plane normalized by the
uniaxial limit tensile load 𝜎T

0
(Fig. 2.2a): Enlarged detail
with von Mises criterion
(red) and the stress states T, CC
on the 0-meridian, S, Tt and
Cc on the 𝜋/6-meridian and
C, TT on the 𝜋/3-meridian for
comparison (Table 2.3) [82].
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so that mechanical properties become dimensionless. The surfaces Φ for different
isotropic materials can be now compared in the same diagrams.

Let us introduce the following limit load values normalized with respect to the
corresponding uniaxial tensile limit load �휎T

0 (Table 3):

�푟C60 =
�휎C
60

�휎T
0

and �푟TT60 =
�휎TT
60

�휎T
0
, (51)

where �휎C
60 is the uniaxial compressive limit and �휎TT

60 is the limit under equibiaxial
tensile load,

�푟S30 =
√
3
�휎S
30

�휎T
0
, �푟Cc30 =

√
3
2

�휎Cc
30

�휎T
0
, and �푟Tt30 =

√
3
2

�휎Tt
30

�휎T
0
, (52)

where �휎S
30 is the shear limit, �휎Tt

30 and �휎
Cc
30 are the limit load of thin-walled tube with

closed ends under inner (Tt) and outer pressure (Cc), respectively, and

�푟CC0 =
�휎CC
0

�휎T
0
, (53)

Fig. 3 Isogonal (black) and
isotoxal (blue) hexagons in
the �휋-plane normalized by
the uniaxial limit tensile load
�휎T
0 (Fig. 1a): Enlarged detail

with vonMises criterion (red)
and the stress states T, CC on
the 0-meridian, S, Tt and Cc
on the �휋/6-meridian and C,
TT on the �휋/3-meridian for
comparison (Table 3) [270].

�휃 =
�휋

3

�휋

6

T,CC

C, TT

S, Tt, Cc

�휌 (0)
�휌 (�휋/6) �휌 (�휋/6) �휌 (�휋/6)

�휌 (�휋/3)

�휌 (�휋/3)

�휌 (�휋/3)�휋

6

�푟30 = �푟60 = 1 �푟60 ∈ {1/2, 2} �푟60 = 1a. b. c.

Fig. 4 Basic surfaces with the same radius �휌 (0) in the �휋-plane: a. Rotationally symmetric
vonMises criterion (41), b. Regular triangles 3̂ and 3̄, and c. Regular hexagons 6̂ and 6̄. The
values �푟30 and �푟60 (46) are given for comparison [270].
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so that mechanical properties become dimensionless. The surfaces Φ for different
isotropic materials can be now compared in the same diagrams.

Let us introduce the following limit load values normalized with respect to the
corresponding uniaxial tensile limit load �휎T

0 (Table 3):

�푟C60 =
�휎C
60

�휎T
0

and �푟TT60 =
�휎TT
60

�휎T
0
, (51)

where �휎C
60 is the uniaxial compressive limit and �휎TT

60 is the limit under equibiaxial
tensile load,

�푟S30 =
√
3
�휎S
30

�휎T
0
, �푟Cc30 =

√
3
2

�휎Cc
30

�휎T
0
, and �푟Tt30 =

√
3
2

�휎Tt
30

�휎T
0
, (52)

where �휎S
30 is the shear limit, �휎Tt

30 and �휎
Cc
30 are the limit load of thin-walled tube with

closed ends under inner (Tt) and outer pressure (Cc), respectively, and

�푟CC0 =
�휎CC
0

�휎T
0
, (53)

Fig. 3 Isogonal (black) and
isotoxal (blue) hexagons in
the �휋-plane normalized by
the uniaxial limit tensile load
�휎T
0 (Fig. 1a): Enlarged detail

with vonMises criterion (red)
and the stress states T, CC on
the 0-meridian, S, Tt and Cc
on the �휋/6-meridian and C,
TT on the �휋/3-meridian for
comparison (Table 3) [270].

�휃 =
�휋

3

�휋

6

T,CC

C, TT

S, Tt, Cc

�휌 (0)
�휌 (�휋/6) �휌 (�휋/6) �휌 (�휋/6)

�휌 (�휋/3)

�휌 (�휋/3)

�휌 (�휋/3)�휋

6

�푟30 = �푟60 = 1 �푟60 ∈ {1/2, 2} �푟60 = 1a. b. c.

Fig. 4 Basic surfaces with the same radius �휌 (0) in the �휋-plane: a. Rotationally symmetric
vonMises criterion (41), b. Regular triangles 3̂ and 3̄, and c. Regular hexagons 6̂ and 6̄. The
values �푟30 and �푟60 (46) are given for comparison [270].

Fig. 2.5: Basic surfaces with the same radius 𝜌(0) in the 𝜋-plane: a. Rotationally symmetric
von Mises criterion (2.41), b. Regular triangles 3̂ and 3̄, and c. Regular hexagons 6̂ and 6̄. The
values 𝑟30 and 𝑟60 (2.46) are given for comparison [82].

The subscripts of 𝑟

7.5, 15, 22.5, 30, 45, or 60

correspond to the stress angle \ (2.45) of the respective radius in degrees. These
values (2.46) can be used to compare different yield criteria in appropriate diagrams.
The chosen angles \ are fractions 𝜋/24 of the angle 𝜋/3 between the symmetry axes
in the 𝜋-plane (Figs. 2.5 and 2.6). Certain fractions are left as superfluous.
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Ishlinsky-
Ivlev

�휋

6
�휋

6
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vonMises
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�휌 (0) �휌 (0)�휌 (�휋/12) �휌 (�휋/12)�휌 (�휋/6) �휌 (�휋/6)

�휌 (�휋/3) �휌 (�휋/3)

a. b.

Fig. 5 Basic surfaces of hexagonal symmetry in the �휋-plane: a. Regular hexagons 6̂ and 6̄ and b.
Regular dodecagons 1̂2 and 1̄2 with vonMises criterion (41). Because of hexagonal symmetry a
cut-out of the angle �휃 ∈ [0, �휋/3] is representative [159, 270].

where �휎CC
0 is the limit load under equibiaxial compression (Table 3). The subscripts

of �푟 refer to the stress angles of the load in degrees �휃 = 0, 30, and 60◦ (24), see
Table 3. These values are characteristic properties of the material.

For vonMises criterion (41), it follows

�푟C60 = �푟TT60 = �푟S30 = �푟Cc30 = �푟Tt30 = �푟CC0 = 1, (54)

and is exactly the same as the values (47). Itmeans that all meridians of the cylindrical
surface coincide in Burzyński-plane

(
�퐼1,

√
3 �퐼 ′2

)
and this straight line is parallel to

the �퐼1-axis [11].
While a hydrostatic tensile test
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with �푟30 = �푟60 = 1 [159]. The global upper and lower convexity restrictions are given with 3̂ − 6̄ − 3̄
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Fig. 2.6: Basic surfaces of hexagonal symmetry in the 𝜋-plane: a. Regular hexagons 6̂ and 6̄ and b.
Regular dodecagons 1̂2 and 1̄2 with von Mises criterion (2.41). Because of hexagonal symmetry
a cut-out of the angle 𝜃 ∈ [0, 𝜋/3] is representative [36, 82].

All radii of von Mises criterion (2.41) are equal (Fig. 2.5a)

𝑟7.5 = 𝑟15 = 𝑟22.5 = 𝑟30 = 𝑟45 = 𝑟60 = 1. (2.47)
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For the direct comparison of the yield criteria of trigonal symmetry (Fig. 2.5b), the
values 𝑟30 and 𝑟60 are significant. The values 𝑟15 and 𝑟45 can be used in refined
analysis [81, 82].

For the criteria of hexagonal symmetry (Fig. 2.6), the radii at the angles \ = 0 and
𝜋/3 are equal 𝜌(0) = 𝜌(𝜋/3), which gives

𝑟60 = 1, (2.48)

and since 𝜌(𝜋/12) = 𝜌(𝜋/4), we obtain

𝑟15 = 𝑟45. (2.49)

In this case, the values 𝑟7.5 and 𝑟22.5 are sometimes needed for the refined comparison
of the shapes and, because of hexagonal symmetry, the values at the angles 5𝜋/24
and 7𝜋/24 are excluded from consideration.

Figures 2.7 and 2.8 show convexity restrictions for yield criteria of trigonal
symmetry in the 𝑟60 − 𝑟30 diagram and for yield criteria of hexagonal symmetry in
the 𝑟15 − 𝑟30 diagram, respectively. These diagrams allow a comparison of all yield
criteria for isotropic materials. The shapes

⃝, 1̂2, 1̄2, 2̂4 and 2̄4

coincide in the 𝑟60 − 𝑟30 diagram (Fig. 2.7), while the shapes

⃝, 2̂4, and 2̄4

coincide in the 𝑟15 − 𝑟30 diagram (Fig. 2.8). The 𝑟15 − 𝑟7.5 diagram for the criteria of
hexagonal symmetry with 𝑟60 = 𝑟30 = 1 is conceivable for theoretical investigations.
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where �휎CC
0 is the limit load under equibiaxial compression (Table 3). The subscripts

of �푟 refer to the stress angles of the load in degrees �휃 = 0, 30, and 60◦ (24), see
Table 3. These values are characteristic properties of the material.

For vonMises criterion (41), it follows

�푟C60 = �푟TT60 = �푟S30 = �푟Cc30 = �푟Tt30 = �푟CC0 = 1, (54)

and is exactly the same as the values (47). Itmeans that all meridians of the cylindrical
surface coincide in Burzyński-plane

(
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√
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)
and this straight line is parallel to

the �퐼1-axis [11].
While a hydrostatic tensile test
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with �푟30 = �푟60 = 1 [159]. The global upper and lower convexity restrictions are given with 3̂ − 6̄ − 3̄
and 3̂ − 6̂ − 3̄ criteria. Denotation follows according Table 2.

Fig. 2.7: Diagram 𝑟60 − 𝑟30 for convex criteria of trigonal symmetry compared to von Mises
criterion with 𝑟30 = 𝑟60 = 1 [36]. The global upper and lower convexity restrictions are given with
3̂− 6̄− 3̄ and 3̂− 6̂− 3̄ criteria. Denotation follows according Table 2.2.
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vonMises criterion with �푟15 = �푟30 = 1 [270]. The global upper and lower convexity restrictions are
given with 6̂ − 1̄2 − 6̄ and 6̂ − 1̂2 − 6̄ criteria. Denotation of the criteria follows according Table 2.

�휎I = �휎II = �휎III > 0

and a hydrostatic compression test

�휎I = �휎II = �휎III < 0

until failure can only be realised in special cases [19, 80, 87, 161, 159, 238, 239, 309],
the corresponding properties are important for comparison of extrapolations.Wemay
introduce

�푟TTT =
�휎TTT

�휎T
0

and �푟CCC = −�휎CCC

�휎T
0

. (55)

where �휎TTT and �휎CCC are the limit load under hydrostatic tension and compression,
respectively. Except for porous and granular materials, hydrostatic compressive fail-
ure does not typically occur for relevant load and

�푟CCC → ∞

is assumed. The upper limitation of the hydrostatic tensile stress follows from the
bonding breaking mechanisms (PA5). This property is commonly ignored in plas-
ticity theory and it is assumed that

�푟TTT → ∞.

Now, the values �푟0, �푟30, and �푟60 (46) describe the shape of the surface Φ in the
�휋-plane and the values

Fig. 2.8: Diagram 𝑟30 − 𝑟15 for convex criteria of hexagonal symmetry (𝑟60 = 1) compared to
von Mises criterion with 𝑟15 = 𝑟30 = 1 [82]. The global upper and lower convexity restrictions are
given with 6̂− 1̄2− 6̄ and 6̂− 1̂2− 6̄ criteria. Denotation of the criteria follows according Table 2.2.

2.4.3 Geometric Properties and Basic Experiments

For comparison of the limit surfaces with the setting 𝜎eq = 𝜎T
0 (2.1), test results,

approximations and extrapolations, measured data is normalized by the appropriate
tensile limit load 𝜎T

0 (
𝜎I

𝜎T
0
,
𝜎II

𝜎T
0
,
𝜎III

𝜎T
0

)
, (2.50)

so that mechanical properties become dimensionless. The surfaces Φ for different
isotropic materials can be now compared in the same diagrams.

Let us introduce the following limit load values normalized with respect to the
corresponding uniaxial tensile limit load 𝜎T

0 (Table 2.3):

𝑟C
60 =

𝜎C
60

𝜎T
0

and 𝑟TT
60 =

𝜎TT
60

𝜎T
0
, (2.51)

where 𝜎C
60 is the uniaxial compressive limit and 𝜎TT

60 is the limit under equibiaxial
tensile load,

𝑟S
30 =

√
3
𝜎S

30

𝜎T
0
, 𝑟Cc

30 =

√
3

2
𝜎Cc

30

𝜎T
0
, and 𝑟Tt

30 =

√
3

2
𝜎Tt

30

𝜎T
0
, (2.52)
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Table 2.3: Basic stress states with the corresponding stress angle 𝜃 and the dimensionless
invariants 𝜂 (2.23), cos3𝜃 (2.24), cos6𝜃 (2.25), cos9𝜃 , and cos12𝜃 (2.26) [36, 81, 115, 272].

Designation CCC CC Cc C S T Tt TT TTT

𝜎I

𝜎T
0

−𝑟CCC −𝑟CC
0 − 2√

3
𝑟Cc

30 −𝑟C
60

1√
3
𝑟S

30 1
2√
3
𝑟Tt

30 𝑟TT
60 𝑟TTT

𝜎II

𝜎T
0

−𝑟CCC −𝑟CC
0 − 1√

3
𝑟Cc

30 0 − 1√
3
𝑟S

30 0
1√
3
𝑟Tt

30 𝑟TT
60 𝑟TTT

𝜎III

𝜎T
0

−𝑟CCC 0 0 0 0 0 0 0 𝑟TTT

𝜃 - 0
𝜋

6
𝜋

3
𝜋

6
0

𝜋

6
𝜋

3
-

𝜂 −∞ -2 −√3 -1 0 1
√

3 2 ∞
cos3𝜃 - 1 0 -1 0 1 0 -1 -
cos6𝜃 - 1 -1 1 -1 1 -1 1 -
cos9𝜃 - 1 0 -1 0 1 0 -1 -
cos12𝜃 - 1 1 1 1 1 1 1 -

Designation: C - uniaxial compression, Cc - biaxial compression in the stress relation 1:2, CC -
equibiaxial compression, CCC - hydrostatic compression, S or TC - shear, T - uniaxial tension, Tt -
biaxial tension in the stress relation 1:2, TT - equibiaxial tension, TTT - hydrostatic tension.

where 𝜎S
30 is the shear limit, 𝜎Tt

30 and 𝜎Cc
30 are the limit load of thin-walled tube with

closed ends under inner (Tt) and outer pressure (Cc), respectively, and

𝑟CC
0 =

𝜎CC
0

𝜎T
0
, (2.53)

where𝜎CC
0 is the limit load under equibiaxial compression (Table 2.3). The subscripts

of 𝑟 refer to the stress angles of the load in degrees \ = 0, 30, and 60◦ (2.24), see
Table 2.3. These values are characteristic properties of the material.

For von Mises criterion (2.41), it follows

𝑟C
60 = 𝑟

TT
60 = 𝑟S

30 = 𝑟
Cc
30 = 𝑟Tt

30 = 𝑟
CC
0 = 1, (2.54)

and is exactly the same as the values (2.47). It means that all meridians of the
cylindrical surface coincide in Burzyński-plane

(
𝐼1,

√︁
3 𝐼 ′2

)
and this straight line

is parallel to the 𝐼1-axis [81].
While a hydrostatic tensile test

𝜎I = 𝜎II = 𝜎III > 0

and a hydrostatic compression test
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𝜎I = 𝜎II = 𝜎III < 0

until failure can only be realised in special cases [36, 67, 264, 273–277], the cor-
responding properties are important for comparison of extrapolations. We may
introduce

𝑟TTT =
𝜎TTT

𝜎T
0

and 𝑟CCC = −𝜎
CCC

𝜎T
0
. (2.55)

where 𝜎TTT and 𝜎CCC are the limit load under hydrostatic tension and compression,
respectively. Except for porous and granular materials, hydrostatic compressive failure
does not typically occur for relevant load and

𝑟CCC →∞

is assumed. The upper limitation of the hydrostatic tensile stress follows from the
bonding breaking mechanisms (PA5). This property is commonly ignored in plasticity
theory and it is assumed that

𝑟TTT →∞.
Now, the values 𝑟0, 𝑟30, and 𝑟60 (2.46) describe the shape of the surface Φ in the
𝜋-plane and the values

𝑟C
60, 𝑟TT

60 , 𝑟S
30, 𝑟Cc

30 , 𝑟Tt
30, 𝑟CC

0 , 𝑟CCC, and 𝑟TTT

characterise the material properties. If

𝑟CCC, 𝑟TTT →∞,

pressure-sensitive criteria degenerate to pressure-insensitive criteria: the meridians
of the surface Φ are parallel to the hydrostatic axis. Equal stress angles \ share the
same radius 𝜌 (2.17) and collapse onto one point in the 𝜋-plane (Fig. 2.4):

𝑟60 = 𝑟
C
60 = 𝑟

TT
60 , 𝑟30 = 𝑟

S
30 = 𝑟

Cc
30 = 𝑟Tt

30 and 𝑟CC
0 = 1. (2.56)

Pressure-insensitive criteria of hexagonal symmetry do not distinguish between
tensile and compressive properties

𝑟60 = 𝑟
C
60 = 𝑟

TT
60 = 𝑟CC

0 = 1. (2.57)

The meridians \ = 0 and 𝜋/3 coincide in Burzyński-plane (𝐼1,
√︁

3𝐼 ′2) and together
with other meridians are parallel to the 𝐼1-axis. For fitting and comparison of the
approximations, the shear load with the stress angle \ = 𝜋/6 is significant. The
superimposed loads of the plane stress state tension-shear (TS) and compression-shear
(CS) at the stress angles \ = 𝜋/24, 𝜋/12, 𝜋/8 and 5𝜋/24, 𝜋/4, 7𝜋/24 respectively can
be included in the test set-up for data comparison and improved material modelling.
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2.4.4 Values for Comparison

The details on the stress calculation for comparison of the geometric properties of
the yield criteria Φ obtained from the basic experiments are given below [81, 82].
The normalized stresses (2.50) of the plane stress state

𝜎III = 0

and the normalized equivalent stress (2.1)

𝜎eq

𝜎T
0

= 1

are evaluated with the setting of von Mises criterion (2.41)

3𝐼 ′2 = 1 (2.58)

for selected stress angles (2.45). Here, the stress order (2.3) is not considered.
The value 𝑟0 with the stress angle \ = 0 is obtained by setting in (2.24)

cos [3 ·0] = 1

with the stresses
𝜎II = 0, 𝜎I = 1 (2.59)

or
𝜎I = 𝜎II = −1. (2.60)

The value 𝑟7.5 is obtained by setting [278]

cos
[
3
𝜋

24

]
=

1
2

√︃
2+

√
2

with the stresses

𝜎I = ±
√︂

1
3

(
2+

√
2
)
, 𝜎II = ±

√︄
1
3

(
2∓

√︃
2±

√
3
)

(2.61)

or

𝜎I = −
√︄

1
3

(
2−

√︃
2+

√
3
)
, 𝜎II =

√︄
1
3

(
2+

√︃
2−

√
3
)
. (2.62)

The value 𝑟15 is obtained by setting

cos
[
3
𝜋

12

]
=

√
2

2

with the stresses
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𝜎I =

√︂
2
3
, 𝜎II = − 1√

2
+ 1√

6
, (2.63)

𝜎I = −
√︂

2
3
, 𝜎II = −

√︄
2
3
+ 1√

3
(2.64)

or

𝜎I =

√︄
2
3
+ 1√

3
, 𝜎II =

√︄
2
3
− 1√

3
. (2.65)

The value 𝑟22.5 is obtained by setting [278]

cos
[
3
𝜋

8

]
=

1
2

√︃
2−

√
2

with the stresses

𝜎I = ±
√︂

1
3

(
2−

√
2
)
, 𝜎II =

√︄
1
3

(
2±

√︃
2±

√
3
)

(2.66)

or

𝜎I = −
√︄

1
3

(
2+

√︃
2+

√
3
)
, 𝜎II = −

√︄
1
3

(
2−

√︃
2−

√
3
)
. (2.67)

The value 𝑟30 is obtained by setting

cos
[
3
𝜋

6

]
= 0

with the stresses
𝜎I = −𝜎II =

1√
3
, (2.68)

or
𝜎I = 2𝜎II = ± 2√

3
. (2.69)

The value 𝑟45 is obtained by setting

cos
[
3
𝜋

4

]
= −

√
2

2

with the stresses

𝜎I =

√︂
2
3
, 𝜎II =

1√
2
+ 1√

6
(2.70)

or

𝜎I = ±
√︂

2
3
, 𝜎II =

√︄
2
3
± 1√

3
. (2.71)

The value 𝑟60 is obtained by setting
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cos
[
3
𝜋

3

]
= −1

with the stresses
𝜎II = 0, 𝜎I = −1 (2.72)

or
𝜎I = 𝜎II = 1. (2.73)

Further setting can be formulated for the multiaxial stress states, e.g. for different
elevations 𝜓 (2.22) or the cross sections 𝐼1 = const. [81].

2.5 Five Derivation Paths

In Sect. 2.3 the schemas in the formulation of the yield criteria are outlined. Although
the yield criteria Φ are a function either of

• three principal shear stresses (𝜏12, 𝜏23, 𝜏31) with the linear dependence (2.13),
• three principal normal stresses (𝜎I, 𝜎II, 𝜎III) with the pressure-insensitivity con-

dition 𝐼1 = 0 or, what the same, three deviatoric stresses (𝑠I, 𝑠II, 𝑠III) or
• two invariants of the stress deviator (𝐼 ′2, 𝐼 ′3) or (𝜌, \),
their formulation possibilities are almost endless. The PAs (Subsect. 2.3.2) limit this
diversity (Table 2.2). Five typical derivation paths

I. criteria as function of the principal shear stresses (2.36),
II. criteria as a power function of the deviatoric stresses (2.37),
III. ⃝-criteria without extreme yield figures (2.38) or (2.39),
IV. polynomial criteria as a series of 𝐼 ′2 and 𝐼 ′3 (2.34) and
V. criteria as solution of equations with trigonometric identity (2.39)

are compared in terms of which of them is closest to the PAs. Pros and contras are
explained.

The usual techniques for generalising the known criteria:

• linear (convex) combination of two or three criteria - a mixture rule [36, 279] and
• superposition (overlay) of two criteria realised as a product of equations [36, 280].

can also be used. However, the number of parameters increases and they have no
direct geometric meaning, cf. PA9.2 and PA9.5.

2.5.1 Criteria in Shear Stress Space

The formulation of the yield criteria in the principal shear space (𝜏12, 𝜏23, 𝜏31)
is intended more as a thought-provoking tool. The classical yield criteria 6̂, ⃝
and 6̄ are most easily interpreted in this space. According to Lüpfert, the shear
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stress considerations can be carried out uniformly and further yield criteria can be
introduced [281]. Radaev wrote, that “the most general forms of the yield criterion
of an isotropic solid are: the form in principal shear stresses” [110], see also [264].
However, the shear stress space is practically untouched scientific subject: a few
authors contributed to it [9, 96, 100, 106, 107, 109, 111, 282], see also [113, 283–
287].

When discussing this space, the sum of the shear stresses is referred to as

Z = 𝜏12 + 𝜏23 + 𝜏31. (2.74)

Only the Z0-plane with
Z = 0 (2.75)

has a physical meaning [288], which describes a linear dependence (2.13). The stress
states can be mapped in the Z0-plane [88, 100, 109, 111, 289].

2.5.1.1 Open Surfaces in Shear Stress Space

The yield criteria can be represented as cylinder and prisms along the space diagonal
𝜏12 = 𝜏23 = 𝜏23 in the principal shear stress space:

• criterion ⃝
2𝑚

2+2𝑚
[ (𝜏12 − 𝜏23)𝑚 + (𝜏23 − 𝜏31)𝑚 + (𝜏31 − 𝜏12)𝑚

]
= 𝜎𝑚eq (2.76)

with the power 𝑚 = 2 and 4,
• criterion 3̂

2 max
[
𝜏12 − 𝜏23, 𝜏23 − 𝜏31, 𝜏31 − 𝜏12

]
= 𝜎eq, (2.77)

• criterion 3̄
max

[
− 𝜏12 + 𝜏23, −𝜏23 + 𝜏31, −𝜏31 + 𝜏12

]
= 𝜎eq. (2.78)

If yielding depends only on the modulus of the shear stresses, the yield surface is of
hexagonal symmetry [39]. The prisms of hexagonal symmetry are:

• criterion 6̂ [96]

2
3

max
[
|2𝜏12 − 𝜏23 − 𝜏31 |, | − 𝜏12 +2𝜏23 − 𝜏31 |, | − 𝜏12 − 𝜏23 +2𝜏31 |

]
= 𝜎eq, (2.79)

• criterion 6̄ [96]

max
[
|𝜏12 − 𝜏23 |, |𝜏23 − 𝜏31 |, |𝜏31 − 𝜏12 |

]
= 𝜎eq, (2.80)

• criterion 1̂2 follows as a linear combination of (2.79) and (2.80)



2 Reviewing Yield Criteria in Plasticity Theory 45

(1−𝛼) 2
3

max
[
|2𝜏12 − 𝜏23 − 𝜏31 |, | − 𝜏12 +2𝜏23 − 𝜏31 |, | − 𝜏12 − 𝜏23 +2𝜏31 |

]
+

𝛼max
[ ( |𝜏12 − 𝜏23 |, |𝜏23 − 𝜏31 |, |𝜏31 − 𝜏12 |

) ]
= 𝜎eq with 𝛼 = 2

(
2−√

3
)
(2.81)

and
• criterion 1̄2 follows as a intersection of (2.79) and (2.80)

max
[

2
3𝛼

|2𝜏12 − 𝜏23 − 𝜏31 |, 2
3𝛼

| − 𝜏12 +2𝜏23 − 𝜏31 |, 2
3𝛼

| − 𝜏12 − 𝜏23 +2𝜏31 |,

|𝜏12 − 𝜏23 |, |𝜏23 − 𝜏31 |, |𝜏31 − 𝜏12 |
]
= 𝜎eq with a scaling 𝛼 = 2/√3.

(2.82)

The prisms (2.77)–(2.82) are regular.

2.5.1.2 Closed Surfaces in Shear Stress Space

The representation of the sphere and the convex polyhedra with three orthogonal
planes of symmetry in the principal normal stress space (𝜎I, 𝜎II, 𝜎III) for stress
analysis is known:

1 https://mathworld.wolfram.com/RegularOctahedron.html
2 https://mathworld.wolfram.com/RhombicDodecahedron.html
3 https://mathworld.wolfram.com/Cuboctahedron.html
4 https://mathworld.wolfram.com/TetrakisHexahedron.html
5 https://mathworld.wolfram.com/DisdyakisDodecahedron.html
6 https://mathworld.wolfram.com/GreatRhombicuboctahedron.html
7 https://mathworld.wolfram.com/SmallRhombicuboctahedron.html
8 polyhedron with 8 triangles, 6 square and 12 octagons leading to 8+6+12 = 26 faces, 8× 3+6×
4+12× 4 = 96 edges and 8× 3+4× 6 = 48 vertices.

• the sphere [12, 241, 273, 289–299],
• the cube [90, 299], see also [18, 283],
• the octahedron1 [99, 289, 299, 300], see also [5, 9, 18, 98, 213, 239, 279, 281,

283, 301–303],
• the rhombic dodecahedron2 [9, 16, 27, 80, 206, 207, , 304, 305],

279, 281, 283, 306],
• the cuboctahedron3 [306],
• the tetrakis hexahedron4

• the disdyakis dodecahedron5

• the great rhombicuboctahedron6 and the small rhombicuboctahedron7 [18, 306],
• the hexaicosahedron8 [283].

289, 299
see also [
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The yield criteria can also be represented as closed bodies in the principal shear stress
space: spheres and polyhedra. This representation is often preferred for academic
purposes, despite the linear dependence of three principal shear stresses (2.13), (2.75):

• criterion ⃝

2𝑚−1 [ (𝜏12)𝑚 + (𝜏23)𝑚 + (𝜏31)𝑚
]
= 𝜎𝑚eq, 𝑚 = 2, 4 (2.83)

with the circle in the Z0-plane (Fig. 2.9, left and right below), see [5, 6, 17, 100,
106, 109, 111, 288, 307–309] for 𝑚 = 2 and Table 2.4 for 𝑚 = 4:
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Fig. 8 Spheres of vonMises criterion © (83) with the power �푚 = 2 (left) and �푚 = 4 (right) in
the principal shear stress space (�휏12, �휏23, �휏31) . sd – space diagonal, �휁0 – plane (75) through the
origin orthogonal to the space diagonal is shown for better clarity.

The figures in the principal shear stress space are deceptive and need a good 3D
imagination (Figs. 8–14). Different 3D objects can lead on the same criterion. The
cross section �휁 = 0 (75) in (�휏12, �휏23, �휏31) space does not provide any new insights
compared to the �휋-plane. This derivation path “seems very pretty . . . but it’s rather
hard to understand” [59]. For this reason, such representations have not caught on.

5.2 Criteria as Power Functions

The criteria discussed below have prevailed in application because they meet PA1
and PA2. The major disadvantages are that they contradict PA3, PA4 and PA9.1. The
formulation of these criteria in the deviatoric stresses �푠I, �푠II and �푠III can be confusing
and ambiguous. Most of the relationships are challenging in a numerical sense.

Fig. 2.9: Spheres of von Mises criterion ⃝ (2.83) with the power 𝑚 = 2 (left) and 𝑚 = 4 (right)
in the principal shear stress space (𝜏12, 𝜏23, 𝜏31 ) . sd – space diagonal, 𝜁0 – plane (2.75) through
the origin orthogonal to the space diagonal is shown for better clarity.

• criterion 3̂ as a triangular dipyramid (Fig. 2.10, left)
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Table 2.4: Hershey criterion 6̂−⃝ (2.95): setting of the power 𝑛 ≥ 1 with the corresponding
values 𝑟30 (2.97) and 𝑟15 (2.98).

𝑛 𝑟30 𝑟15 Cross section Remarks References

1 0.8660 0.8966 6̂ Tresca
[38, 258, 261, 310–312],
[49, 68, 280, 313–315]

1.0824 0.8888 0.9161 – inflection point 𝑉𝑛 –
1.5416 0.9671 0.9779 – cf. 𝑟30 in 𝑛 = 6 –

1.6 0.9731 0.9821 – – [261]
1.7 0.9819 0.9882 – – [261]

2 1 1 ⃝ von Mises

[38, 97, 108, 258, 310, 311],
[259–262, 316]
[49, 263, 312, 313, 317],
[10, 68, 264, 315, 318]

2.7230 1.0136 1.0076 – max(𝑟15 ) –
2.7670 1.0137 1.0076 – max(𝑟30 ) [261, 318, 319]

3 1.0129 1.0070 – – [316, 319]

4 1 1 ⃝ cf. 𝑛 = 2
[38, 258, 261, 310, 311, 316],
[10, 49, 312, 315, 318]

4.4719 0.9919 0.9958 – inflection point 𝑟30 –
4.5496 0.9905 0.9951 – inflection point 𝑟15 –

5 0.9828 0.9911 – – [260, 319]

6 0.9671 0.9826 – –

[258, 310, 320–323],
[97, 108, 260, 311, 316, 319],
[263, 312, 317, 324],
[10, 313, 325]

8 0.9435 0.9681 – –
[97, 258, 311, 320, 322, 326],
[108, 312, 313, 319, 324, 325]

10 0.9280 0.9568 – – [263, 280, 319, 321]
11 0.9223 0.9521 – – [316]
12 0.9175 0.9480 – – [108, 280, 319]
14 0.9100 0.9412 – – [327]
16 0.9044 0.9359 – – [263]
20 0.8966 0.9281 – – [320, 321]
26 0.8894 0.9208 – – [328]
30 0.8863 0.9175 – – see Table 2.5
32 0.8850 0.9162 – – [263]
40 0.8812 0.9122 – – [327]
41 0.8808 0.9119 – – see Table 2.5
100 0.8720 0.9028 – – –

∞ 0.8660 0.8966 6̂ Tresca
[38, 97, 108, 258, 310, 311, 323],
[259–261, 263, 280, 312]
[10, 49, 264, 313–315]
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2 max
[
𝜏12 − 𝜏23 + 𝑎 Z, 𝜏23 − 𝜏31 + 𝑎 Z, 𝜏31 − 𝜏12 + 𝑎 Z,

𝜏12 − 𝜏23 − 𝑎 Z, 𝜏23 − 𝜏31 − 𝑎 Z, 𝜏31 − 𝜏12 − 𝑎 Z
]
= 𝜎eq, 𝑎 ∈ R,

(2.84)
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Fig. 9 Ivlev criterion 3̂ (84) as triangular dipyramid (left) and Mariotte criterion 3̄ (85) as
triangular dipyramid (right) with �푎 = 1/3 in the principal shear stress space (�휏12, �휏23, �휏31 ) . The
cross-sections with the �휁0 – plane (75) through the origin orthogonal to the space diagonal is shown.
The colour of both polyhedra below is changed for better clarity.

5.2.1 Hershey criterion 6̂ − ©

Hershey criterion of hexagonal symmetry [125]

|�휎I − �휎II |�푛 + |�휎II − �휎III |�푛 + |�휎III − �휎I |�푛 = 2�휎�푛
eq, �푛 ≥ 1 (95)

is equivalent to the criterion formulated in the deviatoric stresses (8)

|�푠I − �푠II |�푛 + |�푠II − �푠III |�푛 + |�푠III − �푠I |�푛 = 2�휎�푛
eq, �푛 ≥ 1. (96)

The values of the criterion (95) are �푟60 = 1,

�푟30 =
√
3
(
1 + 2�푛−1

)−1/�푛
(97)

and

Fig. 2.10: Ivlev criterion 3̂ (2.84) as triangular dipyramid (left) and Mariotte criterion 3̄
(2.85) as triangular dipyramid (right) with 𝑎 = 1/3 in the principal shear stress space
(𝜏12, 𝜏23, 𝜏31 ) . The cross-sections with the 𝜁0 – plane (2.75) through the origin orthogonal to the
space diagonal is shown. The colour of both polyhedra below is changed for better clarity.

• criterion 3̄ as a triangular dipyramid (Fig. 2.10, right)

max
[
− 𝜏12 + 𝜏23 + 𝑎 Z, −𝜏23 + 𝜏31 + 𝑎 Z, −𝜏31 + 𝜏12 + 𝑎 Z,

−𝜏12 + 𝜏23 − 𝑎 Z, −𝜏23 + 𝜏31 − 𝑎 Z, −𝜏31 + 𝜏12 − 𝑎 Z
]
= 𝜎eq, 𝑎 ∈ R,

(2.85)
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�휏12�휏12

�휏12�휏12

�휏23

�휏23�휏23

�휏23

�휏31

�휏31�휏31

�휏31
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Fig. 10 Tresca criterion 6̂ (86) as octahedron (left) and (88) as cube (right) in the principal shear
stress space (�휏12, �휏23, �휏31) , sd – space diagonal. The cross-sections with the �휁0 – plane (75)
through the origin orthogonal to the space diagonal is shown. The circle of vonMises criterion
(red) is presented for better comparison. The colour of both polyhedra below is changed for better
clarity.

�푟15 = 21/�푛

(
2
3
− 1√

3

)�푛/2
+
(
2 −

√
3
)�푛/2 1 +

(√
3 − 1

)�푛
(
2
√
3 − 3

)�푛


−1/�푛

. (98)

The particular setting of the power �푛 is summarized in Table 4 and shown in Fig. 15.
The setting �푛 = 4 in (95) leads to [62]

2 × (
3 �퐼 ′2

)2 = 2�휎4
eq,

see (83) with �푛 = 4 and Fig. 8 on the right and cf. vonMises criterion (41) with
�푛 = 2. The setting �푛 = 6 results in the invariant formulation [62]

66
(
�퐼 ′2
)3 + 34

(
�퐼 ′3
)2 = 2�휎6

eq,

Fig. 2.11: Tresca criterion 6̂ (2.86) as octahedron (left) and (2.88) as cube (right) in the principal
shear stress space (𝜏12, 𝜏23, 𝜏31 ) , sd – space diagonal. The cross-sections with the 𝜁0 – plane
(2.75) through the origin orthogonal to the space diagonal is shown. The circle of von Mises
criterion (red) is presented for better comparison. The colour of both polyhedra below is changed
for better clarity.

• criterion 6̂ with three options

– as a octahedron (Fig. 2.11, left)

|𝜏12 | + |𝜏23 | + |𝜏31 | = 𝜎eq (2.86)

or
max

[
|𝜏12 + 𝜏23 + 𝜏31 |, |𝜏12 − 𝜏23 − 𝜏31 |, |𝜏12 + 𝜏23 − 𝜏31 |,

|𝜏12 − 𝜏23 + 𝜏31 |
]
= 𝜎eq,

(2.87)

– as a cube (Fig. 2.11, right) [96, 100, 109, 111, 288, 307–309, 329]
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2 max
[
|𝜏12 |, |𝜏23 |, |𝜏31 |

]
= 𝜎eq (2.88)

and
– as a rhombohedron (trigonal trapezohedron) (Fig. 2.12, left), cf. (2.87)

max
[
|𝜏12 − 𝜏23 − 𝜏31 |, |𝜏12 + 𝜏23 − 𝜏31 |, |𝜏12 − 𝜏23 + 𝜏31 |

]
= 𝜎eq, (2.89)

• criterion 6̄ as a rhombic dodecahedron (Fig. 2.12, right) [9, 27]
32 Holm Altenbach & Vladimir A. Kolupaev
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Fig. 11 Tresca criterion 6̂ as rhombohedron (89) (left) and Schmidt-Ishlinsky criterion 6̄ (90)
as Yu rhombic dodecahedron (right) in the principal shear stress space (�휏12, �휏23, �휏31 ) , sd – space
diagonal. The cross-sections with the �휁0 – plane (75) through the origin orthogonal to the space
diagonal is shown. The circle of vonMises criterion (red) is presented for better comparison. The
colour of both polyhedra below is changed for better clarity.

what corresponds to Drucker criterion [81, 82, 83, 296]
(
3 �퐼 ′2

)3 + �푐6
(
�퐼 ′3
)2

1 + �푐6

(
2
33

)2 = �휎 6
eq and �푐6 ∈

[
−35

22
,
36

23

]
, (99)

with the setting �푐6 = −36/22 (Table 4).
The surfaces with the powers �푛 = 1, 1.5416, 2, 4, 6 and ∞ are shown in the

�휋-plane (Fig. 16). The powers �푛 = 1.5416 and 6 with the same value

�푟30 =
31/3

111/6
≈ 0.9671

Fig. 2.12: Tresca criterion 6̂ as rhombohedron (2.89) (left) and Schmidt-Ishlinsky
criterion 6̄ (2.90) as Yu rhombic dodecahedron (right) in the principal shear stress space
(𝜏12, 𝜏23, 𝜏31 ) , sd – space diagonal. The cross-sections with the 𝜁0 – plane (2.75) through the
origin orthogonal to the space diagonal is shown. The circle of von Mises criterion (red) is
presented for better comparison. The colour of both polyhedra below is changed for better clarity.
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max
[
|𝜏12 + 𝜏23 | , |𝜏12 − 𝜏23 | , |𝜏23 + 𝜏31 | , |𝜏23 − 𝜏31 | ,

|𝜏31 + 𝜏12 | , |𝜏31 − 𝜏12 |
]
= 𝜎eq,

(2.90)

• criterion 1̂2 as a linear combination of

– octahedron Φocthahedron (2.86) and rhombic dodecahedron Φrhombic dodecahedron
(2.90): triakis octahedron (Fig. 2.13, left))

(1−𝛼)Φocthahedron +𝛼Φrhombic dodecahedron = 𝜎eq, 𝛼 = 4−2
√

3, (2.91)
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Fig. 12 Sokolovsky criterion 1̂2 (91) as triakis octahedron (left) and (92) tetrakis hexahedron
(right) in the principal shear stress space (�휏12, �휏23, �휏31 ) , sd – space diagonal. The cross-sections
with the �휁0 – plane (75) through the origin orthogonal to the space diagonal is shown. The circle of
vonMises criterion (red) is presented for better comparison. The colour of both polyhedra below
is changed for better clarity.

are chosen for the better comparison (Table 4). Even though the powers �푛 = 1 and
�푛 → ∞ as well as �푛 = 2 and 4 provide respective the same surfaces in the principal
normal stress space, the resulting surfaces in the principal shear stress space differ.

Hershey criterion (95) is formulated in the principal shear stress space, cf. (83)

2�푛−1
[ |�휏13 |�푛 + |�휏23 |�푛 + |�휏31 |�푛

]
= �휎�푛

eq, �푛 ≥ 1 (100)

The volume of the closed surfaces (100) in the principal shear stress space [317]

�푉�푛 = 23

[
Γ

(
1 + 1

�푛

)]3

Γ

(
1 + 3

�푛

) (101)

Fig. 2.13: Sokolovsky criterion 1̂2 as triakis octahedron (2.91) (left) and tetrakis hexahedron
(2.92) (right) in the principal shear stress space (𝜏12, 𝜏23, 𝜏31 ) , sd – space diagonal. The
cross-sections with the 𝜁0 – plane (2.75) through the origin orthogonal to the space diagonal is
shown. The circle of von Mises criterion (red) is presented for better comparison. The colour of
both polyhedra below is changed for better clarity.
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– cube (2.88) and rhombic dodecahedron (2.90): tetrakis hexahedron (Fig. 2.13,
right)

(1−𝛼)Φcube +𝛼Φrhombic dodecahedron = 𝜎eq, 𝛼 = 4−2
√

3, (2.92)

• criterion 1̄2 with the edge truncations of octahedron or cube by a rhombic dodeca-
hedron:

– octahedron (2.86) or (2.87) and rhombic dodecahedron (2.90) (Fig. 2.14, left)

max
[√

3
2

( |𝜏12 | + |𝜏23 | + |𝜏31 |
)
, |𝜏12 + 𝜏23 | , |𝜏12 − 𝜏23 | ,

|𝜏23 + 𝜏31 | , |𝜏23 − 𝜏31 | , |𝜏31 + 𝜏12 | , |𝜏31 − 𝜏12 |
]
= 𝜎eq,

(2.93)

– cube (2.88) and rhombic dodecahedron (2.90) (Fig. 2.14, right)

max
[√

3 |𝜏12 |,
√

3 |𝜏23 |,
√

3 |𝜏31 |, |𝜏12 + 𝜏23 | , |𝜏12 − 𝜏23 | ,

|𝜏23 + 𝜏31 | , |𝜏23 − 𝜏31 | , |𝜏31 + 𝜏12 | , |𝜏31 − 𝜏12 |
]
= 𝜎eq,

(2.94)

No regular polyhedron is found for the criterion 1̄2.

The discussed formulations offer numerous possibilities for generalisation (Table 2.2):

• Hershey criterion 6̂−⃝ (Subsect. 2.5.2) as a generalization of (2.83) for𝑚 ≥ 1,
• Yu yield criterion (YYC) 6̂− 1̂2− 6̄, see (2.91) or (2.92),
• nultiplicative ansatz criterion (MAC) 6̂− 1̄2− 6̄, see (2.93) or (2.94),
• 𝐶0-CHS 6̂− 1̂2 |2̂4 |1̄2− 6̄ as linear combination of YYC and MAC, etc.

Further polyhedra with three orthogonal planes of symmetry in the principal shear
stress space are also known, e.g. [35], however, they do not reveal any physical evi-
dence. Regular polyhedra are sometimes preferred in modelling because the equations
are uniform, but their consideration provides only particular setting of the known
criteria that can be used for comparison with the fitting results. Rhombicuboctahedron
and hexaicosahedron have no sense in (𝜏12, 𝜏23, 𝜏31) space, since the intersections of
octahedron and cube always lead to Tresca criterion 6̂ (Fig. 2.15).

Certain analogies of various foam structures or material defects to polyhedra
with subsequent derivation of the relationships can be found in the literature, e.g.
[13, 330, 331], among others. Sometimes space-filling polyhedra are preferred
[9, 112]. However, the physical explanation for the polyhedra as yield restriction is
unknown.

The figures in the principal shear stress space are deceptive and need a good 3D
imagination (Figs. 2.9–2.15). Different 3D objects can lead on the same criterion. The
cross section Z = 0 (2.75) in (𝜏12, 𝜏23, 𝜏31) space does not provide any new insights
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Fig. 13 Ishlinsky-Ivlev criterion 1̄2 with the edge truncations of octahedron (93) (left) and and
cube (94) (right) by a rhombic dodecahedron in the principal shear stress space (�휏12, �휏23, �휏31) , sd
– space diagonal. The cross-sections with the �휁0 – plane (75) through the origin orthogonal to the
space diagonal is shown. The circle of vonMises criterion (red) is presented for better comparison.
The colour of both polyhedra below is changed for better clarity.

with Γ for the gamma function [49] increases with increasing power �푛 (Fig. 17)

�푉�푛

�푉2
∈
[
1
�휋
, 23 × 3

4 �휋

]
. (102)

© and is designated as
6 − ©, cf. Lemaitre-Chaboche criterion (Subsect. 4.1). For numerical robustness
in the application (PA6), it is advisable to restrict the power �푛 as �푛 ∈ [1, 12].
This criterion with modulus (PA3) and the parameter �푛 as a power (PA9.1) can
not be recommended due to high numerical effort with limited fitting possibilities.
According to Paul [239], Hershey criterion (95) is rather “of academical interest”
and has nowadays “any great practical advantage”. It should be replaced by the more
effective Szwed criterion 6̂ − © − 6̄, which also has one parameter (Table 2).

Fig. 2.14: Ishlinsky-Ivlev criterion 1̄2 with the edge truncations of octahedron (2.93) (left)
and c«ube (2.94) (right) by a rhombic dodecahedron in the principal shear stress space
(𝜏12, 𝜏23, 𝜏31 ) , sd – space diagonal. The cross-sections with the 𝜁0 – plane (2.75) through the
origin orthogonal to the space diagonal is shown. The circle of von Mises criterion (red) is
presented for better comparison. The colour of both polyhedra below is changed for better clarity.

compared to the 𝜋-plane. This derivation path “seems very pretty . . . but it’s rather
hard to understand” [332]. For this reason, such representations have not caught on.

2.5.2 Criteria as Power Functions

The criteria discussed below have prevailed in application because they meet PA1
and PA2. The major disadvantages are that they contradict PA3, PA4 and PA9.1. The
formulation of these criteria in the deviatoric stresses 𝑠I, 𝑠II and 𝑠III can be confusing
and ambiguous. Most of the relationships are challenging in a numerical sense.
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2.5.2.1 Hershey criterion 6̂−⃝

Hershey criterion of hexagonal symmetry [260]

|𝜎I −𝜎II |𝑛 + |𝜎II −𝜎III |𝑛 + |𝜎III −𝜎I |𝑛 = 2𝜎𝑛eq, 𝑛 ≥ 1 (2.95)

is equivalent to the criterion formulated in the deviatoric stresses (2.8)

|𝑠I − 𝑠II |𝑛 + |𝑠II − 𝑠III |𝑛 + |𝑠III − 𝑠I |𝑛 = 2𝜎𝑛eq, 𝑛 ≥ 1. (2.96)

The values of the criterion (2.95) are 𝑟60 = 1,

𝑟30 =
√

3
(
1+2𝑛−1

)−1/𝑛
(2.97)

and

𝑟15 = 21/𝑛

(
2
3
− 1√

3

)𝑛/2
+

(
2−

√
3
)𝑛/2 1+

(√
3−1

)𝑛
(
2
√

3−3
)𝑛



−1/𝑛

. (2.98)

The particular setting of the power 𝑛 is summarized in Table 2.4 and shown in
Fig. 2.16.

The setting 𝑛 = 4 in (2.95) leads to [38]

2× (
3 𝐼 ′2

)2 = 2𝜎4
eq,

see (2.83) with 𝑛 = 4 and Fig. 2.9 on the right and cf. von Mises criterion (2.41)
with 𝑛 = 2. The setting 𝑛 = 6 results in the invariant formulation [38]

66
(
𝐼 ′2

)3 +34 (
𝐼 ′3

)2 = 2𝜎6
eq,
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Fig. 14 Rhombicuboctahedron and hexaicosahedron in the principal shear stress space
(�휏12, �휏23, �휏31) , sd – space diagonal.

The values �푟30 (97) and �푟15 (98) of Hershey criterion are easy to calculate. For
any �푛 ∈ N, Hershey criterion (95) can be formulated as a function of the invariants
Φ

(
�퐼 ′2, �퐼

′
3
)
[62], but such formulation in the general case �푛 ≥ 1 is unknown (PA4).

The criterion 6̂ − © is considered here because it is applied in Subsubsect. 5.2.2.

�푛

�푟30, �푟15

inflection point �푟30

inflection point �푟15

�푟30

�푟15

5 10 50 100 500 1000
1 1.54 2.77 4.47 6 8 16

0.90

0.95

1.00

0.8660

0.9044
0.8966

0.9280

0.9435

0.9671

0.9828

1.0137

Fig. 15 Hershey criterion 6̂−© (95): log-linear plot of the values �푟30 (97) and �푟15 (98) as function
of the power �푛 ≥ 1. Some particular points are depicted for clarity (Table 4).

Fig. 2.15: Rhombicuboctahedron and hexaicosahedron in the principal shear stress space
(𝜏12, 𝜏23, 𝜏31 ) , sd – space diagonal.
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what corresponds to Drucker criterion [2, 19, 333, 334]
(
3 𝐼 ′2

)3 + 𝑐6
(
𝐼 ′3

)2

1+ 𝑐6

(
2
33

)2 = 𝜎 6
eq and 𝑐6 ∈

[
−35

22 ,
36

23

]
, (2.99)

with the setting 𝑐6 = −36/22 (Table 2.4).
The surfaces with the powers 𝑛 = 1, 1.5416, 2, 4, 6 and ∞ are shown in the 𝜋-plane

(Fig. 2.17). The powers 𝑛 = 1.5416 and 6 with the same value

𝑟30 =
31/3

111/6 ≈ 0.9671

are chosen for the better comparison (Table 2.4). Even though the powers 𝑛 = 1 and
𝑛→∞ as well as 𝑛 = 2 and 4 provide respective the same surfaces in the principal
normal stress space, the resulting surfaces in the principal shear stress space differ.

Hershey criterion (2.95) is formulated in the principal shear stress space, cf.
(2.83)

2𝑛−1 [ |𝜏13 |𝑛 + |𝜏23 |𝑛 + |𝜏31 |𝑛
]
= 𝜎𝑛eq, 𝑛 ≥ 1 (2.100)

The volume of the closed surfaces (2.100) in the principal shear stress space [335]
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The values �푟30 (97) and �푟15 (98) of Hershey criterion are easy to calculate. For
any �푛 ∈ N, Hershey criterion (95) can be formulated as a function of the invariants
Φ

(
�퐼 ′2, �퐼
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)
[62], but such formulation in the general case �푛 ≥ 1 is unknown (PA4).

The criterion 6̂ − © is considered here because it is applied in Subsubsect. 5.2.2.
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Fig. 15 Hershey criterion 6̂−© (95): log-linear plot of the values �푟30 (97) and �푟15 (98) as function
of the power �푛 ≥ 1. Some particular points are depicted for clarity (Table 4).
Fig. 2.16: Hershey criterion 6̂−⃝ (2.95): log-linear plot of the values 𝑟30 (2.97) and 𝑟15 (2.98)
as function of the power 𝑛 ≥ 1. Some particular points are depicted for clarity (Table 2.4).
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𝑉𝑛 = 23

[
Γ

(
1+ 1

𝑛

)]3

Γ

(
1+ 3

𝑛

) (2.101)

with Γ for the gamma function [139] increases with increasing power 𝑛 (Fig. 2.18)

𝑉𝑛
𝑉2

∈
[
1
𝜋
, 23 × 3

4𝜋

]
. (2.102)

The inflection point results numerically in 𝑛 ≈ 1.0824.
Hershey criterion (2.95) includes two basic shapes 6̂ and ⃝ and is designated

as 6̂−⃝, cf. Lemaitre-Chaboche criterion (Subsect. 2.4.1). For numerical
robustness in the application (PA6), it is advisable to restrict the power 𝑛 as 𝑛 ∈ [1, 12].
This criterion with modulus (PA3) and the parameter 𝑛 as a power (PA9.1) can not be
recommended due to high numerical effort with limited fitting possibilities. According
to Paul [264], Hershey criterion (2.95) is rather “of academical interest” and has
nowadays “any great practical advantage”. It should be replaced by the more effective
Szwed criterion 6̂−⃝− 6̄, which also has one parameter (Table 2.2).

The values 𝑟30 (2.97) and 𝑟15 (2.98) of Hershey criterion are easy to calculate.
For any 𝑛 ∈ N, Hershey criterion (2.95) can be formulated as a function of
the invariants Φ

(
𝐼 ′2, 𝐼

′
3
)

[38], but such formulation in the general case 𝑛 ≥ 1 is
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Fig. 16 Hershey criterion 6̂ − © (100) in the �휋-plane. The diagram is cropped to highlight
differences of the surfaces with the setting �푛 = 1.5416 and 6 at the stress angle �휃 = �휋/12 (Table 4).

�푛

�푉=/�푉2

�푉=

�푉2
∈
[
1
�휋
,
6
�휋

]

1 5 10 50 100
1.08 1.54 2.77 4.47

0.5

1.0

1.5

0.3183

1.2958

1.6039

1.8323
1.9099

0.3843

0.7311

Fig. 17 Hershey criterion 6̂ − © (95): log-linear plot of the volume relation �푉=/�푉2 (102) in the
principal shear stress space as function of �푛. Some particular points are shown for clarity (Table 4).

Fig. 2.17: Hershey criterion 6̂−⃝ (2.100) in the 𝜋-plane. The diagram is cropped to highlight
differences of the surfaces with the setting 𝑛 = 1.5416 and 6 at the stress angle 𝜃 = 𝜋/12
(Table 2.4).



2 Reviewing Yield Criteria in Plasticity Theory 57

unknown (PA4). The criterion 6̂−⃝ is considered here because it is applied in
Subsubsect. 2.5.2.2.

2.5.2.2 Karafillis-Boyce criterion 6̂− 1̂2| ⃝ |1̄2− 6̄

Karafillis-Boyce criterion of hexagonal symmetry [263], see also [9, 27, 49,
97, 108, 256, 280, 310] among other,

1−𝛼
2

( |𝑠I − 𝑠II |𝑚 + |𝑠II − 𝑠III |𝑚 + |𝑠III − 𝑠I |𝑚) +
𝛼

2
3𝑚

2𝑚−1 +1
( |𝑠I |𝑚 + |𝑠II |𝑚 + |𝑠III |𝑚) = 𝜎𝑚eq, 𝑚 ≥ 1, 𝛼 ∈ [0, 1]

(2.103)

yields the values

𝑟60 = 1 and 𝑟30 =
√

3
[
(1−𝛼)

(
1+2𝑚−1

)
+𝛼 3𝑚

1+2𝑚−1

]−1/𝑚
. (2.104)

The value 𝑟60 = 1 results for any 𝑚 ≥ 1 because of the modulus function [280], cf.
[97, 263]. The equations for the values 𝑟15 and 𝑟7.5 are omitted due to complexity.

It follows with (2.104) for the setting 𝑟30 = 1
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Fig. 17 Hershey criterion 6̂ − © (95): log-linear plot of the volume relation �푉=/�푉2 (102) in the
principal shear stress space as function of �푛. Some particular points are shown for clarity (Table 4).Fig. 2.18: Hershey criterion 6̂−⃝ (2.95): log-linear plot of the volume relation 𝑉𝑛/𝑉2 (2.102)
in the principal shear stress space as function of 𝑛. Some particular points are shown for clarity
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𝛼 =

(
1+ 3𝑚/2

1+2𝑚−1

)−1

and von Mises ⃝, Sokolovsky 1̂2 and Ishlinsky-Ivlev 1̄2 criteria can be
obtained (Table 2.5).

Although some problems are treated with the criterion (2.103), it cannot be
recommended for practice: the computation is unstable with the higher powers of
𝑚 because of loss of order (PA6). The parameters 𝛼 and 𝑚 have no geometric
or mechanical meaning (PA9.5). A straightforward physical interpretation of the
criterion (2.103) is unknown. This criterion with 𝑚 ≥ 2 can not be recommended for
use: no clear relationship between the geometry and the parameters (PA9.6), but the
application can be thought of in the range 𝑚 ∈ [1, 2].

The particular points 𝑃6, 𝑃12, 𝑃16, 𝑃26, 𝑃30,𝑇30 and 𝑃41 (Table 2.5) in the 𝑟30−𝑟15
diagram (Fig. 2.19) lie outside the range with 𝛼 ∈ [0, 1] and 𝑚 ∈ [1, 2] and the
convexity range of Rosendahl 𝐶1-criterion (Table 2.2). If required, they can be
described with the 𝐶0-criterion 6̂− 1̂2 | ⃝ |1̄2− 6̄ of hexagonal symmetry (Table 2.2).

The extreme value 𝑟15 with 𝑟30 = 1 is reached at 𝑚 = 41. For𝑚 > 41 the level lines
𝑚 = const.move in the direction 6̂− 1̄2 and, with increasing power, on to the criterion
6̂. The transition ⃝− 1̄2 can not be described with (2.103). The criterion 6̂− 1̄2− 6̄
with 𝛼 ∈ [0, 1] and 𝑚→∞ is obtained numerically with 𝛼 ∈ [1−10−500, 1−10−1]
and 𝑚 = 1000, which lies in the realm of mathematical curiosity, i.e. no possibility
of practical use. The criterion 1̄2 follows then with 𝛼 = 10−62 (Table 2.5).

Yu [9, 27] compared Karafillis-Boyce criterion (2.103) with Tan criterion
6̂−⃝− 6̄ [265]

𝜎eq =




max
[ (

4[2 −9
)
𝜏2
𝑖 +

(
𝜏𝑘 − 𝜏𝑗

)2
]
,

3
2
≤ [ ≤

√
3, 6̄−⃝;

max
[
[2 𝜏2

𝑖 +
(
4−[2) (

𝜏𝑘 − 𝜏𝑗
)2

]
,
√

3 ≤ [ ≤ 2, ⃝− 6̂
(2.105)

with the denotation

𝜏i =
1
2

(
𝜎j −𝜎k

)
, 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑖, 𝑗 , 𝑘 = 1, 2, 3.

The values 𝑟30 and 𝑟15 follows for the criterion (2.105) with

𝑟30 =

√
3
[
, [ ∈

[
3
2
, 2

]

and

𝑟15 =




(
−1+√3+ 2−√

3
𝑟2

30

)−1/2
,

2√
3
≥ 𝑟30 ≥ 1, 6̄−⃝;

(
2−√

3+ −1+√3
𝑟2

30

)−1/2
, 1 ≥ 𝑟30 ≥

√
3

2
, ⃝− 6̂.

(2.106)
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Table 2.5: Karafillis-Boyce criterion 6̂− 1̂2 | ⃝ | 1̄2− 6̄ (2.103): setting of the parameter.

Designation Criterion 𝛼 𝑚 𝑟30 𝑟15 Comments

Particular setting

- Hershey 0 ≥ 1 - - Eqs. (2.95, (2.96)

- - 0.4904 3 1 1.0006 -

𝑃6 - 0.17 6 0.9765 0.9877 [108, 263]

𝑃12

-
-

0.3
0.7376

12
0.9410

1
0.9652
1.0004

[108, 263, 311]
-

𝑃16

-
-

0.5
0.8332

16
0.9421

1
0.9662
1.0023

[328]
-

𝑃26

-
-

0.63
0.9546

26
0.9240

1
0.9538
1.0098

[328]
-

-
𝑃30

𝑇30

-

-

[0, 1]
0.8350
0.9480
0.9740

30

-
0.9410
0.9776

1

-
0.9702
0.9992
1.0125

recommended [263]
[108, 263, 311]

[263, 311]
-

- - 0.9803 32 1 1.0137 -

𝑃41 - 0.9945 41 1 1.0181
cf.

Ishlinsky-Ivlev

Basic criteria

1̄2 Ishlinsky-Ivlev 1− 10−62 ∞ 1
√

2
(√

3− 1
)

unstable∗

6̂ Tresca 0
1
∞

√
3/2

√︁
3/2

(√
3− 1

)
Table 2.4

6̄
Schmidt-
Ishlinsky

1
1
∞

2/√3
√

2
(√

3− 1
)

[280]

1̂2 Sokolovsky 4− 2
√

3 1 1
1
2

√︃
2+

√
3 -

⃝ von Mises

[0, 1]
[0, 1]
11/20
43/70
19/28

2
4
6
8
10

1 1

[259, 263, 280]
[280]

-
-
-

∗ – obtained with 𝑚 = 1000.
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The lines 𝑟15 (𝑟30) lie below the lines 𝛼 = 0 and 𝛼 = 1 in the 𝑟30 − 𝑟15 diagram
(Fig. 2.19, the level lines (2.106) are not shown). Tan criterion 6̂−⃝− 6̄ (2.105)
can not be recommended due to the case discrimination and the max function (PA3).

Yu 6̂− 1̂2− 6̄ criterion can be obtained from (2.103) with

(1−𝛼) max [ |𝑠I − 𝑠II | , |𝑠II − 𝑠III | , |𝑠III − 𝑠I | ] +

𝛼
3
2

max [ |𝑠I | , |𝑠II | , |𝑠III | ] = 𝜎eq, 𝛼 ∈ [0, 1]
(2.107)

and yields the values

𝑟30 =
2
√

3
4−𝛼 , 𝑟15 =

6
√

2

2
(
3+√3

)
−𝛼

(
3−√

3
) .

Sokolovsky criterion 1̂2 follows with 𝑟30 = 1 or 𝛼 = 4− 2
√

3, see (2.91) and
(2.92).

The formulation (2.107) is not recommended for practice because of the max and
modulus functions. It makes sense to replace (2.107) by Rosendahl 𝐶1-criterion
6̂− 1̂2 | ⃝−6̄ as function of two parameters in addition to 𝜎eq (Table 2.2).

Karafillis-Boyce 6̂− 1̂2 | ⃝ | 1̄2− 6̄ criterion (2.103) can be reformulated
in the principal shear stresses
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Fig. 18 Karafillis-Boyce criterion 6̂ − 1̂2 | © | 1̄2 − 6̄ (103) in the �푟30 − �푟15 diagram (Fig. 7).
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The shaded area corresponds to Rosendahl �퐶1-criterion 6̂ − 1̂2 | © −6̄ (Subsubsect. 5.5.2)

�퐹2 =

(
2
3

)�푚 [
|�휏12 − �휏23 |�푚 + |�휏23 − �휏31 |�푚 + |�휏31 − �휏12 |�푚

]
(110)

or, subject to the condition �휏12 + �휏23 + �휏31 = 0 (13), as

�퐹2 =
1
2

(
2
3

)�푚 [
|2 �휏12 + �휏23 |�푚 + |2 �휏12 + �휏31 |�푚 + |2 �휏31 + �휏12 |�푚+

|2 �휏31 + �휏23 |�푚 + |2 �휏23 + �휏12 |�푚 + |2 �휏23 + �휏31 |�푚
]
.

(111)

With �퐹2 in (110) and (111), different polyhedra result in the principal shear stress
space, but the cross-section with the �휁0-plane (75) remains the same at the given
setting. However, Schmidt-Ishlinsky 6̄ and Ishlinsky-Ivlev 1̄2 criteria can not be
obtained as a polyhedra.

5.2.3 Cazacu et al. Criterion 3̂ − © | 6̄ − 3̄

Cazacu et al. criterion [26, 63, 65, 66, 231, 248, 247]

3�푚
(|�푠1 | − �휅 �푠1)�푚 + (|�푠2 | − �휅 �푠2)�푚 + (|�푠3 | − �휅 �푠3)�푚

2 (1 + �휅)�푚 + 2�푚 (1 − �휅)�푚 = �휎�푚
eq (112)

is a function of two parameters

�푚 ≥ 1 and �휅 ∈ [−1, 1] . (113)

Fig. 2.19: Karafillis-Boyce criterion 6̂− 1̂2 | ⃝ | 1̄2− 6̄ (2.103) in the 𝑟30 − 𝑟15 diagram (Fig.
2.8). The lines 𝛼 = const., 𝑚 ∈ [1, 2] (solid red) and 𝑚 = const., 𝛼 ∈ [0, 1] (dashed blue) are
shown. The shaded area corresponds to Rosendahl 𝐶1-criterion 6̂− 1̂2 | ⃝ −6̄
(Subsubsect. 2.5.5.2).
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𝜎𝑚eq =
1−𝛼

2
𝐹1 + 𝛼2

3𝑚

2𝑚−1 +1
𝐹2 (2.108)

with the terms (2.100)

𝐹1 = 2𝑚
[
|𝜏12 |𝑚 + |𝜏23 |𝑚 + |𝜏31 |𝑚

]
(2.109)

and (2.76) based on (2.14)

𝐹2 =

(
2
3

)𝑚 [
|𝜏12 − 𝜏23 |𝑚 + |𝜏23 − 𝜏31 |𝑚 + |𝜏31 − 𝜏12 |𝑚

]
(2.110)

or, subject to the condition 𝜏12 + 𝜏23 + 𝜏31 = 0 (2.13), as

𝐹2 =
1
2

(
2
3

)𝑚 [
|2𝜏12 + 𝜏23 |𝑚 + |2𝜏12 + 𝜏31 |𝑚 + |2𝜏31 + 𝜏12 |𝑚+

|2𝜏31 + 𝜏23 |𝑚 + |2𝜏23 + 𝜏12 |𝑚 + |2𝜏23 + 𝜏31 |𝑚
]
.

(2.111)

With 𝐹2 in (2.110) and (2.111), different polyhedra result in the principal shear stress
space, but the cross-section with the Z0-plane (2.75) remains the same at the given
setting. However, Schmidt-Ishlinsky 6̄ and Ishlinsky-Ivlev 1̄2 criteria
can not be obtained as a polyhedra.

2.5.2.3 Cazacu et al. Criterion 3̂−⃝ | 6̄− 3̄

Cazacu et al. criterion [39, 108, 311, 322, 336–338]

3𝑚
( |𝑠1 | − 𝜅 𝑠1)𝑚 + (|𝑠2 | − 𝜅 𝑠2)𝑚 + (|𝑠3 | − 𝜅 𝑠3)𝑚

2 (1+ 𝜅)𝑚 +2𝑚 (1− 𝜅)𝑚 = 𝜎𝑚eq (2.112)

is a function of two parameters

𝑚 ≥ 1 and 𝜅 ∈ [−1, 1] . (2.113)

The values 𝑟60 and 𝑟30 follows with [108]

𝑟60 =

(
2𝑚 (1− 𝜅)𝑚 +2 (1+ 𝜅)𝑚
2 (1− 𝜅)𝑚 +2𝑚 (1+ 𝜅)𝑚

)1/𝑚
, (2.114)

𝑟30 =
1√
3

(
2𝑚 (1− 𝜅)𝑚 +2 (1+ 𝜅)𝑚

(1− 𝜅)𝑚 + (1+ 𝜅)𝑚
)1/𝑚

. (2.115)

The parameter setting for the basic criteria is given in Table 2.6. The substitution
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Table 2.6: Cazacu et al. criterion 3̂−⃝ | 6̄− 3̄ (2.112): parameter setting for the basic criteria.

Designation Criterion 𝜅 𝑚 𝑟60 𝑟30 Comments and References

⃝ von Mises
0
0
∞

2
4
2

1 1
[39, 108, 311, 336–338]

-
cf. (2.113)

6̄ Schmidt-Ishlinsky
0

[−1, 1]
±∞

∞
1
∞

1 2/√3
-

[39]
cf. (2.113)

3̂ Ivlev 1 ∞ 1/2 1/√3 [39]

3̄ Mariotte -1 ∞ 2 2/√3 [39]

[ =
1− 𝜅
1+ 𝜅 , 𝜅 ≠ −1 (2.116)

in Eqs. (2.114) and (2.115)

𝑟60 =

(
2𝑚 [𝑚 +2
2[𝑚 +2𝑚

)1/𝑚
, 𝑟30 =

1√
3

(
2𝑚 [𝑚 +2
[𝑚 +1

)1/𝑚
. (2.117)

resolved with respect of [𝑚 results in

[𝑚 =
−2+2𝑚 𝑟𝑚60
2𝑚−2𝑟𝑚60

and [𝑚 =
−2+3𝑎/2 𝑟𝑚30
2𝑚−3𝑎/2 𝑟𝑚30

, (2.118)

and finally combined, in

−2+2𝑚 𝑟𝑚60
2𝑚−2𝑟𝑚60

=
−2+3𝑎/2 𝑟𝑚30
2𝑚−3𝑎/2 𝑟𝑚30

. (2.119)

The numerical solution of (2.119) depends on the starting point, see e.g. the parameter
sets for the particular points 𝐴2 and 𝐴4, 𝐵2 and 𝐵4, 𝐹2 and 𝐹6, 𝐺2 and 𝐺6, 𝐽2 and 𝐽3
with the same values 𝑟60 and 𝑟30, respectively (Table 2.7).

With the predefined powers 𝑚1 and 𝑚2 in the system of Eqs. (2.114) and (2.115)




[
2𝑚1 (1− 𝜅1)𝑚1 +2 (1+ 𝜅1)𝑚1

2 (1− 𝜅1)𝑚1 +2𝑚1 (1+ 𝜅1)𝑚1

]𝑚2/𝑚1

=
2𝑚2 (1− 𝜅2)𝑚2 +2 (1+ 𝜅2)𝑚2

2 (1− 𝜅2)𝑚2 +2𝑚2 (1+ 𝜅2)𝑚2
,

[
2𝑚1 (1− 𝜅1)𝑚1 +2 (1+ 𝜅1)𝑚1

(1− 𝜅1)𝑚1 + (1+ 𝜅1)𝑚1

]𝑚2/𝑚1

=
2𝑚2 (1− 𝜅2)𝑚2 +2 (1+ 𝜅2)𝑚2

(1− 𝜅2)𝑚2 + (1+ 𝜅2)𝑚2

(2.120)
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Table 2.7: Cazacu et al. criterion 3̂−⃝ | 6̄− 3̄ (2.112): setting of the parameters 𝜅 and 𝑚.

Designation Criterion 𝜅 𝑚 𝑟60 𝑟30 Comments and References

- - 0.2 2 0.8790 0.9337 [39, 311]
- - -0.2 2 1.1376 1.0622 [39, 311]
𝐴2 - 0.3098 2 0.8264 0.9009 [39, 338]
𝐵2 - -0.3098 2 1.2101 1.0902 [39, 338]
- - 0.4 2 0.7913 0.8776 [39, 311]
- - -0.4 2 1.2637 1.1090 -
𝐶2 - 0.4340 2 0.7800 0.8698 [108]
𝐷2 - -0.4340 2 1.2821 1.1151 [108]
𝐸2 - 0.4514 2 0.7745 0.8776 ∗ [108]
- - -0.4514 2 1.2910 1.1180 -
𝐹2 - 0.5176 2 0.7564 0.8531 -
𝐺2 - -0.5176 2 1.3221 1.1279 -
𝐻2 - 0.9 2 0.7086 0.8176 [39, 336]
𝐼2 - -0.9 2 1.4113 1.1539 [39, 336]
- - 1 2 0.7071 0.8165 [39]
- - -1 2 1.4142 1.1547 ∗∗ -

𝐽2 - -0.0770 2.5982 1.0799 1.0237 cf. point 𝐽3

- - 0 2.7670 1 0.9865
𝑑𝑟30
𝑑𝑚

= 0

- - 0 3 1 0.9873
𝑑𝑟30
𝑑𝑚

= 0, 𝑚 ∈ N
- - 0.0645 3 0.9260 0.9479 -
𝐽3 - -0.0645 3 1.0799 1.0237 [39, 311, 338]
- - 0.1995 3 0.7987 0.8776 ∗ -
- - -0.1995 3 1.2521 1.0844 -

- - 0 4.6087 1 1.0106
𝑑𝑟30
𝑑𝑚

= 0

𝐵4 - -0.1141 4.6618 1.2101 1.0902 cf. point 𝐵2

𝐴4 - 0.1142 4.6643 0.8264 0.9009 cf. point 𝐴2

𝐹6 - 0.1531 6 0.7564 0.8531 -
𝐺6 - -0.1531 6 1.3221 1.1279 -

- - 1/7 ∞ 0.75 0.8776 ∗ -
∗ – This value corresponds to the value 𝑟30 =

√
3/2 of Tresca criterion (Table 2.1).

∗∗ – This value corresponds to the value 𝑟30 = 2/√3 of Schmidt-Ishlinsky criterion.
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the parameters 𝜅1 and 𝜅2 for the coinciding points in the 𝑟60 − 𝑟30-diagram can be
obtained (Fig. 2.20). The solution of (2.120) also depends on the starting point, see
e.g. the points 𝐹2 and 𝐹6, 𝐺2 and 𝐺6 with 𝑚1, 𝑚2 ∈ N (Table 2.7). Differences for
the sets of the points discussed above (Table 2.7) in the value 𝑟15

𝑟15 =

©«

(
2−√

3
)−𝑚/2 [

2𝑚 (1− 𝜅)𝑚 +2 (1+ 𝜅)𝑚
]

(
2+√3

)𝑚
(1− 𝜅)𝑚 +

[
1+

(
1+√3

)𝑚]
(1+ 𝜅)𝑚

ª®®®®¬

1/𝑚

(2.121)

lie in the third decimal place and are thus negligible.
The criterion (2.112) can be reformulated in the principal shear stresses with

(2.14)

3𝑚
(
2
3

)𝑚 1
2 (1+ 𝜅)𝑚 +2𝑚 (1− 𝜅)𝑚

[ ( |𝜏12 − 𝜏23 | + 𝜅 (𝜏12 − 𝜏23)
)𝑚+

( |𝜏23 − 𝜏31 | + 𝜅 (𝜏23 − 𝜏31)
)𝑚 + ( |𝜏31 − 𝜏12 | + 𝜅 (𝜏31 − 𝜏12)

)𝑚]
= 𝜎𝑚eq .

(2.122)

This formulation (2.122) describes open surfaces along the space diagonal 𝜏12 =
𝜏23 = 𝜏23 in the principal shear stress space (Subsubsect. 2.5.1.1).

The disadvantages of Cazacu et al. criterion (2.112) are

• the criterion (2.112) includes the modulus function (PA3),
• it cannot be expressed as a function of the invariants in general case (PA4),
• the parameter 𝑚 ≥ 1 is a power (PA9.1),
• Sayir 𝐶1-criterion 3̂−⃝− 3̄ (Table 2.2) can not be described with (2.112) as

function of one parameter,
• the level lines 𝜅 = const. intersect in the 𝑟60 −𝑟30 diagram (Fig. 2.20): same points

can be obtained with different parameter setting (PA9.6) and
• the parameter 𝜅 is oversensitive in the area around 0 and the parameter 𝑚 has low

sensitivity in the range 𝑚 > 20.

Equations (2.119) and (2.120) of the criterion (2.112) are numerically challenging and,
due to the ambiguity of the calculation, rather impractical, although some results are
obtained for particular applications. Recommended setting is 𝑚 = 2 and 3 (Table 2.7)
[338].

Haythornthwaite criterion 3̂− 6̄− 3̄ (Table 2.2) results with 𝑚 → ∞ in
(2.112)

3
max

[ |𝑠1 | − 𝜅 𝑠1, |𝑠2 | − 𝜅 𝑠2, |𝑠3 | − 𝜅 𝑠3 ]
max [2 (1− 𝜅), 1+ 𝜅 ] = 𝜎eq, 𝜅 ∈ [−1, 1] . (2.123)

The values of the criterion (2.123) are

𝑟60 =
max [2(1− 𝜅), 1+ 𝜅 ]
max [2(1+ 𝜅), 1− 𝜅 ] , 𝑟30 =

max [2(1− 𝜅), 1+ 𝜅 ]
max [1+ 𝜅, 1− 𝜅 ] . (2.124)
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CC

Capurso

Haythornthwaite

�푟30

�푟60

0.6

0.6

0.8

1.2

1.4 1.6 1.8 2

�휅 = 0
�휅 = −0.05 �휅 = −0.1 �휅 = −0.2

�휅 = 0.05

�휅 = 0.1

�휅 = 0.2 �푚 → ∞
�푚 = 20
�푚 = 10
�푚 = 6
�푚 = 3
�푚 = 2

�푚 = 3
�푚 = 2

�푚 = 6

�푚 → ∞

�푚 = 20 �푚 = 10

Fig. 19 Cazacu et al. criterion 3̂ − © | 6̄ − 3̄ (112) in the �푟60 − �푟30 diagram. The lines �휅 = const.,
�휅 ∈ [−1, 1] (solid red) and �푚 = const., �푚 ≥ 1 (black and blue) are shown.

The parameter �푐�푛 is weighted with
(
3
√
3/2

)�푛
according to the invariant cos 3�휃 (24)

for the following generalization. The values are

�푟�푚60 =
1 + �푐�푛

1 + (−1)�푛 �푐�푛 (126)

�푟�푚30 = 1 + �푐�푛 (127)

and
�푟�푚15 =

2�푛 (1 + �푐�푛)
2�푛 +

(
2 − √

3
)�푛/2 (

1 + √
3
)�푛

�푐�푛

. (128)

A criterion of hexagonal symmetry results with even power �푛 = 2 or 4 leading to
�푟60 = 1, see (126). Powers �푚 > 12, �푛 > 4 are possible but not of interest, see PA6
and cf. [263].

A generalization of (125) follows with the cosine ansatz [8, 9, 46, 159, 162], see
also [58, 109, 133, 186, 188, 283] and cf. [132, 263, 299]:

• the criterion of trigonal symmetry

√
3 �퐼 ′2

[
1 + �푐3 cos 3�휃 + �푐6 cos2 3�휃

1 + �푐3 + �푐6

]1/�푚
= �휎eq, �푚 ∈ R (129)

with the values

�푟�푚60 =
1 + �푐3 + �푐6
1 − �푐3 + �푐6

and �푟�푚30 = 1 + �푐3 + �푐6 (130)

includes the third invariant of the deviator �퐼 ′3 (6) in the even and odd powers. The
parameters of (129) result as

Fig. 2.20: Cazacu et al. criterion 3̂−⃝ | 6̄− 3̄ (2.112) in the 𝑟60 − 𝑟30 diagram. The lines
𝜅 = const., 𝜅 ∈ [−1, 1] (solid red) and 𝑚 = const., 𝑚 ≥ 1 (black and blue) are shown.

Equation of the criterion 3̂− 6̄− 3̄ (2.123) cannot be recommended for use because
of the case discrimination with the max and modulus functions (PA3).

2.5.3 ⃝-Criteria

The 𝐶1-criteria according to the schemata (2.38)–(2.39) and containing only one
basic shape ⃝ can be grouped together with (Table 2.8)

(√︃
3 𝐼 ′2

)𝑚 1+ 𝑐𝑛
[
3
√

3
2

𝐼 ′3(
𝐼 ′2

)3/2

]𝑛

1+ 𝑐𝑛 = 𝜎𝑚eq, 𝑚 ∈ R, 𝑛 ∈ N. (2.125)

The parameter 𝑐𝑛 is weighted with
(
3
√

3/2
)𝑛

according to the invariant cos3\ (2.24)
for the following generalization. The values are

𝑟𝑚60 =
1+ 𝑐𝑛

1+ (−1)𝑛 𝑐𝑛 (2.126)

𝑟𝑚30 = 1+ 𝑐𝑛 (2.127)

and
𝑟𝑚15 =

2𝑛 (1+ 𝑐𝑛)
2𝑛 +

(
2−√

3
)𝑛/2 (

1+√3
)𝑛
𝑐𝑛

. (2.128)



Name 𝑚 𝑛 𝑐𝑛 𝑟60 𝑟30 𝑟15 References

Geniev-Kissjuk -2 1
-2/11
2/11

1.2019
0.8321

1.1055
0.9199

1.0320
0.9772

[339, 340],
see also [35, 341–343]

– -2 2
-1/10
1/9

1
1.0541
0.9487

1.0274
0.9747

[35]

related to
Leytes

-1

-1

1

2

-1/10
1/10
-1/19
1/18

1.2222
0.8181

1
1

1.1111
0.9091
1.0556
0.9474

1.0325
0.9734
1.0278
0.9737

[343–346],
see also [340–342, 347]

– 1 1
-1/8
1/8

0.7778
1.2857

0.8750
1.1250

0.9598
1.0336

[348–350]

Cazacu–
Revil -Baudard 1 2

-1/18
1/17

1
0.9444
1.0588

0.9714
1.0286

[351]

– 1 4
-0.0490

1/35
1

0.9510
1.0286

0.9628
1.0213

[36, 112]

– 2 1
-2/7
2/7

0.7454
1.3416

0.8452
1.1339

0.9461
1.0342

[116, 352, 353]

Prager 2 2
-1/9
1/8 1

0.9428
1.0607

0.9703
1.0290

[354, 355], see also
[3, 116, 197, 352]

– 2 4
-0.0963

1/17
1

0.9507
1.0290

0.9623
1.0215

[36, 112]

Freudenthal–Gou 3 1
-1/2
1/2

0.6934
1.4423

0.7937
1.1477

0.9179
1.0348

[20], see also [4, 310, 356, 357],
[38–40, 40–42, 63, 311, 358, 359]

– 3 2
-1/6
1/5

1
0.9410
1.0627

0.9687
1.0294

[36, 112]

– 3 4
-0.1417

1/11
1

0.9504
1.0294

0.9619
1.0218

[36, 112]

– 6 1
-0.8563
0.8563

0,6528
1.5319

0.7237
1.1086

0.8451
1.0245

[35, 36]

Drucker 6 2
-1/3
1/2

1
0.9347
1.0699

0.9635
1.0309

[2, 19, 333, 334], see also
[4, 108, 116, 131, 310, 357, 360, 361],

[10, 98, 138, 264, 352, 359, 362]

– 6 4
-0.2671

1/5
1

0.9495
1.0309

0.9605
1.0225

[36, 112]

Cazacu 8 2
-4/9
4/5

1
0.9292
1.0762

0.9588
1.0319

[97, 108, 363, 364]

Raniecki-Mróz 9 3
-0.4506
0.4506

0.8977
1.1139

0.9357
1.0422

0.9538
1.0252

[359]

- 12 1
-0.9211
0.9211

0.7664
1.3048

0.8092
1.0559

0.8835
1.0127

[35, 36]

- 12 2
-2/3
2

1
0.9125
1.0959

0.9439
1.0344

[36, 112]

Dodd-Naruse 12 4
−0.4716

1/2
1

0.9482
1.0344

0.9582
1.0243

[26], see also
[36, 112, 359]

Stockton-Drucker 72 2
-0.9679
30.1205

1
0.9533
1.0489

0.9622
1.0092

[334]
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Table 2.8: Power setting for the ⃝-criterion (2.125) with the parameter limits and corresponding
values. The extreme values 𝑟60 and the extreme values 𝑟30 and 𝑟15 with 𝑟60 = 1 are highlighted in
bold.
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A criterion of hexagonal symmetry results with even power 𝑛 = 2 or 4 leading to
𝑟60 = 1, see (2.126). Powers 𝑚 > 12, 𝑛 > 4 are possible but not of interest, see PA6
and cf. [359].

A generalization of (2.125) follows with the cosine ansatz [33–37], see also
[59, 60, 116, 343, 345, 365] and cf. [101, 359, 366]:

• the criterion of trigonal symmetry

√︃
3 𝐼 ′2

[
1+ 𝑐3 cos3\ + 𝑐6 cos2 3\

1+ 𝑐3 + 𝑐6

]1/𝑚
= 𝜎eq, 𝑚 ∈ R (2.129)

with the values

𝑟𝑚60 =
1+ 𝑐3 + 𝑐6
1− 𝑐3 + 𝑐6

and 𝑟𝑚30 = 1+ 𝑐3 + 𝑐6 (2.130)

includes the third invariant of the deviator 𝐼 ′3 (2.6) in the even and odd powers.
The parameters of (2.129) result as

𝑐3 =
1
2

(
𝑟𝑚60 −1

) (
𝑟30
𝑟60

)𝑚
and 𝑐6 =

1
2

[
𝑟𝑚30 +

(
𝑟30
𝑟60

)𝑚
−2

]
.

• the criterion of hexagonal symmetry as function of 𝐼 ′3 in the even powers

√︃
3 𝐼 ′2

[
1+ 𝑐6 cos2 3\ + 𝑐12 cos4 3\

1+ 𝑐6 + 𝑐12

]1/𝑚
= 𝜎eq, 𝑚 ∈ R (2.131)

with the values

𝑟60 = 1, 𝑟𝑚30 = 1+ 𝑐6 + 𝑐12 and 𝑟𝑚15 = 22 1+ 𝑐6 + 𝑐12

22 +2𝑐6 + 𝑐12
. (2.132)

The parameters of (2.131) result as

𝑐6 =

(
22

𝑟𝑚15
−1

)
𝑟𝑚30 −3 and 𝑐12 = 2+2

(
𝑟𝑚15 −2

) (
𝑟30
𝑟15

)𝑚
.

The criterion (2.131) can be reformulated as function of cos6\ (2.25).
Although both cosine series in (2.129) and (2.131) can be developed, the number

of parameters is pragmatically limited to two (PA9.2). Note that the power 𝑚 is not
a fitting parameter (PA9.1): it is recommended as 𝑚 = 6 in (2.129) and 𝑚 = 12 in
(2.131) to cover the maximum convexity range of the surface (PA8) and set prior to
applying the criterion (Table 2.8, values highlighted in bold).

The parameter constraint in (2.129) is symmetric to the 𝑐3-axis and convex
(Fig. 2.21). The analytical equation for the lower boundary in Fig. 2.21 is unknown
but can be approximated at will, e.g. with the hyperbola
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𝑐6 =
1
3

(
1+ 𝑐

2
3

𝑎2
2

)1/2
− 2

3
with 𝑎2 =

1
3

√︂
11
15

and two straight lines

𝑐6 =
215
1000

±
√︂

11
15

− 𝑐3

±
√︂

11
15

∓ 57
50

.

The (𝑟60, 𝑟30)-diagram with the constraints (Fig. 2.21) is shown in Fig. 2.22 [35, 36].
The parameter restrictions of the criterion (2.131) with 𝑚 = 12 is convex in the

𝑐6−𝑐12 diagram (Fig. 2.23), cf. the parameter restrictions of this criterion with𝑚 = 6
[36, 112]. The analytical equation for the boundary 𝑐12 < 0 (green solid line) is
unknown. The restrictions (Fig. 2.23) are shown in the (𝑟30, 𝑟15)-diagram (Fig. 2.24):
the line 𝑇3 −𝑇4 −𝑃2 −𝑃3 −𝑇1 is not convex.

Both criteria (2.129) and (2.131) are explicitly formulated (PA1) and have no
surrounding surfaces outside the physically sensible area (PA2). However, they do not
include extreme yield figures (PA8). The parameter restrictions are not straightforward
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(PA9.3) and the parameters have no geometric meaning (PA9.5). Due to these rea-
sons, the©-criteria (129) and (131) are numerically challenging (PA6) and cannot be
recommended for solving commonproblems, although some particulate applications
are reported. Nowadays, the ©-criteria have lost their significance.

CC

Capurso

Drucker

�푟30

�푟60

0.6

0.6 0.8

0.8

1.2

1.2 1.4 1.6 1.8 2

�푐3 = 0

�푐3 = 1/3 �푐3 = 2/3 �푐3 = 1

�푐3 = −1/3

�푐3 = −2/3

�푐3 = −1
�푐6 = 0

�푐6 = −2/10

�푐6 = 2/10�푐6 = 4/10

Fig. 21 Convexity conditions (Fig. 20) of the cosine ansatz (129) with the power �푚 = 6 in the
diagram �푟60 − �푟30 [159]. Drucker criterion (99) and the cubic �퐶1-criterion (CC) 3̂ − © − 3̄ (133)
are shown for comparison.

Fig. 2.21: Convexity region of the cosine ansatz (2.129) with the power 𝑚 = 6 [36, 254, 367].
Particular cross sections in the 𝜋-plane are shown for clarity. Drucker criterion (2.99) is shown
for comparison.
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Fig. 2.22: Convexity conditions (Fig. 2.21) of the cosine ansatz (2.129) with the power 𝑚 = 6 in the
diagram 𝑟60 − 𝑟30 [36]. Drucker criterion (2.99) and the cubic 𝐶1-criterion (CC) 3̂−⃝ − 3̄
(2.133) are shown for comparison.Reviewing Yield Criteria in Plasticity Theory 49
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in the �휋-plane are shown for clarity. Dodd-Naruso criterion (Table 8) is shown for comparison.

�퐼 ′3 or their products are weighted with �휎eq in the corresponding power. An absolute
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Fig. 23 Cosine ansatz (131) with the power �푚 = 12 in the �푟30 − �푟15 diagram (Fig. 7). The lines
�푐12 = const. (dashed red) and �푐6 = const. (solid blue) are shown. Drucker criterion (99) (thin
dashed brown) is plotted for comparison. BCC – Szwed bicubic criterion, MAC – multiplicative
ansatz criterion (Table 2). Some particular points from the �푐6 − �푐12-diagram (Fig. 22) are given.

Fig. 2.23: Convexity region of the cosine ansatz (2.131) with the power 𝑚 = 12. Some particular
cross sections in the 𝜋-plane are shown for clarity. Dodd-Naruso criterion (Table 2.8) is shown
for comparison.
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Fig. 2.24: Cosine ansatz (2.131) with the power𝑚 = 12 in the 𝑟30 − 𝑟15 diagram (Fig. 2.8). The lines
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dashed brown) is plotted for comparison. BCC – Szwed bicubic criterion, MAC – multiplicative
ansatz criterion (Table 2.2). Some particular points from the 𝑐6 − 𝑐12-diagram (Fig. 2.23) are given.

(PA9.3) and the parameters have no geometric meaning (PA9.5). Due to these reasons,
the ⃝-criteria (2.129) and (2.131) are numerically challenging (PA6) and cannot be
recommended for solving common problems, although some particulate applications
are reported. Nowadays, the ⃝-criteria have lost their significance.

2.5.4 Polynomial Criteria

The polynomially formulated criteria are characterised by the same power of the
stress 𝑛 ≥ 2, 𝑛 ∈ N in each term. To achieve this, the terms with the invariant 𝐼 ′2, 𝐼 ′3 or
their products are weighted with 𝜎eq in the corresponding power. An absolute term
(the term without invariants) is weighted with 𝜎eq by the maximal power, see e.g.
von Mises criterion (2.41) with 𝑛 = 2, Drucker criterion (2.99) with 𝑛 = 6 or
Dodd-Naruse criterion with 𝑛 = 12 (Table 2.8).

Excluded from von Mises criterion, only the CC 3̂−⃝− 3̄ and BCC 6̂−⃝− 6̄
(Table 2.2) allow an analytical solution with respect of 𝜎eq (PA1). All polynomially
formulated criteria violate PA2 and are difficult to fit parameters and implement.

The linear combination of the polynomially formulated extreme criteria (Table 2.2)

• of trigonal symmetry 3̂− 6̂− 3̄ and 3̂− 6̄− 3̄ and
• of hexagonal symmetry 6̂− 1̂2− 6̄ and 6̂− 1̄2− 6̄

leads to the criteria 3̂− 6̂|⃝|6̄− 3̄ and 6̂− 1̂2|⃝|1̄2− 6̄. Although both criteria meet
PA7, PA8, PA9.1, PA9.2 and PA9.3, they violate PA1. It means that they are not
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suitable for iterative procedures and can only be recommended for use to a limited
extent. Because of PA6, the power can be limited as 𝑛 ∈ [2, 12]. The upper limit
results from the 1̂2 and 1̄2 criteria (Table 2.1) formulated as the intersection of twelve
planes.

2.5.4.1 Cubic 𝑪1-Criterion 3̂−⃝− 3̄

Sayir-Sobotka criterion of trigonal symmetry (Table 2.2)

𝜎eq
(
3𝐼 ′2

) + 𝑐3 𝐼
′
3

1+ 2
33 𝑐3

= 𝜎3
eq with 𝑐3 ∈

[
−32,

32

2

]
(2.133)

represents a convex combination of the polynomially formulated Ivlev 3̂ and
Mariotte 3̄ criteria as an intersection of the three planes in the principal stress
space. It has the structure of a reduced cubic equation [139] with respect to the
equivalent stress 𝜎eq = 𝜎T

0 (2.1). The values 𝑟60 and 𝑟30 are calculated as follows

𝑟60 =
33 +2𝑐3 −

√︁
3 (32 −2𝑐3) (33 +2𝑐3)

22 𝑐3
and (𝑟30)2 = 1+ 2

33 𝑐3 (2.134)

which, when reformulated, gives

𝑟30 =
𝑟60√︃

1− 𝑟60 + (𝑟60)2
with 𝑟60 ∈

[
1
2
, 2

]
. (2.135)

The CC separates the 𝑟60 − 𝑟30 diagram into two areas (Fig. 2.7). The basic shapes
follows with

• 𝑐3 = −32 – Ivlev criterion 3̂ with 𝑟60 = 1/2,
• 𝑐3 = 0 – von Mises criterion ⃝ with 𝑟60 = 1 and
• 𝑐3 = 32/2 – Mariotte criterion 3̄ with 𝑟60 = 2.

The parameter 𝑐3 in (2.133) can be substituted in (2.133) as follows

𝑐3 =
33 (𝑟60 −1)

2+2𝑟60 (𝑟60 −1) with 𝑟60 ∈
[
1
2
, 2

]
(2.136)

or
𝑐3 =

33

2
[(𝑟30)2 −1

]
with 𝑟30 ∈

[
1√
3
,

2√
3

]
(2.137)

in order to obtain the geometric meaning, see Fig. 2.5 and PA9.5.
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2.5.4.2 Bicubic 𝑪1-Criterion 6̂−⃝− 6̄

Szwed criterion of hexagonal symmetry (Table 2.2) is obtained with a convex
combination of polynomially formulated Tresca 6̂ and Schmidt-Ishlinsky 6̄
criteria each of them as an intersection of the six planes in the principal stress space
[36]

(1− 𝜉)
[(
𝐼 ′2 −𝜎2

eq

)2 (
22 𝐼 ′2 −𝜎2

eq

)
−33 𝐼 ′23

]

+ 𝜉
[
33

23 𝐼
′
3 +

32

22 𝐼
′
2𝜎eq −𝜎3

eq

] [
33

23 𝐼
′
3 −

32

22 𝐼
′
2𝜎eq +𝜎3

eq

]
= 0

(2.138)

using the parameter 𝜉 ∈ [0, 1]. It contains the equivalent stress 𝜎eq to the power of 2,
4 and 6 and therefore allows an explicit solution with respect of 𝜎eq (PA1).

The values 𝑟30 and 𝑟15 are given with the bicubic equations

24 ·33 +23 ·33
(
𝑟2

30

)
(𝜉 −22) +26

(
𝑟2

30

)3
(𝜉 −1) −33

(
𝑟2

30

)2
(7𝜉 −24) = 0 (2.139)

and

25 ·33+2 ·33
(
𝑟2

15

)2
(24−7𝜉) +24 ·33

(
𝑟2

15

)
(𝜉−22) +

(
𝑟2

15

)3
(37𝜉−26) = 0 (2.140)

as the lowest positive solutions, which are restricted as follows (Table 2.1)

𝑟30 ∈
[√

3
2
,

2√
3

]
and 𝑟15 ∈

[√︂
3
2

(√
3−1

)
,
√

2
(√

3−1
)]
.

The analytical solutions of (2.139) and (2.140) are laborious and hence omitted.
The BCC divides the 𝑟30 − 𝑟15 diagram into two areas (Fig. 2.8). The criteria of

Tresca 6̂ and Schmidt-Ishlinsky 6̄ are obtained with 𝜉 = 0 and 𝜉 = 1. The
value 𝑟S

30 = 1 of the criterion ⃝ results in

𝜉 = 26/(7 ·13) ≈ 0.7033.

2.5.4.3 𝑪1-criterion 3̂− 6̂|⃝|6̄− 3̄

Capurso criterion 3̂− 6̂− 3̄ (Table 2.2)

ΦCap = 𝛼41𝜎
4
eq 𝐼

′
2 +𝛼31𝜎

3
eq 𝐼

′
3 +𝛼21𝜎

2
eq (𝐼 ′2)2

+ 𝛼11𝜎eq 𝐼
′
2 𝐼

′
3 + 𝛽21 (𝐼 ′2)3 + 𝛽31 (𝐼 ′3)2 −𝜎6

eq = 0
(2.141)

with the coefficients
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𝛼41 = 6
(𝑟60 −1)2 + 𝑟60

𝑟2
60

, 𝛼31 = 33 𝑟60 −1
𝑟2

60
,

𝛼21 = −32
((𝑟60 −1)2 + 𝑟60

)2

𝑟4
60

, 𝛼11 = −34 (𝑟60 −1) ((𝑟60 −1)2 + 𝑟60
)

𝑟4
60

,

𝛽21 =
(1−2𝑟60)2 (𝑟60 −2)2 (1+ 𝑟60)2

𝑟6
60

, 𝛽31 = −33
((𝑟60 −1)2 + 𝑟60

)3

𝑟6
60

(2.142)

and Haythornthwaite criterion 3̂− 6̄− 3̄ (Table 2.2)

ΦHay =
36

26
1
𝑟3

60
(𝐼 ′3)2 − 35

25
𝑟60 −1
𝑟3

60
𝐼 ′2 𝐼

′
3𝜎eq − 34

24
1
𝑟2

60
(𝐼 ′2)2𝜎2

eq

− 33

23

1− 𝑟3
60

𝑟3
60

𝐼 ′3𝜎
3
eq +

32

22

1+ 𝑟2
60

𝑟2
60

𝐼 ′2𝜎
4
eq −𝜎6

eq

(2.143)

are functions of the value 𝑟60 ∈ [1/2, 2]. With the convex combination (2.143) and
(2.141)

Φ6 = (1− 𝜉)ΦCap + 𝜉ΦHay , 𝜉 ∈ [0, 1] (2.144)

one obtains the 𝐶1-criterion 3̂− 6̂|⃝|6̄− 3̄ with the power of stress 𝑛 = 6 in each term.
The resulting criterion describes all points in the 𝑟60 − 𝑟30 diagram (Fig. 2.7) with
the convex shapes in the 𝜋-plane by using two parameters (𝑟60, 𝜉). The analytical
solution for the value 𝑟30 (𝑟60, 𝜉) is cumbersome and therefore omitted.

The criterion (2.144) contains (Table 2.1 and 2.2)

• Szwed criterion 6̂−⃝ − 6̄ of hexagonal symmetry in the 𝜋-plane (Subsub-
sect. 2.5.4.2) with the value 𝑟60 = 1 and the parameter

𝜉 = 1− 2
𝑟2

30
+ 270−115𝑟2

30

216−189𝑟2
30 +64𝑟4

30
, 𝑟30 ∈

[√
3

2
,

√
2

3

]
(2.145)

including

– Tresca criterion 6̂ with 𝜉 = 0,
– Schmidt-Ishlinsky criterion 6̄ with 𝜉 = 1 and
– von Mises criterion ⃝ with 𝜉 = 26/(7 ·13) ≈ 0.7033,

• Ivlev criterion 3̂ with 𝑟60 = 1/2,
• Mariotte criterion 6̄ with 𝑟60 = 2 and
• an approximation of Sayir-Sobotka criterion 3̂−⃝− 3̄ (Subsubsect. 2.5.4.1)

following with 𝑟60 ∈ [1/2, 2] and 𝜉 = 26/(7 ·13).

2.5.4.4 𝑪1-Criterion 6̂− 1̂2|⃝|1̄2− 6̄

The YYC 6̂− 1̂2− 6̄ (Table 2.2)
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ΦYYC = (𝛼41𝜎
4
eq 𝐼

′
2 +𝛼21𝜎

2
eq 𝐼

′2
2 + 𝛽21 𝐼

′3
2 + 𝛽31 𝐼

′2
3 −𝜎6

eq)2

− (𝛼31𝜎
3
eq 𝐼

′
3 +𝛼11𝜎eq 𝐼

′
2 𝐼

′
3)2

(2.146)

is the function of the value

𝑟30 ∈
[√

3
2
,

2√
3

]
(2.147)

with the coefficients

𝛼41 =
2×32
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(
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√
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30

)
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√
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) (
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3
)
,
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)2
, 𝛽31 = − 36

𝑟6
30

(
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√
3𝑟30 + 𝑟2

30

)3
.

(2.148)
The parameter [ ∈ [1, 4/3] in the MAC 6̂− 1̄2− 6̄ (Table 2.2)

ΦMAC =

[(
𝐼 ′2 − ([𝜎eq)2

)2 (
22 𝐼 ′2 − ([𝜎eq)2

)
−33 𝐼 ′23

]

×
[
33

23 𝐼
′
3 +

32

22 𝐼
′
2𝜎eq −𝜎3

eq

] [
33

23 𝐼
′
3 −

32

22 𝐼
′
2𝜎eq +𝜎3

eq

] (2.149)

is replaced by 𝑟30 (2.147) with
[ =

2√
3
𝑟30. (2.150)

With the linear (convex) combination of two latter criteria (2.146) and (2.149)

Φ12 = (1− 𝜉)ΦYYC + 𝜉ΦMAC , 𝜉 ∈ [0, 1] (2.151)

the 𝐶1-criterion 6̂− 1̂2|⃝ |1̄2− 6̄ with the power of stress 𝑛 = 12 in each term is
obtained. It covers all convex shapes in the 𝑟30 − 𝑟15 diagram (Fig. 2.8) with two
parameters (𝑟30, 𝜉). The analytical solution for the value 𝑟15 (𝑟30, 𝜉) is cumbersome
and therefore omitted.

The values 𝑟30 = 𝑟15 = 1 result in the parameter 𝜉 ≈ 0.3901, which corresponds
to von Mises criterion ⃝ (Fig. 2.8). With 𝜉 = 0.3901 and 𝑟30 (2.147) one gets
the approximation of the BCC (2.138). With 𝑟30 = 1 and 𝜉 ∈ [0, 1] a criterion
1̂2−⃝− 1̄2 is obtained, which links Sokolovsky 1̂2 and Ishlinsky-Ivlev 1̄2
regular dodecagons leading to (Table 2.1)

𝑟15 ∈ [0.9659, 1.0353] .
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These relatively small deviations from 𝑟15 = 1 describe the maximum gap between
the MAC and YYC (Fig. 2.8). It falls within the range of the measured data scatter
and is of relevance for theoretical studies.

2.5.5 Criteria with Trigonometric Identity

The criteria discussed below meet PAs1-9 in the best known way, rendering them
the most effective in practice.. Their equations and the parameter restrictions are
clear. The number of basic geometries included in these criteria is sufficient for many
applications.

Implementing the trigonometric criteria is critical to ensure reliable material
description and minimise bias in the modelling (Sect. 2.1). Their use significantly
reduces ambiguity in the material description and optimisation procedure.

These criteria are grouped into the criteria with𝐶0- and𝐶1-continuity: for certain
problems it is convenient to use the "piecewise linear" criteria [67]. The 𝐶1-criteria
can be approximatedwith increasing accuracy by the polygons of trigonal orhexagonal
symmetry using the values 𝑟60, 𝑟30 and 𝑟15 to calculate the parameters.

2.5.5.1 𝑪1-Criterion 3̂− 6̂ |⃝−3̄

Normalized with respect to the uniaxial tensile yield stress 𝜎eq = 𝜎T
0 (2.1),

Podgórski criterion (Table 2.2) reads

𝜎eq =
√︃

3 𝐼 ′2
Ω3 (\, 𝛽3, [3)
Ω3 (0, 𝛽3, [3) (2.152)

with the shape function of trigonal symmetry

Ω3 (\, 𝛽3, [3) = cos
[
1
3
(𝜋𝛽3 − arccos[[3 cos3\ ])

]
(2.153)

and the parameter restrictions

𝛽3 ∈ [0, 1], [3 ∈ [−1, 1] . (2.154)

The criterion (2.152)–(2.154) is obtained by solving the cubic equation (2.133) in
𝜎eq with the trigonometric identity [139]. The values 𝑟60 and 𝑟30 are

𝑟60 =
cos

[ 1
3
(
𝜋𝛽3 − arccos[3

) ]
cos

[ 1
3
(
𝜋𝛽3 − arccos[−[3]

) ] , 𝑟30 =
cos

[ 1
3
(
𝜋𝛽3 − arccos[3

) ]
sin

[ 1
3 𝜋

(
𝛽3 +1

) ] . (2.155)

To avoid numerical issues, the real value function can be introduced in (2.153)
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Ω3 (\, 𝛽3, [3) =ℜ
[
cos

[
1
3
(𝜋𝛽3 − arccos[[3 cos3\ ])

] ]
. (2.156)

Replacing the parameter [3 with

[3 = sin
[
𝜅3
𝜋

2

]
, 𝜅3 ∈ [−1, 1] (2.157)

results in improved parameter sensitivity and numerical stability (PA6).
The criterion (2.152)–(2.154) contains the criteria (Fig. 2.25, Table 2.1 and 2.2)

• Sayir-Sobotka cubic criterion 3̂−⃝− 3̄ with 𝛽3 = {0,1}, cf. [102, 136, 368–
370],

• Capurso criterion 3̂− 6̂− 3̄ with [3 = {−1, 1} and
• Tresca-von Mises transition 6̂−⃝ with 𝛽3 = 1/2, [3 ∈ [0, 1].
Podgórski criterion (2.152)–(2.154) has received great recognition from the
professional community (Table 2.2, Comments). The number of the basic geometries
(Table 2.1) included in the criterion is sufficient for many applications. The parameter
restriction (2.154) is practical.

The disadvantage is that the parameters 𝛽3 and [3 can only be numerically deter-
mined by known values 𝑟60 and 𝑟30. Furthermore, Haythornthwaite criterion
3̂− 6̄− 3̄, which contains Schmidt-Ishlinsky criterion 6̄, cannot be described
with Podgórski criterion limiting its application in the general case.
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with the shape function of hexagonal symmetry

Ω6(�휃, �훽6, �휂6) = cos
[
1
6

(
�휋�훽6 − arccos[ �휂6 cos 6 �휃 ]

)]
. (159)

The parameter restrictions are

�훽6 ∈ [0, 1], �휂6 ∈ [−1, 1] . (160)

The criterion (158)-(160) is obtained by solving the bicubic equation (138) with
respect to �휎eq using the trigonometric identity, cf. Podgórski criterion (152)–(154).
The values �푟30 and �푟15 are

�푟30 =

cos
[
1
6
(
�휋�훽6 − arccos�휂6

)]

cos
[
1
6
(
�휋�훽6 − arccos[−�휂6]

) ] ,

�푟15 =

cos
[
1
6
(
�휋�훽6 − arccos �휂6

) ]

sin
[
1
12

�휋
(
2 �훽6 + 5

)] ,

(161)

In analogy to (156), the real value function can be introduced in (159)

Ω6(�휃, �훽6, �휂6) = ℜ
[
cos

[
1
6

(
�휋�훽6 − arccos[ �휂6 cos 6 �휃 ]

)] ]
. (162)
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Fig. 24 Podgórski yield criterion (152) in the �푟60 − �푟30 diagram (Fig. 6). The lines �훽3 = const.,
�휅3 ∈ [−1, 1] (solid red) and �휅3 = const., �훽3 ∈ [0, 1] (dashed blue) are shown [270], cf. [250, 251],
adapted from [158, 159]. CC - Sayir-Sobotka cubic criterion (Table 2).

Fig. 2.25: Podgórski yield criterion (2.152) in the 𝑟60 − 𝑟30 diagram (Fig. 2.7). The lines
𝛽3 = const., 𝜅3 ∈ [−1, 1] (solid red) and 𝜅3 = const., 𝛽3 ∈ [0, 1] (dashed blue) are shown [82], cf.
[29, 30], adapted from [36, 155]. CC - Sayir-Sobotka cubic criterion (Table 2.2).
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2.5.5.2 𝑪1-Criterion 6̂− 1̂2 | ⃝−6̄

Normalized with respect to the uniaxial tensile yield stress 𝜎eq = 𝜎T
0 (2.1), Rosen-

dahl criterion (Table 2.2) reads

𝜎eq =
√︃

3 𝐼 ′2
Ω6 (\, 𝛽6, [6)
Ω6 (0, 𝛽6, [6) (2.158)

with the shape function of hexagonal symmetry

Ω6 (\, 𝛽6, [6) = cos
[
1
6

(
𝜋𝛽6 − arccos[[6 cos6\ ]

)]
. (2.159)

The parameter restrictions are

𝛽6 ∈ [0, 1], [6 ∈ [−1, 1] . (2.160)

The criterion (2.158)-(2.160) is obtained by solving the bicubic equation (2.138) with
respect to 𝜎eq using the trigonometric identity, cf. Podgórski criterion (2.152)–
(2.154). The values 𝑟30 and 𝑟15 are

𝑟30 =
cos

[ 1
6
(
𝜋𝛽6 − arccos[6

) ]
cos

[ 1
6
(
𝜋𝛽6 − arccos[−[6]

) ] , 𝑟15 =
cos

[ 1
6
(
𝜋𝛽6 − arccos[6

) ]
sin

[ 1
12 𝜋

(
2 𝛽6 +5

) ] . (2.161)

In analogy to (2.156), the real value function can be introduced in (2.159)

Ω6 (\, 𝛽6, [6) =ℜ
[
cos

[
1
6

(
𝜋𝛽6 − arccos[[6 cos6\ ]

)] ]
. (2.162)

Replacing the parameter [6 with

[6 = sin
[
𝜅6
𝜋

2

]
, 𝜅6 ∈ [−1, 1] (2.163)

results in improved parameter sensitivity and numerical stability, cf. (2.157).
The criterion (2.158)–(2.160) contains the criteria (Fig. 2.26, Table 2.1 and 2.2)

• Szwed bicubic criterion 6̂−⃝− 6̄ with 𝛽6 = {0, 1},
• Yu yield criterion 6̂− 1̂2− 6̄ with [6 = {1,−1} and
• Sokolovsky-von Mises transition 1̂2−⃝ with 𝛽3 = 1/2, [6 ∈ [0,1].
The criterion (2.158)–(2.159) is suitable for solving several problems of plasticity
theory. The number of basic geometries included in the criterion is sufficient for
many applications. The parameter restriction (2.160) is convenient for the practice,
cf. (2.154).

The disadvantage is that the parameters 𝛽6 and [6 in (2.158)–(2.160) can only be
numerically determined by the known values 𝑟30 and 𝑟15. Furthemore, the MAC 6̂−
1̄2− 6̄ containing Ishlinsky-Ivlev criterion 1̄2 cannot be described by Rosen-
dahl criterion, which limits the application of the criterion in the general case.
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Replacing the parameter �휂6 with

�휂6 = sin
[
�휅6

�휋

2

]
, �휅6 ∈ [−1, 1] (163)

results in improved parameter sensitivity and numerical stability, cf. (157).
The criterion (158)–(160) contains the criteria (Fig. 25, Table 1 and 2)

• Szwed bicubic criterion 6̂ − © − 6̄ with �훽6 = {0, 1},
• Yu yield criterion 6̂ − 1̂2 − 6̄ with �휂6 = {1,−1} and
• Sokolovsky-vonMises transition 1̂2 − © with �훽3 = 1/2, �휂6 ∈ [0, 1].
The criterion (158)–(159) is suitable for solving several problemsof plasticity theory.
The number of basic geometries included in the criterion is sufficient for many
applications. The parameter restriction (160) is convenient for the practice, cf. (154).

The disadvantage is that the parameters �훽6 and �휂6 in (158)–(160) can only be
numerically determined by the known values �푟30 and �푟15. Furthemore, the MAC
6̂ − 1̄2 − 6̄ containing Ishlinsky-Ivlev criterion 1̄2 cannot be described by Rosen-
dahl criterion, which limits the application of the criterion in the general case.

5.5.3 I0-Criterion 3̂ − 6̂ | 1̂2 | 6̄ − 3̄

A linear combination of the criteria 3̂ − 6̂ − 3̄ and 6̄, cf. [158, 159, 270]
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Fig. 25 Rosendahl criterion (159) in the �푟30 − �푟15 diagram (Fig. 7). The lines �훽6 = const.,
�휅6 ∈ [−1, 1] (solid red) and �휅6 = const., �훽6 ∈ [0, 1] (dashed blue) are shown [11], cf. Fig. 24.
BCC – Szwed bicubic criterion, MAC – multiplicative ansatz criterion (Table 2).
Fig. 2.26: Rosendahl criterion (2.159) in the 𝑟30 − 𝑟15 diagram (Fig. 2.8). The lines 𝛽6 = const.,
𝜅6 ∈ [−1, 1] (solid red) and 𝜅6 = const., 𝛽6 ∈ [0, 1] (dashed blue) are shown [81], cf. Fig. 2.25.
BCC – Szwed bicubic criterion, MAC – multiplicative ansatz criterion (Table 2.2).

2.5.5.3 𝑪0-Criterion 3̂− 6̂ | 1̂2 | 6̄− 3̄

A linear combination of the criteria 3̂− 6̂− 3̄ and 6̄, cf. [36, 82, 155]

Φ3 =
√︁

3𝐼 ′2

[
(1−𝛼)cos

[1
3 (𝜋 𝛽3−arccos[cos3\])]

cos
[ 1

3 𝜋 𝛽3
] +𝛼cos

[
1
6

arccos [cos6\]
] ]
−𝜎eq

(2.164)
with the parameter restriction

𝛼 ∈ [0, 1] and 𝛽3 ∈ [0, 1] (2.165)

provides the 𝐶0-criterion 3̂− 6̂ | 1̂2 | 6̄− 3̄ of trigonal symmetry. The values are

𝑟60 =
2

1+𝛼+√3 (1−𝛼) tan
𝜋 𝛽3

3

and 𝑟30 =
2

√
3+ (1−𝛼) tan

[
𝜋 𝛽3

3

] . (2.166)

We obtain the parameters 𝛼 and 𝛽3 with the known values 𝑟60 and 𝑟30 as

𝛼 = 2− 2
√

3
𝑟30

+ 2
𝑟60

and 𝛽3 =
3
𝜋

arctan

[
𝑟60 (

√
3𝑟30 −2)

(2+ 𝑟60) 𝑟30 −2
√

3𝑟60

]
. (2.167)

Sokolovsky criterion 1̂2 with 𝑟60 = 𝑟30 = 1 (Fig. 2.6 b and Table 2.1) follows with
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𝛼 = 4−2
√

3 ≈ 0.5359 and 𝛽3 = 0.5. (2.168)

The criterion (2.164) describes all points in the 𝑟60−𝑟30 diagram (Figs. 2.7 and 2.27).
It contains the criteria (Table 2.2)

• Capurso criterion 3̂− 6̂− 3̄ with 𝛼 = 0 and 𝛽3 ∈ [0, 1],
• Yu yield criterion 6̂− 1̂2− 6̄ with 𝛼 ∈ [0, 1], 𝛽3 = 1/2 and
• approximation of Haythornthwaite criterion 3̂− 6̄− 3̄ with 𝛼 ∈ [0, 1] and

𝛽3 =

{
1, for 3̂− 6̄,
0, for 6̄− 3̄ (2.169)

leading to the enneagons in the 𝜋-plane [81, 82, 155].
The equations and the parameter constraints (2.164)–(2.167) are simple, so this

criterion is advocated for use in practice. The function cos6\ in (2.164) can be
replaced with (2.25) for a consistent expression of the criterion as a function of
cos3\.

The disadvantage is, that the geometry of Haythornthwaite criterion cannot
be exactly reproduced with the criterion (2.164), although both criteria coincide in
the 𝑟60 − 𝑟30 diagram [36, 82, 155]. It is also detrimental that the criterion (2.164)
does not include von Mises criterion ⃝.

2.5.5.4 𝑪0-Criterion 6̂− 1̂2 | 2̂4 | 1̄2− 6̄

A linear combination of the criteria 6̂− 1̂2− 6̄ and 1̄2, cf. the𝐶0-criterion 3̂− 6̂ | 1̂2 | 6̄−
3̄ (Subsubsect. 2.5.5.3)
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Fig. 26 �퐶0-criterion 3̂ − 6̂ | 1̂2 | 6̄ − 3̄ (164) in the �푟60 − �푟30 diagram. The lines �훽3 = const.,
�훼 ∈ [0, 1] (solid red) and �훼 = const., �훽3 ∈ [0, 1] (dashed blue) are shown. CC – cubic criterion
(Table 2).

5.5.4 I0-Criterion 6̂ − 1̂2 | 2̂4 | 1̄2 − 6̄

A linear combination of the criteria 6̂ − 1̂2 − 6̄ and 1̄2, cf. the �퐶0-criterion 3̂ −
6̂ | 1̂2 | 6̄ − 3̄ (Subsubsect. 5.5.3)

Φ6 =
√
3 �퐼 ′2


(1 − �훼)

cos
[
1
6
(�휋 �훽6 − arccos [cos 6 �휃])

]

cos
[
1
6
�휋 �훽6

] +

�훼 cos
[
1
12

arccos [cos 12 �휃]
] ]

− �휎eq

(170)

with the parameter restriction

�훼 ∈ [0, 1] and �훽6 ∈ [0, 1] (171)

provides the �퐶0-criterion 6̂− 1̂2 | 2̂4 | 1̄2− 6̄ of hexagonal symmetry. The values are

�푟60 = 1, �푟30 = 2
[√

3 − �훼
(√

3 − 2
)
+ (1 − �훼) tan

[
�휋 �훽6
6

] ]−1
(172)

and

�푟15 = 2
√
2
[
1 +

√
3 + (1 − �훼)

(√
3 − 1

)
tan

[
�휋 �훽6
6

] ]−1
. (173)

We obtain the parameters �훼 and �훽6 with the known values �푟30 and �푟15 as

Fig. 2.27: 𝐶0-criterion 3̂− 6̂ | 1̂2 | 6̄− 3̄ (2.164) in the 𝑟60 − 𝑟30 diagram. The lines 𝛽3 = const.,
𝛼 ∈ [0, 1] (solid red) and 𝛼 = const., 𝛽3 ∈ [0, 1] (dashed blue) are shown. CC – cubic criterion
(Table 2.2).
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Φ6 =
√︁

3𝐼 ′2

[
(1−𝛼) cos

[ 1
6 (𝜋 𝛽6−arccos [cos6\])]

cos
[1
6 𝜋 𝛽6

] +𝛼cos
[

1
12

arccos[cos12\]
] ]
−𝜎eq

(2.170)
with the parameter restriction

𝛼 ∈ [0, 1] and 𝛽6 ∈ [0, 1] (2.171)

provides the 𝐶0-criterion 6̂− 1̂2 | 2̂4 | 1̄2− 6̄ of hexagonal symmetry. The values are

𝑟60 = 1, 𝑟30 = 2
[√

3−𝛼
(√

3−2
)
+ (1−𝛼) tan

[
𝜋 𝛽6

6

] ]−1
(2.172)

and

𝑟15 = 2
√

2
[
1+

√
3+ (1−𝛼)

(√
3−1

)
tan

[
𝜋 𝛽6

6

] ]−1
. (2.173)

We obtain the parameters 𝛼 and 𝛽6 with the known values 𝑟30 and 𝑟15 as

𝛼 = 1−
2

(
2+√3

)3/2

𝑟15
+

(
2+√3

) (
2+√3𝑟30

)
𝑟30

, (2.174)

𝛽6 =
6
𝜋

arctan



√
2

(
3
√

3−5
)
+

(√
3−2

)
𝑟15

√
2

(√
3−1

)
𝑟30 + 𝑟15

(
2
√

3−4+3𝑟30 −2
√

3𝑟30

) 𝑟30


. (2.175)

The criterion 2̂4 with the values 𝑟15 = 𝑟30 = 1 (Table 2.1) follows with

𝛼 = 2
(
2+

√
3
) (

2−
√︃

2+
√

3
)
≈ 0.5087 and 𝛽6 = 0.5. (2.176)

The criterion (2.170) describes all points in the 𝑟30 − 𝑟15 diagram (Fig. 2.8 and 2.28).
It contains the criteria (Table 2.2):

• Yu yield criterion 6̂− 1̂2− 6̄ with 𝛼 = 0, 𝛽6 ∈ [0, 1],
• 𝐶0-criterion 1̂2− 2̂4− 1̄2 with 𝛼 ∈ [0, 1], 𝛽6 = 1/2 and
• approximation of the MAC 6̂− 1̄2− 6̄ with 𝛼 ∈ [0, 1] and

𝛽6 =

{
1, for 6̂− 1̄2,
0, for 1̄2− 6̄. (2.177)

The Eqs. (2.170)–(2.175) are simple, so this criterion is recommended for practical
use. The functions cos 6\ and cos 12\ can be replaced with (2.25) and (2.26) for
uniform presentation of the criterion as function of cos3\ or cos6\.

The disadvantage is, that the geometry of the MAC (Table 2.2) cannot be exactly
described with the criterion (2.170), although both criteria coincide in the 𝑟30 − 𝑟15
diagram. It is detrimental, that the criterion (2.170) does not include the ⃝-criterion.
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Fig. 27 �퐶0-Criterion 6̂−1̂2 | 2̂4 | 1̄2−6̄ (170) in the �푟30−�푟15 diagram (Fig. 7). The lines �훽6 = const.,
�훼 ∈ [0, 1] (solid red) and �훼 = const., �훽6 ∈ [0, 1] (dashed blue) are shown. The criterion 2̂4
follows with �훼 ≈ 0.5087 and �훽6 = 1/2 (176). BCC – bicubic criterion (Table 2).

are examined and assigned to the mechanical properties at the basic states of the
plane stress

�푟C60, �푟
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45 , �푟

Cc
30 , �푟

S
30, �푟

Tt
30, �푟

TS
15 and �푟CC0

(Table 3). The use of these dimensionless values simplifies the fitting procedure and
comparison of material properties.

Secondly, a nomenclature for isotropic yield criteria is refined (Table 1). The
regular polygons of trigonal and hexagonal symmetry in the �휋-plane are represented
schematically depending on the number of their edges and orientation, e.g. 3̂, 3̄,
6̂ and 6̄. The rotationally symmetric vonMises criterion is denoted as a circle
(Subsect. 4.1). The yield criteria involving three or more basic geometries are of
relevance, which limits the number of appropriate yield criteria to twelve (Table 2),
but the methods of their derivation are different.

In the next step, numerous yield criteria are assigned to the five derivation paths
(Sect. 5). The dimensionless parameters �푟60, �푟30 and �푟15 (46) help to compare the
criteria of trigonal symmetry in the (�푟60, �푟30)-diagram (Fig. 6) and the criteria of
hexagonal symmetry – in the (�푟30, �푟15)-diagram (Fig. 7). Considering these dia-
grams, it is obvious that the criteria should be the functions of two parameters
additional to the equivalent stress �휎eq = �휎T

0 (Table 2).
In summary about the derivation paths:

I. The easiest way to interpret the classical yield criteria is using the principal
shear space (Subsect. 5.1). The representation of the polyhedra in this space is
elegant but not very useful for generalization. Spatial imagination is required to
recognise the resulting shape in the cross section �휁 = 0 (13). Since the meaning

Fig. 2.28: 𝐶0-Criterion 6̂− 1̂2 | 2̂4 | 1̄2− 6̄ (2.170) in the 𝑟30 − 𝑟15 diagram (Fig. 2.8). The lines
𝛽6 = const., 𝛼 ∈ [0, 1] (solid red) and 𝛼 = const., 𝛽6 ∈ [0, 1] (dashed blue) are shown. The
criterion 2̂4 follows with 𝛼 ≈ 0.5087 and 𝛽6 = 1/2 (2.176). BCC – bicubic criterion (Table 2.2).

2.6 Conclusion

The present work reviews the yield criteria of mathematical plasticity theory. These
criteria are pressure-insensitive: the influence of the first invariant of the stress
tensor 𝐼1 (2.4) is neglected. This assumption, which is tacitly omitted in numerous
publications and is also not considered in this paper, can be applied to very ductile
materials in the range 𝐼1 ≤ 0 [87, 145, 236–238], see also [64, 85, 148, 194, 239, 241,
242, 302, 371] or, in certain circumstances, in the range 𝐼1 ≤ 𝜎T

0 [36, 81, 82, 272].
Pressure-sensitivity can be achieved by the 𝐼1-substitution (2.44) in the yield criteria
(PA5).

Firstly, the geometric properties of the yield surfaces calculated at the stress angles
\ = 𝜋/3, 𝜋/4, 𝜋/6, 𝜋/12 and 0

𝑟60, 𝑟45, 𝑟30, 𝑟15 and 𝑟0

are examined and assigned to the mechanical properties at the basic states of the
plane stress

𝑟C
60, 𝑟

TT
60 , 𝑟

CS
45 , 𝑟

Cc
30 , 𝑟

S
30, 𝑟

Tt
30, 𝑟

TS
15 and 𝑟CC

0

(Table 2.3). The use of these dimensionless values simplifies the fitting procedure
and comparison of material properties.

Secondly, a nomenclature for isotropic yield criteria is refined (Table 2.1). The
regular polygons of trigonal and hexagonal symmetry in the 𝜋-plane are represented
schematically depending on the number of their edges and orientation, e.g. 3̂, 3̄,
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6̂ and 6̄. The rotationally symmetric von Mises criterion is denoted as a circle
(Subsect. 2.4.1). The yield criteria involving three or more basic geometries are of
relevance, which limits the number of appropriate yield criteria to twelve (Table 2.2),
but the methods of their derivation are different.

In the next step, numerous yield criteria are assigned to five derivation paths
(Sect. 2.5). The dimensionless parameters 𝑟60, 𝑟30 and 𝑟15 (2.46) help to compare
the criteria of trigonal symmetry in the (𝑟60, 𝑟30)-diagram (Fig. 2.7) and the criteria
of hexagonal symmetry – in the (𝑟30, 𝑟15)-diagram (Fig. 2.8). Considering these
diagrams, it is obvious that the criteria should be the functions of two parameters
additional to the equivalent stress 𝜎eq = 𝜎T

0 (Table 2.2).
In summary about the derivation paths:

I. The easiest way to interpret the classical yield criteria (Fig. 2.1) is using the
principal shear space (Subsect. 2.5.1). The representation of the polyhedra in this
space is elegant but not very useful for generalization. Spatial imagination is
required to recognise the resulting shape in the cross section Z = 0 (2.13). Since
the meaning of polyhedra in (𝜏12, 𝜏23, 𝜏31)-space is unclear, this derivation path
has no further reach and is left to academic purposes.

II. The criteria of Karafillis-Boyce (Subsubsect. 2.5.2.2) and Cazacu
et al. (Subsubsect. 2.5.2.3) as power functions of stresses lie in the realm of
mathematical trickery. They can be safely used with the powers 𝑚 ∈ [1, 2] in the
first case and 𝑚 ∈ {2, 3} in the second. The meaning of the parameters is missing.
The reformulation of the criteria in the invariants

(
𝐼2, 𝐼

′
3
)

or (𝐼2, \) is only possible
for the powers 𝑛 ∈ N. Together, these drawbacks negate the utility of both criteria.

III. The ⃝-criteria (Subsect. 2.5.3) have a rather historical significance. Numerous
practical problems have been treated with these criteria. The development of
such criteria is known as the cosine ansätze (2.129) and (2.131) but is no longer
necessary.

IV. The polynomial formulated Sayir-Sobotka 𝐶1-criterion 3̂−⃝− 3̄ (2.133)
and Szwed 𝐶1-criterion 6̂−⃝− 6̄ (2.138) can be solved analytically with respect
of 𝜎eq using Cardano formula (Subsubsect. 2.5.4.1 and 2.5.4.2). However, PA2
is violated here.
The 𝐶1-criteria 3̂ − 6̂| ⃝ |6̄ − 3̄ (2.144) and 6̂ − 1̂2| ⃝ |1̄2 − 6̄ (2.151) include
the extreme yield figures. The implementation of these two criteria involves
unnecessary mathematical effort (PA1 and PA2), however, they can be applied
while searching for a convex shape of Φ by fitting.

V. The equations of Sayir-Sobotka and Szwed criteria can be resolved on
the basis of the trigonometric identity (Subsubsect. 2.5.5.1 and 2.5.5.2). These
solutions lead to

– Podgórski 𝐶1-criterion 3̂− 6̂| ⃝−3̄ (2.152) and
– Rosendahl 𝐶1-criterion 6̂− 1̂2| ⃝−6̄ (2.158)

as function of the stress angle \ (2.24). Both criteria are crucial for modelling
because they fulfil several PAs (Sect. 2.3.2), especially PA1 and PA2.
The linear combination of Capurso 𝐶0-criterion 3̂− 6̂− 3̄ with Schmidt-
Ishlinsky criterion 6̄ leads to 𝐶0-criterion 3̂− 6̂ |1̂2|6̄− 3̄ (2.164). By analogy,
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the linear combination of the YYC 𝐶0-criterion 6̂− 1̂2− 6̄ with Ishlinsky-
Ivlev criterion 1̄2 leads to 𝐶0-criterion 6̂− 1̂2 |2̂4| 1̄2− 6̄ (2.170). However,
the upper convexity restriction 3̂− 6̄− 3̄ of the criterion (2.164) and 6̂− 1̄2− 6̄
of the criterion (2.170) do not fit the criteria of Haythornthwaite and
MAC respectively. This shows the limitations of the introduced nomenclature
(Subsect. 2.4.1).

The proposed nomenclature (Table 2.1 and 2.2) highlights the fact that numerous
criteria have been suggested more than once and provides hints for finding new
derivation paths. PA8 expects the criteria to include the extreme yield figures. This
means that they should encompass the upper and lower convexity limits:

• 3̂− 6̂− 3̄ and 3̂− 6̄− 3̄ for criteria of trigonal symmetry (Fig. 2.7) and
• 6̂− 1̂2− 6̄ and 6̂− 1̄2− 6̄ for criteria of hexagonal symmetry (Fig. 2.8).

Therefore, the missing criteria are:

• 𝐶0- and 𝐶1-criteria 3̂− 6̂|⃝|6̄− 3̄ and
• 𝐶0- and 𝐶1-criteria 6̂− 1̂2|⃝|1̄2− 6̄

which include Haythornthwaite criterion in the first case and the MAC in
the second one. It is expected that they should meet the PAs. Since these explicitly
formulated criteria are not known, they are replaced by four criteria (Subsect. 2.5.5).

The above results in six yield criteria with one parameter in addition to 𝜎eq = 𝜎T
0

(Table 2.2) becoming obsolete as being particular. The criteria with two parameters
are state of art. Further generalisations of the yield criteria are possible, but the
number of parameters increases making them unusable. The question of whether
there is a yield criterion that generalises all known criteria is therefore not relevant.

The recommended yield criteria (Subsect. 2.5.5) allow a consistent numerical
verification in component design and the search for component weak points with
various parameter setting. The approximation of the measured data with these criteria
for ductile isotropic materials is then unambiguous and the comparison of the
properties between different materials is clear.

Although the development of computing technology is making enormous progress,
the elegant criteria are still preferred. Using the criteria, that PAs meet, significantly
reduces implementation errors: they are easier to master. In any case, the search for
the most suitable yield criteria and new derivation paths continues [372].
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Chapter 3
Minimum Test Effort-Based Derivation of
Constant-Fatigue-Life Curves - Displayed for the
Brittle UD Composite Materials

Ralf Cuntze

Abstract Series production of safety-relevant structural parts requires a Design
Verification (DV) guaranteeing Structural Integrity. This means, it is to demonstrate
that No relevant limit failure state is met considering all Dimensioning Load Cases
(DLCs). These DLCs involve static, dynamic, and cyclic loading focusing lifetime.
However, lifetime prediction is a pain point for a better use especially of laminated
composites in lightweight design. A generally practical tool is not available. Hence,
each novel high-performance UD-lamina (ply)-composed laminate requires a new
effortful test campaign. Therefore, the idea of the author-founded Germany-wide
group BeNa (in 2010) was to base fatigue life prediction embedded and lamina-
wise in order to become more general in future. This idea also fits to Cuntze’s
“modal” Failure-Mode-Concept (FMC), which is based on material symmetry facts
dedicating a ‘generic’ number to ideally homogeneous materials, namely 2 for the
isotropic material and 5 for the transversely-isotropic UD lamina material. Fracture
morphology gives evidence: Each strength property corresponds to a distinct strength
failure mode or to a strength failure type Normal Fracture (NF) or Shear Fracture
(SF). In the case of UD materials 2 FiberFailure (FF) and 3 InterFiberFailure (IFF)
modes are faced.

In lifetime prediction strain-life and stress-life models are used. For ductile
materials one single plastic strain-linked yield mechanism dominates and strain-life
models are applied. However for brittle materials the elastic strain becomes dominant
and stress-life models are used. Micro-damage mechanisms drive fatigue failure and
several fracture mechanisms come to act. This asks for a so-called modal approach
that captures all fracture failure modes.

The automatic establishment of the not piecewise straight Constant Fatigue Life
(CFL) curves is the challenging task. All SN-curves’ information and all the CFL
curves (𝑁 = const) are captured by the Haigh Diagram 𝜎𝑎 (𝜎𝑚), with 𝜎𝑎 the stress
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amplitude and 𝜎𝑚 the mean stress. The author’s idea for the generation of such an
automatically deducible SFC-curve includes to provide:

1. At minimum one single SN-curve as Master curve of each mode (by measurement).
2. A strength failure criterion (SFC) that can quantify the micro-damage portions

under cyclic loading (due to experience, in the brittle case given by a static one).
3. A model that can predict other SN-curves on the basis of a mode Master Curve

(by Kawai’s Model ‘Modified Fatigue Strength Ratio Ψ′).
4. A physical model to map the test data in the transition domain as most problematic

region in the Haigh diagram, where the modes interact and the CFL curve heavily
decays (a decay function was found).

A first model validation of this private investigation, using test data from Dr. C. Hahne,
AUDI, looks very promising and asks for funding.

3.1 Introduction

3.1.1 Fatigue Design Verification (DV) Task with Terms

Designing involves Design Dimensioning and Design Verification (DV). Focus in
design is the strength DV of non-cracked structural parts and the fracture mechanics-
based DV of cracked structural parts by Damage Tolerance Tools, see [1]. The size
of the damage decides whether it is to apply a SFC for Onset-of-failure in a critical
material ‘Hot Spot’ of the un-cracked (probably still micro-damaged) structural part
or a fracture mechanics-based Damage Tolerance Condition in case of a technical
crack (macro-damaged). Estimation of lifetime here means to assess the growth of
the micro-damage before reaching a technical (macro-damage) crack size.

Domains of fatigue scenarios and analyses are:

LCF: high stressing and straining,
HCF: intermediate stressing 10.000 < 𝑛 < 2.000.000 cycles (rotor tubes, bridges,

large towers, off-shore structures, planes, etc.), and
VHCF: low stress and low strain amplitudes (see SPP1466, VeryHighCycleFatigue
> 107 cycles, in centrifuges, wind energy rotor blades, etc.).

Design Verification demands for reliable reserve factors 𝑅𝐹 which demand for reliable
SFCs. Such a SFC is the mathematical formulation 𝐹 = 1 of a failure curve or of a
failure surface (body). Generally required are a yield SFC and fracture SFCs. A yield
SFC usually describes just one mode, i.e. for isotropic materials Mises describes
shear yielding SY. Fracture SFCs for isotropic materials usually have to describe two
independent fracture modes, shear fracture SF and normal fracture NF. For the here
focused transversely-isotropic uni-directionally reinforced UD-lamina materials one
counts five [1–5].

Principally, in order to avoid either to be too conservative or too un-conservative, a
separation is required of the always needed analysis of the average structural behavior
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in Design Dimensioning (using average properties and average stress-strain curves)
in order to obtain best information,being a 50% expectation value, from the mandatory
single Design Verification analysis of the final design, where statistically minimum
values for strength and minimum, mean or maximum values for other task-demanded
properties are to apply as so-called Design Values. Cyclic fatigue Life consists of
three phases. This means for a laminate [1, 6]:

Phase I: Increasing micro-damage acts in a lamina embedded in a laminate up to
a discrete micro-damage onset. Determination of the accumulating micro-damage
portions initiated at the end of the elastic domain and dominated by diffuse micro-
cracking + matrix yielding inclusively cavitation under 3D-tensile stressing, and
finally little cracks such as micro-delaminations. Degradation begins with the
onset of the diffuse micro-cracking above in the strain hardening domain until
Inter-Fiber-Failure (IFF1, IFF3) occurs.

Phase II: Stable local discrete micro-damage growth within the laminate up to the
growth of the width of the dominating discrete micro-cracks (after localization)
including micro-delaminations. Phase II is usually dedicated to fatigue and basi-
cally linked to discrete micro-damage growth. (In cyclic loading, degradation is
more diffuse than in static loading).

Phase III: Final in-stable fracture of the laminate initiated by Fiber-Failure (FF)
and probably by the compressive IFF2 of a lamina and possible criticality of the
loaded laminate due to the macro-damage delamination. This phase is usually
dedicated to fracture mechanics, to macro-damage and macro-cracking.

Methods for the prediction of durability, regarding the lifespan of the structural
material and thereby of the structural part, involves long time static loading which
is linked to Static Fatigue and further (cyclic) Fatigue. Fatigue failure requires a
Procedure for Fatigue Life Estimation necessary to perform the cyclic DV.

3.1.2 Fatigue Micro-Damage Drivers of Ductile and Brittle
behaving Materials

As still mentioned, there are strain-life (plastic deformation decisive) and stress-life
models used. For ductile materials strain-life (plastic strain-based) models are applied
because a single yield mechanism dominates. For brittle materials the elastic strain
amplitude becomes dominant and stress-life models are applied. With brittle mate-
rials inelastic micro-damage mechanisms drive fatigue failure and several fracture
mechanisms may come to act. This asks for a modal approach that captures all failure
modes which are here fracture failure modes.

Above two models can be depicted in a Goodman diagram and in a Haigh diagram.
The Goodman diagram provides the maximum tolerable stresses 𝜎max of the material
(it is commonly used in construction specifically for concrete). Here, the Haigh
diagram with its double information (𝜎a,𝜎m) will be applied, because just to use
a single information 𝜎a or Δ𝜎 = 2𝜎a or 𝜎max is not sufficient for the DV-analysis.
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A Haigh Diagram represents all SN curve information by its Constant Fatigue Life
(CFL) curves and this is the focus of this investigation.

Firstly, the basic differences between ductile and brittle materials are to consider
[1, 3]:

• Ductile Material Behavior, isotropic materials: mild steel
111 1micro-damage mechanism acts ≡ “slip band shear yielding” and drives micro-
damage under tensile, compressive, shear and torsional cyclic stresses: This single
mechanism is primarily described by 1 SFC, a yield failure condition (criterion)
of Mises!

• Brittle Material Behavior, isotropic materials: concrete, grey cast iron, etc.
222 micro-damage driving mechanisms act ≡ 2 fracture failure modes Normal
Fracture failure (NF) and Shear Fracture failure (SF) under compression described
by 2 fracture failure conditions, the 2 SFCs for NF and SF, where porosity is always
to consider.

• Brittle Material Behavior, transversely-isotropic UD-materials:
555 micro-damage driving fracture failure mechanisms act≡ 5 fracture failure modes
described by 5 SFCs = strength fracture failure conditions.

3.1.3 Short State-of-the-Art Regarding Cyclic Strength of
UD-Laminates

Experience with composites of fiber-reinforced plastics FRP monitors: UD ply-
composed laminates behave brittle, experience early fatigue damage, but show benign
fatigue failure behavior in case of ‘well-designed’ laminates until finally a pretty
‘Sudden Death’ occurs (fiber-dominated laminates are used in high performance stress
applications whereby fiber-dominated means that there are 0◦-plies in all significant
loading directions, which requires > 3 fiber direction angles 𝛼).

No Lifetime Prediction Method is available, that is applicable to any lamina (the
physical ply or the lamella in construction) and UD ply-composed laminate. The
procedures base on specific laminate lay-ups and therefore Short test results cannot
be generally applied. Embedded ply-degradation must be non-linearly considered.
Endurance strength procedures base – as with metals – on 𝜎a,𝜎m.

Present in Mechanical Engineering as an Engineering Approach: Applying a
Static Design Limit Strain of Y < 0.3% in multi-axial laminate design practically
means negligible matrix-micro-cracking in the cases of > 3 fiber-directions. Design
experience proved: Then, practically no IFF-caused fatigue danger of a laminate is
given [4, 7, 8].

Future in Mechanical Engineering: Design Limit Strain shall be increased be-
yond Y ≈ 0.5% (EU-project: MAAXIMUS to better exploit UD-materials). Then,
dependent on the matrix, first filament breaks may change the early diffuse matrix
micro-cracking to a discrete and more critical localized one.
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Present Engineering Approach in Civil Engineering (Construction) for FRP mate-
rials and its semi-finished reinforcement products such as a pultruded rod, a strand
cut-out of a fiber-grid, lamella (= tape) etc: In the case of a so-called ‘not predom-
inantly static loading’ the required fatigue life must be demonstrated by measured
SN-curves (Stress-failure cycle 𝑁), the given operational loading spectrum and a
hypothesis for the accumulation of the micro-damages. Bounds are set by the required
minimum micro-crack width of the Serviceability Limit State SLS and deformation
restrictions for instance in case of bridge bending. If there are only carbon-fibers
used for the reinforcement, where corrosion is no problem, then the SLS micro-crack
size could be increased a little for future design, if not steel is used in the structural
part at the same time.

Considering the high-performance UD lamina-composed laminates the classical
fatigue tests are performed on each novel laminate. In this context the author invited
German colleagues in 2000 to discuss the fatigue strength design situation during
a special meeting, according to the VDI guideline 2014, sheet 3, [7]. Then, an idea
of the author-founded Germany-wide group BetriebsfestigkeitsNachweis (BeNA) in
2010 was, to base the fatigue life prediction embedded lamina-wise in order to be
more general in fatigue life design in future and to save test costs and time. Distinct
laminate test specimens shall capture the interface effect of the lamina embedded in
the laminate.

3.1.4 Constant Amplitude Loading and Variable Amplitude Loading

Cyclic loadings are most often given by an operational loading spectrum with its
automatic loss of the stress-time relationship. In Fig. 3.1 variable amplitude loading
of the structure in operation or service is displayed ending with the operational
fatigue life curve after Gaßner. Further depicted is the harsher constant amplitude
loading. A loading spectrum-representing block-loading instead of mapping the
loading spectrum by a single constant amplitude loading stands for more realistic
fatigue life estimation. Good information about the loading spectrum pays off.

The more brittle the material is the more mean stress influence acts. This is why
micro-damage is not anymore caused by the strength failure mode yielding alone
(1 mode, quantified by 𝜎vonMises

eq ) but by micro-cracking which is caused by many
strength fracture failure modes. Brittle materials like the transversely-isotropic UD
material with its five fracture failure modes possess strong mean stress sensitivity.
That requires a failure mode-linked treatment which cannot be captured by a mean
stress correction as usually still performed with not fully ductile materials. See later in
Subsect. 3.5.3 the example CFRP-lamina in the Haigh diagram, where the huge effect
of the mean stress sensitivity of brittle materials is very impressively demonstrated
if the so-called strength ratio, the ratio of compressive strength and tensile strength,
is high.
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Fig. 3.1: Display of constant amplitude loading and load history-linked variable amplitude loading.

3.1.5 SN-curve, Load Spectrum and Fatigue-Driving Equivalent
Stress

The SN curve is a so-called constant amplitude curve. Unfortunately in practice, the
SN curve parameter, termed stress ratio R, is indicated by the capital roman letter R,
too. The reason for this is that R is now the Ratio of 𝜎min/𝜎max. The strengths are
capitel italic letters denoted 𝑅 from strength Resistance.

In service, a huge number of ups and downs may be given as varying stress
input (Fig. 3.1). Counting methods help to reduce the number of turning points in
this time-domain in order to achieve a set of simple stress reversals. The rain-flow
counting method from Endo-Matsuishi, 1968, is the most often used method to obtain
a spectrum. The resulting load spectrum allows the application of a Miner Rule to
estimate fatigue life under complex loading or stressing, respectively.

Analogous to the ductile material case where a multi-axial stress state is captured
by an equivalent stress 𝜎vonMises

eq for the yield mode it may be assumed that for
anisotropic materials the same is valid for each single fracture mode, if equivalent
stresses can be formulated such as it is possible with the FMC-based SFCs of the
author. For brittle isotropic and anisotropic materials a change from the uni-axial
stresses 𝜎a,𝜎max to a multi-axial, equivalent mode stress 𝜎mode

eqmax is welcomed and
will improve the analysis.
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3.1.6 Proportional and Non-Proportional Loading and Mean Stress
Sensitivity

3.1.6.1 Proportional and Non-Proportional Loading (Stressing)

The so-called proportional loading is a concept, where all stresses are altered propor-
tionally. Compared to the proportional stressing a non-proportional stressing (e.g. 90◦
out-of-phase) may lead to a significant life reduction, at least for isotropic structural
materials. Due to the time-dependent, differently oriented stress states the growing
flaws may have a better chance for coalescence viewing slip bands in ductile materials
under strain-controlled fatigue testing or viewing micro-cracks in brittle materials.

3.1.6.2 Mean Stress Sensitivity

Not fully ductile isotropic materials show an influence of the mean stress on the
fatigue strength depending on the (static) tensile strength and the material type. Mean
stresses in the tensile range 𝜎m > 0 MPa lead to a lower permanently sustainable
amplitude, whereas compressive mean stresses 𝜎m < 0 MPa increase the permanently
sustainable amplitude or in other words: A tensile mean stress lowers the fatigue
strength and a compressive mean stress increases the fatigue strength.

3.2 Modeling of SN-Curves in the Three Fatigue Domains and
Choice

3.2.1 Modeling of SN-Curves

3.2.1.1 General Modeling of SN-Curves

SN-curves can be modelled linearly and non-linearly in semi-log and log-log diagrams.
Possible mapping formulations describe non-linear curves such as the Weibull-model
and the Wearout-model [7] and linear curves in the log-log diagram. The author
investigated five models when mapping SN curve data sets, see §10.2 in [1]. The
computation of the mapped curves with its curve parameters was performed by the
code Mathcad.

For brittle materials it is physically optimum to use the strength 𝑅 (average value,
marked by a bar over) as maximum stress 𝜎max at 𝑛 = 𝑁 = 1, being the origin of
a SN-curve. This, on top, reduces the number of free parameters by one. However,
in aerospace standards, like the HSB [8], the strength 𝑅 of not so brittle structural
materials is not taken as origin in order to get more freedom for a better mapping in
the domain of highest interest, namely the higher LCF domain. If at the end of the
HCF domain a lack of data is faced, then, a so-called ‘Haibach-correction’ is often
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performed by halving the HCF curve-determining decay angle beyond 𝑛 = 2 · 106

cycles.

3.2.1.2 Modeling Final HCF-Domain with VHCF

Some materials could have an endurance limit which represents a stress level below
which the material does not fail and can be cycled infinitely. If the applied stress level
is below the endurance limit the material is said to have an infinite life. This might
have been acceptable in some cases for the maximum HCF-level of 2 · 106 cycles,
however needs to be checked for VHCF because the failure mechanism might be not
fully the same as for HCF. From this can be deduced that above endurance limit is
an apparent fatigue strength.

Performing an extrapolation out of the HCF regime, for 𝑛 > 2 · 106 cycles, the
choice of the mapping function determines the obtained lifetime value, see the
investigated SN-curve mapping models in § 10.2 of [1]!

The choice of the SN-model mainly depends on the fact whether an endurance
limit in the VHCF domain is to map or not. Such a limit seems to exist for cyclic
tensioning of CFRP (Carbon Fiber Reinforced Polymer).

Cyclic failure always depends on the amount and distribution of flaws at the surface
(formerly often termed Weibull surface effect) of the structural part and on those flaws
within the critical material volume (formerly often termed Weibull volume effect),
which seem to drive VHCF. This is especially to consider for the novel 3D-printed
parts.

A dedication to surface-generated failure at HCF and to volume-generated failure
at VHCF looks reasonable supported by novel VHCF experiments, where it became
known for metals: The failure origin for VHCF changes from surface flaws and
notches to internal flaws such as the different inclusion types [9]. This forced the
material scientists to think about applying two different SN curves, one associated to
the surface flaws and the other associated to the volume flaws. Such a change of the
destructive mechanism may require the mapping of two distributions that describe
the micro-damage accumulation. However, regarding the mapping of the test results,
the author believes: A physical average curve is the result of a probabilistically-
driven strength problem, and the transition zone is smooth because it is not like a
sudden instability problem. Therefore, the course of the cyclic failure test data cannot
show some sudden downward jump. Hence, the continuous four parameter Weibull
mapping approach of the SN test data can capture the full course

R = const. : 𝜎max (R, 𝑁) = 𝑐1 + (𝑐2 − 𝑐1)/exp(lg𝑁/𝑐3)𝑐4 .

Fatigue curves are given for un-notched test specimens (notch factor 𝐾𝑡 = 1, like
the later examples) and for notched ones. The loading can be a uniaxial stress state
or a multi-axial stress state and a suitable permitted stress criterion is to apply.
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3.2.2 Relation of the Material Stressing Effort 𝑬 𝒇 𝒇 with the
Micro-damage 𝑫

There are practically two possibilities to present SN curves: Using in the case of
ductile materials (1) the stress amplitude 𝜎a (R, 𝑁), also termed alternating stress, and
in the case of brittle materials (2) the maximum or upper stress 𝜎max (R, 𝑁), usually
termed fatigue strength. The maximum stress is physically simpler to understand by
the ‘stress man’ than the amplitude, according to smooth transfer from the static to
the cyclic behavior, Fig. 3.2. Namely, a decaying SN curve is interpretable like a
decaying static strength after a micro-damage process with 𝑛 cycles.

Thereby, the static material stressing effort 𝐸 𝑓 𝑓 (Werkstoffanstrengung, 𝑁f = 1)
is replaced by the accumulated cyclic micro-damage sum 𝐷 (𝑁). Applied here is
the classical 4-parameter Weibull curve with one parameter still fixed as strength
point origin, because for brittle materials the strength value 𝑅t

= 𝜎max (𝑛 = 𝑁 = 1)
is preferably used as origin in the tension domain and as anchor point of the SN
curve and in the compression domain - 𝑅c

= 𝜎min (𝑛 = 𝑁 = 1). In detail, Fig. 3.2
visualizes the transfer from the static load-driven increase of the material stressing
effort (𝑛 = 𝑁 = 1) 𝐸 𝑓 𝑓 = 100% (corresponds to the average expectance value of
50%) at the strength point to the cycle-driven micro-damage sum 𝐷mapping = 100%
(= expectance value 50%) of the SN curve. The evolution of 𝐸 𝑓 𝑓 is not linked to the
accumulation of the micro-damage. At onset-of-micro-cracking 𝐸 𝑓 𝑓 is still > 0!.

 

Fig. 3.2: Mapping: 𝐸 𝑓 𝑓 versus 𝐷 ≡ 𝐷mapping, mapping deals with averages, 50% expectance
value.
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3.2.3 Statistical Properties in Design Verification (DV)

As the average SN curve cannot be applied in fatigue life DV, a statistically reduced
curve is to determine as design curve, see Fig. 3.3. This curve is applied as a
𝐷design = 100%-SN-curve.
Conclusion: It is essential to discriminate mapping and designing.
Mapping (50%, 50%): Static failure, max 𝜎 = 𝑅,𝐸 𝑓 𝑓mapping = 1 ⇒ cyclic failure,
max 𝜎 = 𝑅res, 𝐷mapping = 1,
Designing (50%, 50%): Static failure, max 𝜎 = 𝑅,𝐸 𝑓 𝑓designing = 1 ⇒ cyclic failure,
max 𝜎 = 𝑅res, 𝐷design = 1.

In design verification very often as fractiles (quantiles), to meet a distinct survival
failure probability P, values of 5% or 10% are taken in order to capture some of
the uncertainty on the resistance side compared to the average of 50%. To fully
capture the uncertainty on the resistance side, for instance a Design Factor of Safety
FoS 𝑗Life > 5 is imposed. On the action (loading) side the FoS 𝑗load captures the
uncertainty of the loading together with the ‘safe’ derivation of the Design Limit
Load (DLL).

Capturing the uncertainty of the resistance quantities, the following is performed:
Denoting P the survival probability and C the confidence level applied, when esti-

 

Fig. 3.3: Design Verification: Fatigue average curve and design curve. 𝐷 = 𝐷design for a survival
probability P with a confidence level C. CDS is ‘characteristic damage state’ of a lamina.
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mating a basic population value from several test samples, partly enriched by some
knowledge of the basic population and regarding C a one-sided tolerance level it
eventually reads for the resistance side:

• Static → Statistical reduction of average strength from (P = 50%, C= 50%) to e.g.
(P = 90%, C = 95%).

• Cyclic → Statistical reduction of average SN-curve from (P =50%, C= 50%) to
e.g. (P = 90%, C= 50%). In order to obtain a safer side the maximum permitted
accumulated micro-damage is further reduced in DV to a feasible value 𝐷feasible <
𝐷 = 100%, a value that is linked to the green marked design curve (P= 90%, C=
50%) in Fig. 3.

Some Lessons Learned:

• The Palmgren-Miner rule cannot account for loading sequence effects, residual
stresses, and not for stresses below the fatigue limit (life →∞?)

• Whether a material has an endurance fatigue limit is usually open regarding the
lack of VHCF tests. As an apparent fatigue strength the strength at 2 ·106 cycles
might be only called. However, e.g. CFRP could possess a fatigue limit.

• Designing light-weight structures means a reduction of dead mass. Therefore, the
ratio ‘variable load/dead load’ reduces, fatigue becomes more decisive and fatigue
life prediction procedures become also more mandatory in construction industry,
for instance!

• In the LCF regime non-linearity causing effects such as creeping, relaxation are
to consider.

• Due to lack of information: Whether the material’s micro-damage driver remains
the same from LCF until VHCF must be verified in each given material design
case.

3.3 Failure-Mode-Concept (FMC) and Static Strength Failure
Criteria (SFC)

3.3.1 Features of the Author’s Failure-Mode-Concept

For a better common understanding at first some terms shall be added here

• Failure condition (usually termed criterion): Condition on which a failure becomes
effective, meaning 𝐹 = 1 or 𝐸 𝑓 𝑓 = 100% for one distinct limit state.

• Layer: Physical element from winding, tape-laying process, other depositing pro-
cedures. Lamina: Designation of the single UD ply as computational element of
the laminate, used as laminate subset or building block for modeling. It might
capture several equal plies.

• First-Ply-Failure FPF: First Inter-Fiber-Failure IFF in a lamina of the laminate
(Tsai [10] did not exclude FF to be a FPF!).
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Regarding the difference of Simulation and Analysis:
• Simulation: Process, that consists of several analysis loops and lasts until the

system behavior is imitated in the Design Dimensioning process. The model
parameters are adjusted hereby to the ‘real world’ parameter set.

• Analysis: Computation that uses fixed model parameters, such as the analysis of
the final design.

Modeling of the variety of laminates is a challenge. In this context, essential for
the interpretation of the failures faced after testing, is the knowledge about the lay-
up of the envisaged laminate, because crimped and not-crimped materials behave
differently. It is further extremely necessary to provide the material-modeling design
engineer and his colleague in production (for his Ply Book) with a clear, distinguishing
description of UD-lay-ups, of NonCrimpFabrics NCFs (stitched multi-UD-layer) and
of Fabric layers (crimped). Due to unclear descriptions the author unfortunately could
often not use valuable test results of fiber-reinforced materials. As editor of the VDI
guideline 2014 the author makes the following proposal for a clear optical designation
in order to enable a realistic material modelling:
The description of a UD-lamina-composed laminate follows the well-known lay-up
denotation [0/90/90/0] = [0/90]s, and an angle-ply laminate is denoted [45/−45]s
with index 𝑠 for symmetric (targeting coupling reduction in [K]). Analogously follows

for a symmetrically stacked woven fabric
[

0
90

]
(plain weave, which is symmetric

in itself ) or for an angle-ply semi-finished product [±45]s. The survey below shall
visualize by some examples how one can distinguish the various types. Square bracket
[. . .] and wavy bracket {. . .} optically help here to distinguish NCF {stitched UD-
stack} from those woven fabrics where one practically cannot mechanically separate
the single woven layers within one fabric layer:
• Single UD-layers-deposited stack [0/90]s = [0/90/90/0]-lay-up
• Semi-finished product, stitched NCF: {0/90} + {90/0} symmetrically stacked

deliverable ’building blocks’: {0/45/−45/90}, novel C-plyTM {𝜑/−𝜓/−𝜑/𝜓}
etc.
two stacked NCFs, “Bi-Ax” [{75/−75}/{−15/15}]r
one NCF, r = repetition [{75/−75/−15/15}]r

• Semi-finished product, woven Fabric:
[

0
90

]
,
[

0
90

]
s
=

[
0
90

]
2
,

[
45
-45

]
s

⇒ Combination:
[

45
-45

]
/{75/−75/−15/15}]3/[0/90/90/0]/

[
0
90

]
2
.

In the development of structural parts the application of 3D-validated SFCs is one
essential pre-condition for achieving the required reliable DV. This includes a Yield
Failure Condition (ductile behavior) for non-linear analysis of the material and
also for design verification at the limit state ‘Onset-of-Yielding’. It further includes
conditions to verify that ‘Onset-of-Fracture’ is not met in the case of brittle and of
ductile behavior.

Under the design-simplifying presumption ‘Homogeneity is a permitted assess-
ment for the material concerned´, and regarding the respective material tensors, it
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follows from Material Symmetry that the number of strengths equals the number
of elasticity properties! Fracture morphology gives further evidence ‘Each strength
property corresponds to a distinct strength failure mode and thereby to a distinct
strength failure type, to Normal Fracture (NF) or to Shear Fracture (SF)’. This means,
a characteristic number of quantities is fixed: 2 for isotropic material and 5 for the
transversely-isotropic UD lamina (≡ lamellas in civil engineering). In the case of
ideally homogeneous materials a ‘generic’ number seems to be faced. Hence, the
applicability of material symmetry involves that in general just a minimum number of
properties needs to be measured (cost + time benefits), which is helpful when setting
up strength test programs. Of course, this is also beneficial regarding the material
modeling work.

The basic features of the FMC, derived about 1995 [1, 2, 11] are:

• Each failure mode represents 1 independent failure mechanism and thereby repre-
sents 1 piece of the complete failure surface.

• A failure mechanism at the micro-scopic mode level shall be considered in the
desired macro-scopic SFC applied

• Each failure mechanism or mode is governed by 1 basic strength R, only, and
witnessed!

• Each failure mode can be represented by 1 SFC. Therefore, equivalent stresses
can be computed for each mode. This is of advantage when deriving SN curves
and generating Haigh diagrams in fatigue with minimum test effort in order to
relatively effortless obtain Constant Fatigue Life curves for lifetime estimation.
Modal SFCs lead to a clear mode strength-associated equivalent stress.

• Of course, a modal FMC-approach requires an interaction in all the mode transition
zones or mixed failure domains, respectively, reading

𝐸 𝑓 𝑓 = 𝑚

√︃
(𝐸 𝑓 𝑓 mode1)𝑚 + (𝐸 𝑓 𝑓 mode2)𝑚 + . . . = 1 = 100% for Onset−of−Failure.

It employs the so-called ‘material stressing effort’ (artificial term, generated in
the WWFE in order to get an English term for the meaningful German term
Werkstoffanstrengung) with a mode interaction exponent𝑚, also termed rounding-
off exponent, the size of which is high in case of low scatter and vice versa. The
value of 𝑚 is obtained by curve fitting of test data in the transition zone of the
interacting modes. General FRP mapping experience delivered that 2.5 < 𝑚 < 3.
A lower value chosen for the interaction exponent is more on the safe Reserve
Factor RF side or more design verification conservative. For CFRP, 𝑚 = 2.6 is
recommended from mapping experience.
From engineering reasons 𝑚 is chosen the same in all transition zones of adjacent
mode domains. Using the interaction equation is leading again to a pseudo-global
failure curve or surface. In other words, a ‘single surface failure description‘ is
achieved again, such as with Tsai/Wu but without the shortcomings of this global
SFC.
Analogous to ‘von Mises’ it reads:

𝐸 𝑓 𝑓 yield mode = 𝜎von Mises
eq /𝑅0.2 → 𝐸 𝑓 𝑓 fracture mode = 𝜎fracture mode

eq /𝑅.
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Above interaction of adjacent failure modes is modelled by the series failure system.
That permits to formulate the total material stressing effort Eff, generated by all
activated failure modes, as ‘accumulation’ of 𝐸 𝑓 𝑓 =

∑
𝐸 𝑓 𝑓 modes ≡ sum of the

single mode failure danger proportions. 𝐸 𝑓 𝑓 = 100% = 1 represents the mathematical
description of the complete surface of the failure body [1, 3]. In practice, i.e. in thin
UD laminas, at maximum, 3 modes of the 5 modes (2𝐹𝐹 + 3𝐼𝐹𝐹) will physically
interact. Considering 3D-loaded thick laminas embedded in laminates, there, all 3
𝐼𝐹𝐹 modes might interact.

3.3.2 ‘Global’ and ‘Modal’ SFCs

The HMH yield failure condition can be termed a modal SFC. It captures just one
failure mode. The author choose the term ‘Global’ as a play on words to ‘modal’ and
to being word-self-explaining. Present SFCs can be basically separated into above
two groups, the global (the German ZTL-SFC in the HSB also belongs to it) and the
modal SFC ones, [1, 11].

Figure 3.4 presents the main differences between these SFC types. Global SFCs
describe the full failure surface by one single mathematical equation. This means that
for instance a change of the UD tensile strength 𝑅𝑡⊥ affects the failure curve in the
compression domain, where no physical impact can be! In this context, the computed
RF may not be on the safe side in this domain. This shortcoming of the global SFCs
caused the author to create modal SFCs.

Often, global SFCs employ just strengths and no friction value. This is physically
not accurate. Mohr-Coulomb acts in the case of compressed brittle materials! The
undesired consequence in Design Verification again is: The computed RF may be
not on the safe side.

3.3.3 FMC-Based Failure Modes, SFCs and SFC-Visualization

3.3.3.1 Types of Failure Modes

Since two decades the author believes in a macroscopically-phenomenological ‘com-
plete classification’ system, where all strength failure types are included, see Fig. 3.5.
In his assumed system several relationships may be recognized:

1. shear stress yielding SY, followed by shear fracture SF viewing ‘dense’ materials.
For porous materials under compression, the SF for dense materials is replaced
by crushing fracture CrF.

2. However, to complete a system beside SY also NY should exist. This could be
demonstrated by the author for PMMA (plexiglass) with its chain-based texture
showing NY due to crazing failure [1].
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Fig. 3.4: ‘Global’ and ‘Modal’ SFCs.

 

Fig. 3.5: Proposed scheme of macro-scopic strength failure modes of isotropic materials and
transversely-isotropic UD-materials (generated 1998).
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The right side of the scheme shows that a full similarity of the ‘simpler’ isotropic
materials with transversely-isotropic UD materials exists. The strength failure modes
involve a similar variety of fracture strength failure types such as SF, NF.

Of interest is not only the interaction of the fracture surface portions in a mixed
failure domain or transition zone of adjacent failure modes, respectively, but failure
in a multi-fold failure domain (superscript MfFD) such as at 𝜎𝐼 = 𝜎𝐼 𝐼 . There the
associated mode material stressing effort acts twofold. It activates failure in two
orthogonal directions which is to consider by adding a multi-fold failure term in
each of the present global and modal SFCs, as described and performed in [11,
12] for isotropic materials. It can be applied as well to brittle UD-materials in the
quasi-isotropic transversal plane 𝜎2 = 𝜎3.

3.3.3.2 FMC-Based SFCs and Their Visualization

First and usual assumption for the material models is an ideally homogeneous solid.
Following Beltrami and Mohr-Coulomb the solid material element may experience,
generated from different energy portions, a shape change, a volume change and
friction and these can be linked to invariants, which is of great advantage in material
modeling, see [1, 12].

For the here envisaged UD material the applied invariants (personal note from J.P.
Boehler) read:

𝐼1 = 𝜎1, 𝐼2 = 𝜎2 +𝜎3, 𝐼3 = 𝜏2
31 + 𝜏2

21, 𝐼4 = (𝜎2 −𝜎3)2 +4𝜏2
23,

𝐼5 = (𝜎2 −𝜎3) · (𝜏2
31 − 𝜏2

21) −4𝜏23𝜏31𝜏21.

Table 3.1 collects the FMC-derived 5 UD-SFC formulations, 𝜎2 = 𝜎⊥. Treating
‘Porous’ UD materials, see [1, 4], IFF2 is to replace by

Table 3.1: ‘Dense’ UD materials: SFC formulations for FF1, FF2 and IFF1, IFF2, IFF3.
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𝐸 𝑓 𝑓 SF
porosity =

√︃
𝑎2
⊥⊥por · 𝐼22 + 𝑏2

⊥⊥por · 𝐼4 − 𝑎2
⊥⊥por · 𝐼2]/R⊥c

A measurable friction value 𝜇 tells the engineer much more than a fictitious friction
parameter 𝑏. This encouraged the author to transfer the structural stresses-formulated
UD-fracture curve 𝜎2 (𝜎3) into a Mohr-Coulomb one obtaining 𝜏𝑛𝑡 (𝜎𝑛), [1], §7. This
novel, mathematically pretty effortful transformation enabled to link the parameter
𝑏 of the respective SFCs via a determined shear fracture angle to the measurable
physical friction value 𝜇.

Delamination within a laminate may occur in tensile-shear cases and in
compression-shear cases (remember the so-called wedge failure IFF2 of Puck with
its inclined fracture plane [7, 13]). Investigating such a delamination a 3D stress state
is to consider. This is the case if bends in the structure are stretched or compressed
which generates stresses across the wall thickness. Further, if load introduction for
instance at supports occurs (high spatial shear, tiles of the heat shield of launchers
like experience with X38, Hermes). These inter-laminar stress states are delamination-
critical {𝜎}lamina = (0,𝜎2,𝜎3, 𝜏23, 𝜏31, 𝜏21)T and the designer may face relatively low
strengths in the thickness direction (3-direction).

Before using UD-SFCs some pre-requisites are to check to really achieve reliable
results. This is still valid for the SFC model-validation by the test specimens and for
the verification of the laminate designs:

• Good fiber placement and alignment, and uniform stress distribution
• ‘Fabrication signatures’ such as fabrication-induced fiber waviness and wrinkles

are small and do not vary in the test specimens
• If applicable, residual stresses from the curing cycle are to be computed for the

difference ‘stress free temperature to room temperature 22◦C’ as an effective
temperature difference. Considering curing stresses or moisture stresses, the test
specimens are most often assumed to be well conditioned

• The stress-strain curves are average curves in design dimensioning, which is also
the type one needs for test data mapping in order to obtain the best estimation of
the structural response, namely 50%.

Figure 3.6 depicts the fracture failure body of UD materials. The upper picture
contains the failure body of the plane 2D stress state and the lower picture the failure
surface or body of the 3D stress state. These look the same and are the same. One
must just replace the UD-lamina stresses of the 2D-case by equivalent stresses.

3.3.3.3 Static Validation of the FMC-Based SFCs in the
World-Wide-Failure-Exercises

The author mapped with his FMC-based SFCs a large variety of isotropic brittle struc-
tural materials such as plexiglass, porous concrete stone, cast iron, Normal Concrete,
UHPC sandstone, mild steels, foam, monolithic ceramics and for the transversely-
isotropic UD fiber-reinforced polymers Lamina (ply, lamella) and orthotropic ceramic
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Fig. 3.6: 2D and 3D fracture failure surface (body) and essential UD entities.

Fabrics. This was possible as far as reliable multi-axial fracture test data could be
obtained, see [1, 4].

Basis for the validation of the SFCs for the UD lamina material were own test data
and those from the WWFEs. There are three WWFEs that have been executed since
1992: WWFE-I (2D stress states) for testing strength fracture criteria by checking
the mapping quality of 2D-fracture stress states of the lamina. Then WWFE-II (3D
stress states) for achieving 3D-lamina model validation and by laminate Test Cases
for achieving some laminate wall design verification. The still ongoing WWFE-III is
on SFCs generated from Continuum (micro-)Damage Mechanic models. The author
contributed to WWFE-I and –II.

Addressing the WWFE it must be noted again: Model validation means qualifi-
cation of a created model by well mapping realistic physical test results with this
model. DV means fulfilment of a set of design requirement data, which does not work
without model validation. In this context, regarding above two WWFEs, it is to note
considering the SFC mapping task:

• Part A, a blind prediction: Mapping had to be carried out without the provision of
all physically needed properties. With the provided strength values alone a SFC
cannot be validated, compression requires friction information, which was not
given.

• Part B, the comparison Theory-Test: Test data sets were partly not applicable
or even involved false failure points. More than 50% could not be used without
specific care. Further, for instance in WWFE-I (Test Case) TC1, there apples and
oranges have been put together. One cannot depict in the same diagram 90◦-wound
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tube test specimen data together with 0◦- wound tube data. The 0◦-stresses have to
be transformed in the 2D-plane due to the fact that shearing under torsion loading
turns the fiber direction and the lamina CoS is not anymore identical with the
structural CoS of the tube. In order to also use the 0◦-test data set the author
transformed the fracture test point data by the occurring twisting angle using a
non-linear CLT-analysis. Then he could achieve a good mapping of both the data
sets in the lamina CoS. → Due to careful checking of the provided test data the
author achieved the highest number of points in WWFE-I.
In order to solve the task WWFE-II, TC2 through TC4 the necessary average
stress-strain curve has not been provided, but could be effortful deduced from the
different test information.
In the WWFE-II, TC3, above mistake of mixing different tube test data happened
again, but here the much more complicated 3D-stress situation was to face. The
3D-transformation of the 0◦-data set was very complicated but successfully carried
out and again different tube test data sets could put together in one graph. → In
the WWFE-II a real assessment of the various SFC-contributions is more or less
missing. The author was again top-ranked.

3.3.4 Application of Static UD-SFCs to Determine Cyclic
Micro-Damage Portions

A very essential question in the estimation of lifetime is a means to assess the micro-
damage portions occurring under cycling. For brittle behavior, the response from
practice is: “It is possible to apply validated static SFCs if the failure mechanism
of a mode cyclically remains the same as in the static case. Then the fatigue micro-
damage-driving failure parameters are the same and the applicability of static SFCs
is allowed for quantifying micro-damage portions”. Here it is to note that FMC-based
static SFCs apply the equivalent stresses of a mode SF or NF.

For clarification, the determination of the Effmode-values, representative later also
for the estimation of micro-damage portions is exemplarily described below for a
simple example (Table 3.2).
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Table 3.2: Static Design Verification-procedure with determination of Effmode-values.
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3.4 FMC-Based Constant-Fatigue-Life Estimation Model for
UD-Ply–Composed Laminates

3.4.1 Idea of an Automatic Establishment of Constant Fatigue Life
Curves

Basic aim in fatigue design is to reduce the test amount of SN-curves to a minimum.
This was a long-lasting task for the author and was firstly solved some years ago. Its
solution steps are:

• A validated static SFC is applicable to assess the micro-damage portions. This
was the first hurdle to tackle. Here, the author’s SFCs, based on a consistent failure
mode thinking, support the fatigue analysis

• As second challenge an analytical, automatic establishment of a continuous Con-
stant Fatigue Life (CFL) curve 𝜎a (𝜎m), 𝑁 = const - basis of lifetime estimation –
was then to determine (𝑁 is failure cycle number and 𝑛 running cycle number).
A suitable function for mapping the course of provided SN-curve test data was
searched. Chosen was the 4-parameter Weibull curve model.

• A further task in order to reduce the test amount was finding a physically-based
model to predict other SN curves, required for fatigue analysis, on basis of probably
just one Master SN curve for each mode. This model became Kawai’s ‘Modified
Fatigue Strength Ratio Ψ.
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Fig. 3.7: Effect of the decay function in the transition zone −∞ < R < 0.

• Finally, a challenging task was the very difficult mapping of the test data decrease
in the so-called transition zone where the modes interact around the stress ratio
beam Rtransition =−𝑅c/𝑅t <R=𝜎min/𝜎max =−1. The traditional investigated beam
R = −1 is too more right in the Haigh diagram, see Fig. 3.7, and therefore does
not accurately characterize the transition zone in the case of large strength ratio
𝑅c/𝑅t. The transition zone is the most problematic modeling region in the Haigh
diagram. A solution became possible by a mode decay function which physically
terminates the influence of the SF part (compression) in the Haigh diagram when
the NF part begins to act at R = 0 and vice versa for the NF part (tension) at R =∞.

In aircraft industry, for a design-necessary interpolation in order to achieve CFL
curves, much effort is spent to map them piece-by-piece by straight lines, see for
instance the respecting sheets on metals in the HSB (H. Hickethier: Interpolation and
Extrapolation of SN data). Regarding curved lines, the dissertation of C. Hahne [14]
is recommended. Therefore, an automatic possibility to generate realistic continuous
CFL-curves is highly desired in order to avoid difficult interpolations between the
curves. A reliable procedure would help to save test cost and development time.

For the multiple failure modes suffering brittle materials an automatic establish-
ment of the non-piecewise straight CFL curves in Haigh Diagrams is searched,
generally applicable to brittle isotropic materials including for instance concrete and
here for UD-materials.

Finally, as detailed points for achieving these CFL curves are to list:

• Measurement of a minimum number of Master SN curves (R =const) for each
acting failure mode domain, namely compression (SF) and tension (NF)

• Finding a physically-based model to predict other SN curves, required for fatigue
analysis, on basis of a measured ‘Master SN curve’ of each mode

• Provision of a means how the cycling-caused micro-damage portions can be
quantified (see Subsect. 3.3.4 before)
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• Mathematical mapping procedure of the test data in the transition domain as most
problematic region in the Haigh diagram, where the modes interact. Search of a
practicable mode domain decay function of the two modes in the Haigh diagram

• Final step is the provision of a program that automatically delivers the CFL curves
on basis of the preceding fulfilled points.

3.4.2 SN Curves, Derived with Kawai’s “Modified Fatigue Strength
Ratio 𝚿ȷ

Some years ago, Misamichi Kawai [15] informed the author on his physically-based
model to capture SN-curves. It was dedicated to UD material. His first step was to
formulate a ‘Fatigue Strength Ratio’ Ψ. This means a normalization of the fatigue
strength 𝜎max (𝑁) by a static strength Ψ = 𝜎static/𝑅 = 1 = 𝐸 𝑓 𝑓 and such referring to
Eff. The second step was the formulation of his ‘Modified Fatigue Strength Ratio’
Ψ, which is a reformulation in order to get the stress ratio 𝑅 into the static concept
Ψ = (𝜎a+𝜎m)/𝑅 = 1 ⇒ 1 = (𝜎a+𝜎m)/𝑅⇒ 𝜎a/𝑅−𝜎m = Ψ as ratio cyclic part/static
part. For visualization of Ψ see Fig. 3.8.

Fig. 3.8: Definition and visualization of ‘Modified Fatigue Strength Ratio Ψ‘ (ordinate).

Each measured SN-curve is normalized by its static strength 𝑅 and the ‘bulk’
of available SN curves then fitted to obtain the Master curve (hopefully it is more
than one SN curve measured within the domains and in the transition zone). Kawai
used all R-curves to obtain Ψ = Ψ(Rfit), independent of the inherent failure mode.
Whether it practically makes sense to determine a Master curve by globally fitting all
curves is to check, if enough test data sets will be available considering tension with
R = 0.1,0.5, compression with R = 10 and in the transition zone R = −1 and 𝑅trans.
Due to sticking to the FMC means to stick to a mode domain separation. This requires
to tackle the transition zone between the modes separately. Table 3.3 presents the
determination of SN-curves on basis of Ψ-model with Master SN-curve.

To justify the general applicability of the Kawai model-predicted SN curves,
here the FMC mode-dedicated ones, the curves in Fig. 3.9 have been numerically
derived. Figure 3.9 shows the Master SN curves and the predicted SN curves. With
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Table 3.3: Determination of SN curves on basis of Kawai’s Ψ-model with Master SN-curve. Full
procedure of the automatic determination of a CFL curve.
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respect to the authors mode dedication and separation the transition beam 𝑅 = −1 is
consequently not depicted in the figure.

The application results for IFF mode domains demonstrate:

• Limit Curves R = 0,100(∞) and 1 are automatically captured
• The question, whether the intermediate Kawai-curves in the range between the

limit curves and R = 1 are good enough, can be only responded by further test
results and associated modeling research work

• The question, whether Kawai’s global fit of all available SN curves is satisfactory
could be not supported due to lack of test data. If successful, the Kawai’s model
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Fig. 3.9: Mode-dedicated Kawai model-derived SN curves. +R = 0.5 test data, +R = 0.1 test data.

would make it possible to also estimate SN-curves in the transition zone (∞ >
R > 0).

Anyway, Kawai’s model quality looks very promising.
Mind, please:
Testing conventionally requires 5 different UD stress amplitude levels for a distinct
SN- curve with three repetitions at each level considered as the minimum.
To become practical, an IFF work case fatigue life estimation shall be depicted. It
represents the Design Verification of a critically cycled UD lamina embedded within
a chosen laminate (Table 3.4).

3.4.3 Derivation of Constant Fatigue Life Curves in the Transition
Domain

There is no problem to establish Haigh diagrams for FF1 with FF2 and for IFF3 due
to the fact that the strength values are of similar size in each case. Application of the
static mode interaction formula was almost sufficient. However for a Haigh Diagram
for really brittle materials, indicated by the beam Rtrans, practically very different
to R = −1, a solution procedure has to be looked for. Chosen was a mode-linked
exponentially decaying function fd, that practically ends where the other pure mode
begins to reign. As the employment of the decay function is too lengthy in the work
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Table 3.4: Lifetime Design Verification-procedure for a tensioned UD lamina.

 

case above (Table 3.4) just two SN curves in the pure domains NF and SF were
investigated.

Table 3.5 informs about the steps for an example IFF1-IFF2, where mode inter-
action has to be taken into account. In Table 3.6 the determination of the curve

Table 3.5: Mode decay function 𝑓𝑑 for tension and compression domain in the Haigh diagram.
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Table 3.6: Numerical derivation of the parameters of the decay function.

 

parameters of the mode decay function are derived in the SF and the NF domain and
then visualized. In the included figure the resulting curves are displayed. For fully
ductile materials no transition zone between 2 modes exists, because just one single
mode reigns, namely ‘shear yielding’. There, it is no mean stress effect to correct.

Eventually in Fig. 3.7 mode decay functions fd for the tension and the compression
domain are displayed. The straight lines in the figure present the extreme SN curve
beams, R =∞ for the SF domain and R = 0 for the NF domain. In between the slightly
colored transition zone is located. The quality of the approach for the transition zone
is practically checked by “How good is the test data course along the stress ratio
beam Rtrans-line mapped?”

The author now proposes his procedure in Table 3.7 for deriving part-CFL curve
estimates on basis of one Master SN curve provided for each mode. As example a
UD-material serves which is stressed in the pure modes IFF1 and IFF2, only.
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Table 3.7: Estimation of a CFL curve for IFF, 𝑁 = 105 cycles.
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3.5 Complete CFL-Curve Model Using the Decay Functions 𝒇𝒅 in
the Haigh-Diagram

3.5.1 Derivation of the Full Procedure

Figure 3.10 shall schematically exhibit the pure domains and the transition zone in
the Haigh diagram. This shows the maximum tolerable stress (loading) amplitudes of
the material 𝜎a (𝜎m). For 𝑁 = 1 the static procedure is applicable using the strength
failure envelope represented by the interaction formula, whereby in the negative
domain lie the SF-determined SN-curves, in the positive domain the NF determined
ones. In the transition zone 2 modes are principally activated which shows either
a more SF- or a more NF-determined interaction visualized by the two pale colors.
The domain limits are given by the straight SN-lines for:

R =∞ : 𝜎a = −𝜎m and R = 0 : 𝜎a = 𝜎m.

The representative SN-beams in the transition zone are Rtrans and R = −1.
Of highest interest are the SN-beams in the transition zone around Rtrans and

R = −1 which have other origin values than the basic strengths of the modes. The
Rtrans origin is not given and has to be determined before mapping. Applied was the
static interaction curve, 𝑁 = 1, because points on the boundary must fulfill the static
equilibrium. The derivation of the origin points on the side lines reads for the two
transition zone beams:

 

Fig. 3.10: Scheme for understanding a Haigh diagram of a brittle isotropic material. Up right:
alternating stress states of 3 R curves.
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Rtrans = −𝑅c
⊥/𝑅

t
⊥ = −3.4 :

(
𝜎2fr

𝑅
t
⊥
+
)𝑚

+
(
𝜎2frRtrans

𝑅
c
⊥

+
)𝑚

= 1 → 𝜎2fr = −131MPa,

R = −1 :

(
𝜎2fr

𝑅
t
⊥
+
)𝑚

+
(
𝜎2frR
𝑅

c
⊥

+
)𝑚

= 1 → 𝜎2fr = 50.1MPa

In Fig. 3.11 two CFL-curves are displayed, the envelope 𝑁 = 1 and 𝑁 = 107 cycles.
The pure mode domains are colored and the transition zone is separated by Rtrans into
two influence parts. The course of the R-value in the Haigh diagram is represented
by the bold dark blue lines.

The CFL curve 𝑁 = 1 is the cyclic envelope. It is curved at top because 2 modes act
in the case of brittle materials. This is in contrast to uniaxial static loading, depicted
by the straight static envelopes 𝑁 ≠ 𝑁 𝑓 . One micro-damage cycle results from the
sum of 2 micro-damage portions, one comes from uploading and one from unloading!
(The associated MathCad 15 program, which involves test data evaluation, parameter
determination of Weibull curves, of Master curves, of decay functions, computation
operations and visualization afforded more than 30 pages). The full procedure is
collected in the Table 3.8. Here, and this is reasonable for brittle materials, all the
SN-curves have their origin in the strength points 𝑅t

⊥ and 𝑅c
⊥

The following points are to consider thereby:

• Assumption: If the failure mechanism of a mode cyclically remains the same as
in the brittle static case, then the micro-damage-driving fatigue failure parameters

 

Fig. 3.11: Scheme of pure mode domains, course of 𝑅 and transition zone parts.
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Table 3.8: Full procedure of the automatic determination of a CFL curve. IFF, 𝑁 = 105 cycles.

 

are the same and the applicability of static SFCs is allowed for quantifying micro-
damage portions

• Presumption: An appropriate Master SN curve for each failure mode domain com-
pression (SF) and tension (NF) is available at minimum. This means measurement
of just a minimum number of SN curves is required

• The helpful model, searched by the author, became the ‘Modified Fatigue Strength
Ratio Ψ model’ of Kawai [15], which enables to estimate SN curves. Kawai
captures all SN curves in tension (NF) and in compression (SF) domain by one Ψ
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and then he can also determine SN-curves in the transition zone around Rtrans.
The boundary R-curves are automatically captured by the model

• According to his ‘modal FMC thinking’ Cuntze dedicated a Ψto each single
failure mode domain SF and NF. Other necessary SN-curves, necessary for the
verification of the usually faced variable amplitude operational loading, can then
be derived from the mode Master SN-curve

• Cuntze separates the mode regimes to stay better physically-based in the mode
domains. However, then he needs above mentioned decay function

𝑓decay = 1/(1+ exp(𝑐1 +m/𝑐2)

in both the domains to make the determination of SN-curves and of CFL-curves
in the transition zone possible

• A quality check of the two approaches is possible if enough SN-curves, distributed
over the full Haigh diagram, will be available in literature for a material with a
large strength ratio.

3.5.2 CFL Curves, Applying the Mode Decay Functions 𝒇𝒅 in
Various UD Haigh-Diagrams

3.5.2.1 FF SN Curves and Associate Haigh Diagram

Some examples of SN-curves, ‘feeding’ the associated Haigh-Diagrams, are presented
Fig. 3.12. These belong to the failures FF and IFF and capture the failure types NF
(tension) and SF (compression). In Fig. 3.12 FF-test data from Kawai-Suda [15]) the
bulk of measured SN curves usually looks. It further shows how the mapped curves
are running in the higher VHCF regime. Mind, please: There is no fidelity given
when simply using extrapolated values far off the tested range.

Figure 3.13 presents failure mode-linked CFL-curves 𝜎a (𝜎m, 𝑁 = const). The
computed SN curve points, marked by X, are fixed points (anchors) for mapping
the CFL-curves to be predicted. The blue curve is for 𝑁 = 105 cycles. The used
SN-curves are from Fig. 3.12.

3.5.2.2 IFF3 SN Curves and Associate Haigh Diagram

Figure 3.14 presents two mapped IFF3 SN-curves. Here, at first the author likes
to thank Dr.-Ing. Clemens Hahne, AUDI, for his valuable UD test effort making
the generation of the following figures possible and thereby the application of the
author’s CFL model. The reader is invited to read the content-rich and imaginative
dissertation [14] and this not only for comparing the different CFL modeling ideas
of Hahne and Cuntze.
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Fig. 3.12: Test example UD: Individually lin-log mapped FF1-FF2-linked SN-curves [15].

Figure 3.15 depicts the associated IFF3 CFL-curves derived. Obvious is the
symmetry and that the two-fold IFF3 mode micro-damage effect flattens the curve at
𝜎m = 0.

3.5.2.3 IFF1, IFF2 SN-Curves and Associated Haigh Diagram

In Fig. 3.16 the mapped IFF1 (tension)- and IFF2 (compression)-linked SN-curves
are presented. Figure 3.17 displays the differently colored failure mode domains
IFF1-IFF2 in a UD IFF Haigh diagram. The available test data set along 𝑅trans in the
transition zone is represented by the crosses. The decay model quality in Fig. 3.17
proves the efficiency of the decay functions in the transition zone. For proving this
the author is very thankful because this was only possible because he got access to
the test results in [14]).

By the way:
The decaying course of the curve in the graph below for UD material is similar to
concrete due to their large strength ratios 𝑅c/𝑅t! Similar behavior permits similar
description!
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Fig. 3.13: Rigorous Interpretation of the Haigh diagram for the UD-example FF1-FF2 displaying
failure mode domains and transition zone [15]: CFRP/EP, 𝑅t

= 1980, 𝑅c
= 1500, 𝑅t

⊥ = 51,
𝑅

c
⊥ = 172, 𝑅⊥ = 71 MPa.

Fig. 3.14 Log-log IFF3-
linked SN-curves (data, cour-
tesy C. Hahne [14])  

3.5.3 Steps of the FMC-based Fatigue Life Estimation Procedure

Some steps of the fatigue life estimation procedure are depicted in the following
figures. Step 1 is searching measured SN-curves. Figure 3.18 presents such a measured
SN-curve that serves as Master SN curve. This SN-curve can be mapped here (Step 2)
by a straight line in a log-log diagram.

In the case of variable amplitude loading several SN-curves are needed. This
will be performed exemplarily for the tension domain FF1 alone, see Fig. 3.19, by
application of Kawai’s model, however here by a mode-wise application, Step 3.
Zero-crossing which needs interaction and micro-crack closing effects are bypassed
in this simple case.
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Fig. 3.15: IFF3 UD Haigh diagram, Display of a two-fold mode effect (a:= amplitude, m:= mean,
N := number of fracture cycles, R := strength and 𝑅:= stress ratio 𝜎min/𝜎max). Test data CF/EP,
courtesy Hahne [14].

 

Fig. 3.16: Mapping of lin-log IFF1-IFF2-linked SN-curves [test data, courtesy C. Hahne].
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Fig. 3.17: IFF1- IFF2 UD Haigh diagram (similar for UD, lamella and concrete) displaying the
failure mode domains, transition zone [test data, courtesy C. Hahne].

 

Fig. 3.18: Mapping of UD FF1 SN-data and mode-representative master SN-curve.
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Fig. 3.19: Prediction of other needed FF1 SN curves from Master mode SN-curve and Cuntze’s
mode-dedicated Kawai model (Ψ curve).

The last step after the determination of the micro-damage portions is their accu-
mulation. Statistical analyses have shown that the fatigue life estimation using the
linear accumulation method of Palmgren-Miner tends to be too optimistic, see Fig.
3.20. However a satisfactory reason could not yet found. One explanation is the ‘right
use of the right SFC’. A more severe explanation is the loss of the loading sequence
which is different for ductile and brittle materials. This is practically considered in
design by the application of the Relative Miner with a 𝐷feasible < 100%.

Note 3.1. Dependent on the lay-up, the length of the individual fiber and on the chosen
matrix fatigue resistance builds up. “Well-designed” (optimal fiber directions and
minimum amount of fiber reinforcement for all load cases) high-performance UD
lamina-composed laminates are less endangered, FF practically rules fatigue behavior
and IFF less. Concerning the mode-representative Master SN-curves: These should

 

Fig. 3.20: Lifetime Prediction (estimation) Method. Schematic application by a simple example, 4
blocks, 𝐷feasible from test experience derived).
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Fig. 3.21: Non-linear estimation of a laminate’s fatigue life.

be derived from sub-laminate test specimen results, which capture the embedding
(in-situ) effects.

Finally, Fig. 3.21 shall briefly give the fatigue life estimation procedure for the
example laminate.

3.6 Conclusions on the Elaborated Novel Ideas

Novel simulation-driven product development shifts the role of physical testing to
virtual testing. This requires High Fidelity concerning the material models used,
such as the static strength criteria (SFC) and the lifetime estimation criteria. Based
on his FMC ideas the author successfully derived static SFCs for a large variety of
isotropic brittle structural materials such as plexiglass, porous concrete stone, cast
iron, Normal Concrete, Ultra-High-Performance-Concrete, sandstone, mild steels,
foam, monolithic ceramics and for the transversely-isotropic UD fiber-reinforced
polymers Lamina (ply, lamella) and orthotropic Ceramic Fabrics. Available multi-
axial fracture test data for above materials data were mapped to validate the SFCs.
Practical experience showed, that for brittle materials these static SFCs are applicable
to quantify the micro-damage portions under cyclic loading.
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Basic idea in this paper was the generation of automatically deduced, numerically
constructed Constant Fatigue Life (CFL)-curves using just one Master SN-curve for
each mode, at minimum. The author was only able to realize this when he became
aware of a general SN-curve modeling method, namely Kawai’s method, which was
physically better based than the predecessors used by the author. This method is used
by the author in each mode domain separately, due to his strict failure mode thinking.

Challenging was the description of the R-beams in the transition zone between the
tension and the compression mode domain, where a huge decay of the CFL-curve is
faced from the compression domain down to the tension domain if the strength ratio
is high. Therefore, a physically-based decay function has been applied to describe
this. In addition, in contrast to the mode domain-linked SN-beams, the associated
static origin point of a R-beam in the transition zone, which represents a mixed failure
domain, was especially to determine to obtain a good transition beam description.

The application of the presented procedure was successful in several UD Haigh
Diagrams and invites for more investigation. Hopefully, the author has posted to the
industrial and the university reader a message which is understandable, concise and
memorable to let them convincingly search for the necessary research funding.

With this document, the author attempts to redirect the thinking resulting from
ductile material behavior in “Mean Stress Influence” into thinking with fracture
modes for brittle materials. If the material is pretty ductile one faces one mode
yielding and if pretty brittle one faces many modes of fracture.

Finally, a survey on the various Haigh diagram essentials shall be presented of
isotropic and transversely-isotropic UD materials:

ductile Isotropic material brittle
𝑅 = 𝑅t

0.2 {𝜎} = (𝜎I,𝜎II,𝜎III)T {𝑅} = (𝑅t, 𝑅c)T with 𝜇
1 mode yielding 2 fracture modes

1 yield mode domain 2 fracture mode domains with transition zone
Increasing ‘Mean stress influence’ with increasing strength ratio number 𝑅c/𝑅t

Interaction of stresses by Strength Failure Criteria (SFC)
1 SFC (‘von Mises’) yield failure mode 2 SFCs, fracture failure modes,

NF +SF

𝐸 𝑓 𝑓 yieldmode = 𝜎vonMises
eq ↔ 𝐸 𝑓 𝑓 fracturemode = 𝜎frecturemode

eq /𝑅

Interaction of failure modes for determination of “Onset-of-failure” by an
interaction equation

𝐸 𝑓 𝑓 =

√︄
3𝐽2

Rt
0.2

=
𝜎vonMises

eq

Rt
0.2

=1= 100%⇔ 𝐸 𝑓 𝑓 = 𝑚

√︃
(𝐸 𝑓 𝑓 mode1)𝑚+(𝐸 𝑓 𝑓 mode2)𝑚=1

1 Haigh Diagram is required.
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Transversely-isotropic UD material, brittle (no edge effect)

{𝜎} = (𝜎1,𝜎2,𝜎3, 𝜏23, 𝜏31, 𝜏21)T ↔{𝑅} = (𝑅t
∥ , 𝑅

c
∥ , 𝑅

t
⊥, 𝑅

c
⊥, 𝑅⊥∥ )T with 𝜇⊥∥ , 𝜇⊥⊥

{𝜎mode
eq } = (𝜎 ∥𝜎

eq ,𝜎
∥𝜏
eq ,𝜎

⊥𝜎
eq ,𝜎⊥𝜏

eq ,𝜎
⊥∥
eq )T 5 fracture modes

FF1 : 𝐸 𝑓 𝑓 ∥𝜎 = �̆�1/Rt
∥ = 𝜎

∥𝜎
eq /Rt

∥ with �̆�1 � Y
t
1𝐸 ∥ (matrixneglected)

FF2 : 𝐸 𝑓 𝑓 ∥𝜏 = −�̆�1/Rc
∥ = 𝜎

∥𝜎
eq /Rc

∥ with �̆�1 � Y
c
1𝐸 ∥

IFF1 : 𝐸 𝑓 𝑓 ⊥𝜎 = [(𝜎2 +𝜎3) +
√︃
𝜎2

2 −𝜎2𝜎3 +𝜎2
3 +4𝜏23]/2Rt

⊥ = 𝜎⊥𝜎
eq /Rt

⊥

IFF2 : 𝐸 𝑓 𝑓 ⊥𝜏 = [𝑎⊥⊥ (𝜎2 +𝜎3) + 𝑏⊥⊥
√︃
𝜎2

2 −𝜎2𝜎3 +𝜎2
3 +4𝜏23]/2Rc

⊥ = 𝜎⊥𝜏
eq /Rc

⊥

IFF3 : 𝐸 𝑓 𝑓 ⊥∥ =

√︂
2𝜇⊥𝐼23−5+

√︃
𝑏⊥∥ 𝐼223−5 +4R2

⊥∥ (𝜏2
31+𝜏21)2/(2R3

⊥∥ )=𝜎eq⊥/R⊥

with 𝑎⊥⊥ � 𝜇⊥⊥/(1− 𝜇⊥⊥, 𝑏⊥⊥ = 𝑎⊥⊥ +1, 𝐼23−3 = 2𝜎2𝜏
2
21 +2𝜎3𝜏312 +4𝜏23𝜏31𝜏21

3 Haigh Diagrams required: FF1 with FF2, IFF1 with IFF2 and IFF3.

Consequently, the FMC-approach requires an interaction of all modes which reads

𝐸 𝑓 𝑓 = 𝑚

√︃
(𝐸 𝑓 𝑓 mode1)𝑚 + (𝐸 𝑓 𝑓 mode2)𝑚 + . . . = 1 for Onset−of−Failure

Analogous to “von Mises”, combining the acting stresses, above the equivalent
stresses are applied. This requires future research work.

Mathematically maximum and minimum lamina failure stresses (strengths) replace
the failure stresses of isotropic materials. The absolute UD-equivalent stress values
replace the single UD-lamina stresses in order to capture a 3D stress state that
includes the delamination-causing fatigue-relevant inter-laminar stresses. NF-linked-
equivalent mode stresses are placed on the positive abscissa and SF-linked on the
negative abscissa.

The transition from one layer to the next, when the fiber direction changes, is
captured in the 2D- CLT analysis or a 3D-stress analysis and is thus considered via
the computed micro-damage portions in the fatigue calculation.
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Chapter 4
Experimental Evaluation and Phase-Field Model
of Fracture Behavior of Alumina-Aluminium
Graded Composite

Hossein Darban, Kamil Bochenek, Witold Wȩglewski, and Michał Basista

Abstract Multilayered metal-ceramic composites belong to the class of functionally
graded materials with a step-wise gradient in material composition. These advanced
structural materials can be tailored to meet design requirements. Aluminum-matrix
composites are one of the most attractive metal-ceramic composites due to low
specific weight, good thermal conductivity, enhanced specific strength, and low cost
of the constituent materials. A comprehensive investigation of the fracture properties
and mechanisms of layered aluminum-matrix composites is required to enhance their
utilization in practical applications.

This chapter is focused on experiments and modeling of fracture in functionally
graded AlSi12-Al2O3 composites. Three-layer bulk disks with 10, 20, and 30%
volume fractions of Al2O3 are manufactured through powder metallurgy. Single-
edge notched samples (SEVNB) are prepared from the bulk material and tested
under four-point bending. The fracture tests are simulated using the phase-field
modeling of brittle fracture. In the phase-field models, individual layers are considered
homogeneous linear elastic isotropic materials with effective properties estimated by
the rule of mixture. The length scale parameter is calibrated by fitting the numerically
determined fracture loads to the experimental data. The phase-field model is then
used to investigate the impact of the stacking sequence on the load-displacement
curves of the fracture specimens. It is revealed that the stacking sequence may
significantly affect the load-displacement curves, including changes to the maximum
load and post-peak response. The ability of the phase-field model to capture the
crack arrestment, branching, and deflection in functionally graded layered materials
is shown.
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4.1 Introduction

Metal-ceramic composites are an innovative type of engineering materials that possess
outstanding characteristics, such as high stiffness and excellent resistance to wear.
These enhanced properties make them ideal for use under aggressive environments in
various industries, including aerospace, automotive, and energy [1]. These composites
can be produced using either liquid-state processes like spray deposition, stir casting,
squeeze casting, and gas pressure-assisted infiltration, or solid-state processes like
powder metallurgy, extrusion, and forging. A subgroup of metal-ceramic composites,
called functionally graded materials, became popular recently due to their ability to
deliver optimal performance for components under different service conditions [2].

In the past few decades, substantial research works have been conducted on func-
tionally graded metal-ceramic composites (FGMs). Both experimental and modeling
techniques have been used to better understand the mechanical behavior of such
materials. This class of composite materials exhibits spatially varying properties,
which can be either continuous or step-wise. The production of functionally graded
metal-ceramic composites with continuous material gradation requires advanced
manufacturing techniques. However, functionally graded metal-ceramic composites
with a step-wise gradient can be produced using conventional manufacturing methods
by employing a multilayered material architecture. For instance, different powder met-
allurgy techniques have been used in [3] to produce layered metal-ceramic composites.
Layered metal-ceramic composites are highly attractive for various applications ow-
ing to their ability to meet specific design requirements. These composites are being
used in industries such as aerospace, automotive, biomedical, and electronics. Many
of these applications require materials with high resistance against fracture. There-
fore, this is of the utmost importance to study fracture initiation and propagation in
functionally graded metal-ceramic composites.

While numerous experimental studies have investigated the influence ofmicrostruc-
ture on the properties of homogeneous metal-ceramic composites (e.g., [4]), exper-
imental investigations on functionally graded metal-ceramic composites have been
limited. One pioneering study focused on thermal fracture properties and was re-

were manufactured by hot pressing sintering of Al6061 and SiC with different re-
inforcement volume fractions. These samples were tested under tension at different
temperatures to characterize their mechanical properties such as tensile strength,
elongation, and fracture mechanisms [6]. Additionally, fatigue crack propagation in
six-layered Al-SiC composites was studied in [7] using three-point bending speci-
mens. In another study, the fracture behavior of five-layered metal-ceramic Ti-TiB2
functionally graded samples was studied using three-point bending specimens [8].
Quasi-static and dynamic fracture tests were conducted on Ti-TiB functionally graded
samples with seven layers under different temperatures in [9]. The Digital Image
Correlation technique was used in [10, 11] to measure in-situ displacement and strain
fields during the bending and tensile tests of layered Ti-TiB samples and to study the
effect of the material gradation direction with respect to the crack axis on the fracture
response of the samples.

ported in [5]. In a more recent study[6], functionally graded samples with three layers
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Due to the challenges of conducting experiments on functionally graded metal-
ceramic composites, analytical and numerical modeling of these materials are highly
valued by the engineering community. An example is the XFEM modeling of fracture
in layered Ti-TiB samples, as reported in [11]. However, the XFEM model and similar
discrete methods in fracture mechanics are computationally expensive and require
ad hoc criteria for crack initiation and propagation, making them less applicable to
layered structures. To address these limitations, this chapter presents a phase-field
model to simulate fracture in functionally graded AlSi12-Al2O3 composites.

The phase-field approach is a powerful computational tool for modeling crack
initiation and propagation in materials. It mainly originated in seminal works [12, 13]
in its current form. The formulation involves the regularization of the sharp crack
by using an exponential regularization function defined by a length scale and a
phase-field parameter. The phase-field parameter ranges from 1 to 0 in the fully
broken and intact phases, respectively, and smoothly varies in a transition zone whose
width depends on the length scale parameter. Consequently, the crack is smeared
out over the domain, and the theoretical crack surface is represented by the diffuse
crack topology. One of the key advantages of the phase-field modeling approach
is that it does not require the geometrical description of the crack, allowing for the
simulation of complex fracture mechanisms and their interactions, such as crack
branching, arrestment, deflection, and coalescence, without the need for any ad hoc
criteria. This makes the phase-field model a useful tool for studying fracture in a
wide range of materials, including functionally graded and heterogeneous materials
[14, 15].

Recent developments in phase-field modeling of fracture have focused on im-
proving its accuracy and computational efficiency. For instance, a dynamic crack
propagation model has been developed in [16] that simulates the time evolution
of crack growth. Machine learning algorithms have also been used to enhance the
accuracy and efficiency of the phase-field method by reducing the computational
cost of simulations and optimizing model parameters [17]. Additionally, new hybrid
models (e.g., [18]) combine the phase-field formulation with other modeling tech-
niques, such as physics-informed neural networks, to further enhance the efficacy of
the simulations.

Compared to conventional fracture modeling techniques, the phase-field model
offers a more realistic description of crack initiation and propagation by considering
the material degradation and damage accumulation that take place in the fracture pro-
cess zone. The fracture process zone in metal-ceramic composites typically exhibits
phenomena such as local plasticity in the metal matrix, fracture of the matrix and
reinforcement, void and crack nucleation and coalescence, and interfacial debonding.
The extent of material degradation in the phase-field model is determined by the
length scale parameter, which plays a crucial role in accurately representing fracture
behavior. The concept of the phase-field length scale has been a subject of debate in
the literature. While some researchers view it as an arbitrary regularization param-
eter, others consider it a physically meaningful quantity that can be experimentally
determined. Experimental determination of the length scale parameter in phase-field
modeling can be approached in two ways. The first method involves global measures
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and calibrates the length scale parameter by fitting numerically obtained fracture
loads or load-displacement curves to experimental results. Another approach focuses
on fitting local fields, such as the strain field, near the crack tip to experimental data.
Additionally, a recent novel approach in [15] utilizes fractography analysis through
scanning electron microscopy to measure the size of the process zone and use that
value as the length scale parameter in the phase-field modeling.

The phase-field model enables the prediction of complex crack paths and their
sensitivity to various factors, including loading conditions, material properties, and
architecture. Unlike traditional fracture models that rely on pre-defined crack paths
or assumptions about crack propagation, the phase-field model allows cracks to natu-
rally evolve and propagate based on energy minimization. This predictive capability
plays a vital role in optimizing material design and evaluating structural performance.
By conducting simulations with different scenarios and varying parameters, scien-
tists can assess the influence of factors such as material anisotropy, heterogeneity,
and stress states on crack growth behavior. This valuable information empowers
engineers and designers to make informed decisions regarding material selection,
design modifications, and structural integrity assessments. In the context of this
chapter, the phase-field model’s predictive capability is employed to investigate the
effects of stacking sequences on load-displacement curves and crack growth paths in
multilayered metal-ceramic composites.

4.2 Experiment

4.2.1 Material Preparation

To fabricate the three-layered bulk disks, commercial powders of AlSi12 and Al2O3
were used. The mean particle size of AlSi12 was approximately 5 µm with a purity
of 99.99%, while the average particle size of aluminum oxide was 10 µm with a
purity of 99.99%. Powder mixtures with varying volume fractions of Al2O3 (10%,
20%, and 30%) were mixed using a planetary ball mill. To prevent contact of pure
AlSi12 with oxygen during high-energy ball milling, the powders were closed in
steel vials with ∅10 mm balls in an environmental chamber partially filled with
heptane. A rotational speed of 100 rpm, a ball-to-powder ratio of 5:1, and a mixing
time of 5 h were used to obtain homogeneous powder mixtures. After milling, the
powders were dried in a vacuum oven. Each layer was compacted individually using
a uniaxial hand press to obtain a flat disc, which was then placed into a graphite
mold before sintering. Preliminary tests showed that omitting this step resulted in an
irregular interface between each layer. The hot pressing (HP) process was carried
out in a vacuum atmosphere at a temperature of 600◦C with a 5◦C/min heating rate,
a sintering pressure of 30 MPa, and a 180 min dwelling time. The final products
are highly compacted discs with a relative density exceeding 99%, a diameter of
approximately 33 mm, and a thickness of 4 mm.
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A typical SEM image of the microstructure of the individual composite layer
made of AlSi12+20%Al2O3 is shown in Fig. 4.1(a), while Fig. 4.1(b) shows a higher
magnification image. The SEM images reveal that the Al formed almost a uniform
continuous phase, likely due to the sintering temperature of 600◦C being close to its
melting temperature of approximately 660◦C. The Si and Al2O3 powders are well
dispersed within the Al phase, and the interfaces between different constituent phases
appear smooth and regular in the images.

The SEM images in Fig. 4.2 show the microstructure of the produced functionally
graded composite in the region between layers with different reinforcement volume
fractions. The region close to the layers with 10% and 20% ceramic content is shown
in Fig. 4.2(a), while Fig. 4.2(b) depicts the region between the layers with 20%
and 30% ceramic. The difference in reinforcement volume fraction between the
layers is visible in the images. The matrix phases between every two layers appear
continuous, while the transition of the reinforcement volume fraction between the
layers is sharp. These observations suggest that the functionally graded composite
does not have any imperfect interface between the layers with different reinforcement

(a) (b)

Fig. 4.1: (a) SEM image of the microstructure of the individual composite layer AlSi12-20%Al2O3.
(b) The microstructure with a higher magnification.

(a) (b)

Fig. 4.2: SEM image of the microstructure at the region between the layers with (a) 20% and 10%,
and (b) 30% and 20% of Al2O3 reinforcement volume fraction.
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volume fractions, thereby avoiding any possible damage inherent in layered systems,
such as delamination.

4.2.2 Fracture Tests

Initially, prismatic specimens are prepared from sintered layered disks by cutting
them to, approximately, a length of 25 mm, an in-plane thickness of 4 mm, and an
out-of-plane width of 3 mm. The cutting procedure is conducted in such a way that
the material gradation occurs along the in-plane thickness of specimens (see Fig. 4.3).
The specimens are then notched within the bottom layer made of AlSi12+30%Al2O3

S1 
= 4 mm widthB 

1 h3
AlSi 12-20% A1203 1 h2

A1Sil2-30% Al203 __i!!.5u l h1
• • 

S2 
= 22 mm 

L =24.8mm 

(a) (b) 

(c)

(a) (b)

(c)

Fig. 4.3: (a) The geometry and stacking sequence of the fracture specimens (the figure is not
scaled), and (b) the SEM image of the region near the notch. The three layers of the specimen with
different reinforcement volume fractions are distinguishable by their colors. (c) The fracture
specimen under the four-point bending testing device.
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composite using wire cutting and a sharp crack is induced at the notch tip using
a razor blade coated with diamond paste. To ensure smooth and even surfaces for
testing, the side surfaces of each specimen are subsequently ground and polished
using 1µm diamond paste. The geometry of the final fracture specimens is depicted
in Fig. 4.3(a), and the dimensions are provided in Table 4.1. Three different fracture
samples are produced, all of which have the same stacking sequence as depicted
in Fig. 4.3. However, these samples differed in their layer thicknesses, initial crack
length, and crack tip radius, as specified in Table 4.1. A close-up SEM image of the
region near the notch is shown in Fig. 4.3(b). In this image, the layers with different
reinforcement volume fractions are distinguishable by different brightness.

The configuration of the experimental set-up is illustrated in Fig. 4.3(c). The frac-
ture samples are tested in-situ in four-point bending experiments using a miniaturized
bending modulus operating under SEM. The support spans, 𝑆1 and 𝑆2, depicted in Fig.
4.3(a), are 4 mm and 22 mm, respectively. During the tests, a displacement-controlled
load is applied to the samples by moving both upper and lower supports at a constant
rate of 1 micron/second. The crack initiation and propagation are monitored by SEM
throughout the experiments. In each test, the maximum (fracture) load, 𝐹Max, asso-
ciated with the initiation of crack propagation is recorded. The recorded maximum
load values for all conducted tests are listed in Table 4.1.

4.3 Phase-Field Modeling

The phase-field modeling is a continuum mechanics-based approach which tackles
the fracture phenomenon as an energy minimization problem. This formulation
eliminates the need for ad hoc criteria for crack initiation and propagation, which
are always required when discrete approaches are used. Therefore, the phase-field
modeling can readily capture complex fracture events as natural outcomes of the
formulation. In the following, the phase-field approach used in this work to model
the macroscale fracture in functionally graded AlSi12-Al2O3 composites is briefly
introduced and the solution technique is described. Then, after a convergence study,
the model is used to simulate the fracture tests on the three-layer single-edge V-
notched beams under four-point bending. Lastly, the model is used to investigate
the effect of the stacking sequence on the load-displacement response and the crack
growth path of the specimens.

Table 4.1: The geometry and fracture load of the fracture specimens.

Sample No. ℎ1 [mm] ℎ2 [mm] ℎ3 [mm] 𝐵 [mm] 𝑎0 [mm] Crack tip radius [mm] 𝐹Max [N]

1 1.651 0.917 1.360 2.94 1.103 0.00893 203
2 1.989 1.028 1.102 2.78 0.858 0.01451 230
3 1.798 0.985 1.182 2.84 0.880 0.01350 253
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4.3.1 Formulation

The general idea of the phase-field modeling of fracture is to introduce an additional
scalar parameter 𝑑 that is namely the phase-field parameter, so that it takes the value
of zero at the undamaged portions of the domain and 1 at the fully broken parts. The
transition of the phase-field parameter between these two regions is continuous and
usually assumed to have an exponential form in terms of a length scale parameter
𝑙𝑐. The width of the transition zone across which the phase-field parameter takes a
non-negligible value depends on the length scale parameter. A higher value of the
length scale parameter increases the width of the transition zone, resembling a wider
fracture process zone in the vicinity of the crack. Using the phase-field modeling,
a sharp crack Γ that is defined over a surface can be approximated by the diffuse
crack topology defined through a volumetric integral. In this work, the AlSi12-Al2O3
composite with a sharp crack in a domain Ω (see Fig. 4.4(a)) is assumed to be a
homogeneous isotropic linear elastic material with effective elastic properties and a
diffuse crack topology, as shown in Fig. 4.4(b).

Therefore, the sharp crack is approximated by the following integral [12, 13]:

Γ ≈ Γ𝑙𝑐 (𝑑) =
∫
Ω

(
1

2𝑙𝑐
𝑑2 + 𝑙𝑐

2
|∇𝑑 |2

)
dΩ (4.1)

Using the crack topology approximation above, the crack initiation and propagation
can be defined by solving the resulting energy minimization problem through the
variational approach and the finite element technique. As the material undergoes
damage, its local stiffness gradually decreases. Therefore, the calculation of the strain
energy in the finite element implementation must take into account not only the
strains but also the phase-field parameter. Hence, the governing equations of the

(a) (b)

Fig. 4.4: (a) Discrete representation of the AlSi12-Al2O3 composite with a sharp crack within the
domain and (b) its homogenized representation with a diffuse crack.
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phase-field modeling of fracture are coupled. The degradation in strain energy should
only affect the positive portion, which corresponds to tension, as it is assumed that
no cracking occurs in compression. For brittle fracture, the degradation function is
usually a quadratic function given by (1− 𝑑2).

Two main techniques, namely, monolithic and staggered, have been developed to
solve the coupled mechanical/phase-field equations. The non-convexity of the total
potential energy functional can cause convergence and robustness issues in the mono-
lithic scheme, particularly for unstable crack growth problems. Staggered schemes,
based on alternating minimization, are more feasible and use a local history field to
weakly couple the phase-field and elasticity problems as two quasi-independent mini-
mization procedures. The implicit staggered finite element solution scheme developed
in [16, 19] is used in this work to simulate macroscale fracture in functionally graded
AlSi12-Al2O3 composite beams. Mathematical details of the staggered scheme can
be found in [16, 19]. The solution depends on the mesh size and loading rate, and
small mesh size and load increments are necessary to reach converged solutions,
especially for unstable crack growth. Therefore, before comparing the numerical
results with the experimental data, a sensitivity analysis is first conducted in the next
section to ensure that convergence in the numerical results is reached.

4.3.2 Sensitivity Analysis

The numerical model used to simulate the fracture specimens is shown in Fig. 4.5.
The simulations are conducted under plane strain conditions. Each layer is modeled as
an isotropic homogeneous linear elastic material with effective properties calculated
by the rule of mixture and given in Table 4.2. The fracture properties of the layers

Fig. 4.5: Four-node quadrilateral elements used to mesh the three-layer V-notched specimen under
four-point bending. The average mesh size is ℎ. The mesh size close to the crack tip is refined to
approximately 0.065 ℎ. Different mesh colors indicate layers with different reinforcement volume
fractions.
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Table 4.2: The effective elastic moduli and fracture properties of the composite layers. Young’s
modulus and Poisson’s ratio are determined by the rule of mixture, whereas the fracture toughness
is evaluated from the SEVNB experiment. The critical energy release rate is calculated from the
fracture toughness and effective elastic properties using 𝐺𝑐 = (1− 𝜈2 )𝐾IC/𝐸.

Material Young’s modulus [GPa] Poisson’s ratio 𝐾IC [MPa
√

m] 𝐺𝑐 [N/mm]

AlSi12 75 [20–22] 0.35 [20–22] - -
Al2O3 383 [23] 0.2 [24] - -

AlSi12-10% Al2O3 105.8 0.292 12.40 1.3298
AlSi12-20% Al2O3 136.6 0.262 9.26 0.5848
AlSi12-30% Al2O3 167.4 0.243 8.75 0.4303

are determined experimentally and also given in Table 4.2.
Four-node quadrilateral elements are used to mesh the domain, as shown in Fig. 4.5.

Near the crack tip the mesh is finer than in the rest of the domain to accurately capture
the crack tip stress fields with high gradients. The mesh size along the expected crack
growth path (straight line ahead of the initial crack axis) is always less than half of
the length scale. This is the mesh size requirement to model the crack growth with
reasonable accuracy using phase-field modeling [12].

Sample no. 1 (see Table 4.1) is used to conduct a convergence study on the mesh
size and loading rate. The load-displacement curve of sample no. 1 determined by
the phase-field model is shown in Fig. 4.6 for different mesh sizes ℎ (see Fig. 4.5).
In the numerical simulations, the length scale parameter of all layers with different
reinforcement volume fractions is taken equal to 100 microns. The study in [15]
showed that the volume fraction of the Al2O3 reinforcement has a negligible effect on
the length scale parameter for the phase field modeling of global fracture in similar
metal-ceramic composites.

The simulations are stopped before the advancement of the crack into the second
layer (the post-peak response of the fracture samples will be studied in detail in the

Fig. 4.6 Load-displacement
curve of sample no. 1 de-
termined by the phase-field
model for 𝑙𝑐 = 100 microns.
Results are presented for
different mesh sizes ℎ (see
Fig. 4.5)
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following section, see Fig. 4.7 for instance). As can be seen in Fig. 4.6, reducing the
mesh size from 50 to 5 microns reduces the global stiffness of the load-displacement
curve. The displacement at the onset of crack propagation increases with decreasing
mesh size from 50 to 10 microns, but does not change when the mesh size is further
refined to 5 microns. To avoid a problem with excessive computational time, the
simulations in the rest of the chapter are done using the mesh size ℎ = 10 microns.

Since the solution technique used in this work is based on a staggered finite element
formulation, the effect of the load increment on the results of the phase-field modeling
of sample no. 1 is also investigated. The numerically obtained load-displacement
curves of sample no. 1 are shown in Fig. 4.7(a) for different loading rates and
𝑙𝑐 = 100 microns. As can be seen in the figure, the load-displacement response of
the three-layer SEVNB specimen has five different regions:

1. A linear response from the initial configuration to point A where the fracture load
is reached.

2. A nonlinear post-peak response from A to B where the crack advances into the
first layer and the load drops suddenly. At point B, the crack penetrates the second
layer without any obvious crack arrestment. However, due to the different elastic
and fracture properties of the layers, the load-displacement curve is characterized
by a local irregularity at point B.

3. A nonlinear response from B to C corresponding to the crack advancement within
the second layer and further reduction of the load.

4. A stiffening behavior from C to D due to the crack arrest at the interface between
the second and third layers due to the higher fracture energy of the third layer.

5. The crack propagation within the third layer results in a further decrease in the
load from point D to E.

 
(a) (b)

Fig. 4.7: (a) Load-displacement curve of sample no. 1 determined by the phase-field model for
𝑙𝑐 = 100 microns. Results are presented for different loading rates. (b) Exemplary crack growth
path corresponding to different regions of the load-displacement curve. The dashed lines indicate
the interface between different layers.
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When the loading rate is high, e.g., Δ𝑢 = 10−4 mm, the fracture load and the corre-
sponding fracture displacement are higher and the post-peak behavior is smoother.
In this case, the effect of the crack penetration into the second layer (point B in the
figure) on the load-displacement response is less noticeable. The fracture load and the
corresponding fracture displacement decrease as the loading rate decreases so that
they become almost identical for the loading rates equal to 10−5 and 5×10−6 mm. In
addition, the post-peak responses of the sample corresponding to these two loading
rates are only slightly different. Therefore, considering the computational time, the
phase-field simulations in the remaining parts of the chapter are conducted using
a loading rate equal to 5×10−6 mm, except otherwise stated. Using lower loading
rates is not necessary since they improve the accuracy of the results negligibly while
considerably increasing the computational time.

4.3.3 Modeling Experiments

The phase-field model is used to predict the fracture loads of the three specimens.
Based on the conducted convergence study in the previous section, the average
mesh size (see ℎ in Fig. 4.5) and the loading rate are, respectively, 10 microns
and 5×10−6 mm. The geometry and the experimentally measured fracture loads of
these specimens are given in Table 4.1. In the modeling, each layer is considered
homogeneous and isotropic with linear elastic properties given in Table 4.2. The
experimentally determined fracture energies of each layer are also given in Table 4.2.
The only remaining modeling parameter is the length scale parameter which will be
calibrated so that the numerical fracture loads will be in reasonable agreement with
the experimental data. The fracture loads predicted by the phase-field model for the
three specimens are presented in Table 4.3 on varying the length scale parameter.

To choose the best length scale parameter, the average difference between the
experimental and numerical results is considered. The average difference for the
length scale parameter equal to 500, 100, and 25 microns are, respectively, equal to
15, 14, and 16 N. Generally, the fracture loads are not highly dependent on the length
scale value for these three cases. Here, the length scale equal to 100 microns, which

Table 4.3: The phase-field fracture loads for different length scale parameters and the experimental
results.

Sample no. 𝐹Max [N] 𝐹Max [N] 𝐹Max [N] 𝐹Max [N]
Experiment 𝑙𝑐 = 500µm 𝑙𝑐 = 100µm 𝑙𝑐 = 25µm

1 203 208 203 207
2 230 247 252 259
3 253 231 234 239
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results in the minimum average difference was considered a reasonable choice for
modeling the three-layer fracture specimens.

4.3.4 Effect of Stacking Sequence

Having successfully verified the phase-field model, this section employs it to inves-
tigate the effect of stacking sequence on the load-displacement response of cracked
specimens with three layers. The geometry of sample no. 1, as specified in Table 4.1,
is considered for this purpose. A total of 27 stacking sequences will be studied by
varying the reinforcement volume fractions of the layers at 10%, 20%, and 30%. The
length scale parameter is fixed at 100 microns, and Table 4.2 presents the fracture
energies of the layers. The load-displacement curves in Fig. 4.8 refer to the cases
where the crack is located in the bottom layer with 30%Al2O3.

Nine different cases were examined by varying the reinforcement volume fractions
of the other two layers. All the cases exhibited an initial linear elastic response.
The specimen made entirely of AlSi12-30%Al2O3 composite exhibited the stiffest
initial response due to its highest Young’s modulus value (Table 4.2). It has been
demonstrated in [15] through phase-field modeling that increasing the bending
stiffness of the specimen results in higher fracture loads. This explains why the
specimen with the stacking sequence of 30/30/30 exhibits the highest fracture load.
It can be understood from the figure that the fracture load is generally controlled by
the bending stiffness of the specimen. In other words, specimens with higher bending
stiffness have higher fracture loads.

The stacking sequence has a significant impact on the post-peak response of
the specimens. When an AlSi12-10%Al2O3 composite layer is present, a stiffening
phase is observed in the load-displacement curves in which the crack arrests at the

Fig. 4.8 Numerical load-
displacement curves obtained
for a three-layer specimen
with the same geometry as
sample no.1, but with different
stacking sequences. The
legend shows the percentage
volume fraction of the ceramic
in each layer, starting from
the bottom layer, as illustrated
in the inset on the left-hand
side of the figure. The bottom
layer of all the specimens is
reinforced with 30% ceramic.
The phase-field length scale
parameter is 𝑙𝑐 = 100µm and
the fracture energies of layers
are listed in Table 4.2.
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interface before penetrating the layer. This behavior is more pronounced when the
AlSi12-10%Al2O3 layer is located between the other two layers. In this case, the
load-displacement curve has two local maximum loads corresponding to (i) the onset
of the propagation of the initial crack in the bottom layer, and (ii) the initiation of
the crack propagation into the second layer after the crack arrestment. The values of
these two local maximum loads are close to each other. In other words, the AlSi12-
10%Al2O3 layer acts as a shield for crack propagation and prevents the specimen from
sudden catastrophic fracture. This understanding might be important for potential
applications of such layered structure, e.g. in braking disks in vehicles. If the first layer
is in contact with the rotor cracks, the stronger interior layers can prevent catastrophic
failure of the braking system, allowing for partial operation and giving the driver
time to stop the vehicle, thus avoiding fatal accidents.

For the 30/10/30 and 30/10/20 stacking sequences, crack propagation accelerates
upon reaching the third layer, which has lower fracture energy than the second layer.
This acceleration is reflected in the load-displacement response by a sudden drop at
the end of the curve. However, the crack is not arrested when it reaches the interface
between the AlSi12-30%Al2O3 and AlSi12-20%Al2O3 layers.

The load-displacement curves of the specimens with the bottom layer containing
the initial crack made of AlSi12-20%Al2O3 and AlSi12-10%Al2O3 are shown in
Fig. 4.9(a) and (b). As also observed from Fig. 4.8, the specimens with the stiffest
stacking sequences, namely 20/30/30 and 10/30/30, exhibit the highest fracture loads
in Fig. 4.9.

In the specimens with the AlSi12-20%Al2O3 bottom layer (Fig. 4.9(a)), crack
arrest occurs whenever an AlSi12-10%Al2O3 layer is present in the specimen. How-
ever, if the bottom layer containing the initial crack is made of AlSi12-10%AAl2O3
(Fig. 4.9(b)), crack arrest only occurs for the specimen with the stacking sequence of
10/30/10. For the remaining stacking sequences, the post-peak response is character-
ized by a sudden drop in load.

Comparing the load-displacement curves in Figs. 4.8 and 4.9 reveals that the
fracture load is highly dependent on the fracture energy of the bottom layer where the
crack is located. As the reinforcement volume fraction increases, the fracture energy

with an AlSi12-10%Al2O3 bottom layer exhibit the highest fracture loads. The post-
peak response of the specimens depends greatly on the stacking sequence. This
variety in the post-peak response of the layered composites allows for the material
architecture to be tailored for various design purposes.

The functionally graded composite materials in the form of layered structures
have the potential to be used in the construction of modern braking disks. The design
of a layered braking disk includes optimizing the stacking sequence to enhance
the capability of the disk to resist higher loads and dissipate heat generated during
use due to friction. To improve fracture toughness, the stacking sequence may be
adjusted, as considered above, to create a stronger composite structure against crack
initiation and propagation. On the other hand, to improve heat dissipation, the stacking
sequence may be also tailored to better facilitate heat transfer between layers and
to the surrounding environment. Therefore, there is a possibility for designing a

of the AlSi12-Al O composite decreases (see Table2 3 4.2). Therefore, the specimens
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Fig. 4.9: The numerical load-displacement curves obtained for a three-layer specimen with the
same geometry as sample no. 1, but with different stacking sequences. The legend shows the
percentage volume fraction of the ceramic in each layer, starting from the bottom layer, as
illustrated in the inset on the left-hand side of the figure. The bottom layer of all the specimens is
reinforced with (a) 20% and (b) 10% ceramic. The phase-field length scale parameter used is
𝑙𝑐 = 100 microns and the fracture energies of layers are listed in Table 4.2.
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modern braking disk, by carefully balancing these two factors, which is both strong
and effective at dissipating heat. These two features are crucial for preserving reliable
braking performance over extended periods of use.

4.3.5 Crack Branching

It has been observed in the previous section that crack arrestment occurs before the
crack penetration into a layer with higher fracture energy. This observation implies
that when the difference between the fracture energies of two layers is significant,
crack branching is likely to occur so that two new crack tips will be created and
propagated along the interface between the layers. The propagation of the two new
crack tips can lead to the crack deflection into the stronger layer. To evaluate the
ability of the phase-field model to capture the crack branching and crack deflection
in the functionally graded metal-ceramic composites, the three-layer sample with
AlSi12-30%Al2O3 bottom layer is considered. The other two layers are considered
to be made of pure AlSi12 alloy with the elastic properties given in Table 4.2. The
critical energy release rate of pure AlSi12 is considered to be equal to 2.7 N/mm.
Note that the assumed value of 2.7 N/mm does not accurately represent the energy
release rate of AlSi12. Instead, it is selected only for illustrative purposes, to create
a significant enough difference in energy release rates between the layers to induce
crack branching. The length scale parameter is assumed to be 100 microns for all
three layers and the loading rate is 1.25× 10−4 mm. The load-displacement curve
predicted by the phase-field model is illustrated in Fig. 4.10.

The curve can be divided into different phases, each with particular characteristics.
The initial phase of the curve, from the start of the modeling to point A, represents
the initial linear response of the structure before the crack propagation. Once the
load reaches the first critical value at point A, the initial crack located at the AlSi12-
30%Al2O3 bottom layer begins to propagate. From point A to B the initial crack
propagates within the bottom layer until it reaches the interface between the AlSi12-
30%Al2O3 and AlSi12 layers. At this interface, the crack is arrested due to the
significant difference between the fracture energies of the two layers, causing the
load to increase again. Once the crack driving force becomes sufficient for creating
two crack tips, the crack branches. An exemplary snapshot of the crack branching is
shown at point C. The two new cracks propagate along the interface until point D,
where the left crack tip deflects into the second layer. After this point, the deflected
crack propagates into the second layer, causing a sharp drop in the applied load. Point
E depicts a snapshot of the deflected crack reaching the third layer. Note that because
of the unstructured and asymmetric mesh pattern as depicted in Fig. 4.5, the crack
deflection into the second layer only occurs at the left crack tip rather than both.
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Fig. 4.10: The numerical load-displacement curve obtained for a three-layer sample with
AlSi12-30%Al2O3 bottom layer. The other two layers are made of pure AlSi12 with the elastic
properties given in Table 4.2. The critical energy release rate of pure AlSi12 is considered to be
equal to 2.7 N/mm. The phase-field length scale parameter used is 𝑙𝑐 = 100 microns and the
fracture energy of the AlSi12-30%Al2O3 layer is listed in Table 4.2. The loading rate is
1.25× 10−4 mm. The dashed lines indicate the interface between different layers.

4.4 Conclusion and Future Work

The fracture behavior of the functionally graded AlSi12-Al2O3 composites in the
form of three-layered single-edge notched beams has been studied using the four-
point bending SEVNB test and the phase-field modeling of brittle fracture. The
functionally graded bulk composite with layers reinforced with 10, 20, and 30%
Al2O3 has been manufactured through the hot press sintering technique. The fracture
tests have been conducted on three different samples with the same stacking sequence
and maximum loads sustained by each sample have been recorded. The phase-field
modeling of brittle fracture has been applied to simulate the experiments. In the
numerical modeling, the microstructure of the composites has not been explicitly
simulated. Instead, each layer of the samples is modeled as a homogeneous linear
elastic isotropic material with effective properties determined by the rule of mixture.
In this manner, the model captures only global fracture characteristics, such as the
macroscale load-displacement curve. The convergence study has been conducted to
determine sufficiently small mesh size and loading rate. The length scale parameter
of the phase-field models has been identified by fitting the numerically predicted
maximum loads to the experimental data.
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The phase-field model has been applied to study the effect of the stacking sequence
on the load-displacement curves of the samples. It has been shown that the stacking
sequence may greatly affect the load-displacement curve, particularly, the post-peak
response. It has been found that when the crack tip reaches a layer with high fracture
energy (for the considered composites, the layer made of AlSi12-10%Al2O3), a crack
arrest occurs. In this case, the load-displacement curve is characterized by two local
maximum loads:

(i) the load corresponding to the onset of the propagation of the initial crack, and
(ii) the load corresponding to the onset of the crack propagation into the AlSi12-

10%Al2O3 layer.

It has been discussed that this toughening mechanism might be beneficial for the
design of modern mechanical elements such as braking disks. It has been shown that
if the difference between the fracture energy of two adjacent layers is significant, the
crack arrest might be followed by crack branching resulting in the generation of two
new crack tips and their propagation along the interface between the layers.

In future work, plastic deformations will be taken into account. For this purpose,
the effective elastoplastic properties of composites will be determined experimentally,
as well as numerically using FE-based homogenization of the real microstructure.
Furthermore, in addition to comparing fracture loads, the entire load-displacement
curves obtained by the Digital Image Correlation technique will be compared with
the load-displacement curves predicted by the phase-field model. This will enable
the validation of the numerical predictions of complex fracture mechanisms, such as
crack arrestment, branching, and deflection.
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Chapter 5
On the Potential of Machine Learning Assisted
Tomography for Rapid Assessment of FRP
Materials with Defects

Jörg Hohe, Carla Beckmann, Michael Schober, Johannes Grygier, Clarissa
Vogelbacher, Jan Fränkle, Philipp Jatzlau, and Christoph Sauerwein

Abstract The present contribution is concerned with the development of methods
for a rapid assessment of defects in carbon fiber reinforced materials detected during
a nondestructive inspection regarding their effect on the structural integrity of the
components. The nondestructive inspection is performed by means of X-ray computed
tomography. Subsequently, machine learning methods are employed to assess the
effect of the detected defects on the strength of the material. The training data
base for the machine learning scheme is determined numerically by the analysis of
representative volume elements containing selected relevant defects. Their strength
is characterized in terms of the Puck failure envelope. The method is demonstrated
and validated against experimental data for a space grade CFRP material containing
manufacturing induced defects.

5.1 Introduction

Laminates consisting of unidirectionally fiber reinforced plastics (FRP) with carbon,
glass or other fibers are popular lightweight and high strength materials used in many
technological fields such as aerospace, road and rail transport, in naval or even in civil
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engineering. Their main advantage – further to their superior stiffness and strength
to weight ratio – is the possibility to design materials with tailored properties by
a tailored design of their microstructure, especially the laminate stacking sequence.
On the other hand CFRP and other laminates may feature inherent, manufacturing
induced defects depending on the respective manufacturing process which cannot be
avoided completely. These defects affect the mechanical performance of the material
significantly. Hence, a significant body of literature is concerned with the effects of
such defects.

A frequent defect type are ondulations. In an experimental and numerical study,
Hörmann et al. [1] showed that a fiber waviness and the corresponding formation
of matrix rich areas might have a significant impact on the fatigue response of the
material. Altmann et al. [2] provided an analytical model for the effects of fiber
ondulations on the effective strength using Puck’s criterion [3, 4]. A finite element
analysis by Lemanski et al. [5] revealed that fiber ondulations may also affect the
delamination toughness of the ply interfaces significantly. In addition to ondulations
and fiber waviness, the entire fiber orientation may deviate from its index value. In
this context, e.g. Falcó et al. [6] showed that already small fiber misalignments result
in a significant decrease in the effective stiffness and strength of the material.

The effect of delaminations in the ply interfaces as manufacturing defects has
been analyzed e.g. by Bui et al. [7] using a numerical approach based on cohesive
zone modelling of the interfaces. An experimental analysis into the effects of internal
manufacturing or loading induced local delamination defects in cross-ply laminates
has been provided more recently by Seon et al. [8], using micro computed tomography
for the defect identification. Other frequent manufacturing defects during fiber and
tape placement processes include the formation of gaps and undesired overlays of
rovings. These defects might have negative but in some occasions also positive effects
on the material performance as it has been shown by Croft et al. [9] or Lan et al. [10].
Both studies were directed to laminates manufactured in tape laying processes.

All defects mentioned so far are defects located in between different plies or at
least in between different tapes or rovings. Further manufacturing defects may occur
inside the individual plies or rovings. The most important (micro-) defects in this
sense are fiber agglomerations, matrix rich areas between the fibers, pores or the in-
complete wetting of fibers and suboptimum infiltration. The effect of inhomogeneous
fiber distributions have been analyzed by Fast et al. [11] and Gommer et al. [12].
In both cases, micro computed tomography has been used for characterization of
the microstructure, followed by a micromechanical simulation of the material re-
sponse on the microstructural level. A similar approach has been provided by Huang
and Talreja [13] using the Mori-Tanaka [14] mean field approach for numerical ho-
mogenization. Infiltration faults in laminates manufactured by resin transfer molding
(RTM) have been considered by Baranger et al. [15]. Together with delaminations and
fiber breakages, they were identified as the most significant manufacturing induced
defects for the RTM process.

In structural application, the detection of manufacturing induced defects e.g.
during non-destructive inspection of the manufactured component results in the
crucial question whether or not the component will be able to withstand the service
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loads even with the observed defects, i.e. whether the component has to be considered
as a reject part. For this purpose, a reliable and fast method for assessment of the
criticality of the respective manufacturing defect is required. The present study is
concerned with an investigation into the potential of an artificial intelligence (AI)
assisted defect assessment to allow an efficient and reliable evaluation of defects
detected by a non-destructive inspection. In this procedure, images obtained by high
resolution X-ray computed tomography are assessed for the local strength reduction
caused by their presence using a machine learning algorithm. The training data base
for the machine learning approach is provided by a numerical analysis of a large
number of representative volume elements containing relevant defects. The approach
is demonstrated on the example of a CFRP laminate containing worm pore networks
due to a manufacturing mistake.

5.2 Strategy for Defect Assessment

The proposed strategy for component assessment comprises two steps. In a first
step, a non-destructive inspection is performed using X-ray computed tomography.
In a second step, the images of the detected defects are evaluated with respect to
the reduction of the effective strengths caused by the flaw using a machine learning
algorithm. The machine learning algorithm has been trained before by a numerical
analysis of a large number of volume elements containing different flaw geometries
where the effective parameters for Puck’s failure criterion [3, 4] were determined by
a homogenization approach.

5.2.1 Nondestructive Investigation

The nondestructive evaluation is performed by X-ray computed tomography (CT). In
the conventional form of this nondestructive inspection technique, the specimen is
placed on a rotation fixture in between an X-ray source and the corresponding detector
(see Fig. 5.1). Using this device, the specimen is irradiated under different angles.
From the resulting radiographic images, the internal structure is computationally
reconstructed resulting in voxel-based grey scale images.

In a competitive approach, different types of X-ray computed tomography were
applied in order to assess the capabilities of different scanning procedures. The
objective was not only to determine whether the different approaches were applicable
but also an optimum choice of the parameters in the irradiation, reconstruction and
visualization of the defects in the microstructure. At the same time, the computer
memory requirements had to be kept within acceptable bounds in order to enable a
numerically efficient assessment by means of the machine learning approach defined
in Sec. 5.2.4.
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In a first step, different test specimens made from scratch material were scanned
using conventional X-ray CT. In a parametric study, the minimum resolution of
the reconstructed three-dimensional images of the internal defect structure was
investigated that provideda sufficient quality for the automatedassessment by means of
the artificial intelligence tool. In this study, the reconstruction parameters interpolation
accuracy, binning and the number of projections were varied systematically to obtain a
reasonably accurate 3D image concerning contrast, white noise and flaw detectability.

The conventional X-ray computed tomography (Fig. 5.1, right) is convenient
for specimens fitting completely into the X-ray cone. Typically, components with
dimensions up to 300mm can be investigated. However, the nondestructive inspection
of larger objects typically made from fiber reinforced plastics such as structures
in aircraft, wind turbine technology or even larger shell-like components in the
automotive industry also is desirable. In this context, the transversal X-ray computed
tomography method is advantageous. In this method, the planar or shell-like specimen
is kept fixed whereas both the X-ray source and detector are moved in opposite
directions on parallel planes. By this means, the specimen depth information is
acquired by means of inclined radiography (see Fig. 5.1, right). In this method only
those elements (i.e. defects) lying on a desired plane inside the specimen are focussed
whereas the elements in other planes appear in a blurred mode.

5.2.2 Image Preprocessing

For the use in the machine learning tool, the X-ray computed tomography images are
preprocessed by

• alignment to the ply orientation if the respective image is not perfectly aligned,
• black and white filtering in order to assign each voxel either to a defect (void

volume) or the surrounding material,

stationary
X-ray source

stationary
X-ray detector

specimen in
rotating fixture

movable
X-ray source

movable
X-ray detector

fixed planar
specimen

Fig. 5.1: Conventional and transversal X-ray computed tomography.
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• trimming and scaling in order to ensure the same dimensions and the same scale
as for the images in the training data base.

The pre-processing is necessary in order to provide a unique standardized form of
the images obtained in the nondestructive inspection and the images in the training
data base obtained by a finite element analysis of selected defects or defect networks
using voxel-based microstructural samples. As a standard size, volume elements
containing two complete adjacent plies with a total thickness of 2×0.125mm and
in-plane dimensions of 1.5mm×1.5mm was chosen. The standard resolution was
24×150×150 = 540000 voxels.

An example for the alignment and filtering procedures is presented in Fig. 5.2. The
original grey scale image (transversal cut through a laminate) and the corresponding
grey-scale spectrum for the voxels are shown on the left hand side. Obviously, the
image is slightly misaligned due to the non perfect positioning in the X-ray CT device.
The grey scale histogram features two distinct maxima representing the (black) void
volume voxels towards the lower end and the non-void volume voxels towards the
upper end. Nevertheless, a non-negligible number of voxels featuring intermediate
grey scale values were identified. The processed counterparts of the two figures for
the unprocessed image are presented on the right hand side of Fig. 5.2. The CT image
is now aligned to the coordinate axes. Furthermore, it has been converted to a binary
black or white form.

5.2.3 Integrity Criterion

The integrity of the material is assessed by means of the well-known Puck criterion [3,
4]. In the reduced form restricted to the in-plane stresses 𝜎11, 𝜎22 and 𝜎12 with 𝑥1
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Fig. 5.2: Pre-processing of X-ray computed tomography images – left hand side: unprocessed
image and grey scale histogram, right hand side: processed black and white image.
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being the fiber direction, Puck’s criterion is constituted by the five particular criteria
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for fiber tensile and compressive failure within the fiber direction, tensile failure
perpendicular to the fiber direction, interfiber shear failure and compressive/shear
failure perpendicular to the fiber direction, respectively. The tensile and compressive
strengths 𝑅t

∥ and 𝑅c
∥ within the fiber diresction, tensile and compressive strengths 𝑅t

⊥
and 𝑅c

⊥ perpendicular to the fiber direction, the interfiber shear strength 𝑅s
⊥∥ as well

as the parameters 𝑝 (−)
⊥∥ und 𝑝 (+)

⊥∥ are material properties. For simplicity and in order to
attain a smooth failure envelope, it was assumed that 𝑝 (−)

⊥∥ = 𝑝
(+)
⊥∥ . The corresponding

failure envelope in in-plane stress space together with the underlying failure modes
for the different partial criteria (5.1) to (5.5) is sketched in Fig. 5.3.

Fig. 5.3 Failure envelope
for Puck’s criterion [3, 4] in
in-plane stress space.
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5.2.4 Assessment Using a Deep Artificial Neural Network

In the presence of defects, the parameters defining Puck’s failure envelope in stress
space will be shrinked to different amounts. The degree of local strength reduction
will be related to the geometry and topology of the underlying local defect. Due to
the wide range of possible defect types, geometries and topologies, a wide range of
effects on the seven parameters defining the Puck failure envelope is possible. For
a numerically efficient determination of the strength reduction of defects detected
during a non-destructive investigation, an artificial intelligence (AI) scheme based
on deep learning is proposed. The artificial neural network approach should define
the relation between the 150×150×24 = 540000 black or white voxels and the 2×6
relevant material parameters defining the strength of the two plies in the considered
volume elements in terms of Puck’s criterion (5.1) to (5.5).

Considering the large number of input data, i.e. the binary information for the
540 000 voxels, training of an artificial neural network constitutes a highly challenging
task. In order to perform this task with reasonable resources within a reasonable time,
a deep learning approach is used. Deep artificial neural networks feature a larger
number of specialized layers than traditional “shallow” artificial neural networks.

For the present analysis, a convolutional neural network is employed. This type
of approach accounts for the requirements of automated digital image processing in
an enhanced manner. The basic idea of this approach is to identify small structures
and patterns on the lower levels of the artificial neural network. Subsequently, the
relevant output properties are computed on the upper layers of the artificial neural
network.

For this purpose, several filters are applied to small subsets of the digital images
on the first layer, convolving the input voxel information onto a second layer. On
the second layer, a data reduction is performed. For this purpose, only a limited
amount of data is kept for small subsets, keeping only the relevant data. By means
of this pooling step, the complexity of the problem is reduced. The convolution and
pooling steps are repeated several times. In all of these repetitions, the complexity is
reduced whereas all relevant information is preserved in abstracted form. In a final
step, all points in the network are connected to enable the algorithm to recombine
the information in a “dense” or “fully connected” layer.

The main challenge in the present problem is the three dimensionality of the
input data and the dimensional asymmetry of the spatial extension in the transverse
direction compared to the laminate in-plane directions. Therefore, the following
topology for the artificial neural network is chosen:

• convolutional
• pooling
• convolutional
• pooling
• dense
• dense
• dense (output)
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Since all 2×6 strength parameters may be affected by the geometry and topology of
manufacturing induced defects in the laminate, the identical approach is employed
for all 12 output parameters at once with one single network. This guarantees
approximately the same forecast accuracy with efficient computation consumption
during the training. For reasons of numerical stability, all parameters are normalized
during the training of the artificial neural network.

5.3 Reference Material

As a reference material for the present study, a space grade carbon fiber reinforced
material has been selected. The material consists of high strength HexTow IM7 fibers
embedded into a HexPly 8552 epoxy matrix with a fiber volume fraction of 𝜌f = 58%.
The material was supplied in form of a symmetric [0◦/90◦]4s cross ply laminate
featuring a nominal ply thickness of 𝑡ply = 0.125µm and thus a total thickness of
approximately 𝑡tot = 3mm. The material may be considered as a relevant material not
only for spacecraft applications but also for other high strength, high performance
applications such as filament wound CFRP overwrapped pressure vessels for storage
and transport in hydrogen technology and similar applications.

The material was manufactured from semi-finished prepreg using an autoclav
process. Due to a production defect, the material contains worm pores of different
length and diameter. A possible cause of the pore development is suspected to be an
inappropriate pressure or incomplete evacuation during the manufacturing process.
As an example for the defects, an X-ray computed tomography result featuring a
section along a selected internal ply interface is presented in Fig. 5.4. For a clearer
visibility, the original grey scale picture has been filtered to black and white where
black ranges indicate pores whereas white ranges indicate undamaged material ranges.
The worm pores are aligned with the fiber orientations of the respective plies. They
are mostly located at the ply interfaces where a large number of pore intersections
for two or more pores were observed, partially forming pore networks with possible
larger void volumes at the worm pore intersections.

Fig. 5.4 Worm pore network
at an internal ply interface of
the reference material.
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Fig. 5.5 Experimental results
and Puck failure envelope in
the biaxial failure plane and
the interfiber failure planes
in stress space (re-drawn
from data presented by [16],
assuming a prismatic shape of
the failure envelope).
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Unidirectionally fiber reinforced material from the same batch has extensively
been characterized in previous contributions [16, 17]. In contrast to the material plate
used as reference material in the present contribution, the plates used in the previous
investigation had been found to be free from any production defects. In [16, 17], the
material has been tested on single ply level within and perpendicular to the fiber
direction under both, tensile and compressive loads. In addition, off-axis experiments
in different test angles were performed. From the results, the parameters for the
Puck criterion [3, 4] were determined using a maximum likelihood procedure [18].
The experimental results from [16] obtained at ambient temperature are compiled
in Fig. 5.5 considering the biaxial failure and inter fiber failure planes in stress
space, respectively. Since no reliable data was available for the determination of
𝜎D

11 (𝜎11) in Eqs. (5.3) to (5.5), the simplifying assumption 𝜎D
11 = 𝜎11 was applied,

i.e. it was assumed that the failure envelope is perfectly prismatic with respect to the
𝜎11-direction in stress space.

5.4 Artificial Neural Network Training Data Base

The training data base for the deep learning approach described in Sect. 5.2.4 is
determined numerically. For this purpose, a sufficiently large number of defects
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observed in a tomographic investigation of the reference material is analyzed with
respect to the effect of the respective defects on shape and size of the Puck failure
envelope (Figs. 5.3, 5.5). The analysis is performed numerically by simulating the
mechanical response of stochastic volume elements (SVE) containing the respective
defect or defect network by means of the finite element method.

In order to enable the analysis of a large number of stochastic volume elements, a
semi-automatic procedure is implemented. The procedure is based on voxel-based
volume elements each having the identical discretization and boundary conditions.
The individual voxels coincide with cuboid finite elements of the same size. The
respective defect is introduced by assuming a material with negligible stiffness for
all elements with centroids inside the defect volume.

The stochastic volume elements consist of square cutouts of the laminate con-
taining two complete plies, i.e. one ply with 0◦ and one ply with 90◦ fiber direction
each. The in-plane are of the volume elements is 150mm×150mm with a total
thickness of two plies, i.e. 2×0.125mm. The voxel size for both the numerical anal-
ysis and the experimental defect characterization by X-ray computed tomography is
chosen to be 10µm×10µm×10µm resulting in finite element models consisting
of 150×150×24 finite elements. Standard 8-node displacement-based volume el-
ements with tri-linear shape functions were used. The stochastic volume elements
were supplied with periodic boundary conditions introducing the macroscopic strain
components as direct degrees of freedom as presented in an earlier contribution
(Beckmann and Hohe [19]) using a dummy node approach. By this means the cor-
responding effective stresses (times the SVE volume) are obtained as the energy
conjugate resulting “forces” to the “displacements” of the dummy node representing
the effective strains. The material for the individual plies is modelled by orthotropic
linear elasticity using the material parameters for the defect free unidirectionally (UD)
fiber reinforced material as determined in a previous contribution (Hohe et al. [16]).
For the elements within the respective defects, the elastic moduli were scaled down to
negligible however finite, non-zero values to avoid numerical instabilities. An exam-
ple of a modelled worm pore network is presented in Fig. 5.6. Notice that due to the
voxel-based modelling technique the defect surface is not entirely smooth. Examples
for the choice of different types of defects and defect networks from tomographic
data are presented in Fig. 5.7.

Fig. 5.6 Internal defect struc-
ture in a regular voxel-based
statistical volume element
for defect assessment (two
adjacent plies), meshed with
150× 150× 24 cuboidal finite
elements.

x1
x2

x3

0° ply

90° ply
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Fig. 5.7 Examples for the
choice of volume elements
with different degrees of defect
complexity.

The finite element models of the stochastic volume elements are subjected to
different reference strain states on the macroscopic level including uniaxial tensile
and compressive stress states in both the 𝑥1- and 𝑥2-directions as well as in-plane
shear strain states. Adopting the weakest link principle, a critical state of the volume
element is assumed once Puck’s criterion [3, 4] on ply level is violated for the
strengths for the defect free material (Fig. 5.5). In order to avoid numerical artefacts
due to unrealistic stress concentrations induced by the rough surfaces of the defects
due to the voxel-based modelling failure of the respective ply is assumed once
Puck’s criterion is violated for 10% of the finite elements in the respective ply. The
evaluation is performed separately for either of the two plies. As a result, estimates
for the reduced strengths for both plies of the volume element with the respective
defect or defect network are available.

An example for the shrinked Puck failure envelope is presented in Fig. 5.8. The
defect network with a high degree of complexity analyzed here is the defect at the top
right hand side of Fig. 5.7. For both plies, the failure envelope is found to be shrinked
significantly by the presence of the defect network. Slightly more pronounced effects
are observed for the (upper) 90◦ degree ply. For both plies, the strength reduction
caused by the defect network is slightly more severe for the in-plane normal tensile
and compressive stresses in both directions compared to the in-plane shear stress.
The shear strength 𝑅s

⊥∥ is found to be reduced by approximately 50% compared to a
at least 60% reduction of the normal strengths 𝑅t

∥ , 𝑅
c
∥ , 𝑅

t
⊥ and 𝑅c

⊥. Thus, the failure
envelope is not only shrinked by the presence of the defect network but also changes
its shape.

A total of 400 different types of pores and pore networks with low and high degrees
of complexity considering all types observed in the X-ray computed tomography
inspection of the reference material is analyzed. In order to enhance the data base for
training of the neural network further, it is considered that the observed networks may
positioned not only at the positions where they were observed but at in-plane shifted
positions anywhere in the volume element with the identical effect on the effective
strengths. Furthermore mirror images of the observed networks with respect to either
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Fig. 5.8 Shrinked Puck failure
envelope for selected large
worm pore network with high
complexity.
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of the 𝑥1-𝑥3- or 𝑥2-𝑥3-planes will give the same results on the effective strength. By
these considerations, the training data base can be enhanced significantly.

5.5 Example

In order to demonstrate the approach and as a basis for a critical discussion of
its capabilities, it is applied to the example of notched laboratory specimens. The
specimens were manufactured, scanned by X-ray computed tomography assessed
by the machine learning tool and the tested mechanically to failure to provide a
validation data base.

5.5.1 Experimental investigation

For the experimental investigation, five tensile test specimens are manufactured
from the cross-ply laminate with worm pore networks according to Fig. 5.4. The
specimens are supplied with shallow notches in order to obtain a non homogeneous
stress distribution. The specimen geometry is presented in Fig. 5.9.
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Fig. 5.9 Geometry of the
tensile test specimens.
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Prior to mechanical testing, the test sections of the specimens were scanned
by X-ray computed tomography. In a competitive approach, both conventional and
transversal X-ray tomography were applied (see Sect. 5.2.1). An example for the
results on the test section is presented in Fig. 5.10. Although being more efficient
especially for larger samples than the laboratory specimens considered here, the
results obtained by transversal computed tomography proved to be not evaluable by
the machine learning approach as proposed in Sect. 5.2.4 without additional depth
information. Therefore, conventional X-ray computed tomography was used in the
present experimental investigation. The test sections of all five test specimens were
scanned for defect networks using a voxel edge length of 10µm. The CT images were
subsequently assessed by the deep learning approach for a prediction of the failure
loads (Sect. 5.5.2).

Subsequently, the specimens were tested mechanically till failure using an elec-
tromechanical testing machine (Hegewald & Peschke inspekt table 250) with a wedge
clamping system. For the tests, the specimens were supplied with cap strips to prevent
slipping in the grips. The specimens were tested till failure under quasi-static condi-
tions at a crosshead velocity of 1mm/min. During the experiments, the applied force,
the crosshead displacement as well as the relative displacement of two points with
a distance of 50mm across the notch were continuously recorded. From the force
measurements, a nominal (average) stress was determined for the notch root cross
section. A nominal strain across the notched section was determined by normalizing
the relative displacement across the notched section by the initial distance of 50mm.
Notice that due to the presence of the notches the nominal strain does not constitute
a true strain measure, however, is more reliable than the crosshead displacement as a
deformation measure acquired directly on the specimen surface.

Fig. 5.10 Results of conven-
tional (left) and transversal
(right) X-ray computed tomog-
raphy of the test specimens.
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Table 5.1: Tensile test results.

specimen 𝐹max [kN] 𝜎max
avg [MPa] 𝜎max

0◦ [MPa] 𝜎max
90◦ [MPa]

AVE-CFK-Zug-01 43.31 976.8 1853.5 100.1
AVE-CFK-Zug-02 42.13 953.1 1808.4 97.7
AVE-CFK-Zug-03 42.72 960.3 1822.2 98.4
AVE-CFK-Zug-04 41.96 945.6 1794.3 96.9
AVE-CFK-Zug-05 37.62 846.6 1606.4 86.8

The results in terms of the nominal stress vs. nominal strain curves and the failure
modes are presented in Fig. 5.11. The failure forces and nominal failure stresses are
compiled in Table 5.1. In addition to the average stress 𝜎max

avg at failure, the failure
stresses 𝜎max

0◦ and 𝜎max
90◦ were computed for the 0◦- and 90◦-plies, respectively.

In all five cases, linear nominal stress-strain curves with almost identical slopes
were obtained. In all cases, failure occurs in a brittle mode without development of
nonlinearities. The failure loads for specimens no. AVE-CFK-Zug-01 to -04 are of
similar magnitude whereas specimen AVE-CFK-Zug-05 exhibits a significant pop-in
at a lower failure load, followed by a limited re-increase of the load level prior to final
failure.

Fig. 5.11 Tensile test results –
nominal average stress-strain
curves and failure modes.
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The fracture pattern for specimens no. AVE-CFK-Zug-02 and -04 consist in a
smooth failure of all plies in the same cross section. A similar pattern is observed
for specimen no. AVE-CFK-Zug-03, however, with a different fracture plane for the
top plies and thus a delamination in the depth where the transition between the two
different failure planes is made. The change in the position of the fracture plane is
probably caused by the presence of defect induced weak spots at different in-plane
locations for the front and rear plies. The delamination necessary for the transition in
the fracture planes increases the fracture energy required for complete failure despite
the probably lower work to failure due to the presence of significant weak spots.
For specimen no. AVE-CFK-Zug-01 and especially specimen no. AVE-CFK-Zug-05
featuring the lower failure load (see Table 5.1) a more complex, rough fracture pattern
is observed. In both cases, specimen failure involves failure of the different plies in
different locations along with surface break-outs and shear pull-outs (see Fig. 5.11).

The obtained maximum stresses 𝜎max
90◦ for the 90◦-ply are in all cases found beyond

the corresponding inter fiber tensile strength 𝑅t
⊥ for the defect free material (see

Figs. 5.5 and 5.8) indicating that inter fiber failure of the 90◦-plies prior to complete
specimen failure is likely. Since the inter fiber cracks were bridged by the neighboring
0◦-plies, they did not trigger total specimen failure.

5.5.2 Integrity Assessment and Discussion

The strength of the test sections of the tested laboratory specimens AVE-CFK-Zug-01
to -05 are assessed using the deep artificial neural network constituted in Sec. 5.2.4.
Since the specimees were loaded in tensile axial modes, the tensile strength 𝑅t

| | within
the fiber direction of the 0◦-plies is the relevant strength property. The predictions
for the local distributions of 𝑅t

| | for an approximately 13.5mm×33mm wide and
long area in the test section of specimen AVE-CFK-Zug-01 to -05 are presented in
Figs. 5.12 to 5.16, respectively. In this context, the individual subfigures are related
to the different depth positions through the thickness of the specimens. The specimen
orientation in Figs. 5.12 to 5.16 is identical to Fig. 5.9, i.e. the loading direction is
the horizontal direction with the notch root in the center of the subfigures.

Due to variation in the local defect state, strong local variations in the strength
distribution are obtained. In some areas, clustering of high or low values, i.e. a distinct
local correlation is observed. This correlation is caused by worm pore networks where
the individual worm pores stretch across more than one of the neighboring scanned
volumes. For all specimens, the lowest value for the predicted strength 𝑅t

| | is found
in the range of 500MPa and thus far below the measured strengths in the range
between 1600MPa and 1850MPa. Hence, an integrity assessment based directly on
the weakest-link principle and thus assuming failure of the entire specimen once the
first volume element fails would result in highly over-conservative results.

On the other hand, even for the rather brittle CFRP material considered here,
the (early) failure of a one or few volume elements with a strength in the range
of 500mm embedded into a neighborhood of volume elements with significantly
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Fig. 5.12 Local distribution
of the tensile strength in fiber
direction through the thickness
of specimen AVE-CFK-Zug-
01.
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Fig. 5.13 Local distribution
of the tensile strength in fiber
direction through the thickness
of specimen AVE-CFK-Zug-
02.

500 1000 1500 2000 2500

R ||

t pred
[MPa]



5 Machine learning assisted tomography for FRP assessment 183

Fig. 5.14 Local distribution
of the tensile strength in fiber
direction through the thickness
of specimen AVE-CFK-Zug-
03.
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Fig. 5.15 Local distribution
of the tensile strength in fiber
direction through the thickness
of specimen AVE-CFK-Zug-
04.
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Fig. 5.16 Local distribution
of the tensile strength in fiber
direction through the thickness
of specimen AVE-CFK-Zug-
05.
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higher strength does not necessarily result in overloading of the neighborhood due
to stress re-distribution from the failed element. Furthermore, the training of an
artificial neural network is not a rigorously deterministic process but a statistical
approximation. Hence, the training result as well as all predictions based thereon are
also supplied with similar uncertainties.

For this reason, the prediction results are assessed in a stochastic manner. The
histograms for the strength evaluation of the test sections of the specimens AVE-CFK-
Zug-01 to -05 are presented in Fig. 5.17. In Table 5.2, the median values 𝑄50% (𝑅t

| | )
are compiled, together with the 25%- and 75%-quantiles representing the scatter

Table 5.2: Stochastic evaluation of the assessment results for the individual test specimens.

specimen 𝑄25% (𝑅t
| | ) [MPa] 𝑄50% (𝑅t

| | ) [MPa] 𝑄75% (𝑅t
| | ) [MPa] 𝑅t,exp

| | [MPa]

AVE-CFK-Zug-01 956 1254 1704 1853.5
AVE-CFK-Zug-02 904 1321 1704 1808.4
AVE-CFK-Zug-03 773 933 1201 1822.2
AVE-CFK-Zug-04 1008 1359 1797 1794.3
AVE-CFK-Zug-05 818 994 1298 1606.4
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Fig. 5.17 Histograms for the
predicted reduced strength
longitudinally to the fibers in
the test direction.
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band with. For comparison, the respective experimentally determined strength 𝑅t,exp
| |

from Table 5.1 is added.
The histograms for specimens AVE-CFK-Zug-01, -02 and -04 feature a shallow

characteristic with similar probabilities for a wide range of local strength values.
All three distributions have median values 𝑄50% in the range of 1300MPa. The
distributions for the specimens AVE-CFK-Zug-03 and -05 feature a more distinct
peak with lower median values at approximately 𝑄50% ≈ 950MPa.

A comparison of the predicted median strengths 𝑄50% with the experimental
strength results 𝑅t,exp

| | yields a qualitatively similar distribution across the specimen
set except for specimen AVE-CFK-Zug-03 for which a similar median strength is
predicted as for specimen AVE-CFK-Zug-05, although a failure load in the same
range as for specimens AVE-CFK-Zug-01, -02 and -04 has been obtained in the
experimental investigation. A possible explanation for this outlier could be the
delamination between the top plies and the central and lower plies visible in the
fracture pattern in Fig. 5.11. The crack leading to the final separation of the specimen
ran in two different intralaminar planes connected by an interlaminar delamination.
For development of the delamination, additional fracture energy is required which
is not included in the analytical assessment based on Puck’s intralaminar failure
criterion. The intralaminar criterion basically predicts a “first ply failure”, however,
does not account for interlaminar effects. The increase in the fracture stress caused
by the additional energy consumed by the delamination is not accounted for.
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In the quantitative view, the failure predictions for all five specimens in term of
the predicted median strengths are still strongly conservative. Again, the reason is
the limitation of Puck’s criterion – as for all classical intralaminar composite failure
criteria – to the prediction of first ply failure. A failure prediction for the entire
structure (or, in this case, the entire specimen) could only be made if the weakest link
principle would apply in the rigorous sense. This would require that the failure of
a first volume element would trigger the immediate failure of its neighborhood due
to stress re-distribution. Nevertheless, if the strength distribution is inhomogeneous,
the neighboring volume elements might feature a significantly higher strength so that
first ply failure does not necessarily trigger complete failure of the entire structure.

Another feature yielding conservatisms in the present analysis is the assumption of
the weakest link principle already in the numerical generation of the training data base
for the deep neural network. In the same manner as on the structural level, failure of
the stochastic volume elements was assumed once a limited number of finite elements
in the microstructural analysis reached their local failure load. Hence, the training
data base for the neural network already contains conservative approximations.

5.6 Conclusions

The objective of the present study was an investigation into the potential of modern
artificial intelligence methods for a fast, efficient and reliable assessment of defects
in CFRP structures detected during non-destructive inspection. For this purpose, a
machine learning approach based on a deep artificial neural network was developed
and implemented. The procedure is based on a non-destructive inspection using X-ray
computed tomography to provide three-dimensional information about geometry and
topology of the possible internal defect structure. The observed defects are then
assessed by the AI tool regarding their effect on the parameters governing Puck’s
failure envelope in stress space. The training data base for the AI tool is provided
numerically by a multiscale analysis of a large number of stochastic volume elements
containing different characteristic defects or defect networks.

The approach has been demonstrated and assessed in an experimental study on
notched tensile specimens consisting of a cross-ply laminate containing worm pore
networks due to a manufacturing inaccuracy. For all tested specimens, conservative
results were obtained. The qualitative differences between the failure loads for the
different specimens were mainly reproduced. From the quantitative point of view,
the analytical predictions were found to be highly conservative. The conservatism
are caused by conservatism on several levels. First, the numerical data base used for
training of the artificial neural network is basedon the weakest linkprinciple,assuming
the entire failure of a volume element once the microscopic failure load is exceeded
on the microscale for a prescribed volume fraction of the volume element. Hence,
the artificial neural network “learned” to link the defect geometry and topology to
the conservative microscopic failure predictions. In a similar manner, the assessment
on the structural level – again – is based on the weakest link principle. Thus, it



5 Machine learning assisted tomography for FRP assessment 187

is assumed that failure of the first volume element necessarily triggers failure of
the entire structure. Neither a stable fracture by a successive failure of the volume
elements forming the structure nor fracture modes involving interlaminar failure in
addition to intralaminar modes can be described by the Puck criterion employed for
the integrity assessment of the composite material. The conservatism induced by
the employment of the weakest link principle on the microstructural level may be
overcome by using an improved simulation strategy on the microstructural level for
generation of the AI training data base. An integrity assessment on the macroscopic
level accounting not only on intralaminar but also for interlaminar modes as well
as for successive stable fracture could improve the prediction accurracy and thereby
reduce the amount of conservatism.

In general, the proposed scheme for fast and numerically efficient assessment of
tomographic inspection results using a trained artificial neural network provides a
promising approach. Care has to be taken in the choice of the training data base since
simplifications involved will be retained in the application of the approach. The multi-
step procedure for training of the neural network is a challenging procedure. In its
present form, the approach is restricted to the considered defect types. Nevertheless,
a generalization to other defect types can be made in a straightforward manner.
Further, a continued training of the artificial neural network also using data obtained
in repeated nondestructive inspection of components in service might be used for a
continuous improvement of the prediction accuracy.
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Chapter 6
On the Semi-Analytical Modelling of the
Free-Edge Stress Field in Cross-Ply Laminated
Shells Under Mechanical Loads

Andreas Kappel and Christian Mittelstedt

Abstract This contribution provides a semi-analytical model for the assessment of
the three-dimensional stress field in thick, cylindrically curved cross-ply laminated
shells subjected to different kinds of mechanical loadings under consideration of the
free-edge effect. The model superimposes a closed-form analytical solution with a
layerwise approach and the governing equations as well as the boundary conditions
are derived by means of the minimum total potential energy principle utilizing the
general Euler-Lagrange equations. Numerical results for thick cross-ply laminated
shells undergoing uniform edge loadings and sinusoidal outer pressure are presented
and the accuracy is verified by comparisons with full-scale, three-dimensional finite
element computations. Those reveal an excellent agreement between the highly
efficient semi-analytical model and the finite element approach for the free-edge
stress fields in cross-ply laminated shells.

6.1 Introduction

In the last decades, fiber-polymer composite structures have attracted more and more
attention due to the social demand to protect the limited resources of the earth. Their
favorable specific material properties, the low total energy consumption and their
ability to arbitrarily tailor the stacking sequence of composite laminates in order to
meet given design aims make fiber-polymer composite structures the ideal lightweight
engineering material in order to realize a weight loss of all kinds of structures and
thus lower the overall fuel consumption of vehicles or machines. However, several
experimental investigations of composite laminated plates and shells undergoing dif-
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ferent loading conditions clearly indicated that those safety-critical structures exhibit
complex failure modes with an interaction of micro- as well as ply cracking, which
eventually lead to a degradation of the material properties of the composite structure
and to the delamination of adjacent laminate layers. In this context, it was observed
that the delamination was triggered by the three-dimensional stress concentrations
at the traction-free edges. This phenomenon, commonly referred to as the free-edge
effect, is omnipresent since it is a consequence of the dissimilar deformation proper-
ties of composite structures wherein the high modulus fibers are aligned in different
directions. It is for this reason, that the free-edge effect and especially the interlaminar
stress concentrations have to be taken into consideration throughout the whole devel-
opment process. Thus, given the importance of this problem, a multitude of analytical,
numerical and especially experimental investigations have been performed in order
to investigate the complex three-dimensional free-edge stress field in fiber-reinforced
composite structures.

While for the free-edge effect in composite laminated plates an impressive body
of knowledge has been established over the last decades [1–3], comparatively little
research can be found on the topic of the free-edge effect in composite laminated
shells. Due to its localized and three-dimensional nature, numerical computations
require huge computational efforts in order to deliver an adequate depiction of the
underlying structural response of composite structures. Nonetheless, in order to gain
an initial and efficient insight into the interlaminar stress field in the boundary-layer
region, it is often useful to examine the structural behavior by means of closed-form
two-dimensional approaches assuming a plane strain condition.

In this regard, Srinivas [4] was one of the first who developed an exact three-
dimensional Frobenius series solution for the static and dynamic analysis of simply
supported cross-ply laminated shells subjected to transverse sinusoidal loadings. Ren
[5] also presented an exact solution for circular cylindrical cross-ply laminated shells
in cylindrical bending and compared the numerical results to the ones obtained
through Classical Shell Theory (CST). Based on the insights of Lekhnitskii [6, 7]
for curved, anisotropic beams, Ko and Jackson [8] developed an analysis method for
cross-ply laminated beams undergoing bending moments and end forces. Varadan
and Bhaskar [9], on the other hand, adopted the elasticity solution by [4] and also
investigated the structural response of finite length, cross-ply laminated shells in
cylindrical bending.

Up to this day, there exists only a small number of publications in the open lit-
erature that enable an accurate depiction of the three-dimensional state variables in
composite laminated shells under consideration of the free-edge effect. Several ap-
proximate analysis methods were developed by Miri and Nosier [10, 11]. Herein, they
investigated the decaying behavior of the interlaminar stress gradients of cylindrically
curved composite shell panels with traction-free edges in the circumferential direction
which were subjected to an extension in the axial direction and hygrothermal loadings
[12]. They employed linear displacement-based layerwise formulations and solved
the governing equations by means of the state-space approach. The accuracy was
verified by comparison with different analytical elasticity solutions. Tahani et al [13],
on the other hand, utilized the three-dimensional multi-term extended Kantorovich
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method in order to study the state variables of finite length, circular cylindrical com-
posite laminated shells with arbitrary boundary conditions undergoing sinusoidal or
constant outer pressure. The developed method was also able to accurately capture
the localized free-edge effect which was verified through finite element computations.

laminar stress field of finite length, cross-ply laminated shells with traction-free axial
ends. They obtained the governing equations as well as boundary conditions through
the minimum total potential energy principle and solved the quadratic eigenvalue
problem numerically. Comparisons of the different semi-analytical methods with
highly detailed three-dimensional finite element computations clearly indicated an
excellent agreement between both methods. Ahmadi [17] presented a Galerkin-based
layerwise formulation to describe the out-of-plane stresses in thick composite cylin-
drical shell panels with general layer stacking subjected to a pure bending moment in
the axial direction, which was also extended to levy-type loaded cross-ply laminated
shells [18].

This contribution aims at presenting a generalized semi-analytical model which
enables the reliable prediction of the interlaminar stress fields in thick, finite length
circular cylindrical cross-ply laminated shells subjected to different kinds of mechan-
ical loadings. Initially, by assuming a plane strain condition without consideration
of the free-edge effect, a closed-form analytical solution for cross-ply laminated
shells is introduced and then modified through a higher-order displacement-based
layerwise approach. The governing equations are obtained through the application of
the minimum total potential energy principle and solved by means of the state-space
approach. Finally, the free constants are determined by enforcing the underlying
boundary conditions at the traction-free edges. The accuracy of the semi-analytical
model concerning the prediction of the free-edge stress field is verified by comparison
with three-dimensional finite element computations.

6.2 Structural Situation

This paper considers cross-ply laminated shells of finite length with 𝑁 perfectly
bonded, homogeneous laminate layers, wherein the corresponding geometric param-

the opening angle and the length of the composite shells (Fig. 6.1). A cylindrical
𝑟\𝑧-coordinate system is assigned to the generator of the shell and it is stated that
the unidirectional fibers of a 0◦ laminate layer are oriented along the circumferential
coordinate \. The plies are numbered sequentially starting from the innermost one
at the inner radius 𝑅𝑖 = 𝑅 − ℎ/2. The considered cross-ply laminated shells have
traction-free edges at their axial ends 𝑧 = 0,2𝑧0 and are subjected to either an arbi-
trary surface load 𝑞 (\) based on a series expansion of sine and cosine functions or

Based on the two-dimensional closed-form analytical solution by Ko and Jackson [8],
Schnabel et al. [14] as well as Kappel and Mittelstedt [15, 16] developed linear and
higher-order, layerwise displacement field models in order to investigate the inter-

eters 𝑅, ℎ, \ 0 and 2𝑧 0 refer to the radial position of the mid-plane, the total thickness,2
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Fig. 6.1: Structural situation of the considered circular cylindrically curved cross-ply laminated
shells.

uniform edge loads �̄� and �̄� at \ = 0. It should be noted that all considered loading
conditions do not vary along the length of the composite shells.

6.3 Theoretical Formulation

This section presents the semi-analytical model by, firstly, introducing the closed-
form analytical solution which is then modified by a displacement-based layerwise
approach in order to enable the assessment of the free-edge stress fields in cross-
ply laminated shells. The complete formulation is derived within the perimeters of
geometric linearity and linear elastic material behavior.

6.3.1 Closed-Form Analytical Solutions

By considering circular cylindrical composite laminated shells of infinite length
undergoing solely mechanical loadings acting in the planes normal to the generator,
a generalized plane state of strain with respect to the axial direction is obtained and
the displacement components [6] of the 𝑙 th laminate layer can be described as:

𝑢 (𝑙) (𝑟, \) =𝑈 (𝑙)
∞ (𝑟, \) +𝑢0 cos (\) + 𝑣0 sin (\) (6.1)

𝑣 (𝑙) (𝑟, \) =𝑉 (𝑙)
∞ (𝑟, \) +𝜔3𝑟 −𝑢0 sin (\) + 𝑣0 cos (\) (6.2)

𝑤 (𝑙) (𝑟, \) =𝑊 (𝑙)
∞ (𝑟, \) +𝑤0 (6.3)
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Herein, the displacement field is characterized by 𝑢 (𝑙) (𝑟, \), 𝑣 (𝑙) (𝑟, \) and 𝑤 (𝑙) (𝑟, \)
which refer to the radial, circumferential and axial displacements of a material point
located at a sufficient distance from the boundary-layer region at (𝑟, \) in the 𝑙 th

laminate layer of the composite laminated shell. The rigid-body translations 𝑢0, 𝑣0 and
𝑤0 and the rigid-body rotation 𝜔3 about the 𝑧-axis are determined by the underlying
displacement boundary conditions. The displacement functions𝑈 (𝑙)

∞ (𝑟, \),𝑉 (𝑙)
∞ (𝑟, \)

and 𝑊 (𝑙)
∞ (𝑟, \), on the other hand, specify the local displacements of an individual

laminate ply (𝑙) and are described in a closed-form manner by means of the stress
functions 𝐹 (𝑙) andΞ(𝑙) that are obtained by solution of following governing equations
[6]:

𝐿′4
(𝑙)𝐹 (𝑙) = 0 (6.4)

𝐿′2
(𝑙)Ξ(𝑙) = 0 (6.5)

Herein, 𝐿′4
(𝑙) and 𝐿′2

(𝑙) are partial differential operators

𝐿′4
(𝑙) =𝑆 (𝑙)22

𝜕4

𝜕𝑟4 +
(
2𝑆 (𝑙)12 + 𝑆 (𝑙)66

) 1
𝑟2

𝜕4

𝜕𝑟2𝜕\2 + 𝑆
(𝑙)
11

1
𝑟4

𝜕4

𝜕\4 +2𝑆 (𝑙)22
1
𝑟

𝜕3

𝜕𝑟3 −
(
2𝑆 (𝑙)12 +

𝑆 (𝑙)66

) 1
𝑟3

𝜕3

𝜕𝑟𝜕\2 − 𝑆
(𝑙)
11

1
𝑟2

𝜕2

𝜕𝑟2 +
(
2𝑆 (𝑙)11 +2𝑆 (𝑙)12 + 𝑆 (𝑙)66

) 1
𝑟4

𝜕2

𝜕\2 + 𝑆
(𝑙)
11

1
𝑟3

𝜕

𝜕𝑟

𝐿′2
(𝑙) =𝑆 (𝑙)44

𝜕2

𝜕𝑟2 + 𝑆
(𝑙)
55

1
𝑟2

𝜕2

𝜕\2 + 𝑆
(𝑙)
44

1
𝑟

𝜕

𝜕𝑟

and 𝑆 (𝑙)𝑖 𝑗 are reduced compliance constants of the corresponding composite material:

𝑆 (𝑙)𝑖 𝑗 = 𝑆 (𝑙)𝑖 𝑗 −
𝑆 (𝑙)𝑖3 𝑆

(𝑙)
𝑗3

𝑆 (𝑙)33

(6.6)

Solution of the governing equations (6.4) and (6.5) leads to following formulation of
the stress functions:

𝐹 (𝑙) (𝑟, \) = 0 𝑓 (𝑙) (𝑟) + 1
𝑠 𝑓

(𝑙) (𝑟) sin (\) + 1
𝑐 𝑓

(𝑙) (𝑟) cos (\) +∑︁
𝛽

𝛽
𝑠 𝑓

(𝑙) (𝑟) sin (𝛽\) +
∑︁
𝛽

𝛽
𝑐 𝑓

(𝑙) (𝑟) cos (𝛽\) (6.7)

Ξ(𝑙) (𝑟, \) = 0𝜉 (𝑙) (𝑟) + 1
𝑠𝜉

(𝑙) (𝑟) sin (\) + 1
𝑐𝜉

(𝑙) (𝑟) cos (\) +∑︁
𝛽

𝛽
𝑠𝜉

(𝑙) (𝑟) sin (𝛽\) +
∑︁
𝛽

𝛽
𝑐𝜉

(𝑙) (𝑟) cos (𝛽\) (6.8)

with 𝛽 ∈
{
𝑛𝜋
𝜃0

}
(𝑛 = 1,2, ...). It should be emphasized that for 𝛽 ∈ {0,1} and 𝛽 ≥ 2

as well as for a 90◦ laminate layer wherein 𝑆 (𝑙)11 = 𝑆 (𝑙)22 and 𝑆 (𝑙)44 = 𝑆 (𝑙)55 holds, the
governing equations (6.4) and (6.5) and especially the formulations of 𝑓 (𝑙) (𝑟) and
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𝜉 (𝑙) (𝑟) change. All approaches can be found in the appendix. By making use of (6.7)
and (6.8), the stress field

𝜎 (𝑙)
𝑟𝑟 ,∞ (𝑟, \) = 1

𝑟

𝜕𝐹 (𝑙)

𝜕𝑟
+ 1
𝑟2
𝜕2𝐹 (𝑙)

𝜕\2 , 𝜎 (𝑙)
𝜃 𝜃,∞ (𝑟, \) = 𝜕

2𝐹 (𝑙)

𝜕𝑟2 ,

𝜏 (𝑙)𝑟 𝜃,∞ (𝑟, \) = −1
𝑟

𝜕2𝐹 (𝑙)

𝜕𝑟𝜕\
, 𝜏 (𝑙)𝜃𝑧,∞ (𝑟, \) = −𝜕Ξ

(𝑙)

𝜕𝑟
, 𝜏 (𝑙)𝑟 𝑧,∞ (𝑟, \) = 1

𝑟

𝜕Ξ(𝑙)

𝜕\
,

𝜎 (𝑙)
𝑧𝑧,∞ (𝑟, \) = − 1

𝑆 (𝑙)33

(
𝑆 (𝑙)13 𝜎

(𝑙)
𝑟𝑟 ,∞ + 𝑆 (𝑙)23 𝜎

(𝑙)
𝜃 𝜃,∞

) (6.9)

as well as the displacement functions

𝑈 (𝑙)
∞ (𝑟, \) =

∫
𝑟

(
𝑆 (𝑙)11 𝜎

(𝑙)
𝑟𝑟 ,∞ + 𝑆 (𝑙)12 𝜎

(𝑙)
𝜃 𝜃,∞

)
𝑑𝑟 (6.10)

𝑉 (𝑙)
∞ (𝑟, \) =

∫
𝜃

(
𝑟
(
𝑆 (𝑙)12 𝜎

(𝑙)
𝑟𝑟 ,∞ + 𝑆 (𝑙)22 𝜎

(𝑙)
𝜃 𝜃,∞

)
−𝑈 (𝑙)

∞ (𝑟, \)
)
𝑑\ (6.11)

𝑊 (𝑙)
∞ (𝑟, \) =

∫
𝜃
𝑆 (𝑙)44 𝜏

(𝑙)
𝜃𝑧,∞𝑟 𝑑\ (6.12)

can be specified. Finally, the constants have to be determined by enforcing the
continuity of the displacements and interlaminar stress components in the interfaces
of the composite shell as well as through the admissible boundary conditions.

6.3.2 Layerwise Approach

Since the closed-form analytical solution was developed by assuming a generalized
plane strain condition, it cannot capture the localized, three-dimensional stress con-
centrations in the boundary-layer region of the cross-ply laminated shells. Therefore,
the presented method has to be upgraded by a layerwise approach. In this regard,
the composite shell needs to be discretized with respect to the thickness direction by
subdividing each of the 𝑁 laminate layers into 𝑀 mathematical layers. For each of the
mathematical layers (𝑘) an additional higher-order displacement field is introduced
which is specified by means of a product approach (see Fig. 6.2):

𝑢 (𝑘 ) (𝑟, \, 𝑧) =𝑈 (𝑙 (𝑘 ) )
∞ (𝑟, \) +

∑︁
𝑗

𝑈 ( 𝑗 ) (\, 𝑧)Φ( 𝑗 ) (𝑟) +𝑢0 (\) (6.13)

𝑣 (𝑘 ) (𝑟, \, 𝑧) =𝑉 (𝑙 (𝑘 ) )
∞ (𝑟, \) +

∑︁
𝑗

𝑉 ( 𝑗 ) (\, 𝑧)Φ( 𝑗 ) (𝑟) +𝑢0 (𝑟, \) (6.14)

𝑤 (𝑘 ) (𝑟, \, 𝑧) =𝑊 (𝑙 (𝑘 ) )
∞ (𝑟, \) +

∑︁
𝑗

𝑊 ( 𝑗 ) (\, 𝑧)Φ( 𝑗 ) (𝑟) +𝑤0, (6.15)
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Fig. 6.2: Variable discretisation scheme of the composite laminated shells into mathematical layers
and higher-order displacement field of the mathematical layer (𝑘 ) by the example of �̂� (𝑘) (𝑟 , 𝜃 , 𝑧)
with Ψ = 3 (adapted from Kappel et al [19]).

wherein (𝑙 (𝑘)) defines the 𝑙 th lamina of the according mathematical layer (𝑘) and
𝑗 ∈ {𝐼 (𝑘) + 1, ..., 𝐼 (𝑘) +Ψ + 1}. The parameter Ψ, on the other hand, denotes the
order of the global Lagrangian interpolation vector Φ( 𝑗 ) (𝑟) which is composed of
the local shape functions 𝜓 (𝑘 ) utilized in the course of the layerwise approach and
𝐼 (𝑘) = 𝜓 (𝑘 ) (𝑘 −1) describes the last grid point of the (𝑘 −1)𝑡ℎ mathematical layer
[15]. By taking the kinematic relations

Y (𝑘 )𝑟𝑟 =
𝜕𝑢 (𝑘 )

𝜕𝑟
, Y (𝑘 )𝜃 𝜃 =

1
𝑟

(
𝜕𝑣 (𝑘 )

𝜕\
+𝑢 (𝑘 )

)
, Y (𝑘 )𝑧𝑧 =

𝜕𝑤 (𝑘 )

𝜕𝑧
,

𝛾 (𝑘 )𝜃𝑧 =
𝜕𝑣 (𝑘 )

𝜕𝑧
+ 1
𝑟

𝜕𝑤 (𝑘 )

𝜕\
, 𝛾 (𝑘 )𝑟 𝑧 =

𝜕𝑤 (𝑘 )

𝜕𝑟
+ 𝜕𝑢

(𝑘 )

𝜕𝑧
,

𝛾 (𝑘 )𝑟 𝜃 =
1
𝑟

(
𝜕𝑢 (𝑘 )

𝜕\
− 𝑣 (𝑘 )

)
+ 𝜕𝑣

(𝑘 )

𝜕𝑟
,

(6.16)

as well as Hooke’s generalized law

©«
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11 𝐶 (𝑘 )

12 𝐶 (𝑘 )
13 0 0 0

𝐶 (𝑘 )
12 𝐶 (𝑘 )

22 𝐶 (𝑘 )
23 0 0 0

𝐶 (𝑘 )
13 𝐶 (𝑘 )

23 𝐶 (𝑘 )
33 0 0 0

0 0 0 𝐶 (𝑘 )
44 0 0

0 0 0 0 𝐶 (𝑘 )
55 0

0 0 0 0 0 𝐶 (𝑘 )
66
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, (6.17)

into account, the strain and stress field for each mathematical layer (𝑘) can be com-
puted by means of the unknown two-dimensional displacement functions𝑈 ( 𝑗 ) (\, 𝑧),
𝑉 ( 𝑗 ) (\, 𝑧) and𝑊 ( 𝑗 ) (\, 𝑧). Based on (6.16) and (6.17), the total potential energy can
be specified as:
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Π𝑖 =
1
2

∑︁
𝑘

∫ 2𝑧0

0

∫ 𝜃0

0

∫ 𝑟(𝑘)

𝑟(𝑘−1)
Y (𝑘 )

𝑇

𝜎 (𝑘 )𝑟 𝑑𝑟 𝑑\ 𝑑𝑧

Π𝑒 =− 1
2

∑︁
𝑘

∫ 2𝑧0

0

∫ 𝑟(𝑘)

𝑟(𝑘−1)

(
�̄�
𝜕𝑣 (𝑘 )

𝜕𝑟
+ �̄�𝑟𝑢 (𝑘 ) + �̄�𝜃 𝑣 (𝑘 )

)
𝑑𝑟−

1
2

∑︁
𝑘

∫ 2𝑧0

0

∫ 𝜃0

0
𝑞 (\) 𝑢 (𝑘 ) |𝑟=𝑟𝑜𝑟 𝑑\ 𝑑𝑧

(6.18)

Employing the minimum total potential energy principle under consideration of
the general Euler-Lagrange equations, following governing equations as well as
admissible boundary conditions for each grid point (𝑖) can be derived:

𝛿𝑈 (𝑖) :
∑︁
𝑗

(
−𝐷𝑖 𝑗 (𝑘 )66

𝜕2𝑈 ( 𝑗 )

𝜕\2 − 𝐴𝑖 𝑗 (𝑘 )55
𝜕2𝑈 ( 𝑗 )

𝜕𝑧2
+

(
�̄�
𝑗𝑖 (𝑘 )
12 − �̄�𝑖 𝑗 (𝑘 )66 +𝐷𝑖 𝑗 (𝑘 )22 +

𝐷
𝑖 𝑗 (𝑘 )
66

) 𝜕𝑉 ( 𝑗 )

𝜕\
+

(
�̄�
𝑗𝑖 (𝑘 )
13 − �̄�𝑖 𝑗 (𝑘 )55 +𝐵𝑖 𝑗 (𝑘 )23

) 𝜕𝑊 ( 𝑗 )

𝜕𝑧
+

(
�̃�
𝑖 𝑗 (𝑘 )
11 +

�̄�
𝑖 𝑗 (𝑘 )
12 + �̄� 𝑗𝑖 (𝑘 )12 +𝐷𝑖 𝑗 (𝑘 )22

)
𝑈 ( 𝑗 )

)
= �̄� (𝑖)

𝑟 − �̃� (𝑖)
𝑟𝑟 ,∞− �̄� (𝑖)

𝜃 𝜃,∞+

𝑞 sin (𝛽\)Φ(𝑁𝐼 )
���
𝑟=𝑟𝑜

(6.19)

𝛿𝑉 (𝑖) :
∑︁
𝑗

(
−𝐷𝑖 𝑗 (𝑘 )22

𝜕2𝑉 ( 𝑗 )

𝜕\2 −
(
𝐵
𝑖 𝑗 (𝑘 )
23 +𝐵𝑖 𝑗 (𝑘 )44

) 𝜕2𝑊 ( 𝑗 )

𝜕\𝜕𝑧
− 𝐴𝑖 𝑗 (𝑘 )44

𝜕2𝑉 ( 𝑗 )

𝜕𝑧2
+

(
�̄�
𝑗𝑖 (𝑘 )
66 − �̄�𝑖 𝑗 (𝑘 )12 −𝐷𝑖 𝑗 (𝑘 )22 −𝐷𝑖 𝑗 (𝑘 )66

) 𝜕𝑈 ( 𝑗 )

𝜕\
+

(
�̃�
𝑖 𝑗 (𝑘 )
66 − �̄�𝑖 𝑗 (𝑘 )66 −

�̄�
𝑗𝑖 (𝑘 )
66 +𝐷𝑖 𝑗 (𝑘 )66

)
𝑉 ( 𝑗 )

)
= �̄� (𝑖)

𝜃 + �̄� (𝑖) − �̃� (𝑖)
𝑟 𝜃,∞ + �̄� (𝑖)

𝑟 𝜃,∞

(6.20)

𝛿𝑊 (𝑖) :
∑︁
𝑗

(
−𝐷𝑖 𝑗 (𝑘 )44

𝜕2𝑊 ( 𝑗 )

𝜕\2 −
(
𝐵
𝑖 𝑗 (𝑘 )
23 +𝐵𝑖 𝑗 (𝑘 )44

) 𝜕2𝑉 ( 𝑗 )

𝜕\𝜕𝑧
− 𝐴𝑖 𝑗 (𝑘 )33

𝜕2𝑊 ( 𝑗 )

𝜕𝑧2
+

(
�̄�
𝑗𝑖 (𝑘 )
55 − �̄�𝑖 𝑗 (𝑘 )13 −𝐵𝑖 𝑗 (𝑘 )23

) 𝑑𝑈 ( 𝑗 )

𝑑𝑧
+ �̃�𝑖 𝑗 (𝑘 )55 𝑊 ( 𝑗 )

)
= �̃� (𝑖)

𝑟 𝑧,∞
(6.21)

𝛿𝑈 (𝑖) :
∑︁
𝑗

∫ 𝜃0

0

(
𝐴
𝑖 𝑗 (𝑘 )
55

𝜕𝑈 ( 𝑗 )

𝜕𝑧
+ �̄�𝑖 𝑗 (𝑘 )55 𝑊 ( 𝑗 ) +𝑄 (𝑖)

𝑟 𝑧,∞
)���𝑧=2𝑧0

𝑧=0
𝑟𝑑\ = 0 (6.22)

𝛿𝑉 (𝑖) :
∑︁
𝑗

∫ 𝜃0

0

(
𝐵
𝑖 𝑗 (𝑘 )
44

𝜕𝑊 ( 𝑗 )

𝜕\
+ 𝐴𝑖 𝑗 (𝑘 )44

𝜕𝑉 ( 𝑗 )

𝜕𝑧
+𝑄 (𝑖)

𝜃𝑧,∞
)���𝑧=2𝑧0

𝑧=0
𝑟𝑑\ = 0 (6.23)

𝛿𝑊 (𝑖) :
∑︁
𝑗

∫ 𝜃0

0

(
𝐵
𝑖 𝑗 (𝑘 )
23

𝜕𝑉 ( 𝑗 )

𝜕\
+ 𝐴𝑖 𝑗 (𝑘 )33

𝜕𝑊 ( 𝑗 )

𝜕𝑧
+

(
�̄�
𝑖 𝑗 (𝑘 )
13 +𝐵𝑖 𝑗 (𝑘 )23

)
𝑈 ( 𝑗 )+

𝑁 (𝑖)
𝑧𝑧,∞

)���𝑧=2𝑧0

𝑧=0
𝑟𝑑\ = 0

(6.24)
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with 𝑗 ∈ {𝐼 (𝑘) +1, ..., 𝐼 (𝑘) +Ψ+1}. The abbreviations are specified in the appendix.
In order to solve the coupled system of partial differential equations, following
approach for the a priori unknown displacement functions has to be utilized:

𝑈 ( 𝑗 ) (\, 𝑧) = 0𝑈 ( 𝑗 ) (𝑧) +
∑︁
𝛽

(
𝛽
𝑠𝑈

( 𝑗 ) (𝑧) sin (𝛽\) + 𝛽𝑐𝑈 ( 𝑗 ) (𝑧) cos (𝛽\)
)

(6.25)

𝑉 ( 𝑗 ) (\, 𝑧) = 0𝑉 ( 𝑗 ) (𝑧) +
∑︁
𝛽

(
𝛽
𝑠𝑉

( 𝑗 ) (𝑧) sin (𝛽\) + 𝛽𝑐𝑉 ( 𝑗 ) (𝑧) cos (𝛽\)
)

(6.26)

𝑊 ( 𝑗 ) (\, 𝑧) = 0𝑊 ( 𝑗 ) (𝑧) +
∑︁
𝛽

(
𝛽
𝑠𝑊

( 𝑗 ) (𝑧) sin (𝛽\) + 𝛽𝑐𝑊 ( 𝑗 ) (𝑧) cos (𝛽\)
)

(6.27)

with 𝛽 ∈
{
1, 𝑛𝜋𝜃0

}
(𝑛 = 1,2, ...). This leads to following ordinary differential equation

systems (
0
�̃�1

0
�̃� ,𝑧𝑧 + 0

�̃�2
0
�̃� ,𝑧 + 0

�̃�3
0
�̃� − 0

�̃�

)
+

∑︁
𝛽

(
𝛽
𝑠�̃�1

𝛽
𝑠�̃� ,𝑧𝑧 +

𝛽
𝑠�̃�2

𝛽
𝑠�̃� ,𝑧 +

𝛽
𝑠�̃�3

𝛽
𝑠�̃� − 𝛽𝑠 �̃�

)
sin (𝛽\) +

∑︁
𝛽

(
𝛽
𝑐�̃�1

𝛽
𝑐�̃� ,𝑧𝑧 +

𝛽
𝑐�̃�2

𝛽
𝑐�̃� ,𝑧 +

𝛽
𝑐�̃�3

𝛽
𝑐�̃� − 𝛽𝑐 �̃�

)
cos (𝛽\) = 0

(6.28)

as well as boundary conditions
(
0
�̃�1

0
�̃� ,𝑧 + 0

�̃�2
0
�̃� − 0𝑟

)����
𝑧=2𝑧0

𝑧=0
+

∑︁
𝛽

(
𝛽
𝑠 �̃�1

𝛽
𝑠�̃� ,𝑧 +

𝛽
𝑠 �̃�2

𝛽
𝑠�̃� − 𝛽𝑠𝑟

)����
𝑧=2𝑧0

𝑧=0
sin (𝛽\) +

∑︁
𝛽

(
𝛽
𝑐 �̃�1

𝛽
𝑐�̃� ,𝑧 +

𝛽
𝑐 �̃�2

𝛽
𝑐�̃� − 𝛽𝑐𝑟

)����
𝑧=2𝑧0

𝑧=0
cos (𝛽\) = 0

(6.29)

for each 𝛽 which, however, can be solved independently from each other by only
considering the systems in the round brackets. Herein, each of the displacement
function vectors �̃� comprises all corresponding one-dimensional displacement func-
tions𝑈 ( 𝑗 ) (𝑧), 𝑉 ( 𝑗 ) (𝑧) and𝑊 ( 𝑗 ) (𝑧), while the �̃�- and �̃�-matrices are formulated in
a closed-form manner. The exact formulations can be found in the appendix.

6.3.3 Semi-Analytical Solution

As already pointed out, each ordinary differential equation system
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�̃�1 �̃� ,𝑧𝑧 + �̃�2 �̃� ,𝑧 + �̃�3 �̃� = �̃� (6.30)

in (6.28) can be solved by means of the so-called state-space approach [19] wherein
the state-space variable is defined as:

�̃� (𝑧) = �̃� ,𝑧 (6.31)

Consequently, the system of inhomogeneous, ordinary differential equations of second
order can be reformulated into a system of differential equations of first order:

(
�̃�
�̃�

)
,𝑧

= −
[

0 −𝐼
�̃�−1

1 �̃�3 �̃�
−1
1 �̃�3

] (
�̃�
�̃�

)
−

(
0

�̃�−1
1 �̃�

)
, (6.32)

or rather summarized as �̂� ,𝑧 = �̂� �̂� + �̂�. Employing the approach

�̂� = �̂�𝑌 (6.33)

wherein �̂� is the matrix of eigenvectors of �̂� and 𝑌 is a vector of unknown variables,
yields the following uncoupled inhomogeneous ordinary differential equations:

𝑌 ,𝑧 −Λ𝑌 = �̂�
−1
�̂� (6.34)

Herein, Λ = diag
(
𝜆1, . . . ,𝜆𝜅 (Ψ𝑁𝐿+1)

)
is the diagonal matrix consisting of the eigen-

values of �̂� . The homogeneous solution of (6.34) is denoted as:

�̂� = �̂�𝐸𝐵 (6.35)

wherein 𝐸 (𝑧) = diag
(
exp (𝜆1𝑧) , . . . ,exp

(
𝜆𝜅𝑁𝐼 𝑧

) )
and 𝐵 is a vector consisting of the

free constants that have to be determined through the boundary conditions (6.29).
Since the right-side vector only contains scalar values, only the homogeneous solution
has to be considered in the further course. This concludes the development of the
semi-analytical approach.

6.4 Results and Discussion

The following section provides an insight into the accuracy of the presented semi-
analytical method (’SA’) by comparing the numerical results with full-scale, three-
dimensional finite element computations (’FE’) carried out using the commercial tool
Abaqus FEA. The FE model uses hexahedral, twenty-node ’C3D20R’ elements with
quadratic shape functions and reduced integration (see also Kappel and Mittelstedt
[15]). In addition, it shouldbe noted, that from a physical point of view, the interlaminar
stresses𝜎𝑟𝑟 , 𝜏𝑟 𝑧 and 𝜏𝑟 𝜃 have to fulfill the condition of continuity across the interfaces
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of the considered cross-ply laminated shells. However, since the finite element method
is not able to meet those requirements, in the following mean values in the interfaces
of adjacent plies are presented [15].

The thickness of each laminate layer in all considered composite shells is defined
as 𝑑𝐿 = 0.25 mm. The computations are carried out by means of the following
material properties for a Carbon/PEEK composite laminate [19]:

𝐸1 = 143GPa, 𝐸2 = 𝐸3 = 9.1GPa,
𝐺23 = 4.82GPa, 𝐺12 = 𝐺13 = 4.9GPa,
𝜈12 = 𝜈13 = 𝜈23 = 0.3

wherein the indices 1,2 and 3 define the on-axis material coordinates. Further on,
only the interlaminar stresses are investigated in detail and all numerical results are
presented using the following non-dimensional coordinates [19]:

𝑟 =
𝑟 −𝑅
ℎ

, 𝑧 =
𝑧− 𝑧0
2𝑧0

6.4.1 Verification of Accuracy for Cross-Ply Laminated Shells
Undergoing Uniform Edge Loads

Figures 6.3 and 6.4 illustrate the decaying behavior of the localized interlaminar
stress gradients in the three interfaces of the symmetric [0◦/90◦]𝑆 and unsymmetric
[0◦/90◦]2 cross-ply laminated shells that are subjected to uniform edge loads �̄� and �̄�.
As expected,𝜎𝑟𝑟 and 𝜏𝑟 𝑧 attain a striking stress peak directly at the traction-free edges
and then converge to the stress state in the inner laminate region. The third interlaminar
stress component 𝜏𝑟 𝜃 , on the other hand, is characterized by a rather constant value
across the length of the considered cross-ply laminated shells. Furthermore, it is
important to take into account, that in both displayed examples, the out-of-plane
normal stresses act as tensile stresses perpendicular to the laminate layer where a
very low transverse strength is encountered and thus indicate a potential endangerment
for free-edge delaminations which eventually will commence in interface 1 due to
the potential positive singular stress of 𝜎𝑟𝑟 at 𝑧 = −0.5. Other than that, an excellent
accordance concerning the numerical results of the semi-analytical approach and the
finite element method can be observed.

6.4.2 Verification of accuracy for cross-ply laminated shells
undergoing sinusoidal outer perssure

Figures 6.5 and 6.6 present results concerning the interlaminar stress distribution in
axial direction in all three interfaces for two different angles for the same cross-ply
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Fig. 6.3: Interlaminar stresses 𝜎𝑟𝑟 , 𝜏𝑟𝑧 and 𝜏𝑟 𝜃 in MPa in all interfaces at 𝑟 = (−0.25, 0.0, 0.25)
for the symmetric [0◦/90◦ ]𝑆 composite laminate (𝑅/ℎ = 4, 2𝑧0/ℎ = 4) subjected to uniform edge
loadings �̄� = 1 N, 𝐹𝑟 = 1 N/mm and 𝐹𝜃 = 1 N/mm with 𝜃0 = 2𝜋/3.

Fig. 6.4: Interlaminar stresses 𝜎𝑟𝑟 , 𝜏𝑟𝑧 and 𝜏𝑟 𝜃 in MPa in all interfaces at 𝑟 = (−0.25, 0.0, 0.25)
for the unsymmetric [0◦/90◦ ]2 composite laminate (𝑅/ℎ = 4, 2𝑧0/ℎ = 4) subjected to uniform
edge loadings �̄� = 1 N, 𝐹𝑟 = 1 N/mm and 𝐹𝜃 = 1 N/mm with 𝜃0 = 2𝜋/3.
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Fig. 6.5: Interlaminar stresses 𝜎𝑟𝑟 , 𝜏𝑟𝑧 and 𝜏𝑟 𝜃 in MPa in all interfaces at 𝑟 = (−0.25, 0.0, 0.25)
for the symmetric [0◦/90◦ ]𝑆 composite laminate (𝑅/ℎ = 4, 2𝑧0/ℎ = 4) subjected to a sinusoidal
outer pressure 𝑞 (𝜃 ) = sin (𝜋𝜃/𝜃0 ) and 𝜃0 = 𝜋/3.

laminated shells as already discussed in the previous section but now subjected to
an outer surface load 𝑞 (\) = 𝑞 sin (𝜋\/\0) with 𝑞 = 1 which acts in negative radial
direction. With regard to the decaying behavior of the interlaminar stress gradients
in the interfaces, similar accordance for the predictions as in Figs. 6.3 and 6.4 have
been observed.

6.5 Concluding Remarks

In this contribution, a generalized semi-analytical model for the computation of the
free-edge stress field in thick, finite length, circular cylindrical cross-ply laminated
shells has been presented. The closed-form analytical method has been derived assum-
ing a plane strain state and the resulting displacement components have been modified
by three-dimensional, higher-order, displacement-based layerwise approaches in or-
der to be able to investigate the free-edge stress field in the boundary-layer region of
cross-ply laminated shells. The governing equations as well as the admissible bound-
ary conditions are obtained by employing the general Euler-Lagrange equations and
are solved by means of the state-space approach. The accuracy of the developed
analysis methods has been verified through comparison with three-dimensional finite
element computations, wherein hexahedral elements with quadratic shape functions
and reduced integration were considered. The numerical results revealed excellent
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Fig. 6.6: Interlaminar stresses 𝜎𝑟𝑟 , 𝜏𝑟𝑧 and 𝜏𝑟 𝜃 in MPa in all interfaces at 𝑟 = (−0.25, 0.0, 0.25)
for the unsymmetric [0◦/90◦ ]2 composite laminate (𝑅/ℎ = 4, 2𝑧0/ℎ = 4) subjected to a sinusoidal
outer pressure 𝑞 (𝜃 ) = sin (𝜋𝜃/𝜃0 ) and 𝜃0 = 𝜋/3.

agreement between both methods making the presented semi-analytical method
especially useful for structural optimization due to its computational efficiency.

Acknowledgements This work was supported by the German Research Foundation DFG [project
number 427624054].

Appendix A

A.1 Stress Function Approaches

Fibre angle 𝜑 = 0◦:

0 𝑓 (𝑟) = 0𝐶1𝑟
2 +

4∑︁
𝑘=3

0𝐶𝑘𝑟
1+𝜇0,𝑘 , 0𝜉 (𝑟) = 0𝐶2 ln (𝑟) (6.36)

1
𝑠 |𝑐 𝑓 (𝑟) = 1

𝑠 |𝑐𝐶1𝑟 + 1
𝑠 |𝑐𝐶2𝑟 ln (𝑟) +

4∑︁
𝑘=3

1
𝑠 |𝑐𝐶𝑘𝑟

1+𝜇1,𝑘 , 1
𝑠 |𝑐𝜉 (𝑟) =

6∑︁
𝑘=5

1
𝑠 |𝑐𝐶𝑘𝑟

𝜇1,𝑘

(6.37)
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𝛽
𝑠 |𝑐 𝑓 (𝑟) =

4∑︁
𝑘=1

𝛽
𝑠 |𝑐𝐶𝑘𝑟

1+𝜇𝛽,𝑘 , 𝛽
𝑠 |𝑐𝜉 (𝑟) =

6∑︁
𝑘=5

𝛽
𝑠 |𝑐𝐶𝑘𝑟

𝜇𝛽,𝑘 (6.38)

wherein the material parameters are computed as:

𝛼𝛽,1 = 𝑆22, 𝛼𝛽,2 = −
(
𝑆11 + 𝑆22 +

(
2𝑆12 + 𝑆66

)
𝛽2

)
, 𝛼𝛽,3 = 𝑆11

(
𝛽2 −1

)2

𝜇0,3 |4 = ±
√︄
𝑆11

𝑆22
, 𝜇1,3 |4 = ±

√︄
1+ 𝑆11 +2𝑆12 + 𝑆66

𝑆22
, 𝜇1,5 |6 = ±

√︄
𝑆55

𝑆44
(6.39)

𝜇𝛽,1 |... |4 = ±

√√√
−

(
𝛼𝛽,2

2𝛼𝛽,1

)
±

√︄(
𝛼𝛽,2

2𝛼𝛽,1

)2
−

(
𝛼𝛽,3

𝛼𝛽,1

)
, 𝜇𝛽,5 |6 = ±

√︄
𝛽2 𝑆55

𝑆44
(6.40)

Fibre angle 𝜑 = 90◦:

0 𝑓 (𝑟) = 0𝐶1 ln (𝑟) + 0𝐶3𝑟
2 + 0𝐶4𝑟

2 ln (𝑟) , 0𝜉 (𝑟) = 0𝐶2 ln (𝑟) (6.41)

1
𝑠 |𝑐 𝑓 (𝑟) = 1

𝑠 |𝑐𝐶1𝑟 + 1
𝑠 |𝑐𝐶2𝑟 ln (𝑟) +

4∑︁
𝑘=3

1
𝑠 |𝑐𝐶𝑘𝑟

1+𝜇1,𝑘 , 1
𝑠 |𝑐𝜉 (𝑟) = 1

𝑠 |𝑐𝐶5𝑟 + 1
𝑠 |𝑐𝐶6

1
𝑟

(6.42)

𝛽
𝑠 |𝑐 𝑓 (𝑟) =

4∑︁
𝑘=1

𝛽
𝑠 |𝑐𝐶𝑘𝑟

1+𝜇𝛽,𝑘 , 𝛽
𝑠 |𝑐𝜉 (𝑟) =

6∑︁
𝑘=5

𝛽
𝑠 |𝑐𝐶𝑘𝑟

𝜇𝛽,𝑘 (6.43)

wherein the material parameters are computed as:

𝛼𝛽,1 = 𝑆22, 𝛼𝛽,2 = −
(
2𝑆22 +

(
2𝑆12 + 𝑆66

)
𝛽2

)
, 𝛼𝛽,3 = 𝑆22

(
𝛽2 −1

)2

𝜇1,3 |4 = ±
√︄

2+ 2𝑆12 + 𝑆66

𝑆22
(6.44)

𝜇𝛽,1 |... |4 = ±

√√√
−

(
𝛼𝛽,2

2𝛼𝛽,1

)
±

√︄(
𝛼𝛽,2

2𝛼𝛽,1

)2
−

(
𝛼𝛽,3

𝛼𝛽,1

)
, 𝜇𝛽,5 |6 = ±𝛽 (6.45)
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A.2 Global Interpolation Vector

Definition of the underlying sets with 𝑁𝐿 = 𝑁 ×𝑀 , 𝑁𝐼 = Ψ (𝑁 ×𝑀) +1 and 𝐼 (𝑘) =
Ψ (𝑘 −1) being the last node of the (𝑘 −1) th numerical layer:

𝑆𝑁 = {1,2, ..., 𝑁}, 𝑆𝑀 = {1,2, ..., 𝑀}, 𝑆𝑁𝐿 = {1,2, ..., 𝑁 ×𝑀},
𝑆𝑁𝐼 = {1,2, ...,Ψ (𝑁 ×𝑀) +1}, 𝑆𝑁𝐼,𝑘 = {𝐼 (𝑘) +1, 𝐼 (𝑘) +2, ..., 𝐼 (𝑘) +Ψ+1},
𝑆𝑁𝐼,𝑟 = {𝐼 (𝑘) , 𝐼 (𝑘) +1, ..., 𝐼 (𝑘) +Ψ}, 𝑆Ψ = {1,2, ...,Ψ+1}

The global interpolation vector is described by Φ( 𝑗 ) (𝑟) which is defined as follows
for an arbitrary interpolation order Ψ:

Φ(1) (𝑟) = 𝜓 (1)
1 (𝑟) , 𝑟 (0) ≤ 𝑟 ≤ 𝑟 (Ψ)

...

Φ(Ψ𝑘−Ψ+1) (𝑟) = 𝜓 (𝑘 )
1 (𝑟) , 𝑟 (Ψ𝑘−Ψ) ≤ 𝑟 ≤ 𝑟 (Ψ𝑘 )

(
𝑘 ∈ 𝑆𝑁𝐿

)
...

Φ(Ψ𝑘−1) (𝑟) = 𝜓 (𝑘 )
Ψ−1 (𝑟) , 𝑟 (Ψ𝑘−Ψ) ≤ 𝑟 ≤ 𝑟 (Ψ𝑘 )

(
𝑘 ∈ 𝑆𝑁𝐿

)
Φ(Ψ𝑘 ) (𝑟) = 𝜓 (𝑘 )

Ψ (𝑟) , 𝑟 (Ψ𝑘−Ψ) ≤ 𝑟 ≤ 𝑟 (Ψ𝑘 )
(
𝑘 ∈ 𝑆𝑁𝐿

)
Φ(Ψ𝑘+1) (𝑟) =

{
𝜓 (𝑘 )
Ψ+1 (𝑟) , 𝑟 (Ψ𝑘−Ψ) ≤ 𝑟 ≤ 𝑟 (Ψ𝑘 )
𝜓 (𝑘+1)

1 (𝑟) , 𝑟 (Ψ𝑘 ) ≤ 𝑟 ≤ 𝑟 (Ψ𝑘+Ψ)

(
𝑘 ∈ 𝑆𝑁𝐿 \𝑁𝐿

)
...

Φ(𝑁𝐼 ) (𝑟) = 𝜓 (𝑁𝐿 )
Ψ+1 (𝑟) , 𝑟 (𝑁𝐼−Ψ+1) ≤ 𝑟 ≤ 𝑟 (𝑁𝐼−1) ,

(6.46)

with

𝜓 (𝑘 )
𝑗 =

{∏
𝑝∈𝑆𝑁𝐼,𝑟 , 𝑝≠𝑞

(
𝑟−𝑟(𝑝)
𝑟(𝑞)−𝑟(𝑝)

)
, 𝑛 ∈ 𝑆Ψ

0, other
(6.47)
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A.3 Abbreviations

{
𝐴𝑚𝑛 (𝑘 )𝑜𝑝 , �̄�𝑚𝑛 (𝑘 )𝑜𝑝

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)
𝐶 (𝑘 )
𝑜𝑝

{
Φ(𝑚)Φ(𝑛) ,Φ(𝑚)Φ(𝑛)

,𝑟

}
𝑑𝑟 (6.48)

{
𝐵𝑚𝑛 (𝑘 )𝑜𝑝 , �̄�𝑚𝑛 (𝑘 )𝑜𝑝

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)
𝐶 (𝑘 )
𝑜𝑝

{
Φ(𝑚)Φ(𝑛) ,Φ(𝑚)Φ(𝑛)

,𝑟

} 1
𝑟
𝑑𝑟 (6.49)

{
�̃�𝑚𝑛 (𝑘 )𝑜𝑝 , 𝐷𝑚𝑛 (𝑘 )𝑜𝑝

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)
𝐶 (𝑘 )
𝑜𝑝

{
Φ(𝑚)
,𝑟 Φ(𝑛)

,𝑟 ,Φ
(𝑚)Φ(𝑛) 1

𝑟2

}
𝑑𝑟 (6.50)

{
𝑎𝑚𝑛 (𝑘 )𝑜𝑝 , �̄�𝑚𝑛 (𝑘 )𝑜𝑝

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)
𝐶 (𝑘 )
𝑜𝑝

{
Φ(𝑚)Φ(𝑛) ,Φ(𝑚)Φ(𝑛)

,𝑟

}
𝑟 𝑑𝑟 (6.51)

{
𝑁 (𝑖)
𝑧𝑧,∞,𝑄

(𝑖)
𝜃𝑧,∞,𝑄

(𝑖)
𝑟 𝑧,∞

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)

{
𝜎 (𝑘 )
𝑧𝑧,∞, 𝜏

(𝑘 )
𝜃𝑧,∞, 𝜏

(𝑘 )
𝑟 𝜃,∞

}
Φ(𝑖) 𝑑𝑟 (6.52)

{
�̄� (𝑖)
𝜃 𝜃,∞, �̄�

(𝑖)
𝜃𝑧,∞, �̄�

(𝑖)
𝑟 𝜃,∞

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)

{
1
𝑟
𝜎 (𝑘 )
𝜃 𝜃,∞,

1
𝑟
𝜏 (𝑘 )𝜃𝑧,∞,

1
𝑟
𝜏 (𝑘 )𝑟 𝜃,∞

}
Φ(𝑖) 𝑑𝑟 (6.53)

{
�̃� (𝑖)
𝑟𝑟 ,∞, �̃�

(𝑖)
𝑟 𝜃,∞, �̃�

(𝑖)
𝑟 𝑧,∞

}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)

{
𝜎 (𝑘 )
𝑟𝑟 ,∞, 𝜏

(𝑘 )
𝑟 𝜃,∞, 𝜏

(𝑘 )
𝑟 𝑧,∞

}
Φ(𝑖)
,𝑟 𝑑𝑟 (6.54)

{
�̄� (𝑖)
𝑟 , �̄� (𝑖)

𝜃 , 𝑞 (𝑖) , �̄� (𝑖)
}
=

∫ 𝑟(𝑘)

𝑟(𝑘−1)

{
�̄�𝑟Φ

(𝑖) , �̄�𝜃Φ(𝑖) , 𝑞Φ(𝑖) , �̄�Φ(𝑖)
,𝑟

}
𝑑𝑟 (6.55)

A.4 Coefficient Matrices

Provided that not mentioned positions in the matrix are set to zero and with

(𝑖, 𝑗) = 𝐼 (𝑘) + (𝑖, 𝑗) = Ψ (𝑘 −1) + (𝑖, 𝑗)

the coefficient matrices are built as (with 𝛽 ∈
{
1, 𝑛𝜋𝜃0

}
(𝑛 = 1,2, ...)):

{
0
�̃�1,

0
�̃�2,

0
�̃�3

}
:=






0𝐾1 0 0

0 0𝐾2 0

0 0 0𝐾3


,



0 0 0𝐾4

0 0 0
0𝐾5 0 0


,



0𝐾6 0 0

0 0𝐾7 0

0 0 0𝐾8






0
�̃�1 : 0𝐾1 =

[
−𝐴𝑖 𝑗 (𝑘 )55

]
, 0𝐾2 =

[
−𝐴𝑖 𝑗 (𝑘 )44

]
, 0𝐾3 =

[
−𝐴𝑖 𝑗 (𝑘 )33

]
,

0
�̃�2 : 0𝐾4 =

[
�̄�
𝑗𝑖 (𝑘 )
13 − �̄�𝑖 𝑗 (𝑘 )55 +𝐵𝑖 𝑗 (𝑘 )23

]
, 0𝐾5 = − 0

𝐾𝑇4

0
�̃�3 : 0𝐾6 =

[
�̃�
𝑖 𝑗 (𝑘 )
11 + �̄�𝑖 𝑗 (𝑘 )12 + �̄� 𝑗𝑖 (𝑘 )12 +𝐷𝑖 𝑗 (𝑘 )22

]
, 0𝐾7 =

[
�̃�
𝑖 𝑗 (𝑘 )
66 − �̄�𝑖 𝑗 (𝑘 )66 −

�̄�
𝑗𝑖 (𝑘 )
66 +𝐷𝑖 𝑗 (𝑘 )66

]
, 0𝐾8 =

[
�̃�
𝑖 𝑗 (𝑘 )
55

]
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{
𝛽
𝑠�̃�1,

𝛽
𝑠�̃�2,

𝛽
𝑠�̃�3

}
:=






𝛽
𝑠𝐾1 0 0

0 𝛽
𝑠𝐾2 0

0 0 𝛽
𝑠𝐾3


,



0 0 𝛽
𝑠𝐾4

0 0 𝛽
𝑠𝐾5

𝛽
𝑠𝐾6

𝛽
𝑠𝐾7 0


,



𝛽
𝑠𝐾8

𝛽
𝑠𝐾9 0

𝛽
𝑠𝐾10

𝛽
𝑠𝐾11 0

0 0 𝛽
𝑠𝐾12






𝛽
𝑠�̃�1 : 𝛽

𝑠𝐾1 =
0𝐾1,

𝛽
𝑠𝐾2 =

0𝐾2
𝛽
𝑠𝐾3 =

0𝐾3,

𝛽
𝑠�̃�2 : 𝛽

𝑠𝐾5 =
[
−

(
𝐵
𝑖 𝑗 (𝑘 )
23 +𝐵𝑖 𝑗 (𝑘 )44

)
𝛽
]
,
𝛽
𝑠𝐾4 =

0𝐾4,
𝛽
𝑠𝐾6 = − 0

𝐾𝑇4 ,
𝛽
𝑠𝐾7 = − 𝛽𝑠𝐾𝑇5

𝛽
𝑠�̃�3 : 𝛽

𝑠𝐾8 =
[
�̃�
𝑖 𝑗 (𝑘 )
11 + �̄�𝑖 𝑗 (𝑘 )12 + �̄� 𝑗𝑖 (𝑘 )12 +𝐷𝑖 𝑗 (𝑘 )22 +𝐷𝑖 𝑗 (𝑘 )66 𝛽2

]
,
𝛽
𝑠𝐾9 =

[(
�̄�
𝑖 𝑗 (𝑘 )
66 −

�̄�
𝑗𝑖 (𝑘 )
12 −𝐷𝑖 𝑗 (𝑘 )22 −𝐷𝑖 𝑗 (𝑘 )66

)
𝛽
]
,
𝛽
𝑠𝐾11 =

[
�̃�
𝑖 𝑗 (𝑘 )
66 − �̄�𝑖 𝑗 (𝑘 )66 − �̄� 𝑗𝑖 (𝑘 )66 +

𝐷
𝑖 𝑗 (𝑘 )
66 +𝐷𝑖 𝑗 (𝑘 )22 𝛽2

]
,
𝛽
𝑠𝐾12 =

[
�̃�
𝑖 𝑗 (𝑘 )
55 +𝐷𝑖 𝑗 (𝑘 )44 𝛽2

]
,
𝛽
𝑠𝐾10 =

𝛽

𝑠𝐾
𝑇
9

{
𝛽
𝑐�̃�1,

𝛽
𝑐�̃�2,

𝛽
𝑐�̃�3

}
:=






𝛽
𝑐𝐾1 0 0

0 𝛽
𝑐𝐾2 0

0 0 𝛽
𝑐𝐾3


,



0 0 𝛽
𝑐𝐾4

0 0 𝛽
𝑐𝐾5

𝛽
𝑐𝐾6

𝛽
𝑐𝐾7 0


,



𝛽
𝑐𝐾8

𝛽
𝑐𝐾9 0

𝛽
𝑐𝐾10

𝛽
𝑐𝐾11 0

0 0 𝛽
𝑐𝐾12






𝛽
𝑐�̃�1 : 𝛽

𝑐𝐾1 =
0𝐾1,

𝛽
𝑐𝐾2 =

0𝐾2
𝛽
𝑐𝐾3 =

0𝐾3,

𝛽
𝑐�̃�2 : 𝛽

𝑐𝐾4 =
0𝐾4,

𝛽
𝑐𝐾5 = − 𝛽𝑠𝐾𝑇5 ,

𝛽
𝑐𝐾6 = − 0

𝐾𝑇4 ,
𝛽
𝑐𝐾7 =

𝛽
𝑠𝐾5

𝛽
𝑐�̃�3 : 𝛽

𝑐𝐾8 =
𝛽
𝑠𝐾8,

𝛽
𝑐𝐾9 = − 𝛽𝑠𝐾9,

𝛽
𝑐𝐾10 = − 𝛽𝑠𝐾𝑇9 ,

𝛽
𝑐𝐾11 =

𝛽
𝑠𝐾11,

𝛽
𝑐𝐾12 =

𝛽
𝑠𝐾12

{
0
�̃�,
𝛽
𝑠 �̃�,

𝛽
𝑐 �̃�

}
=



©
«

0
𝑅1

0
𝑅2
0

ª®®
¬
,
©«

𝛽

𝑠
𝑅1
𝛽

𝑠
𝑅2
𝛽

𝑠
𝑅3

ª®®®¬
,
©«

𝛽

𝑠
𝑅1
𝛽

𝑠
𝑅2
𝛽

𝑠
𝑅3

ª®®®¬




0
�̃� : 0

𝑅1 =
(
�̄� (𝑖)
𝑟 − 0

�̃� (𝑖)
𝑟𝑟 ,∞− 0

�̄� (𝑖)
𝜃 𝜃,∞

)
,

0
𝑅2 =

(
�̄� (𝑖)
𝜃 + �̄� (𝑖)

)
𝛽
𝑠 �̃� : 𝛽

𝑠
𝑅1 =

(
𝑞 (𝑁𝐼 ) − 𝛽𝑠 �̃� (𝑖)

𝑟𝑟 ,∞− 𝛽𝑠 �̄� (𝑖)
𝜃 𝜃,∞

)
𝛽

𝑠
𝑅2 =

(
𝛽
𝑠�̄�

(𝑖)
𝑟 𝜃,∞− 𝛽𝑠�̃� (𝑖)

𝑟 𝜃,∞
)
,

𝛽

𝑠
𝑅3 =

(
𝛽
𝑠�̃�

(𝑖)
𝑟 𝑧,∞

)
𝛽
𝑐 �̃� : 𝛽

𝑐
𝑅1 = −

(
𝛽
𝑐 �̃�

(𝑖)
𝑟𝑟 ,∞ + 𝛽𝑐 �̄� (𝑖)

𝜃 𝜃,∞
)
𝛽

𝑐
𝑅2 =

(
𝛽
𝑐�̄�

(𝑖)
𝑟 𝜃,∞− 𝛽𝑐�̃� (𝑖)

𝑟 𝜃,∞
)
,

𝛽

𝑐
𝑅3 =

(
𝛽
𝑐�̃�

(𝑖)
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Chapter 7
Experimental Quantification of Barrier Effects
for Microstructural Short Fatigue Crack
Propagation in Martensitic Steel

Kevin Koschella and Ulrich Krupp

Abstract In the scope of the underlying study, microstructurally short fatigue crack
propagation was observed and analyzed in a fully martensitic microstructure of
the 0.5C-1Cr-Mo alloy steel SAE4010. For this purpose, a three-stage examination
procedure was developed to prepare macroscopic shallow notched specimens, define
and analyze area of interest by EBSD and afterwards applying fully reversal load
cycles with a frequency of 95Hz. To predefine the crack path, small rhombic notches
were added by focused ion beam (FIB) milling in the area of interest. In the second
stage, the crack growth was monitored in-situ by light optical microscopy. The final
stage comprised the combination and correlation of the crack path, the crack growth
data and the documented microstructure with its crystallographic properties. Based on
essential literature results, which comprises statistical boundary plane orientations for
a martensitic microstructure, it was possible to analyze the barrier effect of different
martensitic boundary types as well as the effect of the twist angle and residual burgers
vector on the crack propagation behavior. By an additional consideration of common
evaluation parameters, a detailed analysis of the prediction behavior of slip system
activity was done. The results suggest the application of a combined criterion (twist
angle, residual burgers vector, resolved shear stress) to describe the general barrier
effect against fatigue crack propagation in a martensitic microstructure. In detail,
there was no clear difference in barrier effect between the observed boundary types.
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7.1 Introduction

In general, optimization of a technical product can be differentiated into two fields:
the structural optimization, e.g. changing design, topology or external loads, and
the material optimization, respectively. Despite the crucial impact of the material’s
mechanical behavior, very often the specific material selections or adjustments of the
material properties is underestimated and not kept in mind. The adequate selection
of material properties, for example to withstand complex fatigue loads and critical
environmental effects, requires a holistic understanding of the underlying structural
and metallurgical boundary conditions, though. This mainly leads to the question
how fatigue damage sets in, and what are the key features to prevent or at least delay
any fatigue damage.

Today, it is well known that crack initiation and crack propagation in the scale of
the local microstructure determines up to 90% of the lifetime, in the high cycle fatigue
regime (HCF) as well as in the very high cycle fatigue regime (VHCF). Different
studies have also shown that initiation and propagation of microstructurally short
fatigue cracks occur below the stress intensity threshold for long crack propagation
(cf. Suresh et al. [1]). Within this regime, the cyclically growing short cracks show a
growth behavior with pronounced oscillations in the crack propagation rate da/dN.
Kitagawa and Takahashi [2] attributed this to the interaction with local barriers, like
microstructural boundaries or imperfections. This characteristic growth behavior
shows a crack growth deceleration or arrest when approaching a grain or phase
boundary and subsequently, an acceleration after passing the boundary with growth
rates da/dN higher than those expected by the long crack propagation analysis. For a
quantitative explanation of the observed deceleration and arrest mechanisms, Tanaka
and Mura [3] and Navarro and de los Rios [4] introduced dislocation blocking models,
which takes boundaries in a generalized manner into account. With respect to the slip
mechanism by dislocation movement, which is assumed to be the major driving force
for the short crack growth, several geometry-based barrier models were introduced
(cf. Zhai et al. [5]). Here, the misorientation between the individual slip systems
at the grain boundary is considered as well as the spatial orientation of the grain
boundary plane. For detailed examinations of such barrier effects and detailed linking
to the underlying microstructure it is essential to understand the microstructure of
the respective materials on various length scales.

In the following sections, current results of in-situ monitored crack propagation
data are analyzed by applying different commonly used parameters to quantify
the barrier strength and slip system selection. This analysis used statistical data to
estimate spatial parameters of boundary plane orientation for specific hierarchical
boundary types. This approach was applied for a martensitic microstructure under
fully reversal cyclic loading of macroscopic specimens. The objective of this work is
to understand the short crack propagation mechanisms and their link to the martensitic
microstructure in a quantitative manner.
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7.2 Material

For this study, a martensitic steel with 0.5 wt.-% C (Table 7.1) was austenitized
at 860◦C for 30 minutes, quenched in oil and tempered at 550◦C for one hour
resulting in a hardness of 37HRC. During quenching of martensitic steels, the original
austenite structure is decomposed by diffusion-less martensitic transformation into
fine substructures (Fig. 7.1b), i.e. laths of tetragonally distorted martensite (bct,
body centered tetragonal). Between the original parent austenitic microstructure and
the resulting martensite structure a strict orientation relationship can be found. For
the underlying martensitic structure, the corresponding orientation relationship was
identified as Kurdjumov-Sachs orientation relationship (KS OR). In Fig. 7.1c, the
measured <110> plane normal vectors are compared to the one resulting by the KS
OR from the parent austenite grain.

Along with this fine microstructure different hierarchical levels for clustering
these can be defined based on the orientation relationship. This starts with martensite
packets as a first hierarchical level, where within a single martensite packet all laths

Table 7.1: Chemical composition (wt.%) of the martensitic steel SAE4010 studied.

Material C Si Mn Cr Mo Fe

0.5C-1.0Cr-Mo 0.48 0.25 0.71 1.00 0.18 bal.

Fig. 7.1: Martensitic microstructure with mainly high-angle boundaries (marked by red lines) in a).
The representative martensitic blocks within one prior austenitic grain are highlighted in b) by
different colors. Overlay of ideal <110> planes resulting from KS OR (closed yellow circles) and
the measured orientations are shown in c).
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exhibit a common parallel crystallographic {110} plane. Each martensite packet
is subdivided into blocks, which contain martensite laths with quasi-parallel <111>
directions in addition to the parallel {110} planes. According to the Kurdjumov-
Sachs OR, a single austenite grain may decay into four different packets, and for
every packet into six different block variants (Fig. 7.2).

In some materials, the existence of two variants with a small misorientation
range within one block was observed [6, 7]. However, the steel analyzed within the
present study does not show such variant pairs within a single block structure (Fig.
7.1a). Based on the KS orientation relationship, up to 24 unique variants can be
formed out of one single austenite grain. For this study, a mean block size of 0.4 µm
was determined and a mean grain size of the prior austenite grains of 9 µm. The
detailed analysis of the martensitic microstructure revealed a specific common block
alignment within several packets. This observation agrees well with results of Beladi
et al [8], where blocks and their habitus planes found to be near to a local (110) plane.
Along with this alignment, the corresponding boundaries showed predominantly the
identical orientation [8]. Figure 7.2 shows such a quasi-parallel alignment of blocks
in the center and in the detail view, marked by black plane trace lines, where all
blocks have in common within the white outlined martensite packet. Furthermore,
in the lower part of the black outlined prior austenite grain area there are several
blocks within a single martensite packet, which exhibit a more globular shape and
deviating size. This can be explained by studies of Morsdorf et al. [9] and Zhang et al.
[10], which associated this with the link between a self-accommodation process to
minimize the transformation induced strain-stress state and the early-stage martensite
transformation. The sum of the characteristics outlined above leads to a very complex
microstructure providing a broad field of potential material properties associated
with a complex fatigue behavior.

 

Fig. 7.2: Hierarchical levels of the martensitic microstructure based on the KS-orientation
relationship in SAE4010. On the right-hand-side the parallel orientated <110>-slip systems are
shown within the white framed martensite packet.
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7.3 Experiments and Methods

The measurements and observations of short crack growth in the order of the lo-
cal microstructure under cyclic loading involve special requirements on the testing
equipment as well as on the observation method itself. In general, for a very fine
microstructure like in the present case for the underlying fully martensitic structure,
the gold standard is applying in-situ testing in combination with SEM. Drawback of
this testing method is the self-heating of the specimen in combination with a strongly
reduced heat flux. This effect becomes increasingly dominant for high testing fre-
quencies and can lead to overheating and to the destruction of the specimen or at
least to significantly falsified results. Another aspect is the very limited specimen size
which can lead to the size effect strongly reducing the result‘s quality. To overcome
the above-mentioned issues, macroscopic cylindrical specimens with additional mod-
ifications were used. These modifications comprise the combination of a shallow
notched area (notch factor of 1.2) in the specimen center with an additional rhombic-
shaped notch, generated by focused ion beam milling (FIB) within the scanning
electron microscope (SEM). As a result, the crack initiation site was predefined prior
to any fatigue loading. Accordingly, the observation area was significantly reduced,
which enabled the application of a higher magnification and resolution for the light
optical microscopy. The only restriction on the observation resolution is set by the
wavelength of the light.

The experimental procedure to evaluate the microstructural crack growth within
the fully martensitic structure was carried out by three consecutive stages:

1. Specimen preparation,
2. Testing and observation,
3. Data correlation and evaluation.

In the scope of the first stage, the specimen notch surface area was polished me-
chanically followed by electropolishing [11]. Within the shallow notched region, the
area of interest was selected and completely documented with respect to the crys-
tallographic orientation distribution by automated electron back-scatter diffraction
(EBSD). Afterwards, a rhombic-shaped micro notch with a length and depth varying
from 12 µm up to 17 µm was cut out by means of FIB milling. This procedure
was conducted within a ZEISS Auriga FEG scanning electron microscope (SEM).
Objective of this stage was the documentation and final preparation of the unloaded
and undamaged microstructure as well as the future crack path.

The second stage comprised the cyclic loading of the specimen using a resonance
testing machine RUMUL Testronic 100 kN under stress-control. The fully reversed
cyclic loading (𝑅 = −1) was applied under a testing frequency of 95 Hz and ambient
temperature and environment, respectively. The prior selected and documented area
of interest was monitored during cyclic testing with a high-resolution digital light
optical microscope (HIROX MXG-10C – Fig. 7.3). The image capture rate was 0.19
Hz and 0.95 Hz for a lower stress amplitude and a higher stress amplitude, respectively.
Along with the selected monitoring rate the microstructural crack was documented
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Fig. 7.3: Experimental sequence to measure the crack growth rate da/dN and correlate it with the
crack path and the underlying microstructure. The sequence includes three experimental phases –
specimen preparation (left top), testing and observation (right top) and finally, correlative actions
of crack growth data with microstructural measurements (bottom).

at the peak of the upper tensile half-cycle to minimize the surface movement and
increase the exposure time.

In the final stage of the experimental works, all collected data was correlated
and combined to extract the characteristics of microstructurally short fatigue crack
growth. In Fig. 7.3, an exemplary overlay result of post-mortem SEM crack path and
the orientation data obtained from EBSD are shown. By using characteristic surface
features as correlation fix points, the propagation of the crack tips was combined and
correlated with SEM results and linked with the orientation data from ESBD maps.
The mentioned data combination enabled the distinct study of crack growth rates
associated with barrier interaction scenarios. In other words, with this final step it
was possible to gain insight into the specific crack growth deceleration characteristics
for every misorientation type within the martensitic structure. Though, this approach
still neglected the three-dimensionality of the crack growth during the grain boundary
transfer. In numerous studies [5, 12–17] it was observed that the barrier effect of
grain boundaries against microstructurally short fatigue crack growth is strongly
linked with spatial properties of these boundaries. In detail, it was reported that
crack growth along primary slip systems is affected by the resulting twist angle
between both corresponding slip systems at the grain boundary plane [5, 12–18].
This characteristic was also found for dislocation motion [19–22]. This similarity is
not very surprising in the light of the dislocation movement in the plastic zone ahead
the crack tip [23, 24]. In Fig. 7.4a, a detailed visualization of interacting slip systems
and the resulting twist angle on the grain boundary plane is shown. This twist angle
is determined by all three plane orientations and describes the angular discrepancy
between the slip plane traces projected on the grain boundary plane.

To assess the missing information of spatial orientation of the grain boundary
planes, results of Beladi et al. [8] were used. The authors found a strong systematic ori-
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Fig. 7.4: Visualization of the evaluation parameters in a schematic slip system interaction, with
corresponding main parameters of slip system plane normal 𝑛𝐴,𝐵𝛼,𝛽 and the grain boundary plane.

entation characteristics of grain boundary planes for a fully martensitic microstructure
following the Kurdjumov-Sachs orientation relationship. In terms of the underlying
martensitic variants, it was possible to determine a statistical distribution of grain
boundary orientation with one or more distribution peaks for each unique misorien-
tation type. This data enabled a specific definition of the grain boundary plane for
each variant pair.

For the orientation definition in this work, a grain boundary plane perpendicular
to the surface was assumed in a first step for each martensitic variant pairing at a
crack transition point. By rotating this boundary plane about the boundary plane
surface trace, the plane orientation was approximated to the distribution peaks by
the results of Beladi. This approximation step illustrated in Fig. 7.5 in an idealized
manner, where the red dashed line in the pole figure describes the rotation movement
to minimize the relative distance to the mean orientation. With this additional data
of variant boundary plane orientations, the twist angle for each crack transition was
determined and correlated with the crack growth data.

 

Fig. 7.5: Schematic visualization of the approximation for grain boundary plane orientations based
on results of Beladi et al. [8]. The grain boundary plane was orientated with the minimum
deviation of the plane normal with respect to the mean orientation from Beladi.
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7.4 Results and Discussion

The examination andmonitoring offive microstructural cracks under stress amplitudes
ranging from Δ𝜎/2 = 500 MPa up to Δ𝜎/2 = 630 MPa results in ten separate crack
tip examinations within the prior scanned and documented martensitic microstructure.
By using the above introduced evaluation procedure, the crack growth was correlated
with the underlying microstructure and typical growth characteristics were linked
to changes of the crack path as well as to different martensitic boundary types. In
Fig. 7.6, an exemplary correlation of crack growth data and the local microstructure
from SEM and EBSD is shown. For any detailed evaluation, such transition events
were considered, where a clear and pronounced crack growth sequence was apparent.
In Fig. 7.6, four exemplary crack transition events are highlighted, which fulfill the
evaluation condition. For transition points 1 and 2, a pronounced crack growth with an
acceleration regime and a subsequent strong deceleration regime was apparent, which
show local minima closely before passing the microstructural boundary. Afterwards,
the crack tip started to increase its growth rate until the next grain boundary interaction
occurred. Along with the identification of adequate crack transition events, the
corresponding structures and their boundaries were evaluated. This included the
identification of active crystallographic slip planes, which were carrying the crack
path, the martensitic variant type as well as the spatial boundary plane orientation
resulting of the procedure introduced in Sect. 7.3. In Fig. 7.7a, this correlation is
shown by plotting crack growth deceleration rates against the twist angle on the
boundary plane. Additional differentiations into block, packet and prior austenite
grain boundaries enabled a detailed view on the barrier characteristics of different
hierarchical boundary types. Due to missing statistical data, the twist angles for prior
austenite grain boundaries were estimated by rotating the boundary planes and using
the smallest resulting value. This approximation was used solely for visualization

 

Fig. 7.6: Exemplary correlation between measured crack growth rates and the post-mortem crack
path documentation by SEM and EBSD. Marked locations show the typical evaluation data to
calculate the barrier effect at grain boundary transition.
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Fig. 7.7: Crack growth deceleration correlated with estimated grain boundary mismatch angle for
active slip system in a). In b), the resulting barrier effect is shown with corresponding grain
boundary mismatch angle for active slip systems. For both graphs the different hierarchical grain
boundary types are shown with colored closed squares.

purpose. For all three boundary types in Fig. 7.7a, a strong scattering of deceleration
rates for the twist angle range up to 80◦ was observed. Between block and packet
boundaries no clear difference was observed in this graph.

However, due to the crack length and the linked crack tip stress field as well as the
size of the plastic zone, even without any obstacles, the crack growth rate is highly
dependent on the crack length as well as on the global loading. To minimize this effect
for further evaluations, the measured decelerations of growth rate was normalized
with respect to a local growth rate maximum. This local crack growth rate maximum
was defined as the highest growth rate within the block structure corresponding to the
crack transition site. This very simple definition of barrier effect is shown in Eq. (7.1)

𝐵effective,II =
|Δd𝑎/d𝑁 |

d𝑎/d𝑁max,I
=
|d𝑎/d𝑁transition,I −d𝑎/d𝑁max,I |

d𝑎/d𝑁max,I
(7.1)

The above introduced barrier effect 𝐵effective,II for slip-controlled fatigue crack propa-
gation describes how strong the plastic zone is hindered due to the interaction with a
grain boundary, which results in a successive deceleration of the crack growth. With
this approach, decelerations of microstructurally short fatigue crack growth linked
to grain boundary interactions will not be underestimated in situations of slow crack
propagation.

Based on the definition of barrier effect 𝐵effective,II, the results in Fig. 7.7a were
re-evaluated and plotted in Fig. 7.7b. One of the key findings in this graph is, that
aside from the small twist angles, prior austenite grain boundaries showed mainly
high effective barrier effects. This result is in good agreement with findings of Zhang
et al. [24, 25]. Additionally, the overall scatter of these barrier effects is substantially
smaller than for the other observed boundary types. In contrast to this, Fig. 7.7b shows
no clear difference in barrier effect for block and packet boundaries. Furthermore, a
pronounced correlative trend of the barrier effect with increasing twist angle in Fig.



218 Kevin Koschella and Ulrich Krupp

7.7b was observed. This behavior was observed also in numerous studies for short
crack propagation [5, 13–15, 17, 18], as well as for plastic deformations [22, 26–28].
Another characteristic was observed regarding the scatter of the barrier effect with
increasing twist angle.

In the scope of the underlying crack growth measurements, no complete crack
stops were observed, though. Due to crack growth below the monitoring resolution
several transition events occurred, which were interpreted as apparent crack stops,
but resumed to grow into the adjacent block after a relatively small number of loading
cycles. Based on these results, neither the scatter nor effects of the twist angle showed
a distinct difference between the barrier effect of packet and block boundaries.

With respect to the scattering of barrier effect, the solely correlation to the twist
angle seems not representative and highlighted the demand to expand the correlation
parameters. This led to the extended consideration of additional parameters. In the
scope of the present consideration, the fully geometrically based criterion of Shen et
al. [19] was applied. Beside the twist angle, the authors considered the misorientation
of slip directions of adjacent slip systems. Several studies successfully predicted the
slip system activity at grain boundaries for the growth of plastic deformations with the
additional incorporation of local shear stress on these slip systems [21, 22, 26, 29, 30].
In Eq. (7.2), the introduced parameters lead to the evaluation factor 𝑀𝛼𝛽 , which
describes the potential slip system activity ranging from 0 to 1 with increasing slip
activity

𝑀𝛼𝛽 = (𝑙𝑙𝑙𝐴𝛼 · 𝑙𝑙𝑙𝐵𝛽 ) (𝑑𝑑𝑑𝐴𝛼 ·𝑑𝑑𝑑𝐵𝛽 ). (7.2)

Shen et al. [19] incorporated within this evaluation factor the unit vectors of slip
plane traces on the grain boundary plane 𝑙𝑙𝑙𝐴,𝐵𝛼,𝛽 as well as the slip direction 𝑑𝑑𝑑𝐴,𝐵𝛼,𝛽
for both interacting slip systems. This results in an evaluation matrix, considering
every possible slip system encountering at the grain boundary. Plotting the barrier
effects with the corresponding 𝑀 factors led to the characteristics shown in Fig. 7.8a.
With increasing 𝑀 factor, the barrier effect is strongly decreasing and shows a

 

Fig. 7.8: Evaluated barrier effect correlated to the specific M-factor in a). Allocation of estimated
residual burgers vector at the grain boundary transition to measured barrier effect values (b).
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comparable scattering to the twist angle correlation. Again, it was not possible to
derive any difference in barrier effect for packet or block boundaries. Along with
the increased slip system activation potential described by an increasing 𝑀 factor,
the simultaneously increasing scatter in the barrier effect suggests the existence of
further essential parameters.

This result was also observed in studies of Lee et al. [20]. They concluded that not
only the twist angle is of major importance, but also the residual Burgers vector
(RBV) in the grain boundary plane and the resolved shear stress on adjacent slip
system. This concept (in the following called Lee-Robertson-Birnbaum-criterion)
ranks all slip system pairs encountering at a boundary by their plastic slip transfer
potential. To apply this concept, the residual Burgers vector in the structure boundary
plane was estimated by Eq. (7.3) in a first step

RBV = min|𝑏𝑏𝑏𝐴𝛼 −𝑅𝑅𝑅𝐵,𝐴 ·𝑏𝑏𝑏𝐵𝛽 |. (7.3)

Due to the existence of two possible slip directions for each of the six slip systems
in the bcc crystallographic configuration, the minimum residual Burgers vector was
used for each possible slip system pairings in this study. Equation (7.3) describes
the necessary spatial modification of an edge dislocation passing from grain 𝐴 into
grain 𝐵 in the coordinate system of grain 𝐴 (by the transformation matrix 𝑅𝑅𝑅𝐵,𝐴
modification must be beared by geometrical necessary grain boundary dislocations
which is described by the residual Burgers vector. Contrary to the findings of Lee
et al. [20] and others [26–28, 30, 31], the underlying barrier effects showed no clear
sensitivity for varying RBVs, as it is visualized in Fig. 7.8b. For this graph, the
resulting RBV was normalized by the Burgers vector length in the bcc (110)-slip
system. For the whole range of RBV, the measured barrier effects are subjected to
apparently constant scatter which varies from 50% up to nearly 100%. However, this
result has to be discussed carefully, due to the assumption of minimum RBV by Eq.
(7.3). To the current state of this study, the detailed examination of the true RBV, or
the active Burgers vectors in both active slip systems, was not conducted.

The above introduced evaluations and examinations led to a concept of considering
not only the slip system pairs encountering at the boundary, which was correlated
to the crack path, but also the full range of available slip systems for each crack
transition site, i.e. grain boundary. For this evaluation procedure the 𝑀 factor and the
LRB-criterion by Lee et al. were applied to rank every possible adjacent slip system
by increasing factors. In Fig. 7.9a, the ranking based on the 𝑀 factor is shown by
color coding the results of Fig. 7.7b in an ascending order. Slip system pairs which
are most favorable orientated by highest 𝑀 factor are ranked on the first place (green).
Considering the barrier effects in Fig. 7.9a, the observed slip system pairs with high
twist angles show low rankings. This means that the 𝑀 factor had only predicted the
low barrier effects by ranking up the corresponding slip system pairs. For transition
sites with high barrier effects and high twist angles, corresponding to the 𝑀 factor
ranking other slip system pairings would have been more favorable for an activation.
This result shows that the evaluation by the 𝑀 factor can capture quantitatively the

). This
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Fig. 7.9: Barrier effect plotted over grain boundary mismatch angle between interacting slip
systems with an additional color coding of corresponding 𝑀 factor (a) as well as for the
LRB-criterion (b).

potential strength of the barrier, but not the discrete activation of a slip system for
the growth of the plastic zone and the following crack.

Analogous to the evaluation method with the 𝑀 factor, the LRB criterion was
used to create a ranking of all available slip system pairs for each crack transition site.
This ranking is shown in Fig. 7.9b with a color coding of the barrier effect data. This
criterion considers - beside the RBV - also the twist angle and the resolved shear stress
acting on the slip system. For the sake of approximation, the resolved shear stress
was replaced by the crystallographic shear stress related to the corresponding Schmid
factors of the slip systems. This is owed to the complex microscopic stress field at the
crack tip and in the plastic zone, which was not monitored in the applied experimental
procedure. Compared to the evaluation with 𝑀 factors, this evaluation showed
a higher number of predicted slip system activities. Interestingly, both evaluation
methods showed a strong correlation to the barrier strength and consequently to the
measured barrier effect. The inaccuracy of the activation prediction in the range
of high twist angles can very likely attributed to the approximation by using the
Schmid factor-based shear stresses. The general application of the LRB-criterion and
its higher predictive accuracy was shown in experimental studies [21, 32] as well as
in simulative studies [33–36].

Based on the above shown results, the important major role of the twist angle for
the barrier effect on microstructural crack growth was observed. Regardless of the
martensitic boundary type, this behavior is in good agreement with common literature
and recent studies. Consequently, these results suggest to link the general barrier effect
against microstructurally short fatigue crack growth and plastic deformation with
geometrical characteristics rather than solely with the type of boundary. This explains
the inconsistency in results of experimental works regarding the plastic deformations
of martensitic blocks [36–41] and packets [42, 43]. The common observation of
these studies is the predominant strong barrier effect of boundaries with high angle
misorientation. This agrees well with the current results, since along with high
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misorientation angles there is a high likelihood for high twist angles, regardless of
the boundary plane orientation.

7.5 Summary and Conclusion

In the scope of this study, the barrier effect of different martensitic boundary types
to microstructurally short fatigue cracks was analyzed. By monitoring a carefully
selected region in a shallow notched specimen under fully reversed fatigue loading,
several cracks emanating from artificial rhombic FIB-milled notches were in-situ
observed by light optical microscopy and documented. After combining and corre-
lating the in-situ measured crack propagation data with microstructural data from
EBSD scans, crack transition sites were identified and evaluated. The evaluation was
done in several steps by incorporating the specific slip systems pairs encountering
at a boundary along with the respective boundary characteristics. Based on results
of Beladi et al. [8], it was possible to estimate and define spatial characteristics of
corresponding boundary planes for packet and block boundaries. Along with the
fully defined boundary plane orientation, the resulting twist angle between adjacent
slip system was derived and correlated with oscillations in the fatigue crack growth
rate d𝑎/d𝑁 (deceleration and acceleration). Only by normalizing the crack growth
deceleration rates to corresponding local peaks of the crack growth rate a detailed
discussion was possible. Based on such derived barrier effects, there was no difference
found between block and packet boundaries, regardless of the resulting twist angle.
However, these boundaries showed increasing barrier effects with increasing twist
angles.

The correlation to the 𝑀 factor [19], considering the twist angle and the slip
direction, led to comparable barrier characteristics for block and packet boundaries.
For both types the M factor showed a high predictive accuracy for slip system pairs,
where the observed barrier effects were low. However, for slip system pairings with
high measured barrier effects, this concept identified different slip system combina-
tions for those transition events. A slightly higher accuracy was reached applying the
LRB-criterion [20]. By incorporating the residual burgers vector and the local shear
stress, estimated by the Schmid factor, this approach showed a higher number of pre-
dicted slip system pairings, but still has blind spots for those pairings with high level
barrier effects according to the measurements. Based on the applied approximations,
it is expected to improve the prediction behavior by using the resolved shear stresses
and consequently see a comparable predictive accuracy like in other studies.

The present study used in several steps approximations and estimations based on
statistical data. With respect to the introduced results, the corresponding orientation of
the grain boundary is subjected to a variation. Additionally, the experimental method
to monitoring the crack during cyclic loading is subjected to a variation due to limits
in the resolution of in-situ monitoring. In combination with the monitoring frequency,
this led to blind spots in recognizing crack transition events and corresponding growth
rate calculations.
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Despite the above-mentioned sources for variation in measurements, the applied
techniques and used equipment led to reasonable results, which agree well with
results reported in more recent studies. However, to gain much more detailed insights,
which is crucial with the underlying scale of microstructure, the experimental method
should be extended to high-resolution monitoring within the SEM.
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Chapter 8
On the Difficulty to Implement the Coupled
Criterion to Predict Failure in Tempered Glass

Abstract Defining the tensile strength of a brittle material like glass is not easy
and the presence of residual stresses further complicates the problem. Indeed, mea-
suring the tensile strength by a standard bending test in glass specimens is more a
measurement of the presence of surface defects than the determination of a material
parameter. This explains that it has not a deterministic value but is defined through a
probabilistic distribution which makes it difficult to use the Coupled Criterion (CC)
which specifically requires the knowledge of the tensile strength together with the
material toughness to be implemented so as to predict crack nucleation. In addition,
the residual stresses move the stress peak inside the specimen while failure occurs
at the surface due to a critical defect, which further hinders the implementation of
the CC. We show that it is necessary to ensure that crack initiation does occur in
the vicinity of a stress peak to obtain reliable fracture predictions thanks to the CC.
The data of the tensile strength then provides a reliable critical failure load without it
being necessary to finely model the defects which are at the origin of the rupture.

8.1 Introduction

Defining the apparent macroscopic or intrinsic material tensile strength of glass is
challenging [1–3] and the presence of residual stresses (intentionally or unintention-
ally introduced during the manufacturing process) further complicates the problem
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[4]. Indeed, measuring the tensile strength by a standard bending test (e.g., 4-point
bending or ring-to-ring bending tests) in glass specimens is more a measurement
of the presence of internal and surface defects than the determination of a constant
material property, explaining that it leads to a large scattering [5]. While an intrinsic
strength of glass has been suggested in a range of several GPa [5], the observable
strength in bending tests is in a range of a few MPa (typically somewhere between
5 - 200 MPa [5, 6]. The strength of glass has been found to highly depend on en-
vironmental conditions and the size and favourable location of existing internal or
surface flaws. Indeed, it is admitted that it has not a deterministic value but is defined
through a probabilistic distribution, the so-called Weibull law [7]. Such a situation
makes it difficult to use the Coupled Criterion (CC). The latter specifically requires
the knowledge of the tensile strength of the material to implement the stress condition.
This condition complements the energy condition derived from the energy balance
to form a twofold criterion [8, 9]. However, in some cases, ceramic materials for
instance, this difficulty can be partially overcome. It is well known that in bending
tests, polishing the tested specimens leads to an increased load at failure. However
the curves reach a plateau when the surface defects become smaller than a certain
threshold, the so-called intrinsic strength (Fig. 8.1). In ceramic materials, this plateau
is strongly related to the grain size, i.e., a microstructural length scale. It has been
shown in [10] that this plateau is the value to be used by the CC to predict, for
instance, crack nucleation at a sharp V-notch. A sharp V-notch is a major defect,
stresses are singular and any statistical rule fails. Unfortunately, such a plateau does
not exist in glass, due to its amorphous microstructure, and removing tiny extrinsic
defects leads to higher and higher loads at failure which can exceed 10 GPa [5]
[11], again emphasizing the interpretation of macroscopic strength as a measure for
microstructural length scales - in this case the size of initial defects. In other words,
not surprisingly, out of crack-like defects involving singularity exponents close to 1/2
(a crack), the CC will predict very high applied loads to trigger a failure. In addition,
residual temper stresses, introduced into the glass by thermal or chemical tempering
(see Fig. 8.2) move the stress peak inside the specimen while failure occurs at the
surface due to a critical defect, which further hinders the implementation of the CC.

Fig. 8.1 Relationships be-
tween surface defect depth
𝑎c and fracture stress 𝜎c for
glass and ceramic materials,
highlighting that the curves
of alumina and SiC end in a
plateau towards small surface
flaws (data from [6]).
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Fig. 8.2: Residual stress distribution in glass due to thermal and chemical tempering.

We show that it is necessary to ensure that crack initiation does occur in the vicinity
of a stress peak to obtain reliable fracture predictions thanks to the CC. The data of
the tensile strength then provides a reliable failure load without it being necessary to
finely model the defects which are at the origin of the rupture.

8.2 Annealed Glass Specimen Under Bending

As discussed above, measuring the tensile strength by a bending test (Fig. 8.3) is,
especially in glass specimens, more a measurement of the presence of surface defects
than the determination of a constant material parameter [2, 12]. Thus, there is a
relationship between 𝜎c and the defects size. For a crack-like defect, we can derive it
from the formula found in [13] on stress intensity factors

𝐾I = 𝜎
√
𝜋𝑎𝐹 (𝑎/𝑏) (8.1)

𝐾I is the stress intensity at the tip of the surface crack, 𝜎 is the remote tensile stress,
𝑎 the crack depth and 𝑏 the specimen width. The function 𝐹 depends on the ratio
𝑎/𝑏 and is approximately 𝐹 (𝑎/𝑏) ≈ 1.122 for small ratios.
According to Irwin’s form of Griffith’s criterion, the crack grows if 𝐾I = 𝐾Ic where
𝐾Ic is the material toughness. This occurs for the critical load 𝜎c and then the
corresponding critical defect size 𝑎c is

𝑎c =
1

1.259× 𝜋

(
𝐾Ic
𝜎c

)2
(8.2)

On the other hand, the CC predicts crack initiation at stress concentration points from
two parameters: the toughness and the tensile strength of the material [8] [9]. Unlike
Griffith’s criterion, it does not assume the existence of a pre-existing crack. It is a
nucleation criterion while Griffith’s criterion only concerns crack growth. The CC is
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Fig. 8.3: Overview of considered test configuration - exemplary for the cases of annealed and
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twofold: an energy condition, enough energy must be available to allow the creation
of a crack of length 𝑎cc, and a stress condition, the tensile stress prior to nucleation
must be larger than the tensile strength 𝜎c all along the expected crack path with
length 𝑎cc. A consequence of these two conditions is that in general nucleation is an
unstable process, there is a crack jump from 0 to 𝑎cc without equilibrium in between.
Fulfilling the two conditions allows calculating both 𝑎cc and the critical load at failure.
The initiation length 𝑎cc differs from the critical flaw size 𝑎c, however, these lengths
both depend on Irwin’s length (𝐾Ic/𝜎c)2 (see Table 8.1).
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Table 8.1: The critical defect size 𝑎c and the crack initiation length 𝑎cc functions of the tensile
strength 𝜎c, for 𝐾Ic= 0.75 MPa m1/2, according respectively to (8.2) and to the CC..

𝜎c (MPa) 15 30 45 60 75 90

𝑎c (µm) 652 158 70 39 25 18
𝑎cc (µm) 764 277 135 79 53 38

The two approaches lead to very close predictions as shown in Fig. 8.4. The
advantage of the CC is that it works from a model of smooth specimen whereas
Griffith’s criterion requires consideration of the small surface defect and a much more
refined mesh accordingly. In general, the datum 𝜎c makes it possible to get rid of size
and shape of micro-defects, again emphasizing its property as a proxy for the size of
defects [10]. Note there are two ways to implement the CC, if 𝑎cc is small enough
compared to any dimension of the specimen, a quasi-analytical approach based on
matched asymptotic expansions is possible [8], otherwise full FE calculations can
be carried out. In the former case, the smallness is verified afterwards and validates
or not the use of asymptotic expansions, while the second one does not require any
smallness condition. In the present calculations the full FE approach was selected.
The tensile stress was computed along the presupposed crack path in the uncracked
domain, then a virtual crack with varying length was introduced to compute the strain
energy as a function of 𝑎cc.

8.3 Tempered Glass Specimen Under Bending

The most common method of strengthening glass by residual stresses is through a
heat treatment. In a tempered glass, these residual stresses are classically modeled
through the thickness by a second order polynomial, it is a compression –90 MPa
at the surface and, to compensate, a tension inside, which reaches +45 MPa in the

Fig. 8.4 Comparison between
Griffith’s criterion (in red)
and the CC (in blue) in the
prediction of the critical strain
at failure as a function of the
tensile strength.
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middle of the specimen (Fig. 8.2) [4]. It should be noted that this profile corresponds
to a pane thickness of 5 mm but that the intensity of the residual stresses decreases
with the thickness [4].

In the previous section, the peak stress was at the free surface in tension and the
standard situation of the application of the CC at a stress concentration point is met,
i.e. the tensile stress is a decreasing function of the distance to the initiation point.
Now, in the presence of thermal residual stresses, for small 𝜎c the applied stress at
failure remains small and the peak stress is located far inside the specimen. Then,
with an increasing 𝜎c, it moves toward the surface and thus approaches the supposed
point of initiation.

However, it is observed during testing that the failure initiation continues to occur
from surface defects while the peak stress is inside the specimen. In the forthcoming
comparison, Griffith’s criterion is still applied at the tip of the surface crack-like defect
while the implementation of the CC assumes also an initiation from the (smooth)
surface, abandoning the classical situation described above. The consequences can
be seen in Fig. 8.5, the farther the peak stress is from the surface and thus from
the supposed point of initiation, the more the CC prediction deviates from Griffith’s
criterion.

However, it is possible to somewhat temper this conclusion. Very small values of
𝜎c lead to larger and larger defect sizes (see Table 8.2) that can no longer be neglected
when implementing the CC which predicts new crack initiation from a macroscopic
point of view, i.e. without taking into account microscopic details of geometry.

Table 8.2: The critical defect size 𝑎c and the crack initiation length 𝑎cc functions of the tensile
strength 𝜎c, for 𝐾Ic= 0.75 MPa m1/2, according respectively to (8.4) and to the CC..

𝜎c (MPa) 15 30 45 60 75 90

𝑎c (µm) 796 199 88 50 32 22
𝑎cc (µm) 1470 411 192 115 79 60

Fig. 8.5 Comparison between
Griffith’s criterion (in red)
and the CC (in blue) in the
prediction of the critical strain
at failure as a function of the
tensile strength 𝜎c, in the
presence of thermal residual
stresses.
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This discrepancy can worsen in case of a chemical tempering (Fig. 8.2). The
chemical process leads to residual stresses located in a small band along the surface
with a high gradient [14] and it is clearly visible in Fig. 8.6 that the CC predictions
deviate significantly from Griffith’s over a significant range of 𝜎c values.

It seems clearly that the location of the initiation point compared to that of the
peak stress is determinant in the reliability of the CC. This will be clear in the next
example.

8.4 The Hypothetical Case of a Critical Defect in the Bulk of a
Thermally Tempered Glass Specimen Under Tension

We assume now, in presence of thermal residual stresses (Fig. 8.2) or not, that the
crack initiates from the middle of the specimen under a tensile applied load (a priori
an invented situation, the literature being sparse on tensile tests on glass specimens,
except maybe on glass fibers alone or embedded in a composite). Thus the peak stress
and the initiation point coincide. The corresponding stress intensity factor formula is
now [13]

𝐾I = 𝜎

√︂
𝜋
𝑎

2
𝐹 (𝑎/𝑏) (8.3)

Note that usually this relationship is expressed in terms of the half length of the
centered crack, noted 𝑎/2 here. The function 𝐹 (𝑎/𝑏) is close to 1 for small ratios
and then

𝑎c =
2
𝜋

(
𝐾Ic
𝜎c

)2
(8.4)

Resulting in a similar tensile strength, the critical flaw size 𝑎c derived from Griffith’s
criterion is significantly larger for inner defects than for surface ones (Tables 8.1 and
8.2) whereas practically only smaller and less critical flaws occur inside the material
[15]. This could suggest a variable parameter 𝜎c through the thickness, significantly
larger inside the material than at the surface. Although a variable parameter is not

Fig. 8.6 Comparison between
Griffith’s criterion (in red)
and the CC (in blue) in the
prediction of the critical strain
at failure as a function of the
tensile strength 𝜎c, in the
presence of chemical residual
stresses.
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excluded in the CC implementation as in oxide layers for instance [16], it has not
been possible to implement this approach convincingly.

In this case there is a good agreement between Griffith’s criterion and the CC in
the presence or not of thermal residual stresses (Fig. 8.7). Clearly, in case of residual
stresses, if 𝜎c < 45 MPa, failure could occur during the quenching process before any
mechanical loading. Note that, in the absence of residual stresses, the CC is nothing
else than the maximum tensile stress criterion.

This result confirms that of Sect. 8.2, the CC works properly as long as the
initiation point is close to the peak stress, otherwise it exhibits a discrepancy. Once
again, the datum 𝜎c allows a simple implementation of the CC which does not require
modeling the defect at the origin of the failure, contrary to using Griffith’s criterion.

8.5 Comparison with a Bending Test on Notched Zirconia
Specimens

To enrich our examples of residual stresses, this section does not concern glass but
zirconia. When such a sample is machined to create a notch, the honing causes a
phase change that generates a very thin layer of residual stress on the surface. The
compression in this layer, whose thickness does not exceed 7-8 µm, can reach 1800
MPa (Fig. 8.8). Moreover, these residual stresses depend also on the notch root radius
𝑟 , which is one variable parameter of the experiments. They reach a maximum for 𝑟
between 5 and 12 µm. For wider notches with radii above ≃ 90 µm created by cooled
diamond grinding, they are significantly smaller. These specimens are tested under
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With thermal residual stresses
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Fig. 8.7: Comparison between Griffith’s criterion (in red) and the CC (in blue) in the prediction of
the critical strain at failure as a function of the tensile strength 𝜎c, in case of a tensile test and the
crack initiation in the middle of the specimen.
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Fig. 8.8: Numerical simulation and experimental measurements of residual stresses due to the
phase change caused by honing, function of the root radius 𝑟 of the notch.

4-point bending loading (Fig. 8.9). In addition, a part of the samples undergoes a
thermal post-treatment to release the residual stresses (Fig. 8.8) [17] [18].

The agreement between 4-point bending tests and the CC theoretical predictions
is fully satisfactory (Fig. 8.10). There are two good reasons for this, the notch with
a small root radius strongly concentrates the stresses (almost like a crack) and the
residual stresses only slightly shift the stress peak inwards. Note that the parameter
𝐾Ic in Fig. 8.8 is an equivalent 𝐾Ic, the considered slit not being a real crack because
of its rounding.

Fig. 8.9 4-point bending test
on a notch specimen.
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Fig. 8.10: Comparison between predictions using the CC (dashed lines) and experiments on
notched specimens of zirconia.

8.6 Discussion and Conclusions

The CC makes it possible to predict the nucleation of new cracks from the data of
two parameters: material toughness and tensile strength, without having to consider
precisely any micro-structural particularity at the origin of the failure. This is, at
large, because 𝜎c acts as a proxy for microstructure and incompasses information
on microstructural length scales. This parameter can vary but it supposes that it
characterizes the material not only a local property. Under these conditions, the
hypothesis that the initiation of a crack occurs in the vicinity of a peak stress or
more precisely of the maximum of the ratio 𝜎/𝜎c seems consistent, and this has
been verified many times in the implementation of the CC when compared with
experiments [9]. In contrast, in glass and tempered glass in particular,𝜎c is ultimately
just a measure of the surface finish because its armorphous microstructure does not
exhibit length scales that are relevant to the fracture process. Moreover, since they
are extremely brittle materials for which the theoretical 𝜎c is very high, they are
only sensitive to crack-like defects. Under these conditions, ignoring micro-structural
surface flaws when predicting failure, as the CC theoretically allows, turns out to be
risky. It is then necessary to use the concept of equivalent crack length [6] and then
the CC is no other than Griffith’s criterion [8].

The CC is therefore effective provided that the ratio 𝜎/𝜎c is a decreasing function
of the distance to the crack initiation point. On the otherhand, the CC uses also the ratio
𝐺 inc/𝐺c where 𝐺c is the fracture energy, related to 𝐾Ic through Irwin’s relationship,
and 𝐺 inc is the incremental energy release rate, the incremental counterpart to the
classical energy release rate defined as a derivative [8]. It is generally an increasing
function of the virtual crack length but does not pose the same difficulties. Depending
on the structural situation, it can eventually decrease (the so-called negative geometry
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in [19]) or increase (positive geometry) with increasing crack size and this leads to
different conclusions that are consistent with experiments.
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Chapter 9
Extended Reduced Bending Stiffness Method for
Shear Deformable Laminated Plates

Philip Schreiber, Jakob C. Schilling, and Christian Mittelstedt

Abstract For the development of fast and simple computational methods for practical
application in lightweight design, it is beneficial to simplify complex coupling
behaviours of composite laminates. To this end, the RBS method is commonly used.
Here, the method based on the framework of the classical laminated plate theory yields
agreeable results for most configurations. However, the effect of shear deformation in
laminates is not considered. Therefore, the novel formulation of the reduced bending
stiffness (RBS) method for application in the framework of the third-order shear
deformation theory (TSDT) is evaluated in the present work. Bending, buckling, and
vibration are investigated for antisymmetric cross-ply laminates and antisymmetric
angle-ply laminates. The presented results show the significant influence of the
relative thickness which reduces the deviation of the RBS results relative to the
Navier solution. The extended RBS method yields good agreement and presents the
opportunity to simplify computational models in the framework of the TSDT.

9.1 Introduction

The design of lightweight structures greatly benefits from the properties of advanced
materials. For example, the strength and stiffness properties of fibre-reinforced plastics
are excellent and contribute greatly to the exploitation of the lightweight potential.
However, the advantageous properties come at a price, one of them is the complex
material behaviour. This is especially evident for unsymmetric laminated plates,
where the out-of-plane behaviour is coupled with the in-plane behaviour, i.e. bending-
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extensional coupling occurs. In analysis models where computational efficiency is of
the utmost importance, this complex behaviour is often approximated by the reduced
bending stiffness method (RBS). Especially in stringer-stiffened panels, the stringer

The RBS method reduces the complexity of the computational models significantly.
Therefore, it is a suitable tool for practical application [7].

The present work focuses on the investigation of the RBS method in the context
of the analysis of single unsymmetrical laminated plates, which is important for
the advancement of the computational efficiency of approximate analysis models
developed for application in preliminary design. The RBS method traces back to the
work of Reissner and Stavsky [8], where the bending and stretching behaviour of
unsymmetric laminated plates is investigated. The authors base their analysis on the
semi-inverse constitutive equations. Consequently, they also evaluate results that are
computed neglecting the compatibility of in-plane strains, which yield approximate
but reasonable results. Chamis [9] investigates this approach in the context of a
buckling analysis describing it as the method of reduced rigidities. The term reduced
bending stiffness method is finally introduced by Ashton [10]. The main idea of the
RBS method is to neglect the bending-extension coupling effects by replacing the
bending stiffnesses with reduced bending stiffnesses.

Different aspects of the RBS method were investigated in the past. In a thorough
study of the bending, vibration and buckling of antisymmetric laminates it is shown
that especially for angle-ply laminates the quality of the approximate RBS method
suffers although very good results are obtained for cross-ply laminates. Another
benchmark especially aimed at typical stringer foot assemblies in stiffened panels
where the bending-extension coupling results from the stacking of different cross-ply
laminates with an excentric reference plane shows that the RBS method is a valid
approximation in the context of a buckling analysis [11]. There, also a detailed review
of the highly debated general aspects of the RBS method implemented in a linear
buckling analysis and neglecting the prebuckling deformation is given. The RBS
method is also investigated for the nonlinear bending of general-ply laminated plates
showing its applicability and reliability when no shear coupling occurs [12]. By in-
vestigating the buckling and vibration of shallow curved panels made of unsymmetric
cross- and angle-ply laminates it is found that the RBS method is curvature sensitive
[13].

The mentioned works all employ classical laminated plate theory (CLPT) and
neglect the effects of transverse shear deformation. Very few publications are known to
the authors where the RBS method is evaluated for shear deformable laminates. Based
on the first-order shear deformation theory (FSDT) the bending of unsymmetrical
laminated plates is discussed including also elastically restrained plates [14]. The
RBS method is applied analogously, as the constitutive law is only extended by shear
stiffnesses that are uncoupled from the bending-stretching behaviour of the laminate.
Recently, the RBS method was formulated based on the third-order shear deformation
theory (TSDT) by the authors for application in buckling analyses [15]. However, this
novel formulation has not yet been systematically discussed for bending and vibration
analyses. Consequently, the present work aims to address the question of the validity

foot is often approximated in this way in the context of stability analysis [1–6].
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of the RBS method for laminates based on higher-order shear deformation theories
(HSDT). Therefore, antisymmetric cross- and angle-ply shear deformable laminates
are analysed regarding their bending, buckling, and vibration behaviour including the
aspect of plate thickness. The results are compared to available Navier-type solutions
for unsymmetric shear deformable laminates [16] and compared to results previously
presented in the literature. The presented studies show that the new formulation
of the RBS method achieves excellent agreement for the cross-ply configurations
and good agreement in the case of angle-ply configurations. The results gain in
accuracy for increasing the relative thickness of the plates. This will be shown after
the brief presentation of the novel RBS formulation and the presentation of the
reference Navier solution. First, bending, buckling, and vibration are investigated
for antisymmetric cross-ply laminates, followed by an equivalent investigation for
antisymmetric angle-ply laminates.

9.2 Basic Equations of Third-Order Shear Deformation Theory
(TSDT)

In this section, the basic equations of the third-order shear deformation theory (TSDT)
are given in a brief form. Extensive descriptions of TSDT can be found, for instance,
in the publication [7, 16, 17].

The displacement field of TSDT (9.1) eliminates the normal hypothesis from
CLPT as well as the requirement that the cross sections remain plane. The TSDT
describes both the cross-section warping and transverse shear deformations. The
assumption of a plane stress state is made, which leads to the fact that the laminate
thickness ℎ does not change in the deformed state, as illustrated in Fig. 9.1. The plate
under consideration has the width 𝑏 and a length of 𝑎 and can be loaded with normal
loads and transverse loads as shown in Fig. 9.2. The quantities 𝑢, 𝑣 and 𝑤 denote
the displacements in the direction of the coordinates 𝑥, 𝑦 and 𝑧, respectively. The
cross-sectional rotations 𝜓𝑥 and 𝜓𝑦 are defined as rotations about the 𝑥 and 𝑦 axes.

Fig. 9.1: Kinematics and cross-sectional deformation of the third-order shear deformation theory
(TSDT), cubic cross-sectional deformation, cf. Eq. (9.1).
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Fig. 9.2: Simply supported plate (Navier plate) with two normal line loads �̂�𝑥𝑥 and �̂�𝑦𝑦 as well
as the transverse load 𝑞 (𝑥, 𝑦) .

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0 (𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑥 (𝑥, 𝑦, 𝑡) − 4𝑧3

3ℎ2

(
𝜓𝑥 (𝑥, 𝑦, 𝑡) + 𝜕𝑤0 (𝑥, 𝑦, 𝑡)

𝜕𝑥

)
,

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0 (𝑥, 𝑦, 𝑡) + 𝑧𝜓𝑦 (𝑥, 𝑦, 𝑡) − 4𝑧3

3ℎ2

(
𝜓𝑦 (𝑥, 𝑦, 𝑡) + 𝜕𝑤0 (𝑥, 𝑦, 𝑡)

𝜕𝑦

)
,

𝑤(𝑥, 𝑦, 𝑡) = 𝑤0 (𝑥, 𝑦, 𝑡). (9.1)

The constitutive law from equation (9.2) contains on the left side the force and
moment values per length, which are detailed in equation (9.3).
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The strains as well as shear strains are defined as follows:
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Y (3) =



− 4
3ℎ2

(
𝜕𝜓𝑥
𝜕𝑥

+ 𝜕
2𝑤0

𝜕𝑥2

)

− 4
3ℎ2

(
𝜕𝜓𝑦

𝜕𝑦
+ 𝜕

2𝑤0

𝜕𝑦2

)

− 4
3ℎ2

(
𝜕𝜓𝑥
𝜕𝑦

+ 𝜕𝜓𝑦
𝜕𝑥

+2
𝜕2𝑤0
𝜕𝑥𝜕𝑦

)



,

𝛾 (1) =


𝜓𝑦 + 𝜕𝑤0

𝜕𝑦

𝜓𝑥 + 𝜕𝑤0
𝜕𝑥


, 𝛾 (2) =


− 4
ℎ2

(
𝜓𝑦 + 𝜕𝑤0

𝜕𝑦

)

− 4
ℎ2

(
𝜓𝑥 + 𝜕𝑤0

𝜕𝑥

)

. (9.4)

The stiffness values of the constitutive law (9.2) result from the reduced stiffnesses
which are defined by the engineering constants as follows:

𝑄11 =
𝐸11

1− 𝜈12𝜈21
, 𝑄22 =

𝐸22
1− 𝜈12𝜈21

, 𝑄12 =
𝜈12𝐸22

1− 𝜈12𝜈21
, 𝑄16 = 0,

𝑄26 = 0, 𝑄66 = 𝐺12, 𝐶44 = 𝐺23, 𝐶55 = 𝐺13

. (9.5)

These are subsequently transformed from the on-axis coordinate system into the
laminate coordinate system:

�̄� = 𝑇𝑄𝑄𝑇
T
𝑄, �̄� = 𝑇𝐶

[
𝐺23 0
0 𝐺13

]
𝑇T
𝐶 with 𝑇𝑄 =


𝑐2 𝑠2 −2𝑐𝑠
𝑠2 𝑐2 2𝑐𝑠
𝑐𝑠 −𝑐𝑠 𝑐2 − 𝑠2


,

𝑇𝐶 =

[
𝑐 𝑠
−𝑠 𝑐

]
, 𝑠 = sin(𝜑), 𝑐 = cos(𝜑). (9.6)

Finally, the submatrices from equation (9.2) can be calculated as follows:

𝐴𝑖 𝑗 =
∫ 𝑡

2

− 𝑡
2

�̄�𝑖 𝑗d𝑧, 𝐵𝑖 𝑗 =
∫ 𝑡

2

− 𝑡
2

�̄�𝑖 𝑗 𝑧d𝑧, 𝐷𝑖 𝑗 =
∫ 𝑡

2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
2d𝑧,

𝐸𝑖 𝑗 =
∫ 𝑡

2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
3d𝑧, 𝐹𝑖 𝑗 =

∫ 𝑡
2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
4d𝑧, 𝐻𝑖 𝑗 =

∫ 𝑡
2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
6d𝑧,



𝑖, 𝑗 = 1,2,6.

𝐴S
𝑖 𝑗 =

∫ 𝑡
2

− 𝑡
2

�̄�𝑖 𝑗d𝑧, 𝐷S
𝑖 𝑗 =

∫ 𝑡
2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
2d𝑧, 𝐹S

𝑖 𝑗 =
∫ 𝑡

2

− 𝑡
2

�̄�𝑖 𝑗 𝑧
4d𝑧,

}
𝑖, 𝑗 = 4,5.

Only orthotropic laminates are considered in this publication. Consequently, the
following entries in the stiffness matrices disappear:

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐹16 = 𝐹26 = 𝐻16 = 𝐻26

= 𝐴45 = 𝐷45 = 𝐹45 = 0. (9.7)
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In the context of unsymmetrical laminates, this results in two laminate types. On
the one hand, the unsymmetric cross-ply laminate has the following zero entries in
addition to (9.7):

𝐵16 = 𝐵26 = 𝐸16 = 𝐸26 = 0. (9.8)

On the other hand, the antisymmetric angle-ply laminate, which, besides the zero
entries of (9.7), shows the following:

𝐵11 = 𝐵12 = 𝐵22 = 𝐵66 = 𝐸11 = 𝐸12 = 𝐸22 = 𝐸66 = 0. (9.9)

The inertias can be calculated with:

𝐼𝑖 =
∫ ℎ/2

−ℎ/2
𝜌𝑧𝑖 d𝑧, for 𝑖 = 0,1, . . . ,6. (9.10)

For the class of laminates considered, the following entries are zero 𝐼1 = 𝐼3 = 𝐼5 = 0.

9.3 Reduced Bending Stiffness Method

In the TSDT, besides the coupling terms 𝐵𝑖 𝑗 from CLPT and FSDT, there are further
coupling terms in the constitutive law (9.2) which have to be considered in the reduced
stiffness method. In the first step, the semi-inverse of the constitutive law (9.2) with
respect to Y1 and 𝑁 is formed. This leads to the following relationship:



Y1
𝑀
𝑃
𝑄

𝑅


=



𝐴∗ −𝐵∗ −𝐸∗ 0 0
𝐵∗𝑇 𝐷∗ 𝐹∗ 0 0
𝐸∗𝑇 𝐹∗𝑇 𝐻∗ 0 0
0 0 0 𝐴𝑆 𝐷𝑆

0 0 0 𝐷𝑆 𝐹𝑆





𝑁
Y2
Y3
𝛾1
𝛾2


(9.11)

with
𝐴∗ = 𝐴−1, 𝐷∗ = 𝐷 −𝐵𝐴−1𝐵,

𝐵∗ = 𝐴−1𝐵, 𝐹∗ = 𝐹 −𝐵𝐴−1𝐸,

𝐸∗ = 𝐴−1𝐸, 𝐻∗ = 𝐻 −𝐸𝐴−1𝐸.

(9.12)

Considering the inner potential and substituting the relations from (9.2), it follows:

Πi =
1
2

∫ 𝑏

0

∫ 𝑎

0
YT𝑁 d𝑥 d𝑦,

=
1
2

∫ 𝑏

0

∫ 𝑎

0

(
Y1
𝑇 𝐴Y1 +2Y1

𝑇𝐵Y2 +2Y1
𝑇𝐸 Y3

+Y2
𝑇𝐷Y2 +2Y2

𝑇𝐹 Y3 + Y3
𝑇𝐻Y3
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+𝛾1
𝑇 𝐴𝑆𝛾1 +2𝛾1

𝑇𝐷𝑆𝛾2 +𝛾2
𝑇𝐹𝑆𝛾2

)
d𝑥 d𝑦. (9.13)

Into this formulation (9.14), the new expression of Y1 from equation (9.11) is substi-
tuted which results in the following expression:

Πi =
1
2

∫ 𝑏

0

∫ 𝑎

0

(
𝑁𝑇 𝐴∗𝑁 + Y2

𝑇𝐷∗Y2 +2Y2
𝑇𝐹∗Y3

+Y3
𝑇𝐻∗Y3 +𝛾1

𝑇 𝐴𝑆𝛾1 +2𝛾1
𝑇𝐷𝑆𝛾2

+𝛾2
𝑇𝐹𝑆𝛾2

)
d𝑥 d𝑦. (9.14)

as effectively symmetric in the context of TSDT by using the reduced stiffnesses in
the constitutive law (9.11). This is implemented by deleting the first three rows and
columns in the constitutive law (9.11) and only considering the quantities 𝑀 , 𝑃, 𝑄,
and 𝑅.

9.4 Navier Solution

Based on the orthotropic laminate behaviour considered, the general form of the ansatz
functions provides a separation of the variables with respect to the 𝑥 and 𝑦 directions.
Due to the different coupling effects in the stiffness matrix of the constitutive law, a
distinction has to be made between cross- and angle-ply laminates as described in
Equation (9.7), (9.8), (9.8), as well as (9.9). The boundary conditions of the Navier
plate are to be chosen differently for unsymmetric cross-ply and antisymmetric angle-
ply laminates with respect to their solvability, as described in [16, 18]. For the plate
simply supported at all edges, the boundary conditions are described in the following.
At the edge 𝑥 = 0, 𝑎 applies:

cross-ply:

𝑁0
𝑥𝑥 = 𝑣0 = 0,

angle-ply:

𝑁0
𝑥𝑦 = 𝑢0 = 0,



𝑤0 = 𝑀

0
𝑥𝑥 = 𝜓𝑦 = 𝑃𝑥𝑥 = 0. (9.15)

At the edges 𝑦 = 0, 𝑏 the following applies:

The newly obtained potential expression (9.14) shows a decoupling of 𝑁 from the
remaining strains (Y 2, Y 3, 𝛾 1, 𝛾 2 (9.14) no longer exhibits bending-
extension coupling. With this method, unsymmetric laminates can now be treated

). Thus, the potential
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cross-ply:

𝑁0
𝑦𝑦 = 𝑢0 = 0,

angle-ply:

𝑁0
𝑥𝑦 = 𝑣0 = 0,



𝑤0 = 𝜓𝑥 = 𝑃𝑦𝑦 = 𝑀

0
𝑦𝑦 = 0. (9.16)

The ansatz function for cross-ply laminates ΦCP
𝑖 and angle-ply laminates ΦAP

𝑖 are
taken from [16] and can be found in Equation (9.17). These contain the abbreviation
𝛼 = 𝑚𝜋/𝑎 as well as 𝛽 = 𝑛𝜋/𝑏 and fulfil the boundary conditions identically.

ΦCP
𝑖 =



∞∑
𝑚,𝑛=1

𝑈𝑚𝑛 (𝑡) cos (𝛼𝑥) sin (𝛽 𝑦)
∞∑

𝑚,𝑛=1
𝑉𝑚𝑛 (𝑡) sin (𝛼𝑥) cos (𝛽 𝑦)

∞∑
𝑚,𝑛=1

𝑊𝑚𝑛 (𝑡) sin (𝛼𝑥) sin (𝛽 𝑦)
∞∑

𝑚,𝑛=1
𝑋𝑚𝑛 (𝑡) cos (𝛼𝑥) sin (𝛽 𝑦)

∞∑
𝑚,𝑛=1

𝑌𝑚𝑛 (𝑡) sin (𝛼𝑥) cos (𝛽 𝑦)



, ΦAP
𝑖 =



∞∑
𝑚,𝑛=1

𝑈𝑚𝑛 (𝑡) sin (𝛼𝑥) cos (𝛽 𝑦)
∞∑

𝑚,𝑛=1
𝑉𝑚𝑛 (𝑡) cos (𝛼𝑥) sin (𝛽 𝑦)

∞∑
𝑚,𝑛=1

𝑊𝑚𝑛 (𝑡) sin (𝛼𝑥) sin (𝛽 𝑦)
∞∑

𝑚,𝑛=1
𝑋𝑚𝑛 (𝑡) cos (𝛼𝑥) sin (𝛽 𝑦)

∞∑
𝑚,𝑛=1

𝑌𝑚𝑛 (𝑡) sin (𝛼𝑥) cos (𝛽 𝑦)


(9.17)

The transverse load is also represented as a double series as:

𝑞 (𝑥, 𝑦, 𝑡) =
∞∑︁

𝑚,𝑛=1
𝑄𝑚𝑛 (𝑡) sin (𝛼𝑥) sin (𝛽 𝑦) , (9.18)

𝑄 (𝑡) =
∫ 𝑎

0

∫ 𝑏

0
𝑞 (𝑥, 𝑦, 𝑡) sin (𝛼𝑥) sin (𝛽 𝑦) d𝑥d𝑦. (9.19)

Substituting (9.17) into the differential equation, as described in [16], leads to the
following system of linear equations:

𝑆Δ+ �̂� ¥Δ = 𝐹 with (9.20)

Δ =



𝑈𝑚𝑛 (𝑡) =𝑈0
𝑚𝑛e𝑖𝜔𝑡

𝑉𝑚𝑛 (𝑡) =𝑉0
𝑚𝑛e𝑖𝜔𝑡

𝑊𝑚𝑛 (𝑡) =𝑊0
𝑚𝑛e𝑖𝜔𝑡

𝑋𝑚𝑛 (𝑡) = 𝑋0
𝑚𝑛e𝑖𝜔𝑡

𝑌𝑚𝑛 (𝑡) = 𝑌0
𝑚𝑛e𝑖𝜔𝑡



, 𝐹 =



0

0

𝑄𝑚𝑛 (𝑡)
0

0



. (9.21)
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The entries of 𝑆 differ with regard to cross-ply laminate and angle-ply laminate. Those
of the matrix �̂� are the same for both. The entries of the matrices can be found in
[16].

In the context of buckling analysis, the system of equations (9.20) leads to an
eigenvalue problem. For this,𝜔 =𝑄𝑚𝑛 (𝑡) = 0 must be used. The quantities �̂�𝑥𝑥 , �̂�𝑦𝑦 ,
which are contained in 𝑆, or their ratio is the eigenvalue of interest and reflects the
buckling load. For frequency analysis, �̂�𝑥𝑥 = �̂�𝑦𝑦 = 0 is used and the eigenvalue
is 𝜔2 where 𝜔 represents the natural frequency. In the bending analysis, however,
�̂�𝑥𝑥 = �̂�𝑦𝑦 = 𝜔 = 0 is employed, and the resulting system of linear equations can be
solved directly.

9.5 Results and Discussion

For the evaluation of the validity of the new RBS formulation for antisymmetric cross-
and angle-ply laminates, bending, buckling, and vibration are considered. The results
are presented and discussed in the following sections, separately for antisymmetric
cross-ply and antisymmetric angle-ply laminates. The results are obtained for the
material defined in the following:

𝐸1 = 25𝐸2, 𝜈12 = 0.25, 𝐺12 = 0.5𝐸2, 𝐺13 = 0.5𝐸2, 𝐺23 = 0.2𝐸2.

The investigated parameters are the ratio between the modulus of elasticity parallel
to the fibres and that perpendicular to the fibres1 ≤ 𝐸1/𝐸2 ≤ 50, the aspect ratio of the
plate 0.25 ≤ 𝑎/𝑏 ≤ 5, and the relative length 2 ≤ 𝑎/ℎ ≤ 100.

9.5.1 Antisymmetric Cross-Ply Plates

The considered antisymmetric cross-ply laminates consist of 𝑁 pairs of a [0◦/90◦]𝑁
layup. Here, the effect of bending-extension coupling is most prominent in the case
of the two-layer laminate (𝑁 = 1) [19]. This remains consistent in the case of thick
laminates.

9.5.1.1 Bending

The results for the bending analysis of the cross-ply laminates are obtained for
the static and nondimensionalized centre deflection �̄�. The centre deflections are
nondimensionlized as given in Equation (9.22).

�̄� = 𝑤

(
𝑎

2
,
𝑏

2

)
𝐸2ℎ

3

𝑎4𝑞0
100 (9.22)
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For all following studies, the error is given in percent as defined in Eq. (9.23).

% error =
�̄�nav − �̄�rbs
�̄�nav

100 (9.23)

The plate is loaded with transverse pressure 𝑞 as introduced in Eqs. (9.18) and (9.19).
The results presented in Table 9.1 are computed for uniform transverse pressure. The
centre deflection is given for the exact results of the Navier solution and the RBS
solution. Also, the error is computed. The results based on the FSDT are taken from
Ref. [14]. Thus, the most commonly used laminated plate theories are shown in
comparison. The results show that for an plate aspect ratio 𝑎/𝑏 = 1, while the relative
length 𝑎/ℎ and the ratio 𝐸1/𝐸2 is varied. The deviation between the exact and the RBS
solution is vanishing for the nondimensional centre deflection. This means that for
this aspect ratio, the error of the RBS is independent of the other varied parameter
ratios. However, between the different laminated plate theories, an expected deviation
for the centre deflection is visible due to the effect of shear deformation.

This is in contrast to the results presented in Table 9.2. Here, the plate aspect
ratio is varied in addition to the variation of the relative thickness. Only the error
between the Navier and RBS solution is presented. The table contains the results
obtained in Ref. [20] and is extended to include the results for shear deformable

Table 9.1: Comparison of results for the nondimensional center deflection �̄� for different thickness
ratios 𝑎/ℎ for different laminated plate theories and uniform loading. The results for the FSDT are
available in literature [14].
(𝑁 = 2, 𝐸2 = 1× 106 psi, 𝜈12 = 0.25, 𝐺12 = 0.6𝐸2, 𝐺13 = 0.6𝐸2, 𝐺23 = 0.5𝐸2).

𝐸1/𝐸2 = 2 𝐸1/𝐸2 = 5 𝐸1/𝐸2 = 10 𝐸1/𝐸2 = 30

𝑎/ℎ Navier RBS Err Navier RBS Err Navier RBS Err Navier RBS Err

TSDT
2 7.377 7.377 0.0 6.746 6.746 0.0 6.119 6.118 0.0 4.860 4.860 0.0
5 4.058 4.058 0.0 3.512 3.512 0.0 3.007 3.007 0.0 2.041 2.041 0.0
10 3.579 3.579 0.0 3.043 3.043 0.0 2.555 2.555 0.0 1.623 1.623 0.0
30 3.437 3.436 0.0 2.904 2.904 0.0 2.420 2.420 0.0 1.498 1.498 0.0
50 3.425 3.425 0.0 2.893 2.893 0.0 2.410 2.409 0.0 1.489 1.488 0.0
100 3.420 3.420 0.0 2.889 2.888 0.0 2.405 2.405 0.0 1.484 1.484 0.0

FSDT
2 7.437 7.437 0.0 6.905 6.904 0.0 6.420 6.420 0.0 5.498 5.497 0.0
5 4.062 4.062 0.0 3.530 3.529 0.0 3.046 3.045 0.0 2.124 2.124 0.0
10 3.580 3.579 0.0 3.048 3.048 0.0 2.564 2.564 0.0 1.643 1.643 0.0
30 3.437 3.437 0.0 2.905 2.905 0.0 2.421 2.421 0.0 1.501 1.501 0.0
50 3.425 3.425 0.0 2.893 2.893 0.0 2.410 2.410 0.0 1.489 1.489 0.0
100 3.420 3.420 0.0 2.889 2.889 0.0 2.405 2.405 0.0 1.484 1.484 0.0

CLPT
- 3.419 3.419 0.0 2.89 2.887 0.0 2.403 2.403 0.0 1.483 1.483 0.0
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laminates. The loading is sinusoidal. The results show that for other aspect ratios,
small deviations occur that are decreasing with increasing relative thickness, i.e. with
decreasing relative length. The error reduces significantly for each plate aspect ratio.
The number of layer pairs 𝑁 and the ratio 𝐸1/𝐸2 are chosen to present the highest
errors following Ref. [20].

The present formulation of the RBS method in the framework of TSDT delivers
accurate results for the centre deflection. However, it must be noted that the presented
results do not allow making any assumptions regarding the accuracy of computed
stress distributions using the RBS method. Since the bending-extension coupling is
neglected, significant quantitative and qualitative deviations are expected. This is a
topic that needs to be addressed in future publications.

9.5.1.2 Buckling and Vibration

The buckling results refer to a uniaxial constant compression �̂�𝑥𝑥 , which is evaluated
for different values of 𝑚 and 𝑛. The smallest buckling load was considered in the
analyses. In the context of the vibration analyses, the first natural frequency (𝑚 = 𝑛 = 1)
is evaluated.

The comparison between the exact Navier solution and the Navier RBS solution
for the cross-ply laminate is shown in Table 9.2. Regarding the buckling and vibration
analysis, the comparative calculations for 𝑎/ℎ = 100 show slightly smaller deviations
than the literature value for the CLPT from [20]. The investigated 𝑎/𝑏 and 𝑎/ℎ ratios do
not show a clear tendency concerning the error behaviour. However, a good agreement
between the two analyses can be observed.

Table 9.2: Errors of the comparison of the centre deflection, buckling load, and vibration obtained
by the Navier and RBS-solution according to Equation (9.23) for an antisymmetric cross-ply under
sinusoidal loading, constant axial compression, and natural frequency. The CLPT results are
obtained from Ref. [20]. (𝑁 = 2; 𝐸1/𝐸2 = 2).

Deflection Buckling Vibration

𝑎/ℎ 𝑎/𝑏 𝑎/𝑏 𝑎/𝑏
0.25 0.5 1 2 5 0.25 0.5 1 2 5 0.25 0.5 1 2 5

TSDT
2 -0.09 -0.04 0.00 -0.02 0.00 0.17 0.23 0.17 0.05 0.01 -0.27 -0.39 -0.41 0.03 -7.50
5 -0.17 -0.08 0.00 -0.05 -0.03 0.07 0.08 0.00 0.12 0.04 -0.47 -0.58 -0.81 -0.54 0.05
10 -0.19 -0.08 0.00 -0.08 -0.10 0.03 0.02 0.00 0.09 0.12 -0.21 -0.26 -0.40 -0.58 -0.26
100 -0.20 -0.09 0.00 -0.09 -0.22 0.02 0.01 0.00 0.00 0.00 0.01 0.00 -0.01 -0.01 -0.05

CLPT
- -0.20 -0.09 0.00 -0.09 -0.22 0.20 0.09 0.00 0.09 0.22 0.10 0.04 0.00 0.04 0.11
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9.5.2 Antisymmetric Angle-Ply Plates

After the investigation of the antisymmetric cross-ply laminates, antisymmetric angle-
ply laminates are considered in this section. They consist of 𝑁-pairs of a [Θ/−Θ]𝑁 -
layup, whereΘ denotes the fibre orientation of the individual layer. The validity of the
introduced RBS formulation for the TSDT is again evaluated for bending, buckling,
and vibration analysis.

9.5.2.1 Bending

For bending analysis in the present section only sinusoidal loading is considered.
This allows to include the CLPT results of Ref. [20]. Hence, the following tabulated
numerical results are following the mentioned literature results closely. In Table 9.3
the errors between the Navier and RBS solution in % (see Eq. (9.23)) are tabulated
for the 𝐸1/𝐸2 = 15 and Θ = ±15◦. The aspect ratio of the plate 𝑎/𝑏 is varied in order to
find the most critical configurations, where high deviations occur.

By studying the presented values, it becomes apparent that the highest errors
are computed for the utilization of the new RBS formulation for square plates and
only one layer-pair. This confirms the results presented in Ref. [20]. However, the
evaluation of an increasing relative thickness reveals that the highest deviations are
visible for the ratio 𝑎/𝑏 = 0.75. The results are generally in good agreement and show
again that the deviation vanishes with increasing relative thickness of the plate.

This can be also concluded from the tabulated errors in Table 9.4,where 𝑎/𝑏 = 1 and
Θ = ±15◦. Here, the influence of the ratio 𝐸1/𝐸2 is studied in combination of the ratio
𝑎/ℎ again for different numbers of layer-pairs. In general, the highest deviations are

Table 9.3: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to sinusiodal transverse loading. The ratio 𝐸1/𝐸2 = 15 and the angle is set to Θ = ±15◦.
The results are obtained on the basis of TSDT and CLPT, where the values for the CLPT are
obtained from Ref. [20].

𝑁 = 1 𝑁 = 2 𝑁 = 3

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝑎/𝑏 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

0.25 -0.4 -1.8 -2.7 -3.2 -3.2 -0.2 -0.3 -0.4 -0.5 -0.5 -0.1 -0.1 -0.2 -0.2 -0.2
0.5 -0.9 -5.2 -8.2 -9.9 -9.9 -0.6 -1.0 -1.3 -1.6 -1.6 -0.3 -0.4 -0.6 -0.7 -0.7
0.75 -1.1 -7.2 -12.0 -14.9 -14.9 -0.9 -1.4 -1.9 -2.4 -2.4 -0.5 -0.6 -0.8 -1.0 -1.0

1 -0.8 -6.7 -12.0 -15.4 -15.5 -0.9 -1.3 -2.0 -2.5 -2.5 -0.5 -0.6 -0.8 -1.0 -1.0
1.5 -0.2 -3.2 -6.3 -8.5 -8.5 -0.5 -0.6 -1.1 -1.5 -1.5 -0.2 -0.3 -0.5 -0.6 -0.6
2 0.0 -0.8 -1.8 -2.6 -2.6 -0.1 -0.2 -0.3 -0.5 -0.5 -0.1 -0.1 -0.1 -0.2 -0.2
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 -0.1 -0.2 -0.4 0.0 -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0
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Table 9.4: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to sinusiodal transverse loading. The ratio 𝑎/𝑏 = 1 and the angle is set to Θ = ±15◦. The
results are obtained on the basis of TSDT and CLPT, where the values for the CLPT are obtained
from Ref. [20].

𝑁 = 1 𝑁 = 2 𝑁 = 3

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝐸1/𝐸2 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.5 -0.2 -0.5 -0.5 -0.6 -0.6 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 -0.1 -0.1 -0.1 -0.1
5 -0.8 -2.5 -3.3 -3.7 -3.7 -0.4 -0.6 -0.7 -0.8 -0.8 -0.2 -0.3 -0.3 -0.4 -0.4

7.5 -1.0 -4.3 -6.3 -7.3 -7.3 -0.6 -1.0 -1.3 -1.5 -1.5 -0.3 -0.4 -0.6 -0.6 -0.6
10 -1.0 -5.5 -8.7 -10.5 -10.6 -0.7 -1.2 -1.6 -1.9 -1.9 -0.4 -0.5 -0.7 -0.8 -0.8
15 -0.8 -6.7 -12.0 -15.4 -15.5 -0.9 -1.3 -2.0 -2.5 -2.5 -0.5 -0.6 -0.8 -1.0 -1.0
20 -0.6 -7.0 -13.7 -18.5 -18.6 -1.0 -1.3 -2.0 -2.7 -2.7 -0.5 -0.6 -0.9 -1.1 -1.1
30 -0.2 -6.4 -14.7 -21.5 -21.5 -1.1 -1.1 -1.9 -2.8 -2.8 -0.6 -0.5 -0.8 -1.1 -1.1
40 0.0 -5.4 -14.2 -22.2 -22.3 -1.1 -1.0 -1.7 -2.6 -2.7 -0.6 -0.4 -0.7 -1.1 -1.1
50 0.0 -4.5 -13.1 -22.0 -22.1 -1.2 -0.9 -1.4 -2.5 -2.5 -0.6 -0.4 -0.6 -1.0 -1.0

obtained for the case of only two layers (𝑁 = 1). For more layers very good agreement
is obtained with an error that is maximal 2.8 %. In the most critical case, the error
increases to up to 2.23×101 % for 𝐸1/𝐸2 = 40. The critical areas shift depending on
the relative thickness of the plate. This will be shown in the following paragraphs.

In the third table (Table 9.5) the focus lies on the variation of the fibre angle.
The errors between the Navier and RBS solution in % are tabulated for different

Table 9.5: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to sinusiodal transverse loading. The ratio 𝑎/𝑏 = 1 and the number of layer pairs is set to
𝑁 = 1. The results are obtained on the basis of TSDT and CLPT, where the values for the CLPT
are obtained from Ref. [20].

𝜃

𝐸1/𝐸2 = 1 𝐸1/𝐸2 = 15 𝐸1/𝐸2 = 40

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

5 0.0 0.0 0.0 0.0 0.0 -0.2 -2.1 -4.2 -5.7 -5.8 0.0 -2.9 -8.9 -16.9 -17.0
10 -0.1 -0.1 -0.1 -0.1 -0.1 -0.6 -5.5 -10.4 -13.8 -13.8 -0.1 -5.8 -16.3 -27.6 -27.8
15 -0.1 -0.2 -0.2 -0.2 -0.2 -0.8 -6.7 -12.0 -15.4 -15.5 0.0 -5.4 -14.2 -22.2 -22.3
20 -0.1 -0.2 -0.3 -0.3 -0.3 -0.7 -5.8 -9.8 -12.3 -12.3 0.0 -3.8 -9.5 -14.2 -14.3
25 -0.1 -0.3 -0.3 -0.3 -0.3 -0.5 -4.0 -6.5 -7.9 -7.9 0.0 -2.3 -5.6 -8.1 -8.2
30 -0.1 -0.2 -0.3 -0.3 -0.3 -0.3 -2.1 -3.4 -4.1 -4.1 0.0 -1.2 -2.8 -4.0 -4.0
35 -0.1 -0.2 -0.3 -0.3 -0.3 -0.1 -0.8 -1.3 -1.6 -1.6 0.0 -0.5 -1.0 -1.5 -1.5
40 -0.1 -0.2 -0.3 -0.3 -0.3 0.0 -0.2 -0.3 -0.4 -0.4 0.0 -0.1 -0.2 -0.3 -0.3
45 -0.1 -0.2 -0.2 -0.3 -0.3 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0
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relative thicknesses and for three different ratios 𝐸1/𝐸2. The number of layer pairs is
𝑁 = 1. In accordance with the results in Table 9.4, the highest deviations occur for the
ratio 𝐸1/𝐸2 = 40. As already mentioned in Ref. [20], the highest error is obtained for
Θ = 10◦ with −2.76×101 %. This deviation quickly decreases for increasing relative
thickness of increasing fibre angle. The literature results are in excellent agreement
with the new RBS formulation.

A more qualitative description of the areas with excellent agreement and higher
deviations of the RBS formulation compared to the Navier solution is depicted in
Fig. 9.3 in the form of contour plots where the fibre angle Θ and ratio 𝐸1/𝐸2 is varied
for the four different investigated aspect ratios 𝑎/ℎ =2, 5, 10 , 100. For very thick
laminates 𝑎/ℎ = 2 (Fig. 9.3a), the most critical area is for 𝐸1/𝐸2 ≈ 10 and Θ ≈ 17.5◦,
although it must be noted that the results are generally in very good agreement. If the
ratio 𝑎/ℎ is increased to 5 (Fig. 9.3b), the critical area shifts to the right with errors
above −6 % in the range of 𝐸1/𝐸2 from about 12.5 to 40 and fibre angles between 10◦

(a) (b)

(c) (d)

Fig. 9.3: Contour plots for the errors between the Navier and RBS solution in % for antisymmetric
angle-ply laminates subjected to sinusoidal transverse loading, where the results are plotted for
varying fibre angle Θ and ratio 𝐸1/𝐸2 for the four different investigated aspect ratios 𝑎/ℎ =2, 5,
10, 100.
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to about 17.5◦. This trend continues in Fig. 9.3c, for the ratio of 𝑎/ℎ = 10 to the range
of 𝐸1/𝐸2 from about 25 to 50 and fibre angles between 10◦ and about 15◦. Finally, the
observations made in the description of Table 9.5 are reflected in the fourth figure
(Fig. 9.3d). Here the 𝑎/ℎ is set to 100. and the most critical parameter configuration
are in area of 𝐸1/𝐸2 approximately 40 to 50 and Θ approximately 7.5◦ to 12.5◦.

9.5.2.2 Buckling

The RBS method shows a slightly different behaviour for the angle-ply laminates than
before for the cross-ply laminates. On the one hand, the fibre angle \ is added as an
additional parameter, on the other hand, the behaviour of the error between the exact
method and RBS is somewhat more complex and shows the following behaviour
regarding buckling. First we consider the ratio 𝐸1/𝐸2 with constant \ and 𝑎/𝑏, , as
presented in Table 9.6.

with increasing 𝐸1/𝐸2 ratio and then decreases again to 0 %. Only with increasing
relative length is a constant increase observed. This behaviour changes for 𝑁 = 2,
here 𝑎/ℎ = 2 and 𝑎/ℎ = 100 show a similar error behaviour. For 𝑁 = 3 an increasing
error with increasing 𝐸1/𝐸2 ratio can be observed as well, but the maximum deviations
occur differently than before for 𝑎/ℎ = 2 with 1.7 %.

For the investigation of the aspect ratio 𝑎/𝑏, see Table 9.7, the 𝐸1/𝐸2 ratio and \
are set constant. The comparison with literature values from [20] shows very good
agreements for 𝑎/ℎ = 100 for different 𝑎/𝑏 ratios as well as ply repetitions, as expected
for thin plates. For 𝑁 = 1 the largest deviations are observed between 𝑎/𝑏 = 0.75 and
1, which increase with increasing 𝑎/ℎ ratio to 13 %. For the further layer repetitions
(𝑁 = 2,3) the errors decrease.

Table 9.6: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to buckling load. The ratio 𝐸1/𝐸2 = 15 and the angle is set to Θ = ±15◦.

𝑁 = 1 𝑁 = 2 𝑁 = 3

𝑎/ℎ (TSDT) 𝑎/ℎ (TSDT) 𝑎/ℎ (TSDT)

𝐸1/𝐸2 2 5 10 100 2 5 10 100 2 5 10 100

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.5 0.1 0.4 0.5 0.6 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1
5 0.5 2.4 3.2 3.5 0.4 0.4 0.6 0.8 0.3 0.2 0.2 0.3

7.5 1.0 4.1 5.9 6.8 0.7 0.6 1.0 1.4 0.5 0.4 0.3 0.6
10 1.0 5.2 8.0 9.5 0.9 0.6 1.2 1.9 0.8 0.4 0.4 0.8
15 0.8 6.3 10.7 13.3 1.3 0.7 1.3 2.4 1.1 0.5 0.5 1.0
20 0.6 6.5 12.1 15.6 1.6 0.9 1.3 2.6 1.4 0.6 0.5 1.1
30 0.2 6.0 12.8 17.7 2.0 0.9 1.1 2.7 1.6 0.7 0.4 1.1
40 0.0 5.1 12.4 18.2 2.2 0.9 1.0 2.5 1.7 0.7 0.4 1.0
50 0.0 4.3 11.6 18.0 2.3 0.9 0.9 2.3 1.7 0.7 0.4 0.9

For a layer repetition 𝑁 = 1, the error increases with increasing \ from 0 up to 18%.
It can be observed that for very thick laminates (𝑎/ℎ = 2) the error first increases
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Table 9.7: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to buckling load. The ratio 𝑎/𝑏 = 1 and the angle is set to Θ = ±15◦. The results are
obtained on the basis of TSDT and CLPT, where the values for the CLPT are obtained from
Ref. [20].

𝑁 = 1 𝑁 = 2 𝑁 = 3

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝑎/𝑏 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

0.25 0.4 1.8 2.6 3.1 3.1 0.3 0.2 0.3 0.5 0.5 0.2 0.1 0.1 0.2 0.2
0.5 0.9 5.0 7.6 9.0 9.0 0.9 0.7 0.9 1.5 1.6 0.7 0.3 0.3 0.6 0.7
0.75 1.0 6.7 10.7 13.0 13.0 1.3 0.9 1.3 2.3 2.3 1.1 0.5 0.5 1.0 1.0

1 0.8 6.3 10.7 13.3 13.4 1.3 0.7 1.3 2.4 2.4 1.1 0.5 0.5 1.0 1.0
1.5 0.0 2.0 5.9 7.8 7.9 0.8 1.1 0.9 1.4 1.4 0.7 0.9 0.5 0.6 0.6
2 0.0 1.7 6.3 2.5 2.5 2.4 1.1 0.9 0.5 0.5 1.5 0.9 0.6 0.2 0.2
3 0.4 0.1 3.3 7.8 1.5 1.6 1.1 1.4 1.1 1.3 0.7 0.5
4 0.4 0.0 1.0 3.1 2.4 2.0 1.3 0.4 0.4 1.0 0.9 0.2

The influence of the fibre angle \ on the error behaviour of the RBS is investigated
in Table 9.8. In this table 𝑎/𝑏 and 𝑁 are kept constant. The comparison for 𝑎/ℎ = 100
with the literature values from [20] shows a very similar behaviour. For 𝐸1/𝐸2 = 1 the
maximum deviations for all investigated fibre angles as well as relative lengths are
very low with 0.3 %. With increasing 𝐸1/𝐸2 ratio the deviations become larger, these
are maximum 13.3 % and 18.2 % respectively for 𝐸1/𝐸2 = 15 and 𝐸1/𝐸2 = 40. It can
be observed that the error initially increases with increasing \ and has its maximum
values between \ = 10° and \ = 15°. Subsequently, the error decreases and shows
very small values for \ = 45°. As observed before, an increasing deviation with larger

Table 9.8: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
subjected to buckling load. The ratio 𝑎/𝑏 = 1 and the number of layer pairs is set to 𝑁 = 1. The
results are obtained on the basis of TSDT and CLPT, where the values for the CLPT are obtained
from Ref. [20].

𝐸1/𝐸2 = 1 𝐸1/𝐸2 = 15 𝐸1/𝐸2 = 40

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝜃 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.2 2.0 4.0 5.4 5.5 0.0 2.8 8.2 14.5 14.6
10 0.1 0.1 0.1 0.1 0.1 0.6 5.2 9.4 12.1 12.2 0.0 5.4 14.0 21.6 21.7
15 0.1 0.2 0.2 0.2 0.2 0.8 6.3 10.7 13.3 13.4 0.0 5.1 12.4 18.2 18.2
20 0.1 0.2 0.3 0.3 0.3 0.7 5.5 9.0 10.9 10.9 0.0 3.7 8.7 12.5 12.5
25 0.1 0.3 0.3 0.3 0.3 0.0 3.8 6.1 7.3 7.3 0.0 2.3 5.3 7.5 7.5
30 0.1 0.2 0.3 0.3 0.3 0.0 2.1 3.3 4.0 4.0 0.1 1.2 2.7 3.9 3.9
35 0.1 0.2 0.3 0.3 0.3 0.1 0.8 1.3 1.6 1.6 0.0 0.4 1.0 1.5 1.5
40 0.0 0.2 0.2 0.3 0.3 0.1 0.5 0.3 0.4 0.4 0.0 0.3 0.2 0.3 0.3
45 0.0 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.0
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relative widths 𝑎/ℎ can also be observed here, this is confirmed for different fibre
angles.

An overview of the error behaviour can be found in Fig. 9.4. In the diagrams the
error is plotted against 𝐸1/𝐸2 ratio and \. For 𝑎/ℎ = 2,5,10,100 one graph is shown
respectively, where 𝑎/𝑏 = 𝑁 = 1 is set. Regarding \ it can be seen that the maximum
error is about \ ≈ 15° for 𝑎/ℎ = 2 and decreases to approximately \ ≈ 10° for 𝑎/ℎ = 100
with increasing 𝐸1/𝐸2 ratio, compare Fig. 9.4a and 9.4d. As previously noted, there is
a qualitative increase in the error with increasing relative length 𝑎/ℎ and increasing
𝐸1/𝐸2 ratio.
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Fig. 9.4: Contour plots concerning buckling for the errors between the Navier and RBS solution in
% for antisymmetric angle-ply laminates subjected to constant uniaxial compression, where the
results are plotted for varying fibre angle Θ and ratio 𝐸1/𝐸2 for the four different investigated aspect
ratios 𝑎/ℎ =2, 5, 10 , 100.
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9.5.2.3 Vibration

The behaviour between the exact solution and the RBS shows a similar behaviour for
the frequency analysis as the buckling analysis shown before. The differences and
similarities are presented in the following. In Table 9.9 the error with respect to the
𝐸1/𝐸2 ratio and 𝑎/ℎ for different 𝑁 is investigated. Quantitatively, a similar behaviour
as for buckling is observed. For 𝑁 = 1, the error increases with increasing 𝑎/ℎ ratio.
This effect reverses for 𝑁 = 3. With increasing 𝐸1/𝐸2 ratio, an increase in the error can
be observed as well. The maximum amplitude of the error is significantly smaller
with 9.5 % (𝑁 = 1). For 𝑁 = 3 there are also evident negative errors of -1.1 %.

In Table 9.10 the aspect ratio 𝑎/𝑏with regard to the relative length 𝑎/ℎ is investigated
for different 𝑁 . The 𝐸1/𝐸2 ratio and the fibre angle \ remain constant. The thin
laminates (𝑎/ℎ = 100) allow a comparison to the CLPT and show good agreement
with the values from [20] for all 𝑁 considered. For 𝑁 = 1 the largest deviations are
observed, these lie in the range -1.7-6.9 %, with increasing 𝑁 these become smaller.
A clear influence of the aspect ratio is not evident.

The influence of \ and 𝑎/ℎ for different 𝐸1/𝐸2 ratios is investigated in Table 9.11.
Very small influence is observed for 𝐸1/𝐸2 = 1. With increasing 𝐸1/𝐸2 ratio the error
becomes larger and it can be seen that increasing 𝑎/ℎ is correlated with increasing
error. For \ a maximum error between 10° and 15° can be detected. For 𝑎/ℎ = 100
good agreements with the CLPT values can be observed.

In the Fig. 9.5 the errors with respect to 𝐸1/𝐸2 and \ are presented. Very small errors
are observed for 𝑎/ℎ = 2. The largest error is located at about 𝐸1/𝐸2 ≈ 10 and \ ≈ 15°.
The minimum is located at about \ ≈ 45°. The extremal points of the error shift for
𝑎/ℎ = 5 to higher 𝐸1/𝐸2 values, as observed in Fig. 9.5a. This behaviour continues
for 𝑎/ℎ = 10 and 100. The maximum shifts to over 𝐸1/𝐸2 = 50 with simultaneously
decreasing \.

Table 9.9: Errors between the Navier and RBS solution in % for antisymmetric angle-ply laminates
regarding natural frequency. The ratio 𝐸1/𝐸2 = 15 and the angle is set to Θ = ±15◦.

𝑁 = 1 𝑁 = 2 𝑁 = 3

𝑎/ℎ (TSDT) 𝑎/ℎ (TSDT) 𝑎/ℎ (TSDT)

𝐸1/𝐸2 2 5 10 100 2 5 10 100 2 5 10 100

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.5 0.0 0.1 0.2 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
5 0.2 1.0 1.5 1.8 0.1 0.1 0.2 0.4 0.0 0.0 0.1 0.2

7.5 0.3 1.8 2.8 3.5 0.1 0.2 0.4 0.7 0.0 0.1 0.1 0.3
10 0.3 2.3 3.9 4.9 0.2 0.2 0.5 0.9 0.1 0.1 0.1 0.4
15 0.2 2.7 5.2 6.9 0.2 0.3 0.5 1.2 0.0 0.1 0.2 0.5
20 0.1 2.8 5.8 8.1 0.2 0.3 0.5 1.3 -0.1 0.1 0.1 0.5
30 0.0 2.4 6.1 9.2 0.2 0.2 0.4 1.3 -0.4 0.1 0.1 0.5
40 0.0 2.0 5.8 9.5 0.1 0.2 0.3 1.3 -0.8 0.1 0.1 0.5
50 0.0 1.5 5.3 9.4 -0.1 0.2 0.3 1.2 -1.1 0.1 0.1 0.4
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Table 9.10: Errors between the Navier and RBS solution in % for antisymmetric angle-ply
laminates regarding natural frequency. The ratio 𝑎/𝑏 = 1 and the angle is set to Θ = ±15◦. The
results are obtained on the basis of TSDT and CLPT, where the values for the CLPT are obtained
from Ref. [20]..

N=1 N=2 N=3

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝑎/𝑏 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

0.25 -1.7 -1.7 0.1 1.5 1.6 -1.6 -0.7 -0.4 0.2 0.3 -2.0 -0.5 -0.3 0.1 0.1
0.5 -0.5 0.8 3.0 4.6 4.6 -0.8 -0.2 0.1 0.8 0.8 -1.2 -0.2 -0.1 0.3 0.3
0.75 0.1 2.5 5.0 6.7 6.7 -0.1 0.1 0.4 1.1 1.2 -0.5 0.0 0.1 0.5 0.5

1 0.2 2.7 5.2 6.9 6.9 0.2 0.3 0.5 1.2 1.2 0.0 0.1 0.2 0.5 0.5
1.5 0.0 1.3 2.8 4.0 4.0 0.2 0.1 0.2 0.7 0.7 0.1 0.1 0.1 0.3 0.3
2 -0.1 0.1 0.7 1.3 1.3 -0.1 0.0 0.0 0.2 0.2 -0.2 0.0 0.0 0.1 0.1
3 0.0 -0.3 -0.3 0.0 0.0 -0.4 -0.1 -0.1 0.0 0.0 -0.5 -0.1 0.0 0.0 0.0
4 0.0 -0.1 -0.1 0.2 0.2 -0.4 -0.1 -0.1 0.0 0.1 -0.6 -0.1 0.0 0.0 0.0

Table 9.11: Errors between the Navier and RBS solution in % for antisymmetric angle-ply
laminates regarding natural frequency. The ratio 𝑎/𝑏 = 1 and the number of layer pairs is set to
𝑁 = 1. The results are obtained on the basis of TSDT and CLPT, where the values for the CLPT
are obtained from Ref. [20].

𝐸1/𝐸2 = 1 𝐸1/𝐸2 = 15 𝐸1/𝐸2 = 40

𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT 𝑎/ℎ (TSDT) CLPT

𝜃 2 5 10 100 - 2 5 10 100 - 2 5 10 100 -

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.1 0.9 1.9 2.8 2.8 0.0 1.2 3.9 7.5 7.6
10 0.0 0.0 0.0 0.1 0.1 0.2 2.3 4.6 6.3 6.3 0.0 2.2 6.6 11.5 11.5
15 0.0 0.0 0.1 0.1 0.1 0.2 2.7 5.2 6.9 6.9 0.0 2.0 5.8 9.5 9.6
20 0.0 0.0 0.1 0.1 0.1 0.1 2.2 4.3 5.6 5.6 0.0 1.3 3.9 6.4 6.5
25 -0.1 0.0 0.1 0.2 0.2 0.0 1.4 2.8 3.7 3.7 0.0 0.7 2.2 3.8 3.8
30 -0.1 0.0 0.1 0.2 0.2 -0.1 0.5 1.4 2.0 2.0 0.0 0.2 1.0 1.9 2.0
35 -0.1 0.0 0.1 0.1 0.1 -0.2 -0.2 0.3 0.8 0.8 0.0 -0.1 0.2 0.7 0.7
40 -0.2 -0.1 0.1 0.1 0.1 -0.2 -0.5 -0.2 0.2 0.2 0.0 -0.3 -0.2 0.1 0.1
45 -0.2 -0.1 0.1 0.1 0.1 -0.2 -0.6 -0.3 0.1 0.1 0.0 -0.3 -0.3 0.0 0.0

9.6 Conclusion

The novel formulation of the RBS method for the third-order shear deformation
theory shows similar accuracy compared to the original formulation for the CLPT
for plates that are not shear deformable.

In the bending analysis, the centre deflection is predicted with increasing accu-
racy for increasing relative thickness or decreasing relative length. This holds for
antisymmetric cross-ply and angle-ply laminates. The configurations regarding the
fibre angle Θ and the ratio 𝐸1/𝐸2 are analysed with varying accuracy depending on the



256 Philip Schreiber, Jakob C. Schilling, and Christian Mittelstedt

-0.4-0.3

-0
.2

-0.2

-0.1

-0.1

0

0

0

0

0.1

0.1

0.1

0.
20.2

(a) .

-0.5

00

0
0

0.5
0.5

0.5

0.5 0.5

1

1

1

1 1

1.5

1.5

1.5

1.5 1.5
2

2

2

2

2.5
2.5

(b) .

00

0
0

0

11

1

1 1

2
2

2

2 2

3
3

3

3 3

44

4
4

5
5

5
5

6

6
6

(c) .

0
0

11

1

1

1

22

2

2
2

33

3

3
3

44

4

4
4

5
5

5
5

6
6

6
6

77

7
7

8

8
8

9

9

9

10

10

11

11

12

(d) .

Fig. 9.5: Contour plots concerning vibration for the errors between the Navier and RBS solution in
% for antisymmetric angle-ply laminates regarding natural frequency, where the results are plotted
for varying fibre angle Θ and ratio 𝐸1/𝐸2 for the four different investigated aspect ratios 𝑎/ℎ =2, 5,
10 , 100.

relative thickness. The most critical configurations are for 𝐸1/𝐸2 ≈ 10 and Θ ≈ 17.5◦
for very thick laminates shifting towards 𝐸1/𝐸2 ≈ 50 and Θ ≈ 10◦ for thin laminates.
It must be noted that the agreement of centre deflections does not allow conclusions
about the accuracy of the predicted stresses which must be investigated in future
publications.

In the buckling analysis, a very good agreement is obtained between the exact
solution and the RBS for the cross-ply laminate. The angle-ply laminate shows, as
in the case of bending, an increasing error for increasing 𝐸1/𝐸2 ratios and increasing
relative lengths. The maximum deviations can be found for fibre angles from 10° to
15° and are up to 21 %. The vibration analysis shows a very similar behaviour as
the buckling analysis, with deviations of up to 12 %. Apart from the critical points
mentioned, there is good agreement between the RBS and the exact solution for
angle-ply laminates.
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Chapter 10
How Mechanically Inspired Design Rules Help in
the Topology Optimization of Structures with
Highly Nonlinear Behavior

Axel Schumacher

Abstract The efficient topology optimization of components based on purely math-
ematical algorithms is only possible for moderately non-linear structural behavior.
This article is about the support of methods for topology optimization with design
rules that are derived from expert knowledge. The use of these rules should help
where mathematical methods cannot currently be used. The essential design rules
of lightweight construction are presented and expanded to include design rules for
crash-loaded structures. It is shown how these design rules can be algorithmized.
These algorithmic design rules can be used as heuristics. They detect the situation
in the mechanical structure and make topological changes based on this information.
Different heuristics are used in competition with each other. Only a defined number
of designs are allowed in the next iteration. The efficiency of the combination of
mathematical optimization algorithms and algorithmic design tools is shown on
various development tasks of crash structures. It is about optimizing the topology of
laterally loaded profile structures made of metal and composite. In addition, topology
optimizations of axially loaded structures are shown. The topology optimization of
frame structures in three-dimensional space is also described.

10.1 Introduction

The algorithmic optimization of lightweight structures is about improving perfor-
mance by finding optimal wall thicknesses and cross sections, by finding the optimal
material, by finding the optimal shape and by finding the optimal topology, i. e. the
position and arrangement of structural elements.

The optimal shape and the optimal topology are usually determined in a joint
process. This works reliably because the special tasks can be transformed into a
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formalized optimization task in which an objective function 𝑓 (𝒙) dependent on the
vector of the design variables is minimized [1, 2]:

min 𝑓 (𝒙) (objective function),

while considering the following constraints:

𝑔 𝑗 (𝒙) ≤ 0 𝑗 = 1, . . . ,𝑚𝑔 (inequality constraints)
ℎ𝑘 (𝒙) = 0 𝑘 = 1, . . . ,𝑚ℎ (equality constraints)
𝑥𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑢𝑖 𝑖 = 1, . . . , 𝑛 (side constraints, upper and lower bounds)

The restriction to ”min 𝑓 (𝒙)” in the formulation does not pose a problem in prac-
tice, because the problem can easily be reformulated for maximization tasks with
max 𝑓 (𝒙) = −min− 𝑓 (𝒙). The same applies to the inequality constraints and equal-
ity constraints, which should always be defined in the above form. All constraints
formulations can be transformed to these forms. Optimization is based on the use of
a structural analyses (usually finite element calculations). Their models are regarded
as the correct representation of the structural behavior in the context of structural
optimization.

The algorithmically determined optimization results often compete with solutions
that have been created with the creativity and experience of the engineers. Sometimes
the structures developed by the engineers are already quite good and are also more
robust against changes in the assumed load cases, manufacturing accuracy and
materials used.

A new quality of algorithmic structural optimization can be developed by inte-
grating the experience of the engineers into the structural optimization process. This
possibility is particularly interesting for problems where the structural analysis has
difficulties in quickly providing the sensitivities of the objective and constraint func-
tions according to the design variables. When optimizing the topology of structures
with highly nonlinear behavior, working with sensitivities is very difficult, especially,
e. g. crash structures. For this reason, this contribution shows what is possible with a
combination of mathematical algorithms and a wealth of experience. So this is not
about using an artificial intelligence that tries to find these rules with the help of
neural networks.

In this contribution, the most important design rules for lightweight design are
presented first. After these general rules, which also include a special consideration
for composites, design rules are presented that are suitable for highly non-linear
mechanical behavior. The main application here is the development of energy-
absorbing structures in crash load cases. Especially for these rules it is shown how
they can be integrated into the automatic structure optimization process. Then the
Graph and Heuristic based Topology optimization (GHT) will be presented as an
example. The GHT has been developed for more than 15 years [3–5]. At the end of
the chapter, optimization results from different applications of crash optimization are
shown and discussed.
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10.2 Principal Design Rules for Lightweight Design

In this section, the principal design principles for lightweight structures are introduced
and explained. It must be taken into account that lightweight structures not only have
to meet requirements in terms of rigidity and strength. There are also, for example,
dynamic requirements or acoustic requirements to be met.

The most important design principles for lightweight structures are:

• Avoidance of bending of the structural components: In Fig. 10.1 redesigning
examples are shown.

• Multi-purpose design: A structural component should take on as many tasks
as possible in the global lightweight structure. For example, the A-pillar of a
passenger car is used and designed to support the door hinges, the windshield, and
as a safety structure to maintain survival space when the car rolls over in a traffic
accident.

• Short load transfer paths: If, for example, the length of a single loaded beam can
be reduced, the maximum deflection is reduced to the third power.

• Consider stability issues such as (buckling of the structures)
• Use internal couplings of the structural components: Connecting structures that

can support each other. Ribs, for example, are very effective in increasing the
torsional stiffness of boxes.

• Use internal couplings of the structural components: Connecting structures that
can support each other. Ribs, for example, are very effective in increasing the
torsional stiffness of boxes.

• Depending on their design, beads can stiffen but also weaken sheet metal. Using
beads is usually more efficient than open ribs.

FF F

framework shear panel

double-T profile

Curved shell sandwich plate box

Bending cross sections:

Frames:

Plates:

Fig. 10.1: Redesigning examples for avoiding bending of structural components.
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• Avoid stress concentrations at force positions or cutouts (notches) and force
redirection.

Depending on the material used, there are of course also specialized design rules.
The following applies to composites, for example [6]:

• Design the laminate structure (stacking sequences) in such a way that all loads
(load directions) are carried by fibers. The matrix only positions the fibers. Avoid
high loads in the matrix.

• A laminate should have at least three different layer orientations.
• A cross-laminate design (“Cross-Ply” laminate)

[
0◦n 90◦m

]
should be avoided.

• Normally, a
[
0◦n 90◦m ±45◦k

]
laminate structure should be realized in which 4

different layer orientations are present.
• 3 layer orientations should only be used when there is clearly only one load

orientation. Provide at least a proportion of 15–20% per layer orientation.
• 90◦ layers: Reduction of transverse contraction and coefficient of thermal expan-

sion.
• Use 45◦-layers for shear loads.

Regarding the stacking sequence:

• Normally use the sequence [0◦ ±45◦ 90◦].
• Proportion of each layer: minimum ≈ 10%, maximum ≈ 60%.
• Maximum number of layers of the same orientation: 4.
• ±45◦ layer angles should be used on the outside of the laminate.
• Symmetrical layer structure.
• 0◦ layers to accommodate bending (tension and compression).
• ±45◦ layers to support shear loads (e. g., when a box is in torsion) and to increase

buckling resistance (especially when located in the outer layers).
• 90◦ layers to stabilize necessary cutouts for joints.
• Symmetrical laminate structure in a component.

With regard to the tapering of the plies

• Main load direction: 1:20
• Other directions: 1:10

These rules are not integrated in current optimization algorithms for structures
with linear or moderately non-linear behavior. This is also the case with the topology
optimization algorithms. Here, in the standard procedure, the available design domain
is divided into many small volumes and the optimization algorithm should decide
which volume is filled with material and which is not [7]. The final component
structure can be read from this. A typical application is shown in Fig. 10.2 [8].

These methods work very efficiently. Bending of the components is avoided and
there are short load transfer paths. The main reason for the efficiency is that the finite
element analysis provides the sensitivities of the objective functions and constraints
according to the design variables. As a result, only one finite element calculation is
required in each iteration [1, 2]. In the case of highly non-linear structural behavior,
this analytical or semi-analytical calculation of the sensitivities is not so easy. There
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Fig. 10.2: Optimization of a cantilever (above: mechanical model and design domain, below:
optimal structure) [8].

are initial approaches [9], but the effort is still so great that the topology optimization
of crash structures must be done without analytical or semi-analytical sensitivities.
For this reason, the use of mechanical inspired design rules is so interesting in this
application.

10.3 Special Features in the Development of Crash Structures

The development of highly non-linearly loaded lightweight structures usually deals
with crash structures of a passenger car, but also of trains, airplanes and ships. With
all of these mobility systems, requirements for avoiding the severity of an accident
in the event of a collision must be taken into account. However, this requirement
is particularly important for passenger car. For this purpose, structures for energy
absorbing are installed at many places in passenger cars. Regarding to these crash-
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loaded structures with highly non-linear behavior, there are a lot of more complex
objectives and constraints:
• Consideration of special acceleration values like the head injury criterion (HIC-

value),
• Realize energy absorption possibilities,
• Fulfill special force levels in defined position of the automotive,
• Realize smooth force-displacement curve and smooth acceleration-time curve,
• Enable special force paths for special load cases,
• Make high stiffness of special parts possible, e. g. parts in a main force paths in

the passenger area,
• Make low stiffness of special parts possible, e. g. at positions of the head contact

of a pedestrian,
• Special safety criteria, e. g. intrusion of structural components in the battery system

of an automotive.
In addition to these optimization functions, the behavior of the crash-loaded structures
is strongly non-linear, normally calculated by the explicit finite element approach:
• Material plasticity and material failure models
• Geometric nonlinearities
• Contact phenomena
• Numerical and physical bifurcation points
• Non-smooth structural responses
• Mesh dependent results
• No analytical determination of the sensitivities (explicit time integration)
• Huge number of local optima in the design space

10.4 Design Rules for Crash Structures and Their Algorithms for
use in the Automatic Structure Optimization Process

10.4.1 Principle Approach

Working with design rules always consists of three subtasks:
1. Detection of the situation in the component: Evaluation of the finite element

calculation by extracting all essential output values.
2. Changing the structure: The basis is a flexible geometry model with which a new

finite element model can be created with which the calculation can be carried out.
Mathematical graphs [10] have established themselves as a very good tool here.

3. Evaluation of the structural improvement through the structural change using a
finite element calculation.

A large number of competing heuristics are used. In the optimization, a user-defined
number of designs can go into the next iteration. The selection of the design rules is
based on the following questions:
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1. How can the current situation in the component be identified in the batch?
2. How can the suggestions for improvement be automated in such a way that they

carry out the structural change without a user interaction?

The programming effort for this can be very large.

10.4.2 Basic heuristics

In the following,6 derived heuristics are presented (Fig. 10.3),which,unless otherwise
stated, compete with each other:

1. Heuristic “Delete Needless Components”: The simulation data used are the total
internal energy densities of the individual walls. The wall with the lowest energy
density is removed.

2. Heuristic “Support Buckling Components”: It is about the homogenization of
the buckling or deformation behavior of the structure. The heuristic is used for
a) walls or profiles that offer little resistance to intrusion by other bodies or b)
unstable walls or profiles. The simulation data used are the velocity vectors of the
FE nodes, which can identify instabilities very well [11].

3. Heuristic “Balance Energy Density”: By connecting loaded with unloaded com-
ponents, the distribution of the internal energy density should be homogenized.
The simulation data used are the total internal energy density of the individual
walls or profiles.

4. Heuristic “Remove Small Chambers”: The heuristic reduces the complexity of
the structure.

Delete Needless Components Support buckling components

Balance Energy Density Remove Small Chambers

Smooth Structure Scaling Wall Thickness

v0
v0 v0

v0

Fig. 10.3: Heuristics using the example of the design of profile structures in crash load cases [5].
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5. Heuristic “Smooth Structure”: Simplification of the structure by smoothing kinks
inside the structure. This heuristic does not compete with other heuristics because
no topology change is made. It is activated after each topology change of the
structure.

6. Heuristic “Scaling Wall Thicknesses”: Scaling the wall thicknesses of the structure
to achieve a given mass. This heuristic also does not compete with other heuristics
since no topology change is made. It is also activated after each topology change of
the structure, so that the mass of the structure does not change due to the topology
change (constant mass development).

The evaluation of the simulation data used can be very difficult and requires some
investigations to ensure a safe process of automatic structure optimization. As an
example, for the Heuristic ”Support Buckling Components” the correlation between
the very high velocity of the structural nodes and the buckling is shown in Fig. 10.4.

These 6 heuristics are used as basic heuristics in all applications. However,
they have their origin in the topology optimization of laterally loaded profiles in a
crash [4]. Additional heuristics have been developed for special applications, which
are described below.

10.4.3 Special Heuristics for Laterally Loaded Profiles

Profiles are often loaded laterally in a crash. Common laterally loaded profiles are
the automotive rocker or battery containment profiles in electric vehicles. Special
heuristics for this class of crash structures are:

• Heuristic “Use Center of Gravity”: The heuristic motivates the routing of a load
path through the center of gravity of the profile. This is useful against global
bending.

• Heuristic “Use Deformation Space”: If there are large empty domains in the
structure, they should be used.
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Fig. 10.4: Velocity of two nodes during the buckling of a wall [4].
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10.4.4 Special Heuristics when Using Composite Material in
Laterally Loaded Profiles

In themselves, composites are problematic in the production of high volumes in mass
production. Nevertheless, composites are interesting as crash structures because of
their very high specific energy absorption capacity [12]:

• Heuristic “Supporting Chamber Cracks”: If cracks in the profile structure are
detected in the axial direction, this area is reinforced by diagonal support [12].

• Heuristic “Thickening of High-energy Layers”
• Heuristic “remove unloaded layers”
• Heuristic “Adjust Ply Shares”: This heuristic combines the two previously men-

tioned heuristics.
• Heuristic “Adjustment of the Fiber Orientation”: Pre-defined orientations are set

in the individual laminates depending on the detected stress.

10.4.5 Special Heuristics for Axially Loaded Profiles

The axial crash-loading of profiles enables a significantly higher specific absorption
energy than laterally loaded profiles. For these axially loaded profiles, the following
heuristics exist [13]:

• Heuristic “Create Lattice Structures”: Lattice structures are common and efficient
cross-section topologies. In the literature there is a large number of cross-section
variants with good force-displacement curves

• Heuristic “Create Cross Structures”: Crosses can also have a positive influence
on the force-displacement curve.

• Heuristic “Connect Low Energy Walls”: If two connected walls have a very low
energy density, the connection is abbreviated by a diagonal.

• Heuristic “Split Long Walls”: Long walls tend to buckle under axial loading.
Splitting should allow fold buckling instead of global wall buckling.

• Heuristic “Create Different Wall Length”: If cross-section geometries are irregular,
there are different buckling wavelengths. With good tuning, this ensures more
even force-displacement curves.

• Heuristic “Insert Small Chambers”: Small chambers in the corners of axially
loaded profiles increase energy absorption.

• Heuristic “Create Bitubular Structures”: The heuristic builds new inner profiles
into the existing profile. With good tuning, a more even force-displacement curve
can be achieved.

• Heuristic “Incorporation of Triggers”: Beads are good trigger elements that can
be easily incorporated into the structure. They initiate fold buckling.
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10.4.6 Special Heuristics for Frame Structures in the
Three-Dimensional Space

The geometric realization of the designs generated by the heuristics is significantly
more difficult in the case of three-dimensional frame structures [14]. The geometric
situation of the Heuristic “Support Buckling Components” can be seen in Fig. 10.5.
However, a few special heuristics are required:

• Heuristic “Split Long Profiles”: Long profiles are at high risk of buckling under
axial loads. Splitting is intended to reduce the risk of buckling.

10.5 The Procedure of the Graph and Heuristic Based Topology
Optimization (GHT)

10.5.1 Basic Idea of the Method

The process of Graph and Heuristic based Topology Optimization (GHT) is based
on the Bubble method [15], which changes the topology of the structure in the outer
loop and optimizes the shape in the inner loop (Fig. 10.6). In the mechanically linear
range, an analytical hole positioning criterion was developed for the bubble method,
which evaluates the local stresses in the component. This hole positioning criterion
has been replaced by heuristics in the GHT [3–5].
So the inner loop is executed with mathematical optimization algorithms while the
outer loop uses the heuristics. The GHT process has a modular structure. For example,
shape optimizations in individual iterations can be dispensed with and/or several
heuristics can be pursued in parallel.

The basis for changing the geometry through the optimization software and for
the automatic creation of input decks is a flexible description of the geometry using
the mentioned mathematical graphs. The first scope of application for the GHT
is the optimization of profile cross-sections, which can be described using a two-
dimensional graph. However, the structure itself and all finite element simulations
carried out are three-dimensional.

Fig. 10.5 Example of the
scheme of the Heuristic “Sup-
port Buckling Components”.
a) Initial design. b) Fast defor-
mation under loads. c) New
structure with supported edge.

a b c
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Fig. 10.6: Scheme of the GHT.

10.5.2 Essential Modules of the Fully Automatic Process

For the use in automatic structure optimization, the GHT modules are programmed
in such a way that they run reliably in the batch process.

10.5.2.1 Use of Mathematical Graphs for a Flexibly Building of Complex
Structures

The mathematical graph is used to describe the layout of a frame structure and the
cross-sections of its profiles. It is used for the manipulation of the geometry and to
check various geometrical constraints like minimum distances or connection angles.
Fig. 10.7 shows the interaction of the 3D graph and the 2D graph.

Fig. 10.7 Mathematical graph
of the 3D frame structure
together with the graph of a
profile [14].

vertex

edge

3D graph
(frame structure)

2D graph
(cross section)
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10.5.2.2 Automatic Generation of Geometry Details

The modelling of the relevant details is essential for the prediction quality of the
crash simulation. In addition to the modeling of the profiles, the connection nodes
are modeled as realistically as possible.

10.5.2.3 Automatic Generation of Finite Element Models for Crash Simulation

The geometry can be exported with an interface (e. g. to a STEP-file), so that state
of the art finite element pre-processors can manage the meshing (Fig. 10.8). With
the Include-Strategy of the finite element solvers (e. g. LS-DYNA®, Radioss® or
PAM-CRASH®) the part to be optimized is integrated into the overall crash model.

10.5.2.4 Automatic Evaluation of the Results of the Crash Simulations

The heuristics need an automatic evaluation of the crash simulation. Self-developed
programs are used together with commercially available post-processors.

10.5.2.5 Module of Heuristics

The heuristics described in Sect. 10.4 are integrated in the software. More than 20
heuristics are currently used.

10.5.2.6 Mathematical Algorithms for Shape Optimization and Dimensioning

Global optimization algorithms [1, 2] are used in the GHT process. This can be,
for example, algorithms based on the evolution strategy. Simulated annealing or
metamodel-based methods, such as those implemented in LS-OPT®, can also be
used.

Fig. 10.8 From the graph to
the finite element model [14].
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edge
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10.5.2.7 Module for Control and Manage of Large Computing Clusters for
Time-Consuming Crash Simulations

In each iteration, all heuristics provide design suggestions, of which a certain number
(e. g. five) are pursued. This results in a large number of necessary crash simulations.
If shape optimization and dimensioning are added, hundreds of simulations are
necessary. Controlling a computing cluster is necessary.

10.6 Collection of Published Application Examples

10.6.1 Metal Profile Structure with a Lateral Load Case

The first application is the optimization of the cross-section of a vehicle rocker [4].
The manufacturing process is extrusion and the material is aluminum. Fig. 10.9
shows a sub-model of the vehicle rocker hitting a pile. The evaluation of the strains
on the initial design in LS-DYNA®, i. e. the empty rocker profile, can be seen in
Fig. 10.10.
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Fig. 10.9: Load cases of the rocker example [11].

Fig. 10.10 Evaluation of the
strains in the initial design
(blue: no strain, red: high
strain) [11].
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The optimization task is to find the optimal topology and shape of the cross section
of the rocker profile by solving the following optimization task:
Minimize the maximal force at a moved rigid wall (velocity 𝑣0), so that functional
constraints

• Mass ≤ 2.801 kg
• Intrusion of the pole ≤ 70 mm
• Stiffness (bending and torsion) ≥ 50% stiffness initial design

and the manufacturing constraints

• 1.6 mm ≤ wall thickness ≤ 3.5 mm
• Distance of walls ≥ 10 mm
• Connection angle of walls ≥ 15◦
• Maximum chamber size ration 1 : 20

are fulfilled.
Figure 10.11 shows the optimization history. In each iteration, the five best designs

were followed up and shape optimization was only carried out in the 3rd iteration.
Fig. 10.12 shows the force-time curve of the starting design, the optimal design and

the theoretical optimum (constant level during the crash time). The force-time curve
of the optimal design is very close to the theoretical optimum, where the acceleration
rises very quickly to a constant level and quickly drops back to zero.

Iteration 1
52.04 kN

Iteration 2
44.90 kN

Iteration 3
42.27 kN

Initial design
55.82 kN
Initial design
Freact = 55,82 kN

Iteration 1
Freact = 52,04 kN

Iteration 2
Freact = 44,90 kN

Iteration 3
Freact = 42,27 kN

Fig. 10.11: Topology optimization of the rocker: Optimization history [11].
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Fig. 10.12: Topology optimization of the rocker: Optimization result [11].

10.6.2 Composite Multi-Chamber Profile Structure with Lateral
Load Cases

The optimization of a wrapped multi-chamber profile made of tapes with carbon
fibers and a thermoplastic polyamide matrix is shown. The solver LS-DYNA® is
used for the calculation. The structure rests on two rigid cylinders and is hit laterally
by another cylinder and an initial velocity. The drop weight is inclined 2◦ around
the 𝑥-axis to account for the fact that the drop body can tip a few degrees in a drop
tower. In the model, the gravitational acceleration acts against the 𝑧-axis. The initial
design consists of an inner and a surrounding outer chamber, each with a thickness
of 3.12 mm and the fiber orientations of

[±87◦2 ±10◦2 ±45◦2
]
. In the FE model, the

orientations with the same amount are combined into a layer group, which is modeled
with a layer of shell elements and is connected to the adjacent layer groups with
volume adhesive elements. The tape thickness is 0.13 mm and the tape width is
12 mm. The inner rounding radii are 6.5 mm. The orientations are slightly corrected
prior to the simulations depending on the circumferential length to ensure wrapability.
The load case with the initial design is shown in Fig. 10.13.

The mass is to be minimized and, as a constraint, the 𝑧-displacement of the drop
weight must not be more than 60 mm in order to guarantee that the drop weight is

XY

Z
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12,7 kg
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Z
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m
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 10°

 45°
0°≙Profilachse
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Fig. 10.13: Load case for the optimization of a wrapped multi-chamber profile [12].
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stopped by the profile structure and its energy is almost completely absorbed. The
manufacturing constraints are relatively restrictive in order to keep the manufacturing
costs as low as possible. Due to a required symmetry to the local 𝑦-axis of the
cross-section, a manufactured profile can be used up to twice in the structure. The
optimization task reads as follows:
Minimize the mass, so that functional constraints
• 𝑧-Intrusion of the drop weight ≤ 60 mm
and the manufacturing constraints
• 1.04 mm ≤ wall thickness ≤ 5 mm
• Length of a walls ≥ 29 mm
• Distance of walls ≥ 10 mm
• Connection angle of walls ≥ 44.5◦
• Symmetry to local 𝑦-axis
• 10◦ ≤ tape orientation ≤ 89.9◦
• Number of chambers ≤ 7
• Inner radius at corners ≥ 6.5 mm
are fulfilled.

In each optimization, the top five designs are passed to the next iteration, and all
heuristic designs are evaluated in a dimensioning process in which all wall thicknesses
are scaled by a uniform factor. The optimization history is shown in Fig. 10.14. The
topology heuristics reduce the weight by 305 g in two iterations and achieve no further
improvement in the third iteration, so that the layer construction heuristics are then
activated. Here the mass can be reduced again by 29 g in the two following iterations.
After the sixth iteration can no longer achieve any improvement, the optimization
is terminated. A total of 337 simulations are run during the optimizations. The
cross-sections of the designs generated by the topology heuristics are shown. The top
five designs that are passed to the layer heuristics in the fourth iteration are marked
with an asterisk.

The deformation behavior of the best design from iteration 5 is shown in Fig. 10.15.
The penetration of the falling weight into the structure is severely restricted by the
three upper chambers with relatively vertical walls. At the same time, there are two
triangular profiles in the lower corners, which are laterally crushed by the large central
profile during impact. With this mechanism, energy can be absorbed not only at the
impact point of the falling weight, but also at both ends of the profile, so that a
larger proportion of the structure is involved in the energy absorption and the wall
thicknesses and consequently the mass can be reduced overall.

The two triangular profiles as well as the outer wraps have a thickness of 1.47 mm
and all orientations contained therein [±87◦ ±10◦ ±45◦] have an equal proportion.
The three remaining chambers in the upper half each have a thickness of 1.14 mm.
Here, compared to the other chambers, the thickness of the ±10◦ layers was reduced
from 0.47 to 0.2 mm. Since the primary task of these chambers is to reduce intrusion
into the profile, a smaller proportion of ±10◦ layers is sufficient here. In a final step,
the thicknesses of the individual layers must be corrected so that they correspond to
a multiple of the discrete tape thickness in order to be produced.
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10.6.3 Profile Structure with Axial Load Cases

In the drop tower load case shown in Fig. 10.16, a profile structure is to be optimized
so that the impactor has a minimum intrusion into the profile structure. The impactor
is modeled as a rigid body and has a mass of 500 kg and an initial velocity of
𝑣0 = 10 ms. The angle of inclination of the impactor is 10◦ and is guided in the
𝑧-direction. The extrusion profile is firmly clamped on the side facing away from
the impact, i. e. all translational and rotational degrees of freedom are blocked. A
coefficient of friction of 𝜇 = 0.2 is assumed at the contact between the impactor plate
and the profile structure. The maximum contact force between impactor and profile
structure is evaluated as the force. The optimization task reads as follows [13]:
Minimize the maximal 𝑧-intrusion of the impactor, so that functional constraints

• Mass ≤ 1.201 kg

and the manufacturing constraints

• 1.6 mm ≤ wall thickness ≤ 5 mm
• Distance of walls ≥ 10 mm
• Connection angle of walls ≥ 15◦
• Symmetry to local 𝑥-axis and local 𝑦-axis

are fulfilled.
The optimization result is shown in Fig. 10.17, in which all available heuristics

were able to deliver designs. For comparison, a structure is also shown that was
created by simply applying the “Insert Small Chambers” heuristic. This structure
exhibits global bending, which is due to the rapid reduction of the initially large force.

The final design of the GHT shows an even, almost rectangular force-displacement
curve (after the buckling force level has been reached). The good performance of
this design can be derived from the different chamber sizes and wall lengths, with
the smallest chambers being found on the first crash-loaded side of the profile cross-
section.

Fig. 10.16 Axial load case of
the drop tower [13].
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Fig. 10.17: Optimization results (the side hit first by the inclined impactor is shown in blue in the
graph) [13].

10.6.4 Three-Dimensional Frame Structure

The optimization presented here is about the optimization of a three-dimensional
frame structure (Fig. 10.18). Profiles can be arranged in the shown design space.
These profiles should all have the same cross-section. In Fig. 10.19 the deformation
of the initial design is shown. The optimization task reads as follows:

Minimize the maximum occurring contact force, so that functional constraints

• Intrusion of the pole ≤ 150 mm
• Mass ≤ 0.5 kg

Fig. 10.18 Initial frame
structure with quadratic cross-
sections (12×12 mm) im-
pacted by a rigid pole [14].
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Fig. 10.19 Initial frame im-
pacted by rigid pole: Deformed
state at 𝑡 = 0.020 s [14].

and the manufacturing constraints

• 0.8 mm ≤ wall thickness ≤ 3.5 mm
• Length of the profiles ≥ 35 mm
• Distance of walls ≥ 35 mm
• Connection angle of walls ≥ 15◦
• Symmetry to 𝑦-axis

are fulfilled.
The optimization result can be seen in Fig. 10.20. In the two diagrams, contact

force and displacement are plotted over the iterations. At the bottom of the picture
the final structure is shown. The outer frame shape has been tapered in the shape
optimization in the front upper area. The framework can be divided into two areas. The
front area near the impact is more flexible, while additional profiles have developed
in the rear area near the clamping. As a result, the rear of the frame provides the
rigidity needed to stop the cylinder before 150 mm of displacement. Fig. 10.21 shows
the diagram of the contact force over the displacement.

10.7 Conclusion

All presented optimization results strongly depend on the implemented heuristics. If
these heuristics are further improved or supplemented by new heuristics, even better
optimization results can most likely be achieved.

The idea of using heuristics to support mathematical optimization algorithms
can also be transferred to other fields of application. However, the effort is only
worthwhile if purely mathematical methods fail.
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Chapter 11
Phase Field Modeling of Cracks in Ice

Rabea Sondershaus, Ralf Müller, Dietmar Gross, and Angelika Humbert

Abstract Calving of iceberg at ice shelves and floating glacier tongues is a poorly
understood process, hence a physically motivated calving law is not yet existing. The
demands on developing appropriate models for calving is large, as calving rates are
needed for large scale ice sheet models that simulate the evolution of ice sheets. Here,
we present a new approach for simulating fracture in ice. Our model is based on a finite
strain theory for a viscoelastic Maxwell material, as the large simulation time leads
to high strains. The fracturing process is simulated using a fracture phase field model
that takes into account the elastic strain energy. We conduct simulations for a typical
calving front geometry, with ice rises governing the formation of cracks. To represent
the stress state adequately, we first conduct a spin-up to allow the viscous contribution
to develop before the fracture phase field is computed. The analysis comprises the
assessment of the crack path in comparison to observations, the influence of the
spin-up, as well as elastic versus viscous strain contributions based on Hencky strain.
Additionally, an estimate of released energy based on high resolution optical imagery
of a Greenlandic calving front is presented.

11.1 Introduction

Ice at stresses and strain-rates typically occurring in ice sheets and ice shelves shows
a dominant brittle behaviour [1]. The fracture toughness of polycrystalline ice was
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found in laboratory experiments to be KIc = 95.35± 16.69kPa m1/2 [2]. Cracks in
ice are evolving episodically. The length of such cracks is often on the order of
kilometers. They either intersect the ice in vertical (thickness) direction entirely (so
called rifts) when they propagate in horizontal direction, or they open up in vertical
direction (crevasses) with crack face distance in the order to 1-10’s meters. At calving
fronts, crack propagation is eventually leading to the detachment of icebergs. This is
a normal process of mass loss of floating ice masses. In contrast, ice shelf break-up
events or the disintegration of floating tongues represent instability of ice masses.
Understanding of fracture formation and evolution is thus of major importance for
projecting the future of ice sheets. Yet physically based calving laws are not existing.
In Fig. 11.1 the calving front situation at Greenland’s largest floating ice tongue
called Nioghalvfjerdsbræ is shown. The glacier tongue is grounded at several points
which are called ice rises and are marked in blue. At these points cracks emerge in
the ice shelf, as can be seen in the satellite imagery, Fig. 11.1b).

Glacial ice was found to be a viscolelastic fluid following a Maxwell rheology
[3–5]. The elastic behavior is assumed to be compressible, as it is common for
crystalline materials, while the viscous flow behavior originates from incompressible
inelastic processes. The viscosity is strongly influenced by the temperature which
varies in ice sheets primarily in vertical direction (cold at the top, warm at the base)
and in flow direction (cold in the high elevated interior of the ice sheet, warmer at the
lower ice sheet margins). In general, ice sheets and ice shelves are hot materials, as
their homologous temperature is extremely high. Its characteristic time ranges from
30 days for [ = 1015Pa s to 8.4 years for [ = 1017Pa s assuming a Young’s modulus

Fig. 11.1: Overview of a typical calving front situation. The left panel shows a Landsat-7 satellite
image of the calving front (black line) of Nioghalvfjerdsbræ, Greenland’s largest floating ice
tongue. The blue areas are ice rises. The right panel (Sentinel-2 imagery) is a zoom into a part of
the ice front (box in the left panel) where cracks around the ice rises and along the lateral margins
of the ice are visible..
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of 1 GPa and 𝜈 = 0.325. This exemplifies that long computation times are needed
to solve the problems adequately and as a consequence, a non-linear strain theory
is required. For glacial ice a finite strain theory for a Maxwell rheology was first
formulated by [6] and applied to a realistic ice shelf geometry in [7].

In the present investigation a fracture phase field model is proposed to describe the
failure of ice due to crack formation and propagation. The general concept of phase
field models is the representation of a sharp interface, such as for example crack
surfaces or grain boundaries by means of a continuous scalar field 𝑠(𝑥, 𝑡). The order
parameter 𝑠 represents the ’phase’ e.g. the state of the material, where for fracture the
intact material is specified by 𝑠 = 1 and the fractured material by 𝑠 = 0. The transition
between these states is smoothed out leading to a diffuse representation of the crack.

The benefit of the diffuse representation is the prevention of costly remeshing
during crack growth. Furthermore, the fracture phase field method is capable to
simulate crack propagation as well as crack initiation and crack branching. In the last
decade, the phase field method has become well established for fracture simulations
and was used for a variety of fracture processes such as brittle [8–10], dynamic
[11–13], fatigue [14–16] and hydraulic fracture [17, 18]. Moreover, different material
behaviours for instance anisotropy [19–21], plasticity [22–24] and viscoelasticity
[25–27] were studied. In this contribution, we will focus on the latter by combining
the phase field model with a viscoelastic material description to capture the long and
short term deformation of ice adequately. Since large time scales are considered in
this study, the theory of small strains is no longer sufficient and the framework of
finite deformations is needed.

The first application of phase field modelling for fracture in ice was presented
by [28], with a focus on hydrofracture. This study assumed a linear elastic material
response of the glacier, disregarding any viscous deformation, and a 2D glacier
geometry. [29] presented a stress-based phase field fracture formulation, which was
used to simulate hydrofracture in 2D and 3D including a viscous rheology. Crack
initiation at ice rises was studied in [30] based on a viscoelastic phase field formulation
for Maxwell materials. All above mentioned studies were assuming linear strain.

This text is organised as follows: First, the visocelastic material model at finite
strains is introduced before explaining the phase field for fracture. Subsequently,
we present the numerical aspects of the implementation and the simulation concept.
Sect. 11.3 is focusing on the simulation results. In a last part the energy release from
observations is estimated.
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11.2 Theory

11.2.1 Non-Linear Strain Theory for Viscoelastic Material

The viscoelastic behaviour of ice can be described by the rheological Maxwell model,
where an elastic element is in series with a viscous element. The basics of such a
viscoelastic material description are briefly outlaid in the following.

In a finite strain formulation of a viscoelastic material a distinction between a
(stress-free) reference configuration 𝜅𝑟 and a current configuration 𝜅𝑡 at time 𝑡 is
made. Both configurations as well as their corresponding quantities are sketched in
Fig. 11.2. A central quantity in the description of the kinematics is the deformation
gradient FFF, defined as

FFF(XXX, 𝑡) = 𝜕xxx
𝜕XXX

= 111+ 𝜕uuu
𝜕XXX

. (11.1)

It is noted that xxx describes the position of a material point in the current configuration,
whereas XXX describes the position of the same material point in the reference configu-
ration. The vector uuu = xxx−XXX is referred to as displacement vector. As the deformation
gradient also contains rigid body motion, it is not a useful measure for strain. To this
end the Green-Lagrange strain tensor EEE is introduced

EEE =
1
2
(CCC−111) (11.2)

with the right Cauchy-Green tensor CCC

CCC = FTFTFTFFF (11.3)

Fig. 11.2 Kinematics of the
problem in the reference
𝜅𝑟 (light grey) and current
configuration 𝜅𝑡 (dark grey).
For viscoelastic materials the
intermediate configuration
𝜅𝑖 (red dashed line) is the
configuration in which the
constitutive relation is derived.
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as a strain measure in the reference configuration 𝜅𝑟 . Its counterpart in the current
configuration 𝜅𝑡 is the Euler-Almansi strain tensor eee

eee =
1
2
(111−bbb−1) (11.4)

that contains the left Cauchy-Green tensor bbb

bbb = FFFFTFTFT. (11.5)

The kinematic equations are complemented by balance laws. To describe the
motion of an ice sheet/ice shelf the balance of linear momentum is considered. As the
focus is on horizontal plane of the extent of the ice sheet/ice shelf/glacier gravitational
forces vanish. Furthermore, neglecting inertia terms the balance of linear momentum
reduces to the equilibrium condition, given by

DivPPP = 0 (11.6)

with the divergence in 𝜅𝑟 being denoted with Div(·) and PPP the first Piola-Kirchhoff
tensor, as a stress tensor referring to the reference configuration. The transformation
between PPP and the Cauchy stress tensor 𝝈 in the current configuration 𝜅𝑡 is given by

PPPNNNd𝐴 = 𝜎nnnd𝑎 (11.7)

withNNN,nnn the normal vectors and d𝐴,d𝑎 the infinitesimal area elements in the reference
𝜅𝑟 and current configuration 𝜅𝑡 , respectively. Infinitesimal area elements transform
according to Nanson’s formula

𝐽F−TF−TF−TNNNd𝐴 = nnnd𝑎 (11.8)

with 𝐽 = det(FFF).
To take the viscous part into account the intermediate configuration 𝑘𝑖 (see

Fig. 11.2) is introduced. The key concept for modelling finite viscoelasticity is the
multiplicative decomposition of the deformation gradient into an elastic FeFeFe and
viscous FvFvFv part

FFF = FeFeFeFvFvFv, (11.9)

which was introduced by [31] in the context of finite plasticity and first applied to
ice deformation by [6]. As a consequence, the strain tensor ΓΓΓ in the intermediate
configuration is also decomposed into an elastic ΓeΓeΓe and a viscous ΓvΓvΓv part, but the
decomposition is, comparable to the Maxwell model for small strains, additive

ΓΓΓ = FvFvFv
−TEEEFvFvFv

−1 =
1
2

FvFvFv
−T (FTFTFTFFF−111)FvFvFv

−1 (11.10)

=
1
2
(FeFeFe

TFeFeFe −FvFvFv
−TFvFvFv

−1) = ΓeΓeΓe +ΓvΓvΓv.

Accordingly the elastic strain is given by
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ΓeΓeΓe = (1/2) (FeFeFe
TFeFeFe −111) (11.11)

and the viscous strain in the intermediate configuration is obtained by

ΓvΓvΓv = (1/2) (111−FvFvFv
−TFvFvFv

−1). (11.12)

It is important to note that the additive decomposition of the strain is only viable in
the intermediate configuration 1.

The introduction of an intermediate configuration can be seen as a constitutive
assumption. The stress tensor in intermediate configuration ΣΣΣ depends on the elastic
strain ΓeΓeΓe as ΣΣΣ = 𝑓 (ΓeΓeΓe), which for an isotropic material is given by

ΣΣΣ = 𝜆 tr(ΓeΓeΓe)111+2𝜇ΓeΓeΓe (11.13)

with the Lamé constants 𝜆 and 𝜇. This form of material law is known as St. Venant-
Kirchhoff material. Eq. (11.13) can be reformulated easily to

ΣΣΣ = 𝜆 tr(ΓΓΓ−ΓvΓvΓv)111+2𝜇(ΓΓΓ−ΓvΓvΓv) (11.14)

with the viscous strain in the intermediate configuration ΓvΓvΓv.
Similar to the additive composition of the strain in 𝜅𝑖 , the strain-rates are decom-

posed. Dealing with finite strains, objective time derivatives are needed. To this end,
the lower Oldroyd rate is chosen.

△
ΓΓΓe = ¤Γe¤Γe¤Γe + lTvl

T
vlTvΓeΓeΓe +ΓeΓeΓelvlvlv (11.15)

is the elastic strain-rate, while

△
ΓΓΓv = ¤Γv¤Γv¤Γv + lTvl

T
vlTvΓvΓvΓv +ΓvΓvΓvlvlvlv (11.16)

is the viscous strain-rate in 𝜅𝑖 . The viscous deformation gradient lvlvlv is computed from

lvlvlv = ¤F¤F¤FvF−1
vF−1
vF−1
v . (11.17)

The transformation (push forward operation) of the Green-Lagrange strain tensor
into the intermediate configuration then reads

△
ΓΓΓ = FvFvFv

−T ¤EEEF−1
vF−1
vF−1
v = FvFvFv

−T
( ¤
FT

vFT
vFT
vΓΓΓFvFvFv

)
F−1

vF−1
vF−1
v = ¤ΓΓΓ+ lTvl

T
vlTvΓΓΓ+ΓΓΓlvlvlv. (11.18)

To complete the viscoelastic constitutive model we need to define the stress in
conjunction with an evolution law of the viscous strain, described by the viscous
right Cauchy-Green tensor

CvCvCv = FT
vFT
vFT
vFvFvFv. (11.19)

1 Later on, we will introduce a strain measure that allows to compute the elastic and viscous strain
components in the reference configuration.
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We define a strain tensor in 𝜅𝑟 as the difference between total and viscous strains as

EeEeEe =
1
2
(CCC−CvCvCv) (11.20)

Setting the (deviatoric) elastic and viscous stresses equal

2[
△
ΓΓΓv = 2𝜇

(
ΓΓΓ−ΓvΓvΓv − 1

3
tr(ΓΓΓ−ΓvΓvΓv)111

)
= 2𝜇ΓD

eΓ
D
eΓ
D
e , (11.21)

the evolution equation of the viscous part
△
ΓΓΓv of the viscous strain tensor in the

intermediate configuration is obtained as a function of the total strain difference
ΓΓΓ−ΓvΓvΓv. Note that in the above equation the deviatoric part of ΓΓΓ−ΓvΓvΓv = ΓeΓeΓe is used.
This establishes an isochoric viscous deformation. The evolution law can also be
expressed in terms of the right Cauchy-Green tensor CvCvCv, resulting in

[ ¤Cv¤Cv¤Cv = 𝜇

(
CCC− 1

3
tr(CCCC−1

vC−1
vC−1
v )CvCvCv

)
. (11.22)

Details are omitted here for the sake of compactness, but can be found in [6, 32].
Finally for the implementation the second Piola-Kirchhoff stress tensor is needed. It
can be computed by a pull back of the stressΣΣΣ from the intermediate configuration 𝜅𝑖
on the reference configuration 𝜅𝑟 with the help of the viscous part of the deformation
gradient FvFvFv

SSS = F−1
vF−1
vF−1
v ΣΣΣF−T

vF−T
vF−T
v (11.23)

=
𝜆+ (2/3)𝜇

2

[
tr(CCCC−1

vC−1
vC−1
v ) −3

]
C−1

vC−1
vC−1
v + 𝜇

[
C−1

vC−1
vC−1
v CCCC−1

vC−1
vC−1
v − 1

3
tr(CCCC−1

vC−1
vC−1
v )C−1

vC−1
vC−1
v

]
.

As the viscous deformation is isochoric the 𝐽𝑣 = det(FFF) does not appear in the above
pull back operation.

The above derivations are formulated for the general 3D case. The adjustments
for e.g. the computation of deviatoric tensor components in 2D have to be made,
accordingly.

In the formulation of the fracture mechanical model the elastic energy density is
needed. The elastic energy density of an isotropic St. Venant-Kirchhoff material in
𝜅𝑖 is given by

𝜓𝑖e (ΓeΓeΓe) = 1
2
ΓeΓeΓe : CΓeΓeΓe =

𝜆

2
tr(ΓeΓeΓe)2 + 𝜇ΓeΓeΓe : ΓeΓeΓe (11.24)

with C the elasticity tensor defined by the Lamé constants 𝜆, 𝜇 [33]. The elastic
energy density of a St. Venant-Kirchhoff material in 𝜅𝑟 is given by

𝜓𝑟e (EeEeEe) = 1
2

EeEeEe : CEeEeEe =
𝜆

2
tr(EeEeEe)2 + 𝜇EeEeEe : EeEeEe (11.25)

as 𝐽𝑣 = 1 due to 𝑑𝑉 = 𝑑𝑉 𝑖 .
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Finally, the elastic energy density of a St. Venant-Kirchhoff material in 𝜅𝑡 is given
by

𝜓𝑡e (eee) =
1
2

eeeeee : Ceeeeee =
𝜆

2
tr(eeeeee)2 + 𝜇eeeeee : eeeeee. (11.26)

In order to evaluate the elastic and viscous components of strain, we introdue a
logarithmic strain measure, the Hencky strain [34] that reads

YHYHYH =
1
2

ln
(
FTFTFTFFF

)
=

1
2

ln(CCC) (11.27)

and an additive decomposition of the Hencky strain as

YH
eY
H
eY
H
e = YHYHYH −YH

vY
H
vY
H
v =

1
2

ln(CCC) − 1
2

ln(CvCvCv) (11.28)

With this the formulation of the finite strain theory for a viscoelastic Maxwell
material is complete. Next,we introduce the fracture phase field model for viscoelastic
materials under finite strains.

11.2.2 The Phase Field Model of Fracture

The general idea of the phase field method of fracture is based on Griffith’s theory of
fracture, in which failure occurs once a material specific critical value of the energy
release rate Gc is reached. It is a material parameter that is related to the fracture
toughness KIc by Gc = KIc

2 (1− 𝜈2)/E in the plane strain case. The energy available
for crack formation is given by the strain energy. Hence the energy potential Π of a
body Ω with a sharp crack interface Γf reads

Π =
∫
Ω\Γf

𝜓e 𝑑𝑉 +
∫
Γf

𝜓f 𝑑𝐴−
∫
𝜕Ω

t0 ·uuu𝑑𝐴 (11.29)

with the first term describing the strain energy and the second term the energy required
for fracture along the crack. The last term represents the traction boundary condition
with a traction in the reference configuration t0 = PPPNNN and uuu the displacement. As
mentioned above the sharp crack interface is smoothed out over a length scale l0 as
sketched in Fig. 11.3. The phase field method is hence approximating the energy for
fracture as a volume integral over the critical energy release rate Gc multiplied by
the crack surface (density) 𝐴l0∫

Ω
𝜓f𝑑𝑉 =

∫
Ω
Gc 𝐴l0𝑑𝑉 ≈

∫
Γf

Gc 𝑑𝐴 . (11.30)

The crack surface density depends on the length scale l0 which describes the transition
width between intact and broken material as well as on the order parameter s. We use
the Ambrosio and Tortorelli approximation [35] which is given by
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Fig. 11.3: Sketch of the concept of phase field modelling of fracture. The left panel resembles
sharp cracks, while the right panel highlights smeared out cracks represented by a continuous
phase field. .

∫
Ω
Gc 𝐴l0𝑑𝑉 =

∫
Ω
Gc

( (1− s)2

4l0
+ l0∇s · ∇s

)
𝑑𝑉 (11.31)

including a local part (1− 𝑠)2/4l0 and a non-local contribution l0∇𝑠 · ∇𝑠 of the crack
surface density. It satisfies the Γ-convergence criterion and converges for l0 → 0 to a
sharp crack in case of a brittle material [36, 37].

With increasing damage due to crack formation and propagation, the material
stiffness is reduced. This is introduced by a degradation function 𝑔(s) given as
a quadratic function 𝑔(s) = s2 + [RS in which [𝑅𝑆 ≪ 1 is a residual stiffness that
ensures for an entirely broken material a numerically well conditioned system. For
a vanishing residual stiffness [RS the degradation function satisfies 𝑔(s = 1) = 1 as
well as 𝑔(s = 0) = 0 and

𝜕𝑔

𝜕s
≤ 0 ,

𝜕𝑔

𝜕s

���
s=0

= 0. (11.32)

To ensure irreversibility of the crack, the phase field is set to 0 once it has reached a
critical value.

The regularised energy potential including the work of the surface traction becomes

Π𝑟 =
∫
Ω
𝑔(s)𝜓e 𝑑𝑉 +

∫
Ω
𝜓f 𝑑𝑉 −

∫
𝜕Ω

t0 ·uuu𝑑𝐴 . (11.33)
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Next 𝜓e is specified. Assuming a St. Venant-Kirchhoff material that was already
introduced above, the elastic strain energy is split into a volumetric and a deviatoric
part

𝜓e =
𝜆

2
tr(EeEeEe)2 + 𝜇EeEeEe : EeEeEe =

1
2
𝐾tr(EeEeEe)2 + 𝜇ED

eED
eED
e : ED

eED
eED
e (11.34)

with the bulk modulus 𝐾 = 𝜆+ 2
3 𝜇.

Crack evolution is assumed to occur under tension only, thus the volumetric strain
energy density is split into a positive and a negative part. To this end the (signed)
Macaulay brackets are defined as

⟨x⟩+ =

{
x for x ≥ 0
0 forx < 0

⟨x⟩− =

{
x for x ≤ 0
0 forx > 0

(11.35)

and are applied to the elastic volumetric strain tr(EeEeEe).
Incorporating all the above features the final version of the phase field potential is

given by

Πr =
∫
Ω
𝑔(s)

(
1
2
𝐾 ⟨tr(EeEeEe)⟩2

+ + 𝜇ED
eED
eED
e : ED

eED
eED
e

)
𝑑𝑉 +

∫
Ω

1
2
𝐾 ⟨tr(EeEeEe)⟩2

− 𝑑𝑉

+
∫
Ω
Gc

( (1− s)2

4l0
+ l0∇s · ∇s

)
𝑑𝑉 −

∫
𝜕Ω

t0 ·uuu𝑑𝐴 .
(11.36)

In the approach presented here, we only consider an elastic component to the strain
energy, disregarding a direct influence of the viscous component. In this way we
model elastic crack evolution in a viscoelastic material.

In order to solve the problem, Eq. (11.36) is minimized with respect to the dis-
placement field uuu by setting the variation with respect to uuu to zero: 𝛿uΠ = 0. This
renders the equilibrium conditions and the traction boundary conditions. To obtain
an evolution equation for the phase field a time dependent Ginzburg-Landau equation
is used to relate the change of the fracture field s to the variational derivative of the
phase field potential with respect to s

¤s = −M𝛿sΠr (11.37)

with M the mobility constant. The mobility constant M is introduced to ensure
numerical stability and acts as a rate dependent regularization in situations with rapid
crack evolution, such as crack initiation.
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11.2.3 Numerics

The model was implemented in the finite element framework FEniCS [38], more
specifically we implemented Eq. (11.36) and used the automatic derivative to obtain
the variations with respect to the displacementuuu and the phase field variable s. Setting
the variation with regard to uuu to zero renders the equilibrium condition. The variation
with respect to s provides the driving force, c.f. Eq. (11.37), where we have chosen a
mobility constant of M = 105. The rate of s in Eq. (11.37) is integrated in time using
a backward Euler scheme. The residual stiffness [RS in the degradation function has
been chosen to be 0.001 and s is fixed to zero for all further time steps if s ≤ 0.05. All
model parameters used throughout the simulations can be found in Table 11.1. To
solve the system of equations, a monolithic scheme is used and thus the displacement
field uuu and the fracture field s are calculated simultaneously. The internal variable CvCvCv
is obtained from the evolution Eq. (11.38) where an forward Euler scheme is used to
approximate the rate ¤Cv¤Cv¤Cv

¤Cv¤Cv¤Cv =
CvCvCv

𝑛+1 −CvCvCv
𝑛

Δ𝑡
(11.38)

resulting in an equation for the CvCvCv at time step 𝑛+1:

CvCvCv
𝑛+1 =

𝜇

[
Δ𝑡

(
CCC𝑛 − 1

3
tr

(
CCC𝑛 (CvCvCv

𝑛)−1
))

+CvCvCv
𝑛 . (11.39)

The displacement field uuu and the fracture field s are interpolated linearly using
triangular elements. The internal variable CvCvCv is constant in each element. Due to the
non-linear coupling of uuu and s a Newton-Raphson scheme is applied to obtain the
values at a new time step 𝑡𝑛+1 form the previous time step at 𝑡𝑛. The embedded linear
system is solved using the solver MUMPS [39]. Especially in cases with rapid crack
evolution, the Newton-Raphson scheme may not converge (relative and absolute
tolerance). Thus, in cases where the Newton-Raphson scheme does not converge
in 15 iterations the time step is halved. If the Newton-Raphson scheme converges

Table 11.1: Model parameters.

parameter value unit

𝜂 5· 1014 Pa s
E 1 GPa
𝜈 0.325
Gc (for an ice thickness of 100 m) 901 J m−2

l0 198 m
M 105

𝜂RS 0.001
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less than 5 iterations the time step is doubled. This heuristic time step adjustment
improves the numerical stability and guarantees a certain efficiency.

11.2.4 Scenarios, Setup and Spin-ups

Different geometries are considered here, which are motivated by the typical calving
front situations as shown in the right panel of Fig. 11.1. At first (Case 1) a square ice
shelf area is used with inflow from left and a calving front on the right side as shown in
Fig. 11.4. Upper and lower boundaries are assumed to be ice shelf internal boundaries.
To mimic this situation vertical displacements are blocked while the horizontal motion
is not constrained. The ice rises are modelled as holes, with a homogeneous Dirichlet
boundary condition uuu = 0. At the inflow boundary the displacement is also set to
zero, whereas at the outflow a constant velocity of 0.2 m/day in horizontal direction
is applied, leading to an overall tension of the domain. This setup resembles the
situation at an ice shelf that is increasing in velocity towards the ice front.

In Case 2 a free floating ice tongue is anticipated. Thus from the inflow to the
ice rise identical boundary conditions as in Case 1 are used. The ice rise are again
modelled as fully attached ice by setting uuu = 0 along both quarter-circles. As in the
first example the lateral margins upstream of the ice rises are internal boundaries,
where the vertical displacements are set to zero. The lateral boundary conditions of
the ice tongue are traction free. The calving front is again loaded by a linearly in time
increasing displacement load of 0.2 m/day. Both meshes were created in Gmsh [40]
and have been refined towards the circles or quarter circles representing the ice rises.

In many engineering applications a load is applied to an initially unloaded body.
The task is to simulate changes in stress, strain and associated crack formation
during the application of a time dependent load. In the case under consideration
here, a natural system is analysed that has undergone a long load and deformation

Fig. 11.4: Geometry setup of the numerical experiments, circles resemble ice rises.
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history. Therefore, the viscous strain field is already well developed, while the elastic
component is becoming more important in the vicinity of the calving front. This
becomes more evident when considering the characteristic time again, as the viscous
component only evolved over larger time scales of month to years. To capture this in
this contribution, so called spin-up simulations were performed. In the spin-up the
fracture phase field model is switched off, but the viscoelastic deformation is allowed
to develop. As an order of magnitude for the time scale, the time span between the
fracture formation of the lateral cracks visible in Fig. 11.1 is considered, which is
about one year. As the fracture phase field is not solved for, only slow viscoelastic
processes occur and the time steps in the spin-up runs can be larger, but due to the
explicit time scheme a maximum time step of a day is allowed. After the completion
of the spin-up runs, the displacement uuu and viscous strain field CvCvCv are used as the
initial state for subsequent fracture phase field simulations.

11.3 Results

11.3.1 Crack Evolution and Strain for Ice Rises Within the Ice Shelf

We present the fracture phase field of Case 1 in Fig. 11.5 for different initial conditions.
We investigate the case of no spin-up and several spin-up simulations with different
time periods varying between 10 up to 40 weeks. The crack paths differ in all
experiments. In all cases the crack evolution starts at the downstream (lee) side of ice
rises and then propagates along the circles until it deviates from the ice rise margin
and cracks in the area between the ice rises are formed. Once the cracks are unified the
fracture evolves towards the boundaries of the domain. For the experiment without
spin-up the crack path is a nearly straight line between the ice rises and the lateral
margins of the ice body. The crack paths for experiments with spin-up runs differ
strongly from the experiment without spin-up. With shorter spin-up times, thus less
viscous deformation, the crack path is more branched then with longer spin-up times.
More than one crack forms at the ice rises. All cases with spin-up lead to a final crack
path between the ice rises of a bow-like shape. Also between the ice rises and the
lateral margins, the crack path is more inclined as compared to the experiment without
spin-up. In the downstream part of the ice body, the phase field is also reduced for
all pre-deformed cases, while the phase field without spin-up remains fully intact in
almost all areas around except the main crack. While conducting the simulations, we
observe that the transition between spin-up to the full problem including the fracture
phase field is prone to numerical difficulties. The time step is becoming very small,
as the spreading of the crack is very quick. This behaviour is referred to as model
shock in the following.

In order to quantitatively capture the influence of elastic and viscous strain we
resort to the additive decomposition of the Hencky strains as introduced in Eq. (11.28).
For this purpose, Fig. 11.6 presents the ratio YH

eY
H
eY
H
e /(|YH

eY
H
eY
H
e | + |YH

vY
H
vY
H
v |) and YH

vY
H
vY
H
v /(|YH
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H
e | + |YH

vY
H
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H
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Fig. 11.5: Phase field of the experiments with ice rises in the center of the ice shelf. (a) no-spin up,
(b-e) 10, 15, 20, 40 weeks spin-up respectively.
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for selected experiments: (a) no spin-up, (b) with 15 weeks spin-up and (c) with
40 weeks of pre-loading. The Hencky strains are shown at the same time as the
phase field s in Fig. 11.5 It can be observed that elastic strains occur primarily as
an instantaneous reaction to crack propagation and are thus very large in the area of
the crack and at the crack tip. It is worth to note that this concentration of the elastic
strains occurs more pronounced in the simulations with spin-up. This is an indication
of the model shock. The system can only account for the stress redistribution by
elastic responses. In the situation with no spin-up, elastic strain forms a compression
arc to support the applied external load. In the simulations without spin up, the crack
is almost invisible in the strain distributions, elastic or viscous, see Fig. 11.6a,b. In
situations with spin-up the viscous strain contribution vanishes in the crack region,
see Fig. 11.6 d,f. This is due to the longer viscous time scale, indication again the
feature referred to as model shock.

To better understand the temporal evolution of the fracture process, Fig. 11.7
reports the fracture phase field and the elastic Hencky strain contribution for a spin-
up of 10 weeks. The system is so highly stressed that not only one, but three cracks
from at each ice rise (hole), see Fig. 11.7c. The two cracks towards the middle of
the domain converge into one crack at each ice rise which afterwards grows further
into the area between the ice rises. The two cracks this middle area unify and form
a large crack that connects the two ice rises. Later the lateral cracks grow towards
the boundaries resulting in a final splitting of the ice block. Again the different time
scales of the crack propagation and the viscous flow are worth mentioning. Compared
to the ’slow’ flow process the crack propagates almost instantaneously. There is again
a strong correlation between the elastic strain distribution and the crack path. To
support this statement the arc-like tensile elastic strain distribution in Fig. 11.7d is
mentioned. Later, see Fig. 11.7f, the crack path follows this arc-like distribution. In
regions with compressive elastic strain, such as the upstream boundary of the ice rise,
cracks are suppressed.

11.3.2 Crack Evolution and Strain for Floating Tongue

Here we present the results of a more realistic calving front geometry (see also
Fig. 11.1). The evolution of the phase field is displayed in Fig. 11.8 for four instances
in time without a spin-up run. The cracks emerge downstream of the ice rises and
grow from the transition between ice rise and calving front in lateral direction. In
the early stages of crack propagation the direction is more or less straight, while the
crack path is slightly diverted as the cracks get closer to each other. The final stage
is a slight bow form. The crack width grows wide at the calving front. In contrast to
the case in which the ice rises are situated in the center of the ice body, the phase
field downstream the crack is not impacted, as the ice does not have to detach form
the ice rise.
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Fig. 11.6: Hencky strain in 𝑥-direction for different experiments. (a,c,e) display 𝜀H
e𝜀
H
e𝜀
H
e /( |𝜀H

e𝜀
H
e𝜀
H
e | + |𝜀H

v𝜀
H
v𝜀
H
v | )

for no spin-up, 15 and 40 weeks respectively. (b,d,f) display 𝜀H
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Fig. 11.7: Temporal evolution of the phase field s in the left panels and the corresponding elastic
part of the Hencky strain 𝜀H

e𝜀
H
e𝜀
H
e xx in the right panels for a pre-loading of 10 weeks. The Hencky strain

is plotted relative 𝜀H
e𝜀
H
e𝜀
H
e /( |𝜀H

e𝜀
H
e𝜀
H
e | + |𝜀H

v𝜀
H
v𝜀
H
v | ) . Upper row is for Δt = 0, middle row for

Δt = t− tSpinUp = 1.9215 · 10−9 s and bottom row for Δt = 3.9343 · 10−9 s.
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Fig. 11.8 Temporal evolution
of the phase field of the
experiments with a floating
tongue.

11.4 Released Energy Estimate Based on Observations

Satellite and airborne imagery, both optical and radar, can be used to identify cracks in
ice. Although this provides only information of the position of the crack at the surface,
either via the crack characteristics or additional airborne radar data, an estimate of
the vertical dimension can be obtained. We use this to determine the area of the
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crack faces and to compute the released energy. The satellite imagery we use here
is Sentinel 2 (band 2,3,4) in 10 m (medium) resolution. In addition, we use high
resolution (0.3 m) optical data (RGB) from the onboard MACS camera system on
AWI’s polar aircraft. More on the data and its processing is given in [41]. From this
imagery we use data along one crack tip to constrain how much energy is released at
a typical crack tip. In both cases, we use an energy release rate of Gc = 8.071J m−2.

The medium resolution is used to measure the individual crack length of all
rifts visible in the right panel of Fig. 11.1. The entire length of all cracks at the
surface is 26 387 m. With an ice thickness of 90. . .100 m in this region, an area of
2.4. . .2.6 106 m2 and hence an energy of ΔE = 19.2-21.3 MJ is released during the
formation of the cracks.

The high resolution imagery in the right panel of Fig. 11.9 is used to measure the
crack length of each individual crack face. To this end, the length of the crack at the
ice shelf surface was determined and the ice thickness based on ice penetrating data
was used to compute the newly formed area. The ice thickness is the same as above.
The summing up the length of all individual cracks, we find with a total length of
767 m length and energy of 557.1. . .619.0 kJ.

Comparing to Sentinel-2 imagery in 10 m resolution at the same location and time
of Fig. 11.9b, the crack ends 242 m further in the high resolution MACS imagery than
in Sentinel-2 scenes. Next we use the estimated energy of such a rift tip field and add
it for each rift in Fig. 11.1 (right panel). This leads to a total energy of all 15 cracks
in this particular calving front situation of 19.2. . .21.3 MJ + 15·(557.1. . .619.0) kJ
= 27.6. . .30.6 MJ, which is 44% more released energy than estimated without high
resolution imagery.

Fig. 11.9: The left panel displays an image of the onboard Canon camera from 2013-08-08
showing the calving front at the lower ice rise visible in the right panel of Fig. 11.1. In the right
panel a high resolution optical image obtained with the MACS camera system in 30 cm ground
resolution of a rift tip is shown. .



300 Rabea Sondershaus, Ralf Müller, Dietmar Gross, and Angelika Humbert

11.5 Discussion

In the simulations of Case 1 the crack path is leading to a separation at the downstream
side of the ice rises, which is also found in nature. However, at typical calving front
situations, the cracks form slightly further upstream than the simulations are showing.
The simulatedcrackpropagation in Case 2 is in very goodagreementwithobservations
(see Fig. 11.1 and Fig. 11.9).

The choice of the boundary condition is affecting the simulation results signif-
icantly. Currently, we are fixing the upper and lower boundary at their in vertical
direction by choosing a zero displacement condition in vertical direction at those
boundaries. This potentially leads to effects at the ice rise margins that are not in-
tended. In future the computational model will be applied to more realistic, and thus
irregular, geometries of ice rises. To do so, an extension of the boundary condition
along the margin of the ice rise is necessary to prevent penetration, but to similarly
allow the ice to disconnect from the grounded ice rises downstream. To this end a no
penetration condition as is common in contact mechanics and ice sheet modelling
has to be considered. The present investigation represents an extreme case, in which
the ice is ’laterally frozen’ (kinematically fixed) to the ice rise.

The natural system has a stress boundary condition at the calving front, with water
pressure below sea level and traction-free at the ice-atmosphere boundary which was
investigated in 2D vertical simulations by [6]. In future, a stress boundary condition
along the calving front shall be considered too.

A comparison of the no spin-up simulations of Case 1 and the simulations of
Case 2 shows a strong similarity between the crack paths. Both are nearly straight
between the ice rises as we expected due to the same boundary conditions. Their are
in good agreement with small strain results [30]. Further simulations especially for
different spin-up times of Case 2 have to be carried out.

The spin-up runs were conducted to obtain an initial state that represents the
stress and strain fields well prior to crack formation. Although this has been a useful
method for the problem under consideration, it also caused issues in the transition
between spin-up and solving the full problem including the fracture phase field. The
pre-loading is so substantial, that the crack formation and propagation sets in nearly
instantaneous after the spin-up. This needs further treatment in future, in order to
better resemble the natural process. For the situation displayed in Fig. 11.1 the time
between crack formation is about one year. In contrast, in our situation even after
only five weeks of spin-up cracks form instantaneously. It is worth to note, that
crack formation in ice shelves is happening extremely fast, with the time scale being
narrowed by satellite observations to appear between two subsequent acquisitions,
which may in summer be as close as within one day. That the crack propagation
within the model is nearly instantaneous is consistent with observations, only the time
period between two crack formation events is currently not matching observations.

In our approach a viscoelastic Maxwell material is applied, but we reduced com-
plexity by assuming only an elastic fracture phase field model for crack formation,
which can be extended in future to incorporate other crack driving mechanisms.
Furthermore, a St. Venant-Kirchhoff material was used primarily for the sake of
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simplicity. This material law is a widely used, but has issues for large compressive
strains. Other material models such as neo-Hooke material formulations can be used
as well, leading to a other constitutive relation for the second Piola-Kirchhoff stress
tensor SSS and consequently to a different evolution equation for the internal variable
CvCvCv [42]. An investigation of the different material models and their influence on the
spin-up and fracture phase field are very interesting.

In general, an incorporation of the phase field model of fracture approach into
large scale ice sheet models is very favourable, as no adequate formulation of calving
is currently incorporated in those models. There are two routes to consider here: (i)
to use this approach in a micro-macro coupling, in which at local scale a fracture
phase field model is applied. The micro scale fracture phase field model will than
be used to derive calving rates, which are incorporated into the level-set method of
calving front motion or (ii) to extend the phase field model into an ice sheet wide
model with a high resolution mesh in calving front areas and to couple both models
directly. In both cases, a velocity formulation of the phase field model for fracture
is required, as ice sheet models are in velocity formulation. Both approaches are,
however, quite challenging and remain subject of future research.

Comparing the estimate of released energy in medium and high resolution imagery
makes evident, that it can only be estimated reliably when using high resolution
imagery, as one may underestimate it massively. This highlights the need for high
resolution airborne or satellite-borne data for fracture mechanical estimates.

Last but not least, the simulations depend on material parameters that are not well
documented and constrained. The basis for Gc is only KIc [2], while cracks around the
ice rises may also be mode II cracks in some occasion. In addition, the laboratory tests
were not conducted for fully consolidated ice, but for very dense firn (experiments:
844.5 to 870.3 kg m−3, consolidated ice: 917 kg m−3). For polycrystalline ice Gc may
thus be smaller than the value used here. Conducting laboratory tests to constrain the
material parameters of polycrystalline ice further, would be highly beneficial.

11.6 Conclusions and Future Direction

We proposed a viscoelastic phase field method for fracture at finite strains and studied
the influence of the loading history on the crack initiation and propagation. The
influence of the viscous pre-loading is pronounced and shows the need of a carefully
considered spin-ups as glaciers and ice shelves have a long deformation history,
which is why large viscous strains occur. Comparison with simulations using small
strain reveal that the crack path is similar if no pre-loading is considered, as the crack
sets in quite rapidly.

All simulations show crack onset at the downstream side of ice rises. In reality, the
downstream side of ice rises is often ice free, which is consistent with our simulations.
The crack onset is in observations slightly further upstream, which is likely an effect
of the choice of boundary conditions used here.
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Ice shows a rate-dependent flow behavior, known by Glen’s flow law, which
should be incorporated in the future. Also a feedback between the phase field and
the viscous deformation is to be evaluated and benchmarked against observations of
crack formation.

Since this is the first work of a fracture phase field model for ice considering
finite viscoelasticity a lot of open questions regarding the spin-ups and boundary
conditions remain. More advanced treatment of the boundary condition is needed to
resemble realistic ice shelf situations. Furthermore, a concept to combine large scale
ice sheet simulations with fracture phase field simulation needs to be developed in
future.
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