
Linicrypt in the Ideal Cipher Model

Zahra Javar(B) and Bruce M. Kapron(B)

University of Victoria, Victoria, BC, Canada
{zahrajavar,bmkapron}@uvic.ca

Abstract. We extend the Linicrypt framework for characterizing hash
function security as proposed by McQuoid, Swope, and Rosulek (TCC
2018) to support constructions in the ideal cipher model. In this setting,
we give a characterization of collision- and second-preimage-resistance in
terms of a linear-algebraic condition on Linicrypt programs, and present
an efficient algorithm for determining whether a program satisfies the
condition. As an application, we consider the case of the block cipher-
based hash functions proposed by Preneel, Govaerts, and Vandewall
(Crypto 1993), and show that the semantic analysis of PGV given by
Black et. al. (J. Crypto. 2010) can be captured as a special case of our
characterization.

Keywords: Collision-resistant hash function · Compression function ·
Ideal cipher model · Linicrypt

1 Introduction

Two fundamental properties of cryptographic hash functions which are the basis
for their cryptographic application are collision resistance and 2nd-preimage
resistance. Applications of cryptographic hash functions include message authen-
tication code [2] and hash-based signatures [6,12,13,15]. One basic approach to
build hash functions is by the iteration of a fixed-length compression function.

In this work, we extend the approach of [14] to characterize collision-
resistance properties of compression functions constructed in the ideal cipher
model, and demonstrate that such an approach is amenable to automated vali-
dation and generation.

In [14] the Linicrypt formalism [8] is applied to give a characterization of
collision- and 2nd-preimage resistance of hash functions constructed via straight-
line algebraic programs with access to a random oracle. In this paper, as sug-
gested by [14], we extend the characterization given in that paper to the ideal
cipher model. As the ideal cipher model is a standard setting for the construc-
tion of cryptographic hash functions, in particular modeling block-cipher-based
construction of compression functions, this is a natural and relevant extension
of the previous work.

Work supported in part by NSERC Discovery Grant RGPIN-2021-02481.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Zhang et al. (Eds.): ProvSec 2023, LNCS 14217, pp. 91–111, 2023.
https://doi.org/10.1007/978-3-031-45513-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45513-1_6&domain=pdf
http://orcid.org/0000-0003-0919-4043
http://orcid.org/0000-0002-3295-543X
https://doi.org/10.1007/978-3-031-45513-1_6

92 Z. Javar and B. M. Kapron

A well-studied group of block-cipher-based compression functions was pro-
posed by Preneel, Govaerts, and Vandewalle (PGV) [16]. They proposed a sys-
tematic way to construct rate-1 block-cipher-based compression functions which
make a single call to the ideal cipher, using only simple algebraic operations.

In a generalization of [16], Black, Rogaway, and Shrimpton [4] introduced 64
rate-1 compression functions h : {0, 1}l × {0, 1}l → {0, 1}l utilizing a single call
to a block-cipher E : {0, 1}l ×{0, 1}l → {0, 1}l of the form hE(h,m) = Ea(b)⊕ c
where a, b, c ∈ {h,m, h ⊕ m, v}, and v is a fixed constant, which they term
PGV compression functions. They then prove that of the 64 PGV compression
functions, 12 of them, referred to as group-1, are collision-resistant and preimage
resistant up to the birthday bound, and 8 of them, which are called group-2
are only collision resistant after some iteration. The proofs in [4] are given on
a per-function basis, with canonical examples and an indication of how these
could be generalized to any function in the corresponding group. In subsequent
work, [5] characterized group-1 and group-2 PGV compression functions via a
more general approach which considers fundamental combinatorial properties of
the definitions, based on pre- and post-processing functions. A related work by
Stam [18] presents these properties in an algebraic setting, partly anticipating
the approach presented in the current paper. In Sect. 4, we model the PGV
compression functions in Linicrypt and show the properties proposed in [5] may
in fact be obtained as a special case of our general characterization.

Contributions. Our main contributions are summarized as follows:

1. A formulation in the ideal cipher model of the notion of collision structure,
introduced in [14] for the random oracle model (Definition 4).

2. A characterization showing a Linicrypt program is collision resistant (and
2nd-preimage resistant) if and only if it does not have a collision structure
(Theorem 1).

3. An efficient algorithm for finding collision structures (Algorithm 1).
4. In the rate-1 setting, giving an alternate proof the collision-resistance of

group-1 PGV compression functions as originally established in [4] using our
characterization (Theorem 2.)

While our approach largely follows that of [14], the extension to the ideal cipher
model is non-trivial, and the application to the PGV functions presents an inter-
esting case where the Linicrypt approach sheds new light on existing approaches
to hash function security.

2 Preliminaries

In our presentation, we largely follow the approach of [14]. Programs are defined
over a finite field F, elements of which are denoted by lower-case non-bold let-
ters1, vectors over F by lowercase bold letters and matrices over F by uppercase
1 We usually use Roman letters, but may also use Greek or script letters depending

on the setting.

Linicrypt in the Ideal Cipher Model 93

bold letters. We write a · b or ab for the inner product and M × a or Ma for
the matrix-vector product. Note that we will sometimes think of matrices as a
column vector of row vectors (so we may write M = (m1, . . . ,mk)�.)

2.1 Ideal Cipher Model

It is often challenging to design cryptographic primitives which provably provide
a needed security property, even in the presence of computational assumptions.
One approach to deal with this problem is to assume the existence of an ideal
primitive, such as an ideal block cipher or a random oracle which may be used
to prove the security of new primitives. The new primitive is then implemented
using a real-world instantiation of the ideal primitive. While this approach is not
sound in general — there are primitives that can be proven secure when using
a truly random oracle but not when using a non-ideal hash function [7] — it is
widely used in practice and is considered to provide some formal assurance of
security.

The idea of modeling a block cipher as a random permutation appears as early
as the work of Shannon [17]. In the ideal cipher model, the adversary has access
to oracles E and E−1, where E is a random block cipher E : {0, 1}k ×{0, 1}n and
E−1 is its inverse. Thus each key k ∈ {0, 1}n determines a uniformly selected
permutation Ek = E(k, ·) on {0, 1}n, and the adversary is given oracles for E
and E−1. The latter, on input (k, y), returns the x such that Ek(x) = y. As is
standard in this setting (see, e.g., [3],) programs used to construct hash functions
are given access to E.

2.2 Linicrypt

The Linicrypt framework [8] was introduced by Carmer and Rosulek to formally
model cryptographic algorithms with access to a random oracle, and using linear
operations. In that work, they give an algebraic condition to efficiently decide if
two Linicrypt programs induce computationally indistinguishable distributions.
As mentioned above, in [14] the framework is applied to characterize collision-
resistance properties of hash functions.

A Linicrypt program is a straight-line program over a fixed vector
(v1, . . . , vm) of program variables, where the first k are designated as inputs.
A program is a sequence of lines specifying assignments to (non-input) program
variables where the right-hand side of each assignment is either2

1. A call to the random oracle on a previously assigned variable or input
2. A F-linear combination of previously assigned variables and inputs

This defines a function PH : Fk → F
r for some k, r which on input vector x =

(x1, · · · , xk) returns output vector � = (l1, . . . , lr). The field is parameterized by
a security parameter λ. In particular F = Fpλ for some prime p. In this work, we

2 The Linicrypt model, introduced in [8], also allows the assignment of a random field
element to a variable. Here, as in [14], we consider only deterministic programs.

94 Z. Javar and B. M. Kapron

assume a uniform model in which there is a single program P (with constants
from Fp.) As discussed in [8], it is also possible to consider families of programs
depending on λ.

As described in [8,14], Linicrypt programs can be given a purely algebraic
representation. We will give a slightly modified (but equivalent) version of this
as presented in [14]. We first note that in the straight-line program represen-
tation, if there are no assignments of random field elements to variables, then
all assignments of the second form may be eliminated, via successive in-lining.
In this case, a program P over a field F is given by a set of base variables
vbase = (v1, . . . , vk+n)�, where vi ∈ F and the first k variables are P’s input and
the last n variables correspond to the results of oracle queries. This means that,
algebraically, for each program variable vi we can write vi = eivbase where ei

denotes the ith canonical basis vector over F
k+n. Similarly, the output may be

given as a vector of F-linear combinations of program base variables, and this
may be specified by the output matrix M = (m1, . . . ,mr)�, where mi ∈ F

k+n

and Mvbase = (l1, · · · , lr) is the vector of program outputs. Finally, each oracle
call vi = H(t, vi1 , · · · , vim

) where t is a nonce and vi ∈ F, is represented by
an oracle constraint c = (t,Q,a), indicating that when H is called on input
(t,Q × vbase) = (t, vi1 , · · · , vim

), the returned value is a · vbase = vi.
This representation allows us to abstract away from the straight-line syntax,

and reason about programs in a purely algebraic fashion. In particular, as noted
in [8,14], if we let C denote the set of oracle constraints, then the behavior of
a program P is completely specified by its algebraic representation (M , C). In
particular, the characterization of collision-resistance properties is completely
determined by algebraic properties of (M , C).

The following is an example of a two-input Linicrypt program with random
oracle H

PH(v1, v2) :

v3 := H(t1, v1)
v4 := H(t2, v2)
v5 := v3 + v4

return v5

In the algebraic presentation, the program is specified by:

vbase = (v1, v2, v3, v4)�

M =
[
0 0 1 1

]

C = 〈(t1, q1,a1), (t2, q2,a2)〉
where

q1 = (1, 0, 0, 0) q2 = (0, 1, 0, 0)

a1 = (0, 0, 1, 0) a2 = (0, 0, 0, 1)

Linicrypt in the Ideal Cipher Model 95

In moving to programs in the ideal cipher model, for assignments of the
first type, we now have calls to an ideal cipher E(., .) on a pair of values which
are either program inputs or previously assigned variables. These inputs to E
correspond to the key and input of an encryption query. Thus, supposing P has
n oracle calls, for i ∈ [n], each call is of the form ai · vbase = E(qKi

· vbase, qXi
·

vbase) and can be represented by an oracle constraint c = (qK , qX ,a) where
qK , qX ,a ∈ F

k+n. To simplify the presentation we define Ki := qKi
· vbase,

Xi := qXi
·vbase and Yi := ai ·vbase. Letting C denote the set of oracle constraints

and M the output matrix, we again have an algebraic representation (M , C).
The following is a simple example of such a program:

PE(v1, v2) :

v4 := E(v1, v2)
return v4 + v2

M = (0, 1, 0, 1), C = (qK , qX ,a), vbase = (v1, v2, v4)�

qK = (1, 0, 0, 0) qX = (0, 1, 0, 0) a = (0, 0, 1, 0)

Further examples are given in the Appendices. We also refer the reader to [8,14]
for a more detailed introduction to Linicrypt.

Constant Values. In practice, the definition of a hash function may depend
on the use of a constant value from the underlying field or domain, typically
referred to as an initialization vector (IV). Such definitions involve affine expres-
sions and so, strictly speaking, are beyond the model provided by Linicrypt.
One approach to deal with this problem is to utilize some underlying algebraic
property of operations involving constant values. This is the approach taken in
the algebraic analysis of [18], where it is noted that translation by a constant
preserves bijectivity. We take a more general approach, treating constants para-
metrically. Namely, a constant c used in a program P is treated as an additional
input and also as an output of the program, making it a fixed parameter. In
particular, P has base variables v1, . . . , vk+n and inputs v1, . . . , vk the modified
program with a constant c has base variables v1, . . . , vk+n+1 where vk+1 := c and
M and C are updated appropriately. Finally, the single row ek+1 is appended
to M (indicating that c is an output.) By following this convention, we can
analyze the security properties of hash functions defined by Linicrypt programs
using constants without making any modifications to our definitions and proofs.
Moreover, any property which does not depend on a particular property (e.g., the
bit-level representation) of a constant value used in a program will be preserved
by this convention. While this does not capture implementation-level details, it
provides a level of analysis consistent with works such as [5].

Security Definitions. We assume the number of oracle queries the adversary
makes to E is qE and to E−1 is qD.

96 Z. Javar and B. M. Kapron

Definition 1 ([14] Definition 2). Program P is (q, ε)-collision resistant if any
oracle adversary A making at most q = qE +qD queries has probability of success
at most ε in the following game:

(x,x′) ← AE,E−1
(λ); return (x �= x′) and PE(x) = PE(x′) (1)

Definition 2 ([14] Definition 3). Program P is (q, ε)-2nd-preimage resistant
if any oracle adversary A making at most q = qE + qD queries has probability of
success at most ε in the following game:

x ← F
k;x′ ← AE,E−1

(x, λ); return (x �= x′) and PE(x) = PE(x′) (2)

3 Characterizing Collision Resistance

In this section, we give an algebraic condition to characterize collision resistance
and 2nd-preimage resistance for Linicrypt programs in the ideal cipher model
(Definition 4). Before giving the definition we note some programs fail trivially
to be collision-resistant because two different inputs produce exactly the same
queries to the oracle. This is formalized in the following:

Definition 3. Program P = (M, C) is degenerate if

span({e1, . . . , ek+n}) �⊆span({qK | (qK , qX ,a) ∈ C} ∪ {qX | (qK , qX ,a) ∈ C}
∪ {a | (qK , qX ,a) ∈ C} ∪ rows(M))

Lemma 1. If P is degenerate then 2nd-preimages can be found with probability
1.

Proof. Assume the adversary A is given a preimage x, and it determines the

base vector vbase in the execution of P(x). We define the matrix P =

⎡

⎢
⎢
⎣

QK

QX

A
M

⎤

⎥
⎥
⎦

where QK ,QX ,A are matrices whose rows correspond to the components of
the elements of C (ordered arbitrarily.) If the adversary can determine a 2nd-
preimage x′ �= x where Pvbase = Pv′

base where v′
base is the base vector in

the calculation of P(x′) then P(x) = P(x′) and A wins. Since program P is
degenerate, the rows of P cannot span all k + n basis vectors which means
rank(P) < k + n, and thus, for some v �= 0, Pv = 0. The adversary can solve
for this v and set v′

base = vbase +v. Then P (v′
base −vbase) = 0, so v′

base �= vbase

and Pv′
base = Pvbase. In particular, this allows A to compute x′ �= x such that

P(x′) = P(x). ��
The following definition gives a syntactic condition on programs that will

be used to characterize collision resistance. Intuitively, for a program to have a
collision x �= x′, there must first be a query for which the adversary can pick an
arbitrary input. This means at least two of K,X, Y need to be independent of

Linicrypt in the Ideal Cipher Model 97

all other fixed values. Secondly, to get the same output value on this different
input x′, the results of the remaining queries must be independent of other fixed
values which implies one of Y or X must be independent of the previous queries
and output values. This leads to the following definition:

Definition 4. Let P = (M , C) be a Linicrypt program. A collision structure for
P is a tuple (i∗, c1, . . . , cn) where c1, · · · , cn is an ordering of C and i∗ ∈ [1, n],
such that for i = i∗ at least two of the following conditions are true, and for all
i > i∗ at least one of (C2) or (C3) is true.

(C1) qKi
/∈ span({qK1

, . . . , qKi−1
}, {qX1

, . . . qXi−1
}, {a1, . . . ,ai−1}, rows(M))

(C2) qXi
/∈ span({qK1

, . . . , qKi
}, {qX1

, . . . qXi−1
}, {a1, . . . ,ai}, rows(M))

(C3) ai /∈ span({qK1
, . . . , qKi

}, {qX1
, . . . qXi

}, {a1, . . . ,ai−1}, rows(M))

Lemma 2. If a Linicrypt program P with n constraints has a collision structure
(i∗, c1, . . . , cn) then there exists a collision adversary A with access to E and E−1

which given an input x makes at most 2n queries and returns x′ �= x such that
PE(x′) = PE(x), and so has success probability of 1 in Game 2.

Proof. The adversary A first determines a setting of the base variables v by
running PE(x), and creates linear constraints on unknowns v′ as follows:

– add constraint Mv′ = Mv
– for i < i∗, add constraints qKi

·v′ = qKi
·v, qXi

·v′ = qXi
·v and ai ·v′ = ai ·v

– For i ≥ i∗,
• if (C1) holds, choose K ′

i ∈ F so that K ′
i �= qKi

· v and add the constraint
qKi

· v′ = K ′
i

• if (C2) holds, set X ′
i := E−1(qKi

· v′,ai · v′) and add the constraint
qXi

· v′ = X ′
i

• if (C3) holds, set Y ′
i := E(qKi

·v′, qXi
·v′) and add the constraint ai ·v′ =

Y ′
i

• if (C2) and (C3) both hold, choose X ′
i ∈ F such that X ′

i �= qXi
· v, set

Yi := E(qKi
·v′,X ′

i) and add the constraints qXi
·v′ = X ′

i and ai ·v′ = Y ′
i

We claim that the constraints have a unique solution v′ �= v such that if
x′

i = ei · v′, 1 ≤ i ≤ k, then x′ �= x and PE(x′) = PE(x).
To see that v′ �= v, note that for i = i∗, either (C1) holds, or both (C2)

and (C3) hold. The choice of K ′
i∗ in the first case and X ′

i∗ in the second, ensure
v′ �= v.

The constraints that are added for the output matrix and for i < i∗ are
consistent, as they already have a solution, namely v. For i ≥ i∗, a new constraint
is added only in the case that the corresponding qKi

, qXi
or ai is independent

of the vectors added in previous constraints, and so consistency is maintained
as constraints are added. Once all constraints are added, nondegeneracy ensures
that v′ is unique.

Finally, v′ is consistent with the values returned by E and E−1. This means
that v′ corresponds to the setting of base variables resulting from evaluating
PE(x′), so from v′ �= v we conclude x′ �= x, and from the M constraint,
PE(x′) = PE(x). ��

98 Z. Javar and B. M. Kapron

Lemma 3. Let P be a Linicrypt program with n constraints. If there is an adver-
sary A for P making at most N oracle queries with success probability > N2n/|F|
in the collision-resistance game (Game 1) or success probability > Nn/|F| in the
2nd-preimage game (Game 2) then the P is either degenerate or has a collision
structure (i∗, c1, . . . , cn).

Proof. We may assume the following without loss of generality:

1. A does not repeat a query or make the inverse of a query it has already made.
This can be achieved by recording queries as they are made.

2. For queries made in the execution of P(x) and P(x′), A makes either the
query or its corresponding inverse query before returning. For Game 1, this is
achieved by having A run P(x) and P(x′) before returning and making the
corresponding queries subject to restriction (1). For Game 2 this is achieved
by having A initially make all the queries that result from running P(x) and
also running P(x′) before returning, and making any corresponding query,
subject to restriction (1), before returning.

3. A actually returns v,v′ which are the settings of base variables determined
by the execution of P(x) and P(x′), respectively.

The assumptions imply that for an oracle constraint c = (qK , qX ,a) occur-
ring in P, A determines the value of triples (qK ·v, qX ·v,a ·v) through exactly
one of its N queries, which is either a E-query or E−1-query. Based on this fact,
we define two mappings T, T ′ : C → [N] where C is the set of constraints in P
and the T (ci)th and T ′(ci)th adversary queries correspond to constraint ci in the
computation of P(x) and P(x′), and determine the triple (qK · v, qX · v,a · v)
and (qK · v′, qX · v′,a · v′) respectively. In Game 1, T (ci) and T ′(ci) are each
mapped to one of N queries made by A, so the number of possible mappings
(T, T ′) is N2n. In Game 2, Assumption 2 implies that T is fixed, so the num-
ber of possible mappings (T, T ′) is Nn. Using the pigeonhole principle and A’s
assumed advantage in each game, there is a specific mapping (T, T ′) for which
A’s advantage when using this mapping is at least 1/|F|. We will assume that
the adversary is using this mapping — for any other mapping, it returns ⊥ as
its last action.

Using the same terminology as [14], a query c ∈ C is convergent if
T (c) = T ′(c), and divergent otherwise. Because x �= x′ is a collision and P
is nondegenerate there is at least one divergent constraint. Define finish(c) =
max{T (c), T ′(c)}. Note in contrast to [14], here we do not have unique nonces,
so two different constraints can be mapped to the same adversary query, thus
finish is not an injective function. However, we will show that there is an order-
ing of C as (c1, . . . , cn) where the convergent constraints come first, in any order,
followed by divergent constraints in some non-decreasing order, and letting i∗

denote the index of the first divergent constraint, we claim that (i∗, c1, . . . , cn)
is a collision structure for P.

For i < i∗, since each ci is convergent we have qKi
·v′ = qKi

·v, qXi
·v′ = qXi

·v
and ai · v′ = ai · v and because P(x) = P(x′) we have Mv′ = Mv.

Linicrypt in the Ideal Cipher Model 99

For i = i∗ the query ci is divergent thus at least one of the following inequal-
ities holds qKi

·v′ �= qKi
·v, qXi

·v′ �= qXi
·v or ai ·v′ �= ai ·v. If ai ·v′ �= ai ·v

or qXi
· v′ �= qXi

· v then at least one of the other inequalities hold since the
ideal cipher is a permutation when the key is fixed.

This gives five possible cases. Without loss of generality, in all cases, we
assume that T (ci) < T ′(ci).

1. Ki = K ′
i and Xi �= X ′

i and Yi �= Y ′
i .

In this case, we prove both conditions (C2) and (C3) hold. By way of contra-
diction assume (C3) does not hold, say

ai =
∑

j≤i

αjqKj
+

∑

j≤i

βjqXj
+

∑

j<i

γjaj + δM , (3)

for some α,β,γ, δ. After multiplying both side of the equation by (v′ − v)
and considering that all the queries before i∗ are convergent, M(v′ − v) = 0,
and Ki = K ′

i we have

ai · v′ = ai · v + βiqXi
· (v′ − v)

Also because Yi �= Y ′
i and Xi �= X ′

i we know βi �= 0. If T ′(ci) is an encryption
query then the right-hand side of the equation is a fixed value but the left-
hand side is a query result, so the advantage of the adversary is ≤ 1/|F|
contrary to assumption. If T ′(ci) is a decryption query then isolating qXi

· v′

gives us

qXi
· v′ = qXi

· v +
1
βi

ai · (v′ − v)

and again the right-hand side of the equation is determined while the left-hand
side is a random value, again giving a contradiction. The proof for condition
(C2) is similar.

2. Ki �= K ′
i and Xi = X ′

i and Yi �= Y ′
i .

Because Ki �= K ′
i, condition (C1) holds. We want to show T ′(ci) is an encryp-

tion query and (C3) holds. If T ′(ci) is not an encryption then Xi is fixed and
X ′

i random so Xi = X ′
i holds with probability ≤ 1/|F|. If condition (C3) does

not hold then 3 holds. Multiplying the equation to (v′ − v) and applying
Xi = X ′

i and M(v − v′) = 0 gives

ai · v′ = ai · v + αiqKi
· (v′ − v)

The left-hand side of the above equation is a random value and the right-hand
side is a fixed value, so the adversary advantage again is ≤ 1/|F|.

3. Ki �= K ′
i and Xi �= X ′

i and Yi = Y ′
i .

This is similar to the preceding case. See Appendix A for details.

100 Z. Javar and B. M. Kapron

4. Ki �= K ′
i and Xi �= X ′

i and Yi �= Y ′
i .

Because Ki �= K ′
i, condition (C1) holds. We show if T ′(ci) is an encryption

query then (C3) holds and if it is a decryption query then (C2) holds. In the
first case, assume for contradiction that (C3) does not hold, implying Eq. 3.
Applying the assumption M(v − v′) = 0 and canceling all the queries before
i∗ gives,

ai · v′ = ai · v + αiqKi
· (v′ − v) + βiqXi

· (v′ − v)

Here when the adversary is making query T ′(ci), all the values on the right-
hand side of the equation are fixed and so the adversary’s advantage is ≤
1/|F|, contrary to assumption. The case that T ′(ci) is a decryption query and
(C2) holds is similar.

5. Ki �= K ′
i and Xi = X ′

i and Yi = Y ′
i .

The probability of this case occurring is ≤ 1/|F|.

For i > i∗ by way of contradiction, assume (C2) and (C3) both fail:

qXi
=

∑

j≤i

πj · qKj
+

∑

j<i

ρj · qXj
+

∑

j≤i

ςj · aj + τM

ai =
∑

j≤i

αj · qKj
+

∑

j≤i

βj · qXj
+

∑

j<i

γj · aj + δM

Multiplying both sides by (v′ −v) and canceling the terms having index less
than i∗ and noting M(v − v′) = 0 we get,

qXi
·v′ = qXi

·v+
∑

i∗≤j≤i

πjqKj
·(v′−v)+

∑

i∗≤j<i

ρjqXj
·(v′−v)+

∑

i∗≤j≤i

ςjaj ·(v′−v)

(4)

ai ·v′ = ai ·v+
∑

i∗≤j≤i

αjqKj
·(v′−v)+

∑

i∗≤j≤i

βjqXj
·(v′−v)+

∑

i∗≤j<i

γjaj ·(v′−v)

(5)
Now, if the adversary is making query T ′(ci) as an encryption query then

in Eq. 5 all the values on the right-hand side of the equation are fixed and the
left-hand side is random so the adversary advantage is at most 1/|F|, and if it
is a decryption query, Eq. 4 will give the same contradiction. So at least one of
the conditions (C2) or (C3) has to hold.

If there are multiple constraints with the same finish, say finish(ci−k) =
· · · = finish(ci), we want to show at least one ordering of these constraints is a
collision structure. Without loss of the generality suppose for these k constraints
finish(cj) = T ′(cj) and this query is an encryption query. Consider the ordering
(i∗, c1, . . . , ci−k, . . . , ci, . . . , cn). If this is not a collision structure then there is a

Linicrypt in the Ideal Cipher Model 101

constraint cs where i − k ≤ s ≤ i satisfies Eq. 5. If we call all the fixed terms on
the right-hand side of this equation f then we can rewrite the equation as

as · v′ = f +
∑

i−k≤j≤s−1

γjaj · v′

Applying the fact that all aj · v′ in the above equation are equal to as · v′ we get

(1 −
∑

i−k≤j≤s−1

γj)as · v′ = f

Now in the above equation, all the terms on the right-hand side are fixed and
the left-side value is random, so the advantage of the adversary is at most 1/|F|.

��
Combining the Lemmas of this section, we obtain:

Theorem 1. (Main Theorem) Suppose P is a nondegenerate Linicrypt program
in the ideal cipher model over Fλ, with n constraints. For sufficiently large λ the
following are equivalent

– P is (N,N2n/|F|)-collision resistant
– P is (N,Nn/|F|)-2nd preimage resistant
– P is (2n, 1)-2nd preimage resistant
– P does not have a collision structure

3.1 Efficiently Finding Collision Structures

An immediate benefit of the characterization given in the proceeding section is
provided by Algorithm 1, which gives an efficient procedure for deciding whether
a program has a collision structure. The algorithm splits the constraints into two
stacks using two loops. In the beginning, all the constraints C are in the LEFT
stack and the first loop runs until all the constraints that satisfy at least one
of (C2) or, (C3) are assigned to the RIGHT stack. In the second loop, those
constraints that don’t satisfy at least two of (C1), (C2), or (C3) will be pushed
back to the LEFT stack.

Each loop makes at most n iterations, where each iteration involves several
span computations. This gives a total running time of O(nω+1), where ω is the
exponent in the complexity of matrix multiplication.

Lemma 4. Algorithm FindColStruct P returns a collision structure for P iff
one exists.

Proof. First, we prove if the algorithm returns (i∗, c1, . . . , cn), this is a collision
structure. Note that after the second loop ends,

V = {qK1
, . . . , qKi∗−1

} ∪ {qX1
, . . . , qXi∗−1

} ∪ {a1, . . . ,ai∗−1} ∪ rows(M).

102 Z. Javar and B. M. Kapron

Also, the query ci∗ is still in RIGHT, so at least two of the conditions from
Definition 4 hold, otherwise ci∗ would be sent back to LEFT.

For i > i∗, immediately before moving ci from LEFT to RIGHT in the first
loop, sLEFT still included {c1, . . . , ci−1} which means

V = {qK1
, . . . , qKi

} ∪ {qX1
, . . . , qXi

} ∪ {a1, . . . ,ai} ∪ rows(M),

and qX /∈ span(V \ {qX}) or a /∈ span(V \ {a}). Hence,

Algorithm 1. FindColStruct P(M , C)
LEFT := C
RIGHT := empty stack
V := {qK |(qK , qX ,a) ∈ C}∪{qX |(qK , qX ,a) ∈ C}∪{a|(qK , qX ,a) ∈ C}∪ rows(M)

while ∃(qK , qX ,a) ∈ LEFT where qX /∈ span(V \ {qX}) or a /∈ span(V \ {a}) do
remove (qK , qX , a) from LEFT
push (qK , qX , a) to RIGHT
reduce multiplicity of qK , qX and a in V by 1

end while

while ∃(qK , qX ,a) ∈ RIGHT where
(qK ∈ span(V) ∧ qX ∈ span(V ∪ qK ∪ a)) or
(qK ∈ span(V) ∧ a ∈ span(V ∪ qK ∪ qX)) or
(qX ∈ span(V ∪ qK ∪ a) ∧ a ∈ span(V ∪ qK ∪ qX)) do

remove (qK , qX ,a) from RIGHT
add (qK , qX ,a) to LEFT
increase multiplicity of qK , qX and a in V by 1

end while

if RIGHT is nonempty then
i∗ := |LEFT| + 1
let LEFT = (c1, . . . , ci∗−1) where order doesn’t matter
let RIGHT = (ci∗ , . . . , cn) in reverse order of insertion
return (i∗, c1, . . . , cn)

else return ⊥
end if

qXi
/∈ span({qK1

, . . . , qKi
} ∪ {qX1

, . . . , qXi−1
} ∪ {a1, . . . ,ai} ∪ rows(M))

or

ai /∈ span({qK1
, . . . , qKi

} ∪ {qX1
, . . . , qXi

} ∪ {a1, . . . ,ai−1} ∪ rows(M))

satisfying one the conditions (C2), (C3) from Definition 4.

Linicrypt in the Ideal Cipher Model 103

To prove the other direction, we prove if there is a collision structure for
P then the second phase ci∗ is not sent back from RIGHT to LEFT, and so
RIGHT �= ⊥. By contradiction suppose the algorithm adds ci∗ to LEFT. Denote
by S the set of indices of constraints in LEFT immediately before ci∗ is added.

Then, for ci∗ to be sent back, at least 2 of the following conditions must hold

qK∗
i

=
∑

j∈S

κjqKj
+

∑

j∈S

λjqXj
+

∑

j∈S

μjaj + νM (6)

qX∗
i

=
∑

j∈S∪{i∗}
πjqKj

+
∑

j∈S

ρjqXj
+

∑

j∈S∪{i∗}
ςjaj + τM (7)

ai∗ =
∑

j∈S∪{i∗}
αjqKj

+
∑

j∈S∪{i∗}
βjqXj

+
∑

j∈S

γjaj + δM (8)

Since, after the first loop {ci∗ , . . . , cn} ⊆ RIGHT, and if any cj for j > i∗

is sent back to LEFT it means at least 2 of {qKj
, qXj

,aj} were already in the
right-hand side of the above equations which is the span of vectors in LEFT and
rows(M), so we can rewrite Eqs. 6, 7 and 8 as follows where the S1 ∪ S2 ∪ S3 =
{i∗, . . . , n} and each index appears at least 2 times in the unions of these three
sets.

qK∗
i

=
∑

j∈S\S1

κ′
jqKj

+
∑

j∈S\S2

λ′
jqXj

+
∑

j∈S\S3

μ′
jaj + ν′M (9)

qX∗
i

=
∑

j∈S\S1

π′
jqKj

+
∑

j∈S\S2

ρ′
jqXj

+
∑

j∈S∪{i∗}\S3

ς ′
jaj + ρ′M (10)

ai∗ =
∑

j∈S\S1

α′
jqKj

+
∑

j∈S∪{i∗}\S2

β′
jqXj

+
∑

j∈S\S3

γ′
jaj + δ′M (11)

Assume 2 of these equations hold. If in these equations j1, j2, and j3 be the
maximum indices in S \ S1, S \ S2 and S \ S3 then there are 2 cases,

If j1, j2, j3 ≤ i∗ then all the indices on the right-hand side are less than i∗

and because at least two of the Eqs. 9, 10 and 11 are true, this contradicts with
the condition for i∗ in Definition 4.

If j3, j2, and j1 are more than i∗ then the coefficients with these indices in
the above equations are nonzero. If the max{j1, j2, j3} = j1 it means qKj1

was
not in the span of V but both qXj1

and aj1 where in the span of constraints
with smaller indices and rows(M) which is a contradiction otherwise they would
not be in the RIGHT after the first loop. Thus, the max{j1, j2, j3} is either j2 or
j3. If j3 is the max then aj3 was not in the span of LEFT and rows(M) so the
other two vectors qKj3

and qXj3
had to be in the span of LEFT and rows(M)

and all the vectors in LEFT have smaller index than j3 thus for cj3 to be sent to
RIGHT in the first loop, aj3 had to be independent of previous constraints and
the output (condition (C3)), but we can rewrite Eq. 9 as follow,

aj3 = − 1
γj3

(
∑

j∈S\S1

α′
jqKj

−qKi∗ +
∑

j∈S\S2

β′
jqXj

+
∑

j∈S\{S3∪j3}
γ′

jaj +δ′M), (12)

104 Z. Javar and B. M. Kapron

contradicting condition (C3) of Definition 4. The case for j2 is similar. ��

4 Rate-1 Compression Functions

A compression function is rate-1 if it uses one call to an underlying primitive,
such as a random oracle or ideal cipher. In the latter case, we assume (without
loss of generality) that there is one call to the ideal encryption function. The
systematic study of such compression functions has a long history. Building on
the initial work of [4,16] gives a definition of 64 possible rate-1 compression
functions mapping D × D → D, where D = GF(2λ), that is definable using
⊕ and a constant value from D. Typically, these functions are referred to as
PGV compression functions. Among its results, [4] identifies a subset of these
functions, the group-1 functions, and proves that these are exactly the PGV
compression functions that are collision-resistant.

Our goal in this section is to give a characterization of the group-1 functions
in Linicrypt. In particular, we will show that a PGV compression function is
group-1 iff it does not have a collision structure. Thus the characterization of [4]
may be viewed as a special case of our general characterization.

The results of [4] are revisited in [5], and proven via a more unified app-
roach, building on the approach of [18]. This is based on the factorization of a
compression function f into two component functions f ′ and f ′′. In particular,
for a message m and chaining value h, f(h,m) = f ′′(h,m, y), where y = Ek(x)
and (k, x) = f ′(h,m). In the case that f ′ is bijective, the function f∗ is defined
by f∗(k, x, y) = f ′′(h,m, y) where (h,m) = f−1(k, x). Using f ′, f ′′, and f∗, the
following properties of f are defined:

P1 f ′ is bijective.
P2 f ′′(h,m, ·) is bijective for all (h,m).
P3 f∗(k, ·, y) is bijective for all (k, y).

In [4,5], a stronger notion of collision-resistance for compression functions is
used:

Definition 5 ([5] Definition 3). Program P is (q, ε)-collision resistant if for
any h0 ∈ F, any oracle adversary A making at most q = qE + qD queries has
probability of success at most ε in the following game:

(x,x′) ← AE,E−1
(λ); return (x �= x′) and PE(x) = PE(x′) or PE(x) = h0

(13)

Letting T1 denote the conjunction of P1, P2, and P3, we have

Lemma 5 ([5] Lemma 3). Suppose f : GF(2λ) ×GF(2λ) → GF(2λ) is a PGV
compression function satisfying T1. Then for any h0 ∈ GF(2λ) the advantage of
any adversary A making q queries in Game 13 is at most q(q + 1)/2λ.

Remark 1. The compression functions satisfying T1 are exactly the group 1 func-
tions defined in [4].

Linicrypt in the Ideal Cipher Model 105

In the Linicrypt framework, a PGV compression function f is specified via

– An output matrix M =
[
m1

m2

]
, where m2 is always (0, 0, 1, 0) (correspond-

ing to the fixed value c, as described below,) while m1 is one of (1, 0, 0, 1),
(0, 1, 0, 1), (1, 1, 0, 1) or (0, 0, 1, 1).

– A single query constraint
([

qK

qX

]
,a

)
, where each qi, i ∈ {K,X}, is one of

(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0) or (0, 0, 1, 0), and a is (0, 0, 0, 1).

Here use m2 to capture the use of a constant value in the Linicrypt setting,
as described in Sect. 2.2. Up to our convention regarding the constant value

c, f ′′ corresponds to m1 while f ′ corresponds to
[
qK

qX

]
. In particular, writing

qi = (q1i , q2i , q3i , q4i), i ∈ {K,X}, we have f ′(h,m) =
[
q′

K

q′
X

]
× (h,m, c), where

q′
i = (q1i , q2i , q3i), i ∈ {K,X}. We also have f ′′(h,m, y) = m1 · (h,m, c, y).

We will use the following simple fact in several proofs below:

Proposition 1. Over any field F, a function of the form g(x) = rx + s, where
r, s ∈ F, is bijective iff r �= 0.

In the following, let f denote a compression function defined by
m1,m2,qK ,qX ,a, as described above, with respect to a fixed constant c. Define
the following matrices

R =

⎡

⎢
⎢
⎣

qK

qX

m2

a

⎤

⎥
⎥
⎦ S =

⎡

⎢
⎢
⎣

qK

m1

m2

a

⎤

⎥
⎥
⎦

Lemma 6. Writing m1 = (m1
1,m

2
1,m

3
1,m

4
1), f satisfies P2 iff m4

1 �= 0.

Proof. For fixed h,m, f ′(h,m, y) = m1 · (h,m, c, y) = m4
1y ⊕ s, where s is fixed.

��
We note that every PGV compression function satisfies m4

1 �= 0 and hence P2.

Lemma 7. f satisfies P1 iff R is nonsingular.

Proof. Let R′ = R[1-3; 1-3] be the 3 × 3 principle submatrix of R. Given the
possible values of qK and qX , R is nonsingular iff R′ is nonsingular. For any
h,m, f ′(h,m) = R′ × (h,m, c), which is a bijection iff R′ is nonsingular. ��
Lemma 8. Assume R is nonsingular. Then f satisfies P3 iff S is nonsingular.

Proof. First note that f∗(k, x, y) = m1 · (h,m, c, y) = m1 · (R−1 × (k, x, c, y)) =
(m1R

−1) × (k, x, c, y). Let u = (u1, u2, u3, u4) = m1R
−1. Then for fixed k, y,

f∗(k, x, y) = u2x⊕s, where s is fixed. Thus, it is enough to show S is nonsingular
iff u2 �= 0. Since R is nonsingular, S is nonsingular iff SR−1 is nonsingular. But
SR−1 = (e1,u,e3,e4), which is nonsingular iff u2 �= 0. ��

106 Z. Javar and B. M. Kapron

Together, the preceding Lemmas give the following

Lemma 9. A PGV function f satisfies T1 iff R and S are nonsingular.

In the rate-1 setting conditions (C1), (C2), (C3) become

(C1) qK /∈ span({m1,m2})
(C2) qX /∈ span({qK ,a,m1,m2})
(C3) a /∈ span({qK , qX ,m1,m2})

Given the possible values of qK ,m1 and m2, (C1) may be further simplified to

(C1) qK �= m2

Lemma 10. Suppose f is a PGV compression function specified by qK , qX ,
m1, m2, a. If both R and S are nonsingular, then two of the conditions (C1),
(C2), (C3) must fail.

Proof. If (C1) fails, then S is necessarily singular, so we must show that under
the assumption, both (C2) and (C3) fail. Clearly, if S is nonsingular,

qX ∈ span(rows(S)) = span({qK ,m1,m2,a}) (*)

so (C2) fails. Now since R is nonsingular qX /∈ span({qK ,m2,a}), which in
combination with (*) means that m1 ∈ span({qK , qX ,m2,a}) (**). Noting that
the last component of m1 is always nonzero, we have m1 /∈ span({qK , qX ,m2}).
Combining this last fact with (**), we conclude

a ∈ span({qK , qX ,m1,m2}),

so that (C3) also fails. ��
Lemma 11. Suppose f is a nondegenerate PGV compression function specified
by qK , qX , m1, m2, a. If one of R,S is singular, then two of the conditions
(C1), (C2), (C3) must hold.

Proof. First, suppose (C2) fails, so qX ∈ span({qK ,m1,m2,a}). Then, if S is
singular,

span({qK , qX ,m1,m2,a}) = span(rows(S)) �⊇ {e1, e2, e3, e4},

which means f is degenerate. Thus S is nonsingular. As in the proof of
Lemma 10, this means qK �= m2. Also if S in nonsingular then by the assump-
tion, R is singular, so we must have qK = qX or qX = m2. If the former holds,
a ∈ span({qK , qX ,m1,m2}) implies qK = qX = a ⊕ m1, and so

span({qK , qX ,m1,m2,a}) = span({m1,m2,a}) �⊇ {e1, e2, e3, e4},

If the latter holds then a ∈ span({qK , qX ,m1,m2}) implies

span({qK , qX ,m1,m2,a}) = span({qK ,m1,m2}) �⊇ {e1, e2, e3, e4},

Linicrypt in the Ideal Cipher Model 107

So in both cases, by nondegeneracy a /∈ span({qK , qX ,m1,m2}), and we have
that if (C2) fails, both (C1) and (C3) must hold.

Now suppose (C2) holds and (C1) fails. Then

span({qK , qX ,m1,m2}) = span({qX ,m1,m2}),

and so, if a ∈ span({qK , qX ,m1,m2}),

span({qK , qX ,m1,m2,a}) = span({qK , qX ,m1,m2})
= span({qX ,m1,m2}) �⊇ {e1, e2, e3, e4}.

In conclusion, if (C2) holds, then one of (C1) or (C3) must hold. ��
Combining Lemmas 9,10, and 11, we obtain

Theorem 2. A PGV compression function is group-1 iff it does not have a
collision structure.

Discussion. Beyond validating the correspondence between our characterization
of collision resistance for rate-1 compression functions and the well-known notion
of group-1 for PGV, Theorem 2 situates our understanding of the group-1 func-
tions as part of a general framework for collision resistance using Linicrypt. As
an immediate application of Theorem 2 and Algorithm 1, we can automatically
generate all group 1 PGV compression functions.3 In particular, this provides
a purely syntactic characterization using algebraic properties of the defining
program P, including the possibility of automated identification using Find-
ColStruct. However, we note that [4,5] provide a finer analysis of the PGV
compression functions, also identifying the group-2 functions which, although
not collision-resistant as compression functions, are still suitable for construct-
ing collision-resistant hash functions and analyzing the preimage resistance of
group-1 and -2 PGV functions. We leave an extended analysis of this sort in the
Linicrypt setting to future work. We give some examples of definitions of PGV
compression functions from [4] and their analysis on the same GitHub page.

5 Discussion

We note that the significance of our results is somewhat limited by the fact that
a characterization of collision-resistance for rate-1 (which is the most significant
from a practical perspective) was already provided by [4]. However, our more
general setting does provide some advantages. Our characterization is uniform
and based solely on the syntax of programs (expressed algebraically). We have
noted that the approach of [4] is ad-hoc, while that of [5] depends on seman-
tic properties (i.e. bijectiveness) of the component functions. One benefit of our

3 A sample implementation in Octave is available at https://github.com/zahrajavar
/PGVCollisionResistantCompressionFunctions.git.

https://github.com/zahrajavar/PGVCollisionResistantCompressionFunctions.git
https://github.com/zahrajavar/PGVCollisionResistantCompressionFunctions.git

108 Z. Javar and B. M. Kapron

approach is that it immediately gives an efficient automated enumeration tech-
nique. We also note that in order to obtain security properties beyond collision
resistance (see below) we may need to consider programs that make more than
one call to the ideal cipher. The general characterization for collision resistance
may be viewed as a step towards characterizations of other properties. Finally,
our results demonstrate that the utility of the Linicrypt framework is not limited
to the random oracle model.

6 Conclusion and Future Work

We have demonstrated the utility of the Linicrypt framework beyond the random
oracle model by giving characterizations of collision-resistance properties for
Linicrypt programs in the ideal cipher model. We also show that in the case of
the PGV compression function our characterization is equivalent to the notion
of group-1 for the PGV functions.

There are a number of ways in which this work might be extended. First of all,
in the rate-1 setting, we have not addressed the finer analysis provided by [4,5]
which also characterizes group-2 functions and compares the pre-image resis-
tance of group-1 and group-2 functions. Can we give a general notion of group-2
for arbitrary Linicrypt programs which generalizes the corresponding notion for
rate-1 functions? We note that it is possible to give a characterization of pre-
image awareness, a stronger notion of hash function security introduced by [10],
for Linicrypt programs with random oracles, and it should be possible to extend
this characterization to the ideal cipher model. It would also be interesting to
consider even stronger properties for hash functions, such as indifferentiability
[9]. A more ambitious goal would be to extend the analysis provided by Linicrypt
beyond purely algebraic constructions. In particular, it would be very useful to
consider using bit-string operations, especially truncation, and concatenation,
which are used in many constructions such as the sponge construction which is
the basis of Keccak/SHA-3. Here it might be useful to revisit [1], which con-
siders equivalence properties of algebraic programs over GF(2λ) which include
bit-string operations but do not have access to random oracles, ideal ciphers or
(as in the case of Keccak) random permutations.

A Missing Proofs

Lemma 2 Case 3: Because Ki �= K ′
i, condition (C1) holds. We want to show

T ′(ci) has to be a decryption query and (C2) holds. If it is not a decryption
query then the probability of a random value Y ′

i being equal to the fixed value
Yi would be 1/|F|, which contradicts the assumption, so we assume T ′(ci) is a
decryption query. If condition (C2) does not hold then we have

qXi
=

∑

j≤i

πj · qKj
+

∑

j<i

ρj · qXj
+

∑

j≤i

ςj · aj + τM

Linicrypt in the Ideal Cipher Model 109

Multiplying the equation to (v′ − v) and applying Yi = Y ′
i and M(v − v′) = 0

and canceling convergent queries, gives

qXi
· v′ = qXi

· v + πiqKi
· (v′ − v)

The left-hand side of the above equation is a random value and the right-
hand side is a fixed value, so the adversary advantage again is at most 1/|F|
which is a contradiction.

B Motivating Example

The following example gives the idea of characterizing collision structure for
Linicrypt programs and how a collision attack can be applied to a program. A
more formal and precise algorithm to find a collision is given in the proof of
Lemma 2.

PE(v1, v2) :

v3 := E(v1, v2)
v4 = E(v1, v3)
return v4 + v1

qK1
= (1, 0, 0, 0) qX1

= (0, 1, 0, 0) a1 = (0, 0, 1, 0)

qK2
= (1, 0, 0, 0) qX2

= (0, 0, 1, 0) a2 = (0, 0, 0, 1)

m = (1, 0, 0, 1)

This program is not collision resistant and the adversary can find a collision as
follow

– The adversary A picks an arbitrary input x = (x1, x2) ∈ F
2 and runs the

program on x and gets the output l.
– A picks arbitrary x′

1 �= x1 ∈ F and makes the query v′
3 = E−1(x′

1, l + x′
1).

– A makes the query x′
2 = E−1(x′

1, v
′
3) to find x′

2.
– A returns x′ = (x′

1, x
′
2).

This attack was possible because of the following,

– x′
1 was independent of the output in other words qK1

�= m.
– In step two after fixing x′

1 and the output l the value of v′
3 was not fixed which

in algebraic representation means qX1
/∈ span(qK1

,m) so the adversary could
determine this value by making a decryption query.

– In the third step because qX2
/∈ span(qK1

, qK2
, qX1

,a1,a2,m) the value of
x′
2 is not fixed so via a decryption query the adversary finds a compatible

value for x′
2.

110 Z. Javar and B. M. Kapron

References

1. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y., Laporte, V.: On the equal-
ity of probabilistic terms. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS
(LNAI), vol. 6355, pp. 46–63. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17511-4 4

2. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 1

3. Black, J.: The ideal-cipher model, revisited: an uninstantiable blockcipher-based
hash function. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328–340.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 21

4. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 21

5. Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the Blockcipher-
based hash functions from PGV. J. Cryptol. 23(4), 519–545 (2010)

6. Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 1

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

8. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 15

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

10. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgard for practical
applications. In: IACR Cryptol. ePrint Arch., p. 177 (2009) Full version of [11].

11. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for Practical
Applications. In: Joux, A., et al. (eds.) Advances in Cryptology - EUROCRYPT
2009, pp. 371–388. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 22

12. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996). https://doi.org/10.1007/BF02254791

13. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report CSL 98, SRI International (1979)

14. McQuoid, I., Swope, T., Rosulek, M.: Characterizing collision and second-preimage
resistance in Linicrypt. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 451–470. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 18

15. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

16. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 31

https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/11799313_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-48071-4_1
https://doi.org/10.1007/3-540-48071-4_1
https://doi.org/10.1007/978-3-662-53015-3_15
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-642-01001-9_22
https://doi.org/10.1007/978-3-642-01001-9_22
https://doi.org/10.1007/BF02254791
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/978-3-030-36030-6_18
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48329-2_31

Linicrypt in the Ideal Cipher Model 111

17. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

18. Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9 5

https://doi.org/10.1007/978-3-642-03317-9_5
https://doi.org/10.1007/978-3-642-03317-9_5

	Linicrypt in the Ideal Cipher Model
	1 Introduction
	2 Preliminaries
	2.1 Ideal Cipher Model
	2.2 Linicrypt

	3 Characterizing Collision Resistance
	3.1 Efficiently Finding Collision Structures

	4 Rate-1 Compression Functions
	5 Discussion
	6 Conclusion and Future Work
	A Missing Proofs
	B Motivating Example
	References

