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Abstract. Alzheimer’s disease, recognized as the most widespread neu-
rodegenerative disorder worldwide, is intricately linked to cognitive
impairments. The cognitive impairments, range from mild to severe and
are a risk factor for Alzheimer’s disease. They have profound implica-
tions for individuals, even as they maintain some level of daily function-
ality. In previous studies, it was proposed a protocol involving hand-
writing tasks as a potential diagnostic tool, and a comparative analysis
of well-known and widely-used feature selection approach to determine
the most effective features for predicting the symptoms related to cog-
nitive impairments via handwriting analysis. In the presented study, we
use a Bayesian Network to conduct further analysis of the most effec-
tive features extracted from handwriting. Our objective is to exploit the
structural learning of Bayesian Networks to discover correlations among
the most effective features for predicting impairment symptoms through
handwriting analysis and deepen our understanding of the underlying
cognitive functions affected. The results showed that the Bayesian Net-
work chooses features conditionally dependent on the determination of
the disease, and several features are selected more times than others,
underlining their importance in the diagnosis. Moreover, comparing the
results with those achieved by well-known and widely-used feature selec-
tion and classification approaches, the Bayesian networks exhibit the best
performance by using a reduced set of features.

Keywords: Medical expert systems · cognitive impairments ·
Bayesian Networks · feature selection

1 Introduction

The World Health Organization recognizes that dementia is significantly under-
diagnosed globally and emphasizes that even when a diagnosis is made, it often
occurs at a relatively advanced stage. Delaying the onset of Alzheimer’s disease
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(AD) can have substantial benefits, including reduced care costs and increased
lifespan for individuals. Therefore, early diagnosis of AD is crucial to enhance
awareness and provide timely interventions. Mild cognitive impairment (MCI)
is an early stage in the progression towards Alzheimer’s disease (AD); its accu-
rate diagnosis is essential for initiating timely treatment to delay the onset of
AD. Individuals experiencing MCI may start noticing alterations in their cogni-
tive abilities, yet they are still capable of performing their daily tasks. However,
severe levels of impairment can significantly impact the comprehension of events
and the significance of information conveyed through speech and writing, ulti-
mately leading to the loss of independent living. Currently, AD diagnosis relies
on various methods such as imaging, blood tests, and lumbar punctures (spinal
sampling), among others. Recent research has demonstrated that individuals
with AD exhibit disrupted spatial organization and impaired motor control.
Therefore, the assessment of motor activities, including the analysis of hand-
writing, which encompasses a complex interplay of cognitive, kinesthetic, and
perceptual motor skills, holds significant potential in diagnosing AD. An illus-
trative example is the occurrence of dysgraphia in both the early and progres-
sive stages of AD [8,24]. Within this context, numerous studies in medicine
and psychology have investigated the relationship between the disease and var-
ious handwriting features, utilizing conventional statistical methods [16,19,21].
However, these studies often neglect the intricate interactions that can arise
among multiple features, failing to capture the complexity inherent in the anal-
ysis. In many instances, individual features that exhibit weak correlations with
the target class could significantly enhance classification accuracy when com-
bined with complementary features. Conversely, features that are individually
relevant may become redundant when utilized alongside other features. In a
previous study [4], the authors assessed the efficacy of the extracted features
and their relationship with the diseases they potentially contribute to predic-
tion. The techniques employed a search strategy to identify optimal solutions,
i.e., the best feature subsets, based on a predefined evaluation function. The
approaches used to define the best features are typically categorized into three
main classes: filter, wrapper, and embedded methods. Filter methods primarily
rely on statistical properties of the feature subset space. Wrapper methods, on
the other hand, assess the performance of a specific classifier when utilizing a
particular feature subset. Embedded methods incorporate feature selection as
an integral part of the training process. In this previous work, the analysis of
features extracted from the handwriting of individuals with neurodegenerative
diseases and cognitive impairment is done using wrapper methods. In this paper,
we present a novel approach based on Bayesian Networks to further investigate
the complex interactions that may emerge among multiple features. A Bayesian
Network (BN) is a probabilistic graphical model that encodes the joint proba-
bility of a set of variables that, in our case, can be the features and the disease
identification. The feature selection problem has seen the extensive application
of Bayesian networks [2,18]. Once the BN has been learned from instances in
a dataset, it allows the identification of a reduced set of features conditionally
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dependent on the disease identification. Such a reduced set is also known as
Markov Blanket (MB). Existing approaches involve learning a Bayesian network
from the given dataset and subsequently utilizing the Markov Blanket of the
target feature as the criterion for selecting relevant features. Thus, in this paper,
we want to primarily explore the relationship between these diseases and indi-
vidual features and then study the complex interactions that may emerge among
multiple features. In this way, we can fill the gap in the literature regarding the
comprehensive understanding of the interplay among various handwriting fea-
tures in relation to AD and cognitive impairments (CI) [6]. The remainder of
the paper is organized as follows. In Sect. 2 we describe the protocol we used
to acquire the handwriting data, and the used features. Section 3 introduces the
BNs and describes how they can be applied for selecting features. Finally, Sect. 4
reports the experimental results.

2 Acquisition Protocol and Features

We have developed a comprehensive protocol to collect data on handwriting
movements from patients with CI and a control group of healthy individuals.
The protocol, described in [4], consists of twenty-five tasks categorized as follows:
graphic tasks, copy and reverse copy tasks, memory tasks, and dictation tasks.
Graphic tasks assess the ability to write basic strokes, connect dots, and draw
geometric shapes of varying complexity. Copy and reverse copy tasks evaluate
the proficiency in reproducing complex gestures with semantic meaning, such as
letters, words, and numbers. Memory tasks examine changes in the writing pro-
cess for previously memorized words or words associated with depicted objects.
Dictation tasks aim to investigate how handwriting performance is influenced
by working memory usage.

It is important to note that each task was designed to assess either func-
tional or parametric aspects. For example, in task number 17, participants were
asked to write six different words that were analyzed in two different ways: the
former, by averaging feature values across the entire word set, and the latter, by
averaging feature values for each individual word. This led to the subdivision of
the 17th task into six additional sub-tasks from 26th to 31th. A similar approach
was applied to task number 14, which involved memorizing and rewriting the
Italian words “telefono”, “cane”, and “negozio” added the sub-tasks 32, 33, and
34. The reasoning for this approach is to measure the impact of tiredness, i.e.,
if writing performance deteriorates more rapidly in participants suffering from
neurodegenerative disorders when they are required to write multiple words con-
secutively. To summarize, we have a collection of thirty-four tasks that charac-
terize each patient. The recruitment for the study uses standard clinical tests,
including the Mini-Mental State Examination (MMSE) [11], Frontal Assessment
Battery (FAB) [14], and Montreal Cognitive Assessment (MoCA) [17]. These
tests assessed cognitive abilities across various domains, such as orientation,
recall, and registration. To ensure unbiased results, the control group was care-
fully matched with the patient group regarding age, education level, gender, and
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type of work (manual or intellectual), as shown in Table 1. Participants using
psychotropic medication or any other drugs that could influence cognitive abil-
ities were excluded. Moreover, we excluded patients with severely compromised
cognitive abilities.

Table 1. Average demographic data of participants. Standard deviations are shown in
parentheses.

Age Education #Women #Men

Patients 71.5(9.5) 10.8(5.1) 46 44

Control group 68.9(12) 12.9(4.4) 51 39

For data acquisition, we utilized a Wacom Bamboo Folio smart pad paired
with a pen that allowed participants to write naturally on A4 white paper sheets
placed on it. The smart pad recorded the x-y coordinates of pen movements (at
a frequency of 200 Hz) on the paper’s surface. We also captured the pressure
applied when the pen tip touched the sheet and the pen’s movements when lifted
in the air within a maximum distance of 3 cm. The smart pad was positioned
approximately seventy centimeters away from the participants during the data
collection process. Importantly, all participants underwent the acquisition under
identical conditions.

The features extracted from the raw data available, i.e., (x, y) coordinates,
pressure, and timestamps, were calculated on the strokes making up the hand-
written traits and then averaged over the entire task. Our goal is to describe,
for each task, the behavior of a subject, taking into account a fixed number of
features that are described in Table 2.

Considering the significant variation in the number of strokes across different
subjects and tasks, we have adopted an averaging approach to consolidate the
values extracted from individual strokes. Specifically, the feature denoted as f22
represents the total number of strokes. For each of the features from f1 to f21,
we have calculated the average and standard deviation, symbolized by f and f̂ ,
respectively. Consequently, the first 21 features are duplicated for each patient,
encompassing static and dynamic handwriting characteristics. Additionally, fea-
tures ranging from f23 to f26 consider variations associated with factors such as
sex, age, work, and education.

As many studies in the literature show significant differences in patients’
motor performance between in-air and on-paper traits, each feature was calcu-
lated separately for the in-air or on-paper traits. In particular, we extracted four
groups of features:

– On-paper: The features extracted from the written traits (i.e., during pen-
down and the successive pen-up). Note that in this case, forty-seven features
represented each sample.
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Table 2. Feature list description.

fID Name Description

f1 Duration Time interval between the first and the last points in a stroke

f2 Start Vertical Position Vertical start position relative to the lower edge of the active digitizer area

f3 Vertical Size Difference between the highest and lowest y coordinates of the stroke

f4 Peak vertical velocity Maximum value of vertical velocity among the points of the stroke

f5 Peak vertical acceleration Maximum value of vertical acceleration among the points of the stroke

f6 Start horizontal position Horizontal start position relative to the lower edge of the active tablet
area

f7 Horizontal size Difference between the highest (rightmost) and lowest (leftmost) I
coordinates of the stroke

f8 Straightness error It is calculated by estimating the length of the straight line, fitting the
straight line, estimating the (perpendicular) distances of each point to the
fitted line, estimating the standard deviation of the distances, and
dividing it by the length of the line between beginning and end

f9 Slant Direction from the beginning point to endpoint of the stroke, in radiant

f10 Loop Surface Area of the loop enclosed by the previous and the present stroke

f11 Relative initial slant Departure of the direction during the first 80 ms to the slant of the entire
stroke

f12 Relative time to peak vertical velocity Ratio of the time duration at which the maximum peak velocity occurs
(from the start time) to the total duration

f13 Absolute size Calculated from the vertical and horizontal sizes

f14 Average absolute velocity Average absolute velocity computed across all the samples of the stroke

f15 Road length Length of a stroke from beginning to end, dimensionless

f16 Absolute y jerk The root mean square (RMS) value of the absolute jerk along the vertical
direction, across all points of the stroke

f17 Normalized y jerk Dimensionless as it is normalized for stroke duration and size

f18 Absolute jerk The Root Mean Square (RMS) value of the absolute jerk across all points
of the stroke

f19 Normalized jerk Dimensionless as it is normalized for stroke duration and size

f20 Number of peak acceleration points Number of acceleration peaks both up-going and down-going in the stroke

f21 Pen pressure Average pen pressure computed over the points of the stroke

f22 number of strokes Total number of strokes of the task

f23 Sex Subject’s gender

f24 Age Subject’s age

f25 Work Type of work of the subject (intellectual or manual)

f26 Education Subject’s education level expressed in years

– In-air: The features extracted from the in-air traits. These movements charac-
terize the planning activity for positioning the pen tip between two successive
written traits. Note that in this case, we extracted forty-five features because
pressure (feature f21) is always zero.

– All: In this scenario, each feature vector includes in-air (afi) and on-paper
(pfi) attributes (where the subscript i indicates the feature number), thus
reporting the values of both On-paper and In-air feature vectors. The aim
was twofold: facilitating a direct in-air versus on-paper feature comparison
and delving into the intricate interplay between the two. It is worth noting
that eighty-eight distinct features were considered, excluding repeated per-
sonal features and pressure variables regarding the in-air part.

– In-air-On-paper: The computation of these features disregards the differ-
entiation between in-air and on-paper characteristics. In practice, the value
of each feature is obtained by averaging the values derived from both in-air
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and on-paper traits. The only exception is for the pressure, whose values are
obviously obtained considering on-paper traits. This approach represents an
alternative method of supplying global information to the classification sys-
tem, considering as equivalent the motor planning for both handwritten and
in-air strokes.

Summarizing, we considered four categories of features: we have forty-five
features for In-air category, forty-seven features for both On-paper and In-air-
On-paper categories, and eighty-eight for the category All.

3 Bayesian Network for Feature Evaluation

The problem of feature evaluation can be handled by estimating the joint prob-
ability of each feature and the class label. A Bayesian Network (BN) may effec-
tively solve this problem. A BN is a probabilistic graphical model that allows
the representation of a joint probability distribution of a set of random vari-
ables through a Direct Acyclic Graph (DAG) [20]. The graph nodes represent
the variables, while the arcs encode the statistical dependencies among the vari-
ables. An arrow from a node fi to a node fj encodes the conditional dependence
between the node fj and node fi, and we can define fi as a parent of fj . In a BN,
the i–th node fi is associated with a conditional probability function p(fi|pafi),
where pafi indicates the set of nodes which are parents of fi. Such a function
quantifies the effect that the parents have on that node. The process of learning
a BN entails acquiring knowledge from a training set of examples. This learning
phase involves capturing both the network structure, which defines the statistical
dependencies among variables, and the parameters of the probability distribu-
tions associated with those variables. Among structural learning methods, there
are constraint-based methods like PC [22], IAMB [23] that exploit conditional
independence relationships in the data to uncover the network structure; there
are also score-based methods that evaluate different network structures based on
a scoring metric to find the structure with the highest score or the lowest com-
plexity. Among score-based methods, there are K2 [5], TAN [12] etc. The third
category of structural learning methods, the hybrid ones combine the strengths
of constraint-based and score-based approaches. These methods balance compu-
tational efficiency and the ability to handle complex network structures. Among
them, there are methods also based on evolutionary algorithm [7]. On the other
hand, parameter learning generally uses the Maximum Likelihood Estimation
that estimates the parameters of a BN by maximizing the likelihood of the
observed data. Once the statistical dependencies among variables have been
learned, the DAG structure encodes them, and the joint probability of the set
of variables F = {f1, . . . , fL} can be described as:

p (f1 . . . , fL) =
∏

fi∈F

p(fi|pafi) (1)

In the feature evaluation framework, this property can be used to infer the
true class c of an unknown sample only by a subset of features. In fact, suppose
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to have L features, then the class label c and the L features can be modeled as
a set of (L + 1) variables {c, f1, . . . , fL}, and the Eq. (1) allows the description
of their joint probability as:

p (c, f1, . . . , fL) = p ( c | pac )
∏

fi∈F

p ( fi | pafi ) (2)

The node c may be the parent of one or more of the nodes of the DAG. For
example, if we consider the BN depicted in Fig. 1, we have that c is the parent
of nodes f6 and f5. While the nodes f2 and f3 are the parents of c. Therefore, it
may be useful to divide the set of DAG nodes that are not parents of c into two
groups: the first, denoted Fc, contains the nodes having the node c among their
parents, and the second, denoted Fc, the remaining ones. Note that among Fc

nodes there also are nodes, like, f7 that are not parents of c, but are modeled in
the conditional probability that also contains the node c. With this assumption,
Eq. (2) can be rewritten as:

Fig. 1. An example of Bayesian Network and the Markov Blanket in case of 9 features
available.

p(c, f1, . . . , fL) = p(c|pac)
∏

fi∈Fc

p(fi|pafi)
∏

fi∈Fc

p(fi|pafi) (3)

This property allows a BN to recognize a given sample only considering the
responses provided by the feature represented by the nodes that are directly
linked to the class node. The group Fc and pac is also known as Markov Blanket
(MB) of node c and in Fc group are all nodes d-separated from c, that is, it
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contains features conditionally independent from class label c. Therefore, the MB
of node c consists of its parents, children, and spouses, and the c is independent
of all other nodes given its MB.

This behavior encoded by the BN is particularly useful in the testing phase
when, from the feature vector of all features, the class label is inferred. In fact,
given the set of responses concerning a sample, we can use the conditional prob-
ability p(c|f1, . . . , fL) estimated by the BN for assigning the most probable class
ĉ to the unknown sample, as follows:

ĉ = arg max
c∈C

p (c|f1, ..., fL) (4)

where C is the set of classes. Considering the definition of conditional probability,
and omitting the terms not depending on the variable c, the above equation can
be rewritten as follows:

ĉ = arg max
c∈C

p (c, f1, ..., fL)
p (f1, ..., fL)

= arg max
c∈C

p (c, f1, ..., fL) (5)

which involves only the joint probabilities p (c, f1, ..., fL). According to Eq. (3),
and discarding the term conditionally independent on c, Eq. (5) assumes the
form:

ĉ = arg max
c∈C

p ( c | pac )
∏

fi∈Fc

p ( fi | pafi ) (6)

An example of the application of this rule is shown in Fig. 1, where only 9
features have been considered for the sake of clearness. In this case, the above
equation becomes ĉ = arg max

c∈C
p(f6|c, f7)p(f5|c)p(c|f3, f2). Then in the case of

the learned BN of Fig. 1 we have to know only features f2, f3, f5, f6 and f7
to infer c. In fact, during the learning procedure, the set of experts Fc, which
does not add information to the choice of ĉ, is individuated and it is discarded
in the testing phase. In our example, in fact, the contribution of features f1, f4,
f8 are considered not necessary, and they can be discarded in the testing phase.
Thus, the BN-based feature selection approach uses only the features in the MB
of node c.

4 Experimental Findings

In this section, we will describe the experimental setup and procedures imple-
mented to assess the performance of our system. The data were acquired accord-
ing to the protocol described in Sect. 2 and refer to 18 subjects, including 90
patients and 90 healthy people. The purpose of the experimentation was twofold:
to show that our approach allows us to accurately classify patients and healthy
subject using the features extracted fro their handwriting, and to underline which
features are more relevant to provide the diagnosis. In order to achieve our aim,
we learned the BN DAG structure and the conditional probabilities among fea-
tures and the class label, using the available data. Given the DAG structure,
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we extracted the MB, which highlights the features conditionally dependent on
the class node. We performed the aforementioned procedure by running the K2
algorithm 30 times, setting to 3 the maximum number of parents for each node.
The value selected for the maximum number of parents represent a compromise
between algorithm efficiency and computational cost, while the number of runs
of the algorithm k2 was chosen to average the effects of the initial ordering of the
input variables. Its efficiency, in fact, is strongly dependent on this ordering and
therefore a different initial order of the variables were considered in each run. We
used the WEKA software for feature selection and classification, whereas we used
the KNIME software for data pre-processing (managing missing values, filter-
ing null columns, and encoding categorical variables). Although real-world data
often includes a combination of discrete and continuous variables, BN structure
learning algorithms generally assume that all random variables are discrete. As
a consequence, continuous variables are typically discretized to comply with this
assumption. In our implementation, we applied the sample quantile technique to
discretize continuous variables into five binning intervals. These pre-processing
steps were crucial in preparing the data for the subsequent classification analysis.

In order to investigate the importance of the used features, we plotted the
histogram of the features selected more than 10% of the times in the MB among
the 30 runs (see Fig. 2) for each category, namely In-air, On-paper, In-air-On-
paper and All. Even if the results relative to the feature category All indicate
that the features derived from on-paper traits are selected more frequently than
those related to on air traits, the importance of on air traits is confirmed by our
results reported in Table 3 as well as by the results reported in [9]. From the
figure, we can see that the age, feature f24 (see Table 2), is the most selected
in the four categories, with a minimum value of 0.47 (On-Paper). This confirms
that age significantly affects the handwriting process of people with Alzheimer’s
disease, due to the changes in brain structure, such as the decrease in the size
of the brain’s memory center (hippocampus). Even if these changes typically
worsen with age [10], they are more relevant in subjects with mild cognitive
impairment and even more dramatic in people with Alzheimer’s disease. Another
feature selected with high frequency in 3 of the 4 categories is the education, fea-
ture f26, with a minimum value of 0.43. Comparing these results with the ones
obtained in [4], where the education was selected few times, we can say that BNs
seem more effective in estimating the correlation among variables, and thus the
joint contribution of groups of features in distinguishing patients from healthy
people. Other two significant features selected with high frequency are f2 and f3,
measuring the start vertical position and the vertical size, respectively. The joint
selection of these features confirms the importance of evaluating the spatial coor-
dination of subjects, and indicates that their variability differs between healthy
people and AD patients. As regards the evaluation of the dynamic parameters
of the handwriting process, separate evaluations can be made for data On-Paper
and In-Air data. The peak vertical acceleration f5 appears with its mean value
and its mean and standard deviation in On-Paper group, underlining the impor-
tance of the variability of this feature. In In-Air group, the presence of f5 together
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with the standard deviation of the number of peak acceleration points f̂20 and
the standard deviation of the normalized y jerk f̂17, suggests that the variability
of in-air movements may highlight anomalies in the handwriting of AD patients.
On the other hand, also the movements performed with the pen tip touching the
paper are characterized by different dynamics in AD patients and healthy people.
In fact, in the On-Paper category, the mean value of jerk f18, the absolute y jerk
f16, the average absolute velocity f14 and the standard deviation of peak verti-
cal acceleration f̂4, are the most selected features, underlining the importance of
hesitations in the handwriting process. In the On-Paper category, features like
f3, f13, f1, f6, and f9 that measure the space occupation, are also very impor-
tant. In case of In-Air-On-Paper group, the features are obtained by averaging
the values from both in-air and on-paper attributes for each task, thus assum-
ing that the generation of the handwritten strokes is obtained by concatenating
in air and on paper movements. Apart from the already mentioned features,
the most important features are the absolute jerk f18, peak vertical velocity f4,
the road length f15, but also the duration f1, the average absolute velocity f14,
the start horizontal f6 and vertical position, f2, with their mean and standard
deviation. These results confirm that globally handwriting dynamic and spatial
coordination are very important. When we apply the BNs to the category All,
the effect is to produce a ranking of the features computed on both In-Air and
On-Paper traits. In particular, we have the predominance of On-Paper features,
where the most selected features are pen pressure f21, the pen absolute veloc-
ity f14, the absolute y jerk f16, the start vertical position f2, loop surface f10,
the road length f15, duration f1. The only feature computed on in-air traits
present in the histogram is the feature the vertical size f3. It is interesting to
note that the features f10 emerge only in this group, meaning that they probably
assume importance only in correlation with other features of both In-Air and
On-Paper category. Finally, note that the feature road length f15 is present in
all the histograms except for the one relating to the in-air category.

We used the Recursive Feature Elimination with Cross-Validation (RFE) [13]
to select the most relevant features for comparison purposes. This technique
recursively eliminates features and evaluates their impact on the performance
of basic classifiers. We used a 10-fold cross-validation setup and evaluated the
performance using the XGBoost [3], Decision Tree [15], and Random Forest [1]
classifiers. We performed 30 classification runs, each time using the relevant
features selected by each method. Table 3 shows the results obtained in all the
aforementioned experiments; the first column shows the algorithm used for the
feature selection, whereas the second column shows the algorithm used for the
classification step. For each method, we reported the accuracy mean and the
standard deviation along the 30 runs, with the average mean number of features
selected (NF). From the table, we can observe that the best results are obtained
every time with BN selection and classification. It is also worth noticing that
when we apply another classification method to the feature selected by BNs it
never achieved the result obtained by using BN as a classifier. This behavior
proves that both structural and parametric learning of the BN is very effective
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Fig. 2. Feature percentage greater than 10% selected by the proposed approach. Each
bar of the histogram shows the fraction of time the corresponding feature(s) was
selected among the 30 runs.
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in selecting features and classifying healthy subjects and AD patients. Moreover,
among the four categories, the best performing is All and then, in the order, In-
air-On-paper, On-paper and In-air, and This result shows that BN optimally
exploits the information coming from the two groups when this information is
not averaged. Furthermore, as also shown in Fig. 2(d), the best features are
those derived by the On-Paper category, where the In-Air ones are exploited as
complementary information to obtain the best recognition performance.

Table 3. Classification results using BN, RF, XGBoost, and DT in term of average
accuracy (Acc) and its standard deviation (in brackets), and average number of selected
features (NF).

Feature Selection Classifier All In-Air In-air-On-paper On-Paper

Acc NF Acc NF Acc NF Acc NF

BN BN 74.99 (5.74) 48.13 71.22 (4.03) 25.27 73.26 (4.47) 24.77 73.11 (4.11) 23.73

RF 61.34 (4.76) 48.13 61.53 (4.72) 25.27 61.15 (4.24) 24.77 59.57 (3.68) 23.73

XGB 57.20 (4.88) 48.13 58.73 (5.64) 25.27 58.69 (4.45) 24.77 56.91 (5.31) 23.73

DT 64.31 (6.66) 48.13 58.12 (6.53) 25.27 63.52 (7.24) 24.77 63.32 (6.89) 23.73

RFE RF 61.90 (4.26) 17.03 62.15 (3.93) 19.09 61.93 (4.81) 22.41 61.56 (5.36) 14.38

XGB 61.02 (5.69) 11.90 60.28 (4.47) 10.60 59.94 (6.16) 11.20 59.86 (5.41) 10.40

DT 63.39 (6.38) 10.25 62.56 (5.39) 11.38 64.63 (4.44) 10.25 64.28 (4.69) 10.19

5 Conclusions

In this study, we presented a novel approach based on Bayesian networks to
evaluate the statistical dependencies among different features extracted from
handwriting samples, in order to maximize the performance of a system for
early AD diagnosis. The data were obtained by administering handwriting tests
according to a protocol including 35 tasks, to a group of 180 subjects including
90 healthy controls and 90 AD patients. From these data, four datasets were
obtained including feature relative to on paper and on air traits: this choice
allowed us to estimate the distinctive power of the different considered feature
categories and to study the complex interactions among groups of features.

The results seem very encouraging and demonstrate the effectiveness of the
proposed approach: in particular, the Bayesian network allowed the selection
of about half of the whole set of available features, significantly improving the
performance with respect to other state of the art feature selection methods. As
future works, we plan to increase the number of parents in the BN structural
learning algorithm and to evaluate the sensitivity of the proposed system to
variations of this parameter. The number of parents, in fact, has a very strong
impact on the computational cost of the BN learning algorithms. We also plan
to apply hybrid structural learning techniques to Bayesian networks [7].
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