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Abstract. During recent years, there here has been a boom in terms
of deep learning use for handwriting analysis and recognition. One main
application for handwriting analysis is early detection and diagnosis in
the health field. Unfortunately, most real case problems still suffer a
scarcity of data, which makes difficult the use of deep learning-based
models. To alleviate this problem, some works resort to synthetic data
generation. Lately, more works are directed towards guided data syn-
thetic generation, a generation that uses the domain and data knowledge
to generate realistic data that can be useful to train deep learning models.
In this work, we combine the domain knowledge about the Alzheimer’s
disease for handwriting and use it for a more guided data generation.
Concretely, we have explored the use of in-air movements for synthetic
data generation.

Keywords: In-air Movements · Online handwriting recognition ·
Synthetic Data Generation · Alzheimer disease · Recurrent Neural
Networks · Convolutional Neural Networks

1 Introduction

Deep learning models are data hungry. Hence, in many application scenarios,
additionally to collecting more data specific to the relevant task, generating
samples synthetically has been widely adopted as an alternative to alleviate the
few data issue [1]. It is well known that when it comes to tasks related to the
medical field, data scarcity is more severe since collecting data in clinical setups
is tough and there exist privacy preservation concerns [2].
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Alzheimer’s disease (AD) can be defined as a slowly progressive irreversible
degenerative disease with well-defined pathophysiological mechanisms [3]. AD is
marked by a decrease in cognitive skills and the individual’s independence levels
when performing daily life activities [4]; besides being the most common reason
behind dementia.

Early AD detection is essential for screening purposes and later AD patients’
disease management. Moreover, it serves to help the patients and their caregivers
to plan for the future thus help the patient to maintain a desired quality of life as
long as possible. Very often, AD diagnosis in clinical practice can be complicated
due to time constraints and due to the fact that AD symptoms can be considered
as normal aging symptoms. Furthermore, AD early diagnosis can lessen the
financial cost related to AD patients’ and their caregivers’ support [5,6]. In this
scenario, handwriting analysis remains an affordable and efficient alternative
for AD early diagnosis and detection contrary to other AD early diagnosis and
detection approaches such as invasive and non-invasive biomarkers methods.
The latter are generally expensive and limited in terms of availability in clinical
practice. In addition, there is a need for special expertise when dealing with
technologies that perform invasive biomarkers examinations [7].

Furthermore, it is well known that handwriting problems arise among neu-
rodegenerative patients and AD patients in particular [8]. For instance, small
handwriting size referred to as micrographia is linked to Parkinson’s disease
(PD), meanwhile dysgraphia, defined as the neurological condition that cripples
writing abilities [9], is observed among AD patients [10–13]. Hence, handwriting
could be deemed an important biomarker to diagnose AD [14,15]. It is assumed
that smoother velocity profiles mean more efficient neuromotor systems. Indeed,
upon this assumption was built the poor handwriting theory [16]. The theory
claims that once a motor system fails to limit the noise behind the accelerate
and decelerative forces, it is not kinetically optimal and unpredictable spatially.

Werner et al. [17] examined kinematically the handwriting process amid mild
cognitive impairment (MCI), mild AD, and healthy populations. In addition,
they assessed the relative significance of handwriting’s kinematic features across
the three populations. The authors found out that, apart from velocity, all kine-
matic measures consistently differentiate between healthy and AD individuals.

One interesting finding shown in [17] was the increase in in-air time within AD
and MCI groups compared to the control group (healthy). In-air time was defined
as the time when the pen is not on whatever writing support used (e.g. paper,
tablet, etc.). Several reasons were cited to interpret this outcome: the first one
was related to the writing characteristics of the language used for the experiments
(concretely, Hebrew) which already requires more pen lifts than Latin-based
languages due to the specific language writing characteristics. The second one
was related to the theoretical model of Van Galen and Teulings [18], in which
the model discerns three phases in the writing response: motor programming
(patterns retrieval), parameter setting, and motor initiations (impulse generation
for particular muscles). On the ground of these three steps, it could be deduced
that the increase in in-air time is due to the deficit in motor programming
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Fig. 1. On-paper (black) and in-air movements (gray) for the word “Mamma” written
above a line. a) Healthy individual 1; b) AD patient 2.

amid AD patients who take relatively a longer time to start a movement [19,20].
Finally, the authors suggested that visuospatial deficit among AD patients could
be a possible reason [21,22].

Therefore, we are impelled by this work on the relevant discrimination power
of in-air movements in AD patients’ handwriting and our observations across
many datasets for neurodegenerative diseases (see Figs. 2 and 1) into the bargain,
coupled with synthetic generation to face the data scarcity for neurodegenera-
tive diseases. In essence, we explore in this work the use of in-air movements for
synthetic handwriting generation. Our initial hypothesis is that in-air movement
information could lead to generating good-quality synthetic samples and there-
fore, models trained with this data can reach better classification accuracies.

To our best knowledge, handwriting synthetic generation for AD detection
and diagnosis, in particular, is not a prosperous research area, which requires
more research efforts from the scientific community.

The rest of the article is organized as follows: Sect. 2 reviews relevant related
works. Next, Sect. 3 describes the generator/discriminator duality in our imple-
mentation. Afterwards, experiment details are given in Sect. 5 for reproducibility
purposes. Then, Sect. 6 presents the different results, which are discussed later
in Sect. 7. Finally, we draw conclusions in Sect. 8.

2 Related Work

Many works covered online handwriting analysis for neurodegenerative patients
as it offers more information about the individual’s kinematics and fine motor
skills than offline analysis. Most of those works take into account kinematic fea-
tures to automatically discriminate between a control group of healthy individ-
uals and a patient group [10,23]. All those works fall into the line of Computer
Aided Diagnosis (CAD) systems which help clinicians and doctors by provid-
ing biomarker computations and analysis. CAD systems could be integrated
in already existing clinical workflows in order to maximize early diagnosis and
detection chances [24].
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Fig. 2. On-paper (black) and in-air movements (gray) for the word “bottiglia” written
in reverse. a) Healthy individual 1; b) AD patient 2.

The analyzed tasks can be classified into the following categories:

• Drawing tasks: individuals are asked to draw different forms: spirals [25],
meanders, lines [26], etc.

• Writing tasks: individuals are asked to write a letter or a sequence of letters,
words, sentences [27], etc.

• Complex tasks: individuals are asked to perform the writing/drawing task in
addition to another motor/cognitive task with the purpose of increasing the
task load, thus revealing more motor/cognitive issues [28].

Traditionally, statistical tests (for instance, ANOVA) are used to analyze
online handwriting [29]. In the past years, the handwriting analysis area has ben-
efited from the machine/deep learning boom, in particular handwriting analysis
for CAD systems: neurodegenerative diseases and others [30,31].

Some works have tackled synthetic sample handwriting generation for neu-
rodegenerative diseases [32,33].

Nevertheless, there is still a gap in data generation for Alzheimer’s disease,
in particular, and a lack of works that focus on the domain knowledge for guided
data generation.

3 Methodology

As explained in the introduction, we aim to evaluate the impact of in-air move-
ments in the generation of synthetic samples and in the classification tasks.

We have used the architecture presented in [33] to generate and select the
synthetic samples used for training the classifier that discriminates between the
handwriting sample drawn by AD patients or healthy subjects. The architecture
consists of a Generator (RNN), trained to generate new samples, and a Discrim-
inator (CNN network), which classifies the generated images into fake or real
samples. Once the discriminator can be fooled, the generation is supposed to
generate good-quality data that can be used with real data to train the final
classifier.

Contrary to conventional GANs architectures, the GAN loss does not back-
propagate through the generator to update each layer’s weights. Instead, the
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Generator and Discriminator in this architecture are parallel. Thus the generator
does not learn from the discriminator’s feedback (code compatibility reasons).

The two modules are further described in the next subsections.

3.1 Generator

First, the real data is organised into 5 folds, and used later for training and
testing. Then, synthetic images are generated. The generator is inspired by Alex
Graves’s work [34], where recurrent neural networks (RNNs) were used to gener-
ate realistic handwriting sequences. Rather than having the RNNs model predict
exactly what the future point will be, Graves’s work discusses predicting a prob-
ability distribution of the future given the prior information.

The generator is fed with two channels of the input time series: acceleration
through x (ax) and y (ay) axis. A two-layer stacked basic LSTM has been used,
with 256 nodes in each layer. The generator output is a sequence of SL points,
where SL is chosen so that the distribution of synthetic samples per number of
points was similar to the distribution of real samples per number of points.

3.2 Discriminator

The discriminator validates the data outputted by the generator. A synthetic
image is hold when the discriminator assigns to it the correct class, otherwise is
discarded.

The discriminator is an ensemble of 5 Convolutional Neural Networks (CNNs)
and it classifies samples by a majority vote rule. The dataset of real samples is
shuffled 5 times and each time one of the CNN belonging to the ensemble is
trained with 35% of the data.

Each CNN of the ensemble is made-up of 5 convolutional layers and its
architecture is equal to the CIFAR-10 neural network presented in [35]. Figure 3
shows the neural network and the hyper-parameters related to each layer. Table 2
reports the hyper-parameter values chosen for training the 5 CNNs.

The adopted discriminator elaborates 2D images so, both the real and gen-
erated time series are converted into 2D grayscale images, as described in [33].
In particular, the time series of each real or synthetic handwriting sample are
rearranged into a squared matrix that is then resized in a 64 × 64 image using
the Lanczos re-sampling method.

4 Dataset

The DARWIN dataset was introduced in [27] as the largest publicly available
dataset [36] in terms of participants’ numbers. The dataset includes handwriting
samples from 174 individuals: 89 AD patients and 85 healthy individuals. To
ensure maximum pattern matching between the two groups, participants from
both groups have the same age distribution, educational background, and work
profession type (intellectual/manual).
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Fig. 3. One of the 5 CNN that make up the Discriminator architecture.
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The dataset was obtained by writing with a pen on an A4 sheet of white
paper placed over a Wacom’s Bamboo tablet. The recorded information is:

1. timestamp;
2. x coordinate;
3. y coordinate;
4. binary pen-down property;
5. the pressure applied by the pen on the paper.

Individuals were asked to perform 25 tasks, for instance:

– Joining two points with a horizontal line, continuously four times;
– Retracing a circle (6 cm in diameter) continuously four times;
– Copying the word “foglio”;
– Copying the letters ‘l’, ‘m’, and ‘p’;
– Copying the letters on the adjacent rows;
– Writing cursively a sequence of four lowercase letters ‘l’, in a single smooth

movement;
– Writing cursively a sequence of four lowercase cursive bigram ‘le’, in a single

smooth movement;
– Copying in reverse the word “casa”;
– Drawing a clock with all hours and putting hands at 11:05 (Clock Drawing

Test);
– Copying a paragraph;

For our work, we are interested in particular by two of these tasks:

• Task 13: Copy the word ‘mamma’ (the Italian word for mom) above a line;
• Task 16: Copy in reverse the word ‘bottiglia’ (the Italian word for bottle);

Task 13 has been chosen over many works dealing with neurodegenerative
diseases handwriting analysis [37] because of its significant presence in someone’s
language since early childhood, besides the fact that it is a word commonly
repeated by AD patients in advanced disease stages.

On the other hand Task 16 is an interesting task because it is a complex
one since it consists of a word reverse copying which implies a cognitive effort
(inspired from the Mini Mental State Examination).

5 Experiments

We define two experimentation scenarios for each Task:

– In-air movements: using only movements performed with the pen when it is
not on writing support;

– In-air + On-paper: using both movements recorded when the pen is and is
not on the writing support;
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Initially, authors in [33] have found that feeding the generator with more than
two channels from the input time series has weak effects on the method’s perfor-
mance. For the same reason and for optimal memory and computation time, we
have chosen the ax and ay channels. For reproducibility uses, Table 1 describes
the generator’s hyperparameters.

It’s worth nothing that for each scenario and for each task we trained 2
different RNNs: the first synthesized samples drawn by healthy subjects, the
second synthesized samples drawn by AD patients.

Moreover, for each scenario and for each task, a CNN that discriminates
between samples drawn by a healthy subject or AD patient was trained with the
hyperparameters reported in Table 2 and using both real and synthetic samples.
The number of generated synthetic samples has been either 500 (500 AD and 500
healthy) or 1000 (1000 AD and 1000 healthy), for each task. The performance
was measured by averaging on 5 training of the CNN. At each training, the real
dataset was shuffled and 50% of subjects were kept apart as test set.

Table 1. Generator’s hyperparameters.

Parameter Chosen Value

RNN hidden state 256

Number of layers 2

Cell Type LSTM

SL 150

Number of epochs 301

Learning rate 0.01

Number of Mixture M 20

Dropout keep probability 0.8

Training/validation set (70%,30%)

Loss Function Log likelihood loss

6 Results

Table 3 provides the average classification accuracies for both Task 13 (mamma)
and Task 16 (bottiglia) when generating 500 synthetic samples, while Table 4
compares the average accuracies when generating 1000 synthetic samples. In
both cases, we compare the performance of there scenarios using: in-air move-
ments, on-paper movements and in-air movements together with on-paper move-
ments.



144 A. Bensalah et al.

Table 2. Experimental setup to classify 2D images with the CNN.

Parameter Value

Kernel Initializer Glorot Normal

Bias Initializer 0

Pseudorandom number generators Fixed Seeds

Training/Validation 35%/15%

k-fold cross validation 5-fold

Batch size 5

Optimization algorithm SGD

Learning Rate 2 × 10−5

Momentum 0.9

Nesterov Momentum True

Loss Binary Cross Entropy

Early stopping Min Validation Loss

Epochs 10000

Table 3. Average accuracies for Task 13 and Task 16 using 500 synthetic samples.

500 synthetic samples

In-air on-paper In-air+on-paper

Task13 (mamma) 35,71% 43,77% 45,15%

Task16 (bottiglia) 45,15% 54,66% 51,46%

Although we observe that there’s a significant decrease in terms of average
accuracy for Task 13 when using in-air movements only to generate synthetic
samples, Table 4 shows that accuracies remain almost the same when using in-air
and in-air+ on-paper movements for sample generation with a tiny difference
of 0,43%. We observe that using in-air movements, the average classification
accuracy is higher for Task 16 compared to Task 13 (Table 3).

It is interesting to notice that while for task 13 using in-air and on-paper
movements together leads to better accuracies (45,15%) compared to when they
are used separately (35,71%, 43,77%) to generate synthetic data, it is not the
case for task 16. This pattern is similar for the case of task 16, when more
synthetic samples are generated (see Table 4), the best accuracy is still achieved
with on-paper movements solely.

Table 4. Average accuracies for Task 16 using 1000 synthetic samples.

1000 synthetic samples

In-air On-paper In-air+On-paper

Task16 (bottiglia) 51,59% 54,14% 52,02%
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For comparison purposes, Table 5 provides the average accuracies when using
in-air movements per fold when no synthetic samples are generated. It can be
observed that the average accuracy reaches 56,78% for Task 13 while it is higher
by 0,34% for Task 16.

Table 5. Average accuracies using in-air movements per Fold with no synthetic data.

In-air (No synthetic samples)

Accuracy Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Task 13 (mamma) 62,50% 57,14% 50% 50% 64,28% 56,78%

Task 16 (bottiglia) 50% 71,42% 52,94 68,42% 42,85 57,12%

7 Discussion

Our initial hypothesis was that in-air movements represent discriminative pat-
terns for the Alzheimer’s Disease patient population. Overall, the results show
that there is a gap between classification accuracies when using only in-air move-
ments versus the use of in-air plus on-paper movements and this gap depends
on the task complexity and the number of synthetic samples.

First of all, contrary to what we expected, the model performed better with-
out synthetic data at all. This surprising result could be explained by the extreme
variability of in-air movements, which could not be modeled in the right way by
the network used to generate synthetic data. The absence of visual feedback dur-
ing in-air movements results in the patients’ inability to control their movements
and the generation of complex, almost random, in-air trajectories. Hence, pre-
dicting the probability distribution of the next in-air point is challenging. This
is clear even visually, in Task 16, where the cognitive deficit resulted in very
different forms of in-air movements (as many patients had difficulties in terms
of motor programming when asked to write in reverse, see Fig. 4).

Next, the results show that the performance gap varies depending on the task.
Task 16 involves a greater cognitive effort (writing backwards) than Task 13 and
that results in the generation of longer and more complex in-air movements.
On one hand, the greater cognitive effort of Task 16 makes the handwriting
of AD patients more easily recognisable than the healthy controls’ handwriting
when compared to the other task. On the other hand, the complexity of in-
air movements has the drawback that a greater number of synthetic samples is
required before they become beneficial with respect to the on-paper movements.
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Fig. 4. On-paper (black) and in-air movements (gray) for the word “bottiglia” written
in reverse by two different patients. a) AD patient 1; b) AD patient 2.

8 Conclusion

In this work, we have explored the use of in-air movements for synthetic sample
generation, particularly for a neurodegenerative disease like Alzheimer’s disease.
In accordance with the work in [17], which states that in-air movements hold
discriminative patterns, we have observed that indeed in-air movements have an
impact in terms of model performance.

We have observed that in-air movement quality and quantity depend on
the nature of the task and the subject’s motor and cognitive abilities, thus a
subject/task-centered approach could lead to interesting results. Finally, further
synthetic sample experiments could be done in the future to assess the model’s
performance with and without synthetic data. In addition, as future work, we
plan to explore other methods for data generation, which may be more suitable
for this particular task.

In summary, this work highlights the importance of exploring domain and
data knowledge for improving data generation for health applications.
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