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Abstract. This work explores the segmentation and detection of toma-
toes in different maturity states for harvesting prediction by using the
laboro tomato dataset to train a mask R-CNN and a YOLOv8 archi-
tecture. This work aims to test the mask R-CNN architecture and the
proposed methodology efficiency on the benchmark paper [12]. The eval-
uation metric intersection over union (IoU) 0.5 showed an average pre-
cision of 67.2% with a recall of 78.9% over the laboro tomato dataset
and an IoU average precision of 92.1% with a recall of 91.4% over the
same dataset. The benchmark paper authors perform segmentation and
classification in a separate process using color analysis algorithms and
use the determination coefficient (R2) for how accurately the tomato was
set into the three maturity classes.

The results show that the state-of-the-art YOLOv8 has a R2 of 0.809,
0.897, and 0.968 in the ripe, half-ripe, and green categories, respectively.
However, the Mask R-CNN results are acceptable, with 0.819, 0.809,
and 0.893 in the ripe, half-ripe, and green categories, respectively. The
YOLOv8 model performed better than the one used in the benchmark
paper by detecting, segmenting, and classifying tomatoes. Moreover, the
color-analysis technique used in the benchmark paper results inefficiently
because the classification results showed no linear relation between the
predictions and the real values.

Keywords: Object detection · deep learning · precision agriculture ·
maturity recognition · Mask R-CNN · YOLO

1 Introduction

This text discusses the industrialization processes in precision agriculture and
their potential applications in recognizing crops, estimating maturity time,
detecting diseases, and nutritional deficiencies using computer vision sys-
tems [4,14,19–21]. These applications can reduce manual labor, improve harvest-
ing accuracy, and even be deployed on autonomous robots for picking mature
tomatoes [5]. However, a significant challenge lies in obtaining a suitable dataset
for accurate recognition and instance segmentation. Generating a custom dataset
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may be necessary for crops with limited available information, requiring envi-
ronmental control, multiple angles, and expert labeling for supervised or semi-
supervised tasks.

The laboro dataset, containing multiple classes and diverse images, is chosen
for this study [12]. While the original dataset had 160 images, the current version
has grown to 804 images.

One of the main challenges while performing this comparison was recreate the
original authors methodology, to recreate the results and perform an accurate
comparison.

This paper aims to replicate the instance segmentation results using the Mask
R-CNN model on the laboro tomato dataset and compare them with YOLOv8,
a state-of-the-art model for object recognition and instance segmentation. The
proposed approach involves training the models with data augmentation, transfer
learning, to improve performance in terms of mean average precision (mAP) and
R2 coefficients for predicting tomato instances.

2 Related Works

In the work of Sandro Magalh et al. [10], the authors performed object detection
with the single-shot multi-box detector (SSD) and YOLO architectures to detect
tomatoes. They compared some traditional machine learning (ML) techniques
that used to work only for ripe tomatoes. However, with the implementation of
object detection networks, it was possible to detect green, half-ripe, and ripe
tomatoes. The models were trained with the author’s own generated dataset on
a greenhouse. The images contain tomatoes on the tomato plant collected by the
mobile robot AgRob v16, the same robot that performed recognition with the
trained model. The authors collected videos to generate the dataset and used a
frame every three seconds. They used only the “tomato” class, which included
tomatoes in all the ripeness states, and performed data augmentation techniques
to give robustness to the model. The results showed that SSD MobileNet v2 was
the best generalized and performing model. However, YOLOv4 Tiny also had
achievable results with the best prediction times. For future works, the authors
mentioned the importance of a regularization mechanism on the models and
created sub-classes to detect ripeness states for harvesting procedures.

In the work of Wenli Zhang et al. [21] proposed an object recognition architec-
ture for fruit detection in edge computing applications. The problem the authors
intend to solve is the speed of the state-of-the-art model’s implementation. On
the methodology, the authors propose an architecture based on Light-CSPNet as
the backbone network, an improved feature extraction model, a down-sampling
method, and a feature fusion model to perform real-time fruit detection. The
authors trained the model over three different fruits (oranges, tomatoes, and
apples) and compared the results against YOLOv3, YOLOv4, YOLOv3-tiny,
YOLOv4-tiny, and their own proposed model. The YOLOv3 and YOLOv4 mod-
els performed better over precision, recall, and average detection precision (AP)
but had a low FPS rate (8.1 and 4.6, respectively) for edge device applications.
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On the other hand, the proposed model had a slightly better result than the
YOLOv3-tiny and YOLOv4-tiny, with an FPS rate of 24.8 and an AP of 0.93
for oranges, 0.847 for tomatoes and 0.85 for apples.

While some authors present multiple variants of the same architecture, the
work of Mobashiru Lawal [9] presented a comparison of the original YOLOv3 and
a modified version of it optimized for tomato detection by introducing spatial
pyramid pooling and Mish activation function. Three variants of the model were
proposed, the A, B, and C versions that used different activation functions.
The model YOLO-Tomato-A got an AP of 98.3% with a detection time of 48
ms, YOLO-Tomato-B got an AP of 99.3% with a detection time of 44 ms, and
YOLO-Tomato-C got an AP of 99.5% with a detection time of 52 ms. The mish
activation function and the SPP combination were the most optimal in this work.
The dataset was obtained with a camera in a controlled environment and labeled
by an expert.

These previous works show that the YOLO architecture has been a popular
option for object detection or instance segmentation [5,16,17]. This is because
YOLO architecture performs object detection in a single shot, which results in
a very efficient methodology [13,18]. In addition, most state-of-the-art solutions
include convolutional neural network use, which performs far better than ML or
traditional image processing techniques separately.

However, in the work of Taehyeong Kim et al. [8] and Daichi Minagawa
et al. [11] used a custom deep neural network and Mask R-CNN as the archi-
tectures, respectively, to solve the harvest time of the tomatoes. With the Mask
R-CNN, they performed object detection to separate the tomato region from
the background, removing noise. With the pre-processed images, the authors
proposed an image processing methodology of color analysis to calculate the
red rate and classify the tomatoes using the image and the red color ratio. The
dataset was collected using a robot that uses cameras and takes control of how
many days there were until the harvesting day. The classifier was tested with
the background and noise images, and against the pre-processed ones, the pre-
processed ones showed higher accuracy when predicting the harvest time and
days left until harvest time.

3 System Model and Methodology

3.1 Dataset

The Laboro Tomato: Instance segmentation dataset [1]. It is a dataset containing
growing tomatoes in a greenhouse. The dataset separates the tomatoes into
three ripening stages, ripe, half-ripe, and green. Furthermore, it contains two
different types of tomatoes: cherry and regular. The dataset is designed for object
detection and instance segmentation. It contains bounding box annotations and
vertices representing the tomato masks to do segmentation tasks for each tomato,
along with the class to which it belongs.

Moreover, the images were taken with two cameras, giving different image
quality and resolutions. The dataset contains 643 images to train and 161 to
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test, giving 804. To classify the tomatoes into different categories, the regular
(big) and cherry (little) were different species that the experts already knew
how to differentiate from the planting phase. Additionally, cherry tomatoes are
considerably smaller than regular tomatoes. To classify into the different ripeness
states, the authors used the percentage of red the tomato has as one of the
criteria. Fully ripened presented a 90% or more, half-ripened was between 30–
89% and green was between 0–30% of red color. However, there were other
criteria, and experts decided on the final classification. Examples of each category
are represented on Fig. 1.

In the benchmark paper [12], the authors mention that they picked up a
subset of 60 big and 40 small tomatoes that matches the color criteria initially
established to generate an artificial dataset. This carefully selected dataset will
be mentioned as the dataset I, and the full laboro dataset will be represented as
dataset II.

Fig. 1. Illustration that shows an example of each tomato category, where (a), (b), and
(c) are big/normal tomatoes, and (d), (e), and (f) represent the little/cherry tomatoes,
the images are organized from top to bottom as green, half-ripen, and full-ripen. (Color
figure online)

3.2 YOLO Architecture

YOLO (you only look once) is a real-time object detection architecture proposed
by Joseph Redmon et al. [13]. YOLO is a popular option for object detection
because it can detect objects from any image in a single shot usin anchor boxes 2
using a single neural network.
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Fig. 2. Illustration that shows the basic of how YOLO architecture works [13].

YOLOv8 is the latest version of the YOLO architecture. However, there are
many differences between these versions. On the open access GitHub reposi-
tory of the roboflow team [2] is publicly available the YOLOv8 implementation,
from which scheme is represented in Fig. 3. One of the main differences is that
YOLOv8 is the first YOLO version that is an anchor-free model.

The anchor-free model considerably reduces the number of box predictions,
which speeds up the non-maximum suppression (NMS) process, in which less
likely candidates are sifted until a successful inference. Also, the C2f is imple-
mented as a new convolution layer. In C2f, all the outputs from the bottleneck
are concatenated, while in previous versions, only the last bottleneck was used.
This details can be found on a bigger depth in [2].

3.3 Mask-R CNN Architecture

Mask-R CNN is an object detection and instance segmentation network proposed
by Kaiming He et al. [7] with the Facebook AI Research group.

The fast R-CNN [6] was extended to process the feature maps into the RoI
sections, using the RoI pooling layers, leading to a fast speed and great accuracy.
The faster R-CNN has two outputs for each possible object: The class label and
a bounding box offset. So the Mask R-CNN included the object mask attached
to the object detection as shown in Fig. 4b.

Furthermore, the faster R-CNN contains a extra branch in contrast to the R-
CNN, where the information from the pretrained VGG [15] CNN features maps
are passed through a Conv layer, then the anchor boxes that are composed by
the bounding box and the category, then this is passed through a non-maximum
supression layer (NMS) and sent to the RoI pooling layer as in Fig. 4b.



Maturity Recognition Task, Models Comparison 387

Fig. 3. A graphical representation of the YOLOv8 architecture, where the backbone
region is composed of successive Conv and C2f layers and an SPPF layer at the end.
From the backbone, the P3, P4, and P5 outputs are used as inputs to run inside the
head layer, composed of the Unsample, Concat, C2f, and Conv layers. Finally, three
outputs are obtained to pass through the Detect layer and separate the bounding box
and class loss calculation.

However, Mask R-CNN architecture principal difference from faster R-CNN
is that the pooling layer is replaced by a RoI align pooling layers, it predicts in
parallel the RoI in a binary mask, which makes the classification independent of
the mask prediction.
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4 Methodology

4.1 Benchmark Paper Methodology

The methodology that the benchmark paper authors proposed consists of two
fundamental steps. First, because they only used the class tomato to perform the
classification, the Mask R-CNN model could only perform instance segmentation
of the class “tomato.” Then with the generated mask, the authors extracted the
tomato pixels to perform the color analysis in the hue-saturation-value (HSV)
format. This analysis consist of computing the average color in the area of the
mask for each individual prediction, then this average color is passed through
multiple thresholds. For the fully ripened category, multiple threshold sets were
proposed. For the first set, the minimum threshold values for each HSV value
were 0, 140, and 145; the maximum were 5, 255, and 255. For the second set,
the minimum threshold is 174, 120, and 135, respectively, and the maximum
values are 179, 255, and 255. To define the fully ripened category, one of both
sets representing the fully ripened is selected with a logic operator OR. For the
half-ripened category, the minimum threshold values are 3, 144, and 155, and
the maximum threshold values are 18, 255, and 255. For green tomatoes, any
tomatoes that do not fall into this threshold is considered a green tomato.

Fig. 4. Details of the Mask-RCNN architecture in (4a) and its implementation in the
Faster R-CNN architecture in (4b).

To evaluate the methodology’s performance, the instance segmentation model
and the color threshold classification methodology had different metrics to eval-
uate. Therefore, the mean average precision (mAP) and the recall metrics were
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used to evaluate the model. The mAP is obtained as the mean of the ratio of
correct detections (true positive) over the number of object detections. However,
detection is achieved as correct if the intersection over union (IoU) is more than
0.5. The definition of the IoU is in Eq. 1. The mAP equation is defined in Eq. 2,
where N is the number of classes, and AP is the average precision. Also, the
precision is calculated as the number of true positives over the total detections
as in Eq. 3.

IoU =
Area(Maskgroundtruth ∩ Maskpredicted)
Area(Maskgroundtruth ∪ Maskpredicted)

(1)

mAP =
1
N

N∑

i=1

APi (2)

P =
true positives

true positives + false positives
(3)

The recall is defined as the number of positive matches over the number of
ground truth objects, which is detailed in Eq. 4.

recall =
true positives

true positives + false negatives
(4)

Furthermore, to evaluate the classification performed by the color separation,
the R2 metric was used and is defined in Eq. 5, where SSres is the sum of the
squares of the residual error and SStot is the total sum of the errors. It works by
measuring the amount of variance in the predictions explained by the dataset.
The prediction is compared with the expert’s labels classifying the tomatoes into
different categories. Also is considered that the classes, the half-riped are in the
middle, so if a half-riped tomato is a mismatch to any of the other categories,
the variance is less than it would be a mismatch between a mature tomato and
a green tomato.

R2 = 1 − SSres

SStot
(5)

4.2 Proposed Methodology

In contrast to the author’s work, the tomato classification, as well as the instance
segmentation will be performed directly by the Mask R-CNN and YOLOv8
architectures. The color-based classification is removed, which will simplify the
pipeline process, the details are represented in the Fig. 5b

Furthermore, as the benchmark paper only uses three labels (ripe, half-ripe,
and green) this work will limit to use only three although, specifically the big
tomatoes subset.
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5 Results and Discussions

After training the Mask R-CNN [3] and YOLOv8 [2] models with 309 images
for training and 67 for validating until the loss function was stable and with the
same dataset distribution, both models performed predictions over 66 images.
With the mask obtained from the predicted images, we used the color analysis
technique to classify into the three existing classes. Furthermore, compare this
classification with the obtained by the models-only technique as shown in Table 1.
From this table, we can see that the classification methodology that uses color
analysis to predict the classes performs poorly in contrast to the classification
of the models, even the negative values represent that there is not relationship
between the expected values and the real values. The replicated results on the R2

metric represent a completely different result from what the benchmark paper
authors obtained.

Fig. 5. Authors methodology pipeline in (5a) that will get contrasted with the proposed
methodology that is illustrated in (5b).

When the work was done, the authors used dataset I, which contained spe-
cially selected images. Those images fitted well on the thresholds proposed by
the authors and contained only 100 images with tomato samples. Figure 6 shows
a more realistic color intraclass variation between the tomatoes. For example,
on the left image is a half-ripened tomato next to a fully-ripened one that looks
similar to the only one in the right image. Even all half-ripened tomatoes in the
right image could be considered in a similar color range as the fully-ripened one.

Moreover, some tomato masks include a great portion of the tomato plant
and leaves as in the left image from Fig. 6 where a fully-ripened tomato could
be classified as green because it is occluded by the tomato plant, which can
represent a bias in the color analysis, increasing the portion of green in the image
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composition. By adding more green values, ripe tomatoes can be misclassified
as half-ripened and half-ripened tomatoes as green. The mask accuracy also
impacts the quality of the color analysis because the background in most of the
samples contains leaves or parts of the tomato plant that also puts additional
green color. Also the Mask R-CNN tends to generate duplicated masks for the
same element, which is detected two or more times and could represent as an
issue to perform the color evaluation technique.

Comparing the YOLOv8 and the Mask R-CNN models as classifiers, both
perform well enough, achieving an R2 of 0.809 in the ripe class with the YOLOv8
model as the lowest value. However, YOLOv8 was the best model in the half-ripe
and green labels.

Fig. 6. Tomatoes images samples from the laboro dataset [1], where the yellow line
surrounds fully-ripened tomatoes, the pink line surrounds half-ripened tomatoes, and
the purple line surrounds green tomatoes.

Fig. 7. YOLOv8 (b) and Mask R-CNN (a) image segmentation and classification with
close-up images that highlight the mask quality.
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Table 1. R2 metric over the three different classes, comparing the Mask R-CNN,
YOLOv8 models, and the color analysis in the classification task.

Dataset Classification methodology R2 (ripe) R2 (half-ripe) R2 (green)

I Mask R-CNN + color analysisa 0.92 0.75 0.94

II Mask R-CNN + color analysis −0.335 −0.214 −0.702

II YOLOv8 + color analysis −0.325 −0.124 −0.518

II Mask R-CNN 0.819 0.809 0.803

II YOLOv8 0.809 0.897 0.968
aimages/Original results from the benchmark paper authors [12]

From the R2 metric of the Mask R-CNN and YOLOv8 models presented in
the Table 1, it is eventually that both models perform well on the segmentation
task. However, the R2 metric is insufficient to choose which model is better for
the segmentation and classification task over tomatoes. In the Table 2, it is shown
the recall and mAP from both models. Generally, both metrics are inverse as
better the precision, worse the recall, and bit-wise. For the YOLOv8 model, both
metrics are superior to the Mask R-CNN. The better performance of YOLOv8
could be because of its architecture which could be superior to the Mask R-CNN.

Table 2. Recall and mAP from the segmentation task, where the Mask R-CNN and
YOLOv8 were trained with the same dataset distribution.

Dataset Model Recall mAP (IoU 0.5)

I Mask R-CNN + color analysis a 78.9% 67.2%

II Mask R-CNN 77% 75.26%

II YOLOv8 83.4% 83.7%
aOriginal results from the benchmark paper authors [12]

Finally, some examples from the results are shown in Fig. 8 that looks similar,
the YOLOv8 and Mask R-CNN models perform equally; however, in the sub-
images 8a, 8d, and 8g we can appreciate more mismatches from the original
images in the sub-images 8c, 8f, and 8i that the YOLOv8 model in the 8b, 8e,
and 8h. Also, the masks from the YOLOv8 model are neater than those from
the Mask R-CNN. However, the YOLOv8 masks also include more leaves and
sections from the plants than the Mask R-CNN masks, just like in the sub-
image 8h and 8g in the inferior right corner.

From Fig. 7, we can appreciate that most of the background is green, and
despite this, the green tomato was the most accurate label, but also is very
mismatched by the Mask R-CNN that detects tomatoes by similar mismatch on
the shape and color of leaves as shown on the Fig. 7a, that can explain the lower
value on R2 by the replicated Mask R-CNN model. On the other hand, YOLOv8
has high accuracy in predicting green tomatoes. This accuracy can also be due
to the considerably superior amount of green tomatoes in the dataset compared
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Fig. 8. Illustration that contains in (a), (d), and (g) the Mask R-CNN segmentation and
classification, in (c), (f), and (i), the instance segmentation and classification prediction
by YOLOv8 model, and in (b), (e), and (h), and the original images from laboro dataset.

to the ripe and half-ripe tomatoes. Furthermore, in Fig. 7b on the right picture,
the mask area can be appreciated that covers the tomato area in a sharper way
than the Mask R-CNN model on Fig. 7a in the right picture though.
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6 Conclusions

In this work, we compared the Mask R-CNN and YOLOv8, for instance segmen-
tation and classification task. In addition, we compared the models for classifi-
cation against a color-based classification technique in the laboro dataset, where
the models performed much better in the classification task.

The classification performed by the model is better than the color-based
classification due to the number of features the models can extract from the whole
image. Not only the color but the contrast, the full illumination of the picture,
and the surrounding shapes can be an essential part of the image to proportion
an accurate classification. The color thresholds are an inefficient measure that is
not scalable not only for the specific dataset of tomatoes but also for detecting
ripeness in other crops.

On the other hand, the original benchmark paper results are not consistent
when testing on images with different real-world conditions. This inconsistency
can be due to the few samples the laboro dataset had when this work was
developed and the few images that could be destined for testing. Moreover, the
authors apply this methodology to a synthetic dataset that can add biases on
the classification.

Furthermore, the YOLOv8 seems to be a better classification and instance
segmentation model than the Mask R-CNN. Nevertheless, training both models
by changing the hyper-parameters and analyzing the resulting metrics is neces-
sary.

7 Future Works

The color analysis methodology to perform classification is inefficient and very
inaccurate, and it is better not to consider that to solve maturity recognition task
problems. It could be a handful solution as a support to label new data to train
a model, and there is not any model that could already do this by classifying
the data.

On the other hand, to get an approach to how other architectures work
with the maturity recognition task, the results of this work could be repli-
cated, emphasizing those well-known architectures that perform well working
with images.

Also, the resultant model of this work could be embedded in a system to
detect tomatoes. Then, using a dataset that contains tomato disease labels as
well, it could be used for spraying on focused areas, reducing the amount of
pesticide.

This work is centered on tomato maturity recognition with images, but a
model using real-time video that performs the same object recognition and
instance segmentation task is feasible.
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